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1. Introduction 11 IntroductionAnalysis and design of interconnections in high speed VLSI chips, multichip models (MCM's),printed circuit boards (PCB's) and backplanes are gaining importance due to the rapid increasein operating frequencies (with the rise time of digital signals dropping into subnanosecond range)and decrease in feature sizes (with deep submicron process technology). For high speed and highdensity interconnects, we have to consider the propagation delay and transmission line impedance,together with other e�ects such as signal degradation caused by transmission line dispersion, signalreection at discontinuities, crosstalk between adjacent and cross lines, and simultaneous switchingnoise due to the inductance in power distribution system. And these e�ects must be quanti�ed inorder not to render a fabricated digital circuit inoperable or to distort an analog signal and make itfail to meet speci�cations. Therefore, it is necessary to develop computationally e�cient methodsto extract the parasitics of the interconnects.For an inhomogeneous structure like VLSI interconnects, the modes are hybrid and full-waveapproach should be adopted. However, the qausi-static(qausi-TEM) approximations are su�cientlyaccurate when the transverse components predominates over the longitudinal ones, in other words,the transverse dimensions of the structure are much smaller than wavelength. As a matter of fact,most methods applied to extract the interconnect parameters in recent years used the qausi-TEMapproximation, which basically solve the Laplace equation with appropriate boundary conditions.Due to the frequency range of interest for high-speed VLSI is often below twenty gigahertz, we adoptthe quasi-TEM assumption. In fact, up to now the static capacitance matrix [C] and inductancematrix [L] of the multilayer and multiconductor interconnect is commonly used in practice forhigh-speed VLSI, PCB's and MCM's design.The various procedures to get the solution can be generally classi�ed into two categories. Onecategory is to solve di�erential Maxwell equations called domain or �nite methods, such as FiniteElement method(FEM)[Coa87] and Finite Di�erence method(FDM)[Zem88] [ZT89]. They basicallydivide the space surrounding the object into meshes, then write local equations at each mesh point,which leads to a sparse matrix system. But the standard FD(or FE) method involves large numberof unknowns because they get the solution of the potential distribution over the entire geometrydomain and the boundary conditions are usually valid only far from the object. The other categoryis using the integral equation approach such as Method of Moments[CHMS84] (MoM), the BoundaryElement Method[PWG92] (BEM) , and the BEM with multipole acceleration [NW92]. They makemeshes on the surface of the object. For multilayer multiconductor interconnects, this means meshesare made either on the surface of each conductor with Green's function for a layered medium whichis both mathematically and computationally complex, or on the surfaces of each conductor andall dielectric interfaces but with much simpli�ed Green's function. Compared to FD, this greatlyreduces the number of unknowns. But each small piece is either source or �eld point, and a�ectedby all others, which leads to a full matrix. Therefore, all these methods will either solve a sparsebut very large matrix or solve a small but full matrix.Measured Equation of Invariance(MEI) is a new concept in computational electromagnet-ics[MPCL92] [HLM94] [HM94] [HML94]. MEI is used to derive the local �nite di�erence (FD)like equation at mesh boundary where the conventional FD approach fails. It is demonstrated thatthe MEI technique can be used to terminate the meshes very close to the object boundary andstill strictly preserves the sparsity of the FD equations. Therefore, the �nal system matrix encoun-tered by MEI is a sparse matrix with size similar to that of integral equation methods. Therefore,



2 2. Problem Formulation and Generalized FD Equationthe method of MEI de�nitely results in dramatic savings in computing time and memory usagecompared to other known methods. It has been successfully used to analyze electromagnetic scat-tering problems, and to analyze microwave integrated circuits. For multilayer and multiconductorstructures, however, the deduction of Green's function is very di�cult. Also the calculation of theMEI coe�cients will encounter many Sommerfeld type integrals. As the result, the calculation ofMEI coe�cients dominates the total computing time. Therefore, complicated Green's function anddisagreeable Sommerfeld integrals make the traditional MEI very di�cult, if not impossible, to beapplied to analyze multilayer and multiconductor interconnects.Recently, a MEI variety called Geometry Independent MEI(GIMEI) was proposed[HSD96]which was veri�ed to be extremely computationally e�cient, and has been successfully used to solvetwo-dimension VLSI interconnect problems. Geometry Independent MEI substantially improvedthe MEI in three key aspects: 1) cancelled the postulate of geometry speci�c in conventional MEI,2) avoided the deduction of Green's function in multilayer structure, and 3) avoided the calculationof disagreeable Sommerfeld type integrals. Using this method, the calculation of MEI coe�cientsonly costs a very little part of the total computing time. In this paper, we extended GeometryIndependent MEI to compute capacitance matrix of general three-dimension interconnects. Theresults are in good agreement with published data and those obtained by using FASTCAP fromMIT[NW92]. And GIMEI can generally achieve an order of magnitude faster than FASTCAP withsigni�cantly less memory usage.2 Problem Formulation and Generalized FD EquationA general interconnect con�guration is shown in Fig. 1. For an N-conductor system, an N �Ncapacitance matrix is de�ned byQi = Cii�i + NXj=1Cij(�i � �j) i = 1; 2; : : : ; N (1)which can be rewritten as:Qi = NXj=1Csij�j i = 1; 2; : : : ; N (2)where Csij is the short circuit capacitance.We have the transformation:Cii = NXj=1Csij ; Cij = �Csij for i 6= j (3)and in this paper, when talking about capacitance, we all refer to the short circuit capacitance.Now, the parasitic capacitance problem to be considered reduces to the determination of chargeon each conductor for known potentials.We �rst discretize the geometry in interest into elementary boxes using a three dimensionalCartesian grid shown in Fig.2. The electrical potential can be assumed to be constant inside theelementary boxes and con�ned at the middle of the box. The mesh points on the metalization can
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Figure 1: A general 3D interconnect con�guration, the two �gures are not relatedbe treated to be at a constant potential under the qausi-TEM assumption. The boundary of themesh is treated later when we present the concept of MEI.The electrical potential function � in the bounded region except those mesh points on conductorsof the quasi-static problem satis�es the following Laplace equation:@2 �@x2 + @2 �@y2 + @2 �@z2 = 0 (4)Using di�erence to approximate derivative, we can write the electric potential at each internalmesh point as the linear combination of potentials of neighboring mesh points. Fig.3 shows ageneral local FD meshes. In the �gure, hx, hy , and hz are the discretization distances along x,y, and z directions, the eight subregions of the seven point net may be �lled with di�erent mediawith di�erent relative permittivities. We denote "1 be the relative permittivity of the subregionbounded by nodes 0; 2; 4; 5, "2 by nodes 0; 1; 4; 5, "3 by nodes 0; 1; 4; 6, "4 by nodes 0; 2; 4; 6, and"5 to "8 corresponds to "1 to "4 except they rely on the lower part of the Fig.3. By using the loopintegral technique[HLM94], the local FD equations for internal node of the mesh can be deducedand written as:
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Figure 2: Discretization mesh of the structure6Xi=0 ci�i = 0 (5)where c1 = 1h2x ("2 + "3 + "6 + "7) (6)c2 = 1h2x ("1 + "4 + "5 + "8) (7)c3 = 1h2y ("5 + "6 + "7 + "8) (8)
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Figure 3: Local FD seven points netc4 = 1h2y ("1 + "2 + "3 + "4) (9)c5 = 1h2z ("1 + "2 + "5 + "6) (10)c6 = 1h2z ("3 + "4 + "7 + "8) (11)c0 = � ( 1h2x + 1h2y + 1h2z )("1 + "2 + "3 + "4 + "5 + "6 + "7 + "8) (12)And it can be proven that the above local FD equations have the error of the order of O(h2),where h = max(hx; hy ; hz). By using loop integral technique, we can also obtain easily the localFD equations with all six di�erent discretization distances.3 Measured Equation of InvarianceThe above derived FD equation is only applicable at interior nodes of the mesh. In paper[MPCL92], Mei postulated that the �nite di�erence/element equations at the mesh boundary pointsmay be represented by a local linear equation of the typeMXi=0Ci�i = 0 (13)
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the Figure 4: A slice cut from Fig.2 illustrating measuring boxwhere M is the number of nodes that surrounding the node in interest �0. The node con�gurationis shown in Fig. 4 which is a slice cut from Fig.2 with the surfaces A and A0. And the coe�cientsin Eq.13 are: (i) location dependent, (ii) geometric speci�c, (iii) invariant to the excitation. Eq. 13is called measured equation of invariance (MEI), and Ci, i = 0; : : : ;M , the coe�cients of MEI.In conventional MEI, the distribution functions, called \metrons", are excited on the conductorsand the potential values on the MEI nodes as shown in Fig. 2 and Fig. 4 are obtained from theintegrals of the metrons multiplied by Green's function. Substituting the potential values at MEInodes into MEI (Eq. 13) will lead to a system of linear algebraic equations with respect to the MEIcoe�cients Ci(i = 1; : : : ;M), where each equation corresponding to one metron. The MEI or MEIcoe�cients are determined by solving the system of linear algebraic equations. Finally, the potentialvalues at all nodes can be obtained by solving the system of linear algebraic equations which consist



4. Geometry Independent Measured Equation of Invariance 7of FD equations at interior nodes and MEI at truncated mesh boundary nodes. The coe�cientmatrix of the system of linear algebraic equations is a sparse matrix since each row contains eitherseven non-zero elements from FD equations orM(or less) non-zero elements fromMEI. Here,M is atmost six without considering diagonal nodes. It results in great savings in memory needs comparedwith BEM or MoM etc. Furthermore, the computing time is proportional toN2 for solving a sparsematrix equation but N3 for solving a full matrix equation. The order of coe�cient matrix in MEIapproach is much less than that in conventional FD methods with absorbing boundary conditions,because MEI can terminate the mesh very close to the region in which we are interested. Theseproperties make the method of MEI a powerful tool for computational electromagnetics.In addition, solving the dense matrix for each MEI nodes are totally di�erent from solving thedense matrix in integral equation methods, because the local MEI equation has very small constantdimension, and there are almost the same number of MEI nodes as the number of panels in MoM,or BEM. So the memory and computation time of solving MEI equations are much less than solvingthe dense matrix in integral equation methods.Although some papers[JL94] [JL95] propose some doubts on the third postulation of the MEIcoe�cients: invariant to excitations, they still admit in the papers that MEI is an e�cient techniquefor the truncation of mesh boundaries. Actually, their arguments didn't conict with the funda-mentals of MEI, because we have already proven that MEI coe�cients are actually not strictlyinvariant to excitations, but instead, are invariant to excitations on the sense of O(h2), whereh = max(hx; hy ; hz) [HSD95]. As stated above, the local FD equation Eq.6 to Eq.12 also has theerror of O(h2), therefore, the total truncation/model error of the �nal matrix system has the orderof O(h2), which is not degenerated by the introduction of MEI equations on boundaries. Andbecause of the e�cient absorbing property of the MEI coe�cients, the �nal matrix system gener-ated by MEI's method will approach the exact value with the convergence order of O(h2) whensolved by using proper iteration methods. Up to now, the Measured Equation of Invariance hasbeen successfully used to analyze electromagnetic scattering problems, and to analyze microwaveintegrated circuits [HLM94] [HM94].However, the closed form Green's functions for multilayer structures of VLSI interconnects, aregenerally derived in spectral-domain and then transformed to the space-domain by inverse Fouriertransformation which are in�nite integrals. In addition to the tedious deduction of Green's functionin a multilayer structure, the calculation of the MEI coe�cients is very time-consuming becausemany Sommerfeld type integrals will be encountered. The calculation of MEI coe�cients dominatesthe total computation time. As reported in [Pro94], for a one-layer microstrip stub, obtaining theMEI coe�cients required 90 CPU minutes for a single frequency, and solving the sparse systemrequired 24 minutes on a Dec Station 5000 series 200. Therefore, complicated Green's function anddisagreeable Sommerfeld-type integrals make MEI very di�cult, if not impossible, to be applied tomultilayer and multiconductor interconnects.4 Geometry Independent Measured Equation of InvarianceIn order to overcome these drawbacks and apply this e�cient truncation boundary conceptin interconnects analysis, we introduced a measuring box concept. A measuring box is just aclosed surface that encloses all objects inside as shown in Fig. 2 and Fig. 4, to isolate the MEInodes(boundary and the next layer) and possibly some bu�er layers from the region containing



8 4. Geometry Independent Measured Equation of Invarianceconductors. In [HSD96], it has been demonstrated that the MEI are also independent of thesource distribution on the measuring loop. The MEI coe�cients are then determined from themetrons on the measuring loop instead of the metrons on the conductors, which means the MEIare independent of the geometries of the conductors. In order to avoid the Green's function inmultilayer structure, the dielectric layers are truncated at the measuring loop with physical polishwhich ensures such truncation will not a�ect the total accuracy, and free space out of the measuringloop is assumed. Therefore, we can use very simple free space Green's function to measure MEIcoe�cients. Experiments suggest that very few layer meshes between the measuring loop andthe nearest conductors, and again very few layer meshes outside the measuring loop are su�cientto guarantee the accuracy of results in practice. The measuring loop concept has already beensuccessfully applied to extract 2D parasitics of multilayer multiconductor interconnects.Since free space is assumed out of the measuring loop, the potential values �ki ; i = 0; : : : ;M , atthe corresponding MEI nodes corresponding to kth metron �k de�ned on the measuring loop canbe simply obtained:�ki = Z�e �k(s0)G(~ri; ~r 0)ds0 i = 0; : : : ;M ; k = 1; 2; : : : ; K (14)where �e stands for the measuring loop, ~ri; ~r 0 denote the position vectors at ith MEI node and themeasuring loop respectively, K is the number of metrons. The 3-D quasi-static Green's function offree space is simply G(~ri; ~r 0) = 12�j~ri� ~r 0j � 12�j~ri� ~r 00j (15)where ~r 00 is the image position vector of ~r 0 with respect to the ground plane if any.Substituting the potential values �ki produced by kth metron into MEI (Eq. 13), yieldsMXi=0Ci�ki = 0; k = 1; 2; : : : ; K (16)It is a system of linear algebraic equations with respect to the MEI coe�cients C1; C2; : : : ; CM ,when C0 is normalized to 1. If the number of equations or the number of metrons, is greater thanM , we can solve Eq. 16 by least square techniques.Generally, in three-dimension case, the point metrons are selected and clustering techniquesare adopted. Because under qausi-static assumption, only the amplitude information(no phaseinformation compared with full-wave approach) is needed in the determination of MEI coe�cients,clustering is an e�cient approximation. In our program, the CPU time to obtain MEI coe�cientsare much less than solving the �nal sparse matrix, which means the overhead time spent on MEIcoe�cients is only a very small part(less than �ve percents) in the total computing time.Coupling the MEI equations at truncated mesh boundary nodes to the FD equations at interiornodes results in a matrix equation [S] �� = �f (17)



5. Experimental Results 9where �� is a column matrix consisting of the potential values at all mesh nodes, and �f is the knowncolumn matrix followed from the neighboring FD's around the conductors on which voltages areimpressed.From the solution of Eq. 17, we get the potential distribution over the mesh region. Sincethe �nite di�erence approximation of the Laplace equation is less accurate in the vicinity of aconductor's reentrant corner(i.e., a corner whose outside angle is greater than � radians) becauseof a singularity in the electric �eld in the corner, we use Duncan correction [Dun67] to get chargedistribution or total charge on each conductor. Bringing these charges into Eq.2, we can get the�nal short circuit capacitance matrix.5 Experimental ResultsAs mentioned in the abstract, the new method proposed in this paper is very suitable to param-eter extraction of general 3D interconnect structures. It has been demonstrated by experimentalresults that this method is faster than BEM(with multipole acceleration), MoM, and FD, withoutloss of accuracy. In addition, this method outperforms all methods for fairly large structures suchas tens even hundreds of conductors on tens of dielectric layers. Furthermore, this method canbe easily applied to structures with arbitrarily-shaped cross section conductors including in�nites-imally thin conductors on lossy and inhomogeneous dielectric layers due to the nature of FiniteDi�erence used inside the measuring loop.To verify the accuracy and speedup advantage of this method, the following examples wereselected to provide a quantitative measure. All relevant programs are run on a Sun Sparc 20workstation.5.1 Two dimension examplesBecause the capacitance and inductance per unit length do not vary when we scale the wholegeometry up or down in two-dimensional case, we only give relative size of each con�gurationwithout specifying the units in the following examples.The �rst example we show is an in�nitesimally thin microstrip as shown in Fig. 5. Thecharacteristic impedance Z0 of this structure can be de�ned as Z0 = 1v0pCC0 , where v0 is thespeed of light in free space, C the capacitance of this structure, and C0 the capacitance withdielectric layer replaced by free space.Fig. 5(b) shows the comparison of the characteristic impedance varying with the width height ra-tio W=H obtained by using GIMEI, Wei's result [CHMS84] which uses Method of Moments(MoM),Zutter's results [DZ89] which is based on Space Domain Green's Function Approach(SDGA), andthose provided by Gupta [GGB79] and Hammerstad [hJ80]. In our results, we use ten mesh pointsper unit length. The di�erence of our results are within 2.5% compared with the results by Ham-merstad [hJ80] which is regarded as standard reference for this kind of problem.The second two-dimension example is three parallel wires immersed in a dielectric which is acommonly found structure in microelectronics, whose con�guration is shown in Fig. 6(a). Thestructure represents three equidistant rectangular wires running parallel to a ground plane, whereeach conductor has the same size w � t, and the space s varies from 5 to 60. This structure hasbeen measured by Lin [Lin90].
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(b) C22 vs. the interwire distance sFigure 6: Structure and results of the three parallel lines example



5. Experimental Results 11cubes GIMEI FASTCAP di�erence GIMEI FASTCAP CPU timein meters results results percent CPU time CPU time FASTCAPGIMEI1x1x1 73.89 73.38 0.7% 0.21 0.7 3.31x1x3 114.8 115 0.2% 0.29 1.9 6.61x1x5 149.8 149.6 0.1% 0.34 3.6 10.61x1x8 196.4 196.2 0.1% 0.45 4.7 10.41x1x10 225.4 225 0.2% 0.52 6.8 13.1Table 1: Self capacitances in pF of the cube and the CPU time in sec.bu�er number capacitance(pF) CPU time(sec.) order of matrix3 241.6 0.25 1,0005 197 1.89 5,00010 174 9.1 20,00015 164 28.67 50,00020 159.4 68.45 100,00025 155 146.76 200,00030 151 250.58 300,000Table 2: Numerical results of 1� 1� 5 meters cube using E.W. boundary conditionFig. 6(b) shows capacitance of the middle conductor C22 varying with the interwire distance.A di�erence of less than 3% is observed in the whole range between our results and the measureddata [Lin90]. It's clear from the �gure that our results are more close to the measured data thanthose obtained by Finite Di�erence method(FD).As stated in [HSD96], for larger examples such as 12 lines �ve dielectric layers, GIMEI is tentimes faster than BEM with the di�erence within 3%.5.2 A simple 3D example: cube with di�erent longitude in air, compared withFASTCAP as well as FD with zero E �eld boundary conditionTo verify the speedup and accuracy property of GIMEI, a simple example of 1�1�z cube(unitin meters) is computed and compared with FASTCAP [NW92], which basically uses BEM andmultipole acceleration. The cube computed is extended along one direction z. Table 1 shows theresults(self capacitance of the cube varying with the extended edge z) of GIMEI compared withthose of FASTCAP as well as the CPU time of the two programs run on Sun Sparc 20 workstation.From the table, one can clearly see that in general, GIMEI is generally ten times faster thanFASTCAP with the di�erence of less than 1%.We have also compared our results with those of standard FD with zero E �eld (electric wall,E.W.) boundary condition with the same mesh discretization as our method. The structure ischosen to be the 1 � 1 � 5 meters cube. For our method, the bu�ers used outside the measuringloop is three mesh layers, the results is 149:8pF with 0.34 seconds CPU time. Table 2 shows theresults by using E.W. varying with the layer number outside the measuring loop.
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Figure 7: Single plate on ground planestructure GIMEI Closed form FASTCAP CPU time CPU timeparameters results [ST83] result GIMEI FASTCAPt = 0:5� 3.87 4.00 2.34 0.49 4.61h = 0:8�t = 1:0� 2.408 2.47 2.21 0.39 1.26h = 2:0�Table 3: Comparison of capacitance in fF and CPU time in sec.It can be seen that, to achieve the similar accuracy, standard FD with E.W. boundary conditionconsumes much more CPU time and memory than GIMEI.5.3 Single plate over a ground planeThe structure considered here is a single plate with �nite length put on a ground plane shownin Fig.7.The structure parameter is l = 10�; w = 5�; "r = 3:9. Table 3 shows the results of out method,FASTCAP, and those in [ST83], which is a closed form formula with 10% error.It is clear that for the small geometry, FASTCAP didn't give the right answer.5.4 A bend with numerical experimental on proper selection of bu�er numberA simple right-angel bend is shown in Fig.8, where all dimensions are in meters. This con�gu-ration is actually got from [ZT89].Using GIMEI, the results(self capacitance of the bend) is 2:974nF with 1:16sec: CPU time,while FASTCAP got 2:956nFF with 16:1sec: CPU time. GIMEI is, again, more than ten timesfaster than FASTCAP. It should be noticed that in the original paper[ZT89], the result is 105Fwhich is unreasonable.
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(b) Self capacitance vs bu�er numberFigure 8: Structure and results vs bu�er number of the bend problemConductor C11 C11 C22 C22 C12 C12length z(meter) GIMEI FASTCAP GIMEI FASTCAP GIMEI FASTCAP4 230 226 180.6 176 -61 -60.415 260 265 203.5 205 -66.5 -68.437 348.7 341.4 260.1 253.7 -80.1 -7910 440.3 451.6 326.8 324.2 -86 -87Table 4: Capacitance in pF for 1� 1� z cross over problemFig.8(b) shows the capacitance obtained by GIMEI varying with the bu�er number outside themeasuring loop. As stated above, we only need to use four to �ve bu�er layers to get enoughaccurate results.5.5 A series of 1� 1 crossoverFig.9 shows a 1� 1 crossover immersed in �ve layer dielectric with a ground plane at the verybottom of the structure. The structure parameters are: the height of each dielectric layer is 1meter. Each metal line has the width of 1 meter, and the two lines have the same length z meters.And they are overlapped both in the middle of the other line. The dielectric relative permittivitiesare all chosen to be 3.9 for the case of simplicity. The lower metal is numbered 1 while the highernumbered 2.Table 4 shows the results of short circuit capacitances C11, C22 and C12 computed by GIMEI andFASTCAP varying with the line length z. Here, the number of bu�er layer outside the measuringloop is chosen to be 3. The two results are within the di�erence of 3%. Table 5 shows the CPUtime and memory use of the two methods. It's clear that GIMEI is around ten times faster thatFASTCAP and consumes much less memory.
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Figure 9: A 1� 1 cross over on ground planeLength GIMEI FASTCAP CPU time GIMEI FASTCAP Memory Usez(meter) CPU time CPU time FASTCAPGIMEI memory memory FASTCAPGIMEI4 2.8 24.37 8.7 3.5 22 6.35 3.23 26.06 8.1 3.7 24.5 6.67 6.5 65.62 10.1 5.6 60 10.710 9.16 93.24 10.2 6.5 78 12Table 5: Comparison of CPU time in sec. and memory in MB for crossover problemGenerally speaking, because we truncate meshes close to objects and still keep the sparsity ofthe �nal system matrix, GIMEI can treat larger structures faster than other numerical methods.6 ConclusionsIn this paper, by using the measuring loop, we substantially improved the MEI in three keyaspects: 1) cancelled the postulate of geometry speci�c in conventional MEI, 2) avoided thededuction of Green's function in multilayer structure, and 3) avoided the calculation of disagreeableSommerfeld type integrals, but still keep all the advantages of MEI, and successfully introduce theconcept of MEI as an e�cient truncation boundary condition into the analysis of three-dimensioninterconnects. Using GIMEI, the calculation of MEI coe�cients only costs a very little part of thetotal computing time. Experimental results show that the geometry independent MEI proposedin this paper is generally an order of magnitude faster than FASTCAP using BEM with multipoleacceleration without loss of accuracy. Furthermore, this technique can easily handle the interconnectproblems with arbitrarily-shaped cross section and lossy and inhomogeneous dielectric media. The
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