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Figure 1: Hierarchical design procedure of VLSI with incorporation of parameter extrac-tion based on �eld solver1 IntroductionAnalysis and design of interconnects in high speed VLSI chips, multi-chip modules (MCM's),printed circuit boards (PCB's) and backplanes are gaining importance due to the rapid increasein operating frequencies and decrease in feature sizes. For high speed and high density intercon-nects, we have to consider the propagation delay and transmission line impedance, together withother e�ects such as signal degradation caused by transmission line dispersion, signal reection atdiscontinuities, crosstalk between adjacent and cross lines, and simultaneous switching noise dueto the inductance in power distribution system. Therefore, it is necessary to develop accurate andfast methods to extract the parameters of the interconnects.The design procedure of a VLSI system is shown in Fig.1. In traditional design process, theapproximate formulae are used to calculate the parasitic parameters of layout. With the rapidincrease in operating frequencies and decrease in feature sizes, interconnects dominates the systemperformance. For 0:25�m design, parameters extraction must be based on a 3D �eld solver.Recent years, many methods based on electromagnetc �eld theory have been applied to param-eter extraction of VLSI interconnect. They can be generally classi�ed into two categories. One



2 2. Interconnect Layout Partitioncategory is to solve di�erential Maxwell equations such as Finite Element method (FEM)[Coa87],Finite Di�erence method(FDM)[Zem88], and Geometry Independent Measured Equation of Invari-ance(GIMEI)[HSD96]. They basically divide the space surrounding the object into meshes, thenwrite local equations at each mesh point, which leads to a sparse matrix system. But the standardFD(or FE) method involves large number of unknowns since their truncated boundary conditionsare usually valid only far from the object. The other category is to solve electric potential or elec-tromagnetc �eld integral equations such as Method of Moments(MoM)[CHMS84], the BoundaryElement Method (BEM)[PWG92], and the multipole accelerated technique[NW92]. They makemeshes on the surface of the object. For multilayer multiconductor interconnects, this means thesurface of each conductor and dielectric interface are divided into meshes. Compared to FD, thisgreatly reduces the number of unknowns. But each small piece is either source or �eld point, anda�ected by all others, which leads to a full matrix. Therefore, all these methods will either solve asparse but very large matrix or solve a small but full matrix.For 3D interconnects, the number of unknowns in FEM or FDM is proportional to the mul-tiplication of the numbers of mesh nodes in three directions. So, hundreds mesh nodes in eachdirection will result in millions unknowns. Though the compressed storage technique and somespecial solvers may be applied to a sparse linear system, it is still time consuming and needs hugememory. Memory size and computing time are the instinct problems for MoM and BEM even withmultipole acceleration.In this paper, we propose a novel dimension reduction technique for 3D structures of VLSIinterconnects. We transform the complex 3D problem into a series of 2D problems by decomposingthe 3D multilayer and multiconductor interconnect structure into slices. For each slice, we maychoose the most e�ective method to deal with the 2D problem. For instance, in a pure homogeneousdielectric slice, we can get the rigorous analytical solution. Since each slice is homogeneous along thenormal direction, the solution is analytical expressions along the normal direction. This means weneed not pay additional e�ort for a 3D interconnect structure with very thin and very thick layers.This results in dramatical savings in computing time and memory needs. For considerable complex3Dmultilayer and multiconductor problems, this technique is generally several even tens times fasterthan the BEM with multipole acceleration (compared with FASTCAP from MIT[NW92]). Basedon this technique, accurate close-form formulae or data base can be fast generated for calculatingthe capacitances of various kinds of 3D interconnects.2 Interconnect Layout PartitionFig.2 shows a simple example of interconnect layout, the interconnects in the whole chip will becut into a large number of elements, which are classi�ed into a number of typical structures, such asthose shown in Fig.3. Our goal is to build an accurate and fast �eld solver library for these typicalstructures. For a given technology, the most structure parameters, such as the number of layers,permittivities and the thicknesses etc., are given, thus accurate closed-form formulae or data basefor typical interconnect structures can be produced based on the �eld solver library.



2. Interconnect Layout Partition 3
Figure 2: An example of layoutBend(a) (b)    coss over

(c)  2D multilayer multiconductor
(d)  Gap capacitance

(e)  Broadside coupling with openends
(f)   Cross over with bend

Figure 3: Some typical interconnect structures
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Figure 4: An example of decomposing multilayer and multiconductor 3D interconnect intoslices3 Dimension Reduction Technique for Capacitance Extraction of 3DInterconnectsA typical 3D multilayer and multiconductor interconnect structure is shown in Fig.4. Basedon our dimension reduction concept, this 3D structure may be decomposed into slices as shown inFig.4.In ith slice, the potential function �i satis�es the following 3D Laplace equation@2�i@x2 + @2�i@y2 + @2�i@z2 = 0 (1)Since in each slice, the structure is homogeneous in z-direction, the potential �i can be expendedas �i(x; y; z) =Xn [Ain cosh(�inz) +Bin sinh(�inz)] in(x; y) (2)



3. Dimension Reduction Technique for Capacitance Extraction of 3D Interconnects 5where  in(x; y) are called mode functions, and satisfy the following 2D Helmholtz's equation@2 i@x2 + @2 i@y2 + �2i i = 0 (3)According to the features of di�erent structure, we may choose di�erent methods to solve the2D Helmholtz's equation 3.3.1 Pure Dielectric LayerIn the pure dielectric layer ( as the �rst and �fth layer shown in Fig.4), the solution of Eq.3 canbe obtained analytically as i(x; y) = r�p�qab cos p�xa sin q�yb ; p; q = 0; 1; 2; � � � � � � (4)where �p = ( 1 p = 02 p > 0 �q = ( 1 q = 02 q > 0 (5)and �i = r(p�a )2 + (q�b )2; p; q = 0; 1; 2; � � � � � � (6)where a and b are the truncated lengths in x and y directions respectively. They should be largeenough that the truncated planes may be considered as magnetic walls.3.2 A 1� 1 Cross Over FormulationFig.5 is the structure of a 1 � 1 crossover immersed in �ve dielectric layers with two parallelground planes, which is a component cut from a layout shown in Fig.3(b). Here, due to thesymmetry of the structure, only one-forth of the structure is considered, and a and b are chosen tobe large enough to truncate the two lines and treat the boundary as magnetic wall as shown in the�gure.Because of the regular shape and homogeneous boundary conditions, we can write the modefunctions at the �ve regions analytically. The mode functions in regions 
1, 
3, and 
5 are alreadygiven in the above subsection.In region 
2, we have i(x; y) = s 2�pa(b� b1) cos p�xa sin (q + 0:5)�(y� b1)b� b1 ; p; q = 0; 1; 2; � � � � � � (7)where �p has the same meaning as Eq.5, and�2i = s(p�a )2 + ((q + 0:5)�b� b1 )2; p; q = 0; 1; 2; � � � � � � (8)
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Figure 5: Structure of a 1� 1 crossoverAnd in region 
4, we have i(x; y) = s 2�q(a� a1)b sin (p+ 0:5)�(x� a1)a� a1 cos q�yb ; p; q = 0; 1; 2; � � � � � � (9)where �q has the same meaning as Eq.5, and�4i = s((p+ 0:5)�a� a1 )2 + (q�b )2; p; q = 0; 1; 2; � � � � � � (10)After obtaining all the mode functions in the �ve layers, we can substitute them into Eq.2 withsome proper normalization, and transform the problem of �nding the potential distribution into�nding the corresponding unknown coe�cients.
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Via Conductors  FD mesh

Figure 6: A typical slice and the FD meshWe then match the potentials at each layer interface which is just a continuous boundarycondition: (i) the potential should be continuous at both sides of the interface, (ii) the normalderivative of the potential should also be continuous. Note that the potential equals to eitherzero in regions where conductor exists, or 1 if there is voltage impressed on this conductor. Bymaking inner product to both sides of the continuous boundary conditions, we can extract theunknown coe�cients utilizing the orthogonal property of modes and build a system of linear algebraequations. Because in Eq.2 there are two unknown coe�cients Ain and Bin, the number of equationsis the same as the number of unknown coe�cients. Solving the linear algebra equations, we canobtain those coe�cients, and substitute them into Eq.2, we can �nally get the potential distribution.3.3 More General CasesAn example of a general slice is shown in Fig.6, we can choose suitable numerical methods tosolve the 2D Eq.3. For example, we can use FD method to solve it. The FD mesh is also shown inFig.5. After writing out the FD equations at all mesh nodes, the following eigenvalue equation isobtained as [S]� = �� (11)where � = �2 is eigenvalue, � the vector consists of the potential values at all mesh nodes, and[S] the sparse matrix resulted from the FD equations at mesh nodes. This equation can be solvedwith some standard subroutines such as Lanczos method. After the eigenvalues and eigenvectors(discrete mode functions) are obtained, substitute them into Eq.2 and the general solution of



8 4. Experimental ResultsConductor FASTCAP DRT di�erence FASTCAP DRT di�erencesize in m C11 C11 percent C12 C12 percent1� 1� 5 1044 1010 3.4% -229.28 -229 0.1%1� 1� 6 1197 1163 2.9% -248 -247 0.4%1� 1� 7 1314 1308 0.5% -243.91 -256 4.7%1� 1� 8 1482 1447 2.4% -250.3 -261 4.2%1� 1� 9 1618 1588 1.9% -265.2 -266 0.3%1� 1� 10 1794 1729 3.7% -266 -270 1.5%Table 1: The comparison of capacitances in pF for crossover interconnect structureConductor FASTCAP DRT CPU time FASTCAP DRT Memory Usesize CPU time CPU time FASTCAPDRT memory memory FASTCAPDRT1� 1� 5 28.4 1.0 28.4 24.8 0.9 27.51� 1� 6 56.4 1.0 56.4 50 0.9 55.61� 1� 7 70.2 1.0 70.2 60 0.9 66.71� 1� 8 83.9 2.0 42 70 1.45 48.31� 1� 9 102.83 2.4 42.8 77 1.7 45.31� 1� 10 133.53 2.4 55.6 106 1.7 62.3Table 2: Comparison of CPU time in sec. and memory in MB for crossover problempotential functions are then transformed into the solution of those unknown coe�cients. Finally,matching the potential functions at the interfaces between the slices results in a set of matrixequations. The potential distribution functions and then the capacitances are obtained from thesolutions of these matrix equations.4 Experimental ResultsTable 1 shows the comparison of the capacitances, and Table 2 shows the computing time andmemory usage between DRT and FASTCAP from MIT[NW92] for the crossover structure as shownin Fig.3(b). There are ground planes both at the top and the bottom of the crossover. Here thenumber of layers is �ve, the thicknesses of the �ve layers are chosen to be the same as 1 meter, boththe widths of the two conductors are chosen as 1 meter, and the permittivities of the �ve layers arealso chosen the same value 3.9, the lengths of the two conductors are the same and considered asthe variable in Table 1 and 2.It can be seen that the deviations of the capacitances between the DRT and that obtained fromFASTCAP are less than 5%, but DRT is tens of times fast than FASTCAP, and the memory useof DRT is far less than that of FASTCAP.Table 3 4 shows the comparison of the capacitances, computing time and memory needs for abasic structure as shown in Fig.7. It can be seen DRT are about 5% less than the results fromthe closed-form formula [ST83], and for this simple problem our method is also much fast thanFASTCAP. Here, the permittivity is 3.9, the hight of the conductor over the ground plane is 1, thethickness and the width of the conductor are chosen to be 0.5 meter and 1 meter, respectively.
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Figure 7: Single plate on ground planeConductor DRT FASTCAP Closed-formlength in m Results in pF Results in pF Results[ST83] in pF2 415 422 4144 650 674 6596 873 925 9048 1110 1170 114910 1357 1412 139512 1568 1654 1640Table 3: The comparison of capacitances for the plate problemConductor DRT FASTCAP CPU time DRT FASTCAP Memory Uselength CPU time CPU time FASTCAPDRT memory memory FASTCAPDRT2 0.8 3.53 4.4 0.45 4 8.94 0.8 11.08 13.8 0.45 4.7 10.56 0.8 7.69 9.6 0.45 2.8 6.28 1.2 8.24 6.9 0.47 7.13 15.210 1.2 7.64 6.4 0.47 7 14.912 1.2 29.45 24.5 0.47 11.7 24.9Table 4: The comparison of CPU time in sec. and memory in MB for the plate problem5 Closed-form formulae generation based on the �eld solverAlthough DRT is much faster than current methods, it's still too expensive to use on-linefor optimal design and sensitivity analysis of large circuits. An alternative choice is to pre-compute the parasitics of typical geometry structures for a given technology and compute theparasitics of interconnects on-line by numerical table look-up[CCOL92]. This method also turnsout to be unpractical due to the requirement of excessive computer memory space to store all the



10 6. Conclusionpre-computed parasitics. The best choice for on-line design is to have closed-form expression ofcorresponding parasitics.There do exist empirical closed form expression for some interconnection structures, which weremostly obtained from curve �tting of approximate solutions of theoretical analysis or measurements.For the same component, there may be several empirical expressions obtained from di�erentapproximations, and each has di�erent valid range. It was also observed that solutions fromdi�erent approximations could di�er considerably [KC79]. Therefore, results from DRT can be usedto verify and modify various approximations and empirical expressions which have been developedthroughout the last several decades, and can also be used to synthesize closed-form formula ofelectrical parameters as function of geometry parameters such as widths and spacings.A simple example of the same structure as in Fig.7 is presented. The following closed-formformula is less than 0.1 percent di�erent from the original calculated results.C = 102 + 191:170635l� 21:9166667l2+ 2:4722222l3� 0:09375l4 (12)where l stands for the length of the conductor.6 ConclusionIn this paper, we proposed a novel dimension reduction technique (DRT) which decomposea complex 3D problem into a series of 2D problems. Based on this technique, the capacitance ofcomplex 3D multilayer multiconductor interconnect can be fast and accurately extracted. Some nu-merical examples show that this technique is generally an order of magnitude faster than FASTCAP,BEM with multipole acceleration, and uses considerably less memory. Based on this technique, wecan conveniently generate accurate closed-form formulae which are faster and more convenient for3D parameter extraction.References[CCOL92] K.J. Chang, N.H. Chang, S.Y. OH, and K. LEE. Parameterized spice subcircuits formultilevel interconnect modeling and simulation. IEEE Trans. on Circuit and System,pages 779{789, 1992.[CHMS84] Wei Cao, R.F. Harrington, J.P. Mantz, and T.K. Sarkar. Multiconductor transmissionlines in multilayered dielectric media. IEEETran. on Microwave Theory and Technology,MTT-32:439{450, April 1984.[Coa87] G.I.Coatache. Finite elementmethodapplied to skin-e�ect problems in strip transmissionlines. IEEE Tran. on Microwave Theory and Technology, MTT-35:1009{1013, November1987.[HSD96] Wei Hong, Weikai Sun, and Wayne Dai. Fast parameters extraction of multilayer mul-ticonductor interconnects using geometry independent measured equation of invariance.In proceedings of IEEE MCM Conference, February 1996.[KC79] E. F.Kuester andD.C. Chang. An appraisal ofmethods for computation of the dispersioncharacteristics of open microstrip. IEEE Tran. on Microwave Theory Tech., 39:691{694,July 1979.



References 11[NW92] K. Nabors and J. White. Multipole-accelerated capacitance extraction algorithms for3-d structures with multiple dielectrics. IEEE Trans. on CAS I: Fundamental Theoryand Applications, 39:946{954, November 1992.[PWG92] G.W.Pan, G.F.Wang, and B.K. Gilbert. Edge e�ect enforced boundary element analysisof multilayered transmission lines. IEEE Tran. on CAS I: Fundamental Theory andApplication, 39:955{963, November 1992.[ST83] T. Sakurai and K. Tamaru. Simple formulas for two- and three-dimensional capacitances.IEEE Tran. on Electron Devices, ED-30:183{185, February 1983.[Zem88] A.H. Zemanian. A �nite-di�erence procedure for the exterior problem inherent incapacitance computations for vlsi interconnections. IEEE Tran. on Electron Devices,ED-35:985{992, July 1988.


