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1 IntroductionThe decision problem of Boolean, or propositional, satis�ability is the \original" NP-hard problem. Weassume the reader is generally familiar with it. We shall consider exclusively propositional formulas inconjunctive normal form (CNF), also called clause form. Each clause is a disjunction of literals, and clausesare joined conjunctively. A closely related problem is to determine validity of a formula in disjunctivenormal form. As language recognition problems, satis�ability is in NP , while validity is in co-NP . However,as decision problems, they are essentially equivalent, as both \yes" and \no" answers must be produced.As a practical consideration, a program may be required to produce \evidence", or a \certi�cate", to backup its decision. If critical decisions will be based on the program's output, such evidence should permit anindependent, and straightforward, veri�cation of the program's conclusion. To our knowledge, no previouslyexisting implementations can produce evidence for both \yes" and \no" decisions.Two basic methods have been developed for satis�ability testing: refutation search and model search.1. Refutation search seeks to discover a proof that a formula is unsatis�able, usually employing resolution.If a complete search for a refutation fails, the formula is pronounced satis�able. Model elimination andSL-resolution typify these methods.2. Model search seeks to discover a satisfying assignment, or model, for the formula. If a complete searchfor a model fails, the formula is pronounced unsatis�able. The DPLL algorithm, due to Davis, Putnam,Loveland and Logemann [DP60, DLL62] is the basis for manymodern re�nements. A di�erent approachis to treat the problem in terms of integer linear programming [BJL86, JW90, HF90, HHT94].Several methods use incomplete model searches, so they can only report \don't know" and give upbased on resource limits, when they fail to discover a model [SLM92, GW93, SKC95]. However, theyhave succeeded in �nding models on much larger formulas than current complete methods can handle.Current propositional methods are \one-sided" in the sense that they can produce (\evidence", or a \certi�-cate", for one side of the decision problem, but not the other. Refutation methods do not produce a model onsatis�able formulas, and model-search methods do not produce a refutation on unsatis�able formulas. Thispaper introduces an integrated approach that simultaneously searches for either a refutation or a model.In the �rst-order arena there has been some work on searching for a model as well as a refutation, butit does not seem to carry over e�ectively to the propositional case. The method of Fermuller and Leitsch�rst performs hyper-resolution to saturation, then if the empty clause has not been derived, there must bea model [FL93]. Their main focus is theoretical, to show that certain classes of �rst order formulas aredecidable, and they do not investigate a speci�c method to extract a model. This strategy is not practical inthe propositional case. The method of Caferra adds equations soundly to the original formula and shows thatfor some classes the refutation search is guaranteed to terminate [Caf93]. Since the equations are based onunifying substitutions, there is no apparent way to use this method in the propositional case. Finally, failurecaching on �rst-order Horn formulas has been reported [Elk89, AS92], but propositional Horn formulas arenot challenging.Several high performance satis�ability testers have been reported in recent years [Lar92, CA93, ZS94,SFS95, inter alia]. See also papers and bibliographies from the DIMACS Second Implementation Challenge[DABC95, JSD95, Pre95, VGT96]. Interestingly, they have primarily, if not exclusively, been based upon themodel-search paradigm. This contrasts with the situation of �rst-order theorem provers, which are primarilyrefutation-based.One problem with existing propositional refutation methods is illustrated dramatically in Figure 1. Modelelimination (regarded as one of the most e�cient refutation strategies) is able to solve unsatis�able random2



Unsatis�able Satis�ableFormula Size No. of Extensions No. of ExtensionsVars Clauses Samples Min Max Samples Min Max10 43 3 35 43 7 968 6,79311 47 3 37 58 7 10,744 122,38412 52 4 32 40 6 11,957 55,79213 56 5 43 81 5 18,939 88,16914 60 4 44 100 6 14,263 233,90615 64 5 49 85 5 74,939 3,376,40520 85 3 103 162 7 ?? ??50 214 5 2,288 4,206 5 ?? ??100 427 5 193,225 (> 7,220,085) 5 ?? ??Figure 1: Comparative performances of model elimination on unsatis�able and satis�able random 3CNFformulas. \??" indicates that none of these formulas were solved with available resources. On each formulaone refutation was attempted with the �rst clause as top clause. Implementation and experimental detailsare given in later sections, along with results for the new Modoc algorithm.3CNF formulas with up to 100 variables, but it bogs down on satis�able formulas about at 15 variables. Itshould be noted that, for modern model-search methods, these formulas (both unsatis�able and satis�able)are considered easy at 100 variables and trivial at 20 variables. Three reasons have been mentioned for thelack of high performance propositional refutation systems:1. The search space is too large, particularly for satis�able formulas, as shown in Figure 1.2. The method cannot produce models.3. The most e�cient methods are only guaranteed to �nd a refutation when some top clause is known tobe in a minimal unsatis�able subset of clauses; in some applications such a top clause is not known apriori .The integrated approach of this paper addresses all three of these problems.1.1 Summary of ResultsA game characterization of refutation search is introduced (Section 4.2). This game, called the PDST game,demonstrates some symmetries in the search for a refutation and the search for a model. The game tree canalso be viewed as a certain and-or tree whose evaluation indicates whether a refutation exists.Investigation of PDST game strategies leads to properties of the game that involve autarkies (Section 5),which are the main results of the paper. A method for recursively constructing autarkies is developed. Itis shown that clauses satis�ed by such autarkies can be pruned from the refutation search. The noteworthyresult here is that clauses pruned by such autarkies cannot participate in any successful refutation. Thiscontrasts with the weaker property of most resolution re�nements that some successful refutation remainsafter pruning, but the remaining refutation may be signi�cantly longer than some that were pruned [LMG94].Section 6 describes an algorithm, called Modoc, that essentially combines weak model elimination withautarky construction and autarky-based pruning. 3



S = :a;:b;:c :a;:b; c :a; b;:c :a; b; c a;:b;:c a;:b; c a; b;:c����>:a;:b;:c�� @@����:a ����:b ����:c������a;:b;:c@@����:b ����:c����a; b;:ca ����:c
����>:a;:b;:c�� @@����:a ����:b ����:ca;:b; c ?a; b;:c ?Figure 2: Model elimination search for Example 1.1. (Left) Search fails at lowest :c goal. (Right) Afterbacktracking to alternative choices at :a goal.Model elimination provides an optional lemma creation mechanism. Section 7 brie
y reviews previouswork, and discusses the compatibility of autarky pruning and lemma creation. It also introduces and describesa strategy for \quasi-persistent" lemmas.A prototype implementation has been programmed in Prolog. Limited experimental results are reportedin Section 8. They indicate the possible feasibility of building a high-performance resolution-based solver forpropositional CNF formulas, but considerable work remains to be done. Relationships to �rst-order theoremproving are mentioned brie
y at the end of Section 4.1 and in Section 5.2. Section 9 draws conclusions andindicates future directions.For readers familiar with model elimination adapted to tree structures, we now give a motivating exampleof how autarky pruning works. Other readers may wish to come back to this example after reading more ofthe expository material in Section 3.Example 1.1: The formula S consists of all 3CNF clauses on variables a, b, and c, except for the all positiveclause, as shown at the top of Figure 2. Suppose the top clause is all negative. Let us trace out a modelelimination search for a refutation. As shown on the left of Figure 2, literal :a resolves with clause [a;:b;:c],then literal :b resolves with clause [a; b;:c]. In the latter clause, literal a can be reduced with the ancestor(or A-literal) :a, as indicated by the boxed \A". Literal :c remains to be refuted.At this point the search procedure is stuck, because each clause containing literal c also contains anancestor literal, so it is not eligible for extension at this point in the tree. This rule is variously called\preadmissibility", \tightness", and \regularity".If we stop and re
ect on the meaning of this failure, it can be stated in words, as follows: every clausecontaining the literal c also contains some other literal that is an ancestor (or A-literal) on this path in thetree being constructed. Therefore, every clause containing the literal c is satis�ed by a partial assignmentconsisting of the ancestors (A-literals) on this branch, speci�cally:M = f:a;:b;:cg :4



(In this case the partial assignment happens to be a total assignment.) But obviously, every clause containingthe literal :c is also satis�ed by M , so we conclude that every clause involving the variable c is satis�ed byM .Model elimination now backtracks and looks for another clause that resolves with :b, and does notcontain the ancestor :a. There are none. We can now extend the conclusion of the previous paragraph tosay that every clause containing either of the variables b or c, either positively or negatively, is satis�ed bythe partial assignment M .Model elimination again backtracks and looks for another clause that resolves with :a (Figure 2, right).There are two such clauses, as indicated. The standard algorithm continues trying to construct a refutationusing one of these clauses, and if that fails, it tries the other. But notice that both of these clauses aresatis�ed by the partial assignment M mentioned above.After a few moments thought, we can predict that these refutation attempts must fail, without carryingout the search. Intuitively, the reason is that we cannot use a clause that is satis�ed by M to \get outsideof M". For example, if :a is extended with clause [a; b;:c], then (possibly among others) there is a goalwhose literal is in M , in this case, :c. This goal must be refuted by extension. The (hypothetical) extensionclause contains c, and every clause containing c is known to be satis�ed by M , so some other literal of thathypothetical clause is in M . In this case, the only other possibility is :b, because :a and :c are ancestorsat this point. Now :b must again be refuted by extension: reduction is impossible because the ancestors onthis branch are all in M . But again, the (second hypothetical) extension clause must be satis�ed by M , soit must generate another goal that is in M , etc., until some goal is generated that has no eligible extensions.Finally, we conclude that the partial assignment M satis�es all clauses in which any of the variables a,b, or c appears. This conclusion holds up even if we add additional clauses to S that do not involve thevariables a, b and c. We call such a partial assignment an autarky (see De�nition 5.1).This example illustrates, in an over-simpli�ed way, the two main themes of the paper:1. Autarky analysis can predict that certain refutation attempts must fail;2. A model for a satis�able formula can be constructed as a series of autarkies.2 PreliminariesStandard terminology for conjunctive normal form (CNF) formulas is used. A �nite set of propositionalvariables is �xed throughout the discussion. The term \propositional variable" is abbreviated to \variable"when no confusion can result.De�nition 2.1: (literal, clause, formula) A literal is a positive variable x, or a negated variable :x.Literals x and :x are complementary . The complement of literal q is denoted :q, whether q is positive ornegative; i.e., double negations are simpli�ed away.A clause is a disjunction of zero or more literals, represented simply as a set of literals. Of special interestare the empty clause, denoted by ;, representing false, and unit clauses, consisting of exactly one literal. Aclause consisting of literals p1; : : : ; pk (k � 1) is denoted as [p1; : : : ; pk].A CNF formula (formula for short, since only CNF formulas are considered) is a conjunction of zeroor more clauses, represented simply as a set of clauses (or a multiset, if duplicate clauses occur). Theempty formula represents true. If F is a formula, then lits(F ) denotes the set of all literals composed frompropositional variables occurring in F . 5



De�nition 2.2: (assignment, satisfaction, model) A partial assignment is a partial function from theset of variables into ffalse; trueg. This partial function is extended to literals, clauses, and formulas in thestandard way. If the partial assignment is a total function, it is called a total assignment , or simply anassignment .A clause or formula is satis�ed by a partial assignment if it is mapped to true; a formula is satis�able ifit is satis�ed by some partial assignment; otherwise, it is unsatis�able. A partial assignment that satis�es aformula is called a model of that formula. (Thus any model can be extended to a total assignment that isalso a model by assigning arbitrary values to the unassigned variables.)\Consistent" is a synonym for \satis�able", and \inconsistent" is a synonym for \unsatis�able". Thispaper will only apply the terms \consistent" and \inconsistent" to formulas consisting entirely of unit clausesand/or the empty clause.A partial assignment is conventionally represented by the (necessarily consistent) set of unit clauses thatare mapped into true by the partial assignment. Note that this representation is a very simple formula.Set-forming braces are omitted sometimes to streamline notation.De�nition 2.3: (overloading, disjoint union, subset di�erence) If q denotes a literal, then in a settingwhere a clause is required [q] may be written simply as q. Similarly, if C denotes a clause, then in a settingwhere a formula is required fCg may be written simply as C.In a setting where a partial assignment is required, fq1; : : : ; qkg denotes the formula of unit clausesf[q1] ; : : : ; [qk]g.Disjoint union is denoted by \+". This partial binary function is de�ned precisely when its operands aredisjoint sets, and produces their union.Subset di�erence is denoted by \�". This partial binary function is de�ned precisely when its secondoperand is a subset of its �rst operand, and produces the set di�erence.As an example of overloading, if F denotes a formula (which does not contain the unit clause [q]), thenF + q denotes F [ f[q]g.The limited de�nitions of \+" and \�" on sets permits these symbols to be used more algebraically. Thefollowing identities are easily established:Lemma 2.1: When the sets A through D are such that the indicated partial functions are de�ned,(A� B) + B = A (C +D)�D = CDe�nition 2.4: (strengthened formula) Let M be a partial assignment for formula S. The clause CjM ,read \C strengthened by M", is the (possibly empty) set of literalsCjM = C � fq j q 2 C and :q 2MgThe formula SjM , read \S strengthened by M", is the (possibly empty) set of clausesSjM = �CjM �� C 2 S and C contains no literal of M 	Example 2.1: Let S consist of [a; b], [:a; c], and [b; d]. Then Sj fag = f[c] ; [b; d]g, and Sj fa; cg = f[b; d]g.6



The next equivalence is a special case of Shannon factorization that has been exploited in many works[DP60, DLL62, AB70].Lemma 2.2: Formula S is logically equivalent to (x ^ Sj fxg) _ (:x ^ Sj f:xg).De�nition 2.5: (formula size) For purposes of induction proofs, the size of a formula is usually de�nedto be the number of occurrences of literals in the formula, and is denoted as jjSjj.jjSjj = XC2S jCjwhere jCj is the usual set cardinality.3 Clause and Derivation TreesTrees are now recognized as the most appropriate data structures for representation of linear resolutionderivations. This section describes the tree data structures we shall use, which are chosen especially forpropositional resolution.Two re�nements of resolution were proposed independently, called model elimination [Lov69], and SL-resolution [KK71], which are closely related [Lov72]. The model elimination data structure was described asa \chain". Within the chain could be found the most recently derived clause, as well as other informationabout the proof. Minker and Zanon appear to be the �rst of several researchers to recognize that the treedata structure was more appropriate than a chain [MZ82]. Recently, Letz et al. have given a uni�ed viewof the methods of tableau calculus and clause trees [LMG94]. These proposals were oriented toward �rst-order applications. Our trees di�er somewhat because propositional resolution does not need to take intoaccount substitutions, which fact permits simpli�cations in both refutations and searches for refutations.The following technical de�nitions are illustrated in Example 3.1 and Figure 3.De�nition 3.1: (clause-goal tree, goal ancestor) Let a set S of propositional clauses be given (i.e., aformula). Let >, called verum, be a symbol distinct from all propositional variables.A clause-goal tree is a bipartite directed tree with two classes of nodes, called clause nodes and goalnodes. That is, a clause node may have only goal nodes as children and vice versa. Edges are directed fromthe root to the leaves. Recall that a branch of a tree is a path from the root to a leaf. The tree is unorderedin the sense that the order of any node's children is immaterial.Each clause node is labeled with a clause of S, and each goal node is labeled with a literal of lits(S), orwith >. Usually, a node is identi�ed with its label, but when it is necessary to name a speci�c node, weassume some structural naming scheme. We write v(q) to denote the goal node whose structural name is vand whose label is q, and write w[C] to denote the clause node whose structural name is w and whose labelis C.A goal ancestor of a node v is a goal node on the path from the root to v, including v itself if it is a goalnode. Since clause ancestors are not signi�cant, we shall refer to goal ancestors simply as ancestors. The setof all goal ancestors of v is denoted as ancs(v). While ancs(v) is technically a set of nodes, it can also beconsidered as a set of unit clauses made from the nodes' literal labels, i.e., a formula.De�nition 3.2: (propositional derivation tree (PDT), PDT extension) Let S and > be as inDe�nition 3.1. Throughout this de�nition all literals are assumed to be in lits(S) and all clauses are assumedto be in S.A propositional derivation tree (PDT) is a clause-goal tree that can be constructed according to thefollowing inductive de�nition: 7



����>.....b;:f�� @@����b ����:f ����b.......:b;:d; f������:d ����f ����>.....b;:f�� @@����b ����:f.......:b;:d; f������:d ����fFigure 3: Propositional derivation trees (PDTs) discussed in Example 3.1. Left: top-clause PDT for [b;:f ].Center: single-clause PDT with root b and clause child [:b;:d; f ]. Right: their combination.1. The tree consisting only of a goal node, labeled with either a literal or >, is a PDT.2. A tree with the following structure is a PDT, and is called a single-clause PDT .(a) The root is a goal node, labeled with q, and has a single child labeled with clause C.(b) C = [:q; p1; : : : ; pk], where k may be zero (in case C is a unit clause), and each literal pi is di�erentfrom q.(c) Node C has k children, labeled pi, for 1 � i � k. The children of C are leaves.3. A tree is a PDT, and is called a top-clause PDT for C, if it di�ers from a single-clause PDT (above) inthat the root is labeled with > and there is a leaf corresponding to every literal of C. In this case C iscalled the top clause of the PDT. (Note that this �ts the format of a single-clause PDT if we imaginethat > is another variable and C contains an \invisible" literal :>.)4. If T1 is a PDT with a leaf v(q), and T2 is a PDT with root q, then a new PDT T3 may be formed asfollows. Let T 02 be obtained from T2 by pruning all subtrees that are:(a) rooted at a goal node that is complementary to a unit clause of ancs(v); or(b) rooted at a clause node that contains a literal in ancs(v).Then T3 is obtained by replacing node v(q) in T1 by T 02. If T2 is a single-clause PDT with clause C,then the operation that constructs T3 is called a PDT extension of T1 at v(q) by C.From the de�nition we see that every PDT is rooted with a goal node, and every goal node either is aleaf or has exactly one child. Also, it is easy to see that a clause node w[C] is a leaf in a PDT if and only ifevery literal in C is complemented in ancs(w).De�nition 3.3: (refutation) If v(q) is the root of a PDT that contains only clause nodes as leaves, thenthis PDT is called a refutation of q with respect to S. If q = >, it is called simply a refutation of S. (Theseterms are justi�ed in Theorem 3.2.) 8



Example 3.1: Figure 3 shows PDT examples. The PDT at the right is obtained by PDT extension usingthe other two. The left side of Figure 2 shows a clause node in which implicit reduction has occurred, asindicated by the boxed \A". (This box is a notation, but not a structural part of the tree.)By construction, for any node v of a PDT, ancs(v) (excluding >) is a consistent set of unit clauses, i.e.,a partial assignment. Consequently, if V denotes the set of propositional variables, then the PDT has depthat most 2jV j+1 (counting both clause and goal nodes, and de�ning the depth of a tree with one node to bezero).Also by construction, if w[C] is a clause node of a PDT, then the literals of C are disjoint from thosein ancs(w[C]), and the variables occurring in any children of C are disjoint from the variables occurring inancs(w[C]). However, C may contain the complement of a literal in ancs(w[C]).Let us point out that the terminology \PDT extension" as de�ned above is a combination of modelelimination operations called \extension" and \reduction". In some contexts \reduction" has been called\ancestor resolution", \subsumption resolution", or \s-resolution". In the propositional framework, modelelimination's \extension" operation need not be considered where a \reduction" is possible, so it is usefulto combine \reductions" into the \PDT extension". In a �rst-order framework, both \extension" and\reduction" normally must be considered, due to di�ering uni�ers, so the goal must be created. A PDTextension can be viewed as a model elimination extension followed by as many reductions as possible onthe literals of C. To make a PDT tree correspond more closely to a model-elimination tree [MZ82] or aconnection tableau [LMG94], one can add a third node type, \reduction", that is automatically attached asthe only child of any goal node for which reduction is applicable.Lemma 3.1: Every PDT can be built from a single-clause tree or a top-clause tree by a series of PDTextensions.Proof : Note that each PDT extension adds exactly one clause node to the tree. A straightforward inductionshows that T3 in De�nition 3.2 can be created by concatenating the series of PDT extensions for T1 and T2,eliminating those in T2 whose clause nodes were pruned from T 02. Each PDT extension that originated in T2(at node v using clause C) and remains in T 02 is \legal" in T3 because the ancestors of its clause node in T3are the union of those in T2 and ancs(v) in T1. Therefore, no literal in C occurs in its T3 ancestors, and thechildren of this clause node are exactly those literals in C that are not complemented by the T3 ancestors.For purposes of intuition, a \goal node" means that the goal of the derivation is to refute the literal inthe node, not to validate it. The term \refutation" in De�nition 3.2 is justi�ed by the following theorem,which essentially states that propositional weak model elimination is sound. Although this is already wellknown [Lov69, MZ82, LMG94], we outline the proof in the interest of self-containment, and to validate ournew formulation, given in De�nitions 3.2 and 3.3.Theorem 3.2:(A) If there is a PDT T that is a refutation of q w.r.t S, then S has no model in which q is true.(B) If there is a PDT that is a refutation of S, then S is unsatis�able.Proof : The proof of (A) is by induction on the jjSjj (De�nition 2.5). The base case, jjSjj = 1, is immediate,as is any case in which the child of the root is the unit clause :q. Otherwise, let C = [:q; p1; : : : ; pk], wherek � 1, be the clause child of the root. Form S0 by adding the unit clause q to S and removing C. Then9



S = b;:f :b;:d; f c; d c;:d c;:f :c; e :c;:e����>.....b;:f����� XXXXXX����b ����:f.......:b;:d; f .......:b;:d; f���� @@����:d.....c; d����c....... .......:c; e :c;:e����e ����:e..... .....:c;:e :c; ea a
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.......c;:f����c....... .......:c; e :c;:e����e ����:e..... .....:c;:e :c; ea aFigure 4: A completed propositional derivation search tree (PDST) with top clause [b;:f ].jjS0jj < jjSjj, so the inductive hypothesis applies. Denote by Tq the single-clause tree with root :q and unitclause [q]. By De�nition 3.2, the clause node has no children.For 1 � i � k, let Ti be the subtree of T rooted at the goal node pi that is a child of C. Tree Ti can betransformed into a PDT T 0i for S0 by attaching a copy of Tq beneath every clause node whose clause contains:q. (If D is such a clause node, note that ancs(D) in T 0i is exactly ancs(D) in T with q deleted. Therefore,D in T 0i requires an extra child :q to satisfy the PDT constraints.) Since no leaf goal nodes are added inthis transformation, T 0i is a refutation of pi w.r.t. S0. By the inductive hypothesis, S0 has no model in whichpi is true.Clearly, for any i (1 � i � k), if S has a model with q and pi both true, so does S0, and this is impossibledue to T 0i above. It is also impossible that S has a model with q true and all pi false, for 1 � i � k, due toclause C. So part (A) is proved. Part (B) follows easily from part (A).4 Search TreesThis section describes \propositional derivation search trees". These structures have some similarity inpurpose to tableau search trees [LMG94]. However, there are some essential structural di�erences, asdiscussed at the end of Section 4.1, which are again based on exploiting the simpli�cations available in10



the propositional logic. We shall show that a propositional derivation search tree can be regarded as a gametree, or an and-or tree, whose evaluation determines the satis�ability of the underlying formula.Basically, a propositional derivation search tree is a clause-goal tree that di�ers from a PDT (De�ni-tion 3.2) only in that a nonleaf goal node, instead of having one clause child, has a clause child for each clausethat might appear in that position in a PDT. It is convenient to visualize a PDST as a three-dimensionaltree, in which goal children of a given clause are arranged left to right, and clause children of a given goalare arranged front to back (see Figure 4, discussed next).Example 4.1: Consider the clause set S with top clause [b;:f ], whereS = f[b;:f ] ; [:b;:d; f ] ; [c; d] ; [c;:d] ; [c;:f ] ; [:c; e] ; [:c;:e]gThe PDST appears in Figure 4. Observe that [c;:d] does not occur in the PDST. The boxed \A"s are nota structural part of the tree, but are notations to indicate literals that are subject to implicit reduction.4.1 De�nitions and Basic PropertiesThis section states the precise de�nition and basic structural properties of propositional derivation searchtrees, and illustrates them with examples.De�nition 4.1: (propositional derivation search tree (PDST)) Let S and > be as in De�nition 3.1and De�nition 3.2. Throughout this de�nition all literals are assumed to be in lits(S) and all clauses areassumed to be in S.A propositional derivation search tree (PDST) is a clause-goal tree that can be constructed according tothe following inductive de�nition:1. The tree consisting only of a goal node, labeled with either a literal or >, is a PDST.2. A tree with the following structure is a PDST, and is called a single-goal PDST for q.(a) The root is a goal node, labeled with q, and has clause children labeled with clauses C(j) for allC(j) that meet the next condition.(b) C(j) = h:q; p(j)1 ; : : : ; p(j)kj i, where kj may be zero (in case C(j) is a unit clause), and each literalp(j)i is di�erent from q.(c) Node C(j) has kj children, labeled p(j)i , for 1 � i � kj. The children of C(j) are leaves.3. A tree is a PDST, and is called a single-clause PDST for C, if it is a top-clause PDT for C (De�ni-tion 3.2-3).4. If T1 is a PDST with a leaf v(q), and T2 is a PDST with root q, then a new PDST T3 may be formedas follows. Let T 02 be obtained from T2 by pruning all subtrees that are:(a) rooted at a goal node that is complementary to a unit clause of ancs(v) (Locations where suchpruning occurred are marked with a boxed \A" in diagrams.);(b) rooted at a clause node that contains a literal in ancs(v).Then T3 is obtained by replacing node v(q) in T1 by T 02. If T2 is a single-goal PDST with clause C,then the operation that constructs T3 is called a PDST extension of T1 at v(q).11



S = :a;:b;:c :a;:b; c :a; b;:c :a; b; c a;:b;:c a;:b; c a; b;:c����:a.................a;:b;:c������:b ����:c .....a;:b; c������:b ����c.................a; b;:c������b ����:c����:b.................b;:a;:c������:a ����:c .....b;:a; c������:a ����c.................b; a;:c������a ����:c
����:a.................a;:b;:c������:b ����:c .....a;:b; c������:b ����c.................a; b;:c������b ����:c����:b.....b; a;:ca����:cFigure 5: PDST trees, as discussed in Example 4.2. Left: single-goal PDSTs for :a and :b. Right: theircombination.If the root of a PDST is a literal q 2 lits(S), it is called a PDST for S with top goal q; if the root is >and its child is w[C], the tree is called a PDST for S with top clause node w[C], or with top clause C.Again, it is easy to see that a clause node w[C] is a leaf in a PDST if and only if every literal in C iscomplemented in ancs(w).Example 4.2: Figure 5 illustrates Part 4 of De�nition 4.1. Two PDSTs on the left are combined to producethe one on the right. In the result, subtrees rooted at clause nodes containing :a are pruned because :a isnow an ancestor. In the surviving clause of the lower tree, the subtree rooted at the goal node containinga is pruned for the same reason. The boxed \A" is not a structural part of the tree, but is a notation toindicate a literal that is subject to implicit reduction.De�nition 4.2: (failed goal node, completed PDST) A failed goal node in a PDST is a leaf node v(q)such that every clause of S that contains :q also contains some literal in ancs(v(q)); the branch ending atv(q) is called a failed branch.A PDST is said to be completed if every leaf that is a goal node is failed. In this case any attempt at aPDST extension results in the entire extension tree being pruned, leaving the original tree.De�nition 4.3: (universal PDST)For a given formula S a universal PDST for S is constructed as follows:for each clause C(j) 2 S create a completed PDST for S with C(j) as top clause, then merge all their roots.We now state some structural properties of PDSTs.Lemma 4.1: Let T be a PDST for S with root v(q), where q is a literal. Let w[C] be a child of v. Then aPDST for Sj fqg with top clause Cj fqg (call it T 0) may be formed as follows:1. The root of T 0 is v0(>);2. The single subtree of v0 is a copy of the tree rooted at w, except the clause labels are strengthened byfqg. 12



����>.....a;:b;:c������:b ����:c.....b;:c����:cFigure 6: A PDST tree for a strengthened formula, as discussed in Example 4.3.Proof : No clause in the tree of w contains q, so all clause labels of T 0 are well-de�ned. No goal in the treeof w is labeled by q or :q, so all the goal nodes of T 0 have legal labels. Finally, the parent-child structuresatis�es the de�nition of PDST.Lemma 4.2: Let T be a PDST for S with top clause node w[C]. Let v(q) be a child of w. Then the treerooted at v is a PDST for S with top goal q.Proof : Immediate from the de�nition.Corollary 4.3: For a given formula S and a given top clause C or given top goal q, the completed PDSTis unique, up to reordering of children. Also, this is true for the universal PDST.Proof : By induction on jjSjj (De�nition 2.5), using Lemmas 4.1 and 4.2.Example 4.3: Consider the PDST of Example 4.2 and Figure 5. The strengthening of S with :a yieldsSj:a = f[:b;:c] ; [:b; c] ; [b;:c]gTo illustrate Lemma 4.1, the completed PDST for Sj:a with top clause [:b;:c] is essentially the left branchof Figure 5, with the goal :a replaced by >. Clauses containing literal a are replaced by their strengthenedforms, producing the tree shown in Figure 6.PDSTs do not generalize straightforwardly to the �rst order case. The reason is that a substitution mustbe applied throughout the derivation tree, not just to the subtree where the goal is uni�ed with a clause.Consequently, in tableau search trees [LMG94], a search tree node is labeled with an entire derivation tree,as shown in Figure 7. In this example the �ve occurrences of the goal :a would in general be di�erent dueto di�ering substitutions in the various search nodes.4.2 The PDST GameThe PDST game is a two-player game on a PDST over formulaS with top clause Ctop or top goal q. Althoughmany of the properties of the game hold for arbitrary PDSTs, they are of more interest on completed PDSTsor universal PDSTs. The play begins at the root and follows some branch of the PDST, ending at a leafnode. Alternately, one player, called the refuter , chooses a clause node and the other player, called the13



����:a.................����:aa;:b;:c����:b ����:c .....����:aa;:b; c����:b ����c.................����:aa; b;:c����b ����:c.....����:aa;:b;:c����:b ����:cb; a;:ca ����:cFigure 7: The tableau search tree that corresponds to the PDST tree on the right of Figure 5.spoiler , chooses a goal node. Each choice must be a child node of the other player's prior choice. To beginplay the refuter chooses some clause child of the root. The goal of the refuter is to end at a clause leaf. Thegoal of the spoiler is to end at a goal leaf. In other words, the player who cannot move loses. In Figures 4{6the refuter's choices correspond to dotted edges and the spoiler's choices correspond to solid edges.Informally, the refuter has a winning strategy for a particular PDST game if it is possible for the refuterto win that PDST game regardless of the choices made by the spoiler. The spoiler has a winning strategyin the dual situation. In Figure 4 the spoiler has a winning strategy by �rst choosing goal :f . The refutermust choose [:b;:d; f ], then the spoiler chooses goal :b. The formal de�nition follows. Essentially, theminimality criterion states that the refuter strategy is de�ned only at goal nodes that the spoiler would havean actual opportunity to choose, based on earlier choices in the same refuter strategy.De�nition 4.4: (winning refuter strategy) A winning refuter strategy is a partial function �(v) fromgoal nodes to clauses nodes of the PDST upon which the game is being played such that:1. � is de�ned for the root of the PDST; if the root is >, then �(>) = Ctop.2. If �(v) is de�ned and equals w, then w is a clause child of v, and � is de�ned on all children of w(which may be the empty set).3. �(v) is unde�ned unless it is required to be de�ned by application of the above rules; that is, �(v) isminimally de�ned.Since it is impossible to de�ne � on a goal leaf, it is immediate that, if �(v) = w and some child of w isa failed goal node, then � cannot be a winning refuter strategy.Another view of a PDST is as an and-or tree, in which each clause node is an \or" node and each goalnode is an \and" node. In Figures 4{6 the dotted edges descend from and-nodes. The literals labeling goal14



nodes are immaterial for this evaluation. Goal leaves, being empty conjunctions, evaluate as true, whileclause leaves evaluate as false. Recall that, if the boolean values are ordered as false < true, then \and" is\minimum" and \or" is \maximum". Therefore, the refuter has a winning strategy if and only if the and-ortree evaluates to false.Some connections between the logical meaning of the PDST tree and the PDST game are given in thefollowing theorems.Theorem 4.4: Assume the refuter has a winning strategy in the above-described PDST game.(A) If the root is >, then S is unsatis�able.(B) If the root is q, then S has no model in which q is true.Proof : Let �(v) be a winning refuter strategy, according to De�nition 4.4, and let W be the set of thenodes upon which �(v) is de�ned. In the PDST, prune away the subtrees rooted at all the unchosen clausenodes, i.e., those not in the image of �(v). What remains is a PDT, as every goal node has at most onechild. A simple induction shows that every remaining goal node is in W , and therefore has exactly one child.Therefore, according to De�nition 3.2, this PDT is a refutation of S in case (A) and is a refutation of q w.r.t.S in case (B). The theorem follows by Theorem 3.2.Theorem 4.5: Given a PDST for S, if S has a model M and the root q is in M or the root is >, then awinning strategy for the spoiler is always to choose a goal node inM.Proof : At clause node w[C], by construction of a PDST, each literal of C is a child if and only if it is notcomplemented in ancs(w[C]). But by the strategy, every literal in ancs(w[C]) is in the model M. Someliteral of C is inM. Therefore w[C] has at least one child inM.Notice that the converse of Theorem 4.4 does not hold, even for completed PDSTs. That is, in case (A)S may be unsatis�able but the refuter has no winning strategy that begins by choosing Ctop. Analogously,there is no model-elimination-style refutation with Ctop as top clause. (Many other re�nements of resolutionalso require one to know a clause or set of clauses in a minimal unsatis�able set, to achieve completeness.) Incase (B) S may have no model in which q is true, yet the refuter has no winning strategy on the completedPDST rooted at q.Example 4.4: The set of clauses in Figure 4 is actually unsatis�able, so the spoiler cannot use a model asthe basis of a winning strategy. However, for the top clause of the PDST in that �gure the two goals, :f and:b, encountered along the path chosen by the spoiler satisfy all of the clauses in which the variables b and fappear, either positively or negatively. By making choices according to this partial assignment, the spoilernever encounters a clause node lacking one of these goals as children. Thus the converse of Theorem 4.4,part (A) fails.Similarly, the right subtree, rooted at :f , is a completed PDST for S, and S has no model in which :fis true. However, the spoiler wins by choosing goal b. Thus the converse of Theorem 4.4, part (B) fails.In analogy with completeness properties of propositional model elimination on trees [MZ82, LMG94], itis possible to get approximate converses by strengthening the hypotheses. The theorems are given in theinterest of self-containment, since the elegant method of Anderson and Bledsoe [AB70] makes the proofsrather simple.Theorem 4.6: 15



S = :c c;:a; b c; a;:b����>.....:c����:c.................c;:a; b .................c; a;:b�� @@����:a ����b @@�� ����:b����a..... .....c; a;:b c;:a; ba a����:b ����bFigure 8: A propositional derivation search tree (PDST) in which the spoiler chooses :a in the left clauseand chooses a in the right clause. On the left, :b is a failed goal node, while on the right b is failed.(A) If S is a minimally unsatis�able formula and Ctop 2 S, then a winning refuter strategy exists on anycompleted PDST for S with top clause Ctop.(B) If S has no model in which q is true and S has some model in which :q is true, then a winning refuterstrategy exists on any completed PDST for S with top goal q.(C) If S is unsatis�able, then a winning refuter strategy exists on the universal PDST for S.Proof : For part (A) the proof is by induction on jjSjj. The basis, which is the empty clause, is immediate.For jjSjj > 0, let q be any goal child of Ctop. We need to show that the refuter has a winning choice atgoal q. By Lemma 2.2, Sjq is unsatis�able. Let �(Sjq) be any minimally unsatis�able subset of Sjq. Thekey observation of Anderson and Bledsoe is that �(Sjq) must contain some clause C 0 that is a shortenedversion of C 2 S. That is, C 0 = C � :q. Otherwise, �(Sjq) would be a proper subset of S, contradictingthe hypothesis of minimality. It su�ces for the refuter to choose C 0. By the inductive hypothesis, a winningrefuter strategy exists on the completed PDST for �(Sjq) with top clause C 0. By Lemmas 4.1 and 4.2 thisstrategy transfers to the PDST for S with top clause Ctop, establishing part (A).Part (B) follows easily from part (A) by adding the unit clause [q] to S, then using it as top clause. Part(C) also follows from part (A), as the refuter can �rst choose any clause in S in a universal PDST.The fact that one may have to begin proof searches from many top clauses to �nd a refutation partlyexplains why resolution-based methods have not been successful for high performance satis�ability checking.In some of the applications for satis�ability checking, a clause in a minimal unsatis�able subset is not readilyavailable.Another problem is seen in the informal converse of Theorem 4.5, which also is not true. That is, when Sis satis�able, there are, in general, winning strategies for the \spoiler" that do not always choose accordingto some �xed modelM. Essentially, model elimination search procedures backtrack when they reach a failednode. But the failed nodes reached need not form a consistent set. Figure 8 illustrates this possibility.16



The objective of the rest of this paper is to address these problems. We may think of satis�ability testingas evaluating the PDST game to see whether the refuter or spoiler has a winning strategy. The completePDST conceptually de�nes the game tree, but it is not materialized. Instead, the procedure tries to explorejust enough of the tree to determine the game outcome.5 AutarkiesThis section de�nes \autarky" and states the main results of the paper. The potential value of autarkiesis suggested in Lemma 5.1, following the de�nition. Theorems 5.2 and 5.3 establish connections betweenautarkies and PDSTs. The application to refutation search e�ciency is sketched at the end of the sectionand described in more detail in Section 6.The concept of \autarky" was (to our knowledge) introduced into logic by Monien and Speckenmeyer,who called it \autark truth assignment", employing the German adjective [MS85]. The word \autarky",used mainly in economics, literally means \self-su�cient country or region".De�nition 5.1: (autarky, autsat , autrem) Let S be a set of CNF clauses. A partial assignment M(De�nition 2.2), possibly de�ned on some variables that do not occur in S, is called an artarky of S if Mpartitions S into two disjoint sets, S = autsat(S;M ) + autrem(S;M )such that each clause in autsat(S;M ) is satis�ed by M and each clause in autrem(S;M ) has no variablesin common with the variables that occur in M . In particular, no literal of a clause in autrem(S;M ) iscomplemented in M .Lemma 5.1: Let M be an autarky of formula S.(A) SjM = autrem(S;M ).(B) If S is unsatis�able, then autrem(S;M ) is also unsatis�able.(C) If S is satis�able, then M can be extended to a model of S.Proof : Part A is immediate from the de�nition. For parts B and C, observe that autrem(S;M ) has nooccurrence of any variable that occurs in M . Suppose autrem(S;M ) has a model Mrem. Then M +Mremis a model of (i.e., satis�es) S.In the terminology of Monien and Speckenmeyer [MS85], a partial assignment is \autark in S" just whenit is \an autarky for S" in our terminology. They describe a satis�ability algorithm that is a modi�cationof the basic model searching algorithm of Davis, Logemann and Loveland [DLL62]. (The latter algorithm isoften attributed incorrectly to Davis and Putnam [DP60]; we call this algorithm DPLL to acknowledge thecontributions of all four authors). The modi�cation consists of testing whether certain subsets of the literalsin a shortest clause comprise an autarky before applying the DPLL splitting rule to a variable in that clause.They show that this modi�cation guarantees fewer than 2n splitting steps on a formula of n variables.This paper investigates the application of the autarky concept to resolution-based methods. We beginby examining the relationship of autarkies to the PDST game of Section 4.2.Example 5.1: As in Example 2.1, let S = f[a; b] ; [:a; c] ; [b; d]g17



����d.................:b;:d; f .................c;:d�� @@����:b ����f ����c....... .......:c; e :c;:e����e ����:e..... .....:c;:e :c; ea a..... .....b;:f c;:f����:f ����c....... .......:c; e :c;:e����e ����:e..... .....:c;:e :c; ea aFigure 9: A completed propositional derivation search tree (PDST) with top goal d for the same formula asFig. 4.Then fa; cg is an autarky of S, with autsat(S; fa; cg) = f[a; b] ; [:a; c]gautrem(S; fa; cg) = f[b; d]gHowever, fag is not an autarky because of clause [:a; c].As seen in the previous example, another way to characterize an autarky M is that SjM � S, that is,no clauses are shortened by the strengthening, although some clauses may be deleted.The following theorems indicate how autarkies can interact with a refutation search. The �rst theoremshows that clauses satis�ed by an autarky can be ignored, and the second shows how autarkies can beexpanded by failed refutation searches. The actual algorithm appears in Section 6.Example 5.2: The next theorem is illustrated by Example 4.1 and Figure 4. Let M = f:b;:fg, which isan autarky. We saw in Example 4.4 that the refuter has no winning strategy with the top clause [b;:f ], sothe theorem holds in this case.Now consider a di�erent PDST for the same S, this time with top goal d, which has two clause children,[:b;:d; f ] and [c;:d], as shown in Figure 9. The theorem asserts that the refuter cannot succeed by choosingthe �rst clause, because M satis�es it. Indeed, if the refuter did choose the �rst clause, then the spoilerwould choose the goal that occurs in M , which is :b. The refuter's next choice would necessarily be amongclauses that were satis�ed by M , in this case [b;:f ]. The spoiler would choose the goal :f , winning thegame.Theorem 5.2: Let T be a completed PDST for formula S, and let M be an autarky for S. Assume thatthe root of T is labeled either with > or a literal q such that :q is not in M . If clause C 2 autsat(S;M ),then C is not chosen by any winning refuter strategy � on T .18



Proof : In this proof, the phrase \winning refuter strategy" is abbreviated to \strategy". We give the prooffor the case that the root of T is a literal q; the proof for > is similar. The proof is by induction on h, thegoal-height of T .The base case is goal-height zero (the root is the only goal node). The only possible clause in T is :q,which is not in autsat(S;M ), so the theorem holds vacuously.For goal-height h > 0, assume the theorem holds for trees of goal-height less than h. Let w[C0] be anychild of the root of T , and let C0 = [:q; p1; : : : ; pk], where k � 0. Then w has precisely k goal children,denoted as vi(pi).First, suppose some strategy � chooses w. For all 1 � i � k, partial function � must be de�ned for vi(pi),so let wi[Ci] = �(vi(pi)). By the inductive hypothesis on the tree rooted at vi(pi), Ci 62 autsat(S;M ). But:pi 2 Ci, so pi (as well as :pi) is not in M . Also, :q is not in M . Therefore, C0 is not in autsat(S;M ),which establishes the contrapositive of the theorem for the children of the root.Now for 1 � i � k, still supposing that strategy � chooses w, the tree rooted at vi(pi) can be transformedinto the completed PDST (call it Ti) for Sj fqg with top goal pi, as described in Lemmas 4.1 and 4.2. It isimmediate that � de�nes a strategy on Ti. But M is also an autarky for Sj fqg. By the inductive hypothesis,no clause with a literal in M is chosen by �. Therefore, � chooses no clause anywhere in the tree of w.Finally, let w[C0] be a child of the root of T such that no strategy chooses w. Then no strategy choosesa clause in the tree of w, by minimality of strategies (De�nition 4.4).Example 5.3: The next theorem is also illustrated by Example 4.1 and Figure 4. This time, consider thecompleted PDST rooted at the goal :f . Let M be the empty set, which is an autarky, and does not contain:f or f . There is no winning refuter strategy, so the theorem asserts that M can be extended to someautarky M 0 that contains :f . Simply adding :f is insu�cient, due to [:b;:d; f ]. However, adding both :fand :b makes M 0 an autarky.Theorem 5.3: Let T be a completed PDST for formula S with root v(q), where q is a literal, such that thereis no winning refuter strategy for T . Let M be an autarky for S such that neither q nor :q is in M . Thenthere is an autarkyM 0 �M such that q (interpreted as a unit clause) is inM 0. Moreover, M 0�M � lits(S).Proof : In this proof, the phrase \winning refuter strategy" is abbreviated to \strategy". The proof is byinduction on the ordered pair (h;m), where h the goal-height of T , and m is the number of children of theroot v that are in autrem(S;M ). The order is lexicographic on the pairs of integers.The base case is goal-height h = 0 (the root is the only goal node). The hypotheses of the theorem failfor all m > 0. When m = 0 and no strategy exists, v(q) is a failed goal node, so no clause in S contains :q.Therefore, M + q is also an autarky for S.For goal-height h > 0, assume the theorem holds for all trees characterized by (h0;m0), where (0; 0) �(h0;m0) < (h;m) in lexicographic order. Let the children of v that are in autrem(S;M ) be wj[C(j)], for1 � j � m. If m = 0, then every clause of S that contains :q also contains a literal in M , so again, M + q isalso an autarky for S. If m > 0, we will �rst construct M1 �M , such that C(1) 2 autsat(S;M1) (and neitherq nor :q is in M1, and M1 �M � lits(S)). Then v has at most (m� 1) children that are in autrem(S;M1),so the required M 0 �M1 exists by the inductive hypothesis.To complete the proof, we need to construct M1. Let the children of w be vi(pi), and for each vi(pi)consider the completed PDST for Sj fqg with top goal pi. Call it Ti. If every Ti had a strategy, these couldbe combined in T to produce a strategy that chooses w1, using Lemmas 4.1 and 4.2. Therefore, some Ti hasno strategy, and is of goal height (h � 1). Also, M is an autarky for Sj fqg.1. If :pi is not in M , then the inductive hypothesis implies that an autarky M1 �M exists and containspi. M1 contains neither q nor :q because they do not appear in Sj fqg.19



2. If :pi 2M , then some other literal of C(1), say r, must be in M by the de�nition of an autarky, so letM1 = M in this case.In both cases, C(1) 2 autsat(M1), as required.5.1 Propositional Application for Autarky AnalysisExamining the proof of Theorem 5.3, we arrive at the following idea for autarky construction during arefutation search. Section 6 develops an algorithm in detail.1. When the search for a refutation of a speci�c goal q begins, an \initial autarky" M0 (possibly ;) ispassed in. Assume that neither q nor :q is in M0.2. For each clause C(j) (1 � j � k) that is eligible for extension (i.e., contains :q and does not containany ancestor), if the \current autarky" Mj�1 satis�es C(j), then C(j) is bypassed, and Mj = Mj�1.3. For each clause C(j) (1 � j � k) that is tried as an extension, a \current autarky" Mj�1 is passeddown into a recursive search.If the extension fails to lead to a refutation, then the recursive procedure passes back up an \increment"�Mj, and a new \current autarky" Mj = Mj�1 +�Mj is computed. The increment is supplied by agoal child of C(j) that could not be refuted.4. If all clauses fail to lead to a refutation of q, then the \�nal autarky increment" is �Mfinal =P�Mj+q.5. If any clause leads to a refutation of q, then the \�nal autarky increment" is ;.6. Pass back the \�nal autarky increment".Of course, the refutation search passes around other information, as well; this outline just mentions thatrelated to autarky computation.Example 5.4: Again consider Example 4.1 and Figure 4. With [b;:f ] as the initial top clause, a refutationprocedure (selecting literals depth-�rst, left-right) would refute goal b at level 1, then search for a refutationof :f at level 1. This leads to an extension, then to the failed goal :b at level 2. Thus :b is passed backto level 1 as the �nal autarky increment. Back at level 1, there are no more clauses to try, so the autarkyincrement from level 2 is combined with this goal, and passed up to level 0 as f:b;:fg. At the top level wehad M0 = ;, so M1 = f:b;:fg. This is an autarky for the entire formula S.Now we know that S is unsatis�able if and only if autrem(S;M1) is. In other words, clauses [:b;:d; f ]and [c;:f ] do not need to be considered as alternate top clauses for new refutation attempts. Since M1 isnow the \current autarky" at level 0, the procedure sketched above bypasses them. In this example, anynew top clause selected from autrem(S;M1) leads to a successful refutation. In general, the next top clausemight also fail, and M1 would be expanded to a larger autarky M2, etc.5.2 First-Order Application for Autarky AnalysisExploiting autarkies in the �rst-order case is considerably more complicated, and requires considerablefurther study. This section will present some possibilities by means of an example in �rst-order logic withoutequality. 20
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:p(f(a); b; a);:s(f(a); b; a):s(f(a); b; a)�� �
Figure 10: Development of a �rst-order search tree, leading to failure at node �4, as discussed in Example 5.5.Example 5.5: Let capital letters denote �rst-order variables, as in Prolog, for this example. Formula Sf:o:consists of: [:p(W;X; Y );:s(W;X; Y )][p(W;X; Y );:q(W;X;Z);:r(X;Y; Z)][p(f(a); b; a); r(a; b; f(a))][q(W;W;Z)] [q(a; a; Z)] [q(b; a; f(a))][s(a; b; f(a))]Let the top clause be [:p(W;X; Y );:s(W;X; Y )]. Assume the search tries clauses from top to bottom andselects literals from left to right within the clause. Nodes in the �rst-order search tree are labeled �0, �1; : : :,in pre�x order, to facilitate discussion.On the left, Figure 10 shows the �rst-order search tree after two extensions. In node �2, :q(W;W;Z) hasbeen refuted and the resulting C-literal (see Section 7) has been attached. Literal :r(W;Y; Z) is selectednext. 21



�0 ����>:p(W;X; Y );:s(W;X; Y ):p(W;X; Y )�� �
:s(W;X; Y )�� �
.....�1 ����>:p(W;X; Y );:s(W;X; Y ):p(W;X; Y )�� �
:s(W;X; Y )�� �
p(W;X; Y );:q(W;X;Z);:r(X;Y; Z):q(W;X;Z)�� �
 :r(X;Y; Z)�� �
Anti-Lemma:q(W;W;Z) � .................X=W .....�2.....�3.....�4 .....�5 W = a;X = a����>:p(a; a; Y );:s(a; a; Y ):p(a; a; Y )�� �
 :s(a; a; Y )�� �
p(a; a; Y );:q(a; a; Z);:r(a; Y; Z):q(a; a; Z)�� �
 :r(a; Y; Z)�� �
q(a; a; Z)
.................�6W = b;X = a;Z = f(a)����>:p(b; a; Y );:s(b; a; Y ):p(b; a; Y )�� �
 :s(b; a; Y )�� �
p(b; a; Y );:q(b; a; f(a));:r(a; Y; f(a)):q(b; a; f(a))�� �
 :r(a; Y; f(a))�� �
q(b; a; f(a))Figure 11: A �rst-order search tree, developed from Fig. 10, in which the search may be abandoned at nodes�5 and �6 for reasons discussed in Example 5.5.On the right of Figure 10 we see the continuation of the search tree after two more extensions from �2.Node �4 is the �rst point of failure. Nodes �3 and �2 have no alternatives, so the search now backtracks tonode �1. In particular, these goals have failed: s(f(a); b; a), p(f(a); b; a), :r(W;Y; Z), :p(W;W; Y ).Let us now review brie
y the idea of anti-lemmas [LMG94]. Subgoal :q(W;W;Z) was successfully refutedin search node �2, and the corresponding C-literal was introduced. Now �2 has been backtracked over, dueto a later failure. However, the C-literal is now attached to the goal :q(W;X;Z) in search node �1 as ananti-lemma (see Figure 11). The next clause that resolves with :q(W;X;Z) (the selected literal of searchnode �1) is [q(a; a; Z)], leading to node �5. But q(a; a; Z) is an instance of the anti-lemma, so this line ofderivation must eventually fail also. Therefore, node �5 may be abandoned immediately.The next clause that resolves with :q(W;X;Z), the selected literal of search node �1, is [q(b; a; f(a))],leading to node �6 (see Figure 11). This is not an instance of the anti-lemma. However, observe that literal:r(a; Y; f(a)) in �6 is an instance of the literal :r(W;Y; Z), which was found not to be refutable in an earlierbranch of the search. We claim that a refutation of :r(a; Y; f(a)) cannot exist. Based on this claim, thenode �6 may be abandoned also. 22



The reasoning to support the claim runs as follows. Suppose a �rst-order refutation of :r(a; Y; f(a))could be completed in this tree. Then it could be further instantiated, if necessary, into a ground (variable-free) refutation. Consider the same substitutions in the branch of the search that failed (and possibly someextras to force groundedness). Collecting all the ground clauses from the hypothetical successful refutationand the failed branch, we have a �nite set of propositional clauses, S, even though the Herbrand universe isin�nite. Recall that lits(S) denotes the set of literals that occur in S.There is an autarky for S that contains all the instances of :r(W;Y; Z). Speci�cally, it is the set Mcontaining all literals in lits(S) that are instances of s(f(a); b; a), p(f(a); b; a), :r(W;Y; Z), or :p(W;W; Y ).It is easy to see that M is consistent (interpreted in the Herbrand universe, so that a, b, and f(a) aredistinct). To verify that M must be an autarky, it is su�cient to check for each clause of Sf:o: that anyinstance that has a literal that is complementary to a literal of M also has another literal that is in M .Consequently, no refutation of any instance of :r(a; Y; f(a)) can exist in this set of propositional clauses,by Theorem 5.2.We emphasize that the above reasoning applies to this speci�c example, but we are not prepared toformulate a general statement.We believe that this example indicates a possible approach for applying the autarky concept to �rst-order theorem proving. However, even if the idea can be developed into a general tool, practical experienceis needed to discover whether the overhead incurred in autarky analysis pays su�cient dividends in terms ofpruning fruitless searches.6 The Modoc AlgorithmThe main procedures of the Modoc algorithm are shown in Figures 12 and 13. The top level is shownin Figure 14. Autarky processing is carried out by the subroutines inAutRem, addAutarky, and de-lAutarky. Other subroutines implement propositional model elimination, or equivalently, a search of theuniversal PDST (in mode ALL) or the PDST with a user-speci�ed top clause (in mode SINGLE).The syntax is an amalgam of C, Pascal and ML, with a bit of overloading thrown in, which shouldbe mostly self-explanatory. Recall De�nition 2.3 for \+" and \�" on sets. One notation that might needexplanation is (x, y, z) := f(u, v);In the spirit of ML, this denotes that function f returns a tuple of 3 values. These three values are thenassigned respectively to x, y and z.We assume an abstract data type Context that maintains implementation-dependent information aboutthe state of the refutation search. The variable F, of type Context, is a reference, or pointer, to somestructure containing this information. Procedures with F as parameter may change the context state, whilefunctions do not. Procedures and functions can be di�erentiated by the convention that procedures do notreturn values. The exception is the \constructor function" setupContext, which initiates a context with noancestors, no lemmas, and an empty autarky, and returns a reference (pointer) to it.De�nition 6.1: (context)On a conceptual level a Context may be thought of as having four components.If F is of type Context, then these �elds are denoted as follows for this discussion:clauses F! Sancestors F! Alemmas F! Lautarky F!M23



Where the meaning is clear, the pre�x \F!" may be omitted.The invariant is maintained that the set of \autarky literals" F!M is actually an autarky for SjA, butnot for S itself.The handling of model-elimination lemmas is not an integral part of the Modoc algorithm. The pseudo-code indicates where lemma-related processing would probably occur, but many variations are possible.Section 7 discusses lemmas in the prototype implementation, primarily to support the interpretation of theexperimental results.Ancestors are maintained as a stack. Each ancestor has a set of lemmas associated with it, and a set of\autarky literals" associated with it. Of course, either set might be empty. The association is actually withthe depth of the ancestor rather than its literal. Procedures that manipulate the state of the context arenow described.pushAncestor, popAncestor: The obvious stack operations on F ! A; the depth is explicit only forreadability.inAutRem(F, curClause): Returns true if curClause has no literal that is in F!M .delAutarky(F, curM): Removes the literals of curM from F !M . The set curM should be identical tothe subset of F! M that was added during failed attempts to refute the current goal q. The procedure iscalled when a refutation of q has been found.addAutarky(F, q, depth): Add q to the subset of F ! M associated with depth. The procedure iscalled when all attempts to refute q have failed. The depth parameter is strictly unnecessary, but is used toaid the checking of internal consistency.screenResolvables(F, q): Assuming q 6= >, this function �nds all clauses containing :q, then eliminatesthose having a literal in F! A and returns the rest in an ordered list. For e�ciency, the returned list beginswith clauses having 0 subgoals, if any, followed by clauses having 1 subgoal, followed by all others.If q = > and mode = ALL, the returned list contains all clauses of S, with the user-speci�ed initial topclause �rst in the list.If q = > and mode = SINGLE, the returned list contains just the user-speci�ed initial top clause.extractSubgoals(F, lits): Deletes from lits those literals that are complementary to (A [ L). Thoseremaining are partitioned into failed goals and goals with at least one clause eligible for extension.6.1 CorrectnessThis section addresses correctness ofModoc without lemmas. Soundness of lemmaprocessing is an orthogonalissue, and depends on exactly how lemmas are added to the basic algorithm. The main idea is that Modocsimply evaluates the universal PDST for the formula S when mode equals ALL, or the PDST for a user-speci�ed top clause when mode equals SINGLE (see Figure 14). A call to tryRefuteSubgoal positionsthe search at a goal node, and evaluates the refuter's choices of clause. A choice that returns UNSAT is awinning choice for the refuter, so if one such is found, additional choices need not be evaluated. A call totryRefuteClause positions the search at a clause node, and evaluates the spoiler's choices of goal. Now, a24



tryRefuteSubgoal(F:Context, q:Literal, depth:integer) : (Status, LitSet, ClauseList)/* Returns (result, �M, �R). result = SAT or UNSAT.** If SAT, �M holds autarky Lits. If UNSAT, �R holds refutation. */beginancIsLemma := isLemma(F, q);if (ancIsLemma)hideLemma(F, q);pushAncestor(F, q, depth);assert(not inAutarky(F, invertLit(q));/* When loop exits, result = SAT or UNSAT. If SAT, curM holds autarky Lits.** If UNSAT, curClause holds the refuted clause id. */remClauses := screenResolvables(F, q);result := SAT;curClause := 0;curM := ;;while (remClauses 6= ; and result == SAT)begincurClause := getMember(remClauses);remClauses := remClauses - curClause;if (inAutRem(F, curClause))begin(result, �M1, �R) := tryRefuteClause(F, curClause, depth + 1);curM := curM + �M1;/* If result = UNSAT, loop will exit. */endendif (result == UNSAT)beginaddLemma(F, invertLit(q), curClause, depth);delAutarky(F, curM);�M := ;;endelsebeginaddAutarky(F, q, depth);�M := curM + q;�R := ;;endif (ancIsLemma)exposeLemma(F, q);delLemmas(F, depth);popAncestor(F, q, depth);return (result, �M, �R);endFigure 12: Procedure tryRefuteSubgoal of Modoc Algorithm. Two mutually recursive procedures comprisethe reasoning engine. See text for discussion. 25



tryRefuteClause(F:Context, curClause:Clause, depth:integer) : (Status, LitSet, ClauseList)/* returns (result, �M, �R). result = SAT or UNSAT.** If SAT, �M holds autarky Lits. If UNSAT, �R holds refutation. */beginlits := getClauseLits(curClause);(failedSubgoals, goodSubgoals) := extractSubgoals(F, lits);if (failedSubgoals 6= ;)beginaddAutarky(F, failedSubgoals);�M := failedSubgoals;�R := ;;result := SAT;return (result, �M, �R);endresult := UNSAT;remSubgoals := goodSubgoals;while (result == UNSAT and remSubgoals 6= ;)beginq := getMember(remSubgoals);remSubgoals := remSubgoals - q;if (not isLemma(F, invertLit(q)) )begin(result, �M, �R1) := tryRefuteSubgoal(F, q, depth);�R := append(�R, �R1);/* If result = SAT, loop will exit. */endendif (result == UNSAT)begin�M := ;;�R := append(list(curClause), �R);endreturn (result, �M, �R);endFigure 13: Procedure tryRefuteClause of Modoc Algorithm. Two mutually recursive procedures comprisethe reasoning engine. See text for discussion.choice that returns SAT is a winning choice for the spoiler, so if one such is found, additional choices need notbe evaluated. However, knowledge of autarkies is used to avoid searches where the outcome is predictable.The stack of alternating goals and clause-ids determines a position in the PDST or universal PDSTthat the search has reached upon an invocation of tryRefuteSubgoal or tryRefuteClause. The inductivehypothesis is that the algorithm behaves correctly on proper subtrees of the tree rooted at this point.The notation of De�nition 6.1 is used. However, in this section, the set of lemmas F! L remains empty.Recall the de�nition SjA from De�nition 2.4. 26



modoc(S:Formula, initTopClause:Clause, allTop:integer) : (Status, LitSet)/* returns (result, M, R).** result = SAT or UNSAT. If SAT, M holds autarky Lits.** In this case, if mode was ALL, M is a model of S;** otherwise, initTopClause is satis�ed by M, but S may not be.** If UNSAT, R holds refutation. */beginif (allTop == 1) mode := ALL; else mode := SINGLE;F := setupContext(S, initTopClause, mode);(result, M, R) := tryRefuteSubgoal(F, >, 0);return (result, M, R);endFigure 14: Top level of Modoc Algorithm. In mode ALL, all clauses are eligible as top clauses, but thesearch tries initTopClause �rst. Either a refutation is found or a model is found. In mode SINGLE, eithera refutation for initTopClause speci�cally is found or an autarky is found that satis�es that clause. Noclause satis�ed by the autarky is part of a minimal unsatis�able set of clauses. See text for discussion.If tryRefuteSubgoal returns UNSAT, then Sj(A + q) is unsatis�able. If tryRefuteClause returnsUNSAT, then SjA is unsatis�able. These facts follow from the analogy with PDST trees (Theorem 4.4),and will not be re-proved. As pointed out by Shostack, a list of clauses in the order in which they are usedfor extensions su�ces to specify a propositional model-elimination derivation [Sho76]. It is straightforwardthat the algorithm returns such a list when it returns UNSAT. Also, by simple inspection of the algorithm,when either function returns UNSAT, then F ! M is unchanged upon exit from the value upon functioninvocation. This follows in tryRefuteSubgoal because the call to delAutarky deletes any literals added toF!M since the procedure invocation.Theorem 6.1: Let F denote the context. Let A denote F! A upon a function invocation. Let M0 denoteF!M upon a function invocation.(A) Suppose tryRefuteSubgoal(F, q, depth) is called. If M0 is an autarky for SjA and contains neitherq nor :q, and tryRefuteSubgoal returns (SAT;�M;�R), then upon exit:1. F! A = A upon exit.2. q 2 �M ,3. M0 +�M is an autarky for SjA,4. M0 +�M is the value of F!M upon exit.(B) Suppose tryRefuteClause(F, curClause, depth) is called. If M0 is an autarky for SjA and doesnot satisfy curClause, and tryRefuteClause returns (SAT;�M;�R), then upon exit:1. F! A = A upon exit.2. �M satis�es curClause,3. M0 +�M is an autarky for SjA,4. M0 +�M is the value of F!M upon exit.27



Proof : Consider �rst tryRefuteSubgoal. By hypothesis, q 62 M0, so M0 is also an autarky for Sj(A + q).Let us de�ne Mi = M0 + iXj=1�Mjwhere �Mj is returned by the j-th recursive call of tryRefuteClause. (Note that curM takes on successivevalues ofPij=1�Mj .) It follows that the preconditions of tryRefuteClause hold at the time of the recursivecall. By Theorem 5.3 (and the assumed correctness of the recursive call), Mi is an autarky for Sj(A + q).The calls to addAutarky keep F ! M equal to Mi as de�ned here, so any clauses bypassed by the testinAutRem must evaluate to SAT with respect to the Mi in e�ect when the clause was bypassed. But�M = curMfinal + q. Thus every clause containing :q contains a literal in A or in M0 +�M . This is alsotrue for clauses containing q, so Part A is established.For Part B, we only need to observe that tryRefuteClause returns SAT only if a subgoal with no possibleextensions is found, or some recursive call to tryRefuteSubgoal returns SAT. In the �rst case correctnessis obvious. In the second case, all prior recursive calls to tryRefuteSubgoal returned UNSAT, and didnot change F ! M . By the inductive hypothesis, F ! M is an autarky as of the exit from the recursivetryRefuteSubgoal that returned SAT, and clearly it satis�es curClause.Corollary 6.2: If Modoc operates in mode ALL, and returns SAT, then F!M is a model of S.Proof : Similar to Part A of Theorem 6.1, withA = ;,M0 = ;. In the top-level invocation of tryRefuteSubgoala list of all clauses in S is returned by screenResolvables. As each clause is considered as curClause in theloop, either it is already satis�ed by F!M and bypassed, or a refutation is attempted and fails. In the lattercase, the clause is satis�ed by F!M after tryRefuteClause returns. But F!M grows monotonically, soupon exit F!M satis�es every clause in S.Note: Although the mode ALL guarantees a de�nitive result for both Modoc and model elimination, allof the experiments reported were run in mode SINGLE to avoid possible excessive time by model eliminationon satis�able formulas.7 Lemmas and C-LiteralsIn the model elimination procedure a \lemma" may be recorded upon the completion of any (sub)refutation[Lov69, FLSY74, Lov78]. This is a clause that is logically implied by the original formula. Lemmas arenot necessary for completeness of model elimination. Shostack proposed a \C-literal" mechanism that isreasonably e�cient to implement [Sho74, Sho76]. This approach has been extended by Letz et al., whogive a detailed treatment and propose a related pruning strategy, called \strong regularity" [LMG94]. Adetailed treatment of lemma strategies is beyond the scope of this paper. This section sketches how lemmasare incorporated into the prototype implementation of the Modoc algorithm. We introduce and describe astrategy for \quasi-persistent" lemmas.In general, the trade-o�s are not well understood between the cost of storing and maintaining the lemma(considering it for resolutions, etc.), vs. the time saved when it can be used. This topic has been studiedempirically for �rst order theorem proving. Although initial experience was negative [FLSY74], subsequentreports were more positive [AS92, Sti94, LMG94]. To the best of our knowledge, there are no empiricalstudies of lemma strategies on propositional problems.Suppose the refutation of a literal q is completed at a point in a PDT (De�nition 3.2) where the setof proper ancestors of q is A. Let B be the subset of A that represents the goals that were actually usedin the refutation (say B = fp1; : : : ; pmg, where m may be 0). In model-elimination terms they were used28



for reductions; in PDT terms the pi prevented the goals :pi from appearing in the subtree below q. Thena lemma clause, [:q;:p1; : : : ;:pm], can be derived soundly [LMG94]. This is an implication of the form(B � :q). (Loveland described the same inference, but using quite di�erent terminology, such as scope ofA-literals [Lov69].)Example 7.1: Recall the refutation search described in Example 5.4, based on Figure 4. To refute e, thegoal is extended with the clause [:c;:e], which has no subgoals, due to the ancestor c. (In model elimination,the goal :c is created, then is immediately reduced using ancestor goal c.) Therefore, the lemma [:e;:c]follows. However, this is already a clause in the formula.But this also completes the refutation of c. No proper ancestors of c were used for reductions, so thelemma [:c] follows.Similarly, the refutation of goal :d is now complete. This refutation used goal c for reduction, but c isbeneath :d in the tree, so is not part of the lemma. The lemma is simply [d].Shostack proposed an e�cient strategy to maintain such lemmas in model elimination chains [Sho76];Letz et al. generalized it to trees [LMG94]. In the lemma [:q;:p1; : : : ;:pm], literal :q is called a \C-literal"and is attached to the lowest ancestor among fp1; : : : ; pmg; call this goal pc. (If m = 0, attach it to theroot of the PDT, which is normally >.) This technique implicitly weakens the lemma to (ancs(pc) � :q),because the precise set fp1; : : : ; pmg is not recorded.The lemma can only be used in the subtree of pc, and in this context its only use is to \extend" anotheroccurrence of the goal q, because subgoals pi, being in B, cannot occur beneath pc. Moreover, when thelemma is used, its clause node has no subgoals in the PDT. (In model elimination, the extension is followedimmediately by reductions on all of the subgoals.) In this sense, a C-literal is somewhat like an ancestor, inthat it immediately closes o� a branch of the PDT tree, and the operation is sometimes called \C-reduction".If the PDT is abandoned (because some other part of the refutation fails) then the lemma is forgotten. Ifthe (sub)refutation of pc is completed, the lemma is also forgotten in the sense that it is not used later in other(sub)refutations. Because of the limited application and lifetime of the lemma, it is actually unnecessaryto record it fully. The C-literal :q and the lowest ancestor pc are all that are needed. Thus the di�erencebetween B and ancs(pc) is immaterial with this strategy.The main idea of Modoc is autarky pruning, which is compatible with the use of lemmas, and largelyorthogonal. Clauses that are pruned by an autarky cannot participate in a successful refutation (at the pointwhere they are pruned), whether or not lemmas are used to shorten the refutation. However, lemmas seemto be important for e�ciency, so they were incorporated into the prototype implementation of Modoc.7.1 Quasi-Persistent LemmasOur strategy varies from the C-literal strategy described above in that lemmas derived during failed (sub)-refutations are not necessarily forgotten. Normally, a PDT is not completely abandoned, but only the subtreewhere the refutation fails is abandoned. (In the �rst order case, substitutions need to be backed out, aswell.) The lemma can function as a C-literal until the subtree rooted at pc is abandoned, or the refutationof pc is completed (where pc and other terminology is continued from the previous subsection).Modoc maintains lemmas attached at pc until the tree rooted there is abandoned or its refutation iscompleted. The previously described strategy of Letz et al. e�ectively deletes the lemma as soon as therefutation of any clause ancestor of q fails. There are pros and cons of both strategies. Our strategy makesit unnecessary to re-derive the same lemma at the same attachment point so often, but it makes it necessaryto record the full lemma. 29



Our strategy is incompatible with the heuristic called \strong regularity", introduced by Letz et al..That is, Modoc may undertake to refute a goal :q in the subtree (rooted at pc) where :q is attached as alemma. The \strong regularity" heuristic consists of avoiding such attempts. \Strong regularity" was shownto be complete under certain conditions, but quasi-persistent lemmas do not meet those conditions, and acounter-example can be constructed if the two heuristics are combined.Example 7.2: This example continues the refutation search begun in Example 7.1, based on Figure 4.While refuting b the procedure would be able to attach C-literals :c, d, :f , and :b at the root. Whenthe refutation fails in the right branch, the traditional C-literal technique forgets all of them. Our quasi-persistent method does not, because they are still sound as C-literals. When the refutation search tries adi�erent top clause, the C-literals :c and d are available and might shorten the search. (In fact, [c;:d] nowsucceeds immediately.) This can also happen without backtracking to the top level.The quasi-persistent heuristic holds lemmas longer, but spends more time per lemma in bookkeeping,compared to the traditional C-literal method. There is no apparent way to determine which method performsbetter except empirical testing.7.2 Lemma-Induced CutsWe now describe the method by which Modoc exploits complementary C-literals. Suppose, as describedabove, the C-literal :q is attached at pc and the goal :q occurs in a subtree of pc. Should the refutation of:q be successful, there results a new lemma whose C-literal is q. Now complementary C-literals have beenderived on one branch. Let the full form of the second lemma be [q;:r1; : : : ;:rn]; that is, fr1; : : : ; rng isexactly the set of ancestors used in the refutation of :q. Again, let rc be the lowest ancestor among the ri,or the root > if n = 0.Now consider the lower of the two goal nodes pc and rc. The situation is symmetric, so let us suppose itis rc. Let A0 be the ancestors of rc. Now add a \virtual clause" [:rc; q;:q] to the formula; this is a tautology,so it is harmless. However, extending rc with this virtual clause creates goals q and :q, both of which areimmediately closed by the lemmas. Thus the goal rc is immediately refuted, even though the tree in whichthe lemmas q and :q were derived is never completed to a refutation.Introduction of the \virtual clause" described above is essentially a form of the cut rule [LMG94]. If Sis the original set of clauses, we have discovered (S + A0) ` q and (S + A0) ` :q. Now the cut rule infers(S + A0) ` ;.While the introduction of a tautologous clause is always sound, it normally is not practical because theprover has no way to anticipate that each of the complementary literals has a short refutation. However, ifa pair of complementary C-literals have been derived, then the prover has that information in hand.This methodology also can be applied to �rst order proofs where the prover is not using strong regularity.In this case, a most general uni�er of the complementary C-literals would be applied before creating the\virtual clause".8 Experimental ResultsA prototype implementation of Modoc was programmed in Prolog. This section reports on preliminarytests. The count of extension operations (essentially resolutions with an input clause) is reported. Prolog isnot an e�cient language for this type of algorithm, because of the large numbers of asserts and retracts thatwould simply be array accesses in an imperative language. Therefore, CPU times are not very meaningful.30



Modoc Model Elim. DPLLFormula Status Extensions Extensions Assignments111120 sat 79,608 ?? 48,103111121 sat 18,586 ?? 126,206111122 unsat 336,316 1,626,291 254,075111123 unsat 298,091 1,304,025 154,759111124 unsat 253,205 255,968 94,076111125 sat 21,274 ?? 24,958111126 unsat 190,550 193,225 102,205111127 sat 27,202 ?? 59,399111128 unsat 360,949 > 7,220,085 353,995111129 sat 26,869 ?? 3,930Figure 15: Comparative Performances on random 3CNF formulas of 100 variables and 427 clauses (withinitial pure literals eliminated by preprocessing). Operations reported: extensions for resolution methodsand assignments (including unit and pure literals) for DPLL.As one example, formula 111128, which proved the most di�cult, took 111 CPU minutes on a Sun Sparc10/41 for Modoc, while the DPLL program, coded in C, took 0.22 minutes for about the same number ofbasic operations. Nevertheless, these experiments show some de�nite trends.The model elimination algorithm was obtained by disabling the autarky pruning from Modoc. All othertechniques and heuristics are the same, such as the lemma strategy. Therefore, it seems reasonable toattribute the performance di�erences to autarky pruning.For all tests the mode was SINGLE (see Figure 14) for Modoc and model elimination, so a refutation wasattempted from one top clause only on each run reported.Preliminary results on random 3CNF formulas are shown in Figure 15. These formulas were gener-ated according to the constant-clause-width model: every clause containing 3 di�erent variables and anycombination of literal polarities is equally likely. The �rst clause is arbitrary chosen as the top clause.Recall that Figure 1 showed that model elimination su�ered a rapid performance degradation on smallsatis�able random formulas, ranging from 10 to 15 variables, and became hopeless for 20 variables. Modocovercomes that problem, and generally solves satis�able formulas faster than comparable unsatis�ableformulas. In the range of 10 to 20 variables (no table shown), the di�erences between satis�able andunsatis�able formulas are minor; all were solved with 32{168 extensions, which agrees closely with thenumbers for unsatis�able formulas in Figure 15. At the level of 100 variables, Figure 15 shows thatsatis�able formulas now exhibit signi�cantly less di�culty for Modoc than unsatis�able formulas. Also,Modoc sometimes accomplishes signi�cant savings on unsatis�able formulas, compared to model eliminationwithout autarky pruning. Furthermore, a basic DPLL model-search algorithm used a number of operationsthat is the same order of magnitude for random formulas, although its basic operation is variable assignmentfollowed by strengthening (De�nition 2.4).Figure 16 shows results on pigeon-hole formulas and modi�ed pigeon-hole formulas. Recall that thek-pigeon problem is the same as the problem of coloring a k-clique graph with k � 1 colors.1 Due to theirregular structure, there is no backtracking from a failed refutation in either Modoc or model elimination.1Negative binary clauses encode the constraints that no two pigeons can occupy the same hole (no two nodes can have thesame color), and positive (k�1)-clauses encode the constraints that each pigeon must be in some hole (each node must havesome color). 31



Pigeon-Hole FormulasModoc Model Elim. DPLLPigeons Vars Clauses Extensions Extensions Assignments4 12 22 47 47 675 20 45 249 249 5296 30 81 1,571 1,571 5,2737 42 133 11,423 11,423 65,1518 56 204 93,951 93,951 967,4209 72 297 863,117 863,117 16,822,209Pigeon-Hole Formulas less �rst binary clauseModoc Model Elim. DPLLPigeons Vars Clauses Extensions Extensions Assignments4 12 21 46 62 125 20 44 219 366 476 30 80 1,341 2,466 2907 42 132 9,838 18,776 2,4598 56 203 82,272 159,702 26,7239 72 296 767,301 1,504,362 355,323Pigeon-Hole Formulas less last binary clauseModoc Model Elim. DPLLPigeons Vars Clauses Extensions Extensions Assignments4 12 21 20 44 125 20 44 67 264 1486 30 80 292 1,681 3857 42 132 1,692 12,035 11,3028 56 203 11,911 97,833 36,5099 72 296 96,601 892,699 2,148,602Figure 16: Comparative performances on pigeon-hole formulas (unsat), and pigeon-hole formulas with onebinary clause removed (sat). Operations reported: extensions for resolution methods and assignments(including unit and pure literals) for DPLL.The \current autarky" remains at the empty set on such formulas.Satis�able versions of pigeon-hole formulas were created by removing either the �rst or last binary clause.Observe the great performance di�erences, depending on which clause was removed, for each of the methodstested. These di�erences seem to be accidents of the way in which the formula is presented and stored. Themain themes are seen again, but not so pronouncedly as for random formulas. Modoc and DPLL have aneasier time with the satis�able modi�cations, while model elimination has greater di�culty.These tests, while incomplete, contain substantial evidence that autarky pruning overcomes the majorine�ciency of model elimination. Research has improved the empirical performance of the basic DPLLalgorithm substantially [Pre95, VGT96]. Whether further research can make Modoc competitive with theleading model-search methods remains to be seen. 32
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