Genetic Simulated Annealing
and Application to
Non-slicing Floorplan Design

Seiichi Koakutsu
Maggie Kang
Wayne Wei-Ming Dai

UCSC-CRL-95-52
November 18, 1995

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

We propose a new optimization method, named genetic simulated anneal-
ing (GSA), which combines the local stochastic hill climbing features from
simulated annealing (SA) and the global crossover operations from genetic
algorithm (GA). We demonstrated the advantages of GSA by solving one of
the most difficult problems in layout — the non-slicing floorplan design prob-
lem. Given the same amount of computing resources, our experimental results
showed that GSA consistently obtained better results than SA, in terms of
both the chip area and the total wire length. We also applied GSA to timing
driven floorplan design and experimental results indicated that it achieved the
specified wire length bounds for the critical nets with small penalty on the
chip area and the total wire length.

Keywords: Non-Slicing Floorplan, Genetic Simulated Annealing, Bounded
Slicing Grid, Crossover, Mutation, Space Solution, Timing Driven GSA Floor-
plan

1. Introduction 1

1 Introduction

Most of VLSI layout problems can be formulated as combinatorial optimization
problems and are proven to be NP-hard or NP-complete problems. Simulated an-
nealing (SA) [1, 2] and Genetic algorithm (GA) [3, 4] are heuristics for combinatorial
optimization problems and have been successfully used for various problems in the
CAD area [5, 6, 7, 8, 9].

While SA is very powertul for searching local regions of the solution space exhaus-
tively via stochastic hill climbing, GA is very powerful for searching large regions
of the solution space roughly and globally using crossover operations. Combining
the local hill climbing features of SA and the global crossover operations of GA, we
propose a new optimization method, named Genetic Simulated Annealing (GSA).

We apply GSA to non-slicing floorplan design problems to demonstrate the ad-
vantages of GSA over SA. The rest of the paper is organized as follows. We discuss
the characteristics of SA and GA in Section 2 and propose the new optimization
technique GSA in Section 3. A new representation for non-slicing floorplan, called
Bounded Slicing Grid (BSG) will be described in Section 4. Two key search opera-
tions mutation and crossover for BSG are described in Section 5. The experimental
results are reported in Section 6. Timing driven floorplanning using GSA is discussed
in Section 7 followed by the conclusions.

2 Simulated Annealing and Genetic Algorithm

SA is a stochastic iterative improvement methods for solving combinatorial op-
timization problems. SA generates a single sequence of solutions and searches for
an optimum solution along this search path. SA starts with a given initial solution
zg. At each step, SA generates a candidate solution z’ by changing a small fraction
of a current solution z. SA accepts the candidate solution as a new solution with
a probability min{1,e=2//T} where Af = f(z') — f(x) is cost reduction from the
current solution z to the candidate solution z’, and T is a control parameter called
temperature. A key point of SA is that SA accepts up-hill moves with the probability
e=27/T This allows SA to escape from local minima. But SA cannot cover a large
region of the solution space within a limited computation time because SA is based
on small moves. Fig.2.1 shows the pseudo-code of SA.

GA is another approach for solving combinatorial optimization problems. GA
applies an evolutionary mechanism to optimization problems. It starts with a popu-
lation of initial solutions. Each solution has a fitness value which is a measure of the
quality of a solution. At each step, called a generation, GA produces a set of candi-
date solutions, called child solutions, using two types of genetic operators: mutation
and crossover. It selects good solutions as survivors to the next generation according
to the fitness value. The Mutation operator takes a single parent and modifies it ran-
domly in a localized manner, so that it makes a small jump in the solution space. On
the other hand, the crossover operator takes two solutions as parents and creates their
child solutions by combining the partial solutions of the parents. Crossover tends to

2 3. Genetic Simulated Annealing

1: SA_algorithm(N,, Ty,)

2: A

3: &« Xg; /™ initial solution */

4: T « Ty; /* initial temperature */

5: while (system is not frozen) {

6: for (loop = 1; loop < Ny; loop++) {

T ¢’ — Mutate(z);

s Af e [(2) ~ ()

9: r « random number between 0 and 1
10: if (Af <0orr<exp(—=Af/T))
11: T — x';

12: }

13: T « T+« [* lower temperature */
14: }

15: return z

16: }

Figure 2.1: SA algorithm.

create child solutions which differs from both parent solutions. It results in a large
jump in the solution space. There are two key differences between GA and SA. One
is that GA maintains a population of solutions and uses them to search the solution
space. Another is that GA uses the crossover operator which causes a large jump in
the solution space. These features allow GA to globally search large region of the
solution space. But GA has no explicit ways to produce a sequence of small moves in
the solution space. Mutation creates a single small move one at a time instead of a
sequence of small moves. As the result GA cannot search local region on the solution
space exhaustively. Fig.2.2 shows the pseudo-code of GA.

3 Genetic Simulated Annealing

In order to improve the performance of GA and SA, several hybrid algorithms
have been proposed. Mutation used in GA tends to destroy some good features
of solutions at the final stages of optimization process. While Sigrag and Weisser
[10] proposed a thermodynamic genetic operator, which incorporates an annealing
schedule to control the probability of applying the mutation, Adler [11] used a SA-
based acceptance function to control the probability of accepting a new solution
produced by the mutation. More recent works on (GA-oriented hybrids are the
Simulated Annealing Genetic Algorithm (SAGA) method proposed by Brown et al.
[12] and Annealing Genetic (AG) method proposed by Lin et al. [13]. Both methods
divide each “generation” into two phases: GA phase and SA phase. GA generates
a set of new solutions using the crossover operator and then SA further refines each
solution in the population. While SAGA uses the same annealing schedule for each
SA phase, AG tries to optimize different schedules for different SA phases. The

3. Genetic Simulated Annealing 3

1: GA_algorithm(L, R., R.,)

2. |

3: X « {z;,---,xp}; /* initial population */

4: while (stop criterion is not met) {

% X'« 0;

6: while (number of children created < L x R.) {

T: select two solutions, z;,x; from X

8: &' «— Crossover(z;, xj);

9: X' — X'+ {a'};
10: }
11: select L solutions from X U X’ as a new population
12: while (number of solutions mutated < L x R,,) {
13: select one solution z; from X
14: 2 — Mutate(ay);
15: }
16: }
17: return the best solution in X
18: }

Figure 2.2: GA algorithm.

above GA-oriented hybrid methods try to incorporate the local stochastic hill climbing
features of SA into GA. Since they incorporate full SA into each generation and the
number of generations is usually very large, GA-oriented hybrid methods are very
time-consuming.

SA-oriented hybrid approaches, on the other hand, attempt to adopt the global
crossover operations of GA into SA. Parallel Genetic Simulated Annealing (PGSA)
[14, 15], is a parallel version of SA incorporating GA features. During parallel SA-
based search, crossover is used to generate new solutions in order to enlarge the search
region of SA.

We propose a new optimization method called Genetic Simulated Annealing
(GSA). While PGSA generates the seeds of SA local search in parallel, that is the
order of applying each SA local search is independent, our GSA generates the seeds
of SA sequentially, that is the seed of a SA local search depends on the best-so-far so-
lutions of all previous SA local searches. This sequential approach seems to generate
better child solutions. In addition, compared to PGSA, GSA uses fewer crossover op-
erations since it only uses crossover operations when the SA local search reaches a flat
surface and it is time to jump in the solution space. Fig.3.1 shows the optimization

process of GSA and SA.

GSA starts with a population X = {z;,---,xn,} and repeatedly applies three
operations: SA-based local search, GA-based crossover operation, and population
update. SA-based local search produces a candidate solution &’ by changing a small
fraction of the state of #. The candidate solution is accepted as the new solution with
probability min{l,e=2//T}. GSA preserves the local best-so-far solution z; during

4 4. Floorplan Problem

1.8e+08 |
1.6e-+08 — oA T
1.4e408 — __ .
1.2e408 >
Cost 1e+08 .
8e+07

6e+07

4e+07

2e+07 I I I I I
0 9e+4-06 le407 1.5e4+07 2e407 2.5e4+07
Step

Figure 3.1: Optimization process of GSA and GA.

the SA-based local search. When the search reaches a flat surface or the system is
frozen, GSA produces a large jump in the solution space by using GA-based crossover.
GSA picks up a pair of parent solutions z; and z; at random from the population
X such that f(z;) # f(xx), applies crossover operator, and then replaces the worst
solution z; by the new solution produced by the crossover operator. At the end of
each SA-based local search, GSA updates the population by replacing the current
solution z; by the local best-so-far solution 2;. GSA terminates when the CPU time
reaches given limit, and reports the global best-so-far solution «7. Fig.3.2 shows the

pseudo-code of GSA.

4 Floorplan Problem

We formulate the building block placement problem as follows:

Given a set of arbitrary shaped and fixed sized modules and connection
information among modules, find a minimum area placement with the
shortest wire length.

Many different floorplanning methods have been proposed, for example, rectan-
gular dualization based methods [17, 18], integer programming based methods [19,
20], constructive methods [21, 22|, and hierarchical methods [23, 24, 25].

In order to apply stochastic optimization to a combinatorial problem, we must
represent the solution space completely and efficiently. That is, the global optimal
solution must be reachable by a sequence of moves and each move can be evalu-
ated quickly. Wong and Liu represented a slicing floorplan by a normalized Polish
expression which enables efficient neighborhood search [6]. Cohoon et al. applied
distributed GA to the same problem and obtained better floorplan results with fewer
number of cost calculations [8].

4. Floorplan Problem

GSA _algorithm(N,, Ny, Ty, «)

{

X —{z;,---,xn, }; /7 initialize population */

2} « the best solution among X; /* initialize local best-so-far */

xf « xf; [* initialize global best-so-far */
while (not reach CPU time limit) {
T « Ty; /* initialize temperature */
/* jump */
select the worst solution z; from X;
select two solutions z;, xy from X such that f(z;) # f(xx);
z; « Crossover(z;, xk);
/* SA-based local search */
while (not frozen or not meet stopping criterion) {
for (loop = 1; loop < Ngy; loop++) {
¢’ — Mutate(z;);
Af e [() ~ f(x);
r « random number between 0 and 1
if (Af <0orr <exp(—=Af/T))
T — X';
it (f(z) < f)
2}« x;; /* update local best-so-far */
}
T « T x a [/* lower temperature */
}
if (f(2) <f(x5))
2%+ x5; /* update global best-so-far */
/* update population */
T — X1
f(a}) <« +oo; /™ reset current local best-so-far */

}

return x;,

For building block layout with multi-layer technology, most of channel routing will
be replaced by area routing, and blocks are packed together. The technology shift
makes non-slicing floorplan more important. Fig.4.1 shows an example of non-slicing

Figure 3.2: GSA algorithm.

and slicing floorplans.

Recently Nakatake et al.[16] proposed a new representation for non-slicing floor-
plans, called the Bounded Slicing Grid (BSG). BSG provides a large solution space
which includes optimual solutions and allows quick solutions evaluation such as chip
area and total wire length. Therefore, BSG is a good choice for floorplan design using

SA, GA, or GSA.

6 4. Floorplan Problem

Lom2] ;
" "
mbd mb
m4 m4

(a) (b)
Figure 4.1: Non-slicing (a) and slicing floorplan (b).

BSG is a structure which consists of regularly placed non-intersecting horizontal
and vertical line segments(Fig.4.2). Each horizontal or vertical line segment is called
a Bounded Slicing-line (BS-line). A rectangle area enclosed by four BS-lines is called
a room.

Figure 4.2: BSG.

In the BSG model, a floorplan amounts to an assignment of modules to rooms.
This assignment is called a BSG seed. Fach room can contain at most one module.
There are two types of rooms: an actual room and an empty room. An actual room
is a room which contains a module. An empty room is a room which contain no
modules.

Given a BSG seed, a minimum area floorplan can be obtained by a sizing operation
on the BSG. The sizing operation determines the size of each room in BSG, thus the
(x,y)-coordinate of each module, by stretching or shrinking the BS-lines. The sizing
operation is based on two directed acyclic graphs: the horizontal sizing graph GG, and
the vertical sizing graph G,.

A vertex in (), represents a horizontal BS-line. There is a directed edge from v;
to v; in Gy, if the BS-line corresponding to v; is above the BS-line corresponding to
v; and they share the same room. The edge weight is the height of the corresponding
room. There is a directed edge from the source vertex to each of the vertices of
the uppermost bounded BS-lines. Similarly, there is a directed edge from each of
the vertices of the lowermost bounded BS-lines to the sink (See Fig.4.3). G, can be
defined similarly.

4. Floorplan Problem 7

source

Figure 4.3: Horizontal sizing graph Gy,

The length of the longest path between the source and each vertex in G}, gives
y-coordinate of the upper side edge of the corresponding module. The longest path
length between the source and the sink in G}, (or G,) gives the height (or the width)
of the overall layout.

There are two key features of the BSG. First, unlike slicing floorplans, each BSG
unit allows 45 degree-direction compaction. An actual room surrounded by empty
rooms moves freely in all directions. Second unlike one dimensional compaction
(Fig.4.4), the sizing operation does not depend on the order of compaction directions
(Fig.4.5). These features enable BSG to produce non-slicing floorplans.

y y

(c) v (d) v
Figure 4.4: One dimensional compaction. (a) before compaction. (b) x-y
compaction. (c¢) y-& compaction. (d) Ideal compaction.

|E
“E

8 5. GSA Search Operations

E

(a) (b)
Figure 4.5: BSG compaction.(a) Before compaction. (b) After sizing.

5 GSA Search Operations

In order to apply GSA to the floorplan problem, we have to define the mutation
operator and the crossover operator. These operators are very important because the
performance of GSA depends highly on the implementation of these operators.

Recall that mutation takes a single parent and modifies it at random in a localized
manner. [t makes a small jump in the solution space. On the other hand, crossover
takes two parent solutions and creates new solutions by combining the partial solu-
tions of the parents. Crossover does not create any new partial solutions which are
inconsistent with the parents. It results large jumps in the solution space.

5.1 Mutation Operation

The mutation operator aims to create small changes of the solution states. For
the BSG model, we use three types of mutation operators: exchange, move, and
rotate. The Fzchange operator exchanges two modules. The Mowve operator moves a
single module to an empty room. The Rotate operator rotates a single module by 90
degrees. GSA selects one of these operators at random and applies it in a randomized
manner at each optimization step of SA-based local search.

5.2 Crossover Operation

The crossover operator aims to create new solutions by combining partial solutions
of the parents. There are three requirements to make the crossover operator desirable.
First, crossover should not produce any new partial solutions which belong to neither
parents. All of the features of a child solution should be inherited from the parent
solutions. Second, crossover should create a child in such a way that the more the

5. GSA Search Operations 9

parents have in common, the more the child has similarity to the parents. In the
extreme case where both parents are identical, the child should be identical to the
parents. Finally crossover should produce a feasible child solution. In the case of the
BSG floorplan model, a feasible solution means that every module has been assigned
to exactly one room.

To satisfy the above requirements, we impose the following constraint on the BSG
crossover. In a child solution, each module is placed in the same room as in one of
the parent solutions. For example, in Fig.5.1, A of O takes the position of that in P
and C of O takes the position of that in P,.

Before describing in detail the crossover procedure for the BSG floorplan model, we
define some terms. A module in one parent is called conflicting if the corresponding
room in the other parent contains a different module. Otherwise it is called non-
conflicting. For example in Fig.5.1, modules A, C', D, and F in parent P, are
conflicting with modules B, A, E, and D in the other parent P, respectively, and
module B and F' in parent P; are non-conflicting.

Aql| By B, Cs
Dy I Ey
Ch || £ Aql|l| Do || Iy
(a) (b)
Aq|| B C2
D,
By Fy

Figure 5.1: BSG crossover creates child O (¢) by combining parent P; (a)
and P; (b).

The BSG crossover copies modules from the parents to the child while obeying
the following two rules.
o Rule 1. If a pair of modules conflict with each other, the BSG crossover copies
both modules from the same parents.

o Rule 2. BSG crossover copies modules from both parents alternately in order to

inherit features fairly from both parents.

Fig.5.1 shows an example of BSG crossover. First a certain module is selected from
either parent, in this example module A in parent P;. Modules A and B in the same
parent P are copied to the corresponding room in child O by rule 1, because A in P,
conflicts with B in P,. Now module B in parent P; is non-conflicting. Next module

10 5. GSA Search Operations

C' is selected from the other parent P, by rule 2, and is copied to the corresponding
room in child O. This module ' in parent P is non-conflicting. Next module D is
selected from parent P; again by rule 2. Modules D and F in the same parent P
are copied to the corresponding room in child O by rule 1, because they conflict with
each other. At this point, although module F in parent P; conflicts with module D
in parent P,, we regard F as a non-conflicting module, because the module D has
already been copied. Finally module F' in parent P, is copied into the corresponding
room in child O.

Now we are ready to describe the precise procedure of BSG crossover. First BSG
crossover initializes a module list M to contain all modules and selects one module m;
from M at random. Module m; is copied from current parent P and m; is deleted from
module list M. If module m; conflict with module m;inM, module m; is copied from
the same parent P. Otherwise, flip the current parent P into another parent. These
procedures are repeated until all the modules are copied. Fig.5.2 shows pseudo-code
of BSG crossover.

1: BSG_crossover(Py, P, O)
2. |
3: M — {mq,---,m,}; /* initialize module list M */
4: P «— Pyp; /* initialize current parent P */
5: while (M # 0) {
6: select m; € M at random;
T: copy m; from P to O;
8: M — M\ {m;};
9: while (m; is conflicting with m; € M) {
10: copy m; from P to O;
11: M — M\ {m;};
12: m; — my;
13: }
13: if (P=P)
14: P — P,
15: else
16: P« Py
17: }
18: report O;
19: }

Figure 5.2: BSG crossover procedure.

The current implementation of the BSG crossover satisfies two of three require-
ments of crossover which are described in 5.2. It always create feasible solutions in
which all partial solutions are consistent with one of the parents. But it may create
a child which is identical to one of the parents, although both parents are different.

6. Experimental Results 11

6 Experimental Results

The goal of the floorplan problem is to place all modules on the BSG to minimize
the total chip area and the total wire length. We use the following cost function:

f=A+3xW?, (6.1)

where A is the chip area, W the total wire length and § a constant controlling the
relative importance of A and W. We use 8 = 0.5 in our experiments. In order to
adjust the dimension so as to align with both terms, the square of the wire length is
employed. The length of a net which has more than two terminals is estimated as
the half perimeter of the minimum bounding box which includes all the terminals.

We applied GSA and SA to several MCNC benchmarks. Table 6.1 shows the
results of AMI49. We set the time limit for the experiments to five hours, running
on Sun Sparc 20 workstation. Both GSA and SA run five times with different initial
floorplans generated at random.

To be fair in our comparisons, the total number of generated new solutions was
the same for both GSA and SA. All the data and the average values are shown in the
Table 6.1. The results showed that GSA improves the average chip area by 12.4% and
the average wire length by 2.95% over SA. Fig.6.1 show an example of the floorplan

results.
Table 6.1: SA and GSA experimental results (5 hour).
area wire
SA GSA Redc.(%) SA GSA Redc.(%)
1 51,254,000 | 41,776,224 | 1849 || 1159424 | 1,161,072 | -2.20
2 54,848,836 | 43,218,000 21.21 1,221,010 | 1,183,658 3.06
3 49,635,040 | 44,029,440 11.29 1,188,348 | 1,163,596 2.08
4 45,243,072 | 50,413,944 | -11.43 | 1,218,784 | 1,138,802 | 6.56
5 57,666,336 | 47,154,464 18,23 1,197,504 | 1,160,328 3.10
average || 51,7129.457 | 45,318,414 | 1239 || 1,197,014 | 1,161,736 | 2.95

7 Timing Driven GSA Floorplanning

During floorplanning, some nets are timing critical. In addition to minimizing the

total chip area and the total wire length, we need to meet the timing constraints for
those critical nets. For simplicity, we assume the timing constraints are specified in
terms of bounds on wire lengths. For the set of critical nets, N., we define the total
excess wire length as follows:

E = Z (1l — b,)6(1,,,b,) (7.1)
nEN.
1 ifl, > b,
8(1n; bn) = { 0 otherwise (7.2)

12 7. Timing Driven GSA Floorplanning

[T

61 2 3
4 1
ﬁ

16
@j@

9|28
44
[26] 1677

38

" E“ 13]

’ o
2] ;

|

201
1519
30 0][12 8

Figure 6.1: An example of floorplan results.

33

N
(=]

)

JBE

where [, is the wire length of net n and b, the wire length bound of net n.

We add the total excess wire length into the cost function:
f=A+pW? +~E? (7.3)

where v, like /3, is a constant controlling the relative importance of the optimization
objectives and timing constraints. Similar to the total wire length term, the total
excess wire length, is squared to adjust the order of magnitude of the three terms.

At each optimization step of the GSA algorithm, we accept a candidate solution
with probability men(1, e_AW/T) where AW = E. — F, is difference in total excess
wire length between the candidate solution ' and the current solution x. T is the
annealing temperature. At high temperature, GSA accepts some infeasible solutions,
which may generate better offsprings. At low temperatures, it accepts mainly feasible
solutions. During the optimization, we keep track of a global best-so-far solution
which meets the wire length bounds of the critical nets.

In our experiments, we applied GSA to one of MCNC benchmark data AMI49.
First we got the best solution without considering the timing bounds. Then we the
selected the top 4% and 5% of the longest nets and set their wire length bounds equal
to 95% and 90% of the current lengths. Using the Timing Driven GSA floorplanning
algorithm, we got final solutions which meet all the length bounds. Table 7.1 shows
the results of five hour experiments running on a Sun Sparc 20 workstation. The
results indicated that Timing Driven GSA placement could achieve the wire length
bounds for the critical nets with small penalty on chip area and total wire lengths.

8. Conclusions

Table 7.1: Timing Driven GSA experimental results (5 hour).

Total Wire Length
of Critical Nets

Total
Wire Length

Total

Area

Without With

time time

Without With Without With

time time time

time

E1 42448 30884 1157282 | 1215340 || 55204380 | 52563280
E2 42448 30380 1157282 | 1202082 || 55204380 | 51283008
E3 50428 39312 1157282 | 1222774 || 55204380 | 50207752
E4 50428 34776 1157282 | 1292004 || 55204380 | 57269240
Table 7.2: Performance Improvement
Total Wire Length of Total Wire Length || Total Area
Critical Nets Reduc.(%) Inc.(%) Inc.(%)

E1 27.24 5.01 -4.78

E2 28.43 3.87 -7.1

E3 22.04 5.66 -9.05

E4 31.03 11.64 3.74

8 Conclusions

13

Genetic Simulated Annealing (GSA) searches large regions of the solution space
effectively using both SA-based local search features with GA-based global search ca-
pability. We applied GSA to the non-slicing floorplan design problems and compared
it with SA. Given the same computing resource, the experiments showed that GSA
improved the average chip area by 12.4% and the average wire length by 2.95% over
SA. We have also incorporated timing driven features to the GSA floorplan design.

There are two main improvements which are left for future works. First of all,
more elegant crossover operators which can produce a wide variety of child solutions
are under investigation. Secondly handling of flexible module which can change the

aspect ratio should be incorporated into BSG floorplan model.

References

[1] S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, “Optimization by Simulated
Annealing,” Science, 220, pp.671-680, May 1983.

[2] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,
“Fquation of State Calculations by Fast Computing Machines,” J. of Chemical
Physics, vol.21, no.6, pp.1087-1092, 1953.

[3] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI:University of Michigan Press (1975).

[4] D. E. Goldberg, Genetic Algorithms: In Search, Optimization and Machine Learn-
ing. Reading, MA: Addison-Wesley, 1989.

14

[5]

[9]

[10]
[11]

[12]

[13]

[14]

References

C. Sechen and A. Sangiovanni-Vincentelli, “TimberWolf 3.2 : A new standard
cell placement and global routing package,” Proc. 23rd Design Automation Conf.,
pp-432-439, June 1986.

D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” Proc. 23rd
Design Automation Conf., pp.101-107, June 1986.

J. P. Cohoon and W. D. Paris, “Genetic placement,” IEEE trans. Computer-Aided
Design, vol.CAD-6, no.6, pp.956-964, November 1987.

J. P. Cohoon, S. U. Hegde, W. N. Martin and D. S. Richards, “Distributed Genetic
Algorithms for the Floorplan Design Problem,” IEEFE trans. Computer-Aided
Design, Vol.CAD-10, No.4, pp.483-492, 1991.

K. Shahookar and P. Mazumder, “A genetic approach to standard cell placement
using meta-genetic parameter optimization,” IEEFE trans. Comput.-Aided Design,

Vol.CAD-9, No.5, pp.500-511, 1990.

D. Sirag and P. Weisser, “Toward a Unified Thermodynamic Genetic Operator,”
in Proc. 2nd Int. Conf. Genetic Algorithms, pp.116-122, 1987.

D. Adler, “Genetic Algorithms and Simulated Annealing: A Marriage Proposal,”
in Proc. Int. Conf. Neural Network, pp.1104-1109, 1993.

D. Brown, C. Huntley, and A. Spillane, “A Parallel Genetic Heuristic for the
Quadratic Assignment Problem,” in Proc. 3rd Int. Conf. Genetic Algorithms,
pp-406-415, 1989.

F.-T. Lin, C.-Y. Kao, and C.-C. Hsu, “Applying the Genetic Approach to Simu-
lated Annealing in Solving Some NP-Hard Problems,” IEFE Trans. System, Man,
and Cybernetics., vol.23, no.6, pp.1752-1767, 1993.

S. Koakutsu, Y. Sugai, H. Hirata, “Block Placement by Improved Simulated
Annealing Based on Genetic Algorithm,” Tran. of the Institute of Electronics,
Information and Communication Engineers of Japan, vol.J73-A, No.1, pp.87-94,
1990.

S. Koakutsu, Y. Sugai, H. Hirata, “Floorplanning by Improved Simulated Anneal-
ing Based on Genetic Algorithm,” Trans. of the Institute of Flectrical Engineers
of Japan, vol.112-C, No.7, pp.411-416, 1992.

S. Nakatake, H. Murata, K. Fujiyoshi, and Y. Kajitani, “Bounded-Slicing Struc-
ture for Module Placement,” Techinical Report of the Institute of Electronics,

Information and Communication Engineers of Japan, vol.VLD94, no.313, pp.19-
24, 1994.

Y.-T. Lai,and S. M. Leinwarnd, “Algorithms for Floorplan Design Via Rectangular
Dualization,” IEEFE Trans. Computer-Aided Design, vol.CAD-7, no.12, pp.1278-
1289, 1988.

M. J. Ciesielski, and E. Kinnen, “Digraph Relaxation for 2-Dmensional Placement
of IC Blocks,” IEEE Trans. Computer-Aided Design, vol.CAD-6, no.1, pp.55-66,
1987.

S. Sutanthavibul, E. Shragowitz, and J. B. Rosen, “An Analytical Approach

to Floorplan Design and Optimization,” IEEE Trans. Computer-Aided Design,
vol.CAD-10, no.6, pp.761-769, 1991.

References 15

[20]

[21]

[22]

[24]

[25]

C.-S.Ying,and J. S.-L.. Wong, “An Analytical Approach to Floorplanning for Hier-
archical Building Block Layout,” IEEFE Trans. Computer-Aided Design, vol.CAD-
8, no.4, pp.403-412, 1989.

S. Wimer, and I. Koren, “Analysis of Strategies for Constructive General Block
Placement, IEEE Trans. Computer-Aided Design, vol.CAD-7, no.3, pp.371-377,
1988.

D. P. La Potin, and S. W. Director, “Mason: A Global Floorplanning Approach
for VLSI Design,” IEEE Trans. Computer-Aided Design, vol.CAD-5, no.4, pp.477-
489, 1985.

T. Lengauer, and R. Miller, “Robust and Accurate Hierarchical Floorplanning
with Integrated Global Wiring,” IEEFE Trans. Computer-Aided Design, vol.CAD-
12, no.6, pp.802-809, 1993.

W. W.-M. Dai, B. Eschermann, E. 5. Kuh, and M. Pedram, “Hierarchical
Placement and Floorplanning in BEAR,” IEEFE Trans. Computer-Aided Design,
vol.CAD-8, no.12, pp.1335-1349, 1989.

W.-M. Dai, and E. S. Kuh, “Simultaneous Floor Planning and Global Routing

for Hierarchical Building-Block Layout,” IEEFE Trans. Computer-Aided Design,
vol.CAD-6, no.5, pp.828-837, 1987.

