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1. Introduction 31 IntroductionTra�c scheduling algorithms are a necessary part of future integrated-services networks that willprovide a broad range of Quality-of-Service (QoS) guarantees. These guarantees are usually in theform of bounds on end-to-end delay, bandwidth, delay jitter (variation in delay), packet loss rate, or acombination of these parameters. Several service disciplines such as Generalized Processor Sharing(GPS) and its packet-by-packet approximation (known as Weighted Fair Queueing or PGPS) [1,2], VirtualClock [3], Delay-Earliest-Due-Date (Delay-EDD) [4], Weighted Round Robin [5] De�citRound Robin [6], Hierarchical-Round-Robin (HRR) [7], and Stop-and-Go queueing [8] have beenproposed in the literature for solving this problem (for a survey see [9].)The design of a tra�c scheduling algorithm involves an inevitable tradeo� among its delay,complexity of implementation, and fairness. Among the three, the delay and implementationcomplexity are clearly the most important criteria for the selection of an algorithm for use in areal system. While the fairness properties of the algorithm a�ect only the short-term distribution ofservice o�ered to the connections sharing the link, a larger delay bound implies increased burstinessof the session at the output of the scheduler, thus increasing the amount of bu�ering needed in theswitches to avoid packet losses. In addition to minimizing the end-to-end delay in a network ofservers, the delay behavior of an ideal algorithm must include (i) insensitivity to tra�c patterns ofother sessions (isolation), (ii) delay bounds that are independent of the number of sessions sharingthe outgoing link, and (iii) ability to control the delay bound of a session without depending on theinternal parameters of the scheduler [10, 11].As was discussed in the �rst part of this work [11], based only on the end-to-end delay bounds andfairness properties, Generalized-Processor-Sharing (GPS) is an ideal scheduling discipline [1]. TheGPS system is based on a 
uid model where the packets are assumed to be in�nitely divisible andmultiple sessions may transmit tra�c through the outgoing link simultaneously at di�erent rates.A packet-by-packet version of the algorithm, known as PGPS or Weighted Fair Queueing (WFQ),is de�ned in terms of the GPS system [1, 2]. That is, a GPS system is simulated in parallel withthe packet-by-packet system in order to identify the set of connections that are backlogged at eachinstant. This information is used to compute a timestamp for each arriving packet, indicating thetime at which it would depart the system under GPS. Packets are then transmitted in increasingorder of their timestamps. A serious problem with this approach is its computational complexity: Amaximumof V events may be triggered in the GPS simulator during the transmission of one packet.Thus, the process overhead for completing a scheduling decision is O(V ).In order to reduce its complexity, an approximate implementation of GPS multiplexing wasproposed by Davin and Heybey [12] and later analyzed by Golestani [13] under the name Self-Clocked Fair Queueing (SCFQ). In this implementation, the timestamp of an arriving packet iscomputed based on the timestamp of the packet currently in service. This approach reduces thecomplexity of the algorithm greatly. However, the price paid is the reduced level of isolation amongthe sessions, causing the end-to-end delay bounds to grow linearly with the number of sessions thatshare the outgoing link [10]. Thus, the worst-case delay of a session can no longer be controlledjust by controlling its reservation, as is possible in Weighted Fair Queueing (WFQ). The higherend-to-end delay also a�ects the burstiness of sessions within the network, increasing the bu�errequirements. The VirtualClock scheduling algorithm, on the other hand provides the same end-to-end delay and burstiness bounds as WFQ with a simple timestamp computation algorithm, but theprice paid is in terms of fairness.An algorithm that combines the delay and fairness bounds of Weighted Fair Queueing with O(1)timestamp computations had remained elusive so far. In this paper, we present two novel schedulingalgorithms that have O(1) complexity for timestamp computations, and provide the same boundson end-to-end delay and bu�er requirements as those of Weighted Fair Queueing. These algorithmsare based on the analytical framework of rate-proportional servers (RPS) presented in [11].Schedulers in the RPS class use the concept of potential to track the state of the system.Each connection is associated with a a connection potential that keeps track of the amount of



4 1. Introductionnormalized service actually received by the connection during the current system-busy period,� plusany normalized service it missed during the period when it was not backlogged. The connectionpotential is a non-decreasing function of time during a system-busy period. The basic systemis de�ned in terms of a 
uid model, and the corresponding packet-by-packet server is obtained bycomputing a timestamp for each arriving packet that represents the value of the connection potentialat the instant the last bit of the packet leaves the the 
uid system, and scheduling the packets inthe order of increasing timestamps.We assume that V connections share the outgoing link of the scheduler, a rate �i is allocated toeach connection i, and that the total bandwidth assigned to the connections does not exceed thelink capacity r. That is, VXi=1 �i � r:When connection i is backlogged, its potential increases exactly by the normalized service it receives.That is, if Pi(t) denotes the potential of connection i at time t, then, during any interval (�; t] withina backlogged period for session i, Pi(t) � Pi(� ) = Wi(�; t)�i ;where Wi(�; t) denotes the amount of service received by session i during the interval (�; t].The basic objective of a rate-proportional server is to equalize the potential of all backloggedconnections at each instant. This is achieved in a 
uid server as follows: At any instant t, thescheduler services only the subset of connections with the minimum potential, and each connectionin this subset receives service in proportion to its reserved rate �i. Thus, the scheduler can be seento increase the potentials of the connections in this subset at the same rate. At the time that aconnection becomes backlogged, its potential is updated based on a system potential function thatkeeps track of the progress of the total work done by the scheduler. The system potential P (t) is anon-decreasing function of time. When an idle session i becomes backlogged at time t, its potentialPi(t) is set as Pi(t) = max(Pi(t�); P (t));to account for the service it missed. Schedulers use di�erent functions to maintain the systempotential, giving rise to widely di�erent delay- and fairness-behaviors. In general, the systempotential at time t can be de�ned as a non-decreasing function of the potentials of the individualconnections before time t, and the real time t.P (t) = F(P1(t�); P2(t�); : : : ; PV (t�); t): (1.1)Ideally, the rate of increase of the system potential at each instant should match the rate of increaseof the potential of a connection currently being serviced by the scheduler. In practice, however, amuch more relaxed de�nition of the system potential function is adequate.The system potential function in a rate-proportional server must satisfy two fundamental prop-erties to provide performance bounds comparable to that of a WFQ scheduler. First, during anyinterval (t1; t2] within a system-busy period, the system potential function must be increased witha rate of at least one, that is, P (t2)� P (t1) � (t2 � t1): (1.2)Second, the system potential function must never exceed the potential of any backlogged connection.In addition, if the di�erence between the system potential and the potential of every backloggedconnection is bounded, then the server is fair and its fairness can be estimated in terms of thisdi�erence [11].�A system-busy period is de�ned as a period during which the server is continuously transmitting packets.



2. Methodology for Maintaining System Potential 5The de�nition of rate-proportional servers does not specify the exact method of maintaining thesystem potential function. This enables a wide range of algorithms to be de�ned, all with the samedelay bound as that of WFQ, but with di�erent fairness characteristics. For example, both GPS andthe 
uid-model equivalent of VirtualClock are rate-proportional servers, but their fairness boundsand implementation complexities occupy two extremes in the RPS framework.The fundamental di�culty in designing a practical rate-proportional server is the need to main-tain the system potential function. Tracking the global state of the system precisely requires simulat-ing the corresponding 
uid-model RPS in parallel with the packet-by-packet system. However, thede�nition of the system potential function allows considerable 
exibility in approximating the globalstate of the system. This 
exibility is exploited in this paper in the design of two practical schedul-ing algorithms | Frame-based Fair Queueing (FFQ) and Starting Potential-based Fair Queueing(SPFQ). Both algorithms maintain the system potential function only as an approximation of theactual global state in the 
uid model, but re-calibrate the system potential periodically to correctany discrepancies. This re-calibration is key to providing bounded fairness, where fairness is de�nedas the maximumdi�erence in normalized service received by any two backlogged sessions during anyarbitrary interval. In the Frame-based Fair Queueing (FFQ) algorithm this re-calibration is done atframe boundaries, while in Starting Potential-based Fair Queueing (SPFQ) the re-calibration occursat packet boundaries. This gives rise to two algorithms with the same delay bound, but with slightlydi�erent fairness properties. Both algorithms, however, provide bounded unfairness and O(1) times-tamp computations. It is interesting to note that the maximum short-term unfairness of SPFQ isactually no worse than that of Weighted Fair Queueing.Both FFQ and SPFQ are timestamp-based algorithms. However, FFQ uses a framing approachsimilar to that used in frame-based schedulers to re-calibrate the system potential periodically.This makes the fairness of the algorithm depend on the frame size chosen by the implementation.SPFQ avoids this sensitivity to the frame size by re-calibrating the system potential at the end oftransmission of every packet. In comparison to FFQ, SPFQ requires more state information to bemaintained, resulting in a more complex hardware implementation; however, this increased hardwarecomplexity does not a�ect its asymptotic time-complexity. Thus, SPFQ is attractive over FFQ inapplications where its improved fairness properties justify the additional hardware cost.The rest of this paper is organized as follows: In Section 2, we de�ne a general methodology forestimating and updating the system potential. In Section 3 we present Frame-based Fair Queueing interms of a hypothetical 
uid-model, and subsequently extend to a packet-by-packet model. We alsoanalyze the fairness properties of the algorithm. In Section 4 we develop and analyze the StartingPotential-based Fair Queueing (SPFQ) algorithm. In Section 5 we provide simulation results onthe end-to-end delays seen by sessions in various network con�gurations with FFQ and SPFQ, andcompare the performance of these algorithms with both Weighted Fair Queueing and Self-ClockedFair Queueing. Some concluding remarks are presented in Section 6. In Appendix A, we discussillustrative implementations of the algorithms for ATM networks. Finally, the proofs of some of thelemmas and theorems can be found in Appendix B.2 Methodology for Maintaining System PotentialThe basic di�culty in the design of a rate-proportional server is in maintaining the systempotential function. Since the degree of short-term unfairness of the algorithm depends on thedi�erence between the system potential and the potentials of backlogged connections at any time,the fairness of the algorithm is determined by the choice of the system potential function. In thissection we will present a general methodology for updating the system potential function. Theresulting algorithms will be referred as Fair Rate-Proportional Schedulers (FRPS). Formally, we cande�ne a FRPS as a rate-proportional server as follows:De�nition 1: Let P (t) denote the system potential in an RPS and Pi(t) the potential of connectioni at time t. The scheduling algorithm is a Fair Rate-Proportional Server if and only if a �niteconstant �P � 0 can be found such thatP (t) � Pi(t)��P; for any i 2 B(t);



6 2. Methodology for Maintaining System Potentialwhere B(t) is the set of backlogged connections at time t.The above constraint can be satis�ed by the use of a re-calibration mechanism periodically tobound the maximum di�erence of the system potential function from the potential of a backloggedconnection.Let us �rst introduce some notations. We assume that a rate �i is allocated to connection i. Letr be the bandwidth capacity of the outgoing link; then, ri = �i=r is the fraction of the link rateallocated to connection i. As in the previous section, let Pi(t) represent the potential of connectioni at time t and P (t) the corresponding value of system potential.The 
uid version of a Fair Rate-Proportional Server follows all the conditions in De�nition 5 of[11]. That is, at each instant, the scheduler services only the set of backlogged connections with theminimumpotential and connections in this set are serviced at rates proportional to their reservations.In an idealized 
uid server it is possible to update the system potential at any instant of time.However, in a packet-by-packet server it is desirable to update the system potential only when apacket departs from the system. In order to simplify the implementation of the algorithm we willde�ne a general method for updating the system potential that will be based on only informationextracted from the packet-by-packet implementation of the algorithm.We �rst de�ne a function SP (t) that we will call the base potential. SP (t) is a non-decreasingfunction with the following properties:1. Let B(t) represent the set of connections that are backlogged at time t in the system. Then,SP (t) � Pi(t); 8i 2 B(t): (2.1)2. A �nite constant �P � 0 can be found such thatSP (t) � Pi(t)��P; 8i 2 B(t): (2.2)That is, the base potential function can be any non-decreasing function whose value is never higherthan the potential of any backlogged connection at that instant. It is easy to see that such afunction can be used as the reference for updating the system potential periodically, since it satis�escondition 3 of De�nition 5 of [11]. Since the above de�nition of the base potential function does notspecify how to construct such a function, considerable 
exibility exists in its choice. Assuming thebase potential is used to re-calibrate the system potential periodically, and that the interval betweenre-calibrations is bounded, the condition in Eq. (2.2) is su�cient to achieve bounded fairness, thatis, for the algorithm to belong to the FRPS class. Di�erent choices of the function SP (t) result inalgorithms with di�erent implementation complexities, but all with bounded fairness. In the latersections, we will show two distinct ways to construct the base-potential function SP (t), resulting inthe FFQ and SPFQ algorithms.Any rate-proportional server can achieve bounded fairness by periodically re-calibrating thesystem potential using the base potential function. Thus, in general, a Fair Rate-ProportionalServer can be constructed by maintaining the system potential function P (t) as follows.De�nition 2: Let the system-potential function in an RPS be de�ned as follows: When the systemis not busy the system potential function is equal to zero. During a system-busy period, the functionP (t) is a piecewise linear function of time t. Let �0 be the beginning of the current system-busyperiod. Then,1. At times �1; �2; : : : ; �k, with �0 < �1 < : : : < �k, a re-calibration is performed by updating P(t)to the base potential at that instant, if the system potential is lower than the base potential.That is, P (�j) = max(P (�j�); SP (�j)); (2.3)where �j� denotes the instant of time just before the update.2. At any time time t between updates, the system potential increases linearly with time. That is,P (t) = P (�j) + (t � �j); �j � t < �j+1: (2.4)



2. Methodology for Maintaining System Potential 73. The interval between successive re-calibrations is bounded, that is,�j+1 � �j � �T; for some �nite �T :The update in Eq. (2.3) enables us to bound the di�erence between the system potential andthe potentials of backlogged connections. Without such an update mechanism, the system potentialmay diverge from the connection potentials by an arbitrary amount, causing the unfairness of thealgorithm to be unbounded. The updates at time instants �1; �2; : : : �k are designed to bring thesystem potential to a value closer to the connection potentials. This value is estimated through thebase potential function SP (t).Before proceeding further, it is important to note that the fairness of any rate-proportional serveras de�ned above depends on two factors:1. The choice of the base potential function SP (t).2. The frequency of re-calibrations, that is, the choice of the update instants �1; �2; : : : �k.In order to design an e�cient packet-by-packet version of the algorithm,we can only perform these re-calibration steps at the times that a packet �nishes its service. Thus, the frequency of re-calibrationis upper-bounded by the departure rate of packets from the server.We now proceed to show that the system-potential function in De�nition 2 results in a FairRate-Proportional Server. We �rst need to show that the system-potential function satis�es the twokey properties in the de�nition of a rate-proportional server [11]. The following two lemmas provethat the system potential increases at least at the rate of real time, and that it never increases abovethe potential of a backlogged connection.Lemma 1: If the system-potential function is maintained as described by De�nition 2, then, forany interval (t1; t2] during a system-busy period,P (t2) � P (t1) � (t2 � t1):Proof: Assume that the system-busy period under observation started at time 0. If no re-calibrations occurred during the interval (t1; t2], then the lemma is true by Eq. (2.4). Now considerthe case when one or more re-calibrations occurred during the interval (t1; t2]. Let �1; �2; : : : ; �k bethe instants in this interval just after an update to P (t), and �1�; �2�; : : : ; �k� the correspondinginstants just before the update, with �1 < �2 < : : : < �k. Then, by equations (2.3) and (2.4),P (t2) = P (�k) + (t2 � �k)� P (�k�) + (t2 � �k)� P (�k�1) + (t2 � �k�1):Proceeding similarly, P (t2) � P (�1) + (t2 � �1)� P (�1�) + (t2 � �1)� P (t1) + (t2 � t1):This concludes the proof of Lemma 1. 2Lemma 2: If the system potential function is maintained as in De�nition 2, then, at any time t,P (t) � Pi(t); 8i 2 B(t): (2.5)



8 3. Frame-based Fair QueueingProof: The proof is by contradiction. Since P (0) = Pi(0), Eq. (2.5) is satis�ed trivially at time0. Let t be the earliest time during a system-busy period at which P (t) > Pi(t) for some i. Then,let �t be the smallest interval such that P (t � �t) � Pi(t � �t). Session i must be continuouslybacklogged in the server during the interval (t��t; t]. We need to consider two cases:Case 1: No re-calibration of the system potential occurred during the interval (t��t; t]. Then i isa session with minimum potential during the interval (t��t; t]. Therefore, it is serviced with rateat least �i during this interval. Thus, the potential of session i at t must be at leastPi(t��t) + �i�t�i � P (t��t) + �t � P (t):Thus, the result is true by contradiction.Case 2: A re-calibration occurred at time t. Let t� denote the instant just before the update toP (t) and t the instant just after the update. Then,Pi(t�) � SP (t�): (2.6)The new system potential after the update is given byP (t) = max(P (t�); SP (t�)): (2.7)Using equations (2.6) and (2.7), as well as the fact that Pi(t�) � P (t�),Pi(t) = Pi(t�) � P (t): (2.8)2Theorem 1: A rate-proportional server with its system-potential function P (t) de�ned as per Def-inition 2 is a Fair Rate-Proportional Server.Proof: Lemmas 1 and 2 prove that the system potential function satis�es the two main conditionsimposed by the de�nition of a rate-proportional server. In addition, if the re-calibrations areperformed at �nite intervals, by Eq. (2.2), the di�erence between the system potential and thepotential of any backlogged connection will be bounded. Thus, the algorithm is a Fair Rate-Proportional Server. 23 Frame-based Fair QueueingUsing the methodology we described in the previous section, we can de�ne several algorithmsby choosing di�erent base-potential functions and re-calibration intervals. A simple approach is toperform the re-calibration periodically, with a maximum period equal to an internal parameter ofthe algorithm that we call the frame size F . This approach results in the de�nition of Frame-basedFair Queueing (FFQ). In this section, we will describe the FFQ algorithm and analyze its properties.We will �rst de�ne the parameters of the algorithm with respect to a 
uid system and subse-quently extend them to the packet-by-packet system. We de�ne the frame size parameter such thatexactly F bits can be transmitted during a frame period T . That is,T = Fr :We de�ne �i as �i = ri � F = �i � T:�i denotes the maximum amount of session i tra�c that can be serviced during one frame. When aconnection remains backlogged, its potential increases by the normalized service o�ered to it. Thus,when �i bits are serviced from connection i, its potential will increase by�i�i = T:



3. Frame-based Fair Queueing 9We impose one more restriction on the value of �i, that the largest packet of a connection can betransmitted during a frame period. That is, if Li is the maximum packet size for connection i, thenLi � �i: (3.1)We will refer to the process of re-calibrating the system-potential in a FFQ server as a frameupdate operation. Each frame-update operation marks the beginning of a new frame in the system.If all the connections are continuously backlogged, frame updates can be performed in a 
uid serverexactly at intervals of the frame period T . The updates will occur earlier, however, if the arrivalsfrom some of the sessions are below their respective reservations, causing the potentials of backloggedconnections to rise faster. Thus, in the 
uid server, the kth frame update can be performed whenthe potentials of backlogged connections reach the value kT . Note that all connections reach thepotential of kT at the same time in the 
uid server. In a packet-by-packet server, however, this is notthe case. Therefore, in order to avoid simulation of the 
uid system to determine the frame-updateinstants, we de�ne the frame-update instants in a more relaxed manner as follows: Let �k�1 denotethe last time a frame update occurred. The next update is performed when both of the followingconditions hold:1. The potentials of all backlogged connections in the 
uid server belong in the next frame. Thatis, Pi(t) � kT; 8i 2 B(t); (3.2)where B(t) is the set of connections currently backlogged.2. Pi(t) < (k + 1)T; i = 1; 2; : : : ; V:Note that the above conditions may be satis�ed during a window of of time. Performing the nextframe update at any time during this window will result in a valid algorithm. Let us assume thatwe decide to update the frame at time �k. Then, at time �k we setP (�k) max(P (�k); kT ): (3.3)Since analysis of the packet-by-packet FFQ server requires reference to the corresponding 
uid server,we de�ne the frame update instants �k to be identical in both servers. These update instants canthen be determined from only information available in the packet-by-packet server, so as to fall inthe window de�ned by conditions 1 and 2 above. This relaxed de�nition allows re-calibrations tooccur only when a packet �nishes or starts service in the packet-by-packet server. Note that theduration of a frame (that is the interval between successive frame-updates), never exceeds 2T .We can now de�ne the base-potential function SP (t) for FFQ as follows: SP (t) is a step functionwhose value is zero when the server is idle and increases by T at every frame-update instant. Thus,at the kth frame-update instant �k, SP (t) assumes a value of k � T .Figure 3.1 illustrates the base-potential and system-potential functions in a 
uid FFQ server,where �1 { �4 denote the instants at which the frame updates occur. The system potential growslinearly with time between the update instants. Note that the kth frame update can be performedany time during a window when the potential of a backlogged connection is between kT and (k+1)T .In a packet-by-packet server, the frame updates can only be performed at packet boundaries.We now show that an update instant can be found in a packet-by-packet server based only on thetimestamps of the queued packets. Recall that the timestamp of a packet denotes the potential ofthe corresponding connection at the instant the packet completes its service in the 
uid system. Wemake use of the following lemma from [11] to establish a relationship between the potentials of aconnection in the 
uid and packet servers.Lemma 3: Let (0; t] be a server-busy period in the 
uid server. Let i be a session backlogged in the
uid server at time t such that i received more service in the packet-by-packet server in the interval(0; t]. Then there is another session j, with Pj(t) � Pi(t) that received more service in the 
uidserver than in the packet-by-packet server during the interval (0; t].
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Figure 3.1: Behavior of the base-potential and system-potential functions in a 
uid FFQserver. Pi(t) represents the potential of all backlogged connections, P (t) the systempotential, and SP (t) the base potential. Re-calibration of the system potential occursat frame-update points �1, �2, �3, and �4. The frame update points can fall anywherewithin a window where the individual connection ptentials lie between kT and (k + 1)T .This lemma enables us to �nd a relationship between the potentials of the backlogged connectionsin the 
uid server and the timestamps of the backlogged connections in the packet-by-packet server.We can now prove the following lemma, that will allow us to perform frame updates in FFQ byusing only information extracted from the packet-by-packet system. Let us �rst de�ne the startingpotential sji of a packet j of connection i as the potential of the connection when packet j startsbeing serviced in the corresponding 
uid server, and let Si(t) denote the starting potential of the�rst packet in the queue of connection i at time t. Let B̂(t) denote the set of backlogged sessions attime t in the packet-by-packet server.Lemma 4: Assume that at time t, for each backlogged session in the packet-by-packet system, thestarting potential of its �rst packet belongs in the next frame. That is, if �k was the last instant atwhich a frame update occurred, Si(t) � (k + 1)T; 8i 2 B̂(t):Then, the potential of each backlogged session in the 
uid server at time t is also greater than orequal to (k + 1)T .Proof: We will prove the lemma by contradiction. Let us denote with i the connection with theminimum potential in the 
uid server and let us assume that the potential of connection i is lessthan (k + 1)T . Connection i has received until time t more service in the packet-by-packet serverthan in the 
uid-server. By Lemma 3, there is another connection k with potential Pk(t) � Pi(t)that has received less service in the packet-by-packet server than in the 
uid-server. Let s0k be thestarting potential of the packet that is being serviced in the 
uid-server at time t from connectionk. Then s0k � Pk(t) and thus s0k � (k + 1)T . Notice also that this packet has not yet been servicedin the packet-by-packet server. This is a contradiction. 2The signi�cance of Lemma 4 is that we can determine a valid update time for the frame by usingonly information extracted from the packet-by-packet server. The scheduler can keep track of allthe connections that are backlogged and have packets with starting potential in the next frame.When the starting potentials of the packets at the head of the queues of all backlogged sessions have
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Figure 3.2: Example of operation of the packet-by-packet FFQ server. The frame can beupdated at time 8 when the starting potentials of the packets of all backlogged connectionsin the packet-by-packet server have crossed the frame boundary.crossed the frame boundary, we know that the potentials of the connections in the 
uid-system havealso crossed the frame boundary. Therefore, the crossing time of the last connection is a valid timeto update the frame and the system potential function.This can be seen better by an example. Let us assume that the frame size F is set to 10 cells andthat rate of the server is set equal to 1. Assume that connection 1 has reserved half of the outputlink bandwidth and each of connections 2 and 3 has reserved 25% of the output link bandwidth. Letus also assume that the system was idle before time 0. At time 0, connections 1 and 2 send a largenumber of packets to the scheduler, while the queue of connection 3 remains empty. At time 0, thesystem potential and the individual connection potentials are zero. In a 
uid server, the packets ofconnections 1 and 2 will be serviced in proportion to their reservations. Thus, the rate of service forthe connection 1 and 2 will be 0:5=(0:5+ 0:25) = 2=3 and 0:25=0:75 = 1=3, respectively. Assumingconnection 3 remains idle, the potentials of connections 1 and 2 will reach the value of T = F1 = 10at the same time. Let � be this time. Since both connections are backlogged, their potentials arebeing increased by the normalized service o�ered to them. Thus,W1(0; � )0:5 = W2(0; � )0:25 = 10: (3.4)Thus, we can determine � from (2=3)(� � 0)=0:5 = 10; (3.5)which yields �1 = 7:57. This is the beginning of the window in which the �rst frame-update canoccur.Now considering the packet-by-packet server, the packets are timestamped with the potential ofthe connection at the time they �nish service in the 
uid server. Let us assume that all packetshave a size of 1. In Figure 3.2 we show the timestamps of the packets and the sequence with which



12 3. Frame-based Fair QueueingCalculate current value of system potential.Let t be the current time and ts the time whenthe packet currently in service started its transmission.1. temp P + (t � ts)=FCalculate the starting potential of the new packet2. SP (i; k) max(TS(i; k � 1); temp)Calculate timestamp of packet3. TS(i; k) SP (i; k) + length(i; k)=�iCheck if packet crosses a frame boundary4. n1 int(SP (i; k)); n2 int(TS(i; k))5. if (n1 < n2) then (if �nishing potential is in next frame)6. B[n1] B[n1] + 1 (increment counter);7. mark packet8. endifFigure 3.3: Algorithm executed on the arrival of a packet.they are serviced. Note that the starting potential of a packet in this example is identical to thetimestamp of the packet ahead of it. At time 8, all the packets with starting potentials in the �rstframe have already been transmitted. At this time, the potentials of all backlogged connections havea value greater than or equal to 10 in the 
uid server. Thus, at this time we can update the systempotential to 10 without violating the properties of the system potential function.We can now describe the packet-by-packet version of the frame-based fair queueing algorithm.Without loss of generality we can assume that the service rate of the server is 1. Thus, the timeto transmit F bits is also equal to F . A fraction ri of the output link bandwidth is allocated toconnection i and therefore �i = F � ri bits can be sent from connection i during a frame. As in the
uid version, we require that the maximum packet size be less than �i, so that a single packet canbe transmitted within one frame.On the arrival of a packet, the algorithm in Figure 3.3 is executed to calculate the timestampassociated with the packet. The variable P keeps track of the system potential. P is a 
oating-point number with two parts | the integer part representing the current frame number and thefractional part representing the elapsed real time since the last frame update. On arrival of apacket, the current system potential is estimated. Since the variable P is updated only at the endof transmission of each packet, the current system potential is obtained by adding to P the elapsedreal-time since the current packet in service started transmission. The starting potential of thenewly-arrived packet is then computed as the maximum of the �nishing potential of the previouspacket from the same session and the system potential. The packet is then timestamped with its�nishing potential, computed from knowledge of its length and the reserved rate. If the starting and�nishing potentials of the packet belong to di�erent frames, the current packet is one that crossesover to the next frame. Therefore the packet is marked to indicate that this is the �rst packet ofthe session to cross over to the next frame. In addition, a counter is incremented to keep track ofthe number of connections that have crossed over into the new frame. The algorithm maintainsone counter per frame to keep track of the number of sessions whose packets cross into the nextframe. Later, when a marked packet is scheduled for transmission, the corresponding counter isdecremented; when the counter reaches zero, the potentials of all the backlogged connections havecrossed over to the next frame, and a frame update can be performed.The array of counters B is used to count the number of connections that have packets with astarting potential in each frame. Although an in�nite number of frames may need to be serviced,in practice the number of distinct frames in which the potentials of queued packets can fall into is



3. Frame-based Fair Queueing 13Increase system potential by the transmission time of the packet just completed, say j.1. P  P + length(j)=FFind timestamp of next packet for transmission2. TSmin  mini2B(TS(i))Determine the corresponding frame number.3. Fmin  int(TSmin)Perform frame update operation if required4. if (packet j was marked) then5. B[current-frame] B[current-frame]� 16. end if7. if (B[current-frame] = 0 and Fmin > current-frame) then8. current-frame current-frame+ 19. P  max(current-frame; P )10. end ifStore starting time of transmission of next packet in ts11. ts  current time12. Retrieve packet from head of queue and transmitFigure 3.4: Algorithm executed on the departure of a packet.limited by the bu�er size allocated to the connections. Thus, if bi denotes the bu�er space allocatedto connection i, the size of the array B can be limited toM = max1�i�V d bi�i e:If M is rounded up to the nearest power of 2, then the array can be addressed with the dlog2Meleast signi�cant bits of the current frame number. The number of counters can further be reducedto three if steps 4{8 of the algorithm are executed only when a packet reaches the head of the queueof the corresponding session.When a packet �nishes transmission, the algorithm in Figure 3.4 is executed to update thestate of the system. The system potential is �rst increased by the transmission time of the packetjust serviced. The packet with the minimum timestamp is then selected for transmission. Thisselection can be performed e�ciently by maintaining the packets in a priority list structure, such asa heap. The variable current-frame keeps track of the index of the frame currently in progress. Ifthe transmitted packet was marked, the counter corresponding to the current frame is decremented.If the counter becomes zero, the session that was serviced is the last to cross the current frame.However, a second condition must be tested before performing a frame update, since it is possiblefor a packet to arrive with its �nishing potential in the current frame during the transmission of thislast marked packet. This could result in the system potential temporarily assuming a value higherthan the potential of a backlogged connection, thus violating the de�nition of a rate-proportionalserver. This problem is avoided by ensuring that the timestamps of none of the queued packetsfall in the current frame, just before performing the frame update. If both conditions in step 7are satis�ed, a frame update is performed by incrementing the frame number and re-calibrating thesystem potential to the corresponding base potential.It is possible to avoid testing the second condition in step 7 of the algorithm by modifying thealgorithm slightly. The modi�cation consists in updating the variable P and performing the frameupdate when a packet is selected for transmission, rather than when it completes transmission. Inthis case, a packet arriving after the last marked packet started its service will always receive atimestamp value in the next frame. To show that this modi�ed system remains a rate-proportional



14 3. Frame-based Fair Queueingserver with the same latency, consider the following equivalent system: Assume that the tra�cscheduling system consists of a regulator followed by a FFQ scheduler. The regulator holds allpackets that arrive while the transmitter is busy, and delivers them to the scheduler in batches atthe end of transmission of each packet. It is easy to verify that this new system consisting of theregulator and the scheduler is work-conserving.Since packets arrive in the FFQ scheduler only at times when a packet �nishes service, it iseasy to verify that the a packet will never �nish transmission in the packet-by-packet server laterthan in the corresponding 
uid server.(The proof can be easily derived by extending Lemma 3of [11].) An arriving packet may see a maximum delay of Lmax=r in the regulator, equal to themaximum time needed for the current packet to complete service in the transmitter. Thus, thenew system, consisting of the regulator and the scheduler, is still an LR-server with the samelatency as a simple rate-proportional server. However, we must note here that updating thevariable P and performing the frame update when a packet is selected for transmission, ratherthan when it completes transmission, alters the system potential function and therefore may changethe transmission sequence of packets considerably.3.1 Correctness of Frame-based Fair QueueingIn order to be complete, it is necessary to verify that all conditions imposed in the de�nitionof the FFQ algorithm for updating the frame are satis�ed when the above algorithm is executed.We have already proved in Lemma 4 that when the frame is updated at time �k, the potentials ofall backlogged connections in the 
uid-server are at least equal to kT . We also have to prove that,at this time, the potential of any connection in the 
uid-server is also less than (k + 1)T . We willuse the following sequence of three lemmas to prove this result. The proofs of these lemmas can befound in Appendix B.Lemma 5: Let (0; t] be a server-busy period in an RPS 
uid server. Let i be a session that receivedmore service in the 
uid server compared to the packet-by-packet server in the interval (0; t]. Then,there is another session j with Pj(t) � Pi(t) that received more service in the packet-by-packet serverthan in the 
uid-server during the interval (0; t].Lemma 6: At time �k when the frame is updated as described in the packet FFQ algorithm, theserver has not yet transmitted any packet with potential greater than or equal to (k + 1)T .Lemma 7: Let �k be the time at which the kth frame-update occurs in the packet FFQ server. Then,the potential of all the connections in the 
uid server at time �k is less than (k + 1)T .3.2 Fairness of Frame-based Fair QueueingSince frame-based fair queueing is a rate-proportional server, in order to analyze its fairnessit is su�cient to prove that the di�erence between the system potential and the potential of anybacklogged connection is always bounded. We can state the following lemma for the 
uid FFQserver.Lemma 8: For every connection i backlogged in the 
uid FFQ server at time t,Pi(t)� P (t) � 2T � �ir :A detailed proof can be found in Appendix B. The above bound applies only to the 
uid server.We can now use this result and Theorem 4 of [11], which de�nes a general fairness bound for rate-proportional servers, to provide a bound for the packet FFQ server. This bound is given by�����Ŵj(t1; t2)�j � Ŵi(t1; t2)�i ����� � max(�P +Cj + Lmax�i + Lj�j ; 2F � �ir + Ci + Lmax�j + Li�i ) (3.6)



4. Starting Potential-based Fair Queueing 15However, this bound only considers the maximum di�erence between the system potential and thepotential of a backlogged connection. The fact that the system potential function in the FFQalgorithm is increased as a linear function of time between frame updates can be used to derive amuch tighter bound:Lemma 9: For any two connections i; j that are continuously backlogged in the interval (t1; t2] inthe packet FFQ server, �����Ŵi(t1; t2)�i � Ŵj(t1; t2)�j ����� � 2Fr +max�Li�i ; Lj�j � :The rather long proof of the above lemma can be found in Appendix B. Thus, the fairness of thealgorithm depends on the selection of the frame size. The latter, in turn, depends on the maximumpacket size of each connection and its minimum bandwidth allocation. Thus, the algorithm isespecially suited to application in ATM networks where the tra�c consists of small �xed-size cellsand the frame size can be kept small. Note, however, that the frame size does not a�ect the latencyof the server as is the case in frame-based schedulers such as weighted-round-robin and de�cit-round-robin. In addition, some short-term unfairness is unavoidable in any packet-level scheduler. Thedi�erence in normalized service received by two connections can be proportional to the number ofbacklogged connections even in a WFQ server. Most applications can tolerate a small amount ofshort-term unfairness as long as the unfairness is bounded.4 Starting Potential-based Fair QueueingThe highest frequency at which re-calibration of the system potential can be performed in apacket server is determined by the transmission rate of packets on the outgoing link. Thus, wecan attempt to perform a re-calibration each time a packet �nishes service, thus improving on thefairness properties of Frame-based Fair Queueing. This approach is used in the de�nition of theStarting Potential-based Fair Queueing (SPFQ) algorithm in this section.We de�ne the starting potential of a packet of connection i as the potential of connection i whenthe �rst bit of the packet starts service in the 
uid server. Let Si(t) denote the starting potentialof the �rst packet in the queue of a backlogged connection i in the packet server. That is, Si(t)is a step function that is increased every time a new packet is placed at the head of the queue ofconnection i. Then, we de�ne the base potential function SP (t) asSP (t) = mini2BP (t)Si(t); (4.1)where BP (t) denotes the set of backlogged connections in the packet server at time t. That is, thebase potential at any time t is de�ned as the minimum of the starting potentials of the backloggedconnections. This allows SP (t) to be calculated in an e�cient manner: Its value needs to be updatedonly when a packet is moved to the head of a session's queue.To complete the speci�cation of the algorithm, we must also de�ne the time instants �k at whichthe re-calibration of system potential, as de�ned by Eq. (2.3), is performed. We de�ne these instantsto be the times at which a packet completes its service in the packet server.Before proceeding to describe the algorithm further, we �rst show that the above de�nition of thebase potential function satis�es the property in Eq. (2.2), that its value never exceeds the minimumpotential of a backlogged connection in the corresponding 
uid server.Lemma 10: If the starting potential of every backlogged session in the packet-by-packet serveris greater than or equal to SP (t) at time t, then the potential of each backlogged session in thecorresponding 
uid server at time t is also greater than or equal to SP (t).



16 4. Starting Potential-based Fair QueueingProof: We will prove the lemma by contradiction. Let us denote with i the connection with theminimum potential in the 
uid server at time t, and let us assume that its potential Pi(t) in the
uid server is less than SP (t). Connection i has received until time t more service in the packet-by-packet server than in the 
uid server. By Lemma 3, there is another connection k with potentialPk(t) � Pi(t) that has received less service in the packet-by-packet server than in the 
uid-server.This means that the packet most recently serviced from connection k in the 
uid-server has not yet�nished service in the packet-by-packet server. Let sk be the starting potential of this packet. Then,sk � Pk(t) � Pi(t):By hypothesis, Pi(t) < SP (t). Therefore, we must have sk < SP (t), which contradicts with thede�nition of SP (t). 2The above result enables the re-calibrations to be performed using only information extractedfrom the packet-by-packet server. The scheduler can keep track of all the connections that arebacklogged in the packet server, and determine the minimum starting potential among their packets.When the system potential is lower than the starting potentials of the packets at the head of thequeues of all the backlogged sessions, an update is performed to increase the system potential to theminimum among the starting potentials.Let us refer again to the example of Figure 3.2. Consider an SPFQ server used to scheduletra�c from three connections on an outgoing link. As in the case of FFQ, since both connectionsinitially have the same potential they will be serviced in proportion to their reservations. Asconnection 3 is idle, the rates of service for connections 1 and 2 will be 0:5=(0:5+ 0:25) = 2=3 andand 0:25=0:75 = 1=3, respectively. Thus, after time 0, their potentials increase by the normalizedservice o�ered to them. That is, W1(0; � )0:5 = W2(0; � )0:25 ; (4.2)at any time � when both connections remain backlogged. Notice that at time 3, the minimumstarting potential of all backlogged connections is 4. At this time the potential of connection 1 inthe 
uid server is also 3 � (2=3)=0:5 = 4. Similarly, the potential of connection 2 is also 4 in the 
uidserver. However, if no re-calibration is done, the system potential will have a value of 3, equal to thereal time. Thus, at the end of transmission of the third packet, we can update the system potentialto 4. A similar re-calibration can be done at time 6, which brings the system potential up to 8.The example illustrates the superior fairness of SPFQ in comparison with FFQ. In the case ofthe latter, when the frame size is set to 10, a frame update can be performed only at time 8, whenthe potentials of all backlogged connections have crossed the boundary between the �rst and secondframes. At this time, the system potential is updated from 8 to 10. Now, if connection 3 were tosend a packet just after time 6, it would see a system potential of 8 in the SPFQ algorithm, whichis identical to the potentials of the backlogged connections in the corresponding 
uid server. In thecase of FFQ, however, the system potential at time 6 would be equal to 6, resulting in connection 3being set to a lower potential than that of connections 1 and 2. Thus, connections 1 and 2 wouldbe penalized for bandwidth they received while connection 3 was absent. It is easy to see that thisdiscrepancy can increase with the frame size.We can now describe the packet-by-packet version of SPFQ more precisely. On the arrival of apacket from connection i, an algorithm similar to FFQ is used to compute the timestamp associatedwith that packet. However, no special operations are required for marking packets. The stepsexecuted on arrival of a new packet are outlined in Figure 4.1. Comparing with Figure 3.3, theonly additional step is the addition of the starting potential of the new packet to a separate priorityqueue, so as to facilitate the re-calibration operation.Figure 4.2 summarizes the operations performed when a packet completes transmission in theSPFQ server. The di�erence from Figure 3.4 lies in the re-calibration procedure in step 3 of thealgorithm. This step maintains the system potential at or above the minimum starting potential ofbacklogged connections.



4. Starting Potential-based Fair Queueing 17Algorithm executed on arrival of a packet from connection i:Calculate current value of system potential.Let t be the current time and ts the time whenthe packet currently in transmission started its service.1. temp P + (t� ts)Calculate the starting potential of the new packet2. SP (i; k) max(TS(i; k � 1); temp)Calculate timestamp of packet3. TS(i; k) SP (i; k) + length(i; k)=�i4. Add packet to priority queue ordered by timestamp.5. Add starting potential of packet to separate priority queue, ordered by starting potential.Figure 4.1: Algorithm executed on the arrival of a packet in the SPFQ server.Algorithm executed when a packet completes service:Increase system potential by the transmission time of the packet just completed1. P  P + length(j)2. Delete entry corresponding to transmitted packet from the priority queue of starting potentials.Re-calibrate system potential3. P  max(P; mini2BP (t)(SP (i)))4. Retrieve packet from head of priority queue and transmit.Figure 4.2: Algorithm executed on completion of service of a packet in the SPFQ server.It is easy to see that the price paid for the improved fairness of the SPFQ algorithm is in step 3above. This re-calibration step requires knowledge of the minimum among the starting potentialsof the packets at the head of the queues of all the backlogged sessions. This operation can beimplemented e�ciently by maintaining the starting potentials of the backlogged connections in aseparate priority queue, so that the minimumvalue can be retrieved in O(1) time. An entry is addedto this priority queue when a packet is moved to the head of the queue of a connection. Likewise,when a packet completes its service, the corresponding entry is removed. If the maximum numberof connections sharing the link is V , these operations can be performed in O(logV ) time, the samecomplexity incurred in maintaining the priority queue of packets. Thus, the re-calibration step doesnot a�ect the asymptotic time-complexity of the algorithm, although it requires an additional datastructure for the starting potentials.4.1 Fairness of SPFQIn this section we derive bounds on the short-term unfairness of the packet-by-packet SPFQalgorithm and show that it is comparable to that of Weighted Fair Queueing. In order to calculatetight bounds on the fairness of SPFQ, we will need to take into account the potentials of connectionsin both the packet-by-packet server and the corresponding 
uid server. Let us denote with ai(t)the potential of connection i at time t in the packet-by-packet server, calculated as follows: When anew packet is placed at the head of the queue of connection i, the function ai(t) is set equal to thestarting potential of that packet. While the packet is waiting for transmission, the potential remains



18 5. Simulation Resultsunchanged. When the packet starts transmission, the potential ai(t) is increased by a step equal tothe normalized service o�ered to connection i.As before, we will use Pi(t) to denote the potential of connection i at time t in the corresponding
uid server. Note that the system potential function is identical for the two systems and will bedenoted as P (t). Since the packet-by-packet system is based on the 
uid system, the service missedby a connection while it is absent is the same in both servers. Similarly the total service received by aconnection over a system-busy period is also the same in both servers. However, at a certain instantof time t, the packet-by-packet server may be ahead of or behind the 
uid server in the amount ofservice o�ered to a connection. Therefore, the potential of the connection in the packet-by-packetserver may be di�erent from its potential in the 
uid server. This discrepancy, however, is alwaysbounded.We will �rst prove a lemma that establishes a correspondence between the amount of servicereceived by a backlogged connection in the packet server during an interval (t1; t2] and its gain inpotential during the same period.Lemma 11: Let i be a connection in the packet server with an in�nite supply of packets after time� . For any interval of time (t1; t2], with t1 � � ,Ŵi(t1; t2)�i � ai(t2) � ai(t1)� Lmaxr : (4.3)The proof of this lemma can be found in Appendix B. Using the above lemma, we can prove thefollowing theorem that will provide a fairness bound for the SPFQ algorithm:Theorem 2: Let connections i; j have an in�nite supply packets at time � . During any interval(t1; t2], with � � t1 < t2,�����Ŵi(t1; t2)�i � Ŵj(t1; t2)�j ����� � max1�n�V (Ln�n ) +max(Li�i ; Lj�j ) + Lmaxr :The rather long proof of this theorem is also given in Appendix B. Note that, disregarding the termLmax=r, this fairness bound is nearly identical to that of WFQ [10] and SCFQ [13]. Thus, we canconclude that the maximumdegree of short-term unfairness in SPFQ is very close to the best-knownbound for any tra�c scheduling algorithm.5 Simulation ResultsIn this section we present some simulation results to verify our analytical bounds and studythe average performance of the algorithms in comparison to Weighted Fair Queueing. Althoughwe have shown that the upper bound on the short-term unfairness of the SPFQ algorithm iscomparable to that of WFQ, it is important to compare the actual delays seen by sessions in realisticnetwork topologies. We also compare the proposed algorithms with Self-Clocked Fair Queueing. Theperformance metrics we use for this comparison are the average and maximum delays experiencedby the tra�c sessions during the simulation. We �rst present results from simulating the algorithmsin a single switch, followed by those from a multi-hop network con�guration.First, we simulated the four scheduling algorithms as applied to a single output port of an ATMswitch. Our model consists of eight sessions sharing the same outgoing link. The reservation ofeach of the sessions is shown in Table 5.1. An ON-OFF tra�c model was used to generate tra�cwithin each session. Both the ON and OFF periods of the tra�c model were drawn from a Poissondistribution; the mean duration of the ON period of session i was set to 100 � �i cell times, and themean OFF time to 100 � (1� �i) cell times, where �i is the reservation of session i given in column 2of Table 5.1. The tra�c was then shaped through a leaky bucket.
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Figure 5.1: Network con�guration used for multi-hop simulations.Since our interest is in evaluating the delay in the scheduler rather than the e�ect of inputburstiness, we selected a �i of 2 for each connection. We also assumed that one session (session 1)is misbehaving, attempting to transmit more than its reservation. We assumed an in�nite numberof bu�ers, causing session 1 to remain backlogged throughout the simulations. For simulations ofFrame-based Fair Queueing, we set the frame size as 1000 cell times. With this model, we measuredthe delays and bandwidth allocations seen by all the sessions. A summary of our results is presentedin Tables 5.1 and 5.2. Delays are shown in the tables in terms of cell-transmission times. Theupper bounds for delay for each session in the servers, computed using Theorem 1, are as shown inTable 5.3. Note that the delay bounds are identical for WFQ, FFQ and SPFQ.The maximum delay seen by session 0, which has reserved 50% of the link bandwidth, issubstantially lower in the SPFQ server as compared to the SCFQ server. Both SPFQ and FFQprovide the same maximumend-to-end delay of 2 for this session. From Theorem 1, the upper boundon end-to-end delay for session 0 can be computed as (2=0:5) + 1 = 5. Note that the maximumdelay observed under SCFQ is even higher than this upper bound. A large value of maximum delaymay lead to increased burstiness and bu�er requirements within the network if the session is goingthrough multiple hops. This is consistent with the result in [10, 14] where it was shown that themaximumend-to-end delay for SCFQ increases with the number of connections sharing the outgoinglink.On studying the average delays seen by the individual tra�c sessions, it is easy to verify thatthe SPFQ algorithm gives results very similar to that of WFQ. In most cases, the average delaysare almost identical. Frame-based Fair Queueing also provides nearly identical delays, but SCFQcauses a substantial increase in the average delay seen by some of the sessions. Thus, while thesesimulation results do not bring out the superior fairness properties of SPFQ in comparison withFFQ, they clearly illustrate its superior isolation properties in comparison with SCFQ.To compare the performance of the scheduling algorithms in a more complex network con�gura-tion, we also simulated the algorithms in a 4-hop network model shown in Figure 5.1, consisting offour ATM switches. The network model chosen was a \parking lot" con�guration where one connec-tion passes through the four switches in series and shares the outgoing link at each hop with localcross-tra�c transmitted from one switch to the next. The 4-hop connection was given an allocationof 25% of the link bandwidth, and shares the outgoing link at each hop with seven other cross-tra�cconnections sharing the same outgoing link. One of these connections at each hop was made tomisbehave just as in the case of the single-hop simulations. Tra�c is shaped through a leaky bucketat the source and the burstiness �i was selected as 2 for all the connections. Table 5.4 provides theaverage and maximumdelays seen by the 4-hop session at each hop for all four algorithms simulated.Again, it is easy to verify that SPFQ, FFQ and WFQ all achieve nearly identical maximum delays;these are much lower than the analytical upper-bound of 2 � (1=0:25) + 3 � (1=0:25) + 4 = 24. Incontrast, the delays are much higher with SCFQ. In addition, the average delays of the connectionwhen SCFQ schedulers are used throughout the network are much di�erent than the average delaysof WFQ. On the other hand, both FFQ and SPFQ show an average behavior very similar to WFQ.The di�erence in the fairness behavior of SPFQ over FFQ is not apparent in the above simulationresults. This is because of the choice of a small bucket-size �i for the tra�c shapers. To investigate



20 6. Conclusionsthe e�ect of fairness, we increased the value of �i for session 0 to 21, maintaining �i for others as2. We also reduced the arrival rate for session 0 approximately 5 percent below its reservation, thusincreasing the burstiness of its tra�c at the output of the leaky bucket. Other parameters of thesimulation were not changed.Table 5.5 shows the results of simulating the three algorithms in a single ATM switch with themodi�ed tra�c parameters. It is interesting to observe that the average delays of sessions 1{7 areslightly higher in SPFQ as compared to Frame-based Fair Queueing. This behavior is a direct resultof the inferior fairness of FFQ. Since the potential of the bursty session is likely to diverge more fromthe system potential as compared to that of other sessions, FFQ often starves the bursty sessiontemporarily to provide service for the less bursty ones, resulting in lower average delays for thelatter. This behavior is evident from the larger average delay seen by session 0 under FFQ.From Table 5.5, it is easy to see that the average delays of SPFQ fall between those of WFQand FFQ. This brings out the fact that the maximum short-term unfairness of SPFQ lies betweenthose of FFQ and WFQ. Indeed, the average delays of SPFQ in Table 5.5 are very close to thoseunder WFQ. Thus, we can conclude that, in practice SPFQ may provide average performance closeto that of WFQ in almost all cases.6 ConclusionsIn this paper we introduced and analyzed two novel scheduling algorithms | Frame-based FairQueueing (FFQ) and Starting Potential-based Fair Queueing (SPFQ). Both algorithms provide theworst-case service guarantees of a Weighted Fair Queueing (WFQ) server and comparable fairness.We analyzed the fairness properties of the algorithms, and showed that the di�erence in normalizedservice o�ered to any two connections that are continuously backlogged is always bounded and thisbound for SPFQ is comparable to that of WFQ. The main advantage of the algorithms comparedto WFQ is that they do not require simulation of a 
uid server in parallel, enabling them to beimplemented in a simple and e�cient manner. All the information needed for the algorithm can beextracted from the packet-by-packet server itself.Compared to FFQ, SPFQ provides the same end-to-end delay bounds, but superior fairnessproperties. However, although SPFQ and FFQ have asymptotically the same implementation com-plexity, the former requires the use of two priority lists as opposed to one in the latter. Thus, SPFQ isattractive in applications where its improved fairness justi�es the additional cost of implementation.In Appendix A, we have presented a hardware implementation of the two algorithms for ATMnetworks. A working prototype of Frame-based Fair Queueing has been implemented in our FPGA-based Simulation Testbed for ATM Networks (FAST) [16]. The algorithm is incorporated in ashared-memory ATM switch architecture, using a set of parallel priority lists. A central controllerarbitrates the sharing of the output link by the distributed shared-memory modules. The prototypeworks at a 16 MHz clock rate, supporting a link speed of approximately 80 Mbits/sec and up to1024 virtual channels. Given the routing, density, and speed limitations of the FPGA devices, theimplementation of the algorithm using ASIC technology is projected to support 622 Mbits/sec linkseasily. Experimental tests using this prototype are currently being carried out to study the averagebehavior of several of these algorithms.Since timestamp computations are performed in O(1) time in both the FFQ and SPFQ algo-rithms, the asymptotic time-complexity of the algorithms is determined by the priority-list oper-ations. Traditional heap algorithms for insertion and deletion have a complexity of O(log2 V ) forV virtual channels. There are a number of ways for reducing this complexity for ATM networkswhere timestamps take integer values in a �nite range. A recursive algorithm was proposed in [17,18, 19] for implementing add and delete operations in such a priority queue with O(log logV ) timecomplexity, where V is the number of elements in the queue. These algorithms were further re�nedby Johnson [20] who presented a non-recursive algorithm with O(log logD) complexity for the addand delete operations. In this algorithmD denotes the smallest interval between successive elementsin the priority queue. Applying this algorithm to Frame-based Fair Queueing results in a complexityof O(log logF ), where F is the frame size. Furthermore, Dixon presented a method for pipelining
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References 23Session ReservedBandwidth Arrival Rate SPFQ FFQ WFQ SCFQ0 0.500000 0.498 1.995 1.995 1.995 4.23531 0.062500 0.100 N/A N/A N/A N/A2 0.062500 0.062 7.263 6.424 7.259 15.1013 0.062500 0.061 9.176 8.391 9.166 15.8284 0.078125 0.076 4.040 3.685 4.152 10.2845 0.078125 0.076 5.608 5.264 5.759 11.0606 0.078125 0.076 6.625 6.283 6.795 11.6187 0.078125 0.076 7.368 7.023 7.550 11.943Table 5.1: Comparison of average delays from a simulation of SPFQ, FFQ, WFQ and SCFQalgorithms. The eight sessions shown share the same outgoing link. Delays are measuredin terms of cell transmission times. Session 1 is misbehaving while others are transmittingwithin their reservations.Session ReservedBandwidth Arrival Rate SPFQ FFQ WFQ SCFQ0 0.500000 0.498 2.00 2.00 3.00 8.001 0.062500 0.100 N/A N/A N/A N/A2 0.062500 0.062 25.0 21.0 25.0 29.03 0.062500 0.061 25.0 21.0 23.0 25.04 0.078125 0.076 14.0 12.0 13.0 14.05 0.078125 0.076 16.0 13.0 17.0 18.06 0.078125 0.076 17.0 14.0 16.0 18.07 0.078125 0.076 16.0 14.0 16.0 20.0Table 5.2: Comparison of maximum delays from a simulation of SPFQ, FFQ, WFQ andSCFQ algorithms. The eight sessions shown share the same outgoing link. Delays aremeasured in terms of cell transmission times. Session 1 is misbehaving while others aretransmitting within their reservations.Session SPFQ FFQ SCFQ0 5 5 111 33 33 392 33 33 393 33 33 394 27 27 335 27 27 336 27 27 337 27 27 33Table 5.3: Analytical delay bounds for the sessions in the simulation.
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Hop SPFQ FFQ WFQ SCFQAvg. Delay Max Delay Avg. Delay Max Delay Avg. Delay Max Delay Avg. Delay Max Delay1 2.1203 5.00 2.1308 5.00 2.1199 6.00 4.4246 8.002 4.1253 7.00 4.1533 7.00 4.1580 8.00 9.0875 15.003 5.1804 8.00 5.2347 8.00 5.6670 9.00 12.7108 21.004 7.2890 11.00 7.4011 11.00 7.9301 12.00 17.7870 26.00Table 5.4: Comparison of maximum and average delays from a simulation of SPFQ, FFQ,WFQ and SCFQ algorithms in a 4-hop network. The delays shown are for a session goingthrough all the four switches, which has a reservation of 25%. This session shares the linkat each hop with seven other sessions, one of which is misbehaving.Session � ReservedBandwidth Arrival Rate SPFQ FFQ WFQ0 21 0.250000 0.200 32.029 34.900 31.1421 2 0.250000 0.249 1.6547 1.6431 1.69452 2 0.125000 0.121 2.9275 2.6533 3.23963 2 0.062500 0.059 7.0999 5.6325 7.05794 2 0.078125 0.070 4.1154 3.0062 4.45945 2 0.078125 0.071 5.0889 3.9650 5.41996 2 0.078125 0.071 5.6883 4.6016 6.00317 2 0.078125 0.071 6.1980 5.1188 6.4709Table 5.5: Comparison of average delays from a simulation of SPFQ, FFQ,WFQ algorithmsin a single ATM switch. The eight sessions shown share the same outgoing link. Delaysare measured in terms of cell-transmission times.



References A.1Appendix A: Hardware Implementation for ATM NetworksAlthough the general algorithms of Sections 3 and 4 can be used in an Asynchronous TransferMode (ATM) network, the �xed (and small) cell-size of ATM can be exploited to simplify thealgorithms considerably. In this section we will present simpli�ed versions of the FFQ and SPFQalgorithms that will allow implementation using entirely hardware elements. The �xed size of theATM cell allows potentials to be represented as integers, instead of the 
oating-point numbersrequired in the general implementation. This, in turn, allows an e�cient hardware implementationof the priority queues. The idea of using integer timestamps was �rst proposed in [15].Since the ATM cell has a �xed size, the unit of time is now chosen as 1=K times the transmissiontime of an ATM cell through the outgoing link, where K � 1 is a suitable integer scaling constant.Bandwidth reservations of sessions are assumed to be in terms of number of ATM cells per second.That is, each session i reserves a bandwidth equal to �i cells/second. Integer representations oftimestamps is achieved by imposing the restriction that the values of K=�i for each session i is aninteger. The choice of the scaling constant is based on the granularity required in the bandwidthreservations of the individual sessions. Choosing a large value of K increases the granularity withwhich reservations can be made. However, increasing K also increases the hardware complexity ofthe implementation, so a tradeo� must be made between the two.The system potential function in these implementations is maintained as an integer, increasingit by the quantity K after the transmission of each ATM cell. As in the general implementation, are-calibration step is used to update the system potential close to the potentials of connections withATM cells queued in the system.As before, the processing performed by the algorithm can be divided into two parts: (i) a partthat is performed when a new cell arrives, and (ii) a part that is executed when the transmissionof a cell has been completed. Since the transmission time of an ATM cell is very short, the cellsarriving at the scheduler need to be processed only at the boundaries of cell transmissions, so thatcalculation of the system potential need not take into account the partial service received by thecell currently being transmitted. As seen in Section 3, this is equivalent to a regulator followed bya scheduler, and does not a�ect its delay bound.The processing performed on a cell arrival is identical in both the FFQ and SPFQ algorithms,except for the mechanism used to bound the unfairness. The starting potential of an arrivingcell is determined as the maximum of the �nishing potential (timestamp) of the previous cell thatarrived from the session and the system potential. The timestamp of the cell is then calculatedby adding the quantity K=�i to the starting potential. Note that, since the quantity K=�i is aninteger, this operation involves only integer arithmetic. The cell is inserted into the priority queueof cells according to its computed timestamp. In the case of FFQ, cells crossing a frame boundaryare marked and the corresponding counters incremented, as in the general version of the algorithm.This step is replaced in the SPFQ algorithm by an insertion of the starting potential of the arrivingcell into a second priority list.The processing performed on the departure of a cell is also similar in both algorithms, except forthe re-calibration step. The system potential value is increased by the constant K to account forthe transmission time of the cell, followed by a re-calibration step. The re-calibration step in FFQconsists in decrementing the counter corresponding to the current frame if the transmitted cell wasmarked, and performing a frame update if the counter becomes zero. Note that the second conditionin step 7 of Figure 3.4 need not be tested. In the case of SPFQ, the re-calibration step involvessimply setting the system potential to the value at the head of the priority list of starting potentials,if the latter is larger. Both algorithms then select the next cell with minimum timestamp value fortransmission. Note that SPFQ requires the additional step of removing the transmitted cell fromthe priority list of starting potentials.We now describe a hardware implementation of the priority queue used to order cell transmis-sions. This implementation is attractive for high-speed ATM switches, and is based on integerrepresentation of potentials. In addition, if we consider only the cells at the head of each session's



A.2 Referencesqueue currently in the system, the di�erence in the values of the minimum and maximum times-tamps among them must be bounded. The following two lemmas establish upper bounds for thisdi�erence for both Frame-based Fair Queueing and Starting Potential-based Fair Queueing.Lemma 12: Let i and j be two backlogged sessions in a packet-by-packet FFQ server. Let Si andSj denote the starting potentials of the �rst packet in the queues of connections i and j, respectively,and let Fi and Fj be the respective timestamp values. Then,Fj � Si � 4Fr : (A.1)Proof: It is easy to prove the above lemma by contradiction. Assume, without loss of generality,that at time � , Si < Fj and Fj � Si > 4Fr . Then, at time � , assume that both connections receivean in�nite supply of packets. Note that the service o�ered to the two connections until time � doesnot depend on packets that arrive after time � . Then, during an interval (�; t], it is easy to verifythat connection i may receive normalized service equal toŴPi (�; t)�i > 4Fr ;while connection j is receiving no service. This is a contradiction with Lemma 9. 2Lemma 13: Let i and j be two backlogged sessions in a packet-by-packet SPFQ server. Let Si andSj denote the starting potentials of the �rst packet in the queues of connections i and j, respectively,and let Fi and Fj be the corresponding timestamp values. Then,Fj � Si � 2 � max1�n�V (Ln�n ) + Lmaxr ; (A.2)where Ln is the maximum packet size of session n and Lmax the maximum packet size among allsessions.Proof: The proof is again by contradiction. Assume, without loss of generality, that at time � ,Si < Fj and Fj � Si > 2 � max1�n�V (Ln=�n) +Lmax=r. Then, at time � , assume that both connectionsreceive an in�nite supply of packets. It is easy to verify that, during an interval (�; t], connection imay receive normalized service equal toFj � Si > max1�n�V (Ln�n ) +max(Li�i ; Lj�j ) + Lmaxr :This is a contradiction with Theorem 2. 2For the special case of the ATM implementation where the packet size is taken as 1 unit, andwith a scaling constant of K, Eq. (A.2) simpli�es toFj � Si � 2 � max1�n�V �K�n�+K: (A.3)Similarly, the bound for FFQ in Eq. (A.1) becomesFj � Si � 4KFr : (A.4)Note that, in SPFQ, the maximumvalue ofK=�n occurs when a session has the minimumpossiblereservation in the system. For example, if the minimum allowable reservation for a session is 1=1000of the link bandwidth, then the above di�erence will be (2 � 1000 + 1)K = 2001 �K. In the case ofFFQ, the maximumdi�erence is determined by the choice of the frame size, which, in turn, dependson the granularity of bandwidth reservation. In both cases, let W denote this maximum di�erence.Since the method involves modulo-W arithmetic operations, it is advantageous to choose W as apower of 2. Thus, we assume that W is chosen as the smallest power of 2 satisfying Eq. (A.4) orEq. (A.3) for FFQ and SPFQ, respectively.



References A.3Thus, if we consider only the packets at the head of each backlogged session's queue, theirtimestamp values must fall into a window of size W . The following hardware implementation of thepriority queue is based on this property. We refer to each distinct integer value within this windowas a \slot." Thus, each slot corresponds to a unique value taken by the timestamp representation,modulo W . A given slot, say j, may be in one of two states:1. There is no cell currently queued in the system with a timestamp value of j (modulo W ). Inthis case, we say that the slot j is empty.2. There is at least one cell currently in the system with a timestamp value of j (modulo W ).We designate this state as full.Thus, to implement a priority queue with integer timestamps, it is su�cient to maintain a separatelist for each slot. That is, the list corresponding to slot j includes cells whose timestamp value is j.Selecting cells in the order of timestamp values can be accomplished simply by scanning the slots inorder and transmitting the cell associated with the �rst slot in the full state. Slots in empty state areskipped during the scanning. In addition, the cells associated with a given slot can be transmitted inany arbitrary order, since they all have the same timestamp value. Thus, the list of cells associatedwith each slot can be maintained in any order that facilitates a simple implementation.The basic system for implementing the priority queue is shown in Figure A.1. The systemmaintains W 
ip-
ops, each representing the state of a slot in the current window. The 
ip-
opsare shown around a circle in the �gure, as they are conceptually organized as a circular queue andscanned in the clockwise direction. A pointer, referred to as �rst-slot, points to the beginning of thecurrent window in the scheduling system, and therefore provides the starting point for scanning thestate bits. The state bits are labeled as 0 through (W � 1) in the �gure. The �rst-slot pointer isinitially set to point to bit 0, and is moved cyclically as the window advances. In FFQ, the windowadvances by an amount of K � F with each frame update operation, while in SPFQ, the windowadvances more gradually as the system potential is increased.The ATM cells bu�ered in the system reside in the cell memory. Since there may be more thanone such cell in the system with a timestamp value corresponding to the slot, a list of such cells needsto be maintained. This is accomplished with an array of pointers, designated as head-pointer arrayin Figure A.1. This array consists of a total ofW pointers, and each has a one-to-one correspondencewith one of the state bits. The pointer at location j of the array points to a location in cell in memorywhere a cell with timestamp value j (moduloW ) is stored. Thus, when the state of a particular slotj is determined to be full, the corresponding pointer from the head-pointer array provides access tothe list of cells with timestamp j (modulo W ).The array of pointers labeled as tail-pointer array is used to identify the locations of the lastcell received from each session. The pointer at location i of the array points to the location in cellmemory where the last cell received from session i is stored. When a new cell is received, this pointeris used to add the cell to the session's queue.Although scanning for a full slot in such an implementation takes linear time, the operationcan be performed in logarithmic time by organizing the state storage in a tree structure. A similarstructure can be used to implement the second priority list of starting potentials required in theSPFQ implementation. However, the list of cells maintained for each slot can be replaced in thissecond priority queue by a simple counter that keeps a count of cells with a given starting potential.This results in a much simpler implementation than the cell queue.
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References B.1Appendix B: Proofs of Lemmas and TheoremsProof of Lemma 5: First note that session i is backlogged in the packet-by-packet server. Sinceboth servers are work-conserving, it is clear that if session i received more service in the 
uid-server,there is another session j that has received less service in the 
uid-server.We will prove the lemma by contradiction: Let us denote with S the set of connections withpotential at least equal to that of connection i and let us assume that all these connections havereceived more or equal service in the 
uid server compared to the packet-by-packet server. That is,for all k 2 S, Pk(t) � Pi(t) and WFk (t) � WPk (t). We will distinguish two cases:Case 1: Some connection k 2 S is being serviced at time t. All other backlogged connections inthe 
uid server at time t have potential at least equal to Pk(t) and thus they belong in the setS. However, we also know that there exists a connection j that has received more service in thepacket-by-packet server than in the 
uid-server until time t. This connection can only have potentialless than Pi(t). That is, Pj(t) < Pi(t): (B.1)Since this connection received more service in the packet-by-packet server, it must still be backloggedin the 
uid-server. Thus connection j should be serviced at time t instead of connection i. This isa contradiction.Case 2: A connection m that does not belong in the set S is being serviced at time t, and thusPm(t) < Pi(t). Let � denote the last time that a connection k 2 S was in service in the 
uid server.Then, in the interval (�; t] all connections k 2 S have not received any service in the 
uid server andthus WFk (�; t) = 0; 8 k 2 S: (B.2)Since the service function is non-decreasing, we can writeWFk (�; t) � WPk (�; t); 8 k 2 S: (B.3)We know that every connection k 2 S has received until time t more service in the 
uid server thanin the packet-by-packet server. Therefore,WFk (0; t) � WPk (0; t); 8 k 2 S: (B.4)By subtracting Eq. (B.3) from (B.4).WFk (0; � ) � WPk (0; � ); 8 k 2 S: (B.5)But at this time, there must exist at least one connection j =2 S, that received less service in the 
uidserver compared to the packet-by-packet server. This means that connection j is still backlogged attime � in the 
uid-server. The potential of connection j can not be lower than that of connectioni, because then a connection from the set S would not be serviced just before time � . Thus, thepotential of connection j is at least equal to Pi(� ). This is a contradiction. 2Proof of Lemma 6: We will prove the lemma by contradiction. It is easy to verify from thede�nition of the algorithm, that the frame will be updated the �rst time the starting potentials ofall backlogged connections in the packet-by-packet server are greater than or equal to kT . Let usassume that at some time t < �k the server transmitted a packet with a timestamp greater thanor equal to (k + 1)T . Then, at time t this packet would have the minimum timestamp. Since weassumed that the frame size is selected such that the largest packet can be transmitted within aframe period, the potential of all backlogged connections in the packet-by-packet server at time twould be greater than or equal to kT . Therefore, the kth frame-update would have occurred at orbefore t, a contradiction. 2Proof of Lemma 7: The proof is again by contradiction. Let us assume that a connection iexists with Pi(�k) � (k + 1)T . Then connection i has received more service in the 
uid server



B.2 Referencescompared to the packet-by-packet server until time �k. By Lemma 5, there is another connection jwith Pj(�k) � Pi(�k) � (k+1)T , that has received more service in the packet-by-packet server untiltime �k compared to the 
uid-server. Let Fj denote the timestamp of the packet under service inthe 
uid-server for connection j. Then, Fj � Pj(�k) � (k + 1)T and this packet has already beenserviced in the packet-by-packet server. This is a contradiction to Lemma 6. 2Proof of Lemma 8: While a connection is backlogged in the FFQ server, its potential is increasingby the normalized service o�ered to it. The system potential, on the other hand, is increased intwo cases. While the frame is not changing it is increased by the real time, and when the framechanges it becomes at least equal to the starting potential of the current frame. Let us assume thatthe current time is t, and that the last frame update occurred at �k�1. The next frame-update willoccur after the time when all backlogged connections have crossed the potential of kT in the packetserver. As we showed, this will occur before the potential of any connection becomes greater than(k+1)T . The largest di�erence between the system potential and a connection potential will appearjust before the frame update. At this timePi(t) � (k + 1)T; (B.6)and P (t) � (k � 1)T + �ir : (B.7)Subtracting Eq. (B.7) from (B.6), Pi(t)� P (t) � 2T � �ir :Note that the fastest way for the potential of a connection to reach the value Pi(t) from the timethat the frame was last updated is through its normalized service. However, by the time the nextframe update occurs, the system potential function would have increased by at least the time toservice �i bits of connection i. This bounds the di�erence in potentials to 2T � �ir . 2Proof of Lemma 9: In order to calculate tight bounds on the fairness of the packet-by-packetversion of FFQ, we will need to take into account the potentials of connections in both the packet-by-packet server and the corresponding 
uid server. Let us denote with ai(t) the potential of connectioni at time t in the packet-by-packet server, calculated as follows: When a new packet is placed at thehead of the queue of connection i, the function ai(t) is set equal to the starting potential of thatpacket. While the packet is waiting for transmission, the potential remains unchanged. When thepacket starts transmission, the potential ai(t) is increased by a step equal to the normalized serviceo�ered to connection i.As before, we will use Pi(t) to denote the potential of connection i at time t in the corresponding
uid server. Note that the system potential function is identical for the two systems and will bedenoted as P (t). Since the packet-by-packet system is based on the 
uid system, the service missedby a connection while it is absent is the same in both servers. Similarly the total service receivedby a connection over a system-busy period is also the same in both servers. However, as shown inLemmas 3 and 4 of [11], at a certain instant of time t, the packet-by-packet server may be ahead of orbehind the 
uid server in the amount of service o�ered to a connection. Therefore, the potential ofthe connection in the packet-by-packet server may be di�erent from its potential in the 
uid server.This discrepancy, however, is always bounded.Let us assume that after time � both connections i; j have an in�nite supply of packets. Withoutloss of generality let Ŵi(t1; t2)�i � Ŵj(t1; t2)�j ; (B.8)for a time interval (t1; t2] with � � t1 < t2. We know that after time � , both connections havean in�nite supply of packets. Thus, the potential of both connections in the 
uid server is only



References B.3increased by the normalized service o�ered to them. For the service o�ered to connection i in theinterval (t1; t2], we can writeŴPi (t1; t2)�i � ai(t2) � Pi(t1) + ŴFi (0; t1)� ŴPj (0; t1)�i : (B.9)If the potential of connection i in the packet-by-packet server at time t2 is greater than Pi(t1), thenthe normalized service o�ered to connection i during the interval (t1; t2] is equal to the increase inpotential after time t1 plus the amount of additional service that connection i received in the 
uid-server compared to the packet-by-packet server until time t1. If, on the other hand, the potential ofconnection i in the packet-by-packet server at time t2 is less than Pi(t1), then the packets that wereserviced after time t1 in the 
uid-server have not been serviced yet in the packet-by-packet server.Thus, the service o�ered from the packet-by-packet server to connection i has already been o�eredto the 
uid-server before time t1.Similarly for connection j we can writeŴPj (t1; t2)�j � aj(t2) � Pj(t1)� ŴPj (0; t1)� ŴFj (0; t1)�j : (B.10)That is, the normalized service o�ered to connection j in the packet-by-packet server during theinterval (t1; t2] is equal to the increase in its potential minus the additional service that the packet-by-packet server may have o�ered to connection j until time t1. By subtracting Eq. (B.10) fromEq. (B.9),̂WPi (t1; t2)�i � ŴPj (t1; t2)�j � ai(t2)� aj(t2) + Pj(t1)� Pi(t1)+ŴFi (0; t1)� ŴPj (0; t1)�i + ŴPj (0; t1)� ŴFj (0; t1)�j : (B.11)We have assumed that connection i has received more normalized service; thus, from the de�nitionof the packet-by-packet rate-proportional servers,ai(t2) � aj(t2) + Lj�j : (B.12)Thus, Eq. (B.11) can be written asŴPi (t1; t2)�i � ŴPj (t1; t2)�j � Lj�j + (Pj(t1)� Pi(t1))+ ŴFi (0; t1)� ŴPj (0; t1)�i + ŴPj (0; t1)� ŴFj (0; t1)�j ! :(B.13)The di�erence in o�ered service will be maximized when the second part of the above equationis maximized. Notice that this will happen when the di�erence in potentials between the twoconnections is maximized, and the di�erence in o�ered service between the two servers for the twoconnections is maximized as well. Let us assume that the last frame update occurred at time �k�1.Then, from Lemma 6, we know that there is no packet serviced in the 
uid-server with a �nishpotential higher than (k + 1)T . Thus, aj(t1) � (k + 1)T: (B.14)At the same time, for connection i we can write thatai(t1) � (k � 1)T: (B.15)



B.4 ReferencesNotice also that the additional service o�ered by the packet-by-packet server compared to the 
uid-server is never more than the di�erence in potentials between the two servers. Therefore,Pj(t1) + ŴPj (0; t1) � ŴFj (0; t1)�j � aj(t1) � f(t1) + 2T: (B.16)Similarly, for connection i,Pi(t1) � ŴFi (0; t1)� ŴPj (0; t1)�i � ai(t1) � f(t1): (B.17)From Eq. (B.13), and by subtracting Eq. (B.17) from (B.16), we can conclude thatŴPi (t1; t2)�i � ŴPj (t1; t2)�j � 2Fr + Lj�j : (B.18)Similarly, if connection j received more normalized service in the interval (t1; t2] we can writeŴj(t1; t2)�j � Ŵi(t1; t2)�i � 2Fr + Li�i : (B.19)From Eq. (B.13) and (B.14) we can conclude that�����Ŵj(t1; t2)�j � Ŵi(t1; t2)�i ����� � 2Fr +max�Li�i ; Lj�j � : (B.20)2Proof of Lemma 11: The assumption of the lemma states that at time � connection i has anin�nite supply of packets. We will distinguish two cases: First, just before time � connection i wasnot backlogged. Therefore, all packets in the queue of connection i can be considered as arriving attime � . It is easy to verify that the starting potential of each packet arriving after � will be calculatedfrom the �nishing potential (timestamp) of the previous packet. Thus, Eq. (4.3) is obvious.In the second case, connection i was already backlogged at time � . Let us denote with Fi the�nishing potential of the �rst packet in the queue of connection i at time � . If P (t) � Fi, then againthe starting potential of all packets serviced during the interval (t1; t2] is estimated by the �nishingpotential of the previous packet. However, it is possible that Fi < P (� ) and the starting potentialof some of the packets in the queue of connection i after time � was estimated from the systempotential. From the de�nition of rate-proportional servers we know that at time � ,P (� ) � Pi(� ): (B.21)However, ai(� ) � Fi � P (� ). This, implies that the 
uid server has o�ered more service to connectioni until time � than the packet-by-packet server. Note also that the system potential has increasedto a value greater than ai(� ) through only the passage of real-time and not through a re-calibration,since the starting potential of the �rst packet of connection i is less than P (� ). Let us denote witht�, the time at which the function Pi(t) had a value equal to Fi. From Theorem 4 of [11] we knowthat, � � t� � Lmaxr :The system potential may have reached a value of Fi only at or after time t�, and after that time ithas increased only by the real time that elapsed. Thus, for the system potential we can writeP (� ) � Fi + (� � t�) � Fi + Lmaxr : (B.22)



References B.5Thus, some of the increase in potential of connection i in the packet server may be due to increasein the system potential. This total increase, however, happened before time � and from the aboveequation can not be more than Lmax=r. Thus,Wi(t1; t2) � ai(t2)� ai(t1)� Lmaxr : (B.23)2Proof of Theorem 2: Let us assume two connections i and j. Without loss of generality, let usassume that at time t1, ai(t1) � aj(t1): (B.24)Let us also denote with pki the �rst packet of connection i in the system at time t1. Note that even ifthe packet is being serviced at time t1, it will still be considered as being in the system. However, thepartial service o�ered to a connection needs to be accounted for when we try to bound the di�erencein normalized service between two connections. Similarly, pmj is the �rst packet of connection j. Letus also assume that after time � � t1 both connections have an in�nite supply of packets. In orderto be able to compute a tight bound we will have to consider several cases and subcases.Case 1: When packet pki arrived in the system at some time t� � t1, packet pmi is already in thesystem. We will separate the problem in two subcases:Subcase 1: Packet pmj was the �rst packet in the queue of connection j at time t�. Let Fj denotethe timestamp of the last packet selected for transmission from connection j. Then, that packetwas selected for transmission before time t�. At this time it was the packet with the minimumtimestamp. All other connections could only have packets with timestamp � Fj. However, thisimplies that, for every connection backlogged at time t� in the packet-by-packet system,ak(t�) � Fj � max1�n�V (Ln�n ); 8k 2 B(t): (B.25)Therefore, by the de�nition of a Fair Rate-Proportional Server,P (t�) � Fj � max1�n�V (Ln�n ): (B.26)Therefore, since the starting potential associated with packet pki will be at least equal to P (t�),ai(t1) � Ski� P (t�)� Fj � max1�n�V (Ln�n ); from Eq. (B.26)� aj(t)� max1�n�V (Ln�n ): (B.27)The last inequality holds since Fj denotes the timestamp of the last packet selected from connectionj. Thus, the potential aj(t) of connection j can not have increased to a value larger than Fj.Subcase 2: Packet pmj was not the �rst packet of connection j at time t�. Let us again denotewith Fj the timestamp of the last packet selected from connection j before time t1. Since bothpacket pki and pmj are the only packets that may be serviced from the two connections at time t1,the timestamp Fj of that packet can not be greater than ai(t1) + Li�i . Therefore,aj(t1) � Fj� ai(t1) + Li�i� ai(t1) + max1�n�V (Ln�n ): (B.28)



B.6 ReferencesFrom Equations (B.27) and (B.28), we can conclude that in both subcasesaj(t1) � ai(t1) + max1�n�V (Ln�n ): (B.29)At time t2, the potential of connection i can be greater or less than that of connection j. In eithercase, from the de�nition of the algorithm,ai(t2) � aj(t2) + Lj�j : (B.30)For the service o�ered to connection i, we can writeŴi(t1; t2)�i � ai(t2) � ai(t1)� aj(t2)� ai(t1) + Lj�j ; from Eq. (B.30)� aj(t2)� aj(t1) + max1�n�V (Ln�n ) + Lj�j ; from Eq. (B.29)� Ŵj(t1; t2)�j + max1�n�V (Ln�n ) + Lj�j + Lmaxr : (B.31)However, connection j may have received more normalized service than connection i. In this case,from the de�nition of the algorithm, aj(t2) � ai(t2) + Li�i : Then,Ŵj(t1; t2)�i � aj(t2) � aj(t1)� ai(t2)� aj(t1) + Li�i� ai(t2)� ai(t1) + Li�i� Ŵi(t1; t2)�i + +Li�i + Lmaxr : (B.32)Combining the two previous cases it is easy to verify that�����Ŵi(t1; t2)�i � Ŵj(t1; t2)�j ����� � max1�n�V (Ln�n ) + Lmaxr +max(Li�i ; Lj�j ): (B.33)Case 2: Packet pki arrived before packet pmj . Let us again denote with t� the arrival time of packetpmj . We have to consider again several subcases:Subcase 1: Let us assume that at least one other packet was selected for transmission fromconnection j after time t� and before time t1. Let Fj denote the timestamp of the last packet selectedfrom connection j. Then aj(t1) � Fj and Fj � ai(t�) + max1�n�V (Ln=�n). Proceeding similarly as inthe previous case, we can conclude thataj(t1) � ai(t1) + max1�n�V (Ln�n ): (B.34)Subcase 2: No packet from connection j was selected after time t� and the packet pmj received itsstarting potential from the �nishing potential of the previous packet of connection j. Let us denotethat packet with pm�1j . When that packet was selected for transmission, it had the smaller timestampFj. Therefore, all the other connections had packets with timestamps � Fj; but this implies thatthe starting potential of all packets from the other connections were at least Fj � max1�n�V (Ln=�n).



References B.7If pki was in the system at that time, its starting potential would also have been greater than thisvalue. The system potential was also greater than Fj � max1�n�V (Ln=�n). If pki arrived later, it wouldhave received a starting potential that is at least equal to the system potential and thus it is alsogreater than Fj � max1�n�V (Ln=�n). Thus, in any case, the starting potential of pki was greater thanthis value. Therefore,aj(t1)� max1�n�V (Ln�n ) � Fj � max1�n�V (Ln�n ) � ai(t�) � ai(t1): (B.35)From Eq. (B.34) and (B.35) we can conclude that aj(t1) � ai(t1) + max1�n�V (Ln=�n). Following asimilar procedure as in the previous case, it is easy to verify that for both of these subcases thetheorem holds, and�����Ŵi(t1; t2)�i � Ŵj(t1; t2)�j ����� � max1�n�V (Ln�n ) + Lmaxr +max(Li�i ; Lj�j ): (B.36)Subcase 3: The �nal subcase will require a more elaborate approach. No packet from connectionj was selected after time t� and packet pmj received its starting potential from the system potential.In that case we need to bound the di�erence between the potential of connection i in the packet-by-packet server and the system potential. As was described in the proof of Lemma 11, since thepotential of connection i in the packet-by-packet server is less than the system potential P (t), thisimplies that the packet-by-packet server has o�ered less service to connection i than the 
uid-server.The system potential may be higher than the �nishing potential of the �rst packet in the queue ofconnection i by �P1 � Lmax=r. Thus, we can writeaj(t1) = aj(t�) = P (t�) � ai(t�) + Li�i +�P1: (B.37)In fact, there may be several packets from connection j that arrived after packet pmj and beforetime � , and they all would have received a starting potential equal to the system potential. Note,however, that the total increase in the potential of connection j due to increases in the systempotential, denoted by �P2, together with �P1 can only be less than Lmax=r. Thus, we can writeŴj(t1; t2)�j � aj(t2)� aj(t1)��P2: (B.38)Following the same procedure as in the above cases, using Eq. (B.38) instead of Lemma 11 forestimating the service o�ered to connection j, and with the fact that �P1+�P2 � Lmax=r, we canagain prove the bound for the di�erence in normalized service o�ered to the two connections. 2


