Rate-Proportional Servers:
A Design Methodology for
Fair Queueing Algorithms

Dimitrios Stiliadis

Anujan Varma

UCSC-CRL-95-58
December 1995

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

Weighted Fair Queueing is considered as the ideal traffic scheduling algorithm in terms
of its delay and fairness properties. Timestamp computations in a Weighted Fair Queueing
scheduler serving N sessions have a time complexity of O(N) per packet-transmission time,
making its implementation difficult. Efforts in the past to simplify the implementation of
Weighted Fair Queueing, such as Self-Clocked Fair Queueing, have resulted in degrading
its isolation properties, thus affecting the delay bound. In this paper we present a class
of scheduling algorithms — called Rate-Proportional Servers (RPS) — with bounds on
end-to-end delays, buffer requirements and internal traffic burstiness equal to those of
Weighted Fair Queueing. This class of algorithms is based on the notion of the potential
associated with each connection sharing the same outgoing link, as well as, the system
potential that tracks the progress of work in the system. We show that, depending on
the implementation, different algorithms in the RPS class may have significantly different
fairness properties. Network designers can use this methodology to implement efficient fair-
queueing algorithms, balancing their fairness with implementation complexity. This work
1s completed in the sequel of this paper, where we present detailed implementations of two
novel traffic scheduling algorithms with O(1) timestamp computations, that exhibit the
same delay and fairness properties as those of Weighted Fair Queueing.

Keywords: Packet scheduling, ATM switch scheduling, fair queueing, delay bounds,
fairness.

This research is supported by the NSF Young Investigator Award No. MIP-9257103. A part of this paper will
appear in the Proceedings of ACM SIGMETRICS 96.

CONTENTS 1

Contents
Introduction L 3
Preliminaries L e 5
2.1 Definitions and Notations 5
2.2 Potential Functions 8
3 Rate-Proportional Servers L 11
3.1 Packet-by-Packet Rate-Proportional Servers 16
3.2 Delay Analysis 18
4 Fairness of Rate-Proportional Servers 19
5 Conclusions e e 21

References 22

LIST OF FIGURES

List of Figures

2.1
2.2
2.3
2.4

3.1

Intervals (t1,%2] and (t3,%4] are two different busy periods. 6
Ilustration of the concept of potentials. 9
Evolution of the potential and offered service for two connections in the GPS multiplexer. 10
Evolution of the potential and offered service for two connections in the SCFQ

multiplexer. 11
An example illustrating the evolution of potential functions in a rate-proportional

SETVET. . .t v v v i e e e e e e e 13

1. Introduction 3

1 Introduction

Many future applications of computer networks such as distance education, remote collaboration,
and teleconferencing will rely on the ability of the network to provide Quality-of-Service (QoS) guar-
antees. These guarantees are usually in the form of bounds on end-to-end delay, bandwidth, delay
jitter (variation in delay), packet loss rate, or a combination of these parameters. QoS guarantees can
be provided both in conventional packet networks and in broadband ATM (Asynchronous Transfer
Mode) networks by the use of proper packet scheduling algorithms in the switches (or routers).

The function of a scheduling algorithm is to select, for each outgoing link of the switch, the packet
to be transmitted in the next cycle from the available packets belonging to the flows sharing the
output link. Implementation of the algorithm may be in hardware or software. In ATM networks,
where information 1s transmitted in terms of small fixed-size cells, the scheduling algorithm must
usually be implemented in hardware within an ATM switch. In a packet network with larger packet-
sizes, such as the current Internet, the algorithm can be implemented in software.

Several service disciplines are known in the literature for bandwidth allocation and transmis-
sion scheduling in output-buffered switches. In general, schedulers can be characterized as work-
conserving or non-work-conserving. A scheduler is work-conserving if the server is never idle when a
packet is buffered in the system. Examples of work-conserving schedulers include Generalized Pro-
cessor Sharing (GPS) [1], Weighted Fair Queueing [2], VirtualClock [3], Delay-Earliest-Due-Date
(Delay-EDD) [4], Weighted Round Robin [5], and Deficit Round Robin [6]. On the other hand,
Hierarchical-Round-Robin (HRR) [7], Stop-and-Go queueing [8], and Jitter-Earliest-Due-Date [9]
are non-work-conserving schedulers.

Another classification of schedulers is based on their internal structure [10]. According to this
classification there are two main architectures: sorted-priority and frame-based. In a sorted-priority
scheduler, there is a global variable — usually referred to as the virtual time — associated with each
outgoing link of the switch. Each time a packet arrives or gets serviced, this variable is updated. A
timestamp, computed as a function of this variable, is associated with each packet in the system.
Packets are sorted based on their timestamps, and are transmitted in that order. VirtualClock,
Weighted Fair Queueing, and Delay-EDD follow this architecture. Two factors determine the
implementation complexity of all sorted-priority algorithms: First, the complexity of updating the
priority list and selecting the packet with the highest priority is O(log V') where V is the number of
connections sharing the outgoing link. The second is the complexity of calculating the timestamp
associated with each packet; this factor depends on the algorithm. For example, maintaining the
virtual time in Weighted Fair Queueing requires the processing of a maximum of V events during
the transmission of a single packet, whereas timestamps in VirtualClock can be calculated in O(1)
time.

In a frame-based scheduler, time is split into frames of fixed or variable length. Reservations of
sessions are made in terms of the maximum amount of traffic the session is allowed to transmit during
a frame period. Hierarchical Round Robin and Stop-and-Go Queueing are frame-based schedulers
that use a constant frame size. As a result, the server may remain idle if sessions transmit less
traffic than their reservations over the duration of a frame. In contrast, Weighted Round Robin and
Deficit Round Robin schedulers allow the frame size to vary, subject to a maximum. Thus, if the
traffic from a session is less than its reservation, a new frame can be started early. Therefore, both
of these schedulers are work-conserving.

A traffic scheduling algorithm must possess several desirable features to be useful in practice:

1. Isolation of flows: The algorithm must 1solate an end-to-end session from the undesirable effects

of other (possibly misbehaving) sessions. That is, the algorithm must be able to maintain the
QoS guarantees for a session even in the presence of other misbehaving flows. Note that
isolation is necessary even when policing mechanisms are used to shape the flows at the entry
point of the network, as the flows may accumulate burstiness within the network.

2. Low end-to-end delays: The algorithm must provide end-to-end delay guarantees for individual
sessions. In particular, it is desirable that the end-to-end delay bound of a session depends
only on the parameters of the session, such as its bandwidth reservation, and is independent

4 1. Introduction

of the behavior of other sessions. A higher end-to-end delay bound usually implies a higher
level of burstiness at the output of the scheduler, and consequently requires larger buffers in
the switches to avoid packet loss. Therefore, the delay bound affects not only the end-to-end
behavior of the session, but also the amount of buffering needed in the switches.

3. Utilization: The algorithm must utilize the link bandwidth efficiently.

4. Fairness: The available link bandwidth must be divided among the connections sharing the
link in a fair manner. Two algorithms with the same maximum delay guarantee may have
significantly different fairness characteristics. An unfair scheduling algorithm may offer widely
different service rates to two connections with the same reserved rate over short intervals.

5. Simplicity of implementation: The scheduling algorithm must have a simple implementation.
In an ATM network, the available time for completing a scheduling decision is very short. At
SONET OC-3 speeds the transmission time of an cell is less than 3 ps. For higher speeds
the available time is even less. This forces a hardware implementation. In packet networks
with larger packet sizes and/or lower speeds, a software implementation may be adequate, but
scheduling decisions must still be made at a rate close to the arrival rate of packets.

6. Scalability: The algorithm must perform well in switches with a large number of connections,

as well as over a wide range of link speeds.

Based only on the delay and fairness properties, Generalized-Processor-Sharing (GPS) is an ideal
scheduling discipline [1]. GPS multiplexing is defined with respect to a fluid-model, where packets
are considered to be infinitely divisible. The share of bandwidth reserved by session 7 is represented
by a real number ¢;. Let B(r,t) be the set of connections that are backlogged in the interval (r,1].
If r is the rate of the server, the service W;(r,t) offered to a connection ¢ that belongs in B(r,t) is
proportional to ¢;. That is,

Wi(r,t) > Lr(t - 7).
ZjEB(T,t) ¢J
The minimum service that a connection can receive in any interval of time is
7‘/@ r(t — 1),
Zj:l ®;

where V' is the maximum number of connections that can be backlogged in the server at the same
time. Thus, GPS serves each backlogged session with a minimum rate equal to its reserved rate at
each instant; in addition, the excess bandwidth available from sessions not using their reservations
is distributed among all the backlogged connections at each instant in proportion to their individual
reservations. This results in perfect 1solation, ideal fairness, and low end-to-end session delays.

A packet-by-packet version of the algorithm, known as PGPS or Weighted Fair Queueing [2],
was defined in terms of a virtual clock that is increased with rate equal to

1
ZiEB(T,t) QSZ .

A GPS system is simulated in parallel with the packet-by-packet system in order to identify the set
of connections that are backlogged at each time. The virtual time v(t) is a piecewise linear function
of the real time ¢, and its slope changes depending on the number of busy sessions and their service
rates. At the arrival of a new packet, the virtual time must be calculated first. Then, the time-stamp
T'S; associated with the kth packet of virtual channel ¢ is calculated as:

L

TSF max(TSf_l, v(t)) + 5

where L is the size of the kth packet.
A maximum of V events may be triggered in the GPS simulator during the transmission of one

packet. Thus, the process overhead for completing a scheduling decision is O(V'). In order to reduce
this complexity, an approximate implementation of GPS multiplexing was proposed in [11] and was

2. Preliminaries 5

later analyzed in [12] under the name Self-Clocked Fair Queueing (SCFQ). In this implementation,
the timestamp of an arriving packet is computed based on the packet currently in service. Thus, if
T'Seyr denotes the timestamp of the packet in service, and if the new packet is the kth packet of
session i, the timestamp of the new packet is calculated as

TSf — max(TSCW,TSf_l) + é
2

This approach reduces the complexity of the algorithm greatly. However, the price paid is the
reduced level of isolation among the sessions, causing the end-to-end delay bounds to grow linearly
with the number of sessions that share the outgoing link [13]. Thus, the worst-case delay of a
session can no longer be controlled just by controlling its reservation, as is possible in Weighted
Fair Queueing (WFQ). The higher end-to-end delay also affects the burstiness of sessions within
the network, increasing the buffer requirements. The VirtualClock scheduling algorithm provides
the same end-to-end delay and burstiness bounds as WFQ with a simple timestamp computation
algorithm, but the price paid is in terms of fairness. A backlogged session in the VirtualClock server
can be starved for an arbitrary period of time as a result of excess bandwidth it received from the
server when other sessions were idle [1].

A scheduling algorithm that combines the delay and burstiness behavior of Weighted Fair Queue-
ing, simple timestamp computations, and bounded unfairness, has so far remained elusive. The
objective of our work is to develop an analytical framework for the design of such algorithms, sys-
tematically analyze its properties, and present scheduling algorithms based on this framework that
have simple and efficient implementations.

Thus, in this paper we present a broad class of schedulers, that we call Rate-Proportional Servers
(RPS). Schedulers in the RPS class offer the same end-to-end delay and burstiness bounds as WFQ.
Since the class of rate-proportional servers is based on a general definition, multiple algorithms with
the same properties but with different implementation complexities may be designed. Depending on
their design, schedulers in the RPS class may have substantially different fairness properties. It is
shown that both GPS, an algorithm with ideal fairness, and a fluid-model equivalent of VirtualClock,
an unfair algorithm, are members of the RPS class.

This work is completed in the sequel to this paper [14], where two novel traffic scheduling
algorithms in the RPS class, called Frame-based fair queueing (FFQ) and Starting Potential-based
Fair Queueing (SPFQ) are defined and analyzed [14]. Both algorithms require only O(1) time for
the timestamp calculation, independent of the number of sessions sharing the server, and provide
bounded unfairness.

The rest of this paper is organized as follows: In Section 2, we present some definitions and
a brief summary of the concept of Latency-Rate Servers (or LR-servers) [13], which provides us
the necessary tools for analysis of the RPS framework. In Section 3, we define the class of rate-
proportional servers and derive bounds on the end-to-end delay and burstiness in a network of
rate-proportional servers. In Section 4 we analyze their fairness and derive bounds on the unfairness
of both the fluid-model and the packet-by-packet versions of a Rate-Proportional Server. Finally,
we conclude the paper in Section 5 with a discussion of how the RPS framework is useful in the
design of practical fair-queueing algorithms.

2 Preliminaries

2.1 Definitions and Notations

We assume a packet switch where a set of V' connections share a common output link. The terms
connection, flow, and session will be used synonymously. We denote with p; the rate allocated to
connection i.

We assume that the servers are non-cut-through devices. Let A;(7,t) denote the arrivals from
session ¢ during the interval (r,¢] and W;(7,¢) the amount of service received by session ¢ during
the same interval. In a system based on the fluid model, both A;(r,%) and W;(7,¢) are continuous

6 2. Preliminaries

|
\
T 1
- \ \ \
- | | |
~
7 \ \ \
~<P \ \ \
\ \ \

tl t2 t3 t4

Figure 2.1: Intervals (£1,%2] and (t3,%4] are two different busy periods.

functions of t. However, in the packet-by-packet model, we assume that A;(r,t) increases only when
the last bit of a packet is received by the server; likewise, W;(7,¢) is increased only when the last
bit of the packet in service leaves the server. Thus, the fluid model may be viewed as a special case
of the packet-by-packet model with infinitesimally small packets.

Definition 1: A system busy period is ¢ mazimal interval of time during which the server is
never idle.

During a system busy period the server is always transmitting packets.

Definition 2: A backlogged period for session i is any period of time during which packets
belonging to that session are continuously queued in the system.

Let @Q;(t) represent the amount of session ¢ traffic queued in the server at time ¢, that is,
Qi(t) = A;(0,1) — W;(0,1).

A connection is backlogged at time ¢ if @Q;(¢) > 0.

Definition 3: A session ¢ busy period is a mazrimal interval of time (1, 2] such that for any
time t € (11, T3], packets of connection i arrive with rate greater than or equal to p;, or,

Ai(m,t) > pi(t — 7).

A session busy period is the maximal interval of time during which if the session were serviced
with exactly the guaranteed rate, it would remain continuously backlogged (Figure 2.1). Multiple
session-¢ busy periods may appear during a system busy period. It is important to realize the basic
distinction between a session backlogged period and a session busy period. The latter is defined
only in terms of the arrival function and the allocated rate. Thus, the busy period serves as an
invariant for evaluating the worst-case behavior of different scheduling algorithms under the same
arrival pattern. For a more detailed explanation of the busy period, the reader is referred to [13].

In [13], we introduced a general model for traffic scheduling algorithms, called Latency-Rate
(LR) servers. Any server in this class is characterized by two parameters: latency ©; and minimum
allocated rate p;. Let us assume that the jth busy period of connection ¢ starts at time 7. We denote
by VI/Zf?j(T,t) the total service provided to the packets of the connection that arrived after time 7
and until time ¢ by server §S.

Definition 4: A server S belongs in the class LR if and only if for all times t after time T that the
j-th busy period started and until the packets that arrived during this period are serviced,

s s
VVi,j(T’t) > max(0, p;(t — 7 — ©7)).

@S

5 15 the minimum non-negative number that can satisfy the above inequality.

2. Preliminaries 7

|| Server | Latency Fairness | Complexity ||
GPS 0 0 -
=
max(max(C; + L’Z:w + p_j7ci + —LZ‘;I + %)7
Weighted Fair Queueing Loy L"”;‘”: where L, o(V)
pi C; =min((V - 1) Lmaz pax (22

Pi T1<n<V " pn

Self-Clocked Fair Queueing | =+ + Lmaz(V — 1) iy i—j O(log V)
VirtualClock Li t Lmaz oo O(log V)
Deficit Round Robin e 2 o(1)
Weighted Round Robin (Fogitle) £ o(1)

Table 2.1: Latency, fairness and implementation complexity of several work-conserving
servers. L; 1s the maximum packet size of session ¢ and L4, the maximum packet size
among all the sessions. Cj i1s the maximum normalized service that a session may receive
in a WFQ server in excess of that in the GPS server. In weighted round-robin and deficit
round-robin, F is the frame size and ¢; is the amount of traffic in the frame allocated to
session i. L is the size of the fixed packet (cell) in weighted round-robin.

The right-hand side of the above equation defines an envelope to bound the minimum service
offered to session i during a busy period. It is easy to observe that the latency ©F represents the
worst-case delay seen by a session-¢ packet arriving at the beginning of a session busy period. For a
fluid-model server, this is the worst-case delay until the first bit of the packet 1s transmitted; for a
packet-by-packet server, ©F denotes the maximum delay before the last bit of the packet is serviced.
The maximum delay through a network of LR-servers can be computed from the knowledge of the
latencies of the individual servers and the traffic model. Thus, the theory of LR-servers allows us
to determine tight upper-bounds on end-to-end delays in a network of servers where the servers on
a path may not all use the same scheduling algorithm.

The function VI/Zf?j(T,t) may be a step function in a packet-by-packet scheduler. As in the case
of W;(7,t), we update VI/Zf?j(T,t) only when the last bit of a packet has been serviced. Only in the
case of a fluid-server packets can be arbitrarily small and thus VV;Z(r, t) may be continuous.

The following upper bounds on the behavior of a LR-server were shown in [13] when the arrivals
or session ¢ are shaped by a leaky bucket with parameters (o, p;).

Theorem 1: The mazimum delay DX and the mazimum backlog QX of session i after the Kth
node in an arbitrary network of LR-servers are bounded as

K
DE <Z 43 el
d j=1

K
QF <o +PiZ@§Sj);

j=1

where @ESj) 15 the latency of the jth server on the path of the session.

This theorem allows us to calculate bounds on end-to-end delays and buffer requirements for
an arbitrary topology network where the only constraint is that individual switches use scheduling
algorithms belonging to the class LR. Furthermore, all known work-conserving schedulers — such

8 2. Preliminaries

as GPS, Weighted Fair Queueing, Weighted Round Robin, Self-Clocked Fair Queueing, VirtualClock
and Deficit-Round-Robin — have been shown to be LR-servers [13]. In Table 2.1 we summarize
the latencies of many well-known work-conserving schedulers, along with bounds on their fairness
and 1implementation complexity. The fairness parameter in the table is the maximum difference in
normalized service offered by the scheduler to two connections over any interval during which both
connections are continuously backlogged. The implementation complexity is at least O(log, V') for
all sorted-priority schedulers.

The packet-by-packet approximation of GPS (WFQ) has the lowest latency among all the packet-
by-packet servers; thus, from Theorem 1, WFQ has the lowest bounds on end-to-end delay and buffer
requirements. However, WFQ also has the highest implementation complexity. VirtualClock has
the same latency as WFQ, but is not a fair algorithm [3, 1]. Notice, however, that none of the other
algorithms suffers from such a high level of unfairness. In Self-Clocked Fair Queueing as well as the
round-robin schedulers, latency is a function of the number of connections that share the output
link. In a broadband network, the resulting end-to-end delay bounds may be prohibitively large.

2.2 Potential Functions

The GPS scheduler provides ideal fairness by offering the same normalized service to all back-
logged connections at every instant of time. Thus, if we represent the total amount of service received
by each session by a function, then these functions can be seen to grow at the same rate for each
backlogged session. Golestani [12] introduced such a function and called it virtual time. Virtual
time of a backlogged session is a function whose rate of growth at each instant is exactly the rate of
normalized service provided to it by the scheduler at that instant. Similarly, we can define a global
virtual-time function that increases at the rate of the total service performed by the scheduler at
each instant during a server-busy period. In a GPS scheduler, the virtual times of all backlogged
connections are identical at every instant, and equal to the global virtual time. This is achieved by
setting the virtual time of a connection to the global virtual time when 1t becomes backlogged and
then increasing the former at the rate of the instantaneous normalized service received by the con-
nection during the backlogged period. This allows an idle connection to receive service immediately
once it becomes backlogged, resulting in zero latency.

We introduce such a function to represent the state of each connection in a scheduler and call it
potential. The potential of a connection is a non-decreasing function of time during a system-busy
period. When connection ¢ is backlogged, its potential increases exactly by the normalized service it
received. That is, if P;(¢) denotes the potential of connection ¢ at time ¢, then, during any interval
(7,t] within a backlogged period for session ¢,

Wi(r,t)

PZ(t) — PZ(T) = i

Note that the potentials of all connections can be initialized to zero at the beginning of a system-busy
period, since all state information can be reset when the system becomes idle.

From the above definition of potentials, it is clear that a fair algorithm must attempt to increase
the potentials of all backlogged connections at the same rate, the rate of increase of the system
potential. Thus, the basic objective is to equalize the potential of each connection. Sorted-priority
schedulers such as GPS, WFQ, SCFQ, and VirtualClock all attempt to achieve this objective.
However, in our definition of potential, we did not specify how the potential of a connection is
updated when it is idle, except that the potential is non-decreasing. Scheduling algorithms differ
in the way they update the potentials of idle connections. Ideally, during every time interval that
a connection 7 is not backlogged, its potential must increase by the normalized service that the
connection could receive if it were backlogged. If the potential of an idle connection is increased by
the normalized service it missed, it is easy to see that, when the connection becomes busy again,
its potential will be identical to that of other backlogged connections in the system, allowing it to
recelve service immediately.

2. Preliminaries 9

Scheduler

Q

P1 P, P3 Py System Potential

Figure 2.2: Hlustration of the concept of potentials.

One way to update the potential of a connection when it becomes backlogged is to define a system
potential that keeps track of the progress of the total work done by the scheduler. The system
potential P(t) is a non-decreasing function of time. When an idle session ¢ becomes backlogged
at time ¢, its potential P;(¢) can be set to P(t) to account for the service it missed. Schedulers
use different functions to maintain the system potential, giving rise to widely different delay- and
fairness-behaviors. In general, the system potential at time ¢ can be defined as a non-decreasing
function of the potentials of the individual connections before time ¢, and the real time .

P(t) = F(Pi(t=), Pa(i—), ..., Py (=), 1). (2.1)

For example, the GPS server initializes the potential of a newly backlogged connection to that of a
connection currently backlogged in the system. That is,

P(t) = Pi(t), foranyie€ B(1);

where B(t) is the set of backlogged connections at time ¢. The VirtualClock scheduler, on the other
hand, initializes the potential of a connection to the real time when it becomes backlogged, so that

P(tz) —P(tl) =15 — 1.

We will later show how the choice of the function P(¢) influences the delay and fairness behavior of
the scheduler.

The concept of potentials can be illustrated by the following analogy in Figure 2.2. FEach
connection is represented by a jar in the figure, with the level of fluid in the jar representing the
total normalized service received by the connection during the current system-busy period. Thus,
our definition of connection potential corresponds to the level of fluid in the jar representing the
connection. The objective of a fair scheduler is then to add fluid to the jars corresponding to
backlogged connections such that their fluid levels stay close to each other. A GPS scheduler meets
this objective perfectly by enabling the fluid levels to rise exactly at the same rate.

From Figure 2.2, it is easy to explain the intuition behind the definition of the system potential
function. The system potential can be likened to the level of fluid in a separate jar that keeps track
of the global state of the system. This level is used as the reference to set the level of fluid in the
jar of a connection when it becomes backlogged after an idle period. The actual system-potential
function used determines how this reference level is determined. For example, in the case of the
VirtualClock server, the jar representing the global state is being filled at a constant rate during a
system-busy period, regardless of the distribution of packets transmitted by each connection.

10 2. Preliminaries

! !
t1 t2 t3 tl t2 t3

Figure 2.3: Evolution of the potential and offered service for two connections in the GPS
multiplexer.

The concept of potentials is further illustrated with respect to a GPS scheduler in Figure 2.3.
Let us assume that only two connections with rates p; = py are continuously serviced for the interval
of time (¢1,¢2]. By the definition of the GPS multiplexer they are serviced with rates proportional
to the reserved, and therefore their potentials increase by exactly the same amount. During the
interval (Z2,%3], no traffic arrives for connection 2 and it is thus receiving no service. Connection 1
is exclusively serviced during this interval, and its potential is increasing by the normalized service
it receives. Traffic from connection 2 arrives at the server again at time t3 and the two connections
are again serviced proportional to their reservations. Since connection 2 was absent from the system
during the interval (5,¢3] it lost some service compared to the other connection that was busy. The
service 1t lost is equal to the service that the other connection received during the same interval.
Connection 2 will never receive this service. We therefore see that during the interval (¢s,¢3] the
potential of connection 2 should increase by exactly the same amount as that of connection 1 although
it is not in the system. Thus, when connection 2 becomes backlogged again, the potential of the
two connections will be equal, and they will be serviced proportional to their requests. If we take
into account this definition of the potential, the scheduling algorithm can be defined as the process
that tries to equalize the potential of all backlogged connections and adjusts the potential of the
connections when they are not in the system.

The utility of the system potential function P(t) is in estimating the amount of service missed by
a connection while it was idle. In an ideal server like GPS, the system potential is always equal to the
potential of the connections that are currently backlogged and are thus receiving service. However,
this approach requires that all connections can receive service at the same time. In a packet-by-
packet scheduler we need to relax this constraint since only one connection can be serviced at a time.
In the next section we will formulate the necessary conditions that the system potential function
must satisfy in order for the server to have zero latency.

The self-clocked fair queueing (SCFQ) algorithm is a self-contained approach to estimate the
system potential function. The potential of the system is estimated by the potential of the connection
that is currently being serviced. Packets are transmitted in increasing order of their finishing
potential. Consider again the example we used earlier to present the evolution of the potential
function in a GPS server. Assume a fluid-model server based on the SCFQ algorithm. The evolution
of the potentials of the two connections is shown in Figure 2.4. The objective of the algorithm is to
service the backlogged connections in such a way that their potentials will be equalized. Therefore,
if a connection has a lower potential than others it will be exclusively serviced until its potential
catches up with the potentials of others. In Figure 2.4, connection 2 becomes backlogged again at
time 3, and is assigned a potential equal to the finishing potential of the packet being serviced,
Pi(t4). Thus, connection 2 will receive no service until time ¢4, and will be be serviced at a rate

3. Rate-Proportional Servers 11

" —_—— W

t1 t2 t3 t4 t t1 t2 t3 t4

Figure 2.4: Evolution of the potential and offered service for two connections in the SCFQ
multiplexer.

proportional to its reservation after ¢4. This behavior is different from that in GPS, where an idle
connection starts to receive service immediately when it becomes backlogged.

The above example illustrates that, if the potential of a newly backlogged connection is estimated
higher than the potential of the connections currently being serviced, the former may have to wait
for one packet to be transmitted from each of the other connections before it can be serviced. This
results in a latency that is proportional to the number of active connections. Thus, since the potential
of a newly backlogged connection is set to the system potential, the system potential should not be
allowed to exceed the potential of backlogged connections to achieve zero latency in a fluid server.
Although we have used a fluid server to illustrate this point, the concept applies to a packet-by-
packet server as well. In the next section we formalize these intuitive results, and define a class of
schedulers to achieve low latency.

3 Rate-Proportional Servers

Having described the concept of potential, we now use it to define a general class of schedulers,
which we call Rate-Proportional Servers (RPS). We will first define these schedules based on the
fluid model and later extend the definition to the packet-by-packet version. These schedulers are
characterized by their service discipline which adjusts the instantaneous service rate to individual
backlogged connections so as to equalize their potentials. In addition, the definition also requires that
the system potential P(t) be maintained at or below the potential of any backlogged connection,
at every instant the server is busy. This ensures that a newly backlogged connection acquires a
starting potential not higher than that of any other connection currently backlogged in the system,
enabling it to receive service immediately. Thus, a rate-proportional server is a zero-latency server.
However, beyond this constraint, we do not define exactly how the system potential function P(¥)
is synthesized, giving rise to a range of possible scheduling algorithms in this class. For example,
GPS and VirtualClock are rate-proportional servers, but their system-potential functions are quite
different. Self-clocked fair queueing, on the other hand, is not a rate-proportional server since it
does not meet the constraint on the system-potential function.

We can now define the RPS class of scheduler formally. We denote the set of backlogged
connections at time ¢ by B(t).
Definition 5: A rate proportional server has the following properties:

1. Rate p; s allocated to connection © and

12 3. Rate-Proportional Servers

Vv
Zpi <r
i=1

where r 1s the total service rate of the server.

2. A connection potential P;(t) is associated with each connection i in the system, describing the
state of the connection at time t. This function must satisfy the following properties:
(a) When a connection is not backlogged, its potential remains constant.

(b) If a connection becomes backlogged at time T, then
Pi(7) = max(P;(r=), P(t—)) (3.1)

(¢) For every time t > 7, that the connection remains backlogged, the potential function of
the connection 1s increased by the normalized serviced offered to that connection during
the interval (7,t]. That is,

| Win)

Pi
3. The system potential function P(t) describes the state of the system at time t. Two main

conditions must be satisfied for the function P(t):
(a) For any any interval (t1,12] during a system busy period,

(3.2)

P(ts) — P(t1) > (t2 — 1h).

(b) The system potential is always less than or equal to the potential of all backlogged connec-
tions at time t. That is,
P(t) < min (P;(%)). 3.3
(1) < in (Py(0) 33)
4. Connections are serviced at each instant t according to their instantaneous potentials as per
the following rules:
(a) Among the backlogged connections, only the set of connections with the minimum potential
at time t is serviced.

(b) Each connection in this set is serviced with an instantaneous rate proportional to its
reservation, so as to increase the potentials of the connections in this set at the same
rate.

The above definition specifies the properties of the system potential function for constructing a
zero-latency server, but does not define it precisely. In practice, the system potential function must
be chosen such that the scheduler can be implemented efficiently. In a following paper [14], we will
demonstrate two specific system-potential functions that lead to practical scheduling algorithms.

GPS multiplexing is a rate-proportional server where the system potential is always equal to
the potential of the backlogged connections. Since the service rate offered to the connections is
proportional to their reservations at every instant, the normalized service they receive during an
interval (¢, 5] is always greater than (t3—t1). Thus, the amount of service received by a connection 4,
backlogged during the interval (¢1,t2), is given by

Wi(ty,t2) > pi(ta — 1),

and therefore,

P(ts) — P(t1) = PFi(t2) — Pi(t1)
o Wity t)
=
> 1o — 1.

3. Rate-Proportional Servers 13

Initially backlogged connections

Figure 3.1: An example illustrating the evolution of potential functions in a rate-
proportional server.

VirtualClock is a rate-proportional server as well. Consider a server where the system potential
function is defined as

P(t) =1t.

It is easy to verify that such a server satisfies all the properties of a rate-proportional server. Consider
a packet-by-packet server that transmits packets in increasing order of their finishing potentials. Such
a server is equivalent to the packet-by-packet VirtualClock server.

We now proceed to show that every rate-proportional server is a zero-latency server. This will
establish that this class of servers provide the same upper-bounds on end-to-end delay as GPS. To
prove this result, we first introduce the following definitions:

Definition 6: A session-i active period is a maximal interval of time during a system busy period,
over which the potential of the session is not less than the potential of the system. Any other period
will be considered as an inactive period for session 1.

The concept of active period is useful in analyzing the behavior of a rate-proportional scheduler.
When a connection is in an inactive period, it can not be backlogged and therefore can not be
receiving any service. On the other hand, an active period need not be the same as a backlogged
period for the connection. Since, in a rate-proportional server, the potential of a connection can
be below the system potential only when the connection is idle, a transition from inactive to active
state can occur only by the arrival of a packet of a connection that is currently idle, whose potential
is below that of the system. A connection in an active period may not receive service throughout the
active period since a rate-proportional server services only connections with the minimum potential
at each instant. However, it always receives service at the beginning of the active period, since its
potential is set equal to the system potential at that time.

We can view the evolution of the potential function as in Figure 3.1. Assume that the system
potential is always maintained below the potential of every backlogged connection. At time 7,
connection ¢ becomes active and receives all the bandwidth, trying to achieve the same potential as
the rest of the connections. At time 75 a second connection ¢+ 1 becomes active, and the service of ¢
is temporarily suspended. The potentials of the two new connections become equal at 74; during the
interval (73, 4], each of them receives service proportional to its reservation so that their potentials
remain equal. That is,

Wi(rs, ma) Wit1(73,74)

pi Pit1

14 3. Rate-Proportional Servers

At 74, the potentials of ¢ and i 4+ 1 become equal to that of other connections already backlogged in
the system; therefore, from 4, all backlogged connections in the system receive service proportional
to their allocated rates. If another new connection becomes active after time 74, service to all the
connections will be suspended until the new connection reaches the same potential. In addition, if
a connection finishes service, the instantaneous service rates of other backlogged connections will
increase because of the work-conserving nature of the scheduler. However, a connection may be
temporarily suspended if it has received more than its allocated bandwidth earlier during the same
active period.

Since LR-servers are defined in terms of busy periods, it is necessary to establish the correspon-
dence between busy periods and active periods in a rate-proportional server. We will now show that
the beginning of a busy period is the beginning of an active period as well.

Lemma 1: If 7 is the beginning of a session-t busy period in a rate-proportional server, then T is
also the beginning of an active period for session 1.

Proof: We will prove the lemma by contradiction. Assume, if possible, that time 7 is not the
beginning of an active period. We have two cases:

Case 1: Time 7 belongs in inactive period. Since connection ¢ was not busy before time 7 and
it becomes busy at time 7, a packet must have arrived. But then, the potential of the connection
would have become equal to the system potential and thus 7 is the beginning of an active period.
Case 2: An active period started at time 7y < 7 and is currently in progress. Then, for every time
t € (1,5, 7], we must have

Pi(t) > P(1). (3.4)

During the interval (7, 7], the potential of connection ¢ has only increased by the normalized service
offered to connection 7. Therefore, at any time ¢ during the interval (rg, 7],

Wi(o,1
Pi(t) — Pi(r) = Y028, (3.5)
Pi
But, since 7 is the beginning of an active period,
PZ'(TO) = P(To). (36)
From equations (3.4) and (3.6),
Pi(t) = Pi(r0) > P(t)— P(m)
Z (t — To). (37)
Therefore, from equations (3.5) and (3.7),
Wilro,t) > pi(T — T0). (3.8)

Before time 7y, the system was not backlogged and therefore we can write:
Ai(TOat) Z m(TOat) Z pl(t - TO)'

Thus, time 15 belongs in the same busy period as any time ¢ in the interval (g, 7]. Therefore, time
7 cannot be the beginning of a busy period.

O

When connection ¢ becomes active, its potential is the minimum among all backlogged connec-
tions, enabling it to receive service immediately. However, if a subsequent connection j becomes
active during the busy period of connection i, then the service of ¢ may be temporarily suspended
until the potentials of ¢ and j become equal. In the following lemma, we derive a lower bound on
the amount of service received by connection ¢ during an active period.

3. Rate-Proportional Servers 15

Lemma 2: Let 7 be the time at which a connection i becomes active in a rate-proportional server.
Then, at any time t > 7 that belongs in the same active period, the service offered to connection i is

Wi(r,t) > pi(t — 7).

Proof: Intuitively, this result asserts that the service of a backlogged connection is suspended
only if it has received more service than its allocated rate earlier during the active period. Let us
consider any time ¢ during the connection active period. By the definition of active period,

Pi(t) > P(t), (3.9)

and

Pi(m) = P(7). (3.10)

From the definition of rate-proportional servers we also know that,

Pt)—P(r)>(t—r1). (3.11)
From equations (3.9), (3.10), and (3.11) we can easily conclude that

Pi(t) — Pi(r) > (t— 7). (3.12)

During an active period, the potential of a connection is only increased by the normalized service
offered to it. Therefore,

P - p(r) = 2l
Pi
> t-T (3.13)
From equations (3.12) and (3.13),
Wi(r,t) > pi(t — 1) (3.14)

O
A session busy period may actually consist of multiple session active periods. In order to prove

that a rate proportional server is an LR server with zero latency, we need to prove that for every
time ¢ after the beginning of the j-th busy period at time 7,

Wij(r,t) = pi(t = 7).

The above lemmas lead us to one of our key results:
Theorem 2: A rate-proportional server belongs to the class LR and has zero latency.

The main argument for proving this theorem is that during inactive periods the connection is
not backlogged and is thus receiving no service. By Lemma 2, the connection can receive less than
its allocated bandwidth only during an inactive period. However, since no packets are waiting to be
serviced in an inactive period, the connection busy period must have ended by then.

Proof: Let us again trace the evolution of the potential function of connection 7. We can split
the busy period in intervals during which the connection is in active or inactive states. During an
inactive period, the connection is not receiving any service and no packets from the connection are
backlogged in the system. We will prove the theorem by contradiction. Let us denote with ¢* the
first time such that

Wi(rt*) < ps(t* = 7). (3.15)
Assume that ¢* belongs to a busy period that started at time 7. We distinguish two cases:

Case 1: Time t* belongs in an active period. Let us denote with ¢,, the time that this active period
started. We know from Lemma 1, that ¢, > 7. Then, since t* > t,,

Wi(r, ty) > pi(te — 7). (3.16)

16 3. Rate-Proportional Servers

From Lemma 2, we also know that for time ¢* that belongs in the same active period,
Wita,t") > pi (8" —t4) (3.17)
From equations (3.16) and (3.17) we can conclude that
Wi(r,t™) > pi(t™ — 7). (3.18)
Case 2: Time t* is part of an inactive period. Consider time t* — A¢. At this time, we know that
Wi(r,t" — At) > p; (" — At — 7). (3.19)

Since the connection is in an inactive period, there are no packets backlogged from that connection,
and therefore,

Wi(rt* — Al) = Ay (r, 1" — Al). (3.20)

In addition, no packets were serviced from the connection in the interval (t* — At,¢*], or,
Wi(r,t* — At) = Wi (7, t7). (3.21)

It is clear that no arrivals of session-i packets occurred during the interval (¢* — At,t*); if there was
an arrival during this interval, the connection would have entered an active period. Thus,

Ai(m, 1" — At) = Ay (7, 7). (3.22)
From equations (3.15), (3.20), (3.21), and (3.22) we can conclude that
Ai(r, %) < ps (8" — 7). (3.23)

This means that time ¢* does not belong in the same busy period as t* — At. a

Thus, the definition of rate-proportional servers provides us a tool to design scheduling algorithms
with zero latency. Since both GPS and VirtualClock can be considered as rate-proportional servers,
by Theorem 2, they have the same worst-case delay behavior.

3.1 Packet-by-Packet Rate-Proportional Servers

In the previous section we defined the rate proportional servers using a fluid-model, where packets
from different connections can be served at the same time with different rates. However, in a real
system only one connection can be serviced at each time and in addition packets can not be split in
smaller units. A packet-by-packet rate proportional server can be defined in terms of the fluid-model
as one that transmits packets in increasing order of their finishing potential. Let us assume that
when a packet from connection ¢ finishes service in the fluid server, the potential of connection 7 1s
T'S;. We can use this finishing potential to timestamp packets and schedule them in increasing order
of their time-stamps. We call such a server a packet-by-packet rate-proportional server (PRPS).

In the following, we denote the maximum packet size of session ¢ as L; and the maximum packet
size among all the sessions as L4

In order to analyze the performance of a packet-by-packet rate-proportional server we will bound
the difference of service offered between the packet-by-packet server and the fluid-server when the
same pattern of arrivals is applied to both the servers. Let us assume that the service offered to
session i during the interval (7,t] by the fluid server is W' (r,¢) and by the packet-by-packet server
is WE(7,t). Let us assume that the kth packet leaves the system under the PRPS service discipline
at time tkP. The same packet leaves the RPS server at time th. Using a similar approach as the one
used for GPS servers [1], we can prove the following lemma:

Lemma 3: For all packets in a packet-by-packet rate-proportional server,

Lmax

t,fgt,erT.

3. Rate-Proportional Servers 17

Proof: The proof is very similar to that of a GPS server [1] and is given in Appendix A.

If we include the partial service received by packets in transmission, the maximum lag in service
for a session 7 in the packet-by-packet server occurs at the instant when a packet starts service. Let
us denote with m(tl,tz) the service offered to connection i during the interval (¢1,¢3) when this
partial service is included. At the instant when the kth packet starts service in PRPS,

T - Lmax

wEO,) < W04 -) + Limaz
T

< WF00,4) + Lias-

Thus, we can state the following corollary:

Corollary 1: At any time t, R R
VVZ'F(O’t) - VVZ'P(O’t) < Lyaz-

In order to be complete we also have to bound the amount by which the service of a session in
the packet-by-packet server can be ahead of that in the fluid-server. Packets are serviced in PRPS
in increasing order of their finishing potentials. If packets from multiple connections have the same
finishing potential, then one of them will be selected for transmission first by the packet-by-packet
server, causing the session to receive more service temporarily than in the fluid server. In order to
bound this additional service, we need to determine the service that the connection receives in the
fluid-server. The latter, in turn, requires knowledge of the potentials the other connections sharing
the same outgoing link. We will use the following lemma to derive such an upper bound.

Lemma 4: Let (0,t] be a server-busy period in the fluid server. Let i be a session backlogged in the
fluid server at time t such that i received more service in the packet-by-packet server in the interval
(0,t]. Then there is another session j, with P;(t) < P;(t) that received more service in the fluid
server than in the packet-by-packet server during the interval (0,1].

Proof: Since both servers are work-conserving, it is clear that if session i receives more service
in the packet-by-packet server, then there must be another backlogged session j that has received
less service in the interval (0,¢]. We only need to prove that P;(t) < P;(¢) for one such session j.

We will distinguish two cases:

Case 1: Session ¢ has the maximum potential in the fluid server at time ¢. In this case P;(t) < F;(?)
for every session j.

Case 2: There are other sessions at time ¢ with potentials higher than that of i. Let S be the set
of sessions with potentials higher than P;(¢) at time t. Then, by the definition of rate-proportional
servers, these connections are not receiving service at time ¢ in the fluid server. Let 7 be the most
recent time when a session from the set S was in service in the fluid server. Then, during the interval
(7,t], none of the connections in the set .S were serviced by the fluid server. Thus we can write

Wi (rt) < W (mt) Ykes. (3.24)

Furthermore, the current session ¢ was not backlogged in the fluid-server just before time 7; otherwise,
a connection from the set S would not have been serviced just before 7. Therefore,

Wi0,7) > W (0,7) (3.25)

But we also know, that at time ¢ connection ¢ has received more service in the packet-by-packet
server than in the fluid server. Thus,

WE0,1) < WE(0,10) (3.26)
Subtracting eq.(3.25) from eq.(3.26),

WE (r,t) < WE (r,1) (3.27)

18 3. Rate-Proportional Servers

That is, during the interval (,?] connection ¢ received more service in the packet-by-packet server
than in the fluid server. Similarly, during the interval (7,¢] all connections in set S received more
or equal service in the packet-by-packet server than in the fluid server. Since both servers are work
conserving, there must exist at least one connection j that during the same interval (1] received
more service in the fluid server than in the packet-by-packet server. That is,

W (r,t) > W[(1) (3.28)

Notice also that this connection does not belong in the set S and therefore it can only have potential
P;(t) < P;(t). Notice also, that connection j became backlogged in the fluid server at or after time
7. Therefore,

i F 2P
By adding eq.(3.28) and eq.(3.29),
i F P
Wi (0,8) > W;(0,1) (3.30)
O

We will now use the above lemma and a method similar to the one presented in [16] for the WFQ
server to find an upper bound for the amount of service a session may receive in PRPS as compared
to that in the fluid server.

Lemma 5: At any time t,

. R L
P —_W¥F < mi —) on
W (0,t) — W (0,¢) <min((V — 1) Linag, pi 1gza§XV(pn))

Lemma 5 establishes two distinct upper bounds for the excess service received by a session in
the packet-by-packet server. We will provide some intuition on these bounds and refer the reader to
Appendix A for a formal proof. Consider any session ¢, backlogged in both servers. By Lemma 3,
any backlogged session in the packet-by-packet server may lag in service by as much as L4, from
the fluid server. Thus, in an extreme case, every backlogged session excluding ¢ may be lagging in
service by L,q. in the packet-by-packet server. Since the server is work-conserving, session ¢ can
therefore be ahead in the packet-by-packet server by as much as (V' —1) Ly 45, where V' is the number
of sessions sharing the outgoing link.

The bound of (V — 1)Lpey may be too loose in many cases. The second bound in the lemma

provides a much tighter bound in those cases. To illustrate this bound, let us assume that

L; Ln

— = max (—).

pi 1<n<V o p,
Assume two packets arrive at the server simultaneously, one from session ¢ and the other from a
second session j. Assume that the packets are assigned the same finishing potential. If the packets
start service in the fluid server at time ¢, they also finish service simultaneously at time ¢ + L;/p;.
If the packet-by-packet transmits the session-j packet first, the service received by session j in the

packet-by-packet server can be ahead by (%) p;. This reasoning gives rise to the second upper-
bound of Lemma 5. The complete proof can be found in Appendix A.

3.2 Delay Analysis

Based on the bounds on the discrepancy between the service offered by the packet-by-packet
server and that by the fluid server at any time during a session busy period, we can bound the
performance of the PRPS system using the worst-case performance of the fluid-system. Thus, we
will now prove that a packet-by-packet rate proportional server is an LR-server and estimate its
latency.

4. Fairness of Rate-Proportional Servers 19

Let us assume that a packet from connection ¢ leaves the PRPS system at time ¢© and the
fluid-system at time ¢¥'. Then, by Lemma, 3,

Lmax

ty <t +

For the analysis of a network of LR servers it is required that the service is bounded for any time
after the beginning of a busy period. In addition, we can only consider that a packet left the
packet-by-packet server if all of its bits have left the server. These requirements are necessary in
order to provide accurate bounds for the traffic burstiness inside the network. Therefore, just before
time ¢t + L’;i the whole packet has not yet departed the packet-by-packet server. Let L; be the
maximum packet size of connection i. The service offered to connection ¢ in the packet-by-packet
server will be equal to the service offered to the same connection in the fluid server until time ¢,
minus this last packet. Therefore, the service received by session ¢ during the jth busy period in the
packet-by-packet server is given by

Lmal‘
VVZ’Z’(T’t) > VVZ’Z(T’t_ ") - L;

Lmal‘
> max(0,p;(t —7— ——=) — L;), by Theorem 2

,
Lmax Lz

> max(0,p(t — 17— - —)) (3.31)
r Pi

Hence, we can state the following corollary:
Corollary 2: A packet-by-packet rate proportional server is an LR server and its latency is

Lmax Lz
" _|_

r Pi

Note that this latency is the same as that of WFQ. Thus, any packet-by-packet rate-proportional
server has the same upper bound on end-to-end delay and buffer requirements as those of WFQ when
the traffic in the session under observation is shaped by a leaky bucket.

Although all servers in the RPS class have zero latency, their fairness characteristics can be
widely different. Therefore, we take up the topic of fairness in the next section and derive bounds
on the fairness of rate-proportional servers.

4 Fairness of Rate-Proportional Servers

In our definition of rate-proportional servers, we specified only the conditions the system potential
function must satisfy to obtain zero latency, but did not explain how the choice of the actual function
affects the behavior of the scheduler. The choice of the system-potential function has a significant
influence on the fairness of service provided to the sessions. In the last section, we showed that a
backlogged session in a rate-proportional server receives an average service over an active period at
least equal to its reservation. However, significant discrepancies may exist in the service provided
to a session over the short term among scheduling algorithms belonging to the RPS class. The
scheduler may penalize sessions for service received in excess of their reservations at an earlier time.
Thus, a backlogged session may be starved until others receive an equivalent amount of normalized
service, leading to short-term unfairness.

Since, in a fluid-model rate-proportional server, backlogged connections are serviced at the same
normalized rate in steady state, unfairness in service can occur only when an idle connection becomes
backlogged. If the estimated system potential at that time is far below that of the backlogged
connections, the new connection may receive exclusive service for a long time until its potential
rises to that of other backlogged connections. This behavior can be illustrated with respect to
the VirtualClock algorithm. The system potential in VirtualClock grows at the rate of real time,
regardless of the potentials of the sessions in the system. Thus, the potential of a connection receiving

20 4. Fairness of Rate-Proportional Servers

more service than its reserved rate will continue to diverge from the system potential. Should an
idle connection become active later, the connection that received the excess service will be penalized
severely. This shows that, to avoid short-term unfairness, the system potential should be maintained
close to that of backlogged connections receiving service. We will formalize this idea and show that if
the difference between the system potential and those of individual backlogged sessions is bounded,
the unfairness is also bounded.

In VirtualClock, the difference between the system potential and the potential of individual
backlogged connections cannot be bounded. Thus, the unfairness is also not bounded. This can be
seen as a result of the scheduler performing an averaging process on the rate of normalized service
provided to individual sessions. In VirtualClock, the averaging interval can be arbitrarily long.
The GPS scheduler, on the other hand, occupies the opposite extreme where no memory of past
bandwidth usage of connections is maintained. Every backlogged connection has the same potential
at all times in a GPS server, giving rise to its ideal fairness behavior. In practice, the scheduling
algorithm must trade off short-term unfairness with other desirable properties such as low latency
and ease of implementation.

The ideal fairness behavior of GPS 1s compromised in self-clocked fair queueing, but the difference
in potentials is still bounded. Therefore, SCFQ can be considered as a fair scheduling algorithm.
However, SCFQ is not a rate-proportional server as it allows the system potential to exceed that of
a backlogged connection, resulting in worse delay behavior.

There 18 no common accepted method for estimating the fairness of a scheduling algorithm. In
general, we would like the system to always serve connections proportional to their reservations
and never penalize connections for bandwidth they received earlier, The measure of fairness that
we will use is an extension of the definition presented for SCFQ [12]. Let us assume that at time
T two connections ¢, j become greedy, requesting an infinite amount of bandwidth. Thus, the two
connections will be continuously backlogged in the system after time 7. A scheduler is considered
as fair if the difference in normalized service offered to the two connections ¢, j during any interval
of time (t1, 5] after time 7 is bounded. That is,

Wilti,ta) Wity to)
pi pj

< FR, (4.1)

where FR < oo is a measure of the fairness of the algorithm. Note that the requirement of an
infinite supply of packets from sessions ¢ and j arises because we require the two sessions to be
backlogged at every instant after 7 in each of the schedulers we study. Since, for the same arrival
pattern, the backlogged periods of individual sessions can vary across schedulers, a comparison of
fairness of different scheduling algorithms can yield misleading results without this condition. When
the connections have an infinite supply of packets after time 7, they will be continuously backlogged
in the interval (t1,%s] irrespective of the scheduling algorithm used. Thus, to compare the fairness
of different schedulers, we can analyze each of the schedulers with the same arrival pattern and
determine the difference in normalized service offered to the two connections in a specified interval
of time.

Let us denote with AP, the maximum difference between the system potential and the potential
of the connections being serviced in a rate-proportional server. The following theorem formalizes
our basic result on the fairness properties of rate-proportional servers.

Theorem 3: If the system potential function in a rate-proportional server never lags behind more
than a finite amount AP from the potential of the connections that are serviced in the system, the
difference in normalized service offered to any two connections during any interval of time that they
are continuously backlogged is also bounded by AP. That is, if AP < oo, then for all i,j € B(t1,1)
during the interval (t1,12],

Wi(t1,t2) W (t1,12)
pi Pj

< AP

5. Conclusions 21

A proof of this theorem is given in Appendix A. The theorem applies to the fluid system. A real
system can only use a packet-by-packet rate-proportional server. We will now expand the above
theorem to prove that a similar relationship holds for the packet-by-packet version of the algorithm.

Let us define C; as
Lmax L’ﬂ
max (—))

C; = min((V = 1) ,
pi 1<n<V p,

That 1s, C; is the maximum normalized service that a connection can receive over any interval in
the packet-by-packet server in excess of that offered by the fluid-server.

Theorem 4: Let ¢ and j be two connections that became greedy at time T in a packet-by-packet
rate-proportional server. The following bound holds for every time interval (t1,t2] after time .

Lmax L Lmax Lz
<max(AP+ Cj+ —=+ —L AP+ Ci+ —— + —) (4.2)

Pi Pj Pj Pi

Wi (1, t2) _ Wi, ts)
Pj Pi

Appendix A contains a proof of this theorem. Since Weighted Fair Queueing is a packet-by-
packet rate proportional server with AP = 0, we obtain the following result on the fairness of a
WFQ scheduler by setting AP =0 in Eq. (4.2).

Corollary 3: For a WFQ scheduler,

Lmax

L; Lmax Lz
T4+ LG+ T+)

Wi(ti, ta) — Wit to) < max(C; +
= Tk p pi P

Pj Pi

It can be shown that the above bound is tight. For example, consider the case where connections
t,j are already backlogged in the system, at time 7. Then, connection j may have received an
additional amount of service equal to C; in the WFQ server and connection ¢ may have received
less service equal to L4, in the WFQ server compared to the GPS server. The finishing potential
of the last packet serviced from connection ¢ before a packet is serviced from connection j may be

F, <Pi(r)+Ci+ %. The total normalized service that connection ¢ may receive while connection

J is waiting is bounded by C; + % + L’[’;‘i.
; ;

5 Conclusions

In this paper we developed the framework of rate-proportional servers (RPS) for designing sched-
ulers with low latency and bounded unfairness. Fundamental to the definition of rate-proportional
servers is the system-potential function that maintains the global state of the system by tracking
the service offered by the system to all connections sharing the outgoing link. Similarly, the state of
each connection is represented by a connection potential function. In a packet-by-packet server, the
system potential and connection potentials provide the basis for computing a timestamp for each
arriving packet. Packets are then transmitted in increasing order of their timestamps. We defined
the necessary properties the system potential function must satisfy for the server to provide a delay
bound, burstiness and buffer requirements identical to that of Weighted Fair Queueing.

Besides providing valuable insight into the behavior of scheduling algorithms, the RPS model is
useful in the design of practical scheduling algorithms. This fact is illustrated in the sequel to this
paper [14], where we present two practical algorithms belonging to the RPS class, with application
in both general packet networks and in ATM networks. Note that the fundamental difficulty in
designing a practical rate-proportional server is the need to maintain the system potential function.
Tracking the global state of the system precisely requires simulating the corresponding fluid-model
RPS in parallel with the packet-by-packet system. The algorithms in [14], however, avoid this need
by maintaining the system potential only as an approximation of the actual global state in the
fluid model, and re-calibrating the system potential periodically to correct any discrepancies. In
the Frame-based Fair Queueing algorithm this re-calibration is done at frame boundaries, while in
Starting Potential-based Fair Queueing (SPFQ) the re-calibration occurs at packet boundaries. This

22 References

gives rise to two algorithms with the same delay bound, but with slightly different fairness properties.
Both algorithms, however, provided bounded unfairness and O(1) timestamp computations.

It is hoped that the RPS framework will lead to the development of other algorithms in the
future. Further work will include the analysis of rate-proportional servers under probabilistic input
traffic models, such as the exponentially-bounded-burstiness model [17].

References

[1] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control —
the single node case,” in Proc. IEEE INFOCOM °92, vol. 2, pp. 915-924, May 1992.
[2] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing algorithm,”
Internetworking: Research and Ezxperience, vol. 1, no. 1, pp. 3-26, 1990.
[3] L. Zhang, “VirtualClock: a new traffic control algorithm for packet switching networks,” ACM
Transactions on Computer Systems, vol. 9, pp. 101-124, May 1991.
[4] D. Ferrari and D. Verma, “A scheme for real-time channel establishment in wide-area networks,”
IEEFE Journal on Selected Areas in Communications, vol. 8, pp. 368-379, April 1990.
[6] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted round-robin cell multiplexing
in a general-purpose ATM switch chip,” IEEFE Journal on Selected Areas in Communications,
vol. 9, pp. 1265-79, October 1991.
[6] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,” in Proc. ACM
SIGCOMM 95, pp. 231-242, September 1995.
[7] C.Kalmanek, H. Kanakia, and S. Keshav, “Rate-controlled servers for very high-speed networks,”
in Proc. IEEE Global Telecommunications Conference, pp. 300.3.1-300.3.9, December 1990.
[8] S. Golestani, “A framing strategy for congestion management,” IEEE Journal on Selected Areas
mn Communications, vol. 9, pp. 1064-1077, September 1991.
[9] D. Verma, D. Ferrari, and H. Zhang, “Guaranteeing delay jitter bounds in packet switching
networks,” in Proc. Tricomm 91, pp. 35-43, April 1991.
[10] H. Zhang and S. Keshav, “Comparison of rate-based service disciplines,” in Proc. ACM SIG-
COMM ’91, pp. 113-122, 1991.
[11] J. Davin and A. Heybey, “A simulationstudy of fair queueing and policy enforcement,” Computer
Communication Review, vol. 20, pp. 23-29, October 1990.
[12] S. Golestani, “A self-clocked fair queueing scheme for broadband applications,” in Proc. IEEE
INFOCOM °94, pp. 636-646, April 1994.
[13] D. Stiliadis and A. Varma, “Latency-Rate servers: A general model for analysis of traffic
scheduling algorithms,” in Proc. IEEE INFOCOM °96, pp. 111-119, March 1996.
[14] D. Stiliadis and A. Varma, “Efficient fair-queueing algorithms for ATM and packet networks,”
submitted to IEEE/ACM Transactions on Neltworking, April 1996.
[15] J. Turner, “New directions in communications (or which way to the information age?),” IEEE
Communications, vol. 24, pp. 8-15, October 1986.
[16] J. Rexford, A. Greenberg, and F. Bonomi, “A fair leaky-bucket shaper for ATM networks.”
unpublished report, AT&T Bell Laboratories, 1995.

[17] O. Yaron and M. Sidi, “Performance and stability of communication networks via robust expo-
nential bounds,” IEEE/ACM Transactions on Networking, vol. 1, pp. 372-385, June 1993.

References Al

Appendix A

Proof of Lemma 3

Assume that a system-busy period starts in both servers at time 0. Let the packets transmitted
by the PRPS system during the system-busy period be numbered 1,2,... k... in their order of
transmission. Since both servers are work-conserving, the system-busy period must end in both at
the same time. However, the order in which the last bit of packets leave the system in the fluid
server can be different from that in the packet-by-packet server because multiple packets can be in
service at the same time in the former. Therefore, we need to consider two cases:

Case 1: The last bits of packets 1,2,...,k — 1 left the fluid server before the last bit of the kth
packet. Then, the time of departure of the last bit of the kth packet in the fluid server, denoted by

th, must satisfy
k

1
th>=-> I, Al
k = r Z 7 ()
j=1
where L; is the size of the jth packet and r the service rate on the outgoing link.
The corresponding departure time of the last bit of the kth packet in the packet-by-packet server
is given by

1
r == . .
Pl (12
j=1
From (A.1) and (A.2),
tF <4f. (A.3)
Case 2: Now consider the case when one or more of the packets 1,2,...,k — 1 were still in service

in the fluid server when the last bit of the kth packet left the server. Among this set of packets,
let the packet with the largest index be the mth packet, m < k, with a length of L,,. This packet
left the packet-by-packet server at time t! and started transmission at LY — LT’" At this point,
packets m + 1,m + 2,...,k had not arrived in the system; if they had, they would have received
timestamps lower than that of packet m, and therefore would have been serviced earlier than m in
the packet-by-packet server. Also, the packets m 4+ 1, m + 2,...,k were serviced completely in the

fluid server before packet k left the system.

Since packets m +1,m+2, ..., k were serviced completely during the interval (tf — LT’”, th], we
must have
L 1 &
R S
r T
j=m+1
1 & L
F P m
j=m+1
But,
1k
th =th + -3 I;. A5
k m + r n;:l J ()

From (A.4) and (A.5), and noting that Ly, < Lpag,

Lmax
<4+ — (A.6)

Thus, combining (A.3) and (A.6), we get the upper bound as

Lmax

ty <t +

A2 References

Proof of Lemma 5

Both RPS and PRPS are work-conserving servers. Let us assume that a connection ¢ has received
more service in the packet-by-packet server than in the fluid-server. In the worst case, every other
backlogged session may have received less service in the former. By Lemma 3, any backlogged session
in the packet-by-packet server may lag in service by as much as L4, from the fluid server. Thus,
in an extreme case, every backlogged session excluding ¢ may be lagging in service by L4, 1n the
packet-by-packet server. Since the servers are work-conserving, session ¢ must be ahead in service
in the packet-by-packet server by an amount equal to the total lag of all other sessions. That is,

W (0,8) = W (0,8) < (V = 1) Linas.

A tighter bound may be obtained in some cases. Let us denote with ¢¥ the time a packet k from
session ¢ finishes service in the PRPS system. The maximum difference in service seen by session i
between the two servers will occur at time ¢¥. Let LY denote the size of packet k. This packet

k
started service in the PRPS system at time 75 = ¢ — LT—’ We will distinguish two cases for the time

k
T

Case 1: VT/Z»P(O,) < VT/Z»F(O, 7F). Then we can write
W (0,1) W0, 7) + L

< WE©O,)+ LE
< WEO.8)+ LY
. L
Foy 4k . LIn
< V%(O,ti)ﬂzlg}lasxv(pn) (A7)

The last inequality follows from the fact that

Lk L

~L < max (=2).

pi ~ 1<V py
Case 2: WP (0,7F) > WF(0,7F). Let Fff be the finishing potential of packet k of session 7 in the
fluid server. P;(t¥) is the potential of session i in the fluid server at time t¥. Then, at ¥, session i
will have to receive an additional amount of service at maximum p; (Ff — P(¥)) in the fluid server

to catch up with the potential in the packet-by-packet server. Thus,
WE0,85) = WE(0,8f) < pilFF = Pi(}))
< pi(FF = Pi(rF)), since Pi(tF) > Pi(rF). (A.8)

K3

At time 77 session i has received less service in the fluid server as compared to the packet-by-packet
server. Therefore, by Lemma 4, there is another session j, with potential P;(rF) < P;(7}) that has
received more service in the fluid server. Let the last packet serviced from this session at time ¥ in
the fluid server be the mth packet. Let ST and F" denote the potentials of session j in the fluid

server when this packet begins and ends service, respectively. Then, 57" < Pj(rf). Since the packet
has not completed service in the packet-by-packet server, Fj™ > F¥. Thus, we have

Pi(rf) > Pi(rf) > ST, (A.9)

and

FF < PP (A.10)
Substituting for F} and P;(t¥) in Eq. (A.8) from equations (A.10) and (A.9), respectively,

L
< pi=Z
P
L,
< p =ny. Al
< plg}lasxv(pn) (A.11)

This completes the proof of Lemma 5. a

References A3

Proof of Theorem 3

Consider time 1. Without loss of generality, let us assume that at time ¢1, P;(¢1) > P;(f1). Since
connection ¢ is backlogged

Pi(t1) > P(1y). (A.12)

We also know that
P;(t1) < P(t1) + AP. (A.13)

Since both sessions are backlogged in the interval (¢1,?2], their potentials in this interval have
increased only by the normalized service offered to the two connections. Therefore,

Pi(ts) — Pi(t1) = W (A.14)
and
Pi(ta) — Pj(t1) = E?Qﬁ;iile. (A.15)

At time t5, the potential of connection ¢ can not be more than that of connection j. Let us denote
their difference with x. Then,
= Pj(t2) — Pi(t2) > 0. (A.16)

From equations (A.12),(A.14), and (A.16),

m(tl 3 tZ)

P < Pj(ta) — P(t1) — =. (A.17)
Similarly, from equations (A.13) and (A.15),

Wilty, ta)

L > By(n) - P(h) - AP (A.18)

From equations (A.17) and (A.18) we can easily conclude that

Wi(t1,t2) W (t1,12)
pi Pj

<AP— 2 < AP (A.19)

If P;(t1) < P;(t2), we can derive in the same way that

Wity t2) — Wity to)
Pj Pi

AP, (A.20)

Therefore,
Wity t W (th,t
| (L ts) _ Wl 2)|§AP. (A.21)
pi Pj
Thus, if AP is finite, the difference in normalized service offered to any two backlogged connections
is also bounded.

Proof of Theorem 4

Let us assume that after time 7 both connections ¢, j have an infinite supply of packets. Without
loss of generality, let

Wi(tl,tz) > Wj (t1,t2)

- bl

pi pj

(A.22)

for a time interval (¢1,%2] with 7 <t < ta.

A4 References

In order to provide tight bounds on the fairness of the algorithm we need to define the potential
function of the packet-by-packet server. Thus, let us denote with a;(¢) the potential of connection
i at time ¢ on the packet-by-packet server. Note that the function a;(¢) is defined in terms of the
potential of the connection in the fluid server. That is, a connection misses the same amount of
service in both the fluid server and the packet server while it 1s absent. The only difference is that,
when the connection becomes backlogged, its potential in the packet is increased only when a packet
of that connection is transmitted. Let P;(¢) represent the potential of connection ¢ in the fluid server
as usual.

We know that, after time 7 both connections have an infinite supply of packets. Thus, the
potential of both connections in the fluid server is only increased by the normalized service offered
to them. For the service offered to connection ¢ in the interval (¢1,%2] we can write:

L) < mas(aea) = Pi)) + 22 (4.23)

If the potential of connection ¢ at time ¢q is greater than P;(¢1), then the normalized service offered
to connection ¢ during the interval (¢1,¢5] is equal to the increase in potential after time ¢; plus the
amount of service that connection i received more in the fluid-server compared to the packet-by-
packet server until time ¢;. If on the other hand, the potential of connection 7 in the packet-by-packet
server is less than P;(¢1), then the packets that were serviced after time ¢; in the fluid-server have
not yet been serviced in the packet-by-packet server. Thus, the only service offered from the packet-
by-packet server to connection ¢, has already been offered to the fluid-server before time ¢;. This
service is always bounded by L4, Similarly for connection j we can write:

W; (;1"152) > max(aj (ts) — Pi(t1)) — C; (A.24)

Notice that connection j may have received more service in the packet-by-packet server than the
fluid-server until time ¢;. But we also know, that the difference in potentials between connections ¢
and j is bounded by AP at time ¢;. That 1s,

|Pi(t1) — P;i(t1)| < AP (A.25)

Finally, since we assumed that connection ¢ has received more normalized service, and from the
definition of the packet-by-packet rate-proportional servers

a;i(ts) < aj(ta) + % (A.26)

Combining Equations (A.23),(A.24),(A.25), and (A.26),

Wi(t,t Wit t Limas . Li
(ta,t2) J(l’z)gAP+Cj+]
pi Pj pi Pj

(A.27)

Similarly, if connection j received more normalized service in the interval (¢1, 2] we can write:

W» 1.1 VT/Z 11,1 Lmae L;
J(1, 2)_ (1’ 2) < AP+ C; + + = (A.QS)
P Pi Pi Pi

From Equations (A.27),(A.28) we can conclude that

Vi(ty,t Vi(ty,t Linaw . L; Limaz | Li
W (t1, 2)_W(1, 2)|§max(AP—|—Cj—|— + =L AP+ C + + =) (A.29)
Pj Pi Pi Pj Pj pi

O

