Efficient Fair-Queueing Algorithms
for
ATM and Packet Networks

Dimitrios Stiliadis

Anujan Varma

UCSC-CRL-95-59
December 1995

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

Although Weighted Fair Queueing is regarded as an ideal scheduling algorithm in terms
of its delay and fairness properties, its computation complexity is asymptotically linear
in the number of connections serviced by the scheduler, thus making its implementation
prohibitively expensive in high-speed networks. An algorithm that combines the delay and
fairness bounds of Weighted Fair Queueing with O(1) timestamp computations had remained
elusive so far. In this paper, we present two novel scheduling algorithms that have O(1)
complexity for timestamp computations, and provide the same bounds on end-to-end delay
and buffer requirements as those of Weighted Fair Queueing. The first algorithm, Frame-
based Fair Queueing, uses a framing mechanism to periodically re-calibrate a global variable
tracking the progress of work in the system, limiting any short-term unfairness to within
a frame-period. The second algorithm, Starting Potential-based Fair Queueing (SPFQ),
performs the re-calibration at packet boundaries, resulting in a fairness bound that is equal
to that of Weighted Fair Queueing, still maintaining the O(1) timestamp computations.
This improved fairness bound is achieved at the expense of a slightly higher implementation
cost. Thus, SPFQ is attractive over FFQ in those applications where its improved fairness
properties justify the additional implementation cost. The algorithms may be used in both
general packet networks with variable packet sizes and in Asynchronous Transfer Mode
(ATM) networks. Both algorithms are based on the general framework of rate-proportional
servers (RPS) introduced in [11]. Details of hardware implementations of both algorithms
are presented for use in an ATM network.

Keywords: Packet scheduling, ATM switch scheduling, fair queueing, delay bounds,
fairness.

This research is supported by the NSF Young Investigator Award No. MIP-9257103. A part of this paper will
appear in the Proceedings of ACM SIGMETRICS 96.

CONTENTS 1

Contents

1 Introduction oL 3
2 Methodology for Maintaining System Potential 5
3 Frame-based Fair Queueing L o 8

3.1 Correctness of Frame-based Fair Queueing 14

3.2 Fairness of Frame-based Fair Queueing 14
4 Starting Potential-based Fair Queueing L oL 15

4.1 Fairness of SPFQ 17
5 Simulation Results 0.0 18
6 Conclusions L 20

References 21

2 LIST OF FIGURES

List of Figures

3.1 Behavior of the base-potential and system-potential functions in a fluid FFQ server.
P;(t) represents the potential of all backlogged connections, P(t) the system potential,
and Sp(t) the base potential. Re-calibration of the system potential occurs at frame-
update points 7, 72, 73, and 4. The frame update points can fall anywhere within a
window where the individual connection ptentials lie between k7 and (k4+ 1)T. . .. 10
3.2 Example of operation of the packet-by-packet FFQ server. The frame can be updated
at time 8 when the starting potentials of the packets of all backlogged connections in

the packet-by-packet server have crossed the frame boundary. 11
3.3 Algorithm executed on the arrival of a packet. 12
3.4 Algorithm executed on the departure of a packet. 13
4.1 Algorithm executed on the arrival of a packet in the SPFQ server. 17
4.2 Algorithm executed on completion of service of a packet in the SPFQ server. 17
5.1 Network configuration used for multi-hop simulations. 19
A.1 Block diagram of priority queue implementation for ATM networks. A4

List of Tables

5.1 Comparison of average delays from a simulation of SPFQ, FFQ, WFQ and SCFQ
algorithms. The eight sessions shown share the same outgoing link. Delays are
measured in terms of cell transmission times. Session 1 is misbehaving while others
are transmitting within their reservations. o o000 23

5.2 Comparison of mazimum delays from a simulation of SPFQ, FFQ, WFQ and SCFQ
algorithms. The eight sessions shown share the same outgoing link. Delays are
measured in terms of cell transmission times. Session 1 is misbehaving while others
are transmitting within their reservations. o o000 23

5.3 Analytical delay bounds for the sessions in the simulation. 23

5.4 Comparison of maximum and average delays from a simulation of SPFQ, FFQ, WFQ
and SCFQ algorithms in a 4-hop network. The delays shown are for a session going
through all the four switches, which has a reservation of 25%. This session shares the
link at each hop with seven other sessions, one of which is misbehaving. 24

5.5 Comparison of average delays from a simulation of SPFQ, FFQ, WFQ algorithms in
a single ATM switch. The eight sessions shown share the same outgoing link. Delays
are measured in terms of cell-transmission times. L. 24

1. Introduction 3
1 Introduction

Traffic scheduling algorithms are a necessary part of future integrated-services networks that will
provide a broad range of Quality-of-Service (QoS) guarantees. These guarantees are usually in the
form of bounds on end-to-end delay, bandwidth, delay jitter (variation in delay), packet loss rate, or a
combination of these parameters. Several service disciplines such as Generalized Processor Sharing
(GPS) and its packet-by-packet approximation (known as Weighted Fair Queueing or PGPS) [1,
2], VirtualClock [3], Delay-Earliest-Due-Date (Delay-EDD) [4], Weighted Round Robin [5] Deficit
Round Robin [6], Hierarchical-Round-Robin (HRR) [7], and Stop-and-Go queueing [8] have been

proposed in the literature for solving this problem (for a survey see [9].)

The design of a traffic scheduling algorithm involves an inevitable tradeoff among its delay,
complexity of implementation, and fairness. Among the three, the delay and implementation
complexity are clearly the most important criteria for the selection of an algorithm for use in a
real system. While the fairness properties of the algorithm affect only the short-term distribution of
service offered to the connections sharing the link, a larger delay bound implies increased burstiness
of the session at the output of the scheduler, thus increasing the amount of buffering needed in the
switches to avoid packet losses. In addition to minimizing the end-to-end delay in a network of
servers, the delay behavior of an ideal algorithm must include (i) insensitivity to traffic patterns of
other sessions (isolation), (ii) delay bounds that are independent of the number of sessions sharing
the outgoing link, and (iii) ability to control the delay bound of a session without depending on the
internal parameters of the scheduler [10, 11].

As was discussed in the first part of this work [11], based only on the end-to-end delay bounds and
fairness properties, Generalized-Processor-Sharing (GPS) is an ideal scheduling discipline [1]. The
GPS system 1s based on a fluid model where the packets are assumed to be infinitely divisible and
multiple sessions may transmit traffic through the outgoing link simultaneously at different rates.
A packet-by-packet version of the algorithm, known as PGPS or Weighted Fair Queueing (WFQ),
is defined in terms of the GPS system [1, 2]. That is, a GPS system is simulated in parallel with
the packet-by-packet system in order to identify the set of connections that are backlogged at each
instant. This information is used to compute a timestamp for each arriving packet, indicating the
time at which it would depart the system under GPS. Packets are then transmitted in increasing
order of their timestamps. A serious problem with this approach is its computational complexity: A
maximum of V' events may be triggered in the GPS simulator during the transmission of one packet.
Thus, the process overhead for completing a scheduling decision is O(V).

In order to reduce its complexity, an approximate implementation of GPS multiplexing was
proposed by Davin and Heybey [12] and later analyzed by Golestani [13] under the name Self-
Clocked Fair Queueing (SCFQ). In this implementation, the timestamp of an arriving packet is
computed based on the timestamp of the packet currently in service. This approach reduces the
complexity of the algorithm greatly. However, the price paid is the reduced level of isolation among
the sessions, causing the end-to-end delay bounds to grow linearly with the number of sessions that
share the outgoing link [10]. Thus, the worst-case delay of a session can no longer be controlled
just by controlling its reservation, as is possible in Weighted Fair Queueing (WFQ). The higher
end-to-end delay also affects the burstiness of sessions within the network, increasing the buffer
requirements. The VirtualClock scheduling algorithm, on the other hand provides the same end-to-
end delay and burstiness bounds as WFQ with a simple timestamp computation algorithm, but the
price paid is in terms of fairness.

An algorithm that combines the delay and fairness bounds of Weighted Fair Queueing with O(1)
timestamp computations had remained elusive so far. In this paper, we present two novel scheduling
algorithms that have O(1) complexity for timestamp computations, and provide the same bounds
on end-to-end delay and buffer requirements as those of Weighted Fair Queueing. These algorithms
are based on the analytical framework of rate-proportional servers (RPS) presented in [11].

Schedulers in the RPS class use the concept of potential to track the state of the system.
FEach connection is associated with a a connection potential that keeps track of the amount of

4 1. Introduction

normalized service actually received by the connection during the current system-busy period,* plus
any normalized service it missed during the period when it was not backlogged. The connection
potential is a non-decreasing function of time during a system-busy period. The basic system
is defined in terms of a fluid model, and the corresponding packet-by-packet server is obtained by
computing a timestamp for each arriving packet that represents the value of the connection potential
at the instant the last bit of the packet leaves the the fluid system, and scheduling the packets in
the order of increasing timestamps.

We assume that V' connections share the outgoing link of the scheduler, a rate p; is allocated to
each connection i, and that the total bandwidth assigned to the connections does not exceed the
link capacity r. That 1s,

Vv
Z pi <1
i=1

When connection 7 is backlogged, its potential increases exactly by the normalized service it receives.
That is, if P;(t) denotes the potential of connection ¢ at time ¢, then, during any interval (r,¢] within
a backlogged period for session i,

Wi(r, 1)

PZ(t) — PZ(T) = T,

where W;(7,1) denotes the amount of service received by session ¢ during the interval (r,1].

The basic objective of a rate-proportional server is to equalize the potential of all backlogged
connections at each instant. This is achieved in a fluid server as follows: At any instant ¢, the
scheduler services only the subset of connections with the minimum potential, and each connection
in this subset receives service in proportion to its reserved rate p;. Thus, the scheduler can be seen
to increase the potentials of the connections in this subset at the same rate. At the time that a
connection becomes backlogged, its potential is updated based on a system potential function that
keeps track of the progress of the total work done by the scheduler. The system potential P(2) is a
non-decreasing function of time. When an idle session ¢ becomes backlogged at time ¢, its potential
P;(t) is set as

P;(t) = max(P;(t—), P(t)),

to account for the service it missed. Schedulers use different functions to maintain the system
potential, giving rise to widely different delay- and fairness-behaviors. In general, the system
potential at time ¢ can be defined as a non-decreasing function of the potentials of the individual
connections before time ¢, and the real time ¢.

P(t) = F(Pi(t=), Pa(t—),. .., Py (=), 1). (1.1)

Ideally, the rate of increase of the system potential at each instant should match the rate of increase
of the potential of a connection currently being serviced by the scheduler. In practice, however, a
much more relaxed definition of the system potential function i1s adequate.

The system potential function in a rate-proportional server must satisfy two fundamental prop-
erties to provide performance bounds comparable to that of a WFQ scheduler. First, during any
interval (¢1,¢2] within a system-busy period, the system potential function must be increased with
a rate of at least one, that is,

P(ts) — P(t1) > (12 — 11). (1.2)

Second, the system potential function must never exceed the potential of any backlogged connection.
In addition, if the difference between the system potential and the potential of every backlogged
connection i1s bounded, then the server is fair and its fairness can be estimated in terms of this

difference [11].

*A system-busy period is defined as a period during which the server is continuously transmitting packets.

2. Methodology for Maintaining System Potential 5

The definition of rate-proportional servers does not specify the exact method of maintaining the
system potential function. This enables a wide range of algorithms to be defined, all with the same
delay bound as that of WFQ, but with different fairness characteristics. For example, both GPS and
the fluid-model equivalent of VirtualClock are rate-proportional servers, but their fairness bounds
and implementation complexities occupy two extremes in the RPS framework.

The fundamental difficulty in designing a practical rate-proportional server is the need to main-
tain the system potential function. Tracking the global state of the system precisely requires simulat-
ing the corresponding fluid-model RPS in parallel with the packet-by-packet system. However, the
definition of the system potential function allows considerable flexibility in approximating the global
state of the system. This flexibility i1s exploited in this paper in the design of two practical schedul-
ing algorithms — Frame-based Fair Queueing (FFQ) and Starting Potential-based Fair Queueing
(SPFQ). Both algorithms maintain the system potential function only as an approximation of the
actual global state in the fluid model, but re-calibrate the system potential periodically to correct
any discrepancies. This re-calibration is key to providing bounded fairness, where fairness is defined
as the maximum difference in normalized service received by any two backlogged sessions during any
arbitrary interval. In the Frame-based Fair Queueing (FFQ) algorithm this re-calibration is done at
frame boundaries, while in Starting Potential-based Fair Queueing (SPFQ) the re-calibration occurs
at packet boundaries. This gives rise to two algorithms with the same delay bound, but with slightly
different fairness properties. Both algorithms, however, provide bounded unfairness and O(1) times-
tamp computations. It is interesting to note that the maximum short-term unfairness of SPFQ is
actually no worse than that of Weighted Fair Queueing.

Both FFQ and SPFQ are timestamp-based algorithms. However, FFQ uses a framing approach
similar to that used in frame-based schedulers to re-calibrate the system potential periodically.
This makes the fairness of the algorithm depend on the frame size chosen by the implementation.
SPFQ avoids this sensitivity to the frame size by re-calibrating the system potential at the end of
transmission of every packet. In comparison to FFQ, SPFQ requires more state information to be
maintained, resulting in a more complex hardware implementation; however, this increased hardware
complexity does not affect its asymptotic time-complexity. Thus, SPFQ is attractive over FFQ in
applications where its improved fairness properties justify the additional hardware cost.

The rest of this paper is organized as follows: In Section 2, we define a general methodology for
estimating and updating the system potential. In Section 3 we present Frame-based Fair Queueing in
terms of a hypothetical fluid-model, and subsequently extend to a packet-by-packet model. We also
analyze the fairness properties of the algorithm. In Section 4 we develop and analyze the Starting
Potential-based Fair Queueing (SPFQ) algorithm. In Section 5 we provide simulation results on
the end-to-end delays seen by sessions in various network configurations with FFQ and SPFQ, and
compare the performance of these algorithms with both Weighted Fair Queueing and Self-Clocked
Fair Queueing. Some concluding remarks are presented in Section 6. In Appendix A, we discuss
illustrative implementations of the algorithms for ATM networks. Finally, the proofs of some of the
lemmas and theorems can be found in Appendix B.

2 Methodology for Maintaining System Potential

The basic difficulty in the design of a rate-proportional server is in maintaining the system
potential function. Since the degree of short-term unfairness of the algorithm depends on the
difference between the system potential and the potentials of backlogged connections at any time,
the fairness of the algorithm is determined by the choice of the system potential function. In this
section we will present a general methodology for updating the system potential function. The
resulting algorithms will be referred as Fair Rate-Proportional Schedulers (FRPS). Formally, we can
define a FRPS as a rate-proportional server as follows:

Definition 1: Let P(t) denote the system potential in an RPS and P;(t) the potential of connection
t at titme t. The scheduling algorithm s a Fair Rate-Proportional Server if and only if a finite
constant AP > 0 can be found such that

P(t) > Pi(t) — AP, for any i € B(t);

6 2. Methodology for Maintaining System Potential

where B(t) is the set of backlogged connections at time t.

The above constraint can be satisfied by the use of a re-calibration mechanism periodically to
bound the maximum difference of the system potential function from the potential of a backlogged
connection.

Let us first introduce some notations. We assume that a rate p; is allocated to connection 7. Let
7 be the bandwidth capacity of the outgoing link; then, »; = p;/r is the fraction of the link rate
allocated to connection i. As in the previous section, let P;(¢) represent the potential of connection
i at time t and P(t) the corresponding value of system potential.

The fluid version of a Fair Rate-Proportional Server follows all the conditions in Definition 5 of
[11]. That is, at each instant, the scheduler services only the set of backlogged connections with the
minimum potential and connections in this set are serviced at rates proportional to their reservations.

In an idealized fluid server it is possible to update the system potential at any instant of time.
However, in a packet-by-packet server it is desirable to update the system potential only when a
packet departs from the system. In order to simplify the implementation of the algorithm we will
define a general method for updating the system potential that will be based on only information
extracted from the packet-by-packet implementation of the algorithm.

We first define a function ST (¢) that we will call the base potential. ST (t) is a non-decreasing
function with the following properties:

1. Let B(t) represent the set of connections that are backlogged at time ¢ in the system. Then,
SE(t) < Pi(t), Vie B(t). (2.1)

2. A finite constant AP > 0 can be found such that
SE(t) > Pi(t) — AP, Vi€ B(t). (2.2)

That is, the base potential function can be any non-decreasing function whose value is never higher
than the potential of any backlogged connection at that instant. It is easy to see that such a
function can be used as the reference for updating the system potential periodically, since it satisfies
condition 3 of Definition 5 of [11]. Since the above definition of the base potential function does not
specify how to construct such a function, considerable flexibility exists in its choice. Assuming the
base potential is used to re-calibrate the system potential periodically, and that the interval between
re-calibrations is bounded, the condition in Eq. (2.2) is sufficient to achieve bounded fairness, that
is, for the algorithm to belong to the FRPS class. Different choices of the function S¥ (t) result in
algorithms with different implementation complexities, but all with bounded fairness. In the later
sections, we will show two distinct ways to construct the base-potential function S¥ (t), resulting in
the FFQ and SPFQ algorithms.

Any rate-proportional server can achieve bounded fairness by periodically re-calibrating the
system potential using the base potential function. Thus, in general, a Fair Rate-Proportional
Server can be constructed by maintaining the system potential function P(t) as follows.

Definition 2: Let the system-potential function in an RPS be defined as follows: When the system
1s not busy the system potential function is equal to zero. During a system-busy period, the function
P(t) is a piecewise linear function of time t. Let 1y be the beginning of the current system-busy
pertod. Then,

1. At times 7, T2, ..., Tk, with 19 < 7 < ... < Tk, a re-calibration is performed by updating P(t)
to the base potential at that instant, if the system potential is lower than the base potential.
That 1is,

P
P(r;) = max(P(7;—-), 5" (1)), (2.3)

where 7;— denotes the instant of time just before the update.

2. At any time time t between updates, the system potential increases linearly with time. That 1s,

P)=P(r) +-7), 7, <t<Tjp (2.4)

2. Methodology for Maintaining System Potential 7

3. The interval between successive re-calibrations is bounded, that s,

Tit1 — 7 S AT, for some finite AT.

The update in Eq. (2.3) enables us to bound the difference between the system potential and
the potentials of backlogged connections. Without such an update mechanism, the system potential
may diverge from the connection potentials by an arbitrary amount, causing the unfairness of the
algorithm to be unbounded. The updates at time instants 7,7, ... 7 are designed to bring the
system potential to a value closer to the connection potentials. This value is estimated through the
base potential function S (¢).

Before proceeding further, it is important to note that the fairness of any rate-proportional server
as defined above depends on two factors:

1. The choice of the base potential function S¥ (¢).

2. The frequency of re-calibrations, that is, the choice of the update instants =, 7, ... 7.
In order to design an efficient packet-by-packet version of the algorithm, we can only perform these re-
calibration steps at the times that a packet finishes its service. Thus, the frequency of re-calibration
is upper-bounded by the departure rate of packets from the server.

We now proceed to show that the system-potential function in Definition 2 results in a Fair
Rate-Proportional Server. We first need to show that the system-potential function satisfies the two
key properties in the definition of a rate-proportional server [11]. The following two lemmas prove
that the system potential increases at least at the rate of real time, and that it never increases above
the potential of a backlogged connection.

Lemma 1: If the system-potential function is maintained as described by Definition 2, then, for
any interval (t1,ts] during a system-busy period,

P(ta) — P(t1) > (t2a — t1).

Proof: Assume that the system-busy period under observation started at time 0. If no re-
calibrations occurred during the interval (¢1,¢5], then the lemma is true by Eq. (2.4). Now consider
the case when one or more re-calibrations occurred during the interval (¢1,%3]. Let 7y, 72,..., 7 be
the instants in this interval just after an update to P(¢), and m—, 72—, ..., 7, — the corresponding
instants just before the update, with 7 < 7 < ... < 7. Then, by equations (2.3) and (2.4),

P(ts) = Pm)+(ta—m)
> P(m—)+ (t2 —)
> P(mp_1) + (t2 — T%-1).
Proceeding similarly,
P(tz) Z P(T1)+(t2—7'1)
Z P(Tl—)—|—(t2—7'1)
> P(t)+ (ta —11).
This concludes the proof of Lemma 1. O

Lemma 2: If the system potential function is maintained as in Definition 2, then, at any time t,

P(t) < Pi(t), Vi€ B(t). (2.5)

8 3. Frame-based Fair Queueing

Proof: The proof is by contradiction. Since P(0) = P;(0), Eq. (2.5) is satisfied trivially at time
0. Let ¢ be the earliest time during a system-busy period at which P(¢) > P;(¢) for some i. Then,
let At be the smallest interval such that P(t — At) < P;(t — At). Session ¢ must be continuously
backlogged in the server during the interval (t — At,¢]. We need to consider two cases:

Case 1: No re-calibration of the system potential occurred during the interval (¢ — A¢,¢]. Then 7 is
a session with minimum potential during the interval (¢ — A¢,t]. Therefore, it is serviced with rate
at least p; during this interval. Thus, the potential of session ¢ at ¢ must be at least

pi Al

Pi

Pyt — At) + > P(t — At) + At > P(t).
Thus, the result is true by contradiction.

Case 2: A re-calibration occurred at time ¢. Let t— denote the instant just before the update to
P(t) and t the instant just after the update. Then,

Pi(t—) > S*(t-). (2.6)
The new system potential after the update is given by
P(t) = max(P(t—), S¥ (t-)). (2.7)
Using equations (2.6) and (2.7), as well as the fact that P;(t—) > P(t—),
Pi(t) = Pi(t—) > P(t). (2.8)

O

Theorem 1: A rate-proportional server with its system-potential function P(t) defined as per Def-
wmition 2 1s a Fair Rate-Proportional Server.

Proof: Lemmas 1 and 2 prove that the system potential function satisfies the two main conditions
imposed by the definition of a rate-proportional server. In addition, if the re-calibrations are
performed at finite intervals; by Eq. (2.2), the difference between the system potential and the
potential of any backlogged connection will be bounded. Thus, the algorithm is a Fair Rate-
Proportional Server. a

3 Frame-based Fair Queueing

Using the methodology we described in the previous section, we can define several algorithms
by choosing different base-potential functions and re-calibration intervals. A simple approach is to
perform the re-calibration periodically, with a maximum period equal to an internal parameter of
the algorithm that we call the frame size F'. This approach results in the definition of Frame-based
Fair Queueing (FFQ). In this section, we will describe the FFQ algorithm and analyze its properties.

We will first define the parameters of the algorithm with respect to a fluid system and subse-
quently extend them to the packet-by-packet system. We define the frame size parameter such that
exactly F' bits can be transmitted during a frame period T'. That is,

T=—.
r

We define ¢; as
(biITiXFIpZ'XT.

¢; denotes the maximum amount of session ¢ traffic that can be serviced during one frame. When a
connection remains backlogged, its potential increases by the normalized service offered to it. Thus,
when ¢; bits are serviced from connection ¢, its potential will increase by

b
Pi

=17

3. Frame-based Fair Queueing 9

We impose one more restriction on the value of ¢;, that the largest packet of a connection can be
transmitted during a frame period. That is, if L; 18 the maximum packet size for connection ¢, then

L < ¢;. (3.1)

We will refer to the process of re-calibrating the system-potential in a FFQ server as a frame
update operation. Each frame-update operation marks the beginning of a new frame in the system.
If all the connections are continuously backlogged, frame updates can be performed in a fluid server
exactly at intervals of the frame period T'. The updates will occur earlier, however, if the arrivals
from some of the sessions are below their respective reservations, causing the potentials of backlogged
connections to rise faster. Thus, in the fluid server, the kth frame update can be performed when
the potentials of backlogged connections reach the value k7. Note that all connections reach the
potential of k7" at the same time in the fluid server. In a packet-by-packet server, however, this is not
the case. Therefore, in order to avoid simulation of the fluid system to determine the frame-update
instants, we define the frame-update instants in a more relaxed manner as follows: Let 7;,_1 denote
the last time a frame update occurred. The next update is performed when both of the following
conditions hold:

1. The potentials of all backlogged connections in the fluid server belong in the next frame. That

18,

Pi(t) > kT, Vie B(t), (3.2)
where B(t) is the set of connections currently backlogged.

2. R < (k+ 1T, i=1,2,...,V.
Note that the above conditions may be satisfied during a window of of time. Performing the next
frame update at any time during this window will result in a valid algorithm. Let us assume that
we decide to update the frame at time 7. Then, at time 7, we set

P(m;) < max(P(r), kT). (3.3)

Since analysis of the packet-by-packet FFQ server requires reference to the corresponding fluid server,
we define the frame update instants 7, to be identical in both servers. These update instants can
then be determined from only information available in the packet-by-packet server, so as to fall in
the window defined by conditions 1 and 2 above. This relaxed definition allows re-calibrations to
occur only when a packet finishes or starts service in the packet-by-packet server. Note that the
duration of a frame (that is the interval between successive frame-updates), never exceeds 27.

We can now define the base-potential function S¥ () for FFQ as follows: S (¢) is a step function
whose value is zero when the server is idle and increases by 71" at every frame-update instant. Thus,
at the kth frame-update instant 75, S (t) assumes a value of k - T'.

Figure 3.1 illustrates the base-potential and system-potential functions in a fluid FFQ server,
where 7 — 74 denote the instants at which the frame updates occur. The system potential grows
linearly with time between the update instants. Note that the kth frame update can be performed
any time during a window when the potential of a backlogged connection is between kT and (k+1)T.

In a packet-by-packet server, the frame updates can only be performed at packet boundaries.
We now show that an update instant can be found in a packet-by-packet server based only on the
timestamps of the queued packets. Recall that the timestamp of a packet denotes the potential of
the corresponding connection at the instant the packet completes its service in the fluid system. We
make use of the following lemma from [11] to establish a relationship between the potentials of a
connection in the fluid and packet servers.

Lemma 3: Let (0,t] be a server-busy period in the fluid server. Let i be a session backlogged in the
fluid server at time t such that i received more service in the packet-by-packet server in the interval
(0,t]. Then there is another session j, with P;(t) < P;(t) that received more service in the fluid
server than in the packet-by-packet server during the interval (0,1].

10 3. Frame-based Fair Queueing

P; (1)
' P()
update window
for r 5
aT -
3T
s
<
Q
o
& o1
|
1
T -
1
1
1
Tr T2 13 T4 Time

Figure 3.1: Behavior of the base-potential and system-potential functions in a fluid FFQ
server. P;(t) represents the potential of all backlogged connections, P(t) the system
potential, and Sp(?) the base potential. Re-calibration of the system potential occurs
at frame-update points 7, 7, 73, and 74. The frame update points can fall anywhere
within a window where the individual connection ptentials lie between T and (k + 1)7T.

This lemma enables us to find a relationship between the potentials of the backlogged connections
in the fluid server and the timestamps of the backlogged connections in the packet-by-packet server.
We can now prove the following lemma, that will allow us to perform frame updates in FFQ by
using only information extracted from the packet-by-packet system. Let us first define the starting
potential s! of a packet j of connection 7 as the potential of the connection when packet j starts
being serviced in the corresponding fluid server, and let S;(¢) denote the starting potential of the
first packet in the queue of connection ¢ at time ¢. Let B(t) denote the set of backlogged sessions at
time ¢ in the packet-by-packet server.

Lemma 4: Assume that at time t, for each backlogged session in the packet-by-packet system, the
starting potential of its first packet belongs in the next frame. That is, if 7, was the last instant at
which a frame update occurred,

Si(t) > (k+)T, Vi€ B(t).

Then, the potential of each backlogged session in the fluid server at time t is also greater than or
equal to (k+ 1)T.

Proof: We will prove the lemma by contradiction. Let us denote with ¢ the connection with the
minimum potential in the fluid server and let us assume that the potential of connection 7 is less
than (k+ 1)7T. Connection ¢ has received until time ¢ more service in the packet-by-packet server
than in the fluid-server. By Lemma 3, there is another connection k with potential Py () < P;()
that has received less service in the packet-by-packet server than in the fluid-server. Let s}, be the
starting potential of the packet that is being serviced in the fluid-server at time ¢ from connection
k. Then s < Py(t) and thus sf, < (k+ 1)T. Notice also that this packet has not yet been serviced
in the packet-by-packet server. This is a contradiction. a

The significance of Lemma 4 is that we can determine a valid update time for the frame by using
only information extracted from the packet-by-packet server. The scheduler can keep track of all
the connections that are backlogged and have packets with starting potential in the next frame.
When the starting potentials of the packets at the head of the queues of all backlogged sessions have

3. Frame-based Fair Queueing 11

marked
packet

Queue of Connection 1

|Ts:1;i |Ts:‘1<P |TS:8| |TS:6| |TS:4| |Ts:2|

Queue of Connection 2

|Ts=1i |Is=1z |Ts=ﬂ |TS=4| -
N

Outgoing Link

N\ Capacity = 1 unit
Queue of Connection 3 marked packet

STATE OF QUEUES AT TIME t=0

Frame update

|TS:2||TS:4||Ts:4||Ts:6||Ts:8||Ts:s||Ts:1(Hrs:1zii

0 1 2 3 4 5 6
time t

TRANSMISSION SEQUENCE

Figure 3.2: Example of operation of the packet-by-packet FFQ server. The frame can be
updated at time 8 when the starting potentials of the packets of all backlogged connections
in the packet-by-packet server have crossed the frame boundary.

crossed the frame boundary, we know that the potentials of the connections in the fluid-system have
also crossed the frame boundary. Therefore, the crossing time of the last connection is a valid time
to update the frame and the system potential function.

This can be seen better by an example. Let us assume that the frame size F is set to 10 cells and
that rate of the server is set equal to 1. Assume that connection 1 has reserved half of the output
link bandwidth and each of connections 2 and 3 has reserved 25% of the output link bandwidth. Let
us also assume that the system was idle before time 0. At time 0, connections 1 and 2 send a large
number of packets to the scheduler, while the queue of connection 3 remains empty. At time 0, the
system potential and the individual connection potentials are zero. In a fluid server, the packets of
connections 1 and 2 will be serviced in proportion to their reservations. Thus, the rate of service for
the connection 1 and 2 will be 0.5/(0.5+4 0.25) = 2/3 and 0.25/0.75 = 1/3, respectively. Assuming
connection 3 remains idle; the potentials of connections 1 and 2 will reach the value of T' = % =10
at the same time. Let 7 be this time. Since both connections are backlogged, their potentials are
being increased by the normalized service offered to them. Thus,

Wl(O,T) _ WQ(O,T)
05 0.25

=10. (3.4)

Thus, we can determine 7 from
(2/3)(r —0)/0.5 =10, (3.5)
which yields 7 = 7.57. This is the beginning of the window in which the first frame-update can
occur.
Now considering the packet-by-packet server, the packets are timestamped with the potential of

the connection at the time they finish service in the fluid server. Let us assume that all packets
have a size of 1. In Figure 3.2 we show the timestamps of the packets and the sequence with which

12 3. Frame-based Fair Queueing

Calculate current value of system potential.

Let ¢ be the current time and ¢, the time when

the packet currently in service started its transmission.
1. temp— P+ (t—1t;)/F

Calculate the starting potential of the new packet
2. SP(i,k) « max(TS(i, k — 1), temp)

Calculate timestamp of packet

3. TS(i, k) < SP(i, k) + length(i, k)/ps

Check if packet crosses a frame boundary

nl « int(SP(i,k)); n2 « int(TS(4, k))

if (nl < n2) then (if finishing potential is in next frame)
B[nl] « B[nl]+ 1 (increment counter);
mark packet

endif

N O

Figure 3.3: Algorithm executed on the arrival of a packet.

they are serviced. Note that the starting potential of a packet in this example is identical to the
timestamp of the packet ahead of it. At time 8, all the packets with starting potentials in the first
frame have already been transmitted. At this time, the potentials of all backlogged connections have
a value greater than or equal to 10 in the fluid server. Thus, at this time we can update the system
potential to 10 without violating the properties of the system potential function.

We can now describe the packet-by-packet version of the frame-based fair queueing algorithm.
Without loss of generality we can assume that the service rate of the server is 1. Thus, the time
to transmit F' bits is also equal to F'. A fraction r; of the output link bandwidth is allocated to
connection ¢ and therefore ¢; = F x r; bits can be sent from connection ¢ during a frame. As in the
fluid version, we require that the maximum packet size be less than ¢;, so that a single packet can
be transmitted within one frame.

On the arrival of a packet, the algorithm in Figure 3.3 is executed to calculate the timestamp
associated with the packet. The variable P keeps track of the system potential. P is a floating-
point number with two parts — the integer part representing the current frame number and the
fractional part representing the elapsed real time since the last frame update. On arrival of a
packet, the current system potential is estimated. Since the variable P is updated only at the end
of transmission of each packet, the current system potential is obtained by adding to P the elapsed
real-time since the current packet in service started transmission. The starting potential of the
newly-arrived packet is then computed as the maximum of the finishing potential of the previous
packet from the same session and the system potential. The packet is then timestamped with its
finishing potential, computed from knowledge of its length and the reserved rate. If the starting and
finishing potentials of the packet belong to different frames, the current packet is one that crosses
over to the next frame. Therefore the packet is marked to indicate that this is the first packet of
the session to cross over to the next frame. In addition, a counter is incremented to keep track of
the number of connections that have crossed over into the new frame. The algorithm maintains
one counter per frame to keep track of the number of sessions whose packets cross into the next
frame. Later, when a marked packet is scheduled for transmission, the corresponding counter is
decremented; when the counter reaches zero, the potentials of all the backlogged connections have
crossed over to the next frame, and a frame update can be performed.

The array of counters B is used to count the number of connections that have packets with a
starting potential in each frame. Although an infinite number of frames may need to be serviced,
in practice the number of distinct frames in which the potentials of queued packets can fall into 1s

3. Frame-based Fair Queueing 13

Increase system potential by the transmission time of the packet just completed, say j.
1. P« P+length(j)/F

Find timestamp of next packet for transmission
2. TSmin — HllIlZeB(TS(Z))

Determine the corresponding frame number.
3. Fhin & int(TSmin)

Perform frame update operation if required

if (packet j was marked) then
Blcurrent-frame] < Blecurrent-frame] — 1

end if

if (B[current-frame] =0 and Fin > current-frame) then
current-frame < current-frame+ 1
P + max(current-frame, P)

0. end if

= O 00 =1 O O

Store starting time of transmission of next packet in 7,
11. ¢, < current time
12. Retrieve packet from head of queue and transmit

Figure 3.4: Algorithm executed on the departure of a packet.

limited by the buffer size allocated to the connections. Thus, if b; denotes the buffer space allocated
to connection i, the size of the array B can be limited to
bi

=2 leh
If M is rounded up to the nearest power of 2, then the array can be addressed with the [log, M]
least significant bits of the current frame number. The number of counters can further be reduced
to three if steps 4-8 of the algorithm are executed only when a packet reaches the head of the queue
of the corresponding session.

When a packet finishes transmission, the algorithm in Figure 3.4 is executed to update the
state of the system. The system potential is first increased by the transmission time of the packet
just serviced. The packet with the minimum timestamp is then selected for transmission. This
selection can be performed efficiently by maintaining the packets in a priority list structure, such as
a heap. The variable current-frame keeps track of the index of the frame currently in progress. If
the transmitted packet was marked, the counter corresponding to the current frame is decremented.
If the counter becomes zero, the session that was serviced is the last to cross the current frame.
However, a second condition must be tested before performing a frame update, since it is possible
for a packet to arrive with its finishing potential in the current frame during the transmission of this
last marked packet. This could result in the system potential temporarily assuming a value higher
than the potential of a backlogged connection, thus violating the definition of a rate-proportional
server. This problem is avoided by ensuring that the timestamps of none of the queued packets
fall in the current frame, just before performing the frame update. If both conditions in step 7
are satisfied, a frame update is performed by incrementing the frame number and re-calibrating the
system potential to the corresponding base potential.

It is possible to avoid testing the second condition in step 7 of the algorithm by modifying the
algorithm slightly. The modification consists in updating the variable P and performing the frame
update when a packet is selected for transmission, rather than when it completes transmission. In
this case, a packet arriving after the last marked packet started its service will always receive a
timestamp value in the next frame. To show that this modified system remains a rate-proportional

14 3. Frame-based Fair Queueing

server with the same latency, consider the following equivalent system: Assume that the traffic
scheduling system consists of a regulator followed by a FFQ scheduler. The regulator holds all
packets that arrive while the transmitter is busy, and delivers them to the scheduler in batches at
the end of transmission of each packet. It is easy to verify that this new system consisting of the
regulator and the scheduler is work-conserving.

Since packets arrive in the FFQ scheduler only at times when a packet finishes service, it is
easy to verify that the a packet will never finish transmission in the packet-by-packet server later
than in the corresponding fluid server.(The proof can be easily derived by extending Lemma 3
of [11].) An arriving packet may see a maximum delay of L.,/ in the regulator, equal to the
maximum time needed for the current packet to complete service in the transmitter. Thus, the
new system, consisting of the regulator and the scheduler, is still an LR-server with the same
latency as a simple rate-proportional server. However, we must note here that updating the
variable P and performing the frame update when a packet is selected for transmission, rather
than when it completes transmission, alters the system potential function and therefore may change
the transmission sequence of packets considerably.

3.1 Correctness of Frame-based Fair Queueing

In order to be complete, 1t 18 necessary to verify that all conditions imposed in the definition
of the FFQ algorithm for updating the frame are satisfied when the above algorithm 1s executed.
We have already proved in Lemma 4 that when the frame is updated at time 75, the potentials of
all backlogged connections in the fluid-server are at least equal to k7. We also have to prove that,
at this time, the potential of any connection in the fluid-server is also less than (k + 1)7. We will
use the following sequence of three lemmas to prove this result. The proofs of these lemmas can be
found in Appendix B.

Lemma 5: Let (0,t] be a server-busy period in an RPS fluid server. Let i be a session that received
more service in the fluid server compared to the packet-by-packet server in the interval (0,t]. Then,
there is another session j with P;(t) > Pi(t) that received more service in the packet-by-packet server
than in the fluid-server during the interval (0,1].

Lemma 6: At time 1, when the frame is updated as described in the packet FFQ algorithm, the
server has not yet transmitted any packet with potential greater than or equal to (k+ 1)T.

Lemma 7: Let 1, be the time at which the kth frame-update occurs in the packet FF(Q server. Then,
the potential of all the connections in the fluid server at time 1y is less than (k + 1)T.

3.2 Fairness of Frame-based Fair Queueing

Since frame-based fair queueing is a rate-proportional server, in order to analyze its fairness
it 1s sufficient to prove that the difference between the system potential and the potential of any
backlogged connection is always bounded. We can state the following lemma for the fluid FFQ
server.

Lemma 8: For every connection i backlogged in the fluud FFQ server at time t,

Pi(t) — P(t) < 2T — ‘%

A detailed proof can be found in Appendix B. The above bound applies only to the fluid server.
We can now use this result and Theorem 4 of [11], which defines a general fairness bound for rate-
proportional servers, to provide a bound for the packet FFQ server. This bound is given by

Wit t Wiy, t Linaz Lj 2F — ¢; Lyaw | L
J(1, 2)_ (1a 2) SmaX(AP—I-Cj-I- _|__‘7’7¢ + C; + —|——) (36)
Pj pi pi Pj r Pj pi

4. Starting Potential-based Fair Queueing 15

However, this bound only considers the maximum difference between the system potential and the
potential of a backlogged connection. The fact that the system potential function in the FFQ
algorithm is increased as a linear function of time between frame updates can be used to derive a
much tighter bound:

Lemma 9: For any two connections i,j that are continuously backlogged in the interval (t1,15] in
the packet FFQ server,

Wi(t1,t2) _ W;(t1,t2)
pi Pj

2F (Li Lj)
< — 4+ max|—,— .
r Pi Pj

The rather long proof of the above lemma can be found in Appendix B. Thus, the fairness of the
algorithm depends on the selection of the frame size. The latter, in turn, depends on the maximum
packet size of each connection and its minimum bandwidth allocation. Thus, the algorithm is
especially suited to application in ATM networks where the traffic consists of small fixed-size cells
and the frame size can be kept small. Note, however, that the frame size does not affect the latency
of the server as is the case in frame-based schedulers such as weighted-round-robin and deficit-round-
robin. In addition, some short-term unfairness is unavoidable in any packet-level scheduler. The
difference in normalized service received by two connections can be proportional to the number of
backlogged connections even in a WFQ server. Most applications can tolerate a small amount of
short-term unfairness as long as the unfairness is bounded.

4 Starting Potential-based Fair Queueing

The highest frequency at which re-calibration of the system potential can be performed in a
packet server is determined by the transmission rate of packets on the outgoing link. Thus, we
can attempt to perform a re-calibration each time a packet finishes service, thus improving on the
fairness properties of Frame-based Fair Queueing. This approach is used in the definition of the
Starting Potential-based Fair Queueing (SPFQ) algorithm in this section.

We define the starting potential of a packet of connection ¢ as the potential of connection ¢z when
the first bit of the packet starts service in the fluid server. Let S;(¢) denote the starting potential
of the first packet in the queue of a backlogged connection ¢ in the packet server. That is, S;(¢)
i1s a step function that is increased every time a new packet is placed at the head of the queue of
connection i. Then, we define the base potential function S (¢) as

SP@) = min Si(t), 4.1
(t) pin (t) (4.1)

where BF (t) denotes the set of backlogged connections in the packet server at time ¢. That is, the
base potential at any time ¢ is defined as the minimum of the starting potentials of the backlogged
connections. This allows ST (¢) to be calculated in an efficient manner: Its value needs to be updated
only when a packet is moved to the head of a session’s queue.

To complete the specification of the algorithm, we must also define the time instants 7, at which
the re-calibration of system potential, as defined by Eq. (2.3), is performed. We define these instants
to be the times at which a packet completes its service in the packet server.

Before proceeding to describe the algorithm further, we first show that the above definition of the
base potential function satisfies the property in Eq. (2.2), that its value never exceeds the minimum
potential of a backlogged connection in the corresponding fluid server.

Lemma 10: If the starting potential of every backlogged session wn the packet-by-packet server
is greater than or equal to S¥(t) at time t, then the potential of each backlogged session in the
corresponding fluid server at time t is also greater than or equal to S¥ ().

16 4. Starting Potential-based Fair Queueing

Proof: We will prove the lemma by contradiction. Let us denote with ¢ the connection with the
minimum potential in the fluid server at time ¢, and let us assume that its potential P;(¢) in the
fluid server is less than S¥ (¢). Connection i has received until time ¢ more service in the packet-by-
packet server than in the fluid server. By Lemma 3, there is another connection £ with potential
Py (t) < Pi(t) that has received less service in the packet-by-packet server than in the fluid-server.
This means that the packet most recently serviced from connection k in the fluid-server has not yet
finished service in the packet-by-packet server. Let sg be the starting potential of this packet. Then,

Sk S Pk(t) S PZ(t)

By hypothesis, P;(t) < S¥(t). Therefore, we must have s, < S¥(t), which contradicts with the
definition of ST (¢). a

The above result enables the re-calibrations to be performed using only information extracted
from the packet-by-packet server. The scheduler can keep track of all the connections that are
backlogged in the packet server, and determine the minimum starting potential among their packets.
When the system potential is lower than the starting potentials of the packets at the head of the
queues of all the backlogged sessions, an update is performed to increase the system potential to the
minimum among the starting potentials.

Let us refer again to the example of Figure 3.2. Consider an SPFQ server used to schedule
traffic from three connections on an outgoing link. As in the case of FFQ, since both connections
initially have the same potential they will be serviced in proportion to their reservations. As
connection 3 is idle, the rates of service for connections 1 and 2 will be 0.5/(0.5+ 0.25) = 2/3 and
and 0.25/0.75 = 1/3, respectively. Thus, after time 0, their potentials increase by the normalized
service offered to them. That is,

Wl(O,T) _ WQ(O,T)
05 025

at any time 7 when both connections remain backlogged. Notice that at time 3, the minimum

(4.2)

starting potential of all backlogged connections is 4. At this time the potential of connection 1 in
the fluid server is also 3-(2/3)/0.5 = 4. Similarly, the potential of connection 2 is also 4 in the fluid
server. However, if no re-calibration is done, the system potential will have a value of 3, equal to the
real time. Thus, at the end of transmission of the third packet, we can update the system potential
to 4. A similar re-calibration can be done at time 6, which brings the system potential up to 8.

The example illustrates the superior fairness of SPFQ in comparison with FFQ. In the case of
the latter, when the frame size is set to 10, a frame update can be performed only at time 8, when
the potentials of all backlogged connections have crossed the boundary between the first and second
frames. At this time, the system potential is updated from 8 to 10. Now, if connection 3 were to
send a packet just after time 6, 1t would see a system potential of 8 in the SPFQ algorithm, which
is identical to the potentials of the backlogged connections in the corresponding fluid server. In the
case of FFQ, however, the system potential at time 6 would be equal to 6, resulting in connection 3
being set to a lower potential than that of connections 1 and 2. Thus, connections 1 and 2 would
be penalized for bandwidth they received while connection 3 was absent. It is easy to see that this
discrepancy can increase with the frame size.

We can now describe the packet-by-packet version of SPFQ more precisely. On the arrival of a
packet from connection ¢, an algorithm similar to FFQ is used to compute the timestamp associated
with that packet. However, no special operations are required for marking packets. The steps
executed on arrival of a new packet are outlined in Figure 4.1. Comparing with Figure 3.3, the
only additional step is the addition of the starting potential of the new packet to a separate priority
queue, so as to facilitate the re-calibration operation.

Figure 4.2 summarizes the operations performed when a packet completes transmission in the
SPFQ server. The difference from Figure 3.4 lies in the re-calibration procedure in step 3 of the
algorithm. This step maintains the system potential at or above the minimum starting potential of
backlogged connections.

4. Starting Potential-based Fair Queueing 17

Algorithm executed on arrival of a packet from connection i:
Calculate current value of system potential.
Let ¢ be the current time and ¢; the time when
the packet currently in transmission started its service.

1. temp+ P+ (t—t5)

Calculate the starting potential of the new packet
2. SP(i,k) « max(TS(i, k — 1), temp)

Calculate timestamp of packet

3. TS(i, k) < SP(i, k) + length(i, k)/p;
4. Add packet to priority queue ordered by timestamp.

5. Add starting potential of packet to separate priority queue, ordered by starting potential.

Figure 4.1: Algorithm executed on the arrival of a packet in the SPFQ server.

Algorithm executed when a packet completes service:
Increase system potential by the transmission time of the packet just completed
1. P« P+length(j)

2. Delete entry corresponding to transmitted packet from the priority queue of starting potentials.
Re-calibrate system potential
3. P+ max(P, min (SP(z
(P. min, (SP())

4. Retrieve packet from head of priority queue and transmit.

Figure 4.2: Algorithm executed on completion of service of a packet in the SPFQ server.

It is easy to see that the price paid for the improved fairness of the SPFQ algorithm is in step 3
above. This re-calibration step requires knowledge of the minimum among the starting potentials
of the packets at the head of the queues of all the backlogged sessions. This operation can be
implemented efficiently by maintaining the starting potentials of the backlogged connections in a
separate priority queue, so that the minimum value can be retrieved in O(1) time. An entry is added
to this priority queue when a packet is moved to the head of the queue of a connection. Likewise,
when a packet completes its service, the corresponding entry is removed. If the maximum number
of connections sharing the link is V| these operations can be performed in O(log V') time, the same
complexity incurred in maintaining the priority queue of packets. Thus, the re-calibration step does
not affect the asymptotic time-complexity of the algorithm, although it requires an additional data
structure for the starting potentials.

4.1 Fairness of SPFQ

In this section we derive bounds on the short-term unfairness of the packet-by-packet SPFQ
algorithm and show that it is comparable to that of Weighted Fair Queueing. In order to calculate
tight bounds on the fairness of SPFQ, we will need to take into account the potentials of connections
in both the packet-by-packet server and the corresponding fluid server. Let us denote with a; ()
the potential of connection ¢ at time ¢ in the packet-by-packet server, calculated as follows: When a
new packet is placed at the head of the queue of connection ¢, the function a;(t) is set equal to the
starting potential of that packet. While the packet is waiting for transmission, the potential remains

18 5. Simulation Results

unchanged. When the packet starts transmission, the potential a;(t) is increased by a step equal to
the normalized service offered to connection «.

As before, we will use P;(¢) to denote the potential of connection ¢ at time ¢ in the corresponding
fluid server. Note that the system potential function is identical for the two systems and will be
denoted as P(t). Since the packet-by-packet system is based on the fluid system, the service missed
by a connection while it is absent is the same in both servers. Similarly the total service received by a
connection over a system-busy period is also the same in both servers. However, at a certain instant
of time ¢, the packet-by-packet server may be ahead of or behind the fluid server in the amount of
service offered to a connection. Therefore, the potential of the connection in the packet-by-packet
server may be different from its potential in the fluid server. This discrepancy, however, is always

bounded.

We will first prove a lemma that establishes a correspondence between the amount of service
received by a backlogged connection in the packet server during an interval (¢1,?2] and its gain in
potential during the same period.

Lemma 11: Let ¢ be a connection in the packet server with an infinite supply of packets after time
7. For any interval of time (t1,t2], witht, >,

m(tl 3 tZ)
Pi

> a;(ta) — a;(ty) — L”;”. (4.3)

The proof of this lemma can be found in Appendix B. Using the above lemma, we can prove the
following theorem that will provide a fairness bound for the SPFQ algorithm:

Theorem 2: Let connections i, have an infinite supply packets at time 7. During any interval
(tl,tz], with T <t < o,
Wit ta) Wty L L Ly, L
z(1 2)_](1 2) < max (—n)—l—max(—l,—])—i— max.
pi Pj 1<n<V pp Pi Py r

The rather long proof of this theorem is also given in Appendix B. Note that, disregarding the term
Lmaz /7, this fairness bound is nearly identical to that of WFQ [10] and SCFQ [13]. Thus, we can
conclude that the maximum degree of short-term unfairness in SPFQ is very close to the best-known
bound for any traffic scheduling algorithm.

5 Simulation Results

In this section we present some simulation results to verify our analytical bounds and study
the average performance of the algorithms in comparison to Weighted Fair Queueing. Although
we have shown that the upper bound on the short-term unfairness of the SPFQ algorithm is
comparable to that of WFQ, it 1s important to compare the actual delays seen by sessions in realistic
network topologies. We also compare the proposed algorithms with Self-Clocked Fair Queueing. The
performance metrics we use for this comparison are the average and maximum delays experienced
by the traffic sessions during the simulation. We first present results from simulating the algorithms
in a single switch, followed by those from a multi-hop network configuration.

First, we simulated the four scheduling algorithms as applied to a single output port of an ATM
switch. Our model consists of eight sessions sharing the same outgoing link. The reservation of
each of the sessions is shown in Table 5.1. An ON-OFF traffic model was used to generate traffic
within each session. Both the ON and OFF periods of the traffic model were drawn from a Poisson
distribution; the mean duration of the ON period of session ¢ was set to 100 - p; cell times, and the
mean OFF time to 100 - (1 — p;) cell times, where p; is the reservation of session ¢ given in column 2
of Table 5.1. The traffic was then shaped through a leaky bucket.

5. Simulation Results 19

0.25

: I~
0.75 0.25 v @

©)

Figure 5.1: Network configuration used for multi-hop simulations.

Since our interest is in evaluating the delay in the scheduler rather than the effect of input
burstiness, we selected a o; of 2 for each connection. We also assumed that one session (session 1)
is misbehaving, attempting to transmit more than its reservation. We assumed an infinite number
of buffers, causing session 1 to remain backlogged throughout the simulations. For simulations of
Frame-based Fair Queueing, we set the frame size as 1000 cell times. With this model, we measured
the delays and bandwidth allocations seen by all the sessions. A summary of our results is presented
in Tables 5.1 and 5.2. Delays are shown in the tables in terms of cell-transmission times. The
upper bounds for delay for each session in the servers, computed using Theorem 1, are as shown in
Table 5.3. Note that the delay bounds are identical for WFQ, FFQ and SPFQ.

The maximum delay seen by session 0, which has reserved 50% of the link bandwidth, is
substantially lower in the SPFQ server as compared to the SCFQ server. Both SPFQ and FFQ
provide the same maximum end-to-end delay of 2 for this session. From Theorem 1, the upper bound
on end-to-end delay for session 0 can be computed as (2/0.5) + 1 = 5. Note that the maximum
delay observed under SCFQ is even higher than this upper bound. A large value of maximum delay
may lead to increased burstiness and buffer requirements within the network if the session is going
through multiple hops. This is consistent with the result in [10, 14] where it was shown that the
maximum end-to-end delay for SCFQ increases with the number of connections sharing the outgoing
link.

On studying the average delays seen by the individual traffic sessions, it is easy to verify that
the SPFQ algorithm gives results very similar to that of WFQ. In most cases, the average delays
are almost identical. Frame-based Fair Queueing also provides nearly identical delays, but SCFQ
causes a substantial increase in the average delay seen by some of the sessions. Thus, while these
simulation results do not bring out the superior fairness properties of SPFQ in comparison with
FFQ, they clearly illustrate its superior isolation properties in comparison with SCFQ.

To compare the performance of the scheduling algorithms in a more complex network configura-
tion, we also simulated the algorithms in a 4-hop network model shown in Figure 5.1, consisting of
four ATM switches. The network model chosen was a “parking lot” configuration where one connec-
tion passes through the four switches in series and shares the outgoing link at each hop with local
cross-traffic transmitted from one switch to the next. The 4-hop connection was given an allocation
of 25% of the link bandwidth, and shares the outgoing link at each hop with seven other cross-traffic
connections sharing the same outgoing link. One of these connections at each hop was made to
misbehave just as in the case of the single-hop simulations. Traffic is shaped through a leaky bucket
at the source and the burstiness o; was selected as 2 for all the connections. Table 5.4 provides the
average and maximum delays seen by the 4-hop session at each hop for all four algorithms simulated.
Again, it 1s easy to verify that SPFQ, FFQ and WFQ all achieve nearly identical maximum delays;
these are much lower than the analytical upper-bound of 2 -(1/0.25) + 3 - (1/0.25) 4+ 4 = 24. In
contrast, the delays are much higher with SCFQ. In addition, the average delays of the connection
when SCFQ schedulers are used throughout the network are much different than the average delays
of WFQ. On the other hand, both FFQ and SPFQ show an average behavior very similar to WFQ.

The difference in the fairness behavior of SPFQ over FFQ is not apparent in the above simulation
results. This is because of the choice of a small bucket-size ¢; for the traffic shapers. To investigate

20 6. Conclusions

the effect of fairness, we increased the value of o; for session 0 to 21, maintaining o; for others as
2. We also reduced the arrival rate for session 0 approximately 5 percent below its reservation, thus
increasing the burstiness of its traffic at the output of the leaky bucket. Other parameters of the
simulation were not changed.

Table 5.5 shows the results of simulating the three algorithms in a single ATM switch with the
modified traffic parameters. It is interesting to observe that the average delays of sessions 1-7 are
slightly higher in SPFQ as compared to Frame-based Fair Queueing. This behavior is a direct result
of the inferior fairness of FFQ. Since the potential of the bursty session 1s likely to diverge more from
the system potential as compared to that of other sessions, FFQ often starves the bursty session
temporarily to provide service for the less bursty ones, resulting in lower average delays for the
latter. This behavior is evident from the larger average delay seen by session 0 under FFQ.

From Table 5.5, it is easy to see that the average delays of SPFQ fall between those of WFQ
and FFQ. This brings out the fact that the maximum short-term unfairness of SPFQ lies between
those of FFQ and WFQ. Indeed, the average delays of SPFQ in Table 5.5 are very close to those
under WFQ. Thus, we can conclude that, in practice SPFQ may provide average performance close
to that of WFQ in almost all cases.

6 Conclusions

In this paper we introduced and analyzed two novel scheduling algorithms — Frame-based Fair
Queueing (FFQ) and Starting Potential-based Fair Queueing (SPFQ). Both algorithms provide the
worst-case service guarantees of a Weighted Fair Queueing (WFQ) server and comparable fairness.
We analyzed the fairness properties of the algorithms, and showed that the difference in normalized
service offered to any two connections that are continuously backlogged is always bounded and this
bound for SPFQ is comparable to that of WFQ. The main advantage of the algorithms compared
to WFQ is that they do not require simulation of a fluid server in parallel, enabling them to be
implemented in a simple and efficient manner. All the information needed for the algorithm can be
extracted from the packet-by-packet server itself.

Compared to FFQ, SPFQ provides the same end-to-end delay bounds, but superior fairness
properties. However, although SPFQ and FFQ have asymptotically the same implementation com-
plexity, the former requires the use of two priority lists as opposed to one in the latter. Thus, SPFQ is
attractive in applications where its improved fairness justifies the additional cost of implementation.

In Appendix A, we have presented a hardware implementation of the two algorithms for ATM
networks. A working prototype of Frame-based Fair Queueing has been implemented in our FPGA-
based Simulation Testbed for ATM Networks (FAST) [16]. The algorithm is incorporated in a
shared-memory ATM switch architecture, using a set of parallel priority lists. A central controller
arbitrates the sharing of the output link by the distributed shared-memory modules. The prototype
works at a 16 MHz clock rate, supporting a link speed of approximately 80 Mbits/sec and up to
1024 virtual channels. Given the routing, density, and speed limitations of the FPGA devices, the
implementation of the algorithm using ASIC technology is projected to support 622 Mbits/sec links
easily. Experimental tests using this prototype are currently being carried out to study the average
behavior of several of these algorithms.

Since timestamp computations are performed in O(1) time in both the FFQ and SPFQ algo-
rithms, the asymptotic time-complexity of the algorithms is determined by the priority-list oper-
ations. Traditional heap algorithms for insertion and deletion have a complexity of O(log, V') for
V' virtual channels. There are a number of ways for reducing this complexity for ATM networks
where timestamps take integer values in a finite range. A recursive algorithm was proposed in [17,
18, 19] for implementing add and delete operations in such a priority queue with O(loglog V') time
complexity, where V' is the number of elements in the queue. These algorithms were further refined
by Johnson [20] who presented a non-recursive algorithm with O(loglog D) complexity for the add
and delete operations. In this algorithm D) denotes the smallest interval between successive elements
in the priority queue. Applying this algorithm to Frame-based Fair Queueing results in a complexity
of O(loglog F'), where F is the frame size. Furthermore, Dixon presented a method for pipelining

References 21

such an algorithm [21]. Note that, in an N x N output-buffered ATM switch, a maximum of N cells
may be added to the priority list in one cell cycle while only one cell is selected for transmission.
Thus, in practice, the time-complexity imposed by performing multiple insertions into the list may
dominate the overall complexity of the algorithm.

Application of the above algorithms for optimizing the cost of implementing the priority lists is
beyond the scope of this paper. We must point out, however, that in a high-speed ATM network
environment, a more complex approach than that presented in Appendix A is unlikely to be used.
Many of the algorithms mentioned in the previous paragraph are inherently recursive in nature, thus
making the constant factor of a software implementation prohibitively expensive. For a reasonable
number of connections, a simple approach like a k-ary heap, with some hardware support for priority
encoding, as presented in Appendix A, is much more attractive.

Apart from the scheduling algorithms, a major contribution of this paper is in illustrating the
power of the framework of rate-proportional servers and the definition of a general methodology for
designing fair rate-proportional servers. The novelty of our approach is that instead of just designing
a scheduling algorithm and analyzing its properties, we have isolated the important properties of
a fair scheduling algorithm and showed how a switch- or router-designer can balance its cost and
performance. It is hoped that this framework will lead to the development of other scheduling
algorithms in the future.

Recently, a new algorithm was proposed for approximating Generalized-Processor Sharing, called
Worst-Case Fair Weighted Fair Queueing [22]. This approach improves the discrepancy of the packet-
by-packet algorithm from the fluid version. The algorithm, however, still requires parallel simulation
of the fluid-model. A similar approach can be applied to the packet-by-packet version of any rate-
proportional server, and to SPFQ in particular. We have found that the fairness properties of SPFQ
can be further improved by using a more intelligent selection of the packets that are candidates
for transmission. This analysis is beyond the scope of this paper, and will be presented in a later
publication.

References

[1] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control -
the single node case,” in Proc. IEEE INFOCOM ’92, vol. 2, pp. 915-924, May 1992.

[2] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing algorithm,”
Internetworking: Research and Ezperience, vol. 1, no. 1, pp. 3-26, 1990.

[3] L. Zhang, “VirtualClock: a new traffic control algorithm for packet switching networks,” ACM
Transactions on Computer Systems, vol. 9, pp. 101-124, May 1991.

[4] D. Ferrari and D. Verma, “A scheme for real-time channel establishment in wide-area networks,”
IEEFE Journal on Selected Areas in Communications, vol. 8, pp. 368-379, April 1990.

[6] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted round-robin cell multiplexing
in a general-purpose ATM switch chip,” IEEFE Journal on Selected Areas in Communications,
vol. 9, pp. 1265-79, October 1991.

[6] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,” in Proc. ACM
SIGCOMM 95, pp. 231-242, September 1995.

[7] C.Kalmanek, H. Kanakia, and S. Keshav, “Rate-controlled servers for very high-speed networks,”
in Proc. IEEE Global Telecommunications Conference, pp. 300.3.1-300.3.9, December 1990.

[8] S. Golestani, “A framing strategy for congestion management,” IEEFE Journal on Selected Areas
mn Communications, vol. 9, pp. 1064-1077, September 1991.

[9] H. Zhang, “Service disciplines for guaranteed performance service in packet-switching networks,”
Proceedings of the IEEE, vol. 83, pp. 1374-96, October 1995.

[10] D. Stiliadis and A. Varma, “Latency-Rate servers: A general model for analysis of traffic
scheduling algorithms,” in Proc. IEEE INFOCOM ’96, pp. 111-119, March 1996.

[11] D. Stiliadis and A. Varma, “Rate-proportional servers: A design methodology for fair queueing
algorithms,” submitted to IEEE/ACM Transactions on Networking, April 1996.

22 References

[12] J. Davin and A. Heybey, “A simulationstudy of fair queueing and policy enforcement,” Computer
Communication Review, vol. 20, pp. 23-29, October 1990.

[13] S. Golestani, “A self-clocked fair queueing scheme for broadband applications,” in Proc. IEEE
INFOCOM °94, pp. 636-646, April 1994.

[14] S. Golestani, “Network delay analysis of a class of fair queueing algorithms,” IEEE Journal on
Selected Areas in Communications, vol. 13, pp. 1057-70, August 1995.

[15] J. L. Rexford, A. Greenberg, and F. Bonomi, “Hardware efficient fair queueing architectures for
high-speed networks,” in Proc. IEEE INFOCOM 96, March 1996.

[16] A. Varma and D. Stiliadis, “FAST: an FPGA-based simulation testbed for ATM switching
systems,” in Proc. ICC "96, June 1996, to appear.

[17] P. V. E. Boas, “Preserving order in a forest in less than logarithmic time,” in Proc. 16th IEEE
Conference on Foundations of Computer Science, pp. 75-84, 1975.

[18] P. V. E. Boas, R. Kaas, and E. Zijlstra, “Design and implementation of an efficient priority
queue,” Mathematical Systems Theory, vol. 10, pp. 99-127, 1977.

[19] K. Mehlhorn, Data structures and algorithms. Springer-Verlag, 1984.

[20] D. Johnson, “A priority queue in which initialization and queue operations take O(loglogd)
time,” Mathematical Systems Theory, vol. 15, pp. 295-309, 1982.

[21] B. Dixon, “Concurrency in an O(loglogn) priority queue,” in Proc. Parallel and Distributed
Computing, Theory and Practice, First Canada-France Conference, pp. 59-71, 1994.

[22] J. Bennett and H. Zhang, “WF2Q: Worst-case fair weighted fair queueing,” in Proc. IEEE
INFOCOM 96, March 1996.

References

Reserved

Session . Arrival Rate SPFQ FFQ WFQ SCFQ
Bandwidth

0 0.500000 0.498 1.995 1.995 1.995 4.2353
1 0.062500 0.100 N/A | N/A | N/A | N/A
2 0.062500 0.062 7.263 6.424 7.259 15.101
3 0.062500 0.061 9.176 8.391 9.166 15.828
4 0.078125 0.076 4.040 3.685 4.152 10.284
5 0.078125 0.076 5.608 5.264 5.759 11.060
6 0.078125 0.076 6.625 6.283 6.795 11.618
7 0.078125 0.076 7.368 7.023 7.550 11.943

Table 5.1: Comparison of average delays from a simulation of SPFQ, FFQ, WFQ and SCFQ
algorithms. The eight sessions shown share the same outgoing link. Delays are measured
in terms of cell transmission times. Session 1 is misbehaving while others are transmitting

within their reservations.

Reserved

Session . Arrival Rate SPFQ | FFQ | WFQ | SCFQ
Bandwidth
0 0.500000 0.498 2.00 2.00 3.00 8.00
1 0.062500 0.100 N/A | N/A | N/A | N/A
2 0.062500 0.062 25.0 21.0 25.0 29.0
3 0.062500 0.061 25.0 21.0 23.0 25.0
4 0.078125 0.076 14.0 12.0 13.0 14.0
5 0.078125 0.076 16.0 13.0 17.0 18.0
6 0.078125 0.076 17.0 14.0 16.0 18.0
7 0.078125 0.076 16.0 14.0 16.0 20.0

Table 5.2: Comparison of mazimum delays from a simulation of SPFQ, FFQ, WFQ and
SCFQ algorithms. The eight sessions shown share the same outgoing link. Delays are
measured in terms of cell transmission times. Session 1 is misbehaving while others are

transmitting within their reservations.

Session | SPFQ | FFQ | SCFQ
0 5 5 11
1 33 33 39
2 33 33 39
3 33 33 39
4 27 27 33
5 27 27 33
6 27 27 33
7 27 27 33

Table 5.3: Analytical delay bounds for the sessions in the simulation.

23

24 References
Hop SPFQ FFQ WFQ SCFQ
Avg. Delay | Max Delay | Avg. Delay | Max Delay | Avg. Delay | Max Delay | Avg. Delay | Max Delay
1 2.1203 5.00 2.1308 5.00 2.1199 6.00 4.4246 8.00
2 4.1253 7.00 4.1533 7.00 4.1580 8.00 9.0875 15.00
3 5.1804 8.00 5.2347 8.00 5.6670 9.00 12.7108 21.00
4 7.2890 11.00 7.4011 11.00 7.9301 12.00 17.7870 26.00

Table 5.4: Comparison of maximum and average delays from a simulation of SPFQ, FFQ,
WFQ and SCFQ algorithms in a 4-hop network. The delays shown are for a session going
through all the four switches, which has a reservation of 25%. This session shares the link
at each hop with seven other sessions, one of which is misbehaving.

Session | o | Iveserved Arrival Rate SPFQ | FFQ | WFQ
Bandwidth
0 21 0.250000 0.200 32.029 34.900 31.142
1 2 0.250000 0.249 1.6547 1.6431 1.6945
2 2 0.125000 0.121 2.9275 2.6533 3.2396
3 2 0.062500 0.059 7.0999 5.6325 7.0579
4 2 0.078125 0.070 4.1154 3.0062 4.4594
5 2 0.078125 0.071 5.0889 3.9650 5.4199
6 2 0.078125 0.071 5.6883 4.6016 6.0031
7 2 0.078125 0.071 6.1980 5.1188 6.4709

Table 5.5: Comparison of average delays from a simulation of SPFQ, FFQ, WFQ algorithms
in a single ATM switch. The eight sessions shown share the same outgoing link. Delays
are measured in terms of cell-transmission times.

References Al

Appendix A: Hardware Implementation for ATM Networks

Although the general algorithms of Sections 3 and 4 can be used in an Asynchronous Transfer
Mode (ATM) network, the fixed (and small) cell-size of ATM can be exploited to simplify the
algorithms considerably. In this section we will present simplified versions of the FFQ and SPFQ
algorithms that will allow implementation using entirely hardware elements. The fixed size of the
ATM cell allows potentials to be represented as integers, instead of the floating-point numbers
required in the general implementation. This, in turn, allows an efficient hardware implementation
of the priority queues. The idea of using integer timestamps was first proposed in [15].

Since the ATM cell has a fixed size, the unit of time is now chosen as 1/K times the transmission
time of an ATM cell through the outgoing link, where K > 1 is a suitable integer scaling constant.
Bandwidth reservations of sessions are assumed to be in terms of number of ATM cells per second.
That is, each session i reserves a bandwidth equal to p; cells/second. Integer representations of
timestamps is achieved by imposing the restriction that the values of K/p; for each session i is an
integer. The choice of the scaling constant is based on the granularity required in the bandwidth
reservations of the individual sessions. Choosing a large value of K increases the granularity with
which reservations can be made. However, increasing K also increases the hardware complexity of
the implementation, so a tradeoff must be made between the two.

The system potential function in these implementations is maintained as an integer, increasing
it by the quantity K after the transmission of each ATM cell. As in the general implementation, a
re-calibration step is used to update the system potential close to the potentials of connections with
ATM cells queued in the system.

As before, the processing performed by the algorithm can be divided into two parts: (i) a part
that is performed when a new cell arrives, and (ii) a part that is executed when the transmission
of a cell has been completed. Since the transmission time of an ATM cell is very short, the cells
arriving at the scheduler need to be processed only at the boundaries of cell transmissions, so that
calculation of the system potential need not take into account the partial service received by the
cell currently being transmitted. As seen in Section 3, this is equivalent to a regulator followed by
a scheduler, and does not affect its delay bound.

The processing performed on a cell arrival is identical in both the FFQ and SPFQ algorithms,
except for the mechanism used to bound the unfairness. The starting potential of an arriving
cell is determined as the maximum of the finishing potential (timestamp) of the previous cell that
arrived from the session and the system potential. The timestamp of the cell is then calculated
by adding the quantity K/p; to the starting potential. Note that, since the quantity K/p; is an
integer, this operation involves only integer arithmetic. The cell is inserted into the priority queue
of cells according to its computed timestamp. In the case of FFQ, cells crossing a frame boundary
are marked and the corresponding counters incremented, as in the general version of the algorithm.
This step is replaced in the SPFQ algorithm by an insertion of the starting potential of the arriving
cell into a second priority list.

The processing performed on the departure of a cell is also similar in both algorithms, except for
the re-calibration step. The system potential value is increased by the constant K to account for
the transmission time of the cell, followed by a re-calibration step. The re-calibration step in FFQ
consists in decrementing the counter corresponding to the current frame if the transmitted cell was
marked, and performing a frame update if the counter becomes zero. Note that the second condition
in step 7 of Figure 3.4 need not be tested. In the case of SPFQ, the re-calibration step involves
simply setting the system potential to the value at the head of the priority list of starting potentials,
if the latter is larger. Both algorithms then select the next cell with minimum timestamp value for
transmission. Note that SPFQ requires the additional step of removing the transmitted cell from
the priority list of starting potentials.

We now describe a hardware implementation of the priority queue used to order cell transmis-
sions. This implementation is attractive for high-speed ATM switches, and is based on integer
representation of potentials. In addition, if we consider only the cells at the head of each session’s

A2 References

queue currently in the system, the difference in the values of the minimum and maximum times-
tamps among them must be bounded. The following two lemmas establish upper bounds for this
difference for both Frame-based Fair Queueing and Starting Potential-based Fair Queueing.
Lemma 12: Let ¢ and j be two backlogged sessions in a packet-by-packet FFQ server. Let S; and
S; denote the starting potentials of the first packet in the queues of connections ¢ and j, respectively,
and let F; and F; be the respective timestamp values. Then,

Fj— 5 <4 (A1)
r

Proof: It is easy to prove the above lemma by contradiction. Assume, without loss of generality,
that at time 7, 5; < F; and F; — S; > 4%. Then, at time 7, assume that both connections receive
an infinite supply of packets. Note that the service offered to the two connections until time 7 does
not depend on packets that arrive after time 7. Then, during an interval (r,1], it is easy to verify
that connection i may receive normalized service equal to

wr Tt F
Pt P
pi r
while connection j is receiving no service. This is a contradiction with Lemma 9. i

Lemma 13: Let i and j be two backlogged sessions in a packet-by-packet SPFQ server. Let S; and
S; denote the starting potentials of the first packet in the queues of connections ¢ and j, respectively,
and let F; and F}; be the corresponding timestamp values. Then,

F;—5; <2 max (—)—i—Lmi, (A.2)
1<n<V " py r
where Ly, 1s the mazimum packet size of session n and Lp,qe the marimum packet size among all
S€SS10NS.
Proof: The proof is again by contradiction. Assume, without loss of generality, that at time 7,
Si < Fjand F; —5; > 2- 1£I}la<xv(Ln/pn) + Linac /7. Then, at time 7, assume that both connections

receive an infinite supply of packets. It is easy to verify that, during an interval (,], connection ¢
may receive normalized service equal to
L L; L L
F; —S; > max (—) + max(—, —L) + ==,
1<n<V pp pi Py r

This is a contradiction with Theorem 2. ad

For the special case of the ATM implementation where the packet size is taken as 1 unit, and
with a scaling constant of K, Eq. (A.2) simplifies to

[/7
Fj— S <2 max (i) +EK. (A.3)
1<n<V \ pp

Similarly, the bound for FFQ in Eq. (A.1) becomes

r

;=5 < 4[(?. (A.4)
Note that, in SPFQ, the maximum value of K/p,, occurs when a session has the minimum possible
reservation in the system. For example, if the minimum allowable reservation for a session is 1/1000
of the link bandwidth, then the above difference will be (2 - 1000+ 1)K = 2001 - K. In the case of
FFQ, the maximum difference is determined by the choice of the frame size, which, in turn, depends
on the granularity of bandwidth reservation. In both cases, let W denote this maximum difference.
Since the method involves modulo-W arithmetic operations, it is advantageous to choose W as a
power of 2. Thus, we assume that W is chosen as the smallest power of 2 satisfying Eq. (A.4) or

Eq. (A.3) for FFQ and SPFQ, respectively.

References A3

Thus, if we consider only the packets at the head of each backlogged session’s queue, their
timestamp values must fall into a window of size W. The following hardware implementation of the
priority queue is based on this property. We refer to each distinct integer value within this window
as a “slot.” Thus, each slot corresponds to a unique value taken by the timestamp representation,
modulo W. A given slot, say j, may be in one of two states:

1. There is no cell currently queued in the system with a timestamp value of j (modulo W). In

this case, we say that the slot j is empty.

2. There is at least one cell currently in the system with a timestamp value of j (modulo W).
We designate this state as full.

Thus, to implement a priority queue with integer timestamps, it is sufficient to maintain a separate
list for each slot. That 1s, the list corresponding to slot j includes cells whose timestamp value is j.
Selecting cells in the order of timestamp values can be accomplished simply by scanning the slots in
order and transmitting the cell associated with the first slot in the full state. Slots in empty state are
skipped during the scanning. In addition, the cells associated with a given slot can be transmitted in
any arbitrary order, since they all have the same timestamp value. Thus, the list of cells associated
with each slot can be maintained in any order that facilitates a simple implementation.

The basic system for implementing the priority queue is shown in Figure A.1. The system
maintains W flip-flops, each representing the state of a slot in the current window. The flip-flops
are shown around a circle in the figure, as they are conceptually organized as a circular queue and
scanned in the clockwise direction. A pointer, referred to as first-slot, points to the beginning of the
current window in the scheduling system, and therefore provides the starting point for scanning the
state bits. The state bits are labeled as 0 through (W — 1) in the figure. The first-slot pointer is
initially set to point to bit 0, and is moved cyclically as the window advances. In FFQ, the window
advances by an amount of K - F' with each frame update operation, while in SPFQ, the window
advances more gradually as the system potential is increased.

The ATM cells buffered in the system reside in the cell memory. Since there may be more than
one such cell in the system with a timestamp value corresponding to the slot, a list of such cells needs
to be maintained. This is accomplished with an array of pointers, designated as head-pownter array
in Figure A.1. This array consists of a total of W pointers, and each has a one-to-one correspondence
with one of the state bits. The pointer at location j of the array points to a location in cell in memory
where a cell with timestamp value j (modulo W) is stored. Thus, when the state of a particular slot
j is determined to be full, the corresponding pointer from the head-pointer array provides access to
the list of cells with timestamp j (modulo W).

The array of pointers labeled as tail-pointer array is used to identify the locations of the last
cell received from each session. The pointer at location ¢ of the array points to the location in cell
memory where the last cell received from session ¢ is stored. When a new cell is received, this pointer
1s used to add the cell to the session’s queue.

Although scanning for a full slot in such an implementation takes linear time, the operation
can be performed in logarithmic time by organizing the state storage in a tree structure. A similar
structure can be used to implement the second priority list of starting potentials required in the
SPFQ implementation. However, the list of cells maintained for each slot can be replaced in this
second priority queue by a simple counter that keeps a count of cells with a given starting potential.
This results in a much simpler implementation than the cell queue.

A4

References

direction of
scan

Irst—slot

pointer
State bits
V-1
w-1
last cell of session i \
i T
s second cell of session i
0
N first cell of session i
Head-pointer array
0
Tail-pointer array
Cell memory

Figure A.1: Block diagram of priority queue implementation for ATM networks.

References B.1

Appendix B: Proofs of Lemmas and Theorems

Proof of Lemma 5: First note that session 7 is backlogged in the packet-by-packet server. Since
both servers are work-conserving, it is clear that if session ¢ received more service in the fluid-server,
there 1s another session j that has received less service in the fluid-server.

We will prove the lemma by contradiction: Let us denote with S the set of connections with
potential at least equal to that of connection ¢ and let us assume that all these connections have
received more or equal service in the fluid server compared to the packet-by-packet server. That 1s,
for all k € S, Py(t) > P;(t) and WE () > WF(t). We will distinguish two cases:

Case 1: Some connection k € S is being serviced at time ¢. All other backlogged connections in
the fluid server at time ¢ have potential at least equal to Py(¢) and thus they belong in the set
S. However, we also know that there exists a connection j that has received more service in the
packet-by-packet server than in the fluid-server until time ¢. This connection can only have potential
less than P;(¢). That is,

Pj (t) < Pl(t) (Bl)

Since this connection received more service in the packet-by-packet server, 1t must still be backlogged
in the fluid-server. Thus connection j should be serviced at time ¢ instead of connection ¢. This is
a contradiction.
Case 2: A connection m that does not belong in the set S is being serviced at time ¢, and thus
P (t) < P;(t). Let 7 denote the last time that a connection k£ € S was in service in the fluid server.
Then, in the interval (7,t] all connections k& € S have not received any service in the fluid server and
thus

WE(r,t)=0, Vkes. (B.2)

Since the service function is non-decreasing, we can write
Wi'(rt) < W (mt), Ykes. (B.3)

We know that every connection & € .S has received until time ¢ more service in the fluid server than
in the packet-by-packet server. Therefore,

WE©,t)>WF(0,t), YkeS. (B.4)
By subtracting Eq. (B.3) from (B.4).
WE©, 7y >wF,7), YkeS. (B.5)

But at this time, there must exist at least one connection j ¢ S, that received less service in the fluid
server compared to the packet-by-packet server. This means that connection j is still backlogged at
time 7 in the fluid-server. The potential of connection j can not be lower than that of connection
t, because then a connection from the set S would not be serviced just before time 7. Thus, the
potential of connection j is at least equal to P;(7). This is a contradiction. a

Proof of Lemma 6: We will prove the lemma by contradiction. It i1s easy to verify from the
definition of the algorithm, that the frame will be updated the first time the starting potentials of
all backlogged connections in the packet-by-packet server are greater than or equal to £7". Let us
assume that at some time ¢ < 7 the server transmitted a packet with a timestamp greater than
or equal to (k+ 1)T. Then, at time ¢ this packet would have the minimum timestamp. Since we
assumed that the frame size is selected such that the largest packet can be transmitted within a
frame period, the potential of all backlogged connections in the packet-by-packet server at time ¢
would be greater than or equal to k7. Therefore, the kth frame-update would have occurred at or
before t, a contradiction. a

Proof of Lemma 7: The proof is again by contradiction. Let us assume that a connection ¢
exists with P;(ri) > (k 4+ 1)T. Then connection ¢ has received more service in the fluid server

B.2 References

compared to the packet-by-packet server until time 7. By Lemma 5, there is another connection j
with P;(15) > Pi(7%) > (k+1)T, that has received more service in the packet-by-packet server until
time 7, compared to the fluid-server. Let F; denote the timestamp of the packet under service in
the fluid-server for connection j. Then, F; > P;(m) > (k + 1)T and this packet has already been
serviced in the packet-by-packet server. This is a contradiction to Lemma 6. a

Proof of Lemma 8: While a connection is backlogged in the FFQ server, its potential is increasing
by the normalized service offered to it. The system potential, on the other hand, is increased in
two cases. While the frame is not changing it is increased by the real time, and when the frame
changes it becomes at least equal to the starting potential of the current frame. Let us assume that
the current time is ¢, and that the last frame update occurred at 7, _1. The next frame-update will
occur after the time when all backlogged connections have crossed the potential of k7" in the packet
server. As we showed, this will occur before the potential of any connection becomes greater than
(k+1)T. The largest difference between the system potential and a connection potential will appear
just before the frame update. At this time

Pi(t) < (k+ 1T, (B.6)
and
Pt)> (k— 1T+ % (B.7)
Subtracting Eq. (B.7) from (B.6),
i

Pi(t)— P(t) <2T — —.
r
Note that the fastest way for the potential of a connection to reach the value P;(t) from the time
that the frame was last updated is through its normalized service. However, by the time the next
frame update occurs, the system potential function would have increased by at least the time to
service ¢; bits of connection 7. This bounds the difference in potentials to 27" — % a

Proof of Lemma 9: In order to calculate tight bounds on the fairness of the packet-by-packet
version of FFQ, we will need to take into account the potentials of connections in both the packet-by-
packet server and the corresponding fluid server. Let us denote with a;(¢) the potential of connection
¢ at time ¢ in the packet-by-packet server, calculated as follows: When a new packet is placed at the
head of the queue of connection i, the function a;(t) is set equal to the starting potential of that
packet. While the packet is waiting for transmission, the potential remains unchanged. When the
packet starts transmission, the potential a;(t) is increased by a step equal to the normalized service
offered to connection z.

As before, we will use P;(¢) to denote the potential of connection ¢ at time ¢ in the corresponding
fluid server. Note that the system potential function is identical for the two systems and will be
denoted as P(t). Since the packet-by-packet system is based on the fluid system, the service missed
by a connection while it is absent is the same in both servers. Similarly the total service received
by a connection over a system-busy period is also the same in both servers. However, as shown in
Lemmas 3 and 4 of [11], at a certain instant of time ¢, the packet-by-packet server may be ahead of or
behind the fluid server in the amount of service offered to a connection. Therefore, the potential of
the connection in the packet-by-packet server may be different from its potential in the fluid server.

This discrepancy, however, is always bounded.
Let us assume that after time 7 both connections ¢, j have an infinite supply of packets. Without
loss of generality let
Wity t2) Wity t2)
pi N Pj ’
for a time interval (¢1,%3] with 7 < t; < t2. We know that after time 7, both connections have
an infinite supply of packets. Thus, the potential of both connections in the fluid server is only

(B.8)

References B.3

increased by the normalized service offered to them. For the service offered to connection 7 in the
interval (t1,%3], we can write

VP (4 1 WE0,t1) — WFP(0,t
. (pl’) <ai(tz) — Pi(t) + (1)p. ! 1)' (B.9)

If the potential of connection ¢ in the packet-by-packet server at time ¢5 is greater than P;(t1), then
the normalized service offered to connection ¢ during the interval (¢1, 2] is equal to the increase in
potential after time #; plus the amount of additional service that connection ¢ received in the fluid-
server compared to the packet-by-packet server until time ¢;. If, on the other hand, the potential of
connection ¢ in the packet-by-packet server at time ¢, is less than P;(¢1), then the packets that were
serviced after time ¢; in the fluid-server have not been serviced yet in the packet-by-packet server.
Thus, the service offered from the packet-by-packet server to connection ¢ has already been offered
to the fluid-server before time ¢;.

Similarly for connection j we can write

WE(ty, 1o WE(,t) = WE 0,4
— (p, ! > a;(tz) — Pj(ty) — — ()p' ;01 (B.10)
J J

That is, the normalized service offered to connection j in the packet-by-packet server during the
interval (¢1,12] is equal to the increase in its potential minus the additional service that the packet-
by-packet server may have offered to connection j until time ¢t;. By subtracting Eq. (B.10) from
Eq. (B.9),

VT/Z'P(thtz) W]P(tlat2)
pi P

ai(tz) — aj(tz) + Pj(tl) - Pz’(tl)

+mF(0,t1) — WF(0,t1) . WE(0,t1) — WE(0,11)
Pi Pj '

(B.11)

We have assumed that connection ¢ has received more normalized service; thus, from the definition
of the packet-by-packet rate-proportional servers,

ai(t2) < a;(t2) + % (B.12)

Thus, Eq. (B.11) can be written as
WP (t,ts) WF(t,t L;
7 (1 2)_ 7 (1 2) —]+(P](t1)—PZ(t1))
Pi Pi Pj
P F P P i F
n (Wz (Oatl);Wj (0,41) n W (Oatl);Wj (Oatl)) (B.13)
[J

The difference in offered service will be maximized when the second part of the above equation
1s maximized. Notice that this will happen when the difference in potentials between the two
connections is maximized, and the difference in offered service between the two servers for the two
connections is maximized as well. Let us assume that the last frame update occurred at time 75, _1.
Then, from Lemma 6, we know that there is no packet serviced in the fluid-server with a finish
potential higher than (k+ 1)7. Thus,

a;(t) < (k+ 1)T. (B.14)
At the same time, for connection ¢ we can write that

ai(ty) > (k— 1)T. (B.15)

B.4 References

Notice also that the additional service offered by the packet-by-packet server compared to the fluid-
server 1s never more than the difference in potentials between the two servers. Therefore,

WE(0,t1) — WF(0,11)
pi

Pi(ty) + < aj(ty) < f(ty) +27. (B.16)

Similarly, for connection ¢,

VT/iF(O’tl) - ij(o’tl)

Pi(t1) — o

> ai(t) > f(t). (B.17)

From Eq. (B.13), and by subtracting Eq. (B.17) from (B.16), we can conclude that

VPt 1 WE (¢ 2F L;
VVZ (1a 2) g (1 2) §_+_] (BlS)
Pi Pj rop

Similarly, if connection j received more normalized service in the interval (¢1,%2] we can write

W](1, 2) _ W(1, 2) S __|_ — (Blg)
Pj Pi roop

From Eq. (B.13) and (B.14) we can conclude that

Wity ta) — Wi(ta, to)
Pj Pi

< E + max (ﬁ, &) . (B.20)
r pi Py

O

Proof of Lemma 11: The assumption of the lemma states that at time 7 connection ¢ has an
infinite supply of packets. We will distinguish two cases: First, just before time 7 connection i was
not backlogged. Therefore, all packets in the queue of connection ¢ can be considered as arriving at
time 7. It is easy to verify that the starting potential of each packet arriving after = will be calculated
from the finishing potential (timestamp) of the previous packet. Thus, Eq. (4.3) is obvious.

In the second case, connection ¢ was already backlogged at time 7. Let us denote with Fj the
finishing potential of the first packet in the queue of connection ¢ at time 7. If P(t) < Fj, then again
the starting potential of all packets serviced during the interval (¢1,%2] is estimated by the finishing
potential of the previous packet. However, it is possible that F; < P(r) and the starting potential
of some of the packets in the queue of connection i after time T was estimated from the system
potential. From the definition of rate-proportional servers we know that at time 7,

P(r) < Pi(r). (B.21)

However, a;(7) < F; < P(r). This, implies that the fluid server has offered more service to connection
¢ until time 7 than the packet-by-packet server. Note also that the system potential has increased
to a value greater than a;(7) through only the passage of real-time and not through a re-calibration,
since the starting potential of the first packet of connection ¢ is less than P(r). Let us denote with
t*, the time at which the function P;(¢) had a value equal to F;. From Theorem 4 of [11] we know
that,

Lmax

T—t" <
,

The system potential may have reached a value of F; only at or after time ¢*, and after that time it
has increased only by the real time that elapsed. Thus, for the system potential we can write

Lmax
P(r)< Fi+ (r—t") < Fy + . (B.22)
T

References B.5

Thus, some of the increase in potential of connection ¢ in the packet server may be due to increase
in the system potential. This total increase, however, happened before time 7 and from the above
equation can not be more than Ly, /7. Thus,

Lmax
VVi(tl,tZ) Z ai(tz) - ai(tl) - , . (B23)
O

Proof of Theorem 2: Let us assume two connections ¢ and j. Without loss of generality, let us

assume that at time ¢,
a;i(t1) < a;(t1). (B.24)

Let us also denote with p¥ the first packet of connection 7 in the system at time ¢;. Note that even if
the packet is being serviced at time ¢, 1t will still be considered as being in the system. However, the
partial service offered to a connection needs to be accounted for when we try to bound the difference
in normalized service between two connections. Similarly, pj* is the first packet of connection j. Let
us also assume that after time 7 < ¢; both connections have an infinite supply of packets. In order
to be able to compute a tight bound we will have to consider several cases and subcases.

Case 1: When packet p¥ arrived in the system at some time t* < ¢;, packet p/* is already in the
system. We will separate the problem in two subcases:

Subcase 1: Packet pi" was the first packet in the queue of connection j at time ¢*. Let F; denote
the timestamp of the last packet selected for transmission from connection j. Then, that packet
was selected for transmission before time t*. At this time 1t was the packet with the minimum
timestamp. All other connections could only have packets with timestamp > F;. However, this
implies that, for every connection backlogged at time ¢* in the packet-by-packet system,

ap(t™) > F; — max (L—n),Vk € B(t). (B.25)

Therefore, by the definition of a Fair Rate-Proportional Server,

L
) > Fj—). .
P(t) > F; 1gza§XV(pn) (B.26)

Therefore, since the starting potential associated with packet p¥ will be at least equal to P(t*),

ai(ty) > SF
> P(t")
> F (L”) from Eq. (B.26)
> f 12&2}(‘/ o) rom Eq. (B.
L,
> a(t) — Zny. .
> a;(t) 121}1&5(e) (B.27)

The last inequality holds since F; denotes the timestamp of the last packet selected from connection
J. Thus, the potential a;(¢) of connection j can not have increased to a value larger than Fj.

Subcase 2: Packet p* was not the first packet of connection j at time ¢*. Let us again denote
with F; the timestamp of the last packet selected from connection j before time ¢;. Since both
packet pF and p;* are the only packets that may be serviced from the two connections at time 1,

the timestamp F; of that packet can not be greater than a;(¢1) + %. Therefore,

aj(ty) < F

L;
< a; (1) + —
-) Pi
Ly
< a;(t1) + max (—). (B.28)

B.6 References

From Equations (B.27) and (B.28), we can conclude that in both subcases

Ly,
aj(ty) < ai(ty) +122Xv(;)' (B.29)

At time ¢2, the potential of connection ¢ can be greater or less than that of connection j. In either
case, from the definition of the algorithm,
L
ai(tz) < aj(tz) + p_ (B30)
i

For the service offered to connection ¢, we can write

Wity 1
Wilts, 2) ai(ts) — ai(ty)
pi
L.
< aj(tz)_ai(t1)+#, from Eq. (B.30)
J
© ailts) — ailt Loy B fom Bq. (B.29
< aj(tz) — ay(1)+1I§I}zasxv(p_n)+p_j’ rom Eq. (B.29)
1. t1.1 Ln L; Lmax
< Wi(t1,ts) + max (Z2) 4 2L 4 Zmer (B.31)
Pj 1<n<V: pp Pj r

However, connection j may have received more normalized service than connection ¢. In this case,
from the definition of the algorithm, a;(t2) < a;(t2) + %. Then,

W;(th,t
Willuta) < a(t) = a0
Pi
< ai(te) —aj(t) + p—,l
L;
< ai(te) —ai(ty) + o
Wity t Li Lmas
< Willnty) | Ei | Lovas (B.32)
pi pi r
Combining the two previous cases it is easy to verify that
VT/Z't ,t Wt ,t Ln Lmax Lz L
(1 2) _](1 2) < max (—) + — —|—ma,X(—’ —]) (B33)
pi Pj 1<nsV pn r pi Pj

Case 2: Packet p¥ arrived before packet pj". Let us again denote with ¢* the arrival time of packet
p;". We have to consider again several subcases:

Subcase 1: Let us assume that at least one other packet was selected for transmission from
connection j after time t* and before time ¢;. Let F; denote the timestamp of the last packet selected
from connection j. Then a;(t1) < F; and Fj < a;(t*) + 1I<I}la<XV(Ln/pn). Proceeding similarly as in

the previous case, we can conclude that

Ly,
aj(ty) < ai(ty) +1g}?ng(p_n)' (B.34)

Subcase 2: No packet from connection j was selected after time ¢* and the packet pi" received its
starting potential from the finishing potential of the previous packet of connection j. Let us denote
that packet with p”~'. When that packet was selected for transmission, it had the smaller timestamp

F;. Therefore, all the other connections had packets with timestamps > Fj; but this implies that
the starting potential of all packets from the other connections were at least F; — 1211a<XV(Ln/pn).
n

References B.7

If p¥ was in the system at that time, its starting potential would also have been greater than this
value. The system potential was also greater than F; — 1£na<xv(Ln /pn). If p¥ arrived later, it would
n_

have received a starting potential that is at least equal to the system potential and thus it is also
greater than F; — 1Ena<XV(Ln/pn). Thus, in any case, the starting potential of pf was greater than
n

this value. Therefore,

L, Ly *
a;(t) — lglaSXV(p_n) < Fy— lglaSXV(p_n) <ai(t") <a;(ty). (B.35)

From Eq. (B.34) and (B.35) we can conclude that a;(t1) < a;(¢1) + 1211a<XV(Ln/pn). Following a

similar procedure as in the previous case, it is easy to verify that for both of these subcases the
theorem holds, and

VT/Z' [,t W t ,t Ln Lmax Lz L
(1 2) _](1 2) < max (—) =+ —|—ma,X(—’ —]) (B36)
pi Pj 1snsV pn r pi Pj

Subcase 3: The final subcase will require a more elaborate approach. No packet from connection
J was selected after time ¢* and packet pJ* received its starting potential from the system potential.
In that case we need to bound the difference between the potential of connection 7 in the packet-
by-packet server and the system potential. As was described in the proof of Lemma 11, since the
potential of connection ¢ in the packet-by-packet server is less than the system potential P(t), this
implies that the packet-by-packet server has offered less service to connection ¢ than the fluid-server.
The system potential may be higher than the finishing potential of the first packet in the queue of
connection ¢ by APy < Lyaqe/r. Thus, we can write

a;(t) = a;(17) = P(t*) < ai(t™) + 2 4+ AP, (B.37)

k3

In fact, there may be several packets from connection j that arrived after packet pj* and before
time 7, and they all would have received a starting potential equal to the system potential. Note,
however, that the total increase in the potential of connection j due to increases in the system
potential, denoted by A Ps, together with AP; can only be less than Ly, .. /r. Thus, we can write

W;(ti,12)

p > aj(lz) — aj(t) — APy, (B.38)

Following the same procedure as in the above cases, using Eq. (B.38) instead of Lemma 11 for
estimating the service offered to connection j, and with the fact that APy + APy < Ly /7, we can
again prove the bound for the difference in normalized service offered to the two connections. ad

