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1. Introduction 11 IntroductionThe problem of maximum-likelihood (ML) estimation of a mixture of densities is animportant and well known learning problem [4]. ML estimators are asymptotically unbiasedand are a basic tool for other more complicated problems such as clustering and learninghidden Markov models. We investigate the ML-estimation problem when the densitiesare given and only the mixture proportions are unknown. That is, we assume that weare given a set of distributions D1; : : : ; DN over some domain, together with a sample ofpoints from this domain. Our goal is to �nd the mixture coe�cients v1; : : : ; vN (vi � 0and P vi = 1) which maximize (approximately) the likelihood of the sample under themixture distribution P viDi. Most of the common techniques to solve this problem arebased on either gradient ascent iterative schemes [9] or on the Expectation Maximization(EM) algorithm for parameter estimation from incomplete data [3, 14].We derive the standard iterative algorithms for the unsupervised mixture proportionsestimation problem by placing them in a common hill-climbing framework. This frameworkis analogous to the one developed by Kivinen and Warmuth [6] for supervised on-linelearning. Our goal is to maximize the log likelihood of the observations as a function ofthe mixture vector w, denoted by LogLike(w). This is computationally hard and requiresiterative methods. In the tth iteration we approximate the loglikelihood LogLike(wt+1) atthe new mixture vector wt+1 by LogLike(wt) +rLogLike(wt) � (wt+1 � wt), which is theTaylor expansion of the loglikelihood around the old mixture vector wt. It is now easy tomaximize this approximated loglikelihood. However the approximation degrades the furtherwe move from the old mixture vector wt+1. Thus we subtract a penalty term d(wt+1;wt)which is a non-negative function measuring the distance between the new and old mixturevector. This penalty term keeps wt+1 close to wt as measured by the distance function d.In summary we are maximizing the functionF (wt+1) = � (LogLike(wt) +rLogLike(wt) � (wt+1 �wt))� d(wt+1;wt) :The relative importance between the penalty term and increasing the log-likelihood isgoverned by the positive parameter �, called the learning rate.Maximizing the function F with di�erent distance functions leads to various iterativeupdate rules. Using the square distance gives the update rule of the gradient projectionalgorithm and the relative entropy distance gives a new update called the exponentiatedgradient update (EG�). By using a second order Taylor expansion of the relative entropywe get the �2 distance function. When this distance function is used and � is set to one, weget the same update as an iteration of the EM algorithm for the simple mixture estimationproblem considered in this paper. Our experimental evidence suggests that setting � > 1results in a more e�ective update. These results agree with the in�nitesimal analysis in thelimit of n!1 based on a stochastic approximation approach [12, 13, 14].For the exponentiated gradient algorithm, we are able to prove rigorous polynomialbounds on the number of iterations needed to get an arbitrarily good ML-estimator. How-ever, this result assumes that there is a positive lower bound on the probability of eachsample point under each of the given distributions. When no such lower bound exists (i.e.,when some point has zero or near-zero probability under one of the distributions), we areable to prove similar but weaker bounds for a modi�ed version of EG�.We obtain our global convergence results by viewing the mixture estimation problem asan on-line learning problem. Each iteration becomes a trial where the algorithm is charged a



2 2. De�nitions and Problem Statement\loss" of�LogLike(wt), so minimizing the loss corresponds to maximizing the log-likelihood.Note that the ML solution will also have a loss on each trial. By bounding the extra loss ofthe algorithm over the loss incurred by the ML solution u over a sequence of iterations, wecan show that at least one of the wt vectors produced by the algorithm is reasonably good.Note that these results show convergence in log-likelihood rather than convergence of themixture vector to the ML solution. Furthermore, the standard convergence results usuallyapply only when the algorithm is started with a vector near the ML solution, whereas ourresults show global convergence.The derivations of the learning rules using the above framework are simple and canreadily be applied to other settings. They are similar to previous derivations found in theliterature [14, 10].2 De�nitions and Problem StatementLet R represent the real numbers. Let log denote the base 2 logarithm and let ln denotethe natural logarithm. We say a vector v = (v1; :::; vN) 2 RN is a probability vector if,8i : vi � 0 and Pni=1 vi = 1. The vector (1=N; : : :; 1=N) is called the uniform probabilityvector. We use the following distance functions between probability vectors u and v:dEUC(ujjv) def= 12 jjwt+1 �wtjj22 = 12 NXi=1(ui � vi)2dRE(ujjv) def= NXi=1 ui ln uivi andd�2(ujjv) def= 12 NXi=1 (ui � vi)2vi :All three distance functions are non-negative and zero i� u = v. The �rst one is half of thesquare of the Euclidean length of the vector u� v. The second one is the standard relativeentropy and the last one is a second order Taylor approximation (at u = v) of the relativeentropy called the �2-distance. These distance functions are used in Section 3 to derive theupdates used in this paper (See discussion at the end of Section 3 and Figure 3.1).We consider the following maximum-likelihood mixture estimation problem:Input: A P �N matrix X of non-negative real numbers with rows x1 through xP .Goal: Find a probability vector w that maximizes the log-likelihood,LogLike(w) = 1P PXp=1 ln NXi=1 xp;iwi! = 1P PXp=1 ln(xp �w) ;where xp is the pth row of X .The maximizers of the log-likelihood are called the maximum likelihood (ML) solutions.Clearly there might be more than one solution and throughout the paper u is used to denotean arbitrary ML solution and we call u \the ML solution." As there is no straightforwardmethod for computing an ML solution, iterative methods which compute a sequence,w1; : : : ;wt; : : :, converging to an ML solution are popular.



3. The Updates 3It is most natural to view each row xp of X as representing an observation and theith column of X as containing the probability of each observation under some knowndistribution Di. The entry xp;i is then the probability under distribution Di of the pthobservation, and, for any probability vector v, xp � v is the probability under mixture v ofthe pth observation under the mixture distribution PNi=1 viDi. The ML solution u gives theproportions or weightings of the Di's that maximize the log-likelihood of the observations.We use rL(wt) to represent the gradient of the log-likelihood function at probabilityvector wt, rL(wt) def=  @LogLike(wt)@wt;1 ; : : : ; @LogLike(wt)@wt;N != 0@ 1P PXp=1 xp;1xp �wt ; : : : ; 1P PXp=1 xp;Nxp �wt1A :3 The UpdatesAssume that at iteration t we have the current probability vector wt and are trying to�nd a better vector wt+1. Kivinen and Warmuth [6] study the supervised on-line settingwhere the vector wt summarizes the learning done in previous iterations1 and that learningcan be preserved by choosing a wt+1 that is \close" to wt. Their method �nds a new vectorwt+1 that (approximately) maximizes the following function:F̂ (wt+1) = �LogLike(wt+1)� d(wt+1;wt); � > 0 : (3.1)The penalty term, �d(wt+1;wt), tends to keep wt+1 close to wt (with respect to thedistance measure d) and the relative importance between the penalty term and maximizingthe log-likelihood on the current iteration is governed by the positive parameter �, calledthe learning rate. A large learning rate means that maximizing the likelihood for the currentrow is emphasized while a small learning rate leads to an update which keeps wt+1 closeto wt. Since our iterative updates will be based on the local conditions at the start vectorwt, the penalty term and the learning rate measure how rapidly these local conditions areexpected to change as we move away from wt. Unfortunately, �nding a wt+1 maximizingF̂ is computationally hard because rL(wt+1), the gradient of the log-likelihood at wt+1,is unknown. Kivinen and Warmuth bypass this di�culty by approximating rL(wt+1) byrL(wt) and thus are really maximizing the function F from the introduction.To maximize the function F from the introduction we add a Lagrange multiplier for theconstraint that the components of wt+1 sum to one and set the N partial derivatives tozero. We also note that LogLike(wt) +rL(wt) �wt is independent of wt+1, so maximizingF subject to the constraint is equivalent to maximizing~F (wt+1; 
) = �rL(wt) �wt+1 � d(wt+1;wt) + 
  NXi=1wt+1;i � 1! ; � > 0 :1In the on-line setting each iteration typically uses only a single observation. It is therefore desirableto preserve information about the previous observations while improving the likelihood of the currentobservation.



4 3. The UpdatesThis is done by setting the N partial derivatives to zero and by enforcing the additionalconstraint. So our framework consist of solving the following N + 1 equations for the Ncoe�cients of wt+1:@ ~F (wt+1; 
)@wt+1;i = �rL(wt)i � @d(wt+1;wt)@wt+1;i + 
 = 0 (3.2)and NXi=1wt+1;i = 1 : (3.3)We now derive all updates used in this paper by plugging di�erent distance functionsinto the above framework. For the standard gradient projection update (which we abbreviateGP�) we use the distance function dEUC(wt+1jjwt) = 12 jjwt+1 � wtjj22: In this case theequations (3.2) become �rL(wt)i � (wt+1;i � wt;i) + 
 = 0 :By summing the above N equalities and enforcing the constraints that PNi=1 wt;i = 1 andPNi=1 wt+1;i = 1 we get an expression for 
 and the updatewt+1;i = wt;i + � rL(wt)i � 1N NXi=1rL(wt)i! : (3:4)If we use the relative entropy dRE(wt+1jjwt) =Pni=1wt+1;i log(wt+1;i=wt;i) as a distancefunction then the equations (3.2) become�rL(wt)i � (ln wt+1;iwt;i + 1) + 
 = 0 :By solving for the wt+1;i we havewt+1;i = wt;ie�rL(wt)i+
�1 :Enforcing the additional constraint (3.3) gives a new update which we call exponentiatedgradient2 (EG�) update: wt+1;i = wt;ie�rL(wt)iPNj=1 wt;je�rL(wt)j : (3:5)The framework can also be used to motivate the Expectation Maximization algorithm (EM)which is another algorithm commonly used for maximum likelihood estimation problems.For this we use the �2 (Chi-squared) distance measure d�2(wt+1jjwt) = 12PNi=1(wt+1;i �wt;i)2=wt;i. Now the equations (3.2) become�rL(wt)i �  wt+1;iwt;i � 1!+ 
 = 0 :2A similar update for the case of linear regression was �rst given by Kivinen and Warmuth [6].



3. The Updates 5By solving for the wt+1;i we getwt+1;i = �wt;irL(wt)i + wt;i(
 + 1) :We can now sum the above N equalities and use the constraints that PNi=1wt;i = 1and PNi=1wt+1;i = 1. Our particular mixture estimation problem has the invariant3PNi=1 wt;irL(wt)i = 1. Thus 
 = �� and we obtain the updatewt+1;i = wt;i (� (rL(wt)i � 1) + 1) : (3:6)We call Equation (3.6) the EM�-update because when � = 1 this gives the standardExpectation-Maximization (EM) update, wt+1;i = wt;irL(wt)i, for the problem consideredin this paper. The EM1 update can be motivated by the likelihood equations, and thegeneralization to arbitrary � was studied by Peters and Walker [12, 13].Since the �2 distance approximates the relative entropy it may not be surprising thatthe EM�-update (3.6) also approximates the EG�-update (3.5). We �rst rewrite the ex-ponentiated gradient update by dividing the numerator and denominator by e� and thenreplace the exponential function ez by its �rst order lower bound 1 + z:wt+1;i = wt;ie�(rL(wt)i�1)PNj=1 wt;je�(rL(wt)j�1)� wt;i(1 + �(rL(wt)i � 1))PNj=1 wt;j(1 + �(rL(wt)j � 1))= wt;i(�(rL(wt)i � 1) + 1) :Thus the EM�-update can be viewed as a �rst order approximation of the EG�-update. Theapproximation is accurate when the exponents �(rL(wt)j � 1) are small. The advantageof the EM�-update is that it is computationally cheaper as it avoids the exponentiation.However the EG�-update is easier to analyze. Our experiments indicate that these twoupdate rules tend to approximate each other well.Each of the di�erent distance functions leads to a di�erent bias that is encoded in theupdate. In Figure 3.1 we plot the three distance functions dEUC(wt+1jjwt), dRE(wt+1jjwt)and d�2(wt+1jjwt) as a function of wt+1 for the three dimensional problem (with a triangleas the feasible region for wt+1). The contour lines for the distance function dEUC are circlesand the contour lines for d�2 are ellipses that become more degenerate as the old weightvector wt approaches the boundary of the feasible region. The contour lines for dRE aredeformed ellipses that bend towards the vertices of the triangular feasible region.One can also get an update by re-parameterizing the probability vectors and doingunconstrained gradient ascent in the new parameter space. We use the standard exponentialparameterization [11]: wi = eri=PNj=1 erj and maximize the functionParLogLike(r) = LogLike(w(r)):(Note that the w's are probability vectors whereas the corresponding vectors r are uncon-strained and lie in RN .) For this parameterization the gradient descent update becomesrt+1;i = rt;i + �@ParLogLike(rt)@rt;i= rt;i + �wt;i(rL(wt)i � 1) :3PNi=1 wt;irL(wt)i =PNi=1 1P PPp=1 wt;ixp;ixp�wt = 1P PPp=1 wt�xpxp �wt = 1.



6 3. The Updates

Figure 3.1: The �gure contains plots of the three distance functionsdEUC(wt+1jjwt) (�rst row), dRE(wt+1jjwt) (second row) and d�2(wt+1jjwt) (thirdrow) as a function of wt+1. The dimension is three and the non-negativity con-straint on the three components of wt+1 plus the fact that the component mustsum to one result in a triangle as the feasible region for wt+1. The corners of thetriangle correspond to the vector wt+1 = (0; 0; 1) at the top vertex and vectors(1,0,0) and (0,1,0) at the left and right bottom vertices. The plots are contourplots of the distance function while looking at the triangle from above. The leftcolumn gives the distance from the uniform vector wt = (1=3; 1=3; 1=3) which isat the center of the triangle and the right column the distance from the point (0.3,0.2, 0.5). Note that contour lines may represent di�erent distances in di�erentdiagrams.This update can also be derived in our framework by approximately minimizing a functioncorresponding to F̂ (Equation (3.1)):Ĝ(rt+1) = �ParLogLike(rt+1)� d(rt+1; rt); � > 0 :For this minimization we use d(rt+1; rt) = 12 jjrt+1� rtjj22 as a distance function and approx-imate the gradient at rt+1 with the gradient at rt.All of the above update rules can be turned into algorithms by specifying the learningrate � to use in each iteration. The EM algorithm uses a �xed scheduling, where the samelearning rate (namely, � = 1) is used in each iteration. Another possibility is to anneal the



4. Convergence and Progress 7learning rate. At �rst, a high learning rate is used to quickly approach the ML solution.Later iterations use a lower learning rate to aid convergence.The EM algorithm is in fact a limiting case of a more general approach usually calledGeneralized EM (GEM). Neal and Hinton [10] considered one variant of GEMwhich involvesexamining only a portion of the observation matrix X on each iteration. In general, anysubset of the observations could be used, and the algorithm which considers a di�erentrow (observation) on each iteration is the natural analogue of on-line algorithms in thesupervised case.Note that in the above derivations of the updates we ignored the non-negativity con-straints on the new weights wt+1;i. For the EG� update and for the gradient descentupdate with exponential parameterization the non-negativity constraints follow from thenon-negativity of the previous weights wt;i. However for EM� and GP� the learning rate� has to be su�ciently small to assure the non-negativity of the wt+1;i. In particular, thestandard EM algorithm (using � = 1) has the property that the non-negativity constraintsare always preserved.4 Convergence and ProgressIn this section we discuss the convergence properties of the algorithms. Using standardmethods, as in [9], it can be shown that, given certain assumptions, all updates described inthe previous section converge locally to an optimal ML solution, provided that the currentmixture vector wt is close to the ML solution. Moreover, using similar techniques, as in [13,14], it can be shown that it is better to use a learning rate � > 1 rather than the rate� = 1. This implies that the EM algorithm is not optimal for this family of update rules.This analysis is supported by the experimental results presented in the next section, wherechoosing � > 1 leads to faster convergence, even when the current mixture vector is farfrom the ML solution.These methods su�er from a number of limitations. For instance, the proof of conver-gence is only valid in a small neighborhood of the solution. In this section, we presenta di�erent technique for proving the global convergence of the EG� update and (undernon-negativity assumptions) the GP� updates.If an update is derived with a distance function d then it is natural to analyze howfast the mixture vector moves towards an (unknown) ML solution u as measured by thisdistance function. More precisely, we use the same distance function that motivates theupdate as a potential function to obtain worst-case cumulative loss bounds over sequencesof updates (similar to the methods applied to the supervised case [6]). The natural loss ofa mixture vector wt for our problem is �LogLike(wt). Note that this loss is unboundedsince the likelihood for wt is zero when there is some xp for which wt � xp = 0. In thesupervised case, one can obtain �rm worst-case loss bounds with respect to the square lossfor various updates by analyzing the progress [6]. But the square loss is bounded and it isnot surprising that it is much harder to obtain strong loss bounds for our (unbounded loss)unsupervised setting. Nevertheless this type of analysis can give insight on how an iterativealgorithm moves towards the ML solution and on the relationships between di�erent updaterules. We obtained some reasonably good bounds for the GP� and EG� updates.We deal with the unboundedness of the loss function by initially assuming that thesmallest entry in the matrix is bounded away from zero. Thus, for all p and i we assume



8 4. Convergence and Progressxp;i � r > 0. Below, we give a proof bounding the average additional loss during T trialsof the algorithm EG� over the loss of the ML solution by1rs lnN2T :Thus, by picking T = lnN=2�2r2 we can guarantee that at least one of the wt's computedby algorithm EG� has loss at most � larger than the ML solution.In contrast, we have been able to prove a similar bound for the GP� update4 showingthat the average additional loss during T trials of the algorithm GP� above the loss of theML solution is at most 1rs2NT :However, the analysis assumes that the GP� algorithm does not produce mixture vectorswith negative components. This assumption may not hold generally since the update of theGP� algorithm is additive. We have been unable to prove that the � used to obtain theabove bound avoids this di�culty.Even though the above bounds are weak in that they grow with 1=r, they bring out acrucial di�erence between the exponentiated gradient and gradient descent family, namely,the logarithmic growth (in terms of N) of the additional loss bound of the former versus thesquare-root growth of the latter family. Similar observations were made in the supervisedsetting [6, 7].We also show below how to obtain bounds when the entries in the matrix have zero-valued components. We essentially average the data matrix with a uniform matrix (this�-Baysian averaging was also used in [1]) and then use the averaged matrix to run ouralgorithm. One can show that the ML solution for the averaged matrix is not too far (inloss) away from the ML solution of the original matrix, but the averaged matrix has theadvantage of having entries bounded away from zero.4.1 Convergence proofs for exponentiated-gradient algorithmsRecall that the EG� algorithm receives a (�xed) set of P instances, x1; : : : ;xP , eachin RN with positive components. At each iteration, the algorithm produces a mixture orprobability vector wt 2 RN and su�ers a loss related to the log-likelihood of the set underthe algorithm's mixture. The algorithm then updates wt.The loss su�ered by the algorithm at time t is� 1P PXp=1 ln(wt � xp);while the loss of the (unknown) ML solution u is� 1P PXp=1 ln(u � xp):4This algorithm's performance was analyzed in the PAC model in [1].



4. Convergence and Progress 9We are interested in bounding the (cumulative) di�erence between the loss of the algorithmand the loss of the ML solution.We assume that maxi xt;i = 1 for all p. We make this assumption without loss ofgenerality since multiplying an instance xp by some constant simply adds a constant toboth losses, leaving their di�erence unchanged. Put another way, the assumed lower boundr on xp;i used in Theorem 1 (below) can be viewed as a lower bound on the ratio of thesmallest to largest component of any instance xp.The EG� algorithm uses the update rule:wt+1;i = wt;i exp � �PPPp=1 xp;iwt�xp�Ztwhere � > 0 is the learning rate, and Zt is the normalizationZt = NXi=1wt;i exp0@ �P PXp=1 xp;iwt � xp1A :Theorem 1: Let u 2 RN be a probability vector, and let x1; : : : ;xP be a sequence ofinstances with xp;i � r > 0 for all i; p, and maxi xp;i = 1 for all p. For � > 0, EG�produces a sequence of probability vectors w1; : : : ;wT such that� TXt=1 1P PXp=1 ln(wt � xp) � �TP PXp=1 ln(u � xp) + dRE(ujjw1)� + �T8r2 : (4:1)Furthermore, if w1 is chosen to be the uniform probability vector, and we set� = 2rs2 lnNTthen � TXt=1 1P PXp=1 ln(wt � xp) � �TP PXp=1 ln(u � xp) + p2T lnN2r : (4.2)Proof: We have thatdRE(ujjwt+1)� dRE(ujjwt) = �Xi ui ln(wt+1;i=wt;i)= �Xi ui0@� lnZt + �P PXp=1 xp;iwt � xp1A= � �P PXp=1 u � xpwt � xp + lnZt : (4.3)We now work on bounding Zt.Zt = NXi=1wt;i PYp=1 exp �P xp;iwt � xp!= NXi=1wt;i PYp=1 exp �wt � xp!xp;i!1=P



10 4. Convergence and ProgressSince xt;i 2 [0; 1] and since �x � 1� (1� �)x for � > 0 and x 2 [0; 1] we can upper boundthe right-hand side by:NXi=1wt;i PYp=1 1�  1� exp �wt � xp!!xp;i!1=P= NXi=1 PYp=1 wt;i �  1� exp �wt � xp!!wt;ixp;i!1=PWe will need the following fact: For non-negative numbers Ai;p,NXi=1 PYp=1Ai;p � PYp=1 NXi=1APi;p!1=P :This fact can be proved by repeated application of H�older's inequality.5Using this fact withAi;p =  wt;i �  1� exp �wt � xp!!wt;ixp;i!1=Pyields an upper bound on Zt ofPYp=1 NXi=1 wt;i �  1� exp �wt � xp!!wt;ixp;i!!1=P (4.4)= PYp=1 1�wt � xp 1� exp �wt � xp!!!1=P :To further bound lnZt, we apply the following:Lemma 1: For all � 2 [0; 1] and x 2 R,ln(1� �(1� ex)) � �x + x2=8 :Proof: Fix � 2 [0; 1], and letf(x) = �x + x2=8� ln(1� �(1� ex)) :We wish to show that f(x) � 0. We have thatf 0(x) = �+ x4 � g(x)5In one form, H�older's inequality states that, for non-negative ai, bi,Xi aibi �  Xi api!1=p Xi bqi!1=qfor any positive p; q satisfying 1=p+ 1=q = 1.



4. Convergence and Progress 11where g(x) = �ex1� � + �ex :Clearly, f 0(0) = 0. Further, f 00(x) = 14 � g(x) + (g(x))2which is non-negative for all x (the minimum is attained when g(x) = 1=2). Therefore, f isminimized when x = 0; since f(0) = 0, this proves the claim.Taking logs of Equation (4.5), the upper bound on Zt, and then applying Lemma 1 givesus lnZt � 1P PXp=1 ln 1�wt � xp 1� exp �wt � xp!!!� 1P PXp=124� + 18  �wt � xp!235� � + �28r2since r is a lower bound on wt � xp. Plugging into Equation (4.3) we obtaindRE(ujjwt+1)� dRE(ujjwt) � � �P PXp=1 u � xpwt � xp!+ � + �28r2= �P PXp=1 1� u � xpwt � xp!+ �28r2� �P PXp=1 � ln u � xpwt � xp!+ �28r2using the fact that 1� ex � �x for all real x. By summing over all t � T we get�dRE(ujjw1) � dRE(ujjwT )� dRE(ujjw1)� �P TXt=1 PXp=1 � ln u � xpwt � xp!+ T�28r2 ;which implies the �rst bound (4.1) stated in the theorem. The second bound (4.2) follows bystraightforward algebra, noting that dRE(ujjw1) � lnN when w1 is the uniform probabilityvector.Note that if any other upper bound K on dRE(ujjw1) is known a priori (possibly for someother choice of w1), then by tuning � as a function of K the lnN term in the bound (4.2)of the theorem can be replaced by K.It follows from Theorem 1 that, if we run for T iterations, then the average loss (oraverage minus log-likelihood) of the wt's will be at mosts lnN2Tr2 :



12 4. Convergence and Progressgreater than the loss of u. Therefore, picking T = (lnN)=(2�2r2) guarantees that at leastone of the wt's will have a log-likelihood within � of u.When some of the components xp;i are zero, or very close to zero, we can use the followingalgorithm which is parameterized by a real number � 2 [0; 1]. Let~xp = (1� �=N)xp + (�=N)1where 1 is the all 1's vector. As before, we maintain a probability vector wt which isupdated using ~xp rather than xp:wt+1;i = wt;i exp(�~xp;i=wt � ~xp)Piwt;i exp(�~xp;i=wt � ~xp) :The vector that we output is also slightly modi�ed. Speci�cally, the algorithm outputs themixture ~wt = (1� �)wt + (�=N)1and so su�ers loss � ln( ~wt � xp).We call this modi�ed procedure gEG�;�.Theorem 2: Let u 2 RN be any probability vector, and let x1; : : : ;xP be a sequence ofinstances with xp;i � 0 for all i; p, and maxi xt;i = 1 for all p. For � 2 (0; 1=2] and � > 0,gEG�;� produces a sequence of probability vectors ~w1; : : : ; ~wT such that� TXt=1 1P PXp=1 ln( ~wt � xp) � �TP PXp=1 ln(u � xp) + 2�T+dRE(ujjw1)� + �TN28�2 : (4.5)Furthermore, if w1 is chosen to be the uniform probability vector, T � 2N2 lnN , and weset � =  N2 lnN8T !1=4� = 2�N s2 lnNTthen � TXt=1 1P PXp=1 ln( ~wt � xp) � �TP PXp=1 ln(u � xp) + 2(2N2 lnN)1=4(T )3=4 : (4.6)Proof: From our assumption that maxi xt;i = 1, we have~wt � xpwt � ~xp � (1� �)wt � xp + �=N(1� �=N)wt � xp + �=N :The right hand side of this inequality is decreasing as a function ofwt�xp and so is minimizedwhen wt � xp = 1. Thus, ~wt � xpwt � ~xp � (1� �) + �=N;



4. Convergence and Progress 13or equivalently, � ln( ~wt � xp) � � ln(wt � ~xp)� ln(1� �+ �=N)� � ln(wt � ~xp) + 2� (4.7)(since � � 1=2).From Theorem 1 applied to the instances ~xp, we have that� TXt=1 ln(wt � ~xp) � � TXt=1 ln(u � ~xp) + dRE(w1jju)� + �TN28�2 (4.8)where we used the fact that ~xp;i � �=N .Note that u � ~xp = (1� �=N)u � xp + �=N � u � xp:Combined with equations (4.7) and (4.8), and summing over all t, this gives the �rstbound (4.5) of the theorem. The second bound follows from the fact that dRE(ujjw1) � lnNwhen w1 is the uniform probability vector.4.2 Convergence proofs for gradient-projection algorithmsIn this section, we prove a convergence result for the gradient-projection algorithm. Thesetup is exactly as in Section 4.1.The update rule used by GP� iswt+1 = wt + �P PXp=1 1wt � xp  xp � PNi=1xp;iN 1!where � > 0 is the learning rate, and 1 is the all 1's vector. We assume that wt;i remainsnon-negative.Theorem 3: Let u 2 RN be a probability vector, and let x1; : : : ;xP be a sequence ofinstances with xp;i � r > 0 for all i; p, and maxi xp;i = 1 for all p. For � > 0, assumethat GP� produces a sequence of probability vectors w1; : : : ;wT so that all components ofeach are nonnegative. Then� TXt=1 1P PXp=1 ln(wt � xp) � �TP PXp=1 ln(u � xp) + 12  �NTr2 + ku�w1k2� ! : (4:9)Furthermore, if we set � = s 2r2NTthen � TXt=1 1P PXp=1 ln(wt � xp) � �TP PXp=1 ln(u � xp) + Pr p2NT: (4.10)



14 5. Experimental ResultsProof: We use 12ku�wtk2 as the potential function which equals the distance functionused for deriving the GP� update. By straightforward algebra, the change in potential attime t is computed to be12ku�wt+1k2 � 12ku�wtk2= �P PXp=1 1� u � xpwt � xp!+ �22 





 1P PXp=1 1wt � xp  xp � 1N NXi=1xp;i!





2� � �P PXp=1 ln u � xpwt � xp!+ �22P PXp=1




 1wt � xp  xp � 1N NXi=1xp;i!




2by convexity of the function k�k2, and since 1� ex � �x for all real x. Since xp;i 2 [r; 1],and assuming that wt;i � 0, it follows that this is bounded by� �P PXp=1 ln u � xpwt � xp!+ �2N2r2 :Thus, summing over all t � T , we get12ku�wT+1k2 � 12ku�w1k2 � � �P TXt=1 PXp=1 ln u � xpwt � xp!+ �2NT2r2 :So TXt=1 PXp=1 ln u � xpwt � xp! � P2  �NTr2 + ku�w1k2� !which implies the bound in Equation (4.9). The derivation of the second bound in Equa-tion (4.10) follows by straightforward algebra.When no lower bound r on xp;i is available, we can use similar techniques to thosedescribed in Section 4.1.5 Experimental ResultsIn this section we brie
y present and discuss a few of the empirical tests we performed.In order to compare the various algorithms, data was synthetically created from N normaldistributions evenly spaced on the unit circle in R2. The ith distribution was generatedfrom a normal distribution with a mean vector ~� = �sin(2�iN ); cos(2�iN )�. Each observationwas created by uniformly picking one of the distributions, and sampling that distributionto obtain a point ~� = (�1; �2) 2 R2. The corresponding row of X contains the probabilitydensity at ~� for each of the N distributions. The examples presented in this section wereobtained by generating hundreds of observations (P � 100) from at least 5 distributions(N � 5) each with variance 1. The same qualitative results are obtained when using matricesof di�erent sizes and other stochastic sources (such as the uniform distribution). We testedall the described algorithms. The algorithms were tested using both �xed scheduling andline-searches to �nd the best choice of � on each iteration. The line-searches allow us tocompare the updates when they are optimally tuned. Note that when the EG�-update is
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