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ABSTRACT

Synchronous languages are intended for programming reactive systems. Reactive systems,
which include real-time systems and key operating system components, interact continually with
their environment. This paper considers the applicability of imperative synchronous/reactive
languages to the development of general system software, that is, to the implementation of
operating system kernels, file systems, databases, networks, server architectures, device drivers,
etc.. The languages Esterel and Reactive C (RC) receive special attention as Esterel is the oldest
and most developed such language and RC is specifically designed for compatibility with C systems
programming. An alternative soft-instruction software architecture is described which is well suited
to real-world system programming.
keywords: reactive systems, synchronous language, concurrent programming, system software,

operating systems, threading, real-time systems, soft-instructions.
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0.1 Introduction

The imperative synchronous languages Esterel
and Reactive C (RC) were developed to ad-
dress concurrent programming difficulties associated
with the reactive systems commonly encountered
in real-time and embedded programming [BdS91]
[Bou91]. These languages have been called syn-
chronous/reactive languages. This paper considers
the applicability of such languages to the closely re-
lated problem of general system software develop-
ment, and then describes an alternative software ar-
chitecture intended specifically for system software
development.

The remainder of this paper is organized as fol-
lows: The concurrent system programming problem
is briefly described and the importance of establish-
ing software architectures suited to this problem is
noted. Reactive systems and synchronous languages
are then described and existing work briefly sur-
veyed. Source code is examined from the viewpoint
of the system programmer, and conclusions drawn
regarding applicability to implementation of generic
system software. The soft-instruction software ar-
chitecture is described, an example considered, and
relevant historical and current work noted.

0.1.1 Concurrent System Software

System software consists of components such as
operating system kernels; file, database, and network
systems; device drivers; and server architectures for
I/O, transaction processing, and multimedia. These
components react to external service requests gen-
erated by applications, other components, and hard-
ware. Each component is generally capable of servic-
ing multiple concurrent requests, some of which may
be of long-duration, and some of which may have
real-time constraints. Thus, operating system soft-
ware constitutes a significant concurrent program-
ming problem, and it is widely agreed that devel-
opment of such software remains difficult [Atw76]
[Sch86] [Wat90].

There are many ways to view concurrency. The
remainder of this section describes concurrent pro-
gramming considerations germane to the design and
programming of concurrent system software, that is,

concurrency from the viewpoint of the system pro-
grammer.

We can identify three orthogonal attributes that
affect the systems programmer:
Competitive vs Cooperative Are concurrent requests

competing for the same resource or are they
cooperating to satisfy a single, higher level re-
quest? The answer to this may depend on the
component that is being used as a frame of ref-
erence.

Heavyweight, Lightweight, or Featherweight How
expensive is a context switch?

Internal vs External Are concurrent requests being
managed by a single component?

These are explained further below.

Cooperative concurrency either increases a single
request’s performance or simplifies multiple event
coordination pertaining to a single request. Perfor-
mance is increased by techniques such as issuing
multiple overlapped I/O operations on behalf of a
single service request. Coordination provided by co-
operative concurrency simplifies activities such as
request cancelation and error handling. Cooperative
concurrency typically reduces the latency of a single
request.

Competitive concurrency maintains the timeshar-
ing illusion. This permits a given service request
to be considered ‘invisible’ to other unrelated ser-
vice requests currently active within the same system
component. Competitive concurrency occurs when a
system component can execute two or more concur-
rent and unrelated service requests generated external
to the component. Competitive concurrency mech-
anisms typically increase overall throughput of the
component.

The amount of context copied during a context
switch dominates performance. Modern hardware
register sets are divided into non-privileged and priv-
ileged registers. Non-privileged registers are acces-
sible to applications while privileged registers are
protected from normal application access. A heavy-
weight context switch completely switches both priv-
ileged and non-privileged registers. This may require
updating memory structures associated with both the
privileged registers and with the software process
model implemented by the system. A heavyweight
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context switch typically crosses protection bound-
aries.

Switching only the non-privileged registers pro-
vides lightweight context switching. Typically, one
of these registers is the application stack pointer,
so there is usually a stack associated with each
thread defined by a set of non-privileged registers.
A lightweight context switch is often an order of
magnitude faster than a heavyweight context switch
[Laz91].

High-performance systems occasionally are de-
signed which switch only a subset of the non-
privileged registers. This approach is used in some
transaction systems, such as IBM’s TPF, and is often
used within the interrupt handling component of op-
erating systems [Mar90]. Context switching a subset
of the non-privileged registers will be called feather-
weight in the remainder of this paper. In the extreme,
featherweight context switching involves switching
only a single register, which usually is the base reg-
ister of a data context describing a transaction or
service request.

In this paper we are concerned with concurrency
explicitly controlled by a single component to at least
some extent. We call this internal concurrency. All
other concurrency is external. More specifically,
from the viewpoint of a systems programmer, all
concurrent activities occur in response to some re-
quest. Given two concurrent activities, the activities
represent internal concurrency if at least one activity
is being handled by the component under consider-
ation and the following two conditions are true. All
other cases represent external concurrency.

1. Both activities are being handled by the same
component.

2. The data structures representing the concurrent
activities are explicitly represented within the
component.

An example that satisfies the first condition above
but not the second would be conventional re-entrant
code with no shared data structures. One or more
external components could initiate distinct activities
within the component that were completely unre-
lated.

Due to differing internal concurrency require-
ments, different components often implement differ-
ent internal concurrency mechanisms. Both compet-

itive and cooperative concurrency may be supported
internal to the component.

A system component itself typically executes in
a concurrent environment in which it competes with
other components for external resources. A common
example of such external concurrency is competition
between components for the CPU. Another exam-
ple of important external concurrency is the mecha-
nism by which the component can initiate and man-
age multiple asynchronous external requests, for in-
stance, multiple asynchronous I/O operations.

The degree that concurrent contexts internal to a
system component are simultaneously exposed to the
system programmer differs, often reflecting the re-
quired degree of cooperation between requests. At
one end of the spectrum are classical threading mod-
els which typically do not expose to a given thread the
internal state of other threads, that is, a thread’s stack
contents are private. At the other extreme, as ex-
emplified by some windowing systems, multimedia
servers, and simulation-action games, all concurrent
context may be equally visible and expressly man-
aged by the programmer.

In thread-based approaches context tends to be
encapsulated in a single data structure, such as a
stack, which is explicitly scheduled by a lower-level
scheduler. The implementation of this scheduler is
often not visible to the programmer. In these systems,
thread scheduling provides for concurrent behavior
of processes, threads, transactions, requests, etc..
The programmer gets concurrency ‘for free’ because
implementation of the underlying threading system
is not the programmer’s responsibility.

At the other extreme, where expressly managed
concurrent behavior is inherent in the program im-
plementation, the programmer has complete respon-
sibility for locating and scheduling activities. The
programmer is in control and effectively defines cus-
tom context and concurrency mechanisms. Context
may be distributed throughout program data struc-
tures. Locating relevant context upon the occurrence
of each significant event may require considerable
run-time logic. Such expressly managed approaches
tend to be used when concurrent activities are highly
interrelated and it is advantageous for the program-
mer to have a ‘gods eye’ view of the entire concurrent
state. Sometimes, as with the X-windows system, the
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code that expressly manages activities is placed into
a standard run-time system. In general, modern win-
dowing systems have used approaches based on ex-
plicit application event dispatch work-loops and call-
backs rather than thread-based concurrency. This
concurrency style, convenient in highly interactive
cooperative environments, is sometimes called faux
concurrency [Rep95].

Concurrent service requests for file, network,
database, and transaction systems often have a high
degree of independence. Unlike message and win-
dow servers, two arbitrary service requests to this
type of server are usually competitive. Optimally,
the degree of internal concurrency within such a
component is determined dynamically by the rate
at which the external environment generates service
requests. Lightweight or featherweight competitive
internal concurrency mechanisms are thus very im-
portant for these servers.

The system programmer is responsible for consid-
ering all of these issues. The internal concurrency
mechanisms in many system components are only
used by the system programmer, and never directly
by external code. The system programmer is there-
fore free to implement custom concurrency mecha-
nisms as well as program using those mechanisms.

Thus, when implementing a system component,
one often programs with at least 3 different view-
points in mind: the perspective of the individual
service request, the perspective of the custom in-
ternal concurrent programming mechanism through
which all individual service requests are controlled
within the component, and the external concurrent
environment that must be used but over which one
may have no direct control. Optimally, the operating
system kernel implementation itself supports these
viewpoints, thus facilitating component implemen-
tation. The kernel is often considered simply another
component that has primary responsibility for CPU
allocation and interrupt dispatching.

0.1.2 Software Architecture

Software architecture has been defined as ‘The
structure of the components of a program/system,
their interrelationships, and principles and guide-
lines governing their design and evolution over time’

[GP95]. A software architecture is distinguished by
‘a shared repertoire of methods, techniques, pat-
terns and idioms for structuring complex software
systems’.

Software architectures provide an abstract con-
ceptual approach to complex systems more specific
than the models often inherent in a general pur-
pose language but more general than a single design.
A software architecture provides an identifiable ap-
proach or framework often implicitly framed by the
adopted tools, languages, and development environ-
ments [GTP95] [Gar95].

Good system software invariably adopts a well
defined software architecture. The architectures
used for system software are usually based on some
form of explicitly coded critical sections [Atw76]
[FP88] [Her91]. However, explicit critical sections
introduce nondeterminism and are a root cause of
many concurrent programming difficulties [Her90].
Since synchronous languages do not contain explicit
critical sections, software architectures based on
such languages may have advantages over traditional
architectures.

0.2 Reactive Systems

A reactive system is event-driven, maintains a per-
manent interaction with its environment, and exe-
cutes at a rate determined by the environment [HP85].
Reactive systems are assumed to execute with perfor-
mance sufficient to ensure they are never overdriven
by their environment. Since under normal circum-
stances a reactive system never terminates, reactive
systems cannot be characterized as a simple function
from a single initial input state to a single final output
state. Real-time systems are reactive systems with the
addition of timing constraints. Operating systems are
inherently reactive and provide the archetypical ex-
ample of large reactive systems [JS89] [MK93].

The term reactive is more specific than the in-
formal term event-driven, which is widely used and
overloaded. For instance, an event-driven program
may calculate a simple transformation and terminate.
The term reactive is more general than soft real-time
and near real-time, because a reactive system does
not address any real-time constraints but only correct
causality ordering [BB91].
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             light  = TRUE;

             pvPut(light);

       } state  light_on

}

state  light_on {

             light = FALSE;

             pvPut(light);

       } state  light_off

}

      when  (volt > 5.0) {

GUARDS

       when (volt < 3.0) {

state  light_off  {

/*     When in this state and voltage */

/* State 2 -- Light is ON             */

/*     falls below 3 volts, turn the  */

/*     light off, and then            */

/* Enter State 1, Light Off.          */

/* State 1 -- Light is Off            */

/*    When in this state and voltage  */

/*    exceeds 5 volts, turn on the    */

/*    light, and then                 */

/* Enter State 2, Light On.           */

Figure 0.1: A SNL Code Fragment

Simple reactive systems are often programmed as
explicit finite state machines, with external events
driving the machine through state transitions. Ex-
plicitly coded state machines work well for problems
with fewer than around 10 states. Above this size, ex-
plicitly programming a single state machine becomes
difficult. Nonetheless, state machines are often used
for device drivers, as this size suffices for many driver
architectures. In this case a component such as an
I/O supervisor usually has responsibility both for ex-
ecuting the state machines and instantiating the state
machines needed to deal with physical concurrency
due to multiple devices.

Programmers are often provided with special lan-
guages for integrating state machines into their pro-
gram source. State Notation Language (SNL) is typ-
ical of these languages [Koz93] [KKW94]. SNL is
used for I/O intensive control systems and is compat-
ible with C system programming.

An example SNL program fragment is shown
in Figure 0.1. This code turns a light on
when a voltage exceeds 5 volts and off when
the voltage falls below 3 volts. Examination
of this code fragment illustrates how large pro-
grams developed in this manner suffer from hidden
‘spaghetti gotos’. Statement <state label 1
{...}state label 2> effectively terminates in
a <goto label 2>. The when() clauses guard
the following code-block whenever the appropriate
state has been entered, that is, the code-block will not
execute until the corresponding guard is true.

SNL uses a ‘run-time sequencer’ responsible for
evaluating all the guards and serializing execution of
ready code-blocks. SNL provides very good integra-
tion of the state machine, I/O, and conventional C
code. Kozubal, et al., note that ‘extremely complex’
SNL applications have between 10 and 20 states.
However, an SNL sequencer may control execution
of multiple independent state machines, on occasion
controlling concurrent execution of as many as 10
state machines. SNL is considered easy to under-
stand and use.

For slightly larger applications, such as stand-
alone industrial controllers, some means of providing
hierarchical structuring of state machines is required.
A typical industrial system, intended to support up
to around 150 states, is the Action-State diagram
[KVK91]. This approach resembles coupling deci-
sion tables and state transition diagrams. The deci-
sion tables are compiled into hierarchical tables of
action-routine addresses. A work-loop then sequen-
tially executes action routines in response to events
and the current state. This approach works well for
controllers or drivers that do not require internal com-
petitive concurrency.

Larger reactive systems that must support both
competitive and cooperative concurrency are usually
based on conventional operating system kernels pro-
viding multithreading and critical sections. This ap-
proach introduces nondeterminism and its associated
concurrent programming problems. For large hard
real-time systems that must guarantee predictable
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performance, cyclic executives are arguably still the
preferable architecture. A cyclic system uses pre-
computed deterministic schedules designed for the
worst case. While effective, the overhead of such
pessimistic systems can be high, as code executes on
a rigid table-driven timeline even if not needed. Un-
der sustained near worst case conditions, however,
nondeterministic systems that must expend run-time
overhead scheduling their activities are less efficient
than cyclic systems [Kop91].

0.3 Synchronous Languages

Recently, synchronous software architectures have
been proposed specifically for reactive systems
[BB91] [Hal93]. The resulting synchronous/reactive
systems include data-flow and declarative ap-
proaches as well as more traditional imperative lan-
guages. None of these approaches have proven in-
trinsically more powerful than the others, and an
effort is currently underway to provide a common
‘back-end’ for a number of these systems. The typ-
ical reactive kernel for which the synchronous lan-
guages are intended has many properties of general
system software. Many such kernels resemble stand-
alone device drivers, that is, drivers running directly
on the machine hardware without additional systems
support.

The synchrony hypothesis assumes that all compu-
tation occurs in discrete atomic steps during which
time is ignored. This is often stated as the assumption
that all program code executes in zero time. Time
only advances when no code is eligible for execu-
tion. During a single step, all output is considered
to occur at the same time as all step input, that is,
output is synchronous with input. The notion of con-
tinuous time is thus replaced by an ordered series of
discrete steps between which discrete changes occur
in global state. The code executed at each step is
called a reaction.

The fundamental advantage of this approach is
that internal cooperative concurrency can be handled
deterministically. Concurrent asynchronous events
are manifested only within global state ‘snapshots’.
No explicit critical sections occur in the source code,
not even in the guise of monitors or concurrent
objects, because all code can be considered inside

implicit critical sections executed as required via
guarded command style programming.

The synchronous/reactive languages focus on the
internal cooperative concurrency commonly found
in drivers and controllers. Synchronous languages
essentially ‘compile away’ all internal cooperative
concurrency by producing a single deterministic state
machine that manages all required activities. Non-
deterministic external events are handled by the
reaction dispatch or guard evaluation mechanism,
and do not directly propagate into the body of the
program [BGJ91]. Since the single state machine
into which concurrent programs are compiled cannot
deadlock, the need for multiple threads, critical sec-
tions, and nondeterminacy is eliminated. However,
synchronous languages that compile to a single state
machine must sacrifice recursion and dynamic data
allocation to obtain determinism.

Synchronous architectures somewhat resemble
cyclic systems executing code repetitively using pre-
computed schedules. Synchronous approaches, how-
ever, see time as merely another discrete global state
variable and only execute required reactions. Syn-
chronous languages provide non-blocking and wait-
free internal concurrency. A concurrent system is
non-blocking if some member is guaranteed to com-
plete an operation in a finite number of system steps.
A system is wait-free if it can be guaranteed that
each member completes an operation in a finite num-
ber of system steps [Her91] [Her90]. Investigating
alternatives to process-based concurrency is a cur-
rent research area. For instance, Lamport notes that
processes are an artifact and need not be adopted as
a fundamental primitive in theories of concurrency
[Lam94].

0.4 Current Studies

Selected efforts relating to synchronous/reactive
programming are examined in this section, primar-
ily with respect to their source code and potential
applicability to system programming.

0.4.1 Meta/NPL

The ISIS system is a reliable distributed system
developed at Cornell [BJ87]. While attempting a
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large distributed ISIS application, the need arose for a
distributed reactive toolkit because ISIS lacked tools
for distributed control [MW91]. This motivated the
development of Meta, a toolkit for building non-real-
time reactive systems. Meta provides a state machine
language called NPL. NPL is a guarded command
language providing a globally consistent view of
distributed state. Guarded commands are interpreted
and have atomic action semantics. Performance is
considered adequate for systems in which timing is
not crucial.

Figure 0.2, based on an example by Marzullo
and Wood, illustrates NPL code. NPL uses simple
stack-based expressions, with arguments preceding a
postfix operator. The general format of a statement is
<predicate GUARD actions [ALTERNATE
predicate GUARD actions]*>. The actions
are executed atomically whenever the corresponding
guard predicates become true. Figure 0.2 consists
of one such statement. The action consists of a
single statement with operator NPL which takes the
2 preceding strings as arguments. The second string
argument is itself an NPL statement which contains
an alternate guard.

Three guards exist in Figure 0.2. The first guard
executes the NPL statement whenever load exceeds
5. The NPL statement takes two arguments, a
‘context’ (in this case, server), and a program
fragment to execute in that context. The second
guard exits the action if the load falls below 5. In this
case, the first guard remains enabled and the action
will be re-executed if load again exceeds 5. The
third ‘alternate’ guard starts a timer whenever the first
guard fires. If 20 seconds passes, TIMER returns true
and the third guard executes idle-server. The
LEAVE statement then causes the entire statement in
Figure 0.2 to be removed from further possibility
of execution. Thus, Figure 0.2 has the effect of
executing idle-server if the load exceeds 5 for
20 seconds.

NPL is implemented as an interpreter driven by
guard evaluation. NPL uses a non-deterministic
Least Recently Used (LRU) policy to select which
ready action to execute first. Although typical of
guarded command languages and designed explicitly
for reactive environments, NPL does not assume the
synchrony hypothesis.

0.4.2 Esterel

Esterel is the oldest synchronous/reactive language
and the best documented [BC84] [BdS91] [BG92]
[Hal93] [Edw94]. The design of Esterel was mo-
tivated by an effort to develop a semantics of par-
allel and real-time programming following Robin
Milner’s theories of synchronous process algebras
[Mil93].

A complete Esterel module is shown in Figure
0.4 and code fragments in Figures 0.3 and 0.5.
Figure 0.3 is from an example by Murakami and
Sethi, and Figures 0.4 and 0.5 follow an example
by Halbwachs [MS90] [Hal93]. Esterel is not a
complete programming language. It is a program
generator used to describe the reactive kernel of
reactive programs, that is, it provides a deterministic
reactive control harness which calls routines written
in a conventional programming language.

Program execution forms a discrete sequence of
instants. The only global state consists of instan-
taneously broadcast signals, with broadcast syn-
chronous with the instant in which a signal occurs.
Signals last the entire current instant, that is, from
the start of the instant in which they are emitted to
the end of that instant. The state of all signals emit-
ted during a given instant is altered synchronously.
Time is treated as a signal identical to any other
signal. A pure signal is emitted using the syntax
<emit s;>, where s is a signal name. Statement
<emit s(N);> associates the integer value Nwith
signal s. The statement <present s then s1
else s2 end> executes statement s1 if signal s
is present and statement s2 otherwise. The value of
signal s is obtained by ?s.

The statement <s1||s2> indicates that state-
ments s1 and s2 react in the same instant. Po-
tentially all routines in a program can react during
the same instant. All reactions are atomic and exe-
cute to completion within the current instant. While
one reaction is executing, no other reactive routine
can execute. A reaction can block ‘in place’ until
the instant in which signal s is present via <await
s;>. To wait for the third instant in which signal
s has occured, for example, await takes the form
<await 3 s;>.

The fundamental control construct is the watch-
dog, with syntax<do s1 watching s timeout
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GUARDSload  5 >  GUARD

      "server"

                        EXIT

                                                          LEAVE

      NPL

              "

      " load  5 <    GUARD

        ALTERNATE

        20000 TIMER  GUARD

                        "Idle-Server"

Figure 0.2: An NPL Routine

trap  GET_STRING  in

      signal  RESTART  in

             every  BREAK  do

                    call  cycleBaud()();

                    emit  RESTART

             end

||

             loop

                    aString := "";

                    do

                       loop

                           await  DATAIN;

                           call build(aString,done)(?DATAIN);

                           if done then

                                 exit  GET_STRING

                          end

                       end

                    watching ALARM

             each  RESTART

       end % signal

GUARD (do)

end % trap

                           emit  TIMER(N);

State 0

aString := "";  TIMER(N);

nextstate   1

State 1

if BREAK then

      cycleBaud()();

       aString := ""; TIMER(N);

      nextstate 1

end;

if ALARM then nextstate 2 end;

if DATAIN then 

      build(...)(...);

      if done then nextstate 3 end;

      TIMER(N);

      nextstate 1

end;

nextstate 1

State 2

if BREAK then

   cycleBaud()();

   aString := ""; TIMER(N);

   nextstate 1

end

nextstate 2

ESTEREL SOURCE COMPILED AUTOMATON

GUARDS

GUARD (loop)

Figure 0.3: An ESTEREL Routine
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module BUTTON_INTERPRETER :

             else  % The stopwatch is stopped

                    else emit RESET

                    end

             end

       end

output  RESET, DISPLAY_TOGGLE;

signal  STOPWATCH_RUNNING, FROZEN_DISPLAY in

             present STOPWATCH_RUNNING then emit DISPLAY_TOGGLE

                  upto      DISPLAY_TOGGLE

                    present  FROZEN_DISPLAY  then emit DISPLAY_TOGGLE

             

            do  sustain FROZEN_DISPLAY

      end

end.

 ||   % flip-flop: stopwatch runs between presses.

            do sustain  STOPWATCH_RUNNING

      loop % Toggle frozen_display state.

      loop  % Toggle running state

            await  START_STOP_BUTTON;

            await  DISPLAY_TOGGLE;

GUARD

GUARD

GUARD

CAUSALITY ERROR,

i.e., ‘DEADLOCK’.

input    START_STOP_BUTTON, FREEZE_BUTTON;

      every FREEZE_BUTTON  do

 ||   % flip-flop: Freeze display between FREEZE_BUTTON presses.

                 upto       START_STOP_BUTTON

Figure 0.4: A Causality Error in ESTEREL

      trap T in

       ||

       end

end

GUARDS

loop  % Toggle frozen_display state.

      await  DISPLAY_TOGGLE;

             sustain  FROZEN_DISPLAY

             await  DISPLAY_TOGGLE;  exit T

% flip-flop: Freeze display between FREEZE_BUTTON presses.

Figure 0.5: Interval Sequencing Solves a Causality Error

s2>, where s is a signal and s1 and s2 are com-
pound statements, that is, sequences of statements
separated by semicolons. Bodys1 is executed unless
signal s occurs, in which case the body is terminated
and the timeout executed. The timeout is optional.
Statement s1 is not executed in the instant signal
s occurs. Since statement s1 may contain await
statements, a do statement may span many instants.

The general form of a trap statement is <trap

T in s1 end>, where T specifies the name of the
trap block defined by compound statements1. Traps
can be nested. The trap can be exited from within the
trap block by a statement of the form <exit T;>,
where T indicates which enclosing trap to exit. The
statement <trap T in await s; s1; exit
T end> executes s1 until and including the instant
in which signal s occurs. Note that the previous do
statement does not execute statement s1 within the
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e

m

i

T

sustain FROZEN_DISPLAY upto DISPLAY_TOGGLE

emit DISPLAY_TOGGLE

present FROZEN_DISPLAY

present STOPWATCH_RUNNING

every FREEZE_BUTTON

End of Instant 

n

n - 1

6 T                      F                          T/ F                 T

T                      F                          T                     T5

4

     entire current instant. This makes FROZEN_DISPLAY False at the start of the instant, but to arrive at step 6, FROZEN_DISPLAY must be True.

3

T                      F                          T                     F

T                      F                          T                     F

F                      F                          T                     F

2

1

T                      F                          T                     F

DISPLAY

FROZEN

TOGGLE

DISPLAYSTOPWATCH

RUNNINGBUTTON

FREEZE

Start of Instant

7           T                       F                          F                     F

8           T                       F                          T                     F

Microinstant description: 

2) Between instant n-1 and instant n, the state of FREEZE_BUTTON changes (it has been pressed).

3) STOPWATCH_RUNNING is False.

4) FROZEN_DISPLAY is True.

6) The ‘upto DISPLAY_TOGGLE’ becomes True, which terminates the ‘sustain FROZEN_DISPLAY’, making FROZEN_DISPLAY False throughout the

7) FROZEN_DISPLAY False invalidates step 4, which keeps step 5 from setting the state of DISPLAY_TOGGLE to True, so both DISPLAY_TOGGLE and 

     FROZEN_DISPLAY are False. It is a contradiction for DISPLAY_TOGGLE to be both True and False at step 2.

8) Since FROZEN_DISPLAY must have been True at the start of the instant, the state of the signals must be as shown in step 8, which is identical to 

     the state at step 2, so the cycle has no stable solution.

Changing the state

of a signal must

logically change its

state at the beginning

of the instant.

‘microinstant’

1) At the end of instant n-1, FROZEN_DISPLAY is True and DISPLAY_TOGGLE is False due to the ‘sustain’ shown in the microinstant at step 6.

} Signals

5) The ‘emit DISPLAY_TOGGLE’ sets DISPLAY_TOGGLE to True.

Figure 0.6: A Causality Error Trace

first instant signal s occurs, while the given trap
statement does execute statement s1 within the first
instant signal s occurs. Many Esterel statements are
effectively constructed as macros using the do and
trap statements as primitives.

Figure 0.3, from an example by Murakami and
Sethi, contains a code-block that assembles a string
of input characters into a buffer, subject to a time-
out [MS90]. If a BREAK occurs, the baud rate of
the input line is re-determined and buffer assembly
restarted. This is a typical small systems program-
ming problem.

The <trap GET STRING> in Figure 0.3 en-
ables <exit GET STRING> to exit the code-
block. Signal RESTART is declared with local
name scope. In any instant that external signal
BREAK occurs, routine cycleBaud()() executes
and RESTART will reset the loop executing in paral-
lel. Note Esterel routines take 2 argument lists. The
first specifies parameters passed by reference and the
second parameters passed by value.

The loop collects input into buffer aString. The
loop starts a timer by emitting signal TIMER(n). At

the instant corresponding to an elapsed time of n, the
timer module will raise signal ALARM. The timer
counts signal TICK, which implicitly occurs every
instant. The await command blocks execution
until the instant that DATAIN contains data, at which
time its value is obtained by ?DATAIN. Since all
code executes atomically and global state is updated
synchronously with the instant, there is never a
possibility of DATAIN changing value due to a race
condition.

Figure 0.3 also illustrates Esterel compilation.
Output is a directly compiled finite state machine
which does not require an interpreter for execution.
The compiled code is extremely fast since there is
no need for concurrent threads, messages, or inter-
preters. However, there is considerable redundant
code. For example, the first code-blocks in State 1
and State 2 are the same.

Figure 0.4, based on an example by Halbwachs, il-
lustrates a module in a stopwatch controller [Hal93].
The stopwatch has 2 buttons. One button starts and
stops the timer. The other button freezes and un-
freezes the stopwatch display when the stopwatch is
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running. The start/stop button can stop the running
stopwatch when the display is frozen, after which
the freeze button can be used once to display the
final time. When the stopwatch is stopped and the fi-
nal time is displayed, pressing the freeze button again
resets the stopwatch.

The example contains 3 concurrent code-blocks.
The signal start stop button simply toggles
the signal stopwatch running as specified by
the loop in the second code block. The sig-
nal display toggle likewise toggles the signal
frozen display in the loop contained in the third
code block. Signal display toggle does not
simply reflect the state offreeze button because
of the modal operation of this button, which is inter-
preted by the first code-block.

This example contains a causality error, which
is the synchronous equivalent of deadlock. Unlike
run-time deadlock, causality errors in principle can
be detected at compile time due to the synchrony
hypothesis. These errors arise because it is possible
to write reactions of the form ‘emit signal s if
and only if it is absent’ or the undetermined ‘emit
signal s if and only if it is present’. In Figure
0.4 it arises because if signal frozen display
is present, signal display toggle is emitted, but
if signal display toggle is emitted then signal
frozen display is not present due to the upto
at the bottom of the module. The <do s1 upto
s> is defined as<do s1; halt watching s>,
that is, statement s1 is not executed the instant that
signal s occurs and s1will not be executed in future
instants.

Figure 0.6 illustrates the causality error. The syn-
chronous nature of Esterel is also illustrated in this
figure because theemitof signaldisplay toggle,
which occurs if signal frozen display is true,
must cause the signal frozen display to be false
at the beginning of the instant, leading to a contra-
diction.

The solution to the causality problem, follow-
ing Halbwachs, is shown in Figure 0.5. The
code-block at the bottom of the module in Fig-
ure 0.4 is replaced with a trap-based sequencer.
Since the trap continues to execute its body the
first instant that display toggle is true, signal

frozen display remains true for the entire in-
stant, becoming false in the next following instant.

0.4.3 Reactive C

Reactive C (RC) is designed to provide extensions
to C supporting synchronous/reactive programming
based on the Esterel model [Bou91] [Bou92]. RC is
implemented as a preprocessor generating C source
code. RC does not compile to a finite state ma-
chine, but rather provides the C programmer addi-
tional statements for expressing Esterel-style reactive
control flow. RC is more general than Esterel. Guard
conditions can be boolean expressions and reactions
executing within the same instant can coordinate and
synchronize via micro instants and the suspend state-
ment.

Example RC statements described by Boussinot
are shown in Figure 0.7. The stop statement
in reactive procedure Hello() is considered the
basic RC reactive statement. Stop halts execution
for the remainder of the current instant. The next
instant, control resumes at the immediately following
statement.

The condition argument of the select statement
in Figure 0.7 is evaluated every instant. If the con-
dition is true, routine P1() is executed, otherwise
P2() is executed. In the statement shown, x alter-
nates between true and false, so execution of P1()
and P2() will alternate each instant.

The par statement in Figure 0.7 specifies mul-
tiple reactive statements to be executed in the same
instant. It takes only 2 other statements as arguments.
Unlike the Esterel || syntax, the order of execution
of these 2 statements is fixed, with the first argument
executing first within the instant, and the second ex-
ecuting next within the instant. Typically, execution
would block within each branch of the par state-
ment during the first instant. At the second instant,
control proceeds from the 2 blocked control points
in the same order, that is, the first argument executes
before the second.

RC abandons Esterel’s purity with respect to log-
ical instants providing the only event ordering. A
single instant can be divided up into micro instants.
This is illustrated by the 2 statements on the right
side of Figure 0.7. In the first par statement, the
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rproc void Hello(){

          printf( "Hello, world\n" );

          stop;

          printf( "I repeat: hello, world\n" );

}

select( x = !x )

      exec  P1();

    {                   printf("2"); }

      exec  P2();

par

      exec  Hello();

      exec  Bye();

par

    {  suspend;  printf("1"); }

close

      par

            { suspend; printf("1"); }

            {                 printf("2"); }

Figure 0.7: Reactive C Statements

suspend in the first argument suspends execution
till the next instant. Thus, a ‘2’ is output the first
instant and a ‘1’ the second instant. The close
statement forces execution to be restarted during the
current instant, that is, after the second argument
of the par statement completes execution, the sus-
pended first argument is resumed. The output of
the close statement is ‘21’ at the end of the first
instant. The suspend and close statements are
useful when multiple routines have to monitor each
others state, wait for initialization to be complete,
etc..

0.4.4 Evaluations

A group at Bell Labs evaluated 6 different reactive
specification and development systems with respect
to a reactive coding problem originally implemented
in C in the ATT 5ESS system [ACJ+95]. Esterel was
included but not RC. The evaluation considered real-
world applicability, compatibility, and software en-
gineering concerns such as language learning curves.
This study concluded that Esterel required more ex-
pertise than the other approaches. For this group
of experienced evaluators, however, overall learning
curves were not a significant problem for any of the
systems. Esterel was found to be the most expres-
sive language and scaled best to large application

domains. The most notable result of this study was
that maintainability was not a strength of any of the
evaluated approaches. The group recommended that
maintainability must be addressed before any of the
evaluated methods would be suitable for large-scale
industrial use.

A German research effort evaluated 18 different
reactive programming systems amenable to formal
analysis by funding implementations of the same
‘toy’ manufacturing cell controller in each system
[LL95]. As with the ATT evaluation, Esterel was
included but not RC. The resulting 400 line Esterel
program provided a reactive control harness for con-
ventional C routines. The Esterel program had to
be split into 5 separate reactive kernel modules with
independent state machines in order to be tractable
for the tools and the code generator. No proofs
were attempted because the complete system was too
large, and the modularized system introduced asyn-
chronous communication between modules. It was
noted that a large number of signals overwhelm the
designer, and that small changes in an Esterel pro-
gram can result in significant changes in state ma-
chine size, making requirements unpredictable. Al-
though believing the approach simplified the design
of the controller, the group implementing the Esterel
controller concluded that ‘the advantages are limited
if either many kernels are loosely coupled or if the
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data structures used are complex’ [Bud95]. The re-
sulting executable program was 46 Kilobytes, with
26 Kilobytes resulting directly from Esterel and the
remainder primarily resulting from the low-level C
routines.

0.5 System Programming Considerations

High-performance concurrent reactive systems
play a central role in the future of operating sys-
tems. This is especially true for servers requiring
a very high degree of competitive internal concur-
rency, for instance, servers for transaction process-
ing, databases, networks, and multimedia. Con-
text switch overhead bounds the performance of
conventional multithreading approaches based on
heavyweight and lightweight concurrency [Ous89]
[MB91] [ALBL91]. Context switch code paths
through general purpose systems are lengthy and
context switches destroy locality of reference as-
sumptions upon which high performance systems
rely. Featherweight context switch techniques that
can provide a high degree of both competitive and
cooperative internal concurrency are thus of inter-
est. Historically, such approaches have long been
used in areas such as real-time avionics and high per-
formance transaction processing. Example systems
that have been described include Boeing’s Rex and
IBM’s TPF [BS86] [Mar90]. This section examines
whether the synchronous/reactive techniques consid-
ered in the previous section are appropriate for high
performance generic system software.

0.5.1 General Observations

As indicated by the ‘guard’ balloons in the figures,
all the languages described enable programming
large state machines using parallel variations of
Dijkstra’s guarded commands [Dij75] [Hal77]. To
understand the source code in these systems, one
identifies the guard locations and determines the
conditions under which a guard will activate. For
instance, in reading Esterel or RC, a productive first
step is to identify all emits and all corresponding
guards.

Guarded command programming resembles dataflow
programming in that the programmer has no direct

control over the selection process, that is, the order
in which multiple ready reactions are activated. This
is most clearly visible in NPL, which uses an LRU
policy to select what executes next. Although syn-
chronous languages are deterministic, the specific or-
der in which code executes may not be immediately
obvious from the source code.

The synchronous languages resemble a dataflow
approach to programming cyclic systems with all
computation based on a traditional timeline divided
into major and minor cycles. The similarity is most
obvious in the case of RC, where instants may be con-
sidered major cycles and micro instants correspond
to minor cycles. In both Esterel and RC instants can
be considered major cycles and the sequence of all
reactions that execute within the instant corresponds
to a minor cycle sequence. In RC these minor cy-
cles are guaranteed to occur in a fixed order. Unlike
cyclic systems, however, the synchronous languages
only execute needed reactions.

It is not clear whether the synchronous/reactive
languages are truly intended for programming gen-
eral operating systems software. Operating systems
drivers, protocol stacks, user interfaces, and real-time
process controllers are mentioned as example appli-
cations. Halbwachs specifically notes that most sys-
tem software is based on reactive kernels embedded
within more traditional architectures. This split cor-
responds roughly to the distinction between coopera-
tive and competitive internal concurrency. Although
the synchronous languages make internal coopera-
tive concurrency deterministic, traditional means of
managing competitive concurrency must be used.

Previous efforts to eliminate operating system non-
determinism, most notably associated with declara-
tive language research, have not been particularly
successful. For instance, in describing the design
of a functional operating system based on streams,
Jones and Sinclair note that ‘operating systems are
inherently reactive’, but that ‘it is not clear that oper-
ating systems can be written without modeling non-
deterministic behavior’ [JS89]. They discuss such
efforts in the functional language community, includ-
ing an effort to provide implicit time determinism,
timestamps, and clock oracles, and note that ‘The
effect of this proposal is to place non-determinism
entirely outside the software..’. They remark:
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‘In recent years, however, research
activity on the functional operating sys-
tems front has been rather quiet, possibly
because the experiments reported above
showed that... it does not always lead to
greater elegance and clarity in the detailed
coding of programs’ [JS89].

Logic programming approaches have fared little
better. Concurrent Prolog was expressly designed
for systems programming and provided dataflow
style synchronization via nondeterministic guarded-
commands as its basic control mechanism [Sha86a]
[Sha87]. Concurrent Prolog served as the basis for
KL1, the Kernel Language used to write the operating
system for the Japanese Fifth Generation project
[Fur92]. Regarding efficiency of Concurrent Prolog
implementation efforts, Shapiro reports:

‘ ... It was a deathblow to the imple-
mentability of Concurrent Prolog, at least
for the time being, since it showed that im-
plementing Concurrent Prolog efficiently
is as hard, and probably harder than, im-
plementing OR-parallel Prolog. As we
all know, no one knows how to imple-
ment OR-parallel Prolog efficiently, as yet’
[Sha86a].

0.5.2 Implementation Concerns

It is not possible to ignore software engineering
issues such as performance, size, and maintainabil-
ity when evaluating system software. There are a
number of means by which one can implement syn-
chronous/reactive languages. Esterel, for example,
has been implemented both as a compiler producing
a finite state machine and as a compiler producing
a set of routines called by a reaction dispatch work-
loop interacting with the environment and then call-
ing required reactions. A conventional thread-based
implementation appears quite possible for languages
such as RC, as RC’s fundamental stop statement
can be considered a coroutine call to a coroutine
coordinator which evaluates conditions and issues a
coroutine resume to the next ready coroutine.

When compiling a language such as Esterel into a
single finite state machine, the number of resulting

states is potentially exponential in the size of the Es-
terel program source, as the state machine must cor-
rectly support all legal orderings in which reactions
can occur. These orderings correspond to all possible
input sequences. Observations such as these moti-
vated the Esterel compiler of Edwards, which resem-
bles a traditional compiler [Edw94]. Source code is
translated to assembler, and the resulting routines dis-
patched by a run-time reaction dispatch work-loop.
This compiler is reported to have roughly linear com-
pile time, output size, and output execution time.

Edwards attempted to compile a 1000 line Es-
terel program using both compiler approaches. The
generated finite state machine contained over 200
states and was output as a C source file of over 230
Megabytes, which could not be compiled. This same
1000 line Esterel program was compiled by the work-
loop compiler and produced 21 thousand lines of as-
sembler and a 128 Kilobyte executable.

A 600 line Esterel program compiled to a state
machine of 32 states. This was output as a 19
Megabyte C source file which, somewhat amazingly,
compiled into a 12 Megabyte executable. The 600
line program, when compiled with the work-loop
compiler, produced 13 thousand lines of assembler
code resulting in a 96 Kilobyte executable.

These executables are exceptionally large by con-
ventional system programming standards, especially
considering that the 1000 line program consisted of
the controller for a 4 button digital stopwatch. While
not a trivial application, some device drivers are cer-
tainly more complex. Edwards notes that this is a
‘large’ Esterel application, and also notes that causal-
ity errors can be arbitrarily subtle but that it is im-
practical to have the compiler perform exact causality
checking due to excessive compile times.

0.5.3 Programming Implications

None of the synchronous/reactive languages are
general purpose. For instance, Esterel lacks data
structures and its signals consist only of integer
values. The languages presented here all require
some form of guard evaluation which requires either
evaluation of global state between each instant or
redundant code. Overhead, either time or space, can
become excessive.
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These languages have been designed to provide
primarily cooperative concurrency. None except for
NPL address the needs of systems which must deal
with both cooperative and competitive concurrency.
Esterel and RC explicitly preclude internal compet-
itive concurrency because dynamic thread creation
introduces a dynamic degree of concurrency that
cannot be eliminated by the compiler and thus is
not allowed. These languages have no mechanism
whereby a single routine can be executed concur-
rently with itself within the same instant.

Debugging large state machines is a significant
problem, especially when the state machine has been
automatically generated. Halbwachs notes that ‘the
correspondence between the source code and the
generated code is far from being obvious. The
slightest change in the Esterel program can involve a
complete modification of the automaton’. This also
illustrates why handcoding state machines for large
problems is unreasonable.

Although the compiler can in principle detect
indirect causality errors, in large systems it may not
be obvious how to fix a causality error. Causality
errors complicate program development and impact
modularity as the compiler needs to analyze all
program source.

Programming RC’s micro instants, which require
explicit source code coordination, resembles con-
ventional concurrent programming. Micro instants
introduce ‘invisible gotos’ and their attendant pro-
gramming difficulties. Additionally, Huizing and
Gerth note that the semantics of such micro instants
‘turned out to be too subtle and non-deterministic to
be of practical use’ [HG91].

The problem of distributed mental state is not
solved by any of these languages. Understanding the
interaction of cooperative code scattered throughout
a program presents a serious cognitive challenge to
program comprehension [LS86]. Programs written
in a guarded command dataflow style can require
considerable study before overall program behavior
is deduced. Since every routine potentially executes
every instant, and since control can be located in the
midst of each routine, the programmer potentially
must keep the entire program state in mind. For in-
stance, consider the following quote from Halbwachs
in describing a 36 line Esterel program:

‘Initially, the control is stopped at...,
lines 3, 12, and 24... line 12 is interrupted
and ... stopped by ... line 16... The new
global state is... lines 3, 16, and 24... line
3 is interrupted. ... comes back to ... line
3. ... control is stopped at lines 3, 16, 28,
and 32’ [Hal93].

It is thus difficult to program Esterel or RC without
drawing timelines, mapping source statements to the
timeline, and mentally executing code fragments.
Without significant study, the source is insufficient
to understand the program.

0.5.4 Summary

In summary, the advantages of the synchronous/reactive
approach with respect to programming system soft-
ware are:� Programs become deterministic and deadlocks

at run-time impossible. Internal cooperative
concurrency and communication overheads are
compiled away and inherently handled by one
state machine.� Atomic reactions with essentially basic block
granularity, coupled with discrete time steps
that change global state in ‘snapshot’ fashion,
simplify concurrent programming.� Because explicit register-set based context
switch is not required, implemented systems can
be extremely fast, indeed, potentially optimum
with respect to time.� Since explicit critical sections are eliminated, so
are the associated maintenance, debugging, and
design problems.

Disadvantages of synchronous/reactive program-
ming with respect to system software are:� Guarded-command dataflow-style programming

is difficult.� Distributed mental state makes programming-
in-the-large difficult. Debugging large state
machines is hard.� There is little provision for competitive inter-
nal concurrency. In general, all the problems
relating to competitive concurrency remain.� The compilers produce code that is considerably
larger than desirable for real systems, and thus
the approach does not scale to large systems.
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of the guard interpreter can become excessive.

The first 2 disadvantages relate directly to mental
programming difficulty. The sample source code
illustrates that basic psychological complexity and
program comprehension effort appears similar to
traditional concurrent programming approaches.

0.6 An Alternative Proposal

Is there a software architecture for conven-
tional systems programming which retains syn-
chronous/reactive advantages but not the disadvan-
tages identified in the previous section? The devel-
opers of Esterel have noted the similarity between
the synchrony hypothesis and clocked digital circuits
in which all ‘reactions’ take one clock cycle [BB91].
Indeed, it is natural to consider, as an alternative to
dataflow-flavored approaches, a software architec-
ture based on a sequential instruction model similar
to that found in conventional hardware.

0.6.1 The Soft-Instruction Architecture

A conventional computer architecture advances a
program counter each ‘instant’, thereby executing in-
struction sequences. The current instruction may al-
ter the value of the program counter, thus transferring
control to another location in the instruction stream.
The processor keeps a large amount of local state
which participates in instruction stream execution.

The software architecture in Figure 0.8 is called
a soft-instruction architecture by analogy with the
discrete atomic instructions implemented in conven-
tional hardware. Programs are developed at 2 levels.
A reactive level is concerned primarily with concur-
rency, high-level control flow, and the reactive logic
of the program. This level consists of control con-
structs and soft-instructions. It is programmed as if
a custom instruction set, one instruction per required
type of reaction, is available. The control constructs
can be more elaborate than those in hardware instruc-
tion sets and can resemble those of any high-level
programming language. The reactive level provides
for programming-in-the-large and exposes one view
of the deep structure of the program [DK76].

A synchronous lower program level consists of
soft-instruction implementations. Soft-instruction
implementations perform the programming-in-the-
small tasks required of the program. Soft-
instructions are written in a traditional system pro-
gramming language such as C. These routines are
written in a stylized manner defined by each specific
implementation of the soft-instruction architecture.
With respect to the soft-instruction program, soft-
instructions execute atomically, similar to the manner
in which most normal hardware instructions execute
atomically with respect to the CPU. As with hardware
instruction implementation, soft-instruction duration
must be bounded by the implementation.

In conjunction with the design of the two program
levels, a data structure defining instruction stream
state must be developed. This data structure is
called a context structure and is an implicit argument
processed by all soft-instructions. The actual context
structure can be produced automatically by soft-
instruction programming tools.

0.6.2 The Soft-Instruction

Figure 0.8 shows a single system component im-
plemented using a soft-instruction architecture. The
single system component in Figure 0.8 could be a
driver, I/O subsystem, file system, network server,
etc.. This component could be either included in a
larger system or running stand-alone. If implement-
ing a conventional server within a conventional oper-
ating system, the entire system component shown in
Figure 0.8 could be implemented internal to a single
server process.

The soft-instruction program in Figure 0.8 is par-
titioned completely into soft-instructions, S1(), S2(),
etc.. Soft-instructions often correspond to basic
blocks. All soft-instructions must be implemented
so that they never block. Thus, as with hardware
I/O instructions, all I/O requests internal to a soft-
instruction implementation are asynchronous, with
the I/O activation typically followed by a return from
the soft-instruction. Again, the size of a given soft-
instruction may be bounded by the desired latency of
the system, as well as by I/O requirements.
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Figure 0.8: Soft-Instruction Software Architecture

0.6.3 The Scheduling and Dispatch Loop

A reactive dispatch loop drives the reactive level.
It selects a ready context structure using any oper-
ating system scheduling technique. The dispatcher
in Figure 0.8 then obtains a reactive control table
program counter (PC) from within the selected con-
text structure. This high-level logical PC is used
in conjunction with the control table to locate the
soft-instruction implementation to execute. The dis-
patcher typically bumps the control table PC within
the context structure to point to the next entry in
the control table, thus pointing indirectly to the
next soft-instruction to be executed on the context
structure’s behalf after completion of the current
soft-instruction. The dispatcher invokes the soft-
instruction with the context structure specified, in
some fashion, as an argument to the soft-instruction.

The dispatcher can transfer control to a soft-
instruction in many ways, including a direct or in-
direct jump or call. Whatever the mechanism, the
dispatch loop invokes the routine implementing the
next soft-instruction, and upon completion of the rou-
tine control returns to the dispatcher. Successive
soft-instruction dispatches may advance the state of
different context structures, thus providing feather-
weight internal concurrency.

The dispatcher is a small threaded-code dispatch
loop that can easily be modified by the programmer to
implement custom reactive policies. The overhead
of this dispatcher can usually be reduced to a few
instructions. In threaded-code terminology, such a
loop is an inner interpreter or address interpreter. On
some architectures such interpreters can be reduced
to a single instruction, and as such they do not have
the negative performance connotations of high-level
outer interpreters [Kog82].

0.6.4 Short-term and Long-term Stacks

Each valid context structure provides an explicit
context for an internally competitive concurrent soft-
instruction stream. A single program run-time stack
provides space for short-term variables with lives
lasting the duration of the current soft-instruction
execution. This short-term stack usage is identical to
that found in any modern language, for instance, it
can be the normal C run-time stack.

The soft-instruction model does not have conven-
tional per-thread run-time stacks. Rather, the ‘per-
thread’ context structures contain fixed-size stacks
used for both reactive-level control flow and for long-
term variables with lives spanning soft-instruction
executions. Typical system components, such as
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file servers, often require only around 1 Kilobyte for
such long term variables and reactive level control.
The bounded ‘per-thread’ stack space in each con-
text structure is thus usually quite small. This can
be important when serving hundreds of concurrent
requests.

Variables within the scope of a single soft-
instruction implementation can thus be found on 2
stacks, one the standard run-time stack containing
the soft-instruction’s short-term variables, and the
other containing long-term variables specified as ar-
guments, perhaps implicitly, to the soft-instruction.
Dynamically allocated global resources, such as I/O
buffers, are accessed by long-term pointer variables.

0.6.5 The Control Table

The control table represents the reactive program.
This data structure can take many forms depending
on the dispatcher design. However implemented, the
control table determines the execution path of each
context structure. A typical implementation consists
of a table of addresses pointing to soft-instruction
implementations. This is similar to a traditional
sequence of machine instructions.

Any number of context structures can be actively
traversing the control table, that is, in general the
design of the control table is completely indepen-
dent of the system’s required degree of internal con-
currency. Soft-instructions that define control con-
structs within the reactive table evaluate context state
and may alter the value of the context structure’s
program counter. The implementation of such soft-
instructions can be included directly within the dis-
patcher or implemented in the same manner as any
other soft-instruction.

Control tables can be generated and analyzed by
tools and utilities ranging from simple macros to
complete compilers.

0.6.6 Concurrent Programming, I/O, and
Context Switch

Soft-instructions are serially reusable. The dis-
patcher executes a single soft-instruction at a time,
and each soft-instruction runs to completion, thus

implicitly placing all the ‘synchronous’ code in the
program within critical sections.

Each context structure concurrently traversing the
table represents a unique soft-instruction stream ex-
ecuting the common reactive control table logic.
When an activity of unknown duration, such as
an asynchronous I/O request, is activated on be-
half of a context structure, the context structure
is blocked. This blocks the corresponding soft-
instruction stream.

Context structures are blocked by eliminating the
structure’s eligibility to be selected by the dispatcher
for execution. In Figure 0.8, the current context
structure could be blocked by pointing the current
context structure pointer at another ready context
structure after removing the current context structure
from the dispatcher’s ready queue. Although such
blocking and scheduling logic may be implemented
in many ways, it is often useful to place an explicit
concurrency instruction in the control table, for in-
stance, a SUSPEND or AWAIT IO COMPLETION
soft-instruction. Conversely, if a certain class of soft-
instructions exist that all initiate I/O requests, each
of these instructions can suspend instruction stream
execution, as in the usual manner of hardware I/O
instructions.

As with any soft-instruction, the soft-instruction
that activates an I/O request or other asynchronous
activity runs to completion and then returns to the
dispatcher. Note that it is the soft-instruction stream
described by the context structure, not the soft-
instruction itself, that becomes blocked.

A blocked context structure is unblocked by some
mechanism associated with completion of the con-
current asynchronous activity. This reactive event
logic and associated unblocking mechanism varies
widely. For instance, logic to react to event com-
pletion can be located directly in the dispatch loop,
handled by interrupt routines that interact with the
scheduler, or performed by special soft-instruction
streams that examine status locations associated with
event completion. The specific mechanism will usu-
ally depend on the lower layer mechanisms which
support external concurrency with respect to the sys-
tem component. For example, a hardware or soft-
ware interrupt routine could change the status of the
context structure and put the context structure on
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cs_adr               *fork_input;     /* ‘producer’ location in ring-buffer. */

CONTEXT              *cs;             /* Current Context Structure pointer.  */

typedef instruction  *ins_adr;        /* A pointer to a soft-instruction.    */

typedef void          instruction();  /* A soft-instruction is a void func.  */

cs_adr               *fork_output;    /* ’consumer’ location in ring-buffer. */

...
                                                /* bumping the table pointer.*/

}                                               /* address and execute it,   */

   cs       = null_cs.cs_flink;                 /* Get the head of the       */

   }                                            /* needed.                   */

            fork_output = fork_ring;            /* wrap the fork ring, if    */

   while(  fork_input != fork_output ) {        /* If anything is in the     */

for(;;) {                             /* Execute soft-instructions forever.  */

...

ins_adr               si_adr;         /* Current soft-instruction address.   */

   si_adr   = (ins_adr)(*cs->cs_next++);        /* ready list and fetch      */

   (*si_adr)( cs );                             /* the next soft-instruction */

fork_output = fork_input = fork_ring; /* Initialize fork ring.               */

       unblock( *fork_output++ );               /* fork ring, put it on      */

       if( fork_output >= END_RING )            /* the ready list and        */

Figure 0.9: A Simple Dispatcher

a dispatcher ready queue. Conversely, if comple-
tion status can be checked with minimal overhead,
it may be desirable for the dispatcher loop to di-
rectly check all required completion status at the end
of every soft-instruction. Whatever the mechanism,
when it is determined that the activity invoked by the
blocked soft-instruction stream has completed, the
corresponding context structure is placed in a state
that will again result in the dispatcher executing soft-
instructions on its behalf.

The range of possible reactive dispatch mecha-
nisms, and the small amount of code required to im-
plement alternatives, is one of the advantages of the
soft-instruction architecture. The dispatcher in many
ways resembles a single work-loop merging both the
work-loop of a hardware microcode instruction inter-
preter and the inner work-loop of an operating system
kernel. The dispatcher implementation is under com-
plete control of the system programmer and provides
a mechanism by which soft-instruction systems can
readily be made compatible with particular architec-
tures and environments into which a soft-instruction
system is inserted.

Context switching between concurrent soft-instruction
streams uses the same mechanism as that used to se-
quence through the soft-instructions in a single soft-
instruction stream. Discounting the overhead of the

scheduler, which typically only runs as the result of
a significant I/O event, context switching is accom-
plished by low-overhead operations such as changing
a single base register pointing to the current context
structure and then performing a table-directed jump
or call.

0.6.7 A Simple Dispatcher

Figure 0.9 shows a simple dispatcher implementa-
tion. This dispatcher code fragment is designed as-
suming hardware or software interrupt routines exe-
cute upon external asynchronous request completion.
The simplest assumption, given this implementation,
is that the interrupt routines are real hardware device
interrupts. In this case, the ‘driver’ routines that man-
age the device are simply special soft-instructions.

A ring buffer called the ‘fork ring’ provides a
producer-consumer style data structure used to com-
municate between the interrupt level and the soft-
instruction level. The fork ring is simply an array
of addresses. The fork ring contains addresses of
blocked context structures that need to be unblocked
because the external request on which they were wait-
ing has completed. In this implementation, it is as-
sumed that pointers are incremented atomically by
hardware without any need for interrupt masking,
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   if( cs == null_cs.cs_tail )

}

   old_tail->cs_flink  = cs;

   null_cs.cs_tail     = cs;

}

   cs                  = null_cs.cs_flink;

   null_cs.cs_flink    = cs->cs_flink;

}

...

                             /* on the dispatcher’s */

CONTEXT  *old_tail;          /* Context Structure   */

/*-- Called by the dispatcher’s work-loop.          */
unblock( CONTEXT  *cs )  {   /* Puts a ready        */

   old_tail  = null_cs.cs_tail;  /* ready queue.    */

        fork_input =  fork_ring;

                 /* of the dispatch queue.          */

CONTEXT   *cs;   /* by removing it from the head    */

block() {   /* Block the current Context Structure  */
/*-- Called from within a Control soft-instruction. */

/*-- Called by an interrupt routine to put the      */
/*   address of a Context Structure now ready to    */
/*   proceed into the ‘fork’ ring.                  */

add_context_to_ring( CONTEXT *cs ) {

       null_cs.cs_tail = NULL_CS:

   cs->cs_flink        = NULL_CS;

   *fork_input++ = cs;
    if( fork_input == END_RING )

Figure 0.10: Dispatcher Support Routines

which is true on many, but not all, hardware architec-
tures. The size of the fork ring in this implementa-
tion limits the degree of concurrency, although it can
clearly be very large.

If the fork ring contains anything, the dispatch loop
‘moves’ each context structure from the fork ring
to the dispatcher’s ready queue by simply chasing
the interrupt level’s fork input pointer with the
fork output pointer and calling unblock()
for every address it encounters. The unblock()
routine simply links the context structure onto the
end of the ready list. This implementation assumes
that a null context structure, null cs, anchors the
dispatcher ready list. Context structure element
cs flink is the forward link and pointer cs tail
in the null context block points to the end of the
ready list. The cs flink pointer of the last context
structure in the list points back to the null context
block.

When all newly ready context structures have been

unblocked, this implementation simply selects the
first context structure on the ready list as the soft-
instruction stream to execute. Element cs next
contains this stream’s high-level program counter
which points to the stream’s current location in the
control table. The address of the soft-instruction
implementation corresponding to the current control
table location is obtained and stored in si addr.
The stream’s program counter, cs next, is incre-
mented to point to the next table location. The soft-
instruction implementation is then called with the
address of the context structure itself passed as the
single argument to the soft-instruction implementa-
tion.

Given this dispatch loop, and a typical interrupt
routine design, the maximum penalty between acti-
vation of any 2 successive soft-instructions is deter-
mined by the number of external devices, each of
which may correspond to a single interrupt routine
execution, plus the time for the dispatch loop to call
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unblock() on each corresponding context struc-
ture. This is a fixed worst case overhead that will only
occur if all devices have outstanding requests which
complete in the course of the first soft-instruction
execution or the dispatcher’s unblock() loop. In
most implementations, external interrupts will not
be ‘rearmed’ on individual interrupting devices until
specific soft-instructions in the stream handling that
device perform I/O completion operations.

Figure 0.10 shows this implementation’sunblock()
routine and 2 other support routines of interest.
The block() routine is called internal to the im-
plementation of a control soft-instruction, such as
AWAIT IO COMPLETION. It simply removes the
current context structure from the head of the ready
list. When the soft-instruction containing this call
returns to the dispatcher, the next iteration of the dis-
patcher’s loop will no longer be able to advance the
soft-instruction stream corresponding to the blocked
context structure. When using hardware interrupts,
the address of the blocked context structure is of-
ten stored within a control block corresponding to
the device performing the pending operation. When
using software interrupts or signals, arguments can
usually be passed to the external service request.
These values are then passed back by the external
environment to the software interrupt or completion
routine associated with the asynchronous request. In
either case, the interrupt routine can trivially locate
the context structure corresponding to the event com-
pletion. The interrupt routine then puts the address of
this context structure into the fork ring using routine
add context to ring().

0.7 An Example

The soft-instruction program get string shown
in Figures 0.11 and 0.12 is similar to the Esterel
GET STRING program in Figure 0.3. Figure 0.11
contains the high-level ‘reactive’ code and Figure
0.12 contains the low-level ‘synchronous’ C code.
The equivalent of the Esterel program’s hidden
build call is included in the soft-instruction source.
The soft-instructionget string()() takes an ad-
ditional argument specifying maximum buffer size
and is also passed an I/O handle so it can be used
concurrently by any number of instruction streams,

that is, unlike the Esterel program the soft-instruction
version supports an arbitrary degree of internal com-
petitive concurrency within the component in which
it is located.

In this example, keywords defined by the software
architecture implementation are in upper case, while
lower-case names denote items in the particular
example program written using this architecture.
Names pertaining to external items defined by the
external system are in lower case with upper case
leading characters.

Routineget string()() is declaredREACTIVE.
Its arguments and automatic variables will be located
in context structure long-term stacks, not the conven-
tional C run-time stack. The soft-instructions shown
here, following Esterel, use 2 argument lists, the
first for arguments that can be modified by the soft-
instruction, often called in-out arguments, and the
second for arguments that cannot be modified by the
soft-instruction, often called in arguments. Both pa-
rameter lists are call-by-reference, providing a win-
dow of selective exposure between the reactive and
synchronous levels that can be treated as a merged
single level.

A REACTIVE routine contains only declarations,
soft-instructions, control-flow statements, and con-
currency control statements. Limited expressions
resulting in boolean values can be used in control-
flow conditionals. Except for iteration initialization,
assignment is not allowed within a REACTIVE rou-
tine.

In this example, soft-instruction init buffer
readies the buffer for I/O, after which a loop is en-
tered in which soft-instruction post read issues a
single-character I/O request to read the next charac-
ter into the buffer. After each asynchronous read re-
quest is issued, the AWAIT IO COMPLETION soft-
instruction blocks the instruction stream if the I/O
request has not yet completed. I/O request com-
pletion triggers a software interrupt routine which
calls add context to ring(), thus resuming
the execution of the soft-instruction stream. Soft-
instruction check read then checks for I/O er-
rors, maintains the buffer, and sets the done flag
if needed. Routine get string()() completes
normally when eithermax buf characters have been
received, a newline encountered, or a timeout occurs.
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                     (  int   io_handle,

                        int   max_buf    )

{

char         *p;

int           i;

   for(i=0;i<max_buf;i++) {

       post_read( p )( io_handle, sb );

       check_read( p, done )( sb );

       if( TRUE == done )   break;

//-----------------------------------------

{

}

                        char *buf,

Status_Block  sb;

REACTIVE   get_string(  int   done       )

   }

} ON_ERROR {

}

   ERROR_THROW( sb.ret_stat );

   init_buffer( p, done )( buf );

   get_string_io_err()( sb );

       AWAIT_IO_COMPLETION;

   if( sb.ret_stat == Timeout    )  RETURN;

   if( sb.ret_stat == Ctrl_Break )  RESTART( get_string );

INSTRUCTION( get_string_io_err )()( Status_Block sb )

Figure 0.11: get string – Reactive Level

The status variable in post read is the only
variable declared in the entire get string()()
program that uses any space on the C run-time stack.
Long-term data structure Status Block receives
I/O completion status when primitive Read Io
completes. The Status Block structure and
Read Io function are not part of the soft-instruction
architecture but are primitives of the implementation
in which get string()() is included. These
primitives are typical of an environment that sup-
ports asynchronous requests. I/O request completion
updates the status block and readies the correspond-
ing context structure. The Read Io call specifies a
timeout after which the I/O request completes with a
timeout status.

The ON ERROR statement specifies a reactive er-
ror handler for get string()(). TheON ERROR

block is effectively a reactive level interrupt rou-
tine, that is, a trap handler. In Figure 0.11, this
interrupt routine executes only 1 soft-instruction,
get string io err()(). Although in princi-
ple the logic included within the implementation of
this soft-instruction could be included directly within
the reactive level interrupt handler, it is placed in the
soft-instruction implementation to illustrate a custom
soft-instruction that alters context structure location
within the soft-instruction stream. Using the machine
instruction analogy, this soft-instruction corresponds
to the implementation of a privileged machine in-
struction, for instance, a return-from-interrupt or trap
instruction.

Theget string io err()() soft-instruction
source is included with the source for the REACTIVE
get string()() routine because an error han-
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//--------------------------------------

{

   done = FALSE;

   p    = buf;

  *p    = ’\0’;

}

//--------------------------------------

{

int  status;

}

//--------------------------------------

INSTRUCTION   check_read( char         *p,

                          int           done )

{

   if( ’\n’ == *p ) {

   } else {

                        ( Status_Block  sb   )

       p++;

   }

}

       done = TRUE;

       *p   = ’\0’;

INSTRUCTION   post_read( char         *p  )

                       ( int           io_handle,

   if( !sb.ret_stat ) ERROR_THROW( sb.ret_stat );

   if( !status ) ERROR_THROW( status );

INSTRUCTION   init_buffer( char  *p,

                           int    done  )

                         ( char  *buf   )

       done = FALSE;

                         Status_Block  sb )

   status = Read_Io( io_handle, p, 1, Timeout, &sb );

Figure 0.12: get string – Synchronous Soft-Instruction Level

dler can potentially be invoked at any point in
get string()() execution. Placing the source
in this location emphasizes the unique relationship
of the trap handler and its custom soft-instructions to
the code in which it is enabled. The ERROR THROW
statement propagates an error to the next high-
est ON ERROR handler. The RESTART statement
in Figure 0.11 causes the instruction stream to
restart execution of the get string()() func-
tion. The RETURN results in an immediate re-
turn from get string()(). In this case con-
trol transfers back to the reactive routine which
called get string()(). Reactive routines can
call other reactive routines, thus providing modular-
ity within the control table, that is, at the reactive
level. No such call is shown here.

Finally, soft-instructions from many instruction
streams may be executing in interleaved fashion, thus
providing an arbitrary degree of internal competitive
concurrency. By design, this concurrency is not
visible in the get string()() source.

0.8 Soft-Instruction Advantages

The soft-instruction architecture illustrated in the
example implementation has the following advan-
tages:� Separation of Concerns and Programming-

in-the-Large. The soft-instruction architecture
is based on a separation of concerns between
the reactive high-level and the synchronous in-
struction low-level. Concurrent programming,
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overall organization, and gross control flow are
treated as high-level programming-in-the-large
that reflects the deep structure of the overall pro-
gram. Low-level issues such as data structure
maintenance are programming-in-the-small is-
sues cleanly encapsulated within synchronous
soft-instructions. Logical concurrency results
from interleaving at the soft-instruction level
of granularity, rather than explicit P and V
semaphore coding.

A reactive subset of C is used for programming-
in-the-large. The reactive level is programmed
in familiar sequential procedure-oriented fash-
ion, rather than using a nonprocedural or non-
sequential approach, such as results from using
guarded commands or path expressions [And79]
[AS83]. Programming-in-the-small uses a mi-
nor variant of C, an ordinary systems program-
ming language.� Single Locus Concurrency. Concurrency is
explicitly visible when reading the source ‘from
the top down’. Concurrency is visible at one
program level, the reactive level, and can be
understood in a reading confined to the source
of all the reactive routines. There is no ‘hidden’
special-case concurrency lurking at the bottom
of long call chains initiated by arbitrary C
routines. Rather, it is clear that interleaving
can occur between every soft-instruction.

Soft-instruction program source is ‘structured’
with respect to concurrency. Control flow ob-
scured by gotos is considered problematic. If
so, hidden concurrency in many conventional
multithreading implementations is worse be-
cause nothing about the potential concurrency
event is necessarily visible at the point of invo-
cation in the program source and any subroutine
call can result in numerous concurrency events.

There is minimal low-level ‘bookkeeping’ code
in the high-level reactive code. This single locus
of concurrency information makes concurrency
explicit in the entire architecture of the program,
not just an implicit side effect of some system
call. Thus, it may be fair to say there is
no invisible ‘spaghetti concurrency’. To the
systems programmer, this means that all code

does not need to be read ‘bottom-up’, searching
for ‘buried’ concurrency constructs.

Critical sections protecting main memory
data structures have been subsumed by soft-
instructions. As with monitors, external device
or request serialization is typically performed
by blocking context structures on a wait queue
from which they are later unblocked. For ex-
ample, AWAIT IO COMPLETION could sim-
ply link the context structure onto the correct
device waiting list.

However, it is not the case that all critical
section and semaphore-based coding has been
irrevocably banished. The programmer can
easily construct any desired concurrent pro-
gramming soft-instructions, and can thus pro-
gram at the reactive level with concurrent pro-
gram constructs tailored to the internal con-
currency requirements of the system compo-
nent. For instance, custom soft-instructions
P()(resource) andV()(resource) can
readily be implemented. The effect of a criti-
cal section in the control table defined by these
soft-instructions would be to cause a sequence
of soft-instructions to be treated as atomic with
respect to some logical resource. Even in this
case, all concurrency remains visible at the re-
active control table level. The reactive level
in a real system is usually considerably smaller
than the synchronous level. In practice, the use
of 2 layers seems to significantly reduce both
the demand for explicit critical sections and the
amount of code that must be studied to under-
stand the concurrency aspects of the program.
One finds oneself studying a dozen pages of
code instead of hundreds. Quantifying the re-
duction in explicit concurrent programming and
the relative sizes of the reactive and synchronous
levels requires additional study.� No Concurrent C Programming. No explicit
concurrent programming is possible in the com-
piled C code, that is, in the synchronous soft-
instruction implementations. Potential concur-
rent programming bugs in the low-level C code
are thus eliminated. Deadlock requires mutual
exclusion, wait-and-hold, no preemption, and
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circular wait. Soft instructions prevent dead-
lock from occuring since there is no wait-and-
hold (strong) and there is preemption (weak)
in that any correctly written soft-instruction is
required to terminate.

The synchronous C code is more understand-
able without embedded concurrency primitives.
When writing C code for soft-instructions one
can concentrate on data structure bookkeeping.
Because each soft-instruction executes to com-
pletion, globals (such as hardware registers)
cannot be updated nondeterministically during
the same ‘instant’, that is, one can think of
the soft-instructions as executing atomically at
discrete points in time during which ‘invisible’
events cannot happen.� Context-switch. Context switch is feather-
weight, with no copying of register sets re-
quired. Creation of a concurrent service thread
is also very low overhead. Context switch over-
head is less than for a system using lightweight
concurrency, and significantly less than the
heavyweight overhead found in a general pur-
pose operating system. Since soft-instructions
run to completion, context does not need to
be saved upon featherweight context switch be-
cause context is saved ‘on-the-fly’ in the current
context structure.� Stack Space. An entire soft-instruction pro-
gram, no matter what the degree of internal
concurrency, requires only 1 conventional run-
time stack. Short term variables all reuse this
same short term stack, while long term variables
use the bounded size stacks embedded in con-
text structures. If soft-instruction implemen-
tations never nest, that is, never call another
soft-instruction implementation or recursively
call themselves, maximum short-term run-time
stack depth is simply the deepest conventional
stack usage of any single soft-instruction imple-
mentation.� Reusability. Because soft-instructions have
arguments, soft-instructions are general routines
that can be reused. They are not statically
bound to specific transaction or object block
elements. Thus, as with a number of threaded
environments, application development results

in the evolution of a special application-oriented
‘vocabulary’ at the reactive level.

This soft-instruction architecture provides practi-
cal advantages to the practicing systems programmer.
The soft-instruction architecture does not preclude
being used in conjunction with other conventional
techniques and can be used within components of
existing systems. Because the reactive dispatcher
is small enough to be routinely customized, the ar-
chitecture leaves the system programmer in control
at all levels, unlike approaches which preempt the
programmer’s design prerogatives [SW92].

The synchronicity model adopted by soft-instructions
is weaker than the strong synchronicity model as-
sumed by synchronous/reactive languages such as
Esterel, but it is intuitive to systems programmers
familiar with hardware instruction sets. Since sys-
tems programmers are responsible for ‘disguising’
the low-level machine hardware, they must be inti-
mately familiar with low-level hardware instruction
set details. Pragmatic advantages result from using
familiar cognitive models at multiple programming
levels.

0.9 Related Work

Some historical and current work of interest is
briefly described in this section. Variations of the
soft-instruction architecture are perhaps among the
oldest architectures used for concurrent real-time
programming. The generic features of the abstract
architecture, however, do not appear widely appreci-
ated. Soft-instruction techniques have not been or-
ganized, analyzed, and presented so that the features
and advantages of the generic software architecture
are clear. General purpose toolsets are not available
supporting concurrent systems programming using
soft-instructions.

0.9.1 Historical Work

Systems implemented using techniques similar to
those described here have usually suffered from low-
level ad-hoc connotations often confounded with
low-level assembler implementation concerns. Real-
time cyclic executives, for example, have been imple-
mented essentially using soft-instruction techniques.
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Each such system has developed its own custom reac-
tive language, table compiler/assembler, and means
for the synchronous instructions to interact with the
reactive layer.

The advantages of ‘traditional’ soft-instruction fla-
vored cyclic executives, as used in real-time avionics,
have previously been enumerated and contrasted with
conventional multithreading techniques using pre-
emptive scheduling of lightweight threads [Mac80]
[Gla83] [Sha86b] [BS86]. MacLaren, in discussing
one such system, notes that ‘the efficiency of a cyclic
executive derives from its minimal scheduling prop-
erty, and from the very small implementation cost’
[Mac80].

Shaw classifies real-time software as either
based on concurrent interacting processes, or based
on table-driven soft-instruction style approaches,
which he terms slice-based following that usage
in BBN’s Pluribus IMP Arpanet communication
processor [OCK+75] [Sha86b]. Shaw notes that
soft-instruction equivalents have been called slices,
chunks, and strips. He contrasts the two real-time
software architectures, and calls for research in in-
cluding time as a first class programming object. Cur-
rent real-time and concurrent programming research
tends to emphasize replacing, rather than moderniz-
ing, soft-instruction related approaches.

Baker and Scallon describe a family of systems
implemented at Boeing using a soft-instruction ar-
chitecture [BS86]. They note that its lineage in-
cludes the executives of the 1965 Apollo Range In-
strumentation Ship and the 1970 Safeguard ballistic
missile defense effort. They point out that a soft-
instruction architecture provides a high-level virtual
machine language, reduces the need for explicit syn-
chronization, and provides the benefits of splitting
the system into 2 levels, one intended for high-level
programming, and one for low-level programming.
They describe a member of this family as follows:

‘Rex’s software architecture is character-
ized by its view of the executive as an in-
dependently programmable machine that
executes application procedures written in
conventional programming languages as
if they were individual instructions of a
higher level program.

... Programming in the large is concerned
with producing a program in the machine
language of the executive, while program-
ming in the small is concerned with ex-
tending its instruction set.

... Application procedures are coded in a
conventional programming language and
compiled into machine code of a physical
machine. A plan for the management
of these procedures’ executions to form a
system is expressed in a separate system-
specification language, and is separately
translated into tables (agendas) used by
the Rex virtual machine. These tables
are in effect a high-level machine code
interpreted by the executive’ [BS86].

They claim the resulting system provides a vir-
tual machine for the system specification, rather than
simply a virtual machine on which the application
program executes. Baker and Scallon trace the ori-
gins of these systems at least back to the AgPrep sys-
tem developed by DBA Systems for the Apollo range
ship [Joh70]. This system apparently functioned as
a special linker that processed tables of entry points
and scheduling requirements called agendas.

The soft-instruction approach has many similari-
ties to the threaded-code architectures used by some
Microsoft applications and languages such as Forth
and UCSD Pascal [Kog82]. These systems are usu-
ally single threaded, that is, have a single context
block, and thus concurrent programming is not inte-
gral to the basic threading system. Threaded-code is
often used as an implementation technique in mem-
ory constrained environments. The size of the com-
piled control table, and thus the resulting executable,
depends on the control table data structure design.
Well designed control tables can take considerably
less space than the equivalent assembler code. Thus,
compilers generating threaded-code were originally
introduced to implement high-level languages, such
as Fortran, on small address-space minicomputers
where program size was critical [Bel73] [Bre78].
Besides not directly supporting concurrent program-
ming, most existing threaded-code architectures im-
plement a rather fixed set of low-level primitives,
with the bulk of the program occuring at the control
table level.
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Allworth provides a short description of real-time
threaded-code soft-instruction architectures with
only a single high-level program counter [All81].
He notes the flexibility and space savings provided
by what is now called token-threaded code and sim-
ply calls the dispatcher an ‘interpreter’. Token-
threaded code compresses control tables by using in-
dices smaller than the machine address size to access
an intermediate table. Allworth notes the analogy
with machine hardware instructions:

‘A compiler translates... a high-level-
language program into an equivalent ma-
chine code program. ... hardware reads
an instruction, interprets the instruction to
mean that it must carry out a certain ac-
tion, then executes that action. A piece
of software that acts in this way, reading,
interpreting and executing a sequence of
coded instructions, is called an interpreter.

... The action code address table contains
the value of the start location of the pro-
gram code that implements each possible
action... Each action is given an instruc-
tion code... The instruction pointer indi-
cates which code is to be interpreted next.
On each cycle of the interpreter it is in-
cremented to point to the next code in se-
quence. Non-sequential jumps within the
interpreted code can be implemented by al-
lowing action programs to manipulate the
instruction pointer’ [All81].

The view of non-concurrent programs as abstract
layers of virtual instructions is an old one. For
instance, Dijkstra writes:

‘I want to view the main program as ex-
ecuted by its own, dedicated machine,
equipped with the adequate instruction
repertoire operating on the adequate vari-
ables and sequenced under control of its
own instruction counter, in order that my
main program would solve my problem if
I had such a machine. I want to view it
that way, because it stresses the fact that
the correctness of the main program can be
discussed and established regardless of the
availability of this (probably still virtual)
machine....

... this ideal machine will turn out not to
exist, so our next task – structurally similar
to the original one – is to program the sim-
ulation of the ‘upper’ machine. ... we have
to decide upon data structures to provide
for the state space of the upper machine;
furthermore we have to make a bunch of
algorithms, each of them providing an im-
plementation of an instruction assumed for
the order code of the upper machine. Fi-
nally, the ‘lower’ machine may have a set
of private variables, introduced for its own
benefit and completely outside the scope
of the upper machine... until finally we
have a program that can be executed by
our hardware’ [DDH72].

Perhaps because Dijkstra is explaining layered ar-
chitecture and step-wise design in a book on struc-
tured programming, he does not propose literally im-
plementing such a multiple-level instruction inter-
preter, but rather is motivating an abstract model of
structured programming languages.

Early operating systems often treated software im-
plemented instructions similar to hardware instruc-
tions with respect to sequencing and concurrency.
Operating system services were considered simply
special assembler instructions implemented in soft-
ware instead of hardware, that is, instructions in the
program instruction stream to be executed interpre-
tively by the operating system. Purser and Jennings
summarize this viewpoint:

‘The basic instruction code of the com-
puter is frequently supplemented with vir-
tual instructions (VIs). These are subrou-
tines which are available for performing
certain critical operations: they are coded
as such for the usual reason of writing a
subroutine (saving repetition of code) but
also, more importantly, to incorporate them
into the executive. VIs perform operations
on executive and other data on behalf of
processes, with the result that processes do
not have to operate on such data (including
their own PCBs) directly. Many VIs can
be constructed...

... In general, therefore, a VI is not en-
tered in parallel and hence is non-reentrant’
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[PJ75].
Mixed hardware/software instruction stream inter-

pretation, with custom user written routines extend-
ing the machine instruction set, is an old idea [Bra82].
Such approaches are often seen today on RISC archi-
tectures, for instance PALcode on the DEC Alphas
provides a mechanism for operating system program-
mers to develop privileged ‘hardware’ instructions
specific to the support of their system. Similarly, in
many CISC processor families, software instruction
execution has been used to provide compatibility be-
tween low-end and high-end members of a processor
family.

0.9.2 Current Work

Huizing and Gerth have proposed a 2 level seman-
tics with separate modularity and causality levels that
is suggestive of the 2 level soft-instruction architec-
ture. In their semantics ‘global’ time is more abstract
than ‘local’ time. This proposal is of special interest
as it is intended to overcome problems in the seman-
tics of Esterel [HG91].

Discrete-event simulations often use architectures
similar to soft-instructions but without direct real-
time application. These environments are usually not
intended for development of large system programs.
An example of such a programming environment is
Reactive-C, not to be confused with the RC described
earlier in this paper [Su90].

There have been efforts in the debugging commu-
nity to analyze sequential programs and determine
information similar to that needed to automatically
generate soft-instructions [Wei82]. These program
slicing algorithms are currently impractical for real
programs [GL91] [Hu93].

In parallel and distributed programming research,
coordination frameworks support subroutine-level
parallelism [Pan93]. Examples of such systems are
Parallel Virtual Machine (PVM), STRAND88, Pro-
gram Composition Notation (PCN), and Express.
These systems have many soft-instruction character-
istics:

‘The programmer codes subroutines in
some standard programming language...
the tool automatically generates a source
code ‘wrapper’ for each subroutine, as well

as a driver... The coordination language is
not really ‘compiled’; rather, it is trans-
formed into calls to runtime libraries in
a preprocessing step before compilation’
[Pan93].

These systems are intended for writing distributed
applications on top of existing operating systems.
The level of granularity of these systems is often not
appropriate for systems programming.

A large amount of work has been performed on
multithreaded runtimes and parallel programming
environments for massively parallel machines. A
system of particular interest is Cilk, a multithread-
ing parallel programming C run-time influenced by
dataflow research [BJK+95]. It is used to program
parallel MIMD machines for a particular class of
computationally intensive distributed computations.
Cilk provides high-performance cooperative concur-
rency in a distributed environment.

As with soft-instruction architectures, individual
Cilk routines are atomic units of computation which
always run to completion. Cilk calls such routines
threads. All Cilk threads participating in a given
computation on a single machine share the same stack
locations and return to a common scheduling and dis-
patching loop. No lightweight context switching is
required as context is explicitly saved ‘on-the-fly’ in
data structures called closures. A unique closure cor-
responds to each thread. Closures resemble custom
context structures created dynamically before each
thread’s activation and deleted upon thread comple-
tion.

A Cilk thread’s argument list effectively can spec-
ify guards corresponding to locations within its clo-
sure. When all arguments become valid, the guard
fires, closure arguments are copied to automatic vari-
ables, and the thread executes, processing the ‘argu-
ments’. Cilk threads cannot return values to their
parents. Rather, the programmer uses explicit calls
to place data into other closures using descriptors in-
dicating specific closure locations. Cilk calls such
descriptors continuations. The parent thread passes
its children all needed continuations.

This programming model leads to an explicit con-
tinuation style of programming in which a parent
thread never waits for a child, but rather explic-
itly spawns a successor thread which blocks until
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all its arguments are provided by the children of
the first thread. Programming in this style raises
programming-in-the-large issues and can result in a
‘chained’ style of programming with a sense of high-
level control that can be characterized by ‘next do’
and ‘after goto’ control logic.

The applicability of this model is described by its
implementors as follows:

‘Although Cilk offers performance guar-
antees, its current capabilities are limited,
and programmers find its explicit continu-
ation passing style to be onerous. Cilk is
good at expressing and executing dynamic,
synchronous, tree-like, MIMD computa-
tions, but it is not yet ideal for more tra-
ditional parallel applications that can be
programmed effectively in, for example,
a message-passing data-parallel, or single-
threaded shared-memory style’ [BJK+95].

Cilk is of interest as its developers note and study
the performance advantages resulting from various
soft-instruction related techniques, for instance, the
use of atomic routines, a single scheduler/dispatch
loop, and featherweight context switch provided by
a thread model based on a linguistic abstraction.
Through studied in a different context, many of the
motivations for such techniques are equally applica-
ble to concurrent systems programming.

Also of direct relevance are the observations noting
that, although well suited for the class of computa-
tions for which it is intended, the programming style
is questionable for general purpose programming-in-
the-large. Such concerns are similar to those motivat-
ing the explicit reactive level of the soft-instruction
architecture.

0.10 Conclusions

The soft-instructionsoftware architecture has been
described. This architecture supports implementa-
tion of general purpose concurrent system software.
Soft-instructions provide many of the benefits of
the synchronous/reactive languages that assume the
strong synchrony hypothesis, while providing pro-
gram source that is easier to read, comprehend, and
maintain. In addition, the soft-instruction architec-
ture can coexist with existing systems, can flexibly

adapt to many environments, and has many similari-
ties to the hardware instruction set architectures with
which systems programmers are very familiar.
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