
Rate-Proportional Servers:A Design Methodology forFair Queueing AlgorithmsDimitrios StiliadisAnujan VarmaUCSC-CRL-95-58December 1995Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractWeighted Fair Queueing is considered as the ideal tra�c scheduling algorithm in termsof its delay and fairness properties. Timestamp computations in a Weighted Fair Queueingscheduler serving N sessions have a time complexity of O(N) per packet-transmission time,making its implementation di�cult. E�orts in the past to simplify the implementation ofWeighted Fair Queueing, such as Self-Clocked Fair Queueing, have resulted in degradingits isolation properties, thus a�ecting the delay bound. In this paper we present a classof scheduling algorithms | called Rate-Proportional Servers (RPS) | with bounds onend-to-end delays, bu�er requirements and internal tra�c burstiness equal to those ofWeighted Fair Queueing. This class of algorithms is based on the notion of the potentialassociated with each connection sharing the same outgoing link, as well as, the systempotential that tracks the progress of work in the system. We show that, depending onthe implementation, di�erent algorithms in the RPS class may have signi�cantly di�erentfairness properties. Network designers can use this methodology to implement e�cient fair-queueing algorithms, balancing their fairness with implementation complexity. This workis completed in the sequel of this paper, where we present detailed implementations of twonovel tra�c scheduling algorithms with O(1) timestamp computations, that exhibit thesame delay and fairness properties as those of Weighted Fair Queueing.Keywords: Packet scheduling, ATM switch scheduling, fair queueing, delay bounds,fairness.This research is supported by the NSF Young Investigator Award No. MIP-9257103. A part of this paper willappear in the Proceedings of ACM SIGMETRICS '96.

CONTENTS 1Contents1 Introduction . 32 Preliminaries . 52.1 De�nitions and Notations . 52.2 Potential Functions . 83 Rate-Proportional Servers . 113.1 Packet-by-Packet Rate-Proportional Servers 163.2 Delay Analysis . 184 Fairness of Rate-Proportional Servers . 195 Conclusions . 21References . 22

2 LIST OF FIGURESList of Figures2.1 Intervals (t1; t2] and (t3; t4] are two di�erent busy periods. 62.2 Illustration of the concept of potentials. 92.3 Evolution of the potential and o�ered service for two connections in the GPS multiplexer. 102.4 Evolution of the potential and o�ered service for two connections in the SCFQmultiplexer. 113.1 An example illustrating the evolution of potential functions in a rate-proportionalserver. 13

1. Introduction 31 IntroductionMany future applications of computer networks such as distance education, remote collaboration,and teleconferencing will rely on the ability of the network to provide Quality-of-Service (QoS) guar-antees. These guarantees are usually in the form of bounds on end-to-end delay, bandwidth, delayjitter (variation in delay), packet loss rate, or a combination of these parameters. QoS guarantees canbe provided both in conventional packet networks and in broadband ATM (Asynchronous TransferMode) networks by the use of proper packet scheduling algorithms in the switches (or routers).The function of a scheduling algorithm is to select, for each outgoing link of the switch, the packetto be transmitted in the next cycle from the available packets belonging to the ows sharing theoutput link. Implementation of the algorithm may be in hardware or software. In ATM networks,where information is transmitted in terms of small �xed-size cells, the scheduling algorithm mustusually be implemented in hardware within an ATM switch. In a packet network with larger packet-sizes, such as the current Internet, the algorithm can be implemented in software.Several service disciplines are known in the literature for bandwidth allocation and transmis-sion scheduling in output-bu�ered switches. In general, schedulers can be characterized as work-conserving or non-work-conserving. A scheduler is work-conserving if the server is never idle when apacket is bu�ered in the system. Examples of work-conserving schedulers include Generalized Pro-cessor Sharing (GPS) [1], Weighted Fair Queueing [2], VirtualClock [3], Delay-Earliest-Due-Date(Delay-EDD) [4], Weighted Round Robin [5], and De�cit Round Robin [6]. On the other hand,Hierarchical-Round-Robin (HRR) [7], Stop-and-Go queueing [8], and Jitter-Earliest-Due-Date [9]are non-work-conserving schedulers.Another classi�cation of schedulers is based on their internal structure [10]. According to thisclassi�cation there are two main architectures: sorted-priority and frame-based. In a sorted-priorityscheduler, there is a global variable | usually referred to as the virtual time | associated with eachoutgoing link of the switch. Each time a packet arrives or gets serviced, this variable is updated. Atimestamp, computed as a function of this variable, is associated with each packet in the system.Packets are sorted based on their timestamps, and are transmitted in that order. VirtualClock,Weighted Fair Queueing, and Delay-EDD follow this architecture. Two factors determine theimplementation complexity of all sorted-priority algorithms: First, the complexity of updating thepriority list and selecting the packet with the highest priority is O(logV) where V is the number ofconnections sharing the outgoing link. The second is the complexity of calculating the timestampassociated with each packet; this factor depends on the algorithm. For example, maintaining thevirtual time in Weighted Fair Queueing requires the processing of a maximum of V events duringthe transmission of a single packet, whereas timestamps in VirtualClock can be calculated in O(1)time.In a frame-based scheduler, time is split into frames of �xed or variable length. Reservations ofsessions are made in terms of the maximumamount of tra�c the session is allowed to transmit duringa frame period. Hierarchical Round Robin and Stop-and-Go Queueing are frame-based schedulersthat use a constant frame size. As a result, the server may remain idle if sessions transmit lesstra�c than their reservations over the duration of a frame. In contrast, Weighted Round Robin andDe�cit Round Robin schedulers allow the frame size to vary, subject to a maximum. Thus, if thetra�c from a session is less than its reservation, a new frame can be started early. Therefore, bothof these schedulers are work-conserving.A tra�c scheduling algorithm must possess several desirable features to be useful in practice:1. Isolation of ows: The algorithmmust isolate an end-to-end session from the undesirable e�ectsof other (possibly misbehaving) sessions. That is, the algorithm must be able to maintain theQoS guarantees for a session even in the presence of other misbehaving ows. Note thatisolation is necessary even when policing mechanisms are used to shape the ows at the entrypoint of the network, as the ows may accumulate burstiness within the network.2. Low end-to-end delays: The algorithmmust provide end-to-end delay guarantees for individualsessions. In particular, it is desirable that the end-to-end delay bound of a session dependsonly on the parameters of the session, such as its bandwidth reservation, and is independent

4 1. Introductionof the behavior of other sessions. A higher end-to-end delay bound usually implies a higherlevel of burstiness at the output of the scheduler, and consequently requires larger bu�ers inthe switches to avoid packet loss. Therefore, the delay bound a�ects not only the end-to-endbehavior of the session, but also the amount of bu�ering needed in the switches.3. Utilization: The algorithm must utilize the link bandwidth e�ciently.4. Fairness: The available link bandwidth must be divided among the connections sharing thelink in a fair manner. Two algorithms with the same maximum delay guarantee may havesigni�cantly di�erent fairness characteristics. An unfair scheduling algorithm may o�er widelydi�erent service rates to two connections with the same reserved rate over short intervals.5. Simplicity of implementation: The scheduling algorithm must have a simple implementation.In an ATM network, the available time for completing a scheduling decision is very short. AtSONET OC-3 speeds the transmission time of an cell is less than 3 �s. For higher speedsthe available time is even less. This forces a hardware implementation. In packet networkswith larger packet sizes and/or lower speeds, a software implementation may be adequate, butscheduling decisions must still be made at a rate close to the arrival rate of packets.6. Scalability: The algorithm must perform well in switches with a large number of connections,as well as over a wide range of link speeds.Based only on the delay and fairness properties, Generalized-Processor-Sharing (GPS) is an idealscheduling discipline [1]. GPS multiplexing is de�ned with respect to a uid-model, where packetsare considered to be in�nitely divisible. The share of bandwidth reserved by session i is representedby a real number �i. Let B(�; t) be the set of connections that are backlogged in the interval (�; t].If r is the rate of the server, the service Wi(�; t) o�ered to a connection i that belongs in B(�; t) isproportional to �i. That is, Wi(�; t) � �iPj2B(�;t) �j r(t � �):The minimum service that a connection can receive in any interval of time is�iPVj=1 �j r(t� �);where V is the maximum number of connections that can be backlogged in the server at the sametime. Thus, GPS serves each backlogged session with a minimum rate equal to its reserved rate ateach instant; in addition, the excess bandwidth available from sessions not using their reservationsis distributed among all the backlogged connections at each instant in proportion to their individualreservations. This results in perfect isolation, ideal fairness, and low end-to-end session delays.A packet-by-packet version of the algorithm, known as PGPS or Weighted Fair Queueing [2],was de�ned in terms of a virtual clock that is increased with rate equal to1Pi2B(�;t) �i :A GPS system is simulated in parallel with the packet-by-packet system in order to identify the setof connections that are backlogged at each time. The virtual time v(t) is a piecewise linear functionof the real time t, and its slope changes depending on the number of busy sessions and their servicerates. At the arrival of a new packet, the virtual time must be calculated �rst. Then, the time-stampTSi associated with the kth packet of virtual channel i is calculated as:TSki max(TSk�1i ; v(t)) + L�i ;where L is the size of the kth packet.A maximum of V events may be triggered in the GPS simulator during the transmission of onepacket. Thus, the process overhead for completing a scheduling decision is O(V). In order to reducethis complexity, an approximate implementation of GPS multiplexing was proposed in [11] and was

2. Preliminaries 5later analyzed in [12] under the name Self-Clocked Fair Queueing (SCFQ). In this implementation,the timestamp of an arriving packet is computed based on the packet currently in service. Thus, ifTScur denotes the timestamp of the packet in service, and if the new packet is the kth packet ofsession i, the timestamp of the new packet is calculated asTSki max(TScur ; TSk�1i) + L�i :This approach reduces the complexity of the algorithm greatly. However, the price paid is thereduced level of isolation among the sessions, causing the end-to-end delay bounds to grow linearlywith the number of sessions that share the outgoing link [13]. Thus, the worst-case delay of asession can no longer be controlled just by controlling its reservation, as is possible in WeightedFair Queueing (WFQ). The higher end-to-end delay also a�ects the burstiness of sessions withinthe network, increasing the bu�er requirements. The VirtualClock scheduling algorithm providesthe same end-to-end delay and burstiness bounds as WFQ with a simple timestamp computationalgorithm, but the price paid is in terms of fairness. A backlogged session in the VirtualClock servercan be starved for an arbitrary period of time as a result of excess bandwidth it received from theserver when other sessions were idle [1].A scheduling algorithm that combines the delay and burstiness behavior of Weighted Fair Queue-ing, simple timestamp computations, and bounded unfairness, has so far remained elusive. Theobjective of our work is to develop an analytical framework for the design of such algorithms, sys-tematically analyze its properties, and present scheduling algorithms based on this framework thathave simple and e�cient implementations.Thus, in this paper we present a broad class of schedulers, that we call Rate-Proportional Servers(RPS). Schedulers in the RPS class o�er the same end-to-end delay and burstiness bounds as WFQ.Since the class of rate-proportional servers is based on a general de�nition, multiple algorithms withthe same properties but with di�erent implementation complexities may be designed. Depending ontheir design, schedulers in the RPS class may have substantially di�erent fairness properties. It isshown that both GPS, an algorithmwith ideal fairness, and a uid-model equivalent of VirtualClock,an unfair algorithm, are members of the RPS class.This work is completed in the sequel to this paper [14], where two novel tra�c schedulingalgorithms in the RPS class, called Frame-based fair queueing (FFQ) and Starting Potential-basedFair Queueing (SPFQ) are de�ned and analyzed [14]. Both algorithms require only O(1) time forthe timestamp calculation, independent of the number of sessions sharing the server, and providebounded unfairness.The rest of this paper is organized as follows: In Section 2, we present some de�nitions anda brief summary of the concept of Latency-Rate Servers (or LR-servers) [13], which provides usthe necessary tools for analysis of the RPS framework. In Section 3, we de�ne the class of rate-proportional servers and derive bounds on the end-to-end delay and burstiness in a network ofrate-proportional servers. In Section 4 we analyze their fairness and derive bounds on the unfairnessof both the uid-model and the packet-by-packet versions of a Rate-Proportional Server. Finally,we conclude the paper in Section 5 with a discussion of how the RPS framework is useful in thedesign of practical fair-queueing algorithms.2 Preliminaries2.1 De�nitions and NotationsWe assume a packet switch where a set of V connections share a common output link. The termsconnection, ow, and session will be used synonymously. We denote with �i the rate allocated toconnection i.We assume that the servers are non-cut-through devices. Let Ai(�; t) denote the arrivals fromsession i during the interval (�; t] and Wi(�; t) the amount of service received by session i duringthe same interval. In a system based on the uid model, both Ai(�; t) and Wi(�; t) are continuous

6 2. Preliminaries
t1 t2 t3 t4

A i

i

iFigure 2.1: Intervals (t1; t2] and (t3; t4] are two di�erent busy periods.functions of t. However, in the packet-by-packet model, we assume that Ai(�; t) increases only whenthe last bit of a packet is received by the server; likewise, Wi(�; t) is increased only when the lastbit of the packet in service leaves the server. Thus, the uid model may be viewed as a special caseof the packet-by-packet model with in�nitesimally small packets.De�nition 1: A system busy period is a maximal interval of time during which the server isnever idle.During a system busy period the server is always transmitting packets.De�nition 2: A backlogged period for session i is any period of time during which packetsbelonging to that session are continuously queued in the system.Let Qi(t) represent the amount of session i tra�c queued in the server at time t, that is,Qi(t) = Ai(0; t)�Wi(0; t):A connection is backlogged at time t if Qi(t) > 0.De�nition 3: A session i busy period is a maximal interval of time (�1; �2] such that for anytime t 2 (�1; �2]; packets of connection i arrive with rate greater than or equal to �i, or,Ai(�1; t) � �i(t� �1):A session busy period is the maximal interval of time during which if the session were servicedwith exactly the guaranteed rate, it would remain continuously backlogged (Figure 2.1). Multiplesession-i busy periods may appear during a system busy period. It is important to realize the basicdistinction between a session backlogged period and a session busy period. The latter is de�nedonly in terms of the arrival function and the allocated rate. Thus, the busy period serves as aninvariant for evaluating the worst-case behavior of di�erent scheduling algorithms under the samearrival pattern. For a more detailed explanation of the busy period, the reader is referred to [13].In [13], we introduced a general model for tra�c scheduling algorithms, called Latency-Rate(LR) servers. Any server in this class is characterized by two parameters: latency �i and minimumallocated rate �i. Let us assume that the jth busy period of connection i starts at time � . We denoteby W Si;j(�; t) the total service provided to the packets of the connection that arrived after time �and until time t by server S.De�nition 4: A server S belongs in the class LR if and only if for all times t after time � that thej-th busy period started and until the packets that arrived during this period are serviced,WSi;j(�; t) � max(0; �i(t� � ��Si)):�Si is the minimum non-negative number that can satisfy the above inequality.

2. Preliminaries 7Server Latency Fairness ComplexityGPS 0 0 -Weighted Fair Queueing Li�i + Lmaxr max(max(Cj + Lmax�i + Lj�j ; Ci + Lmax�j + Li�i),whereCi = min((V � 1)Lmax�i ; max1�n�V (Ln�n)). O(V)Self-Clocked Fair Queueing Li�i + Lmaxr (V � 1) Li�i + Lj�j O(logV)VirtualClock Li�i + Lmaxr 1 O(logV)De�cit Round Robin (3F��i)r 3Fr O(1)Weighted Round Robin (F��i+Lc)r Fr O(1)Table 2.1: Latency, fairness and implementation complexity of several work-conservingservers. Li is the maximum packet size of session i and Lmax the maximum packet sizeamong all the sessions. Ci is the maximum normalized service that a session may receivein a WFQ server in excess of that in the GPS server. In weighted round-robin and de�citround-robin, F is the frame size and �i is the amount of tra�c in the frame allocated tosession i. Lc is the size of the �xed packet (cell) in weighted round-robin.The right-hand side of the above equation de�nes an envelope to bound the minimum serviceo�ered to session i during a busy period. It is easy to observe that the latency �Si represents theworst-case delay seen by a session-i packet arriving at the beginning of a session busy period. For auid-model server, this is the worst-case delay until the �rst bit of the packet is transmitted; for apacket-by-packet server, �Si denotes the maximumdelay before the last bit of the packet is serviced.The maximum delay through a network of LR-servers can be computed from the knowledge of thelatencies of the individual servers and the tra�c model. Thus, the theory of LR-servers allows usto determine tight upper-bounds on end-to-end delays in a network of servers where the servers ona path may not all use the same scheduling algorithm.The function W Si;j(�; t) may be a step function in a packet-by-packet scheduler. As in the caseof Wi(�; t), we update W Si;j(�; t) only when the last bit of a packet has been serviced. Only in thecase of a uid-server packets can be arbitrarily small and thus W Si;j(�; t) may be continuous.The following upper bounds on the behavior of a LR-server were shown in [13] when the arrivalsor session i are shaped by a leaky bucket with parameters (�i; �i).Theorem 1: The maximum delay DKi and the maximum backlog QKi of session i after the Kthnode in an arbitrary network of LR-servers are bounded asDKi � �i�i + KXj=1�(Sj)i ;QKi � �i + �i KXj=1�(Sj)i ;where �(Sj)i is the latency of the jth server on the path of the session.This theorem allows us to calculate bounds on end-to-end delays and bu�er requirements foran arbitrary topology network where the only constraint is that individual switches use schedulingalgorithms belonging to the class LR. Furthermore, all known work-conserving schedulers | such

8 2. Preliminariesas GPS, Weighted Fair Queueing, Weighted Round Robin, Self-Clocked Fair Queueing, VirtualClockand De�cit-Round-Robin | have been shown to be LR-servers [13]. In Table 2.1 we summarizethe latencies of many well-known work-conserving schedulers, along with bounds on their fairnessand implementation complexity. The fairness parameter in the table is the maximum di�erence innormalized service o�ered by the scheduler to two connections over any interval during which bothconnections are continuously backlogged. The implementation complexity is at least O(log2 V) forall sorted-priority schedulers.The packet-by-packet approximation of GPS (WFQ) has the lowest latency among all the packet-by-packet servers; thus, from Theorem 1, WFQ has the lowest bounds on end-to-end delay and bu�errequirements. However, WFQ also has the highest implementation complexity. VirtualClock hasthe same latency as WFQ, but is not a fair algorithm [3, 1]. Notice, however, that none of the otheralgorithms su�ers from such a high level of unfairness. In Self-Clocked Fair Queueing as well as theround-robin schedulers, latency is a function of the number of connections that share the outputlink. In a broadband network, the resulting end-to-end delay bounds may be prohibitively large.2.2 Potential FunctionsThe GPS scheduler provides ideal fairness by o�ering the same normalized service to all back-logged connections at every instant of time. Thus, if we represent the total amount of service receivedby each session by a function, then these functions can be seen to grow at the same rate for eachbacklogged session. Golestani [12] introduced such a function and called it virtual time. Virtualtime of a backlogged session is a function whose rate of growth at each instant is exactly the rate ofnormalized service provided to it by the scheduler at that instant. Similarly, we can de�ne a globalvirtual-time function that increases at the rate of the total service performed by the scheduler ateach instant during a server-busy period. In a GPS scheduler, the virtual times of all backloggedconnections are identical at every instant, and equal to the global virtual time. This is achieved bysetting the virtual time of a connection to the global virtual time when it becomes backlogged andthen increasing the former at the rate of the instantaneous normalized service received by the con-nection during the backlogged period. This allows an idle connection to receive service immediatelyonce it becomes backlogged, resulting in zero latency.We introduce such a function to represent the state of each connection in a scheduler and call itpotential. The potential of a connection is a non-decreasing function of time during a system-busyperiod. When connection i is backlogged, its potential increases exactly by the normalized service itreceived. That is, if Pi(t) denotes the potential of connection i at time t, then, during any interval(�; t] within a backlogged period for session i,Pi(t) � Pi(�) = Wi(�; t)�i :Note that the potentials of all connections can be initialized to zero at the beginning of a system-busyperiod, since all state information can be reset when the system becomes idle.From the above de�nition of potentials, it is clear that a fair algorithmmust attempt to increasethe potentials of all backlogged connections at the same rate, the rate of increase of the systempotential. Thus, the basic objective is to equalize the potential of each connection. Sorted-priorityschedulers such as GPS, WFQ, SCFQ, and VirtualClock all attempt to achieve this objective.However, in our de�nition of potential, we did not specify how the potential of a connection isupdated when it is idle, except that the potential is non-decreasing. Scheduling algorithms di�erin the way they update the potentials of idle connections. Ideally, during every time interval thata connection i is not backlogged, its potential must increase by the normalized service that theconnection could receive if it were backlogged. If the potential of an idle connection is increased bythe normalized service it missed, it is easy to see that, when the connection becomes busy again,its potential will be identical to that of other backlogged connections in the system, allowing it toreceive service immediately.

2. Preliminaries 9
ρ ρ ρ1 2

Scheduler

ρ3 System PotentialVFigure 2.2: Illustration of the concept of potentials.One way to update the potential of a connection when it becomes backlogged is to de�ne a systempotential that keeps track of the progress of the total work done by the scheduler. The systempotential P (t) is a non-decreasing function of time. When an idle session i becomes backloggedat time t, its potential Pi(t) can be set to P (t) to account for the service it missed. Schedulersuse di�erent functions to maintain the system potential, giving rise to widely di�erent delay- andfairness-behaviors. In general, the system potential at time t can be de�ned as a non-decreasingfunction of the potentials of the individual connections before time t, and the real time t.P (t) = F(P1(t�); P2(t�); : : : ; PV (t�); t): (2.1)For example, the GPS server initializes the potential of a newly backlogged connection to that of aconnection currently backlogged in the system. That is,P (t) = Pi(t); for any i 2 B(t);where B(t) is the set of backlogged connections at time t. The VirtualClock scheduler, on the otherhand, initializes the potential of a connection to the real time when it becomes backlogged, so thatP (t2)� P (t1) = t2 � t1:We will later show how the choice of the function P (t) inuences the delay and fairness behavior ofthe scheduler.The concept of potentials can be illustrated by the following analogy in Figure 2.2. Eachconnection is represented by a jar in the �gure, with the level of uid in the jar representing thetotal normalized service received by the connection during the current system-busy period. Thus,our de�nition of connection potential corresponds to the level of uid in the jar representing theconnection. The objective of a fair scheduler is then to add uid to the jars corresponding tobacklogged connections such that their uid levels stay close to each other. A GPS scheduler meetsthis objective perfectly by enabling the uid levels to rise exactly at the same rate.From Figure 2.2, it is easy to explain the intuition behind the de�nition of the system potentialfunction. The system potential can be likened to the level of uid in a separate jar that keeps trackof the global state of the system. This level is used as the reference to set the level of uid in thejar of a connection when it becomes backlogged after an idle period. The actual system-potentialfunction used determines how this reference level is determined. For example, in the case of theVirtualClock server, the jar representing the global state is being �lled at a constant rate during asystem-busy period, regardless of the distribution of packets transmitted by each connection.

10 2. Preliminaries
t1 t2 t3

A1
2

A

P1

P

W

P

W

P

2
W

2

t3t3t2t1

W1Figure 2.3: Evolution of the potential and o�ered service for two connections in the GPSmultiplexer.The concept of potentials is further illustrated with respect to a GPS scheduler in Figure 2.3.Let us assume that only two connections with rates �1 = �2 are continuously serviced for the intervalof time (t1; t2]. By the de�nition of the GPS multiplexer they are serviced with rates proportionalto the reserved, and therefore their potentials increase by exactly the same amount. During theinterval (t2; t3], no tra�c arrives for connection 2 and it is thus receiving no service. Connection 1is exclusively serviced during this interval, and its potential is increasing by the normalized serviceit receives. Tra�c from connection 2 arrives at the server again at time t3 and the two connectionsare again serviced proportional to their reservations. Since connection 2 was absent from the systemduring the interval (t2; t3] it lost some service compared to the other connection that was busy. Theservice it lost is equal to the service that the other connection received during the same interval.Connection 2 will never receive this service. We therefore see that during the interval (t2; t3] thepotential of connection 2 should increase by exactly the same amount as that of connection 1 althoughit is not in the system. Thus, when connection 2 becomes backlogged again, the potential of thetwo connections will be equal, and they will be serviced proportional to their requests. If we takeinto account this de�nition of the potential, the scheduling algorithm can be de�ned as the processthat tries to equalize the potential of all backlogged connections and adjusts the potential of theconnections when they are not in the system.The utility of the system potential function P (t) is in estimating the amount of service missed bya connection while it was idle. In an ideal server like GPS, the system potential is always equal to thepotential of the connections that are currently backlogged and are thus receiving service. However,this approach requires that all connections can receive service at the same time. In a packet-by-packet scheduler we need to relax this constraint since only one connection can be serviced at a time.In the next section we will formulate the necessary conditions that the system potential functionmust satisfy in order for the server to have zero latency.The self-clocked fair queueing (SCFQ) algorithm is a self-contained approach to estimate thesystem potential function. The potential of the system is estimated by the potential of the connectionthat is currently being serviced. Packets are transmitted in increasing order of their �nishingpotential. Consider again the example we used earlier to present the evolution of the potentialfunction in a GPS server. Assume a uid-model server based on the SCFQ algorithm. The evolutionof the potentials of the two connections is shown in Figure 2.4. The objective of the algorithm is toservice the backlogged connections in such a way that their potentials will be equalized. Therefore,if a connection has a lower potential than others it will be exclusively serviced until its potentialcatches up with the potentials of others. In Figure 2.4, connection 2 becomes backlogged again attime t3, and is assigned a potential equal to the �nishing potential of the packet being serviced,P1(t4). Thus, connection 2 will receive no service until time t4, and will be be serviced at a rate

3. Rate-Proportional Servers 11
tt1 t2 t3

A1

2
A

P1

P

W

P

W

P

2
W

2

t3t3t2t1t4 t4Figure 2.4: Evolution of the potential and o�ered service for two connections in the SCFQmultiplexer.proportional to its reservation after t4. This behavior is di�erent from that in GPS, where an idleconnection starts to receive service immediately when it becomes backlogged.The above example illustrates that, if the potential of a newly backlogged connection is estimatedhigher than the potential of the connections currently being serviced, the former may have to waitfor one packet to be transmitted from each of the other connections before it can be serviced. Thisresults in a latency that is proportional to the number of active connections. Thus, since the potentialof a newly backlogged connection is set to the system potential, the system potential should not beallowed to exceed the potential of backlogged connections to achieve zero latency in a uid server.Although we have used a uid server to illustrate this point, the concept applies to a packet-by-packet server as well. In the next section we formalize these intuitive results, and de�ne a class ofschedulers to achieve low latency.3 Rate-Proportional ServersHaving described the concept of potential, we now use it to de�ne a general class of schedulers,which we call Rate-Proportional Servers (RPS). We will �rst de�ne these schedules based on theuid model and later extend the de�nition to the packet-by-packet version. These schedulers arecharacterized by their service discipline which adjusts the instantaneous service rate to individualbacklogged connections so as to equalize their potentials. In addition, the de�nition also requires thatthe system potential P (t) be maintained at or below the potential of any backlogged connection,at every instant the server is busy. This ensures that a newly backlogged connection acquires astarting potential not higher than that of any other connection currently backlogged in the system,enabling it to receive service immediately. Thus, a rate-proportional server is a zero-latency server.However, beyond this constraint, we do not de�ne exactly how the system potential function P (t)is synthesized, giving rise to a range of possible scheduling algorithms in this class. For example,GPS and VirtualClock are rate-proportional servers, but their system-potential functions are quitedi�erent. Self-clocked fair queueing, on the other hand, is not a rate-proportional server since itdoes not meet the constraint on the system-potential function.We can now de�ne the RPS class of scheduler formally. We denote the set of backloggedconnections at time t by B(t).De�nition 5: A rate proportional server has the following properties:1. Rate �i is allocated to connection i and

12 3. Rate-Proportional ServersVXi=1 �i � rwhere r is the total service rate of the server.2. A connection potential Pi(t) is associated with each connection i in the system, describing thestate of the connection at time t. This function must satisfy the following properties:(a) When a connection is not backlogged, its potential remains constant.(b) If a connection becomes backlogged at time � , thenPi(�) = max(Pi(��); P (��)) (3.1)(c) For every time t > � , that the connection remains backlogged, the potential function ofthe connection is increased by the normalized serviced o�ered to that connection duringthe interval (�; t]. That is, Pi(t) = Pi(�) + Wi(�; t)�i (3.2)3. The system potential function P (t) describes the state of the system at time t. Two mainconditions must be satis�ed for the function P (t):(a) For any any interval (t1; t2] during a system busy period,P (t2) � P (t1) � (t2 � t1):(b) The system potential is always less than or equal to the potential of all backlogged connec-tions at time t. That is, P (t) � minj2B(t)(Pj(t)): (3.3)4. Connections are serviced at each instant t according to their instantaneous potentials as perthe following rules:(a) Among the backlogged connections, only the set of connections with the minimum potentialat time t is serviced.(b) Each connection in this set is serviced with an instantaneous rate proportional to itsreservation, so as to increase the potentials of the connections in this set at the samerate.The above de�nition speci�es the properties of the system potential function for constructing azero-latency server, but does not de�ne it precisely. In practice, the system potential function mustbe chosen such that the scheduler can be implemented e�ciently. In a following paper [14], we willdemonstrate two speci�c system-potential functions that lead to practical scheduling algorithms.GPS multiplexing is a rate-proportional server where the system potential is always equal tothe potential of the backlogged connections. Since the service rate o�ered to the connections isproportional to their reservations at every instant, the normalized service they receive during aninterval (t1; t2] is always greater than (t2�t1). Thus, the amount of service received by a connection i,backlogged during the interval (t1; t2), is given byWi(t1; t2) � �i(t2 � t1);and therefore, P (t2)� P (t1) = Pi(t2) � Pi(t1)= Wi(t1; t2)�i� t2 � t1:

3. Rate-Proportional Servers 13
21

P(t)
P (t)i

P (t)
i+1

3 4

Initially backlogged connections

Figure 3.1: An example illustrating the evolution of potential functions in a rate-proportional server.VirtualClock is a rate-proportional server as well. Consider a server where the system potentialfunction is de�ned as P (t) = t:It is easy to verify that such a server satis�es all the properties of a rate-proportional server. Considera packet-by-packet server that transmits packets in increasing order of their �nishing potentials. Sucha server is equivalent to the packet-by-packet VirtualClock server.We now proceed to show that every rate-proportional server is a zero-latency server. This willestablish that this class of servers provide the same upper-bounds on end-to-end delay as GPS. Toprove this result, we �rst introduce the following de�nitions:De�nition 6: A session-i active period is a maximal interval of time during a system busy period,over which the potential of the session is not less than the potential of the system. Any other periodwill be considered as an inactive period for session i.The concept of active period is useful in analyzing the behavior of a rate-proportional scheduler.When a connection is in an inactive period, it can not be backlogged and therefore can not bereceiving any service. On the other hand, an active period need not be the same as a backloggedperiod for the connection. Since, in a rate-proportional server, the potential of a connection canbe below the system potential only when the connection is idle, a transition from inactive to activestate can occur only by the arrival of a packet of a connection that is currently idle, whose potentialis below that of the system. A connection in an active period may not receive service throughout theactive period since a rate-proportional server services only connections with the minimum potentialat each instant. However, it always receives service at the beginning of the active period, since itspotential is set equal to the system potential at that time.We can view the evolution of the potential function as in Figure 3.1. Assume that the systempotential is always maintained below the potential of every backlogged connection. At time �1,connection i becomes active and receives all the bandwidth, trying to achieve the same potential asthe rest of the connections. At time �2 a second connection i+1 becomes active, and the service of iis temporarily suspended. The potentials of the two new connections become equal at �4; during theinterval (�3; �4], each of them receives service proportional to its reservation so that their potentialsremain equal. That is, Wi(�3; �4)�i = Wi+1(�3; �4)�i+1

14 3. Rate-Proportional ServersAt �4, the potentials of i and i+ 1 become equal to that of other connections already backlogged inthe system; therefore, from �4, all backlogged connections in the system receive service proportionalto their allocated rates. If another new connection becomes active after time �4, service to all theconnections will be suspended until the new connection reaches the same potential. In addition, ifa connection �nishes service, the instantaneous service rates of other backlogged connections willincrease because of the work-conserving nature of the scheduler. However, a connection may betemporarily suspended if it has received more than its allocated bandwidth earlier during the sameactive period.Since LR-servers are de�ned in terms of busy periods, it is necessary to establish the correspon-dence between busy periods and active periods in a rate-proportional server. We will now show thatthe beginning of a busy period is the beginning of an active period as well.Lemma 1: If � is the beginning of a session-i busy period in a rate-proportional server, then � isalso the beginning of an active period for session i.Proof: We will prove the lemma by contradiction. Assume, if possible, that time � is not thebeginning of an active period. We have two cases:Case 1: Time � belongs in inactive period. Since connection i was not busy before time � andit becomes busy at time � , a packet must have arrived. But then, the potential of the connectionwould have become equal to the system potential and thus � is the beginning of an active period.Case 2: An active period started at time �0 < � and is currently in progress. Then, for every timet 2 (�o; �], we must have Pi(t) � P (t): (3.4)During the interval (�0; �], the potential of connection i has only increased by the normalized serviceo�ered to connection i. Therefore, at any time t during the interval (�0; �],Pi(t) � Pi(�0) = Wi(�0; t)�i : (3.5)But, since �0 is the beginning of an active period,Pi(�0) = P (�0): (3.6)From equations (3.4) and (3.6), Pi(t) � Pi(�0) � P (t)� P (�0)� (t � �0): (3.7)Therefore, from equations (3.5) and (3.7),Wi(�0; t) � �i(� � �0): (3.8)Before time �0, the system was not backlogged and therefore we can write:Ai(�0; t) � Wi(�0; t) � �i(t � �0):Thus, time �0 belongs in the same busy period as any time t in the interval (�0; �]. Therefore, time� cannot be the beginning of a busy period. 2When connection i becomes active, its potential is the minimum among all backlogged connec-tions, enabling it to receive service immediately. However, if a subsequent connection j becomesactive during the busy period of connection i, then the service of i may be temporarily suspendeduntil the potentials of i and j become equal. In the following lemma, we derive a lower bound onthe amount of service received by connection i during an active period.

3. Rate-Proportional Servers 15Lemma 2: Let � be the time at which a connection i becomes active in a rate-proportional server.Then, at any time t > � that belongs in the same active period, the service o�ered to connection i isWi(�; t) � �i(t � �):Proof: Intuitively, this result asserts that the service of a backlogged connection is suspendedonly if it has received more service than its allocated rate earlier during the active period. Let usconsider any time t during the connection active period. By the de�nition of active period,Pi(t) � P (t); (3.9)and Pi(�) = P (�): (3.10)From the de�nition of rate-proportional servers we also know that,P (t)� P (�) � (t� �): (3.11)From equations (3.9), (3.10), and (3.11) we can easily conclude thatPi(t) � Pi(�) � (t� �): (3.12)During an active period, the potential of a connection is only increased by the normalized serviceo�ered to it. Therefore, Pi(t) � Pi(�) = Wi(�; t)�i� t� �: (3.13)From equations (3.12) and (3.13), Wi(�; t) � �i(t� �) (3.14)2A session busy period may actually consist of multiple session active periods. In order to provethat a rate proportional server is an LR server with zero latency, we need to prove that for everytime t after the beginning of the j-th busy period at time � ,Wi;j(�; t) � �i(t� �):The above lemmas lead us to one of our key results:Theorem 2: A rate-proportional server belongs to the class LR and has zero latency.The main argument for proving this theorem is that during inactive periods the connection isnot backlogged and is thus receiving no service. By Lemma 2, the connection can receive less thanits allocated bandwidth only during an inactive period. However, since no packets are waiting to beserviced in an inactive period, the connection busy period must have ended by then.Proof: Let us again trace the evolution of the potential function of connection i. We can splitthe busy period in intervals during which the connection is in active or inactive states. During aninactive period, the connection is not receiving any service and no packets from the connection arebacklogged in the system. We will prove the theorem by contradiction. Let us denote with t� the�rst time such that Wi(�; t�) < �i(t� � �): (3.15)Assume that t� belongs to a busy period that started at time � . We distinguish two cases:Case 1: Time t� belongs in an active period. Let us denote with ta, the time that this active periodstarted. We know from Lemma 1, that ta � � . Then, since t� > ta,Wi(�; ta) � �i(ta � �): (3.16)

16 3. Rate-Proportional ServersFrom Lemma 2, we also know that for time t� that belongs in the same active period,Wi(ta; t�) � �i(t� � ta) (3.17)From equations (3.16) and (3.17) we can conclude thatWi(�; t�) � �i(t� � �): (3.18)Case 2: Time t� is part of an inactive period. Consider time t� ��t. At this time, we know thatWi(�; t� ��t) � �i(t� ��t� �): (3.19)Since the connection is in an inactive period, there are no packets backlogged from that connection,and therefore, Wi(�; t� ��t) = Ai(�; t� ��t): (3.20)In addition, no packets were serviced from the connection in the interval (t� ��t; t�], or,Wi(�; t� ��t) = Wi(�; t�): (3.21)It is clear that no arrivals of session-i packets occurred during the interval (t� ��t; t�); if there wasan arrival during this interval, the connection would have entered an active period. Thus,Ai(�; t� ��t) = Ai(�; t�): (3.22)From equations (3.15), (3.20), (3.21), and (3.22) we can conclude thatAi(�; t�) < �i(t� � �): (3.23)This means that time t� does not belong in the same busy period as t� ��t. 2Thus, the de�nition of rate-proportional servers provides us a tool to design scheduling algorithmswith zero latency. Since both GPS and VirtualClock can be considered as rate-proportional servers,by Theorem 2, they have the same worst-case delay behavior.3.1 Packet-by-Packet Rate-Proportional ServersIn the previous section we de�ned the rate proportional servers using a uid-model, where packetsfrom di�erent connections can be served at the same time with di�erent rates. However, in a realsystem only one connection can be serviced at each time and in addition packets can not be split insmaller units. A packet-by-packet rate proportional server can be de�ned in terms of the uid-modelas one that transmits packets in increasing order of their �nishing potential. Let us assume thatwhen a packet from connection i �nishes service in the uid server, the potential of connection i isTSi. We can use this �nishing potential to timestamp packets and schedule them in increasing orderof their time-stamps. We call such a server a packet-by-packet rate-proportional server (PRPS).In the following, we denote the maximumpacket size of session i as Li and the maximum packetsize among all the sessions as Lmax.In order to analyze the performance of a packet-by-packet rate-proportional server we will boundthe di�erence of service o�ered between the packet-by-packet server and the uid-server when thesame pattern of arrivals is applied to both the servers. Let us assume that the service o�ered tosession i during the interval (�; t] by the uid server is WFi (�; t) and by the packet-by-packet serveris WPi (�; t). Let us assume that the kth packet leaves the system under the PRPS service disciplineat time tPk . The same packet leaves the RPS server at time tFk . Using a similar approach as the oneused for GPS servers [1], we can prove the following lemma:Lemma 3: For all packets in a packet-by-packet rate-proportional server,tPk � tFk + Lmaxr :

3. Rate-Proportional Servers 17Proof: The proof is very similar to that of a GPS server [1] and is given in Appendix A.If we include the partial service received by packets in transmission, the maximum lag in servicefor a session i in the packet-by-packet server occurs at the instant when a packet starts service. Letus denote with Ŵi(t1; t2) the service o�ered to connection i during the interval (t1; t2) when thispartial service is included. At the instant when the kth packet starts service in PRPS,ŴFi (0; tk) � ŴFi (0; tk � Lmaxr) + Lmax� ŴPi (0; tk) + Lmax:Thus, we can state the following corollary:Corollary 1: At any time t, ŴFi (0; t)� ŴPi (0; t) � Lmax:In order to be complete we also have to bound the amount by which the service of a session inthe packet-by-packet server can be ahead of that in the uid-server. Packets are serviced in PRPSin increasing order of their �nishing potentials. If packets from multiple connections have the same�nishing potential, then one of them will be selected for transmission �rst by the packet-by-packetserver, causing the session to receive more service temporarily than in the uid server. In order tobound this additional service, we need to determine the service that the connection receives in theuid-server. The latter, in turn, requires knowledge of the potentials the other connections sharingthe same outgoing link. We will use the following lemma to derive such an upper bound.Lemma 4: Let (0; t] be a server-busy period in the uid server. Let i be a session backlogged in theuid server at time t such that i received more service in the packet-by-packet server in the interval(0; t]. Then there is another session j, with Pj(t) � Pi(t) that received more service in the uidserver than in the packet-by-packet server during the interval (0; t].Proof: Since both servers are work-conserving, it is clear that if session i receives more servicein the packet-by-packet server, then there must be another backlogged session j that has receivedless service in the interval (0; t]. We only need to prove that Pj(t) � Pi(t) for one such session j.We will distinguish two cases:Case 1: Session i has the maximumpotential in the uid server at time t. In this case Pj(t) � Pi(t)for every session j.Case 2: There are other sessions at time t with potentials higher than that of i. Let S be the setof sessions with potentials higher than Pi(t) at time t. Then, by the de�nition of rate-proportionalservers, these connections are not receiving service at time t in the uid server. Let � be the mostrecent time when a session from the set S was in service in the uid server. Then, during the interval(�; t], none of the connections in the set S were serviced by the uid server. Thus we can writeŴFk (�; t) � ŴPk (�; t) 8k 2 S: (3.24)Furthermore, the current session i was not backlogged in the uid-server just before time � ; otherwise,a connection from the set S would not have been serviced just before � . Therefore,ŴFi (0; �) � ŴPi (0; �) (3.25)But we also know, that at time t connection i has received more service in the packet-by-packetserver than in the uid server. Thus, ŴFi (0; t) < ŴPi (0; t) (3.26)Subtracting eq.(3.25) from eq.(3.26), ŴFi (�; t) < ŴPi (�; t) (3.27)

18 3. Rate-Proportional ServersThat is, during the interval (�; t] connection i received more service in the packet-by-packet serverthan in the uid server. Similarly, during the interval (�; t] all connections in set S received moreor equal service in the packet-by-packet server than in the uid server. Since both servers are workconserving, there must exist at least one connection j that during the same interval (�; t] receivedmore service in the uid server than in the packet-by-packet server. That is,ŴFj (�; t) > ŴPj (�; t) (3.28)Notice also that this connection does not belong in the set S and therefore it can only have potentialPj(t) � Pi(t). Notice also, that connection j became backlogged in the uid server at or after time� . Therefore, ŴFj (0; �) � ŴPj (0; �) (3.29)By adding eq.(3.28) and eq.(3.29), ŴFj (0; t) > ŴPj (0; t) (3.30)2We will now use the above lemma and a method similar to the one presented in [16] for the WFQserver to �nd an upper bound for the amount of service a session may receive in PRPS as comparedto that in the uid server.Lemma 5: At any time t,ŴPi (0; t)� ŴFi (0; t) � min((V � 1)Lmax; �i max1�n�V (Ln�n))Lemma 5 establishes two distinct upper bounds for the excess service received by a session inthe packet-by-packet server. We will provide some intuition on these bounds and refer the reader toAppendix A for a formal proof. Consider any session i, backlogged in both servers. By Lemma 3,any backlogged session in the packet-by-packet server may lag in service by as much as Lmax fromthe uid server. Thus, in an extreme case, every backlogged session excluding i may be lagging inservice by Lmax in the packet-by-packet server. Since the server is work-conserving, session i cantherefore be ahead in the packet-by-packet server by as much as (V �1)Lmax, where V is the numberof sessions sharing the outgoing link.The bound of (V � 1)Lmax may be too loose in many cases. The second bound in the lemmaprovides a much tighter bound in those cases. To illustrate this bound, let us assume thatLi�i = max1�n�V (Ln�n):Assume two packets arrive at the server simultaneously, one from session i and the other from asecond session j. Assume that the packets are assigned the same �nishing potential. If the packetsstart service in the uid server at time t, they also �nish service simultaneously at time t + Li=�i.If the packet-by-packet transmits the session-j packet �rst, the service received by session j in thepacket-by-packet server can be ahead by �Li�i � �j . This reasoning gives rise to the second upper-bound of Lemma 5. The complete proof can be found in Appendix A.3.2 Delay AnalysisBased on the bounds on the discrepancy between the service o�ered by the packet-by-packetserver and that by the uid server at any time during a session busy period, we can bound theperformance of the PRPS system using the worst-case performance of the uid-system. Thus, wewill now prove that a packet-by-packet rate proportional server is an LR-server and estimate itslatency.

4. Fairness of Rate-Proportional Servers 19Let us assume that a packet from connection i leaves the PRPS system at time tP and theuid-system at time tF . Then, by Lemma 3,tPk � tFk + Lmaxr :For the analysis of a network of LR servers it is required that the service is bounded for any timeafter the beginning of a busy period. In addition, we can only consider that a packet left thepacket-by-packet server if all of its bits have left the server. These requirements are necessary inorder to provide accurate bounds for the tra�c burstiness inside the network. Therefore, just beforetime tP + Lmaxr the whole packet has not yet departed the packet-by-packet server. Let Li be themaximum packet size of connection i. The service o�ered to connection i in the packet-by-packetserver will be equal to the service o�ered to the same connection in the uid server until time tP ,minus this last packet. Therefore, the service received by session i during the jth busy period in thepacket-by-packet server is given byWPi;j(�; t) � WFi;j(�; t� Lmaxr) � Li� max(0; �i(t � � � Lmaxr) � Li); by Theorem 2� max(0; �i(t � � � Lmaxr � Li�i)) (3.31)Hence, we can state the following corollary:Corollary 2: A packet-by-packet rate proportional server is an LR server and its latency isLmaxr + Li�i :Note that this latency is the same as that of WFQ. Thus, any packet-by-packet rate-proportionalserver has the same upper bound on end-to-end delay and bu�er requirements as those of WFQ whenthe tra�c in the session under observation is shaped by a leaky bucket.Although all servers in the RPS class have zero latency, their fairness characteristics can bewidely di�erent. Therefore, we take up the topic of fairness in the next section and derive boundson the fairness of rate-proportional servers.4 Fairness of Rate-Proportional ServersIn our de�nition of rate-proportional servers, we speci�ed only the conditions the system potentialfunction must satisfy to obtain zero latency, but did not explain how the choice of the actual functiona�ects the behavior of the scheduler. The choice of the system-potential function has a signi�cantinuence on the fairness of service provided to the sessions. In the last section, we showed that abacklogged session in a rate-proportional server receives an average service over an active period atleast equal to its reservation. However, signi�cant discrepancies may exist in the service providedto a session over the short term among scheduling algorithms belonging to the RPS class. Thescheduler may penalize sessions for service received in excess of their reservations at an earlier time.Thus, a backlogged session may be starved until others receive an equivalent amount of normalizedservice, leading to short-term unfairness.Since, in a uid-model rate-proportional server, backlogged connections are serviced at the samenormalized rate in steady state, unfairness in service can occur only when an idle connection becomesbacklogged. If the estimated system potential at that time is far below that of the backloggedconnections, the new connection may receive exclusive service for a long time until its potentialrises to that of other backlogged connections. This behavior can be illustrated with respect tothe VirtualClock algorithm. The system potential in VirtualClock grows at the rate of real time,regardless of the potentials of the sessions in the system. Thus, the potential of a connection receiving

20 4. Fairness of Rate-Proportional Serversmore service than its reserved rate will continue to diverge from the system potential. Should anidle connection become active later, the connection that received the excess service will be penalizedseverely. This shows that, to avoid short-term unfairness, the system potential should be maintainedclose to that of backlogged connections receiving service. We will formalize this idea and show that ifthe di�erence between the system potential and those of individual backlogged sessions is bounded,the unfairness is also bounded.In VirtualClock, the di�erence between the system potential and the potential of individualbacklogged connections cannot be bounded. Thus, the unfairness is also not bounded. This can beseen as a result of the scheduler performing an averaging process on the rate of normalized serviceprovided to individual sessions. In VirtualClock, the averaging interval can be arbitrarily long.The GPS scheduler, on the other hand, occupies the opposite extreme where no memory of pastbandwidth usage of connections is maintained. Every backlogged connection has the same potentialat all times in a GPS server, giving rise to its ideal fairness behavior. In practice, the schedulingalgorithm must trade o� short-term unfairness with other desirable properties such as low latencyand ease of implementation.The ideal fairness behavior of GPS is compromised in self-clocked fair queueing, but the di�erencein potentials is still bounded. Therefore, SCFQ can be considered as a fair scheduling algorithm.However, SCFQ is not a rate-proportional server as it allows the system potential to exceed that ofa backlogged connection, resulting in worse delay behavior.There is no common accepted method for estimating the fairness of a scheduling algorithm. Ingeneral, we would like the system to always serve connections proportional to their reservationsand never penalize connections for bandwidth they received earlier, The measure of fairness thatwe will use is an extension of the de�nition presented for SCFQ [12]. Let us assume that at time� two connections i; j become greedy, requesting an in�nite amount of bandwidth. Thus, the twoconnections will be continuously backlogged in the system after time � . A scheduler is consideredas fair if the di�erence in normalized service o�ered to the two connections i; j during any intervalof time (t1; t2] after time � is bounded. That is,�����Ŵi(t1; t2)�i � Ŵj(t1; t2)�j ����� � FR; (4.1)where FR < 1 is a measure of the fairness of the algorithm. Note that the requirement of anin�nite supply of packets from sessions i and j arises because we require the two sessions to bebacklogged at every instant after � in each of the schedulers we study. Since, for the same arrivalpattern, the backlogged periods of individual sessions can vary across schedulers, a comparison offairness of di�erent scheduling algorithms can yield misleading results without this condition. Whenthe connections have an in�nite supply of packets after time � , they will be continuously backloggedin the interval (t1; t2] irrespective of the scheduling algorithm used. Thus, to compare the fairnessof di�erent schedulers, we can analyze each of the schedulers with the same arrival pattern anddetermine the di�erence in normalized service o�ered to the two connections in a speci�ed intervalof time.Let us denote with �P , the maximumdi�erence between the system potential and the potentialof the connections being serviced in a rate-proportional server. The following theorem formalizesour basic result on the fairness properties of rate-proportional servers.Theorem 3: If the system potential function in a rate-proportional server never lags behind morethan a �nite amount �P from the potential of the connections that are serviced in the system, thedi�erence in normalized service o�ered to any two connections during any interval of time that theyare continuously backlogged is also bounded by �P . That is, if �P <1, then for all i; j 2 B(t1; t2)during the interval (t1; t2], �����Ŵi(t1; t2)�i � Ŵj(t1; t2)�j ����� � �P:

5. Conclusions 21A proof of this theorem is given in Appendix A. The theorem applies to the uid system. A realsystem can only use a packet-by-packet rate-proportional server. We will now expand the abovetheorem to prove that a similar relationship holds for the packet-by-packet version of the algorithm.Let us de�ne Ci as Ci = min((V � 1)Lmax�i ; max1�n�V (Ln�n))That is, Ci is the maximum normalized service that a connection can receive over any interval inthe packet-by-packet server in excess of that o�ered by the uid-server.Theorem 4: Let i and j be two connections that became greedy at time � in a packet-by-packetrate-proportional server. The following bound holds for every time interval (t1; t2] after time � .�����Ŵj(t1; t2)�j � Ŵi(t1; t2)�i ����� � max(�P + Cj + Lmax�i + Lj�j ;�P + Ci + Lmax�j + Li�i) (4.2)Appendix A contains a proof of this theorem. Since Weighted Fair Queueing is a packet-by-packet rate proportional server with �P = 0, we obtain the following result on the fairness of aWFQ scheduler by setting �P = 0 in Eq. (4.2).Corollary 3: For a WFQ scheduler,�����Ŵj(t1; t2)�j � Ŵi(t1; t2)�i ����� � max(Cj + Lmax�i + Lj�j ; Ci + Lmax�j + Li�i)It can be shown that the above bound is tight. For example, consider the case where connectionsi; j are already backlogged in the system, at time � . Then, connection j may have received anadditional amount of service equal to Ci in the WFQ server and connection i may have receivedless service equal to Lmax in the WFQ server compared to the GPS server. The �nishing potentialof the last packet serviced from connection i before a packet is serviced from connection j may beFi � Pj(�) +Ci + Li�i . The total normalized service that connection i may receive while connectionj is waiting is bounded by Cj + Lj�j + Lmax�i .5 ConclusionsIn this paper we developed the framework of rate-proportional servers (RPS) for designing sched-ulers with low latency and bounded unfairness. Fundamental to the de�nition of rate-proportionalservers is the system-potential function that maintains the global state of the system by trackingthe service o�ered by the system to all connections sharing the outgoing link. Similarly, the state ofeach connection is represented by a connection potential function. In a packet-by-packet server, thesystem potential and connection potentials provide the basis for computing a timestamp for eacharriving packet. Packets are then transmitted in increasing order of their timestamps. We de�nedthe necessary properties the system potential function must satisfy for the server to provide a delaybound, burstiness and bu�er requirements identical to that of Weighted Fair Queueing.Besides providing valuable insight into the behavior of scheduling algorithms, the RPS model isuseful in the design of practical scheduling algorithms. This fact is illustrated in the sequel to thispaper [14], where we present two practical algorithms belonging to the RPS class, with applicationin both general packet networks and in ATM networks. Note that the fundamental di�culty indesigning a practical rate-proportional server is the need to maintain the system potential function.Tracking the global state of the system precisely requires simulating the corresponding uid-modelRPS in parallel with the packet-by-packet system. The algorithms in [14], however, avoid this needby maintaining the system potential only as an approximation of the actual global state in theuid model, and re-calibrating the system potential periodically to correct any discrepancies. Inthe Frame-based Fair Queueing algorithm this re-calibration is done at frame boundaries, while inStarting Potential-based Fair Queueing (SPFQ) the re-calibration occurs at packet boundaries. This

22 Referencesgives rise to two algorithms with the same delay bound, but with slightly di�erent fairness properties.Both algorithms, however, provided bounded unfairness and O(1) timestamp computations.It is hoped that the RPS framework will lead to the development of other algorithms in thefuture. Further work will include the analysis of rate-proportional servers under probabilistic inputtra�c models, such as the exponentially-bounded-burstiness model [17].References[1] A. K. Parekh and R. G. Gallager, \A generalized processor sharing approach to ow control |the single node case," in Proc. IEEE INFOCOM '92, vol. 2, pp. 915{924, May 1992.[2] A. Demers, S. Keshav, and S. Shenker, \Analysis and simulation of a fair queueing algorithm,"Internetworking: Research and Experience, vol. 1, no. 1, pp. 3{26, 1990.[3] L. Zhang, \VirtualClock: a new tra�c control algorithm for packet switching networks," ACMTransactions on Computer Systems, vol. 9, pp. 101{124, May 1991.[4] D. Ferrari and D. Verma, \A scheme for real-time channel establishment in wide-area networks,"IEEE Journal on Selected Areas in Communications, vol. 8, pp. 368{379, April 1990.[5] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, \Weighted round-robin cell multiplexingin a general-purpose ATM switch chip," IEEE Journal on Selected Areas in Communications,vol. 9, pp. 1265{79, October 1991.[6] M. Shreedhar and G. Varghese, \E�cient fair queueing using de�cit round robin," in Proc. ACMSIGCOMM '95, pp. 231{242, September 1995.[7] C.Kalmanek,H.Kanakia, and S. Keshav, \Rate-controlled servers for very high-speed networks,"in Proc. IEEE Global Telecommunications Conference, pp. 300.3.1{300.3.9, December 1990.[8] S. Golestani, \A framing strategy for congestion management," IEEE Journal on Selected Areasin Communications, vol. 9, pp. 1064{1077, September 1991.[9] D. Verma, D. Ferrari, and H. Zhang, \Guaranteeing delay jitter bounds in packet switchingnetworks," in Proc. Tricomm 91, pp. 35{43, April 1991.[10] H. Zhang and S. Keshav, \Comparison of rate-based service disciplines," in Proc. ACM SIG-COMM '91, pp. 113{122, 1991.[11] J. Davin andA. Heybey, \A simulationstudy of fair queueing and policy enforcement,"ComputerCommunication Review, vol. 20, pp. 23{29, October 1990.[12] S. Golestani, \A self-clocked fair queueing scheme for broadband applications," in Proc. IEEEINFOCOM '94, pp. 636{646, April 1994.[13] D. Stiliadis and A. Varma, \Latency-Rate servers: A general model for analysis of tra�cscheduling algorithms," in Proc. IEEE INFOCOM '96, pp. 111{119, March 1996.[14] D. Stiliadis and A. Varma, \E�cient fair-queueing algorithms for ATM and packet networks,"submitted to IEEE/ACM Transactions on Networking, April 1996.[15] J. Turner, \New directions in communications (or which way to the information age?)," IEEECommunications, vol. 24, pp. 8{15, October 1986.[16] J. Rexford, A. Greenberg, and F. Bonomi, \A fair leaky-bucket shaper for ATM networks."unpublished report, AT&T Bell Laboratories, 1995.[17] O. Yaron and M. Sidi, \Performance and stability of communication networks via robust expo-nential bounds," IEEE/ACM Transactions on Networking, vol. 1, pp. 372{385, June 1993.

References A.1Appendix AProof of Lemma 3Assume that a system-busy period starts in both servers at time 0. Let the packets transmittedby the PRPS system during the system-busy period be numbered 1; 2; : : :; k; : : : in their order oftransmission. Since both servers are work-conserving, the system-busy period must end in both atthe same time. However, the order in which the last bit of packets leave the system in the uidserver can be di�erent from that in the packet-by-packet server because multiple packets can be inservice at the same time in the former. Therefore, we need to consider two cases:Case 1: The last bits of packets 1; 2; : : :; k � 1 left the uid server before the last bit of the kthpacket. Then, the time of departure of the last bit of the kth packet in the uid server, denoted bytFk , must satisfy tFk � 1r kXj=1Lj ; (A.1)where Lj is the size of the jth packet and r the service rate on the outgoing link.The corresponding departure time of the last bit of the kth packet in the packet-by-packet serveris given by tPk = 1r kXj=1Lj : (A.2)From (A.1) and (A.2), tPk � tFk : (A.3)Case 2: Now consider the case when one or more of the packets 1; 2; : : :; k � 1 were still in servicein the uid server when the last bit of the kth packet left the server. Among this set of packets,let the packet with the largest index be the mth packet, m < k, with a length of Lm. This packetleft the packet-by-packet server at time tPm and started transmission at LPm � Lmr . At this point,packets m + 1;m + 2; : : : ; k had not arrived in the system; if they had, they would have receivedtimestamps lower than that of packet m, and therefore would have been serviced earlier than m inthe packet-by-packet server. Also, the packets m + 1;m + 2; : : : ; k were serviced completely in theuid server before packet k left the system.Since packets m+ 1;m+ 2; : : : ; k were serviced completely during the interval (tPm � Lmr ; tFk], wemust have tFk � (tPm � Lmr) � 1r kXj=m+1Lj ;or, tFk � tPm + 1r kXj=m+1Lj � Lmr : (A.4)But, tPk = tPm + 1r kXm+1Lj : (A.5)From (A.4) and (A.5), and noting that Lm � Lmax,tPk � tFk + Lmaxr : (A.6)Thus, combining (A.3) and (A.6), we get the upper bound astPk � tFk + Lmaxr : 2

A.2 ReferencesProof of Lemma 5Both RPS and PRPS are work-conserving servers. Let us assume that a connection i has receivedmore service in the packet-by-packet server than in the uid-server. In the worst case, every otherbacklogged session may have received less service in the former. By Lemma 3, any backlogged sessionin the packet-by-packet server may lag in service by as much as Lmax from the uid server. Thus,in an extreme case, every backlogged session excluding i may be lagging in service by Lmax in thepacket-by-packet server. Since the servers are work-conserving, session i must be ahead in servicein the packet-by-packet server by an amount equal to the total lag of all other sessions. That is,ŴPi (0; t)� ŴFi (0; t) � (V � 1)Lmax:A tighter bound may be obtained in some cases. Let us denote with tki the time a packet k fromsession i �nishes service in the PRPS system. The maximum di�erence in service seen by session ibetween the two servers will occur at time tki . Let Lki denote the size of packet k. This packetstarted service in the PRPS system at time �ki = tki � Lkir . We will distinguish two cases for the time�ki .Case 1: ŴPi (0; �ki) � ŴFi (0; �ki): Then we can writeŴPi (0; tki) = ŴPi (0; �ki) + Lki� ŴFi (0; �ki) + Lki� ŴFi (0; tki) + Lki� ŴFi (0; tki) + �i max1�n�V (Ln�n): (A.7)The last inequality follows from the fact thatLki�i � max1�n�V (Ln�n):Case 2: ŴPi (0; �ki) > ŴFi (0; �ki): Let F ki be the �nishing potential of packet k of session i in theuid server. Pi(tki) is the potential of session i in the uid server at time tki . Then, at tki , session iwill have to receive an additional amount of service at maximum �i(F ki � P (tki)) in the uid serverto catch up with the potential in the packet-by-packet server. Thus,ŴPi (0; tki) � ŴFi (0; tki) � �i(F ki � Pi(tki))� �i(F ki � Pi(�ki)); since Pi(tki) � Pi(�ki). (A.8)At time �ki , session i has received less service in the uid server as compared to the packet-by-packetserver. Therefore, by Lemma 4, there is another session j, with potential Pj(�ki) � Pi(�ki) that hasreceived more service in the uid server. Let the last packet serviced from this session at time �ki inthe uid server be the mth packet. Let Smj and Fmj denote the potentials of session j in the uidserver when this packet begins and ends service, respectively. Then, Smj � Pj(�ki). Since the packethas not completed service in the packet-by-packet server, Fmj � F ki . Thus, we havePi(�ki) � Pj(�ki) � Smj ; (A.9)and F ki � Fmj : (A.10)Substituting for F ki and Pi(tki) in Eq. (A.8) from equations (A.10) and (A.9), respectively,ŴPi (0; tki) � ŴFi (0; tki) � �i(Fmj � Smj)� �iLj�j� �i max1�n�V (Ln�n): (A.11)This completes the proof of Lemma 5. 2

References A.3Proof of Theorem 3Consider time t1. Without loss of generality, let us assume that at time t1, Pj(t1) > Pi(t1). Sinceconnection i is backlogged Pi(t1) � P (t1): (A.12)We also know that Pj(t1) � P (t1) + �P: (A.13)Since both sessions are backlogged in the interval (t1; t2], their potentials in this interval haveincreased only by the normalized service o�ered to the two connections. Therefore,Pi(t2)� Pi(t1) = Wi(t1; t2)�i ; (A.14)and Pj(t2) � Pj(t1) = Wj(t1; t2)�j : (A.15)At time t2, the potential of connection i can not be more than that of connection j. Let us denotetheir di�erence with x. Then, x = Pj(t2) � Pi(t2) � 0: (A.16)From equations (A.12),(A.14), and (A.16),Wi(t1; t2)�i � Pj(t2)� P (t1)� x: (A.17)Similarly, from equations (A.13) and (A.15),Wj(t1; t2)�j � Pj(t2) � P (t1) ��P: (A.18)From equations (A.17) and (A.18) we can easily conclude thatWi(t1; t2)�i � Wj(t1; t2)�j � �P � x � �P: (A.19)If Pj(t1) < Pi(t2), we can derive in the same way thatWj(t1; t2)�j � Wi(t1; t2)�i � �P: (A.20)Therefore, jWi(t1; t2)�i � Wj(t1; t2)�j j � �P: (A.21)Thus, if �P is �nite, the di�erence in normalized service o�ered to any two backlogged connectionsis also bounded.Proof of Theorem 4Let us assume that after time � both connections i; j have an in�nite supply of packets. Withoutloss of generality, let Ŵi(t1; t2)�i � Ŵj(t1; t2)�j ; (A.22)for a time interval (t1; t2] with � � t1 < t2.

A.4 ReferencesIn order to provide tight bounds on the fairness of the algorithm we need to de�ne the potentialfunction of the packet-by-packet server. Thus, let us denote with ai(t) the potential of connectioni at time t on the packet-by-packet server. Note that the function ai(t) is de�ned in terms of thepotential of the connection in the uid server. That is, a connection misses the same amount ofservice in both the uid server and the packet server while it is absent. The only di�erence is that,when the connection becomes backlogged, its potential in the packet is increased only when a packetof that connection is transmitted. Let Pi(t) represent the potential of connection i in the uid serveras usual.We know that, after time � both connections have an in�nite supply of packets. Thus, thepotential of both connections in the uid server is only increased by the normalized service o�eredto them. For the service o�ered to connection i in the interval (t1; t2] we can write:Ŵi(t1; t2)�i � max(ai(t2) � Pi(t1)) + Lmax�i (A.23)If the potential of connection i at time t2 is greater than Pi(t1), then the normalized service o�eredto connection i during the interval (t1; t2] is equal to the increase in potential after time t1 plus theamount of service that connection i received more in the uid-server compared to the packet-by-packet server until time t1. If on the other hand, the potential of connection i in the packet-by-packetserver is less than Pi(t1), then the packets that were serviced after time t1 in the uid-server havenot yet been serviced in the packet-by-packet server. Thus, the only service o�ered from the packet-by-packet server to connection i, has already been o�ered to the uid-server before time t1. Thisservice is always bounded by Lmax. Similarly for connection j we can write:Ŵj(t1; t2)�j � max(aj(t2)� Pi(t1))� Cj (A.24)Notice that connection j may have received more service in the packet-by-packet server than theuid-server until time t1. But we also know, that the di�erence in potentials between connections iand j is bounded by �P at time t1. That is,jPi(t1) � Pj(t1)j � �P (A.25)Finally, since we assumed that connection i has received more normalized service, and from thede�nition of the packet-by-packet rate-proportional serversai(t2) � aj(t2) + Lj�j (A.26)Combining Equations (A.23),(A.24),(A.25), and (A.26),Ŵi(t1; t2)�i � Ŵj(t1; t2)�j � �P +Cj + Lmax�i + Lj�j (A.27)Similarly, if connection j received more normalized service in the interval (t1; t2] we can write:Ŵj(t1; t2)�j � Ŵi(t1; t2)�i � �P + Ci + Lmax�j + Li�i (A.28)From Equations (A.27),(A.28) we can conclude thatjŴj(t1; t2)�j � Ŵi(t1; t2)�i j � max(�P +Cj + Lmax�i + Lj�j ;�P +Ci + Lmax�j + Li�i) (A.29)2

