
Genetic Simulated Annealingand Application toNon-slicing Floorplan DesignSeiichi KoakutsuMaggie KangWayne Wei-Ming DaiUCSC-CRL-95-52November 18, 1995Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractWe propose a new optimization method, named genetic simulated anneal-ing (GSA), which combines the local stochastic hill climbing features fromsimulated annealing (SA) and the global crossover operations from geneticalgorithm (GA). We demonstrated the advantages of GSA by solving one ofthe most di�cult problems in layout | the non-slicing oorplan design prob-lem. Given the same amount of computing resources, our experimental resultsshowed that GSA consistently obtained better results than SA, in terms ofboth the chip area and the total wire length. We also applied GSA to timingdriven oorplan design and experimental results indicated that it achieved thespeci�ed wire length bounds for the critical nets with small penalty on thechip area and the total wire length.Keywords: Non-Slicing Floorplan, Genetic Simulated Annealing, BoundedSlicing Grid, Crossover, Mutation, Space Solution, Timing Driven GSA Floor-plan

1. Introduction 11 IntroductionMost of VLSI layout problems can be formulated as combinatorial optimizationproblems and are proven to be NP-hard or NP-complete problems. Simulated an-nealing (SA) [1, 2] and Genetic algorithm (GA) [3, 4] are heuristics for combinatorialoptimization problems and have been successfully used for various problems in theCAD area [5, 6, 7, 8, 9].While SA is very powerful for searching local regions of the solution space exhaus-tively via stochastic hill climbing, GA is very powerful for searching large regionsof the solution space roughly and globally using crossover operations. Combiningthe local hill climbing features of SA and the global crossover operations of GA, wepropose a new optimization method, named Genetic Simulated Annealing (GSA).We apply GSA to non-slicing oorplan design problems to demonstrate the ad-vantages of GSA over SA. The rest of the paper is organized as follows. We discussthe characteristics of SA and GA in Section 2 and propose the new optimizationtechnique GSA in Section 3. A new representation for non-slicing oorplan, calledBounded Slicing Grid (BSG) will be described in Section 4. Two key search opera-tions mutation and crossover for BSG are described in Section 5. The experimentalresults are reported in Section 6. Timing driven oorplanning using GSA is discussedin Section 7 followed by the conclusions.2 Simulated Annealing and Genetic AlgorithmSA is a stochastic iterative improvement methods for solving combinatorial op-timization problems. SA generates a single sequence of solutions and searches foran optimum solution along this search path. SA starts with a given initial solutionx0 . At each step, SA generates a candidate solution x 0 by changing a small fractionof a current solution x . SA accepts the candidate solution as a new solution witha probability minf1; e��f=Tg, where �f = f(x 0) � f (x) is cost reduction from thecurrent solution x to the candidate solution x 0, and T is a control parameter calledtemperature. A key point of SA is that SA accepts up-hill moves with the probabilitye��f=T . This allows SA to escape from local minima. But SA cannot cover a largeregion of the solution space within a limited computation time because SA is basedon small moves. Fig.2.1 shows the pseudo-code of SA.GA is another approach for solving combinatorial optimization problems. GAapplies an evolutionary mechanism to optimization problems. It starts with a popu-lation of initial solutions. Each solution has a �tness value which is a measure of thequality of a solution. At each step, called a generation, GA produces a set of candi-date solutions, called child solutions, using two types of genetic operators: mutationand crossover. It selects good solutions as survivors to the next generation accordingto the �tness value. The Mutation operator takes a single parent and modi�es it ran-domly in a localized manner, so that it makes a small jump in the solution space. Onthe other hand, the crossover operator takes two solutions as parents and creates theirchild solutions by combining the partial solutions of the parents. Crossover tends to

2 3. Genetic Simulated Annealing1: SA algorithm(Na; T0; �)2: f3: x x0; /* initial solution */4: T T0; /* initial temperature */5: while (system is not frozen) f6: for (loop = 1; loop � Na; loop++) f7: x 0 Mutate(x);8: �f f(x 0) � f (x);9: r random number between 0 and 110: if (�f < 0 or r < exp(��f=T))11: x x0;12: g13: T T � � /* lower temperature */14: g15: return x16: g Figure 2.1: SA algorithm.create child solutions which di�ers from both parent solutions. It results in a largejump in the solution space. There are two key di�erences between GA and SA. Oneis that GA maintains a population of solutions and uses them to search the solutionspace. Another is that GA uses the crossover operator which causes a large jump inthe solution space. These features allow GA to globally search large region of thesolution space. But GA has no explicit ways to produce a sequence of small moves inthe solution space. Mutation creates a single small move one at a time instead of asequence of small moves. As the result GA cannot search local region on the solutionspace exhaustively. Fig.2.2 shows the pseudo-code of GA.3 Genetic Simulated AnnealingIn order to improve the performance of GA and SA, several hybrid algorithmshave been proposed. Mutation used in GA tends to destroy some good featuresof solutions at the �nal stages of optimization process. While Sigrag and Weisser[10] proposed a thermodynamic genetic operator, which incorporates an annealingschedule to control the probability of applying the mutation, Adler [11] used a SA-based acceptance function to control the probability of accepting a new solutionproduced by the mutation. More recent works on GA-oriented hybrids are theSimulated Annealing Genetic Algorithm (SAGA) method proposed by Brown et al.[12] and Annealing Genetic (AG) method proposed by Lin et al. [13]. Both methodsdivide each \generation" into two phases: GA phase and SA phase. GA generatesa set of new solutions using the crossover operator and then SA further re�nes eachsolution in the population. While SAGA uses the same annealing schedule for eachSA phase, AG tries to optimize di�erent schedules for di�erent SA phases. The

3. Genetic Simulated Annealing 31: GA algorithm(L;Rc; Rm)2: f3: X fx1 ; � � � ; xLg; /* initial population */4: while (stop criterion is not met) f5: X 0 ;;6: while (number of children created < L�Rc) f7: select two solutions, xi ; xj from X8: x 0 Crossover(xi ; xj);9: X 0 X 0 + fx 0g;10: g11: select L solutions from X [X 0 as a new population12: while (number of solutions mutated < L�Rm) f13: select one solution xk from X14: xk Mutate(xk);15: g16: g17: return the best solution in X18: g Figure 2.2: GA algorithm.above GA-oriented hybrid methods try to incorporate the local stochastic hill climbingfeatures of SA into GA. Since they incorporate full SA into each generation and thenumber of generations is usually very large, GA-oriented hybrid methods are verytime-consuming.SA-oriented hybrid approaches, on the other hand, attempt to adopt the globalcrossover operations of GA into SA. Parallel Genetic Simulated Annealing (PGSA)[14, 15], is a parallel version of SA incorporating GA features. During parallel SA-based search, crossover is used to generate new solutions in order to enlarge the searchregion of SA.We propose a new optimization method called Genetic Simulated Annealing(GSA). While PGSA generates the seeds of SA local search in parallel, that is theorder of applying each SA local search is independent, our GSA generates the seedsof SA sequentially, that is the seed of a SA local search depends on the best-so-far so-lutions of all previous SA local searches. This sequential approach seems to generatebetter child solutions. In addition, compared to PGSA, GSA uses fewer crossover op-erations since it only uses crossover operations when the SA local search reaches a atsurface and it is time to jump in the solution space. Fig.3.1 shows the optimizationprocess of GSA and SA.GSA starts with a population X = fx1 ; � � � ; xNpg and repeatedly applies threeoperations: SA-based local search, GA-based crossover operation, and populationupdate. SA-based local search produces a candidate solution x 0 by changing a smallfraction of the state of x . The candidate solution is accepted as the new solution withprobability minf1; e��f=Tg. GSA preserves the local best-so-far solution x �L during

4 4. Floorplan Problem
2e+074e+076e+078e+071e+081.2e+081.4e+081.6e+081.8e+08

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07Cost Step
GSASA

Figure 3.1: Optimization process of GSA and GA.the SA-based local search. When the search reaches a at surface or the system isfrozen, GSA produces a large jump in the solution space by using GA-based crossover.GSA picks up a pair of parent solutions xj and xk at random from the populationX such that f(xj) 6= f (xk), applies crossover operator, and then replaces the worstsolution xi by the new solution produced by the crossover operator. At the end ofeach SA-based local search, GSA updates the population by replacing the currentsolution xi by the local best-so-far solution x �L. GSA terminates when the CPU timereaches given limit, and reports the global best-so-far solution x �G . Fig.3.2 shows thepseudo-code of GSA.4 Floorplan ProblemWe formulate the building block placement problem as follows:Given a set of arbitrary shaped and �xed sized modules and connectioninformation among modules, �nd a minimum area placement with theshortest wire length.Many di�erent oorplanning methods have been proposed, for example, rectan-gular dualization based methods [17, 18], integer programming based methods [19,20], constructive methods [21, 22], and hierarchical methods [23, 24, 25].In order to apply stochastic optimization to a combinatorial problem, we mustrepresent the solution space completely and e�ciently. That is, the global optimalsolution must be reachable by a sequence of moves and each move can be evalu-ated quickly. Wong and Liu represented a slicing oorplan by a normalized Polishexpression which enables e�cient neighborhood search [6]. Cohoon et al. applieddistributed GA to the same problem and obtained better oorplan results with fewernumber of cost calculations [8].

4. Floorplan Problem 51: GSA algorithm(Np; Na; T0; �)2: f3: X fx1 ; � � � ; xNpg; /* initialize population */4: x �L the best solution among X; /* initialize local best-so-far */5: x �G x �L; /* initialize global best-so-far */6: while (not reach CPU time limit) f7: T T0; /* initialize temperature */8: /* jump */9: select the worst solution xi from X;10: select two solutions xj ; xk from X such that f(xj) 6= f (xk);11: xi Crossover(xj ; xk);12: /* SA-based local search */13: while (not frozen or not meet stopping criterion) f14: for (loop = 1; loop � Na; loop++) f15: x 0 Mutate(xi);16: �f f(x 0)� f (xi);17: r random number between 0 and 118: if (�f < 0 or r < exp(��f=T))19: xi x0;20: if (f(xi) < f (x�L))21: x �L xi; /* update local best-so-far */22: g23: T T � � /* lower temperature */24: g25: if (f(x �L) < f (x�G))26: x �G x�L; /* update global best-so-far */27: /* update population */26: xi x�L;28: f(x �L) +1; /* reset current local best-so-far */29: g30: return x �G31: g Figure 3.2: GSA algorithm.For building block layout with multi-layer technology, most of channel routing willbe replaced by area routing, and blocks are packed together. The technology shiftmakes non-slicing oorplan more important. Fig.4.1 shows an example of non-slicingand slicing oorplans.Recently Nakatake et al.[16] proposed a new representation for non-slicing oor-plans, called the Bounded Slicing Grid (BSG). BSG provides a large solution spacewhich includes optimual solutions and allows quick solutions evaluation such as chiparea and total wire length. Therefore, BSG is a good choice for oorplan design usingSA, GA, or GSA.

6 4. Floorplan Problemm5 m4m3m2 m1(a) m5 m4m3m2 m1(b)Figure 4.1: Non-slicing (a) and slicing oorplan (b).BSG is a structure which consists of regularly placed non-intersecting horizontaland vertical line segments(Fig.4.2). Each horizontal or vertical line segment is calleda Bounded Slicing-line (BS-line). A rectangle area enclosed by four BS-lines is calleda room.
q q q q q qq q q q q qqq qq qqqq qq qqq q q q q qq q q q q qqq qq qqqq qq qqq q q q q qq q q q q qqq qq qqqq qq qq
Figure 4.2: BSG.In the BSG model, a oorplan amounts to an assignment of modules to rooms.This assignment is called a BSG seed. Each room can contain at most one module.There are two types of rooms: an actual room and an empty room. An actual roomis a room which contains a module. An empty room is a room which contain nomodules.Given a BSG seed, a minimumarea oorplan can be obtained by a sizing operationon the BSG. The sizing operation determines the size of each room in BSG, thus the(x; y)-coordinate of each module, by stretching or shrinking the BS-lines. The sizingoperation is based on two directed acyclic graphs: the horizontal sizing graph Gh andthe vertical sizing graph Gv.A vertex in Gh represents a horizontal BS-line. There is a directed edge from vito vj in Gh if the BS-line corresponding to vi is above the BS-line corresponding tovj and they share the same room. The edge weight is the height of the correspondingroom. There is a directed edge from the source vertex to each of the vertices ofthe uppermost bounded BS-lines. Similarly, there is a directed edge from each ofthe vertices of the lowermost bounded BS-lines to the sink (See Fig.4.3). Gv can bede�ned similarly.

4. Floorplan Problem 7
q qs q qs q qsq qs q qs q qs@ @R @ @R @ @R��	 ��	q qs q qs q qsq qs q qs q qs@ @R @ @R @ @R��	 ��	q qs q qs q qsq qs q qs q qs@ @R @ @R @ @R��	 ��	@ @R @ @R��	 ��	 ��	@ @R @ @R��	 ��	 ��	@ @R ? ��	�� �sink

��	 ? @ @R�� �source
Figure 4.3: Horizontal sizing graph Gh.The length of the longest path between the source and each vertex in Gh givesy-coordinate of the upper side edge of the corresponding module. The longest pathlength between the source and the sink in Gh (or Gv) gives the height (or the width)of the overall layout.There are two key features of the BSG. First, unlike slicing oorplans, each BSGunit allows 45 degree-direction compaction. An actual room surrounded by emptyrooms moves freely in all directions. Second unlike one dimensional compaction(Fig.4.4), the sizing operation does not depend on the order of compaction directions(Fig.4.5). These features enable BSG to produce non-slicing oorplans.m3 m2m1 - x6y (a) m3m2m1 - x6y (b)m3 m2m1 - x6y (c) m3m1 m2 - x6y (d)Figure 4.4: One dimensional compaction. (a) before compaction. (b) x-ycompaction. (c) y-x compaction. (d) Ideal compaction.

8 5. GSA Search Operations
q q q qq qqqqq qqq q q qq qqqqq qqm3 m2m1

(a) q q q qq qq q q qq qqqqq qq qq qqqqm3m1 m2(b)Figure 4.5: BSG compaction.(a) Before compaction. (b) After sizing.5 GSA Search OperationsIn order to apply GSA to the oorplan problem, we have to de�ne the mutationoperator and the crossover operator. These operators are very important because theperformance of GSA depends highly on the implementation of these operators.Recall that mutation takes a single parent and modi�es it at random in a localizedmanner. It makes a small jump in the solution space. On the other hand, crossovertakes two parent solutions and creates new solutions by combining the partial solu-tions of the parents. Crossover does not create any new partial solutions which areinconsistent with the parents. It results large jumps in the solution space.5.1 Mutation OperationThe mutation operator aims to create small changes of the solution states. Forthe BSG model, we use three types of mutation operators: exchange, move, androtate. The Exchange operator exchanges two modules. The Move operator moves asingle module to an empty room. The Rotate operator rotates a single module by 90degrees. GSA selects one of these operators at random and applies it in a randomizedmanner at each optimization step of SA-based local search.5.2 Crossover OperationThe crossover operator aims to create new solutions by combining partial solutionsof the parents. There are three requirements to make the crossover operator desirable.First, crossover should not produce any new partial solutions which belong to neitherparents. All of the features of a child solution should be inherited from the parentsolutions. Second, crossover should create a child in such a way that the more the

5. GSA Search Operations 9parents have in common, the more the child has similarity to the parents. In theextreme case where both parents are identical, the child should be identical to theparents. Finally crossover should produce a feasible child solution. In the case of theBSG oorplan model, a feasible solution means that every module has been assignedto exactly one room.To satisfy the above requirements, we impose the following constraint on the BSGcrossover. In a child solution, each module is placed in the same room as in one ofthe parent solutions. For example, in Fig.5.1, A of O takes the position of that in P1and C of O takes the position of that in P2.Before describing in detail the crossover procedure for the BSG oorplan model, wede�ne some terms. A module in one parent is called conicting if the correspondingroom in the other parent contains a di�erent module. Otherwise it is called non-conicting. For example in Fig.5.1, modules A, C, D, and E in parent P1 areconicting with modules B, A, E, and D in the other parent P2, respectively, andmodule B and F in parent P1 are non-conicting.q q q qq q q qqq qqqq qqq q q qq q q qqq qqqq qqA1 B1C1D1 E1 F1(a) q q q qq q q qqq qqqq qqq q q qq q q qqq qqqq qqA2B2 C2D2E2 F2(b)q q q qq q q qqq qqqq qqq q q qq q q qqq qqqq qqA1 B1 C2D1 E1 F2(c)Figure 5.1: BSG crossover creates child O (c) by combining parent P1 (a)and P2 (b).The BSG crossover copies modules from the parents to the child while obeyingthe following two rules.� Rule 1. If a pair of modules conict with each other, the BSG crossover copiesboth modules from the same parents.� Rule 2. BSG crossover copies modules from both parents alternately in order toinherit features fairly from both parents.Fig.5.1 shows an example of BSG crossover. First a certain module is selected fromeither parent, in this example module A in parent P1. Modules A and B in the sameparent P1 are copied to the corresponding room in child O by rule 1, because A in P1conicts with B in P2. Now module B in parent P1 is non-conicting. Next module

10 5. GSA Search OperationsC is selected from the other parent P2 by rule 2, and is copied to the correspondingroom in child O. This module C in parent P2 is non-conicting. Next module D isselected from parent P1 again by rule 2. Modules D and E in the same parent P1are copied to the corresponding room in child O by rule 1, because they conict witheach other. At this point, although module E in parent P1 conicts with module Din parent P2, we regard E as a non-conicting module, because the module D hasalready been copied. Finally module F in parent P2 is copied into the correspondingroom in child O.Now we are ready to describe the precise procedure of BSG crossover. First BSGcrossover initializes a module listM to contain all modules and selects one modulemifromM at random. Modulemi is copied from current parent P andmi is deleted frommodule listM . If module mi conict with module mjinM , module mj is copied fromthe same parent P . Otherwise, ip the current parent P into another parent. Theseprocedures are repeated until all the modules are copied. Fig.5.2 shows pseudo-codeof BSG crossover.1: BSG crossover(P1; P2; O)2: f3: M fm1; � � � ;mng; /* initialize module list M */4: P P1; /* initialize current parent P */5: while (M 6= ;) f6: select mi 2M at random;7: copy mi from P to O;8: M M n fmig;9: while (mi is conicting with mj 2 M) f10: copy mj from P to O;11: M M n fmjg;12: mi mj;13: g13: if (P = P1)14: P P2;15: else16: P P1;17: g18: report O;19: g Figure 5.2: BSG crossover procedure.The current implementation of the BSG crossover satis�es two of three require-ments of crossover which are described in 5.2. It always create feasible solutions inwhich all partial solutions are consistent with one of the parents. But it may createa child which is identical to one of the parents, although both parents are di�erent.

6. Experimental Results 116 Experimental ResultsThe goal of the oorplan problem is to place all modules on the BSG to minimizethe total chip area and the total wire length. We use the following cost function:f = A+ � �W 2; (6:1)where A is the chip area, W the total wire length and � a constant controlling therelative importance of A and W . We use � = 0:5 in our experiments. In order toadjust the dimension so as to align with both terms, the square of the wire length isemployed. The length of a net which has more than two terminals is estimated asthe half perimeter of the minimum bounding box which includes all the terminals.We applied GSA and SA to several MCNC benchmarks. Table 6.1 shows theresults of AMI49. We set the time limit for the experiments to �ve hours, runningon Sun Sparc 20 workstation. Both GSA and SA run �ve times with di�erent initialoorplans generated at random.To be fair in our comparisons, the total number of generated new solutions wasthe same for both GSA and SA. All the data and the average values are shown in theTable 6.1. The results showed that GSA improves the average chip area by 12.4% andthe average wire length by 2.95% over SA. Fig.6.1 show an example of the oorplanresults. Table 6.1: SA and GSA experimental results (5 hour).area wireSA GSA Redc.(%) SA GSA Redc.(%)1 51,254,000 41,776,224 18.49 1,159,424 1,161,972 -2.202 54,848,836 43,218,000 21.21 1,221,010 1,183,658 3.063 49,635,040 44,029,440 11.29 1,188,348 1,163,596 2.084 45,243,072 50,413,944 -11.43 1,218,784 1,138,802 6.565 57,666,336 47,154,464 18,23 1,197,504 1,160,328 3.10average 51,729,457 45,318,414 12.39 1,197,014 1,161,736 2.957 Timing Driven GSA FloorplanningDuring oorplanning, some nets are timing critical. In addition to minimizing thetotal chip area and the total wire length, we need to meet the timing constraints forthose critical nets. For simplicity, we assume the timing constraints are speci�ed interms of bounds on wire lengths. For the set of critical nets, Nc, we de�ne the totalexcess wire length as follows: E = Xn2Nc(ln � bn)�(ln; bn) (7:1)�(ln; bn) = (1 if ln � bn0 otherwise (7:2)

12 7. Timing Driven GSA Floorplanning12 34
5

67 8
910
1112 13141516 17 1819 2021 22

23 242526 27 282930 31 323334 3536373839 40 41 42434445464748 49Figure 6.1: An example of oorplan results.where ln is the wire length of net n and bn the wire length bound of net n.We add the total excess wire length into the cost function:f = A+ �W 2 + E2 (7:3)where , like �, is a constant controlling the relative importance of the optimizationobjectives and timing constraints. Similar to the total wire length term, the totalexcess wire length, is squared to adjust the order of magnitude of the three terms.At each optimization step of the GSA algorithm, we accept a candidate solutionwith probability min(1; e��W=T) where �W = Ex 0 � Ex is di�erence in total excesswire length between the candidate solution x 0 and the current solution x . T is theannealing temperature. At high temperature, GSA accepts some infeasible solutions,which may generate better o�springs. At low temperatures, it accepts mainly feasiblesolutions. During the optimization, we keep track of a global best-so-far solutionwhich meets the wire length bounds of the critical nets.In our experiments, we applied GSA to one of MCNC benchmark data AMI49.First we got the best solution without considering the timing bounds. Then we theselected the top 4% and 5% of the longest nets and set their wire length bounds equalto 95% and 90% of the current lengths. Using the Timing Driven GSA oorplanningalgorithm, we got �nal solutions which meet all the length bounds. Table 7.1 showsthe results of �ve hour experiments running on a Sun Sparc 20 workstation. Theresults indicated that Timing Driven GSA placement could achieve the wire lengthbounds for the critical nets with small penalty on chip area and total wire lengths.

8. Conclusions 13Table 7.1: Timing Driven GSA experimental results (5 hour).Total Wire Length Total Totalof Critical Nets Wire Length AreaWithout With Without With Without Withtime time time time time timeE1 42448 30884 1157282 1215340 55204380 52563280E2 42448 30380 1157282 1202082 55204380 51283008E3 50428 39312 1157282 1222774 55204380 50207752E4 50428 34776 1157282 1292004 55204380 57269240Table 7.2: Performance ImprovementTotal Wire Length of Total Wire Length Total AreaCritical Nets Reduc.(%) Inc.(%) Inc.(%)E1 27.24 5.01 -4.78E2 28.43 3.87 -7.1E3 22.04 5.66 -9.05E4 31.03 11.64 3.748 ConclusionsGenetic Simulated Annealing (GSA) searches large regions of the solution spacee�ectively using both SA-based local search features with GA-based global search ca-pability. We applied GSA to the non-slicing oorplan design problems and comparedit with SA. Given the same computing resource, the experiments showed that GSAimproved the average chip area by 12.4% and the average wire length by 2.95% overSA. We have also incorporated timing driven features to the GSA oorplan design.There are two main improvements which are left for future works. First of all,more elegant crossover operators which can produce a wide variety of child solutionsare under investigation. Secondly handling of exible module which can change theaspect ratio should be incorporated into BSG oorplan model.References[1] S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, \Optimization by SimulatedAnnealing," Science, 220, pp.671-680, May 1983.[2] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,\Equation of State Calculations by Fast Computing Machines," J. of ChemicalPhysics, vol.21, no.6, pp.1087-1092, 1953.[3] J. H. Holland, Adaptation in Natural and Arti�cial Systems. Ann Arbor,MI:University of Michigan Press (1975).[4] D. E. Goldberg,Genetic Algorithms: In Search, Optimization andMachine Learn-ing. Reading, MA: Addison-Wesley, 1989.

14 References[5] C. Sechen and A. Sangiovanni-Vincentelli, \TimberWolf 3.2 : A new standardcell placement and global routing package," Proc. 23rd Design Automation Conf.,pp.432-439, June 1986.[6] D. F. Wong and C. L. Liu, \A new algorithm for oorplan design," Proc. 23rdDesign Automation Conf., pp.101-107, June 1986.[7] J. P. Cohoon andW.D. Paris, \Genetic placement," IEEE trans. Computer-AidedDesign, vol.CAD-6, no.6, pp.956-964, November 1987.[8] J. P. Cohoon, S. U. Hegde,W.N.Martin and D. S. Richards, \Distributed GeneticAlgorithms for the Floorplan Design Problem," IEEE trans. Computer-AidedDesign, Vol.CAD-10, No.4, pp.483-492, 1991.[9] K. Shahookar and P. Mazumder, \A genetic approach to standard cell placementusing meta-genetic parameter optimization," IEEE trans. Comput.-Aided Design,Vol.CAD-9, No.5, pp.500-511, 1990.[10] D. Sirag and P. Weisser, \Toward a Uni�ed Thermodynamic Genetic Operator,"in Proc. 2nd Int. Conf. Genetic Algorithms, pp.116-122, 1987.[11] D. Adler, \Genetic Algorithms and Simulated Annealing: A Marriage Proposal,"in Proc. Int. Conf. Neural Network, pp.1104-1109, 1993.[12] D. Brown, C. Huntley, and A. Spillane, \A Parallel Genetic Heuristic for theQuadratic Assignment Problem," in Proc. 3rd Int. Conf. Genetic Algorithms,pp.406-415, 1989.[13] F.-T. Lin, C.-Y. Kao, and C.-C. Hsu, \Applying the Genetic Approach to Simu-lated Annealing in Solving SomeNP-Hard Problems," IEEE Trans. System, Man,and Cybernetics., vol.23, no.6, pp.1752-1767, 1993.[14] S. Koakutsu, Y. Sugai, H. Hirata, \Block Placement by Improved SimulatedAnnealing Based on Genetic Algorithm," Tran. of the Institute of Electronics,Information and Communication Engineers of Japan, vol.J73-A, No.1, pp.87-94,1990.[15] S. Koakutsu, Y. Sugai, H. Hirata, \Floorplanning by ImprovedSimulatedAnneal-ing Based on Genetic Algorithm," Trans. of the Institute of Electrical Engineersof Japan, vol.112-C, No.7, pp.411-416, 1992.[16] S. Nakatake, H. Murata, K. Fujiyoshi, and Y. Kajitani, \Bounded-Slicing Struc-ture for Module Placement," Techinical Report of the Institute of Electronics,Information and Communication Engineers of Japan, vol.VLD94, no.313, pp.19-24, 1994.[17] Y.-T. Lai, and S.M. Leinwarnd, \Algorithms for FloorplanDesignViaRectangularDualization," IEEE Trans. Computer-Aided Design, vol.CAD-7, no.12, pp.1278-1289, 1988.[18] M. J. Ciesielski, and E. Kinnen, \Digraph Relaxation for 2-Dmensional Placementof IC Blocks," IEEE Trans. Computer-Aided Design, vol.CAD-6, no.1, pp.55-66,1987.[19] S. Sutanthavibul, E. Shragowitz, and J. B. Rosen, \An Analytical Approachto Floorplan Design and Optimization," IEEE Trans. Computer-Aided Design,vol.CAD-10, no.6, pp.761-769, 1991.

References 15[20] C.-S.Ying, and J. S.-L.Wong, \AnAnalyticalApproach toFloorplanning forHier-archical Building Block Layout," IEEE Trans. Computer-Aided Design, vol.CAD-8, no.4, pp.403-412, 1989.[21] S. Wimer, and I. Koren, \Analysis of Strategies for Constructive General BlockPlacement, IEEE Trans. Computer-Aided Design, vol.CAD-7, no.3, pp.371-377,1988.[22] D. P. La Potin, and S. W. Director, \Mason: A Global Floorplanning Approachfor VLSIDesign," IEEETrans. Computer-Aided Design, vol.CAD-5, no.4, pp.477-489, 1985.[23] T. Lengauer, and R. M�uller, \Robust and Accurate Hierarchical Floorplanningwith Integrated Global Wiring," IEEE Trans. Computer-Aided Design, vol.CAD-12, no.6, pp.802-809, 1993.[24] W. W.-M. Dai, B. Eschermann, E. S. Kuh, and M. Pedram, \HierarchicalPlacement and Floorplanning in BEAR," IEEE Trans. Computer-Aided Design,vol.CAD-8, no.12, pp.1335-1349, 1989.[25] W.-M. Dai, and E. S. Kuh, \Simultaneous Floor Planning and Global Routingfor Hierarchical Building-Block Layout," IEEE Trans. Computer-Aided Design,vol.CAD-6, no.5, pp.828-837, 1987.

