
A Scan-Line Algorithm for Volume Rendering ofMultiple Curvilinear GridsUCSC-CRL-95-57Jane Wilhelms Paul Tarantino Allen Van GelderUniversity of California, Santa CruzNovember 20, 1995AbstractThis report presents a volume rendering technique that is based on a scan-line algorithm with depthsorting. The algorithm can handle any connected grid, including multiple non-convex intersectingcurvilinear grids, and is designed to be run in parallel on a MIMD architecture. Variable resolutionis achieved by changing the height and width of the output screen. Scan conversion and compositingare done in software, which eliminates the need for special graphics hardware, as well as any artifactsassociated with graphics hardware. A description of the data structures and pseudo-code is given alongwith a solution for rendering accurate depths in perspective viewing. The algorithm is compared, withrespect to time and accuracy, against cell projection.

1

1 IntroductionDirect volume rendering produces a 3D visualization of 3D scalar data. Producing high-resolution imagescan be very expensive, especially if the data is in a curvilinear grid [Wil93]. Multiple grids that intersectmake accurate rendering even more di�cult for cell projection methods and create cell subdivision problemsfor algorithms that use cells as fundamental volume units [MHC90, Cha93, GP93, Luc92].Our method decomposes the cells of each grid into six faces. Each face is represented by two triangles.The triangles are treated as individual polygons and passed to the renderer, which depth sorts the polygonsfor each pixel and integrates color from one polygon to the next. Accurate images are produced withoutsubdividing any polygons.1.1 BackgroundThere are several algorithms for direct volume rendering of curvilinear grids. Most of these algorithms useeither ray casting [Gar90, Use91, RW92] or cell projection [ST90, Wil92b, VGW93] techniques. These directvolume rendering algorithms address issues such as speed, picture accuracy, and exibility. In addition tothese issues, our algorithm addresses scalability, intersecting grids, and portability.Ray tracing algorithms are based on the concept of sending rays from the eye, through each screen pixel,and into the volume. The color and opacity for each pixel is composited from the scalar values sampledfrom the cells intersected by the ray. A substantial amount of time is spent calculating intersections ofthe ray with entry and exit faces of cells. Early implementations of ray tracing curvilinear grids were doneby Wilhelms [WCA+90] and Garrity [Gar90]. Wilhelms and Van Gelder discuss a hiercharical ray-castingapproach [VGKW95] which achieves acceleration by taking large steps over regions where data need not beprocessed at a �ne resolution. Their approach, which uses multi-dimensional trees [WVG94], gives the usercontrol over an error tolerance which directly e�ects the acceleration.Cell projection methods are designed to take advantage of the speed of graphics hardware to renderpolygons. Volume elements are projected onto the screen in front-to-back or back-to-front order. Projectionmethods are generally very fast since color and opacity composition can be done by the hardware, however,if interpolation between sample points and integration in depth are not done accurately, visual artifacts mayoccur [WVG91]. Projection methods are very e�cient for rendering rectilinear grids, since they can takeadvantage of cell coherence [WVG91]. Irregular volumes can be more expensive for projection methods sincethe cells have di�erent shapes and the visibility ordering is not as trivial [VGW93].Parallelization of both projection and ray casting are discussed by Challinger [Cha93]. She discussesseveral important parallelization issues including task generation (the decomposition of a large job intosmaller tasks), synchronization, and memory management. She also describes a hybrid approach using ascan-line algorithm to sort cells and X-buckets to sort edges.Giertsen and Peterson [GP93] used a cell-based scan-line algorithm to parallelize volume rendering overa network. They break the screen up into several small sections and distribute the sections to availableprocessors. The processed sections are then received and displayed on the screen.1.2 Scan-line AlgorithmsBoth the ray-casting and projection algorithms for volume rendering share a common factor in that theyboth can be improved by taking advantage of spatial coherence. By doing this, the two algorithms lose theirdistinct characteristics and merge to become a scan-line algorithm. Scan-line hybrid algorithms have been2

implemented by several people [MHC90, Cha93, GP93, Luc92]. They all take advantage of spatial coherenceby transforming the volume into screen space and rendering the cells, or faces of cells in front to back orderfor each scan-line. Coherence is achieved by processing the scan-lines in sequential order.Giertsen [GP93] intersects each volume element with the scan plane to get a polygon which is �lled. Healso divides the �nal image into rectangular sections for parallelization. Some scan-line methods [MHC90,GP93] sort volume elements into scan-lines, while others [Cha93, Luc92] break the faces of each cell intoindividual polygons which are then sorted.This paper describes a method for rendering possibly intersecting polygons that have been extracted frommultiple, intersecting curvilinear grids. A parallel implementation is presented and di�erent approaches tomaximizing scalability are discussed.This algorithm is similar to that of Lucas [Luc92], with the exceptions that the facial polygons aredecomposed into triangles, the visibility sorting is done during the creation and maintenance of X-buckets toallow for highly intersecting multiple grids, and we are using the bounding box as a virtual polygon, insteadof clipping in the data structure.2 Algorithm and Data StructuresThe algorithm described here is based on Watkin's scan-line algorithm [Wat70], with several modi�cations,which will be described later in this section. Triangles are assumed to be the only type of polygons thatare being rendered. This makes it easier to identify active edges and also keeps data consistency wheninterpolating between edges at di�erent rotations. It is also easy to break up the quadrilateral faces of acurvilinear grid into a set of triangles. The details in this paper assume triangles, however, the algorithmcould be adapted to use any polygon. This increases the number of polygons by a factor of 2. Other methods[Wil92b, Wil92a] have been reported that decompose each hexahedral cell into �ve tetrahedra, resulting inan increase in the number of polygons by a factor of 313 .The algorithm begins with the conversion of the vertices from world space to screen space, preservingdepth values. This is done by passing each vertex through the geometry and the projection matrices andstoring the locations back in memory.2.1 Y-bucketsThe volume is decomposed into polygons by representing each face of each cell with two triangles. Eachtriangle is given a sequential identi�er (Id). The next step is to process all of the polygons into the Y-buckets.A polygon is considered active for a scan-line if it contributes to the image for that scan-line. There is oneY-bucket for each scan line and it contains the all of the triangles that become active (start contributing tothe image at that scan line) on that scan line. The Y-buckets are implemented as one array that holds allof the Id's in scan-line order. Each Y-bucket can be accessed by a starting and ending subscript in to theY-bucket array. The algorithm can save time by eliminating any triangles that may not contribute to the�nal image because of the following reasons:� It is entirely o� of the visible screen space.� It is entirely out of the region de�ned to be drawn. (i.e. a clipped region)� It does not cross a scan line. (The ceilings of the Y components of all three vertices are equal.)3

� It does not cross a pixel in the X direction. (The ceilings of the X components of all three vertices areequal.)Once the Y-buckets have been built, each scan line is processed and drawn into the frame bu�er. Anactive list containing the polygon Id's of those polygons that contribute to the scan-line (i.e. in the Ydirection) is maintained. Before processing the next scan-line, the previous scan line must be updated byadding in new triangles from the current Y-bucket and removing any triangles that are no longer active.Table 1 de�nes the data structure used for the active list in Y direction. The active list in Y directionLong Long Long Long Long Long LongPoly ID Grid Num Bottom Vert Left Vert Right Vert Max Y Value Intermed Y ValuePoly ID Grid Num Bottom Vert Left Vert Right Vert Max Y Value Intermed Y ValuePoly ID Grid Num Bottom Vert Left Vert Right Vert Max Y Value Intermed Y ValueTable 1: Data Structure for Active Polygon List in Y direction. (Array)is implemented as an array. As each new triangle is added into the active list, its orientation to the scanline must be determined by examining the X and Y values of the vertices. Figure 1 shows the two basic
Scanline

Bottom
Right

Left Left
Right

Bottom

Previous ScanlineFigure 1: Figure of the two basic orientations of a triangle. 1.) Two vertices below scan-line and 2.) Twovertices above the scan-line.orientations that a triangle can have with respect to the scan-line - two vertices below the scan-line or twovertices above the scan-line. There are actually twelve orientation cases since we do not know which of thethree vertices are the bottom, left, and right. The bottom vertex is always below the scan-line. The leftvertex is always above the scan-line. The right vertex is chosen such that by traversing the vertices of thetriangle in counter-clockwise order, the vertices are visited in the order (right, left, bottom). In order todetermine the bottom and right vertices (or left and right vertices for the second case), the slopes of the twoedges that intersect the scan-line must be tested. In the case where two vertices are above the scan-line, anintermediate Y value is determined and saved that will signify a change in one of the two edges that areused. If the triangle falls into the case where two vertices are below the scan-line, then the intermediate Yvalue is set to the same value as the Y-bucket. After the active list is updated, the active triangles, whichare not sorted in any particular order, must be processed into X-buckets.4

2.2 X-bucketsThere is an X-bucket for each pixel across the scan line which contains the triangles that become activestarting on that pixel. A polygon is considered active for a pixel if the pixel, which is represented byintegers, lies inside or exactly on the edge of the polygon. The X-buckets, de�ned in Table 2, must bebuilt and maintained in visibility-order for correct color and opacity calculations, therefore, it has beenimplemented as a linked list.Long Float Float Float Float Float Float Float Float Int PointerPolygon Current Current Left Right Left Right Left Right Max NextID Data Depth X X Z Z Data Data XValue Value Value Value Value Value Value Value ValueTable 2: Data Structure for Active Polygon List in X direction. (Linked list)
Scan Plane Screen Plane

Viewing Rays

eye

z

x

z
x

y

Figure 2: Figure of intersecting cell faces and their scan plane representation.Figure 2 shows how intersecting cell faces are processed for a given scan-line. As the scan line is processed,an active list is maintained and updated for each pixel. The active list contains the data value and the depthfor each triangle that contributes to that pixel and is sorted by depth. It can then be traversed to accumulatethe color and opacity for that pixel. When calculating the X-bucket for a triangle, the X values for the pixelwhere the triangle becomes active and where it becomes inactive on the current scan-line must be determinedby linearly interpolating the two active edges of the triangle. The code listed in Figure 3 determines whichtwo of the three edges to use for a given scan-line.2.3 InterpolationDuring the course of updating the active lists, both in the Y and X direction, values for X, Z, and dataare calculated through linear interpolation. The main requirement of the interpolation method is that theinterpolated values for both end points must be exactly equal to the endpoints and never over shoot the endpoints by any amount. If the interpolated value of X did overshoot the endpoint by a small amount, and thatamount resulted in X being greater that the next higher integer, the polygon would incorrectly contributeto an extra pixel in the �nal image. The equation below insures that triangles that share a vertex and do5

if(scanline is below Y−intermediate)
 {
 use bottom−>left and bottom−>right
 }
else
 {
 if(left’s Y value is greater than right’s Y value)
 {
 use bottom−>left and right−>left
 }
 else
 {
 use left−>right and bottom−>right
 }
 } Figure 3: Determining which edges to use for given scan-line.not overlap in world space will not overlap at any point in this algorithm. The equation that we used forlinear interpolation between vertices isx = x1(y1 � y0) (y � y0) + x0(y1 � y0) (y1 � y)This particular formula calculates x given the scan-line y and the two points of a line (x0; y0) and (x1; y1)that intersects the scan-line. This formula will give exact values at both end points, without over shootingand eliminates overlap between adjacent polygons. The order of calculation should never change throughoutthe algorithm to insure that two polygons which share an edge always get the same value of x along thatedge for any given scan-line.2.4 Pseudo code for three major components

DoYScan(screenHeight, screenWidth)
 {
 ConvertVerticesToScreenSpace();
 BuildYBuckets();
 for(scanline goes from 1 to screenHeight)
 {
 ActiveYList = UpdateActiveYList(ActiveYList, scanline);
 X_Buckets = BuildXBuckets(ActiveYList, scanline);
 DoXScan(X_Buckets, screenWidth);
 }
 } Figure 4: Outer loop of Y scan algorithm.Figure 4 is a simple pseudo code representation of the outer loop of the Y scan algorithm. Each scan line callsthe DoXScan procedure which could be thought of as the inner loop. The DoXScan procedure, representedas pseudo code in Figure 5, processes the scan line from left to right. It calls the DrawThisPixel routine inFigure 6 which traverses the ActiveXList to determine the color and opacity for that pixel. Those polygons6

DoXScan(X_Buckets, screenWidth)
 {
 for(X goes from 1 to screenWidth)
 {
 ActiveXList = UpdateActiveXList(ActiveXList, X, X_Buckets);
 DrawThisPixel(ActiveXList);
 }
 } Figure 5: Inner loop of Y scan algorithm.

DrawPixel(ActiveXList)
 {
 while(not at the end of ActiveXList)
 {
 if(ActiveXList.Polygon is on a grid surface)
 {
 toggle inside/outside for that grid;
 }
 if(ActiveXList.Polygon is a clipping polygon)
 {
 toggle in/out for clipping region;
 }
 if((we are inside clipping region) and (inside a grid))
 {
 IntegrateColor(Depth to next polygon, data of this and next polygon);
 AddColorToThisPixel;
 }
 ActiveXList = ActiveXList−>next;
 }
 } Figure 6: Draw a pixel routine.that are on a surface of a grid (i.e. the three vertices have one grid index that is either 0 or max) will togglea ag that keeps track of whether we are inside a grid or not. Similarly, those polygons that are part of thebounding box, or clipping region, will toggle a ag that controls whether we accumulate color or not.3 Parallel ImplementationWatkin's scan-line algorithm, although it appears sequential, can be implemented to take advantage of aMIMD architecture. By breaking up the various sequential components of the scan-line algorithm into equalloads for each process, the algorithm can be almost entirely parallelizable. The only parts that are not easilyparallelizable are the sections where the work is actually being broken up.This algorithm has three primary components that are implemented in parallel. The �rst, is thetransformation of vertices from world space to pixel space. The work for this part is easily sectioned for thenumber of processes that will be used. The second component is the generation of the Y-buckets. This canalso be broken up, however it requires using a two-pass approach. During the �rst pass, each process is givenan equal number of polygons to process. Each polygon either belongs in a Y-bucket, or is dropped becauseit does not cover a pixel in the drawing region. The Y-bucket value is kept for each polygon in a separate7

array of shorts called the bucket clip info array. In addition, if the polygon is discarded for any reason, aninvalidation ag is set for that polygon in the bucket clip info array. This array is used by the second passafter the Y-bucket array has been sized properly. Also, a counter, which will be used later as a subscript,for that Y-bucket is incremented. After the �rst pass is completed, the subscripts that were generated byeach process are combined to determine the total size of the Y-bucket array, and to determine the indexwhere each Y-bucket will start. Since we know the Y-bucket counts for each process, each process is giventhe starting index into the Y-bucket array. During the second pass each process handles the same polygons,minus those that were invalidated. The single Y-bucket array is �lled by all of the processes, by using thebucket clip info array that was previously produced.
2

Y−bucket

0

1

3

Counts

5

0

2

4

p0 p1 p2

3

2

1

9

4

1

3

7

2

p3

6

8

0

Total Counts

18

11

8

20

p0 p1 p2 p3

Offsets

0

18

29

37

5

18

31

41

8

20

32

50

12

21

35

57Figure 7: Counters and o�sets used by 4 processors in Y-bucket creation.The third part involves the processing of each scan line in order from bottom to top. There are severalways of implementing this part in parallel. The �rst implementation of this part consisted of a critical sectionof code where a processor updates the current active list for the scan line, takes a copy of it, and then exitsthe critical section. After exiting the critical section, it builds the X-buckets and processes the scan line.The next available processor waits to enter the critical section and get to the next available scan-line. Thisimplementation is not 100% scalable since it contains a critical section that will act as a bottle neck as moreprocessors are added, however, it was fairly easy to implement, and is the method that we used. One way toeliminate waiting for the next scan-line to become available is to assign a region of sequential scan-lines toeach processor. This will work if the volume is evenly distributed across the screen in the vertical direction.If it is not, then loading problems will arise resulting in one processor doing more work than the others.One alternative to the �rst approach is to have the processor update the current scan line in smallsegments (100 triangles each) and after each segment is updated, signal to the next processor that thesegment is ready. This way, all the processors can be updating their own scan-line and will only have to waitfor the next segment. If all of the processors have approximately the same throughput, each processor willonly have to wait for the �rst segment to be completed by the previous processor. Although this approach isnot 100% scalable, it will reduce the time spent waiting for the previous scan-line to be completely updated.The communications between processes is more complicated in this approach and could cause delays if thereis no e�ecient way to signal to other processes. 8

4 MeasurementsThis section describes our results of testing the algorithm on a large dataset (see Table 3). We discuss thesize of the dataset, and its impact on speed and memory requirements, as well as the e�ects of using di�erentscreen sizes and image scaling factors. Results are presented in graphical form with an emphasis on showingthe gains in speed for one to four processors.The dataset was rendered with a spatial rotation of (�90�X, �10�Y , 0�Z), and scale factors that rangedfrom 1.0 to 5.16. The speedup data for four processors in particular is not exact since the machine, an SGIReality Engine II had four processors, which means that some time was spent by one or more processorson background processes. This introduced some variation in performance, but trends in speed can still beobserved for four processors.Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 Grid 6 Grid 7 Grid 8 Grid 988x39x60 92x57x28 98x77x48 24x33x23 33x33x22 25x40x21 75x37x33 14x25x30 53x23x50205920 146832 362208 18216 23958 21000 91575 10500 60950Table 3: Grid dimensions and data points for NASA space shuttle.Scale - 1.00 1.20 1.44 1.73 2.07 2.49 2.99 3.58 4.30 5.16ActivePolygons 0.865 0.995 1.153 1.346 1.495 1.660 1.836 2.022 2.192 2.360(Million)Singleprocessor 54.39 66.87 83.52 98.88 112.55 125.34 138.02 149.15 161.75 173.80Twoprocessors 30.66 37.46 46.34 56.10 63.30 71.32 77.67 84.33 90.17 97.57Threeprocessors 21.30 26.19 32.58 38.82 44.10 49.36 54.24 58.26 62.70 68.15Fourprocessors 16.85 20.16 25.06 30.10 34.14 37.89 41.62 44.89 49.15 53.03Table 4: Elapsed time comparisons (in seconds) on SGI Reality Engine II with four 150 MHz processors,256MB memory. (NASA space shuttle data set)4.1 DatasetThe dataset that we chose for our experiment was the NASA space shuttle [JS90], which is made up of nineintersecting curvilinear grids and 941,159 total data points. The data includes the position of every pointin each grid along with values for its density, energy and momentum vector. We chose the space shuttlebecause it has multiple grids, and represents a large-sized amount of data.4.2 Timing analysisTransforming the point locations from world space to screen space was measured separately from the othersections of the algorithm. The average total CPU time to transform the shuttle points to screen space was1.25 seconds and did not increase more than a total of 0.02 seconds for four processors. Figure 9 shows the9

Figure 8: Shuttle images with transfer function. (scale = 1.0, 1.73, 2.99, 5.16)speedups for transforming the points to screen space for multiple processors. The results show that this partof the algorithm is scalable with a greater than 3.5 speedup for four processors.Speedup factors for creating the Y-buckets are shown on Figure 9. CPU times for creating Y-bucketsvaried from 16.8 seconds to 18.9 seconds. The time needed to create Y-buckets increases slightly (less than10% change from scale = 1.0 to scale = 5.16) when the number of active polygons increases. An activepolygon is one that is not clipped from the drawing area due to size or position on the screen. This increasein time is due to the fact that the Y-bucket array grows in size and active polygon id's must be stored inthe array.Speedup factors for generating the scan-lines from the Y-buckets are shown on Figure 9. These speed10

Speedup for Scan-line Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Points YBuckets Scan Total

Algorithm Component

Speedup

1 Processor

2 Processors

3 Processors

4 ProcessorsFigure 9: Speedup of algorithm for shuttle (scale = 3.58).
Memory Required

60.0

65.0

70.0

75.0

80.0

85.0

90.0

1.00 1.20 1.44 1.73 2.07 2.49 2.99 3.58 4.30 5.16

Scale Factor

MBytes

1 Processor

2 Processors

3 Processors

4 ProcessorsFigure 10: Amount of memory used by the program.ratios are not as high as those for transforming points to screen space or building Y-buckets because of thecritical code mentioned in section 3, however, the increase in speed is still signi�cant for four processors.The total elapsed times to render each picture are presented in Table 4. Overall speedup factors are inFigure 9. It is clear that although 100% scalability is not achieved, there is a signi�cant speedup (approx3.25) for four processors.4.3 MemoryMemory use is an important factor in measuring the e�ciency of an algorithm. Figure 10 shows the memory(in Megabytes) used by the program for a range of scale factors and multiple processors. This informationwas recorded by keeping statistical information associated with all calls to malloc() and free(). Most of thememory was used for storage of the following major items:� Space shuttle grid - 33.9 Mbytes.� Transformed points - 11.3 Mbytes. 11

� Frame bu�er (R,G,B,Alpha,Composite) - 5.0 Mbytes� bucket clip info array - 11.0 MbytesThe rest of the memory is used by the program to keep track of the polygons that it is rendering. It canbe seen from Figure 10 that memory usage increases with the number of processors. This is due to the factthat each processor is rendering a scan line and needs the memory to hold the data structures for that scanline, such as the active polygon list and the X-buckets. Also, as the number of active polygons increase, thememory needed by active lists and buckets increases as well.
Active Polygons per Scale

0.0

0.5

1.0

1.5

2.0

2.5

1.00 1.20 1.44 1.73 2.07 2.49 2.99 3.58 4.30 5.16

Scale

Polygons
(Million)Figure 11: Number of active polygons for di�erent scale factors.

Active Polygons per Screen Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

200 250 300 350 400 450 500 550 600 650 700 750 800

Screen Size (Pixels)

Polygons
(Million)Figure 12: Number of active polygons for di�erent screen sizes.12

4.4 Other factorsIt is clear from Figures 11 and 12 that as the window size is increased or as the scale is increased, the numberof active polygons is increased as well. As the scale is increased, there is an upper limit to the number ofactive polygons which is less than the total number of polygons in the data set because at high scale factors,more of the volume is projected o� of the screen and the polygons that project o� of the screen are discardedby the algorithm during Y-bucket creation. Increasing the window size will allow very small polygons, thatmay have been discarded because they did not cross a pixel, to become active since they are now projectedonto a larger portion of the screen.4.5 Comparison with cell projectionA blunt �n dataset [HB85], which is smaller (40x32x32 = 40,960 points) and only contained a single grid,was used to compare rendering times of the scan-line algroithm with times from a cell projection algorithmcalled QP [VGW93]. Both algorithms were run on an SGI Reality Engine II with four 150MHz processors,however, only one processor was used for this test.Program Scale = 1.0 Scale = 2.0QP 17.01 sec 17.01 secScan-line 22.07 sec 49.26 secTable 5: Scan-line and Qp times for Blunt Fin data set.Figure 13 shows images produced by the QP program (on top) and by the scan-line program (on bottom).Table 5 shows the CPU times for each program. It is clear that QP is the faster of the two programs, but atscales of 1.0 or less, the scan-line algorithm is competitive. The increase in time for the scan-line algorithmis o�set by its superior image quality. Also, the scan-line algorithm handles intersecting grids where QP cannot.5 Perspective RenderingDuring the initial testing of the program, we observed that the depth calculation between polygons was losingaccuracy due to the fact that we were using a standard projection matrix which transforms the viewableworld space into a unit viewing volume [McL91]. This meant that the Z values of the vertices were beingtransformed to values that were very close to each other, which introduced substantial oating point errorsand resulted in some ordering inconsistencies. The problem was corrected by using a di�erent projectionmatrix (described below). This matrix preserves the Z values by transforming them directly into pixel space,along with the X and Y values.The volume being viewed is inside a user de�nable visible bounding box (Vbb), of diagonal d (see Figure14). The Vbb is �rst centered at (0,0,0) in world space, then it is rotated by the user rotations and translatedback by eo. Then the user translates are applied, with the restriction thatzt + 12d+NearClip � eo(our implementation uses NearClip = :05eo), so that the denominator (eo�zt�zv) is positive. Using similartriangles, we get the following relationshipses = s � hs � eod ;13

Figure 13: Blunt �n images with transfer function. (scale = 1.0, 2.0) QP (top) Scan-line (bottom)xses = xv + xteo � zt � zv ;yses = yv + yteo � zt � zv ;zs + zsoes = zv + zteo � zt � zv = 1� eoeo � zt � zv :Conversion to screen space is xs = es(xv + xt)eo � zt � zv ; ys = es(yv + yt)eo � zt � zv ; andzs = es(zv + zt)eo � zt � zv � zso = es � zv � eo(eo � zt)(eo � zt � zv) :14

hs
d

d/s

−eo

−es

zt y
t

y

z

eye

Figure 14: Figure of perspective view - eye is at (0,0,0) world space. Volume is projected onto screen at left.Symbol De�nition Unitshs screen height pixelses distance from the eye to the screen pixelseo distance from the eye to the volume origin world unitsd diagonal of the volume's visible bounding box world unitss user's scale factor pure numberzt translate in z direction world unitsyt translate in y direction world unitsxt translate in x direction world unitszv vertex value of z world unitsyv vertex value of y world unitsxv vertex value of x world unitszs transformed vertex value of z to screen pixelsys transformed vertex value of y to screen pixelsxs transformed vertex value of x to screen pixelszso o�set (de�ned below) pixelsTable 6: Symbols used in perspective calculation.The variable zso is an o�set to the screen position and is chosen so that the center of the Vbb is mappedto 0 in zs. (The center of the volume might map anywhere, as it is not necessarily within the Vbb.) zso isrepresented by zso = es � zteo � zt :To invert the zv-to-zs mapping, just solve for zv. The following equations solve for the depth between twovalues (zv2 � zv1). eo(zs + zso) � (zt + zv)(zs + zso) = es(zv + zt)zv + zt = eo(zs + zso)es + zs + zso15

es + zso = es(1 + zteo � zt) = es � eoeo � ztzv2 � zv1 = eo[(zs2 + zso)(es + zs1 + zso)� (zs1 + zso)(es + zs2 + zso)](es + zs2 + zso)(es + zs1 + zso)= eo[es(zs2 � zs1)](es + zso + zs2)(es + zso + zs1)= eo � es(zs2 � zs1)(eo � eseo � zt + zs2)(eo � eseo � zt + zs1)By using this approach, along with the fact that the depth increases as the angle (�) from the eye to thepixel on the screen increases, the actual depth can be calculated asDepth = zv2 � zv1cos(�)6 ConclusionsThe renderer described in this paper allows rendering of large multiple intersecting curvilinear grids withoutthe use of expensive graphics hardware. The design allows rendering of any volume data that can berepresented by triangles. Factors such as screen size and scale can e�ect the time needed to render the volume,which provides a natural variable resolution feature. The renderer is parallelizable and measurements showthat elapsed time can be greatly reduced without greatly increasing memory requirements. Accurate depthcalculation can be achieved by using the projection method introduced in Section 5.

16

References[Cha93] Judy Challinger. Scalable Parallel Direct Volume Rendering for Nonrectilinear ComputationalGrids. PhD thesis, University of California, Santa Cruz, December 1993.[Gar90] Michael P. Garrity. Raytracing irregular volume data. Computer Graphics, 24(5):35{40,December 1990.[GP93] Christopher Giertsen and Johnny Peterson. Parallel volume rendering on a network ofworkstations. IEEE Computer Graphics and Applications, pages 16{23, November 1993.[HB85] Ching-Mao Hung and Pieter G. Buning. Simulation of blunt-�n-induced shock-wave andturbulent boundary-layer interaction. J. Fluid Mechanics, 154:163{185, 1985.[JS90] F.W. Martin Jr. and J.P. Slotnick. Flow computations for the space shuttle in ascent modeusing thin-layer navier-stokes equations. Applied Computational Aerodynamics, Progress inAstronautics and Aeronautics, 125:863{886, 1990.[Luc92] Bruce Lucas. A scienti�c visualization renderer. In Visualization '92, pages 227{233. IEEE,October 1992.[McL91] Patricia McLendon. Graphics Library Programming Guide. Silicon Graphics, Inc., MountainView, CA, 1991.[MHC90] Nelson Max, Pat Hanrahan, and Roger Craw�s. Area and volume coherence for e�cientvisualization of 3d scalar functions. Computer Graphics (ACM Workshop on VolumeVisualization), 24(5):27{33, December 1990.[RW92] Shankar Ramamoorthy and Jane Wilhelms. An analysis of approaches to ray-tracing curvilineargrids. Technical Report UCSC-CRL-92-07, UCSC, University of California, CIS Board, SantaCruz, CA, January 1992.[ST90] Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar volume rendering.Computer Graphics, 24(5):63{70, December 1990.[Use91] Sam Uselton. Volume rendering for computational id dynamics: Initial results. TechnicalReport RNR-91-026, NAS-NASA Ames Research Center, Mo�ett Field, CA, 1991.[VGKW95] Allen Van Gelder, Kwansik Kim, and Jane Wilhelms. Hierarchically accelerated ray castingfor volume rendering with controlled error. Technical Report UCSC-CRL-95-31, University ofCalifornia, Santa Cruz, UCSC CIS Department, Applied Sciences Building, Santa Cruz, CA95064, 1995.[VGW93] Allen Van Gelder and Jane Wilhelms. Rapid exploration of curvilinear grids using direct volumerendering. Technical Report UCSC-CRL-93-02, University of California, Santa Cruz, UCSCCIS Department, Applied Sciences Building, Santa Cruz, CA 95064, 1993. (extended abstractin Proc. IEEE Visualization 93, Oct. 1993).17

[Wat70] G.S. Watkins. A Real Time Visible Surface Algorithm. PhD thesis, University of Utah, SaltLake City, June 1970.[WCA+90] Jane Wilhelms, Judy Challinger, Naim Alper, Shankar Ramamoorthy, and Arsi Vaziri. Directvolume rendering of curvilinear volumes. Computer Graphics, 24(5):41{47, December 1990.Special Issue on San Diego Workshop on Volume Visualization.[Wil92a] Peter Williams. Interactive splatting of nonrectilinear volumes. In Visualization '92, pages37{44. IEEE, October 1992.[Wil92b] Peter Williams. Visibility ordering meshed polyhedra. ACM Transactions on Graphics,11(2):103{126, April 1992.[Wil93] Jane Wilhelms. Pursuing interactive visualization of irregular grids. The Visual Computer,9(8):450{458, 1993.[WVG91] Jane Wilhelms and Allen Van Gelder. A coherent projection approach for direct volumerendering. Computer Graphics (ACM Siggraph Proceedings), 25(4):275{284, 1991.[WVG94] Jane Wilhelms and Allen Van Gelder. Multi-dimensional trees for controlled volume renderingand compression. In ACMWorkshop on Volume Visualization 1994, Washington, D.C., October1994. See also technical report UCSC-CRL-94-02.

18

