A Comparison of New and Old
Algorithms for A Mixture
Estimation Problem

David P. Helmbold*
Robert E. Schapire!
Yoram Singer?

Manfred K. Warmuth®

UCSC-CRL-95-50
October 27, 1995

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

We investigate the problem of estimating the proportion vector which maximizes
the likelihood of a given sample for a mixture of given densities. We adapt a
framework developed for supervised learning and give simple derivations for many
of the standard iterative algorithms like gradient projection and EM. In this
framework, the distance between the new and old proportion vectors is used as a
penalty term. The square distance leads to the gradient projection update, and the
relative entropy to a new update which we call the exponentiated gradient update
(EG,,). Curiously, when a second order Taylor expansion of the relative entropy is
used, we arrive at an update EM, which, for n = 1, gives the usual EM update.
Experimentally, both the EM,-update and the EG,-update for > 1 outperform the
EM algorithm and its variants. We also prove a polynomial bound on the worst-case
global rate of convergence of the EG,, algorithm.

*Computer and Information Sciences, University of California, Santa Cruz, CA 95064, dph@cse.ucsc.edu
TAT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, schapire@research.att.com
YAT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, singer@research.att.com

SComputer and Information Sciences, University of California, Santa Cruz, CA 95064
manfred@cse.ucsc.edu

1. Introduction 1

1 Introduction

The problem of mazimum-likelihood (ML) estimation of a mixture of densities is an
important and well known learning problem [4]. ML estimators are asymptotically unbiased
and are a basic tool for other more complicated problems such as clustering and learning
hidden Markov models. We investigate the MI-estimation problem when the densities
are given and only the mixture proportions are unknown. That is, we assume that we
are given a set of distributions Dq,..., Dy over some domain, together with a sample of
points from this domain. Our goal is to find the mixture coefficients vy,...,on (v; > 0
and Y v; = 1) which maximize (approximately) the likelihood of the sample under the
mixture distribution > v;D;. Most of the common techniques to solve this problem are
based on either gradient ascent iterative schemes [9] or on the Expectation Maximization
(EM) algorithm for parameter estimation from incomplete data [3, 14].

We derive the standard iterative algorithms for the unsupervised mixture proportions
estimation problem by placing them in a common hill-climbing framework. This framework
is analogous to the one developed by Kivinen and Warmuth [6] for supervised on-line
learning. Our goal is to maximize the log likelihood of the observations as a function of
the mixture vector w, denoted by LogLike(w). This is computationally hard and requires
iterative methods. In the tth iteration we approximate the loglikelihood LogLike(w;41) at
the new mixture vector wyi1 by LogLike(w;) + VLogLike(wy) - (w;11 — W), which is the
Taylor expansion of the loglikelihood around the old mixture vector w;. It is now easy to
maximize this approximated loglikelihood. However the approximation degrades the further
we move from the old mixture vector w;1. Thus we subtract a penalty term d(wyq1, wy)
which is a non-negative function measuring the distance between the new and old mixture
vector. This penalty term keeps w1 close to w; as measured by the distance function d.
In summary we are maximizing the function

F(wi41) = n(LogLike(w;) + VLogLike(wy) - (Wiy1 — Wy)) — d(Wigq, Wy) .

The relative importance between the penalty term and increasing the log-likelihood is
governed by the positive parameter 7, called the learning rate.

Maximizing the function I with different distance functions leads to various iterative
update rules. Using the square distance gives the update rule of the gradient projection
algorithm and the relative entropy distance gives a new update called the exponentiated
gradient update (EG,). By using a second order Taylor expansion of the relative entropy
we get the y? distance function. When this distance function is used and 7 is set to one, we
get the same update as an iteration of the EM algorithm for the simple mixture estimation
problem considered in this paper. Our experimental evidence suggests that setting n > 1
results in a more effective update. These results agree with the infinitesimal analysis in the
limit of n — oo based on a stochastic approximation approach [12, 13, 14].

For the exponentiated gradient algorithm, we are able to prove rigorous polynomial
bounds on the number of iterations needed to get an arbitrarily good ML-estimator. How-
ever, this result assumes that there is a positive lower bound on the probability of each
sample point under each of the given distributions. When no such lower bound exists (i.e.,
when some point has zero or near-zero probability under one of the distributions), we are
able to prove similar but weaker bounds for a modified version of EG,,.

We obtain our global convergence results by viewing the mixture estimation problem as
an on-line learning problem. Fach iteration becomes a trial where the algorithm is charged a

2 2. Definitions and Problem Statement

“loss” of —LogLike(wy), so minimizing the loss corresponds to maximizing the log-likelihood.
Note that the ML solution will also have a loss on each trial. By bounding the extra loss of
the algorithm over the loss incurred by the ML solution u over a sequence of iterations, we
can show that at least one of the w; vectors produced by the algorithm is reasonably good.
Note that these results show convergence in log-likelihood rather than convergence of the
mixture vector to the ML solution. Furthermore, the standard convergence results usually
apply only when the algorithm is started with a vector near the ML solution, whereas our
results show global convergence.

The derivations of the learning rules using the above framework are simple and can
readily be applied to other settings. They are similar to previous derivations found in the
literature [14, 10].

2 Definitions and Problem Statement

Let R represent the real numbers. Let log denote the base 2 logarithm and let In denote
the natural logarithm. We say a vector v = (vy,...,vn) € BN is a probability vector if,
Vi:v; > 0and >, v, = 1. The vector (1/N,...,1/N) is called the uniform probability
vector. We use the following distance functions between probability vectors u and wv:

N
dpvc(ullv) = 3w — w3 = 3> (ui —v;)?

N .
drg(ul|v) def Zuiln& and

=1 Vi
N 2
def (u; — ;)
dx2(u||V) :e %Z% .
=1 v

All three distance functions are non-negative and zero iff u = v. The first one is half of the
square of the Euclidean length of the vector u — v. The second one is the standard relative
entropy and the last one is a second order Taylor approximation (at u = v) of the relative
entropy called the y?-distance. These distance functions are used in Section 3 to derive the
updates used in this paper (See discussion at the end of Section 3 and Figure 3.1).

We consider the following maximum-likelihood mixture estimation problem:

Input: A P x N matrix X of non-negative real numbers with rows x; through xp .
Goal: Find a probability vector w that maximizes the log-likelihood,

1 P N 1 P
LogLike(w) =) Z In (Z xmwi) =5 Z In(x,-w),
p=1 =1 p=1

where x,, is the pth row of X.

The maximizers of the log-likelihood are called the mazimum likelihood (ML) solutions.
Clearly there might be more than one solution and throughout the paper u is used to denote
an arbitrary ML solution and we call u “the ML solution.” As there is no straightforward
method for computing an ML solution, iterative methods which compute a sequence,
W1i,...,Wy,..., converging to an ML solution are popular.

3. The Updates 3

It is most natural to view each row x, of X as representing an observation and the
tth column of X as containing the probability of each observation under some known
distribution D;. The entry z,; is then the probability under distribution D; of the pth
observation, and, for any probability vector v, x,, - v is the probability under mixture v of
the pth observation under the mixture distribution S°% , v;D;. The ML solution u gives the
proportions or weightings of the D;’s that maximize the log-likelihood of the observations.

We use VL(wy) to represent the gradient of the log-likelihood function at probability
vector wy,

VL(wi) def 0LogLike(wy) JdLogLike(wy)
t T N Dwrn
P P
_ 1 Lp1 1 Lp,N
PpZ:;Xp‘Wt’ ”'7P];xp-wt

3 The Updates

Assume that at iteration ¢ we have the current probability vector w; and are trying to
find a better vector wyyq. Kivinen and Warmuth [6] study the supervised on-line setting
where the vector w; summarizes the learning done in previous iterations' and that learning
can be preserved by choosing a w41 that is “close” to wy. Their method finds a new vector
w41 that (approximately) maximizes the following function:

F(wyy1) = nLoglike(w41) — d(Wiy1, we), 1> 0 . (3.1)

The penalty term, —d(wyy1,w;), tends to keep wyq; close to wy (with respect to the
distance measure d) and the relative importance between the penalty term and maximizing
the log-likelihood on the current iteration is governed by the positive parameter 7, called
the learning rate. A large learning rate means that maximizing the likelihood for the current
row is emphasized while a small learning rate leads to an update which keeps w1 close
to ws. Since our iterative updates will be based on the local conditions at the start vector
wy, the penalty term and the learning rate measure how rapidly these local conditions are
expected to change as we move away from w;. Unfortunately, finding a w41 maximizing
F is computationally hard because VL(wey1), the gradient of the log-likelihood at wyyq,
is unknown. Kivinen and Warmuth bypass this difficulty by approximating VL(w¢yq1) by
VL(w;) and thus are really maximizing the function F' from the introduction.

To maximize the function F from the introduction we add a Lagrange multiplier for the
constraint that the components of w41 sum to one and set the N partial derivatives to
zero. We also note that LogLike(w,) + VL(w;) - w; is independent of w1, so maximizing
F subject to the constraint is equivalent to maximizing

N
F(wiy1,7) = nVL(We) - Wipr — d(Wepr, We) +7 (Z Wit — 1) ;o n>0.

=1

'In the on-line setting each iteration typically uses only a single observation. It is therefore desirable
to preserve information about the previous observations while improving the likelihood of the current
observation.

4 3. The Updates

This is done by setting the N partial derivatives to zero and by enforcing the additional
constraint. So our framework consist of solving the following N 4 1 equations for the N
coefficients of wy4q:

8F(WH-la ’7) 8d(Wt+17 Wt)
—— = VL Wy)i - — =+ 7 =0 3.2
awH—l,i n (t) awH—l,i Y ()
and
N
dowiri=1. (3.3)
=1

We now derive all updates used in this paper by plugging different distance functions
into the above framework. For the standard gradient projection update (which we abbreviate
GP,) we use the distance function dpyc(wiyi||we) = %||Wt_|_1 — wy||3. In this case the
equations (3.2) become

NVL(W); — (wigq,; —we;) +7=0 .

By summing the above N equalities and enforcing the constraints that Zf\il wy; = 1 and
Zf\il wi41,; = 1 we get an expression for v and the update

1 N
wH_LZ» = wt,i —|— n (Vﬁ(Wt)Z — F ZV'C(Wt)Z) . (34)

=1

If we use the relative entropy dpp(wig1||We) = 2ormy Wit i log(wiyq i /wy ;) as a distance
function then the equations (3.2) become

NV L(we)i — (In 2 L 1y 4y =0

wt,z
By solving for the w4 ; we have

Wiyl = We ;eTVEW AL

Enforcing the additional constraint (3.3) gives a new update which we call exzponentiated

gradient* (EG,) update:

wtﬂ»enVL(Wt)i
Wiyl =
’ N _nVL(W¢)
7=1 Wy ;€

(3.5)

J

The framework can also be used to motivate the Expectation Maximization algorithm (EM)
which is another algorithm commonly used for maximum likelihood estimation problems.
For this we use the x* (Chi-squared) distance measure d,2(wiiq||wy) = %Zf\;l(wt-l-l,i —
wy;)?/we;. Now the equations (3.2) become

nVL(W); — (% - 1) +v=0.

Wy 4

2 A similar update for the case of linear regression was first given by Kivinen and Warmuth [6].

3. The Updates 5

By solving for the w1 ; we get

Wiy = N VLW) + wei(y+1) .

We can now sum the above N equalities and use the constraints that %, wy; = 1
and SN, wip1,; = 1. Our particular mixture estimation problem has the invariant®
Zf\il we ;VL(wy); = 1. Thus v = —n and we obtain the update

Wi = wei (N (VL(We)i = 1)+ 1) (3.6)

We call Equation (3.6) the EM,-update because when 7 = 1 this gives the standard
Expectation-Maximization (EM) update, weyq; = wy ;VL(Wy);, for the problem considered
in this paper. The EM; update can be motivated by the likelihood equations, and the
generalization to arbitrary n was studied by Peters and Walker [12, 13].

Since the y? distance approximates the relative entropy it may not be surprising that
the EM,-update (3.6) also approximates the EG,-update (3.5). We first rewrite the ex-
ponentiated gradient update by dividing the numerator and denominator by €” and then
replace the exponential function e* by its first order lower bound 1 + z:

Wy ien(VL(Wt)i_l)

Z;\le wy,je"
wy (1 4+ n(VL(wy); — 1))
YNy we (14 n(VL(we); — 1))
= wr(n(VL(Wy); — 1)+ 1) .

Thus the EM,-update can be viewed as a first order approximation of the EG,-update. The
approximation is accurate when the exponents n(VL(w;); — 1) are small. The advantage
of the EM,-update is that it is computationally cheaper as it avoids the exponentiation.
However the EG,-update is easier to analyze. Our experiments indicate that these two
update rules tend to approximate each other well.

We41,0 (VL(Wt)J—l)

Each of the different distance functions leads to a different bias that is encoded in the
update. In Figure 3.1 we plot the three distance functions dgyc(wWey1||we), dre(Wep||we)
and d,2(wyy1||w;) as a function of w1 for the three dimensional problem (with a triangle
as the feasible region for w;y1). The contour lines for the distance function dgy¢ are circles
and the contour lines for d,. are ellipses that become more degenerate as the old weight
vector wy approaches the boundary of the feasible region. The contour lines for drg are
deformed ellipses that bend towards the vertices of the triangular feasible region.

One can also get an update by re-parameterizing the probability vectors and doing
unconstrained gradient ascent in the new parameter space. We use the standard exponential
parameterization [11]: w; = €"i/ Zé\le e’s and maximize the function

ParLogLike(r) = LogLike(w(r)).

(Note that the w’s are probability vectors whereas the corresponding vectors r are uncon-
strained and lie in ®.) For this parameterization the gradient descent update becomes

dParLogLike(r;)

Tt+10 = TieT 7 D
i,

= re+nw i (VE(wy), — 1) .

N N P P WX
32i:1 wtviVC(wt)i = Zi:l % Zp:l th;,l;E/g;l = % Zp:l X;~W1: =1

6 3. The Updates

fir

@M

Figure 3.1: The figure contains plots of the three distance functions
dgvc(weg1||we) (first row), drg(Wig1||wy) (second row) and d,2(wyy1||wy) (third
row) as a function of w;41. The dimension is three and the non-negativity con-
straint on the three components of w41 plus the fact that the component must
sum to one result in a triangle as the feasible region for wy,q. The corners of the
triangle correspond to the vector wy1; = (0,0,1) at the top vertex and vectors
(1,0,0) and (0,1,0) at the left and right bottom vertices. The plots are contour
plots of the distance function while looking at the triangle from above. The left
column gives the distance from the uniform vector w; = (1/3,1/3,1/3) which is
at the center of the triangle and the right column the distance from the point (0.3,
0.2, 0.5). Note that contour lines may represent different distances in different
diagrams.

]HMM

Q@»

This update can also be derived in our framework by approximately minimizing a function
corresponding to F' (Equation (3.1)):

G(rip1) = nParLogLike(rsqy) — d(veq1,1e), 1 >0 .

For this minimization we use d(r¢11,1;) = 3||rip1 — 1¢||3 as a distance function and approx-
imate the gradient at r,y; with the gradient at r;.

All of the above update rules can be turned into algorithms by specifying the learning
rate 77 to use in each iteration. The EM algorithm uses a fixed scheduling, where the same
learning rate (namely, 7 = 1) is used in each iteration. Another possibility is to anneal the

4. Convergence and Progress 7

learning rate. At first, a high learning rate is used to quickly approach the ML solution.
Later iterations use a lower learning rate to aid convergence.

The EM algorithm is in fact a limiting case of a more general approach usually called
Generalized EM (GEM). Neal and Hinton [10] considered one variant of GEM which involves
examining only a portion of the observation matrix X on each iteration. In general, any
subset of the observations could be used, and the algorithm which considers a different
row (observation) on each iteration is the natural analogue of on-line algorithms in the
supervised case.

Note that in the above derivations of the updates we ignored the non-negativity con-
straints on the new weights wyq;. For the EG, update and for the gradient descent
update with exponential parameterization the non-negativity constraints follow from the
non-negativity of the previous weights w;;. However for EM, and GP, the learning rate
7 has to be sufficiently small to assure the non-negativity of the w4, ;. In particular, the
standard EM algorithm (using » = 1) has the property that the non-negativity constraints
are always preserved.

4 Convergence and Progress

In this section we discuss the convergence properties of the algorithms. Using standard
methods, as in [9], it can be shown that, given certain assumptions, all updates described in
the previous section converge locally to an optimal ML solution, provided that the current
mixture vector wy is close to the ML solution. Moreover, using similar techniques, as in [13,
14], it can be shown that it is better to use a learning rate n > 1 rather than the rate
n = 1. This implies that the EM algorithm is not optimal for this family of update rules.
This analysis is supported by the experimental results presented in the next section, where
choosing n > 1 leads to faster convergence, even when the current mixture vector is far
from the ML solution.

These methods suffer from a number of limitations. For instance, the proof of conver-
gence is only valid in a small neighborhood of the solution. In this section, we present
a different technique for proving the global convergence of the EG, update and (under
non-negativity assumptions) the GP, updates.

If an update is derived with a distance function d then it is natural to analyze how
fast the mixture vector moves towards an (unknown) ML solution u as measured by this
distance function. More precisely, we use the same distance function that motivates the
update as a potential function to obtain worst-case cumulative loss bounds over sequences
of updates (similar to the methods applied to the supervised case [6]). The natural loss of
a mixture vector wy for our problem is —LoglLike(w;). Note that this loss is unbounded
since the likelihood for wy is zero when there is some x, for which w¢-x, = 0. In the
supervised case, one can obtain firm worst-case loss bounds with respect to the square loss
for various updates by analyzing the progress [6]. But the square loss is bounded and it is
not surprising that it is much harder to obtain strong loss bounds for our (unbounded loss)
unsupervised setting. Nevertheless this type of analysis can give insight on how an iterative
algorithm moves towards the ML solution and on the relationships between different update
rules. We obtained some reasonably good bounds for the GP, and EG, updates.

We deal with the unboundedness of the loss function by initially assuming that the
smallest entry in the matrix is bounded away from zero. Thus, for all p and 7 we assume

8 4. Convergence and Progress

zp; > v > 0. Below, we give a proof bounding the average additional loss during 7" trials
of the algorithm EG,, over the loss of the ML solution by

1 In N
r\ 27 °

Thus, by picking T = In N/2¢?r? we can guarantee that at least one of the w;’s computed
by algorithm EG,, has loss at most € larger than the ML solution.

In contrast, we have been able to prove a similar bound for the GP, update* showing
that the average additional loss during 7' trials of the algorithm GP, above the loss of the

ML solution is at most
1 2N
r\ T

However, the analysis assumes that the GP, algorithm does not produce mixture vectors
with negative components. This assumption may not hold generally since the update of the
GP,, algorithm is additive. We have been unable to prove that the n used to obtain the
above bound avoids this difficulty.

Even though the above bounds are weak in that they grow with 1/r, they bring out a
crucial difference between the exponentiated gradient and gradient descent family, namely,
the logarithmic growth (in terms of N) of the additional loss bound of the former versus the
square-root growth of the latter family. Similar observations were made in the supervised
setting [6, 7].

We also show below how to obtain bounds when the entries in the matrix have zero-
valued components. We essentially average the data matrix with a uniform matrix (this
e-Baysian averaging was also used in [1]) and then use the averaged matrix to run our
algorithm. One can show that the ML solution for the averaged matrix is not too far (in
loss) away from the ML solution of the original matrix, but the averaged matrix has the
advantage of having entries bounded away from zero.

4.1 Convergence proofs for exponentiated-gradient algorithms

Recall that the EG, algorithm receives a (fixed) set of P instances, xq,...,xp, each
in RN with positive components. At each iteration, the algorithm produces a mixture or
probability vector w; € BN and suffers a loss related to the log-likelihood of the set under
the algorithm’s mixture. The algorithm then updates wy.

The loss suffered by the algorithm at time ¢ is

1 P
_FZ In(wy - x,),
p=1

while the loss of the (unknown) ML solution u is

1 P
—Fzzlln(u “Xp).
p:

*This algorithm’s performance was analyzed in the PAC model in [1].

4. Convergence and Progress 9

We are interested in bounding the (cumulative) difference between the loss of the algorithm
and the loss of the ML solution.

We assume that max; z,; = 1 for all p. We make this assumption without loss of
generality since multiplying an instance x, by some constant simply adds a constant to
both losses, leaving their difference unchanged. Put another way, the assumed lower bound
r on x,; used in Theorem 1 (below) can be viewed as a lower bound on the ratio of the
smallest to largest component of any instance x,.

The EG,, algorithm uses the update rule:

: NP Tpa
wt,l eXp (FZp:l th.;(p)
Zy

where 1 > 0 is the learning rate, and Z; is the normalization

N P
Ul Lp,i
iy = wi;exp | =) ——
ZZ:; Z P;Wt " Xp

Wep1,0 =

Theorem 1: Let u € RN be a probability vector, and let xq,...,xp be a sequence of
instances with x,; > r > 0 for all v,p, and max;x,; = 1 for all p. For n > 0, EG,
produces a sequence of probability vectors wq,...,wr such that
T . P P
1 T drp(ullwy) 0T
_;F;m(wt.xp) < —szzzlln(u-xp)—l—#—l— R (4.1)

Furthermore, if wq is chosen to be the uniform probability vector, and we set

2In N
T

7 =2r

then

_Z Zln Wy Xp) <——Zln u-x,) QJ;inN (4.2)

Proof: We have that

dpe(ul|lwi) —dpe(ullw) = = uin(wiyri/we)

P
u-xX
- _% Wt‘; +Inz . (4.3)
p=1 p

We now work on bounding 7;.
N P N Ty
p72
wi || exp | 5—"—
N P opi\ /P
Zw“H exp il
] ’ Wi - X,

p=1

Z

10 4. Convergence and Progress

Since z¢; € [0,1] and since 3% <1 — (1 — f)a for § > 0 and z € [0, 1] we can upper bound
the right-hand side by:

N P . 1/P
Wi ; 1—11—exp Tpi
ZZ:; tpl;Il(((Wt'xp)) p)

N P /P
= ZH (wm — (1 — exp (1)) wt7ixp7i)
i=1p=1 We - Xp

We will need the following fact: For non-negative numbers A; ,,

N P P /N /P
ST < I (S0)
p=1 \i=1

i=1p=1

This fact can be proved by repeated application of Hélder’s inequality.®
Using this fact with

1/P
Ui
Aip = i— 1= ip,i
" (wn (o (Wt'xp))wtwp’)

yields an upper bound on Z; of

1/P

P /N
H (Z (wm — (1 — exp (Wt7-7x)) wt7ixp7i)) (4.4)
- Z_P 1/P

B ole))

To further bound In Z;, we apply the following:

Lemma 1: For all « € [0,1] and x € R,
In(1—a(l —e€")) < az+2?/8.
Proof: Fix a € [0,1], and let
f(z)=az +2*/8 —In(1 — a(l — €%)) .
We wish to show that f(z)> 0. We have that

J(@)=a+ 5= glx)

®In one form, Holder’s inequality states that, for non-negative a;, b,

() 5

T T

for any positive p, g satisfying 1/p+ 1/¢g = 1.

4. Convergence and Progress 11

where

Clearly, f'(0) = 0. Further,

1) = § — o)+ (a))?

which is non-negative for all # (the minimum is attained when g(z) = 1/2). Therefore, f is
minimized when z = 0; since f(0) = 0, this proves the claim. [|

Taking logs of Equation (4.5), the upper bound on Z;, and then applying Lemma 1 gives

1 7
< i — . —_
In Z; pg 1ln (1 Wi - X, (1 exp (- p)))

us

1 & 1 :
Ui
< 3 n+ <
PPZ:; 8(Wt-Xp)]
2
Ui
< L
- 77+87‘2

since r is a lower bound on wy - x,. Plugging into Equation (4.3) we obtain

P 2

n u-x, n
d _d < -1 o
re(ul[wir) — drp(ullw,) < P (Wt‘xp) tnt g

1w u-x U5

= = 1— L .

PpZ::l(Wy Xp)]r2

1w u-x n?

< I~ p)

- PZ_:(nwt-xp)+8r2

p=1

using the fact that 1 — e* < —z for all real 2. By summing over all t < T we get
—dpp(ullwy) < drp(ullwr) - dre(ullw:)

PR ot X\ Ty
— FZZ - +8T2’

t=1p=1 Wi Xp

which implies the first bound (4.1) stated in the theorem. The second bound (4.2) follows by
straightforward algebra, noting that drg(u||wy) <In N when wy is the uniform probability
vector. |

Note that if any other upper bound K on dgg(u||wy)is known a priori (possibly for some
other choice of wy), then by tuning 7 as a function of K the In N term in the bound (4.2)
of the theorem can be replaced by K.

It follows from Theorem 1 that, if we run for T' iterations, then the average loss (or
average minus log-likelihood) of the w;’s will be at most

In N
27r?"

12 4. Convergence and Progress

greater than the loss of u. Therefore, picking 7' = (In N)/(2¢2r?) guarantees that at least
one of the w;’s will have a log-likelihood within € of u.

When some of the components z, ; are zero, or very close to zero, we can use the following
algorithm which is parameterized by a real number a € [0, 1]. Let

%, = (1— a/N)x, + (a/N)1

where 1 is the all 1’s vector. As before, we maintain a probability vector w; which is
updated using x, rather than x,:

Wy exp(ndp,i/ Wi - Xp)
> Wi exp(ndpi /Wi -Xp)

Wep1,0 =

The vector that we output is also slightly modified. Specifically, the algorithm outputs the
mixture
w;=(1—a)w;+ (a/N)1
and so suffers loss —In(Ww; - x,).
We call this modified procedure E(J}am.

Theorem 2: Let u € BN be any probability vector, and let x1,...,Xp be a sequence of
instances with x,; > 0 for all i,p, and max; x; = 1 for all p. For o € (0,1/2] and n > 0,

E@am produces a sequence of probability vectors Wy, ..., W such that
T 1 P T P
—Z FZln(Wt -x,) < —FZhl(u - xp) + 2aT
t=1 p=1 p=1
drg(ullwy) nTN?
. 4.5
R (4.5)
Furthermore, if wy is chosen to be the uniform probability vector, T > 2N?In N, and we
sel
9 1/4
N<Iln N
a = _
8T
_ 2a (2InN
R
then
T 1 P T P
-3 len(vvt-xp) < —len(u-xp) + 202N% I NYYYT)P4 (4.6)
t=1 p=1 p=1

Proof: From our assumption that max; z¢; = 1, we have

Wy - X (1-a)w;-x, +a/N
wi X, (1—a/N)w;-x, +a/N’

The right hand side of this inequality is decreasing as a function of w¢-x, and so is minimized

when w; -x, = 1. Thus,
T X > (1-a)+a/N,

Wt'f(p

4. Convergence and Progress 13

or equivalently,

—In(Wy - xp)

—In(w;-%p) —In(l —a+a/N)
—In(w; - %p) + 2a (4.7)

IACIA

(since av < 1/2).

From Theorem 1 applied to the instances x,, we have that

T T
. . d TN?
_ E In(w; - %,) < — E In(u-x,)+ rE(Wi|u) + 778 > (4.8)
t=1 t=1 n o

where we used the fact that z,; > a/N.
Note that
u-x,=(l-—a/N)u-x,+a/N > u-x,.

Combined with equations (4.7) and (4.8), and summing over all ¢, this gives the first
bound (4.5) of the theorem. The second bound follows from the fact that dgg(u||wy) <In N
when wy is the uniform probability vector. |

4.2 Convergence proofs for gradient-projection algorithms

In this section, we prove a convergence result for the gradient-projection algorithm. The
setup is exactly as in Section 4.1.

The update rule used by GP,, is

P N
_ 77 1 Zi:lxp,i
Wt_|_1 = W; -I— Fpé . (Xp - T 1

Wt Xp

where 17 > 0 is the learning rate, and 1 is the all 1’s vector. We assume that w;; remains
non-negative.

Theorem 3: Let u € RN be a probability vector, and let xq,...,xp be a sequence of
instances with x,; > r > 0 for all i,p, and max; x,; = 1 for all p. For n > 0, assume
that G'P,, produces a sequence of probability vectors wy,...,wr so that all components of

each are nonnegative. Then

T P P 2
1 T L (aNT | Jlu—w
- ;FZm(wt-xp) < —Fz_:ln(u-xp) +3 (Tt ; - (4.9)
= p=1 p=1
Furthermore, if we set
[2r?
~VNT

then

L1 T P
—ZFZhl(Wt-Xp) < —FZIH(u-xp)—I— — 2NT. (4.10)
t=1 p=1 p=1

14 5. Experimental Results

Proof: We use %|ju— w||* as the potential function which equals the distance function
used for deriving the GP, update. By straightforward algebra, the change in potential at
time ¢ is computed to be

1 2 1 2
§||11—Wt+1|| ——||11—Wt||

2

7 u- xp |1 P 1 1Y
- Z i e v

P 2 N
_n u-Xp - 1 1 .
PZ_: () t9p 2P = X, (Xp N;xp”)

by convexity of the function ||||2, and since 1 — e” < —z for all real z. Since z,; € [r, 1],
and assuming that w;; > 0, it follows that this is bounded by

P 2
1 u-Xp N
——=) 1 .
PZ t (Wt-Xp) + 2r2

p=1

P 2

IN

Thus, summing over all t < T, we get

1 1 u-x n’NT
Sl = wrga | = Sl = wa <——221n(p)+ -

t=1p=1 Xp

2
Zln(u xp)) g(nNT+ Ju =)
Xp 2 72

t=1p=1 n

which implies the bound in Equation (4.9). The derivation of the second bound in Equa-
tion (4.10) follows by straightforward algebra. []

When no lower bound r on z,; is available, we can use similar techniques to those
described in Section 4.1.

5 Experimental Results

In this section we briefly present and discuss a few of the empirical tests we performed.
In order to compare the various algorithms, data was synthetically created from N normal
distributions evenly spaced on the unit circle in R?. The ith distribution was generated
from a normal distribution with a mean vector i = (sm(2L) cos(2]7\?)) FEach observation
was created by umformly picking one of the distributions, and sampling that distribution
to obtain a pomt f = (&,&) € R The corresponding row of X contains the probability
density at f for each of the N distributions. The examples presented in this section were
obtained by generating hundreds of observations (P > 100) from at least 5 distributions
(N > 5) each with variance 1. The same qualitative results are obtained when using matrices
of different sizes and other stochastic sources (such as the uniform distribution). We tested
all the described algorithms. The algorithms were tested using both fixed scheduling and
line-searches to find the best choice of n on each iteration. The line-searches allow us to
compare the updates when they are optimally tuned. Note that when the EG,-update is

5. Experimental Results 15

0,1 0,2 0.3 04 0,5

0.4t 7

0.5

w2
0.6

0.7

A\

0.8

-0.696

-0.698

-0.700

-0.702

Log-Likelihood

-0.704

-0.706

-0.708

0 50 100 150 200
Eta

Figure 5.1: When the EG, update is used, the log-likelihood as a function of 5
may have local maxima. At the bottom part of the figure, the log-likelihood is
plotted as a function of 5 for a given w;. At the top, the corresponding path is
plotted over the log-likelihood as a function of the first two weights wy;; and
wey1,2 (denoted in the figure by W1 and W2).

used, the likelihood may have two local maxima as a function of 1 as shown in Figure 5.1,
so the searches must be careful to pick the global maximum.

The optimal learning rate determined by the line-searches tended to oscillate, as shown
at the bottom part of Figure 5.2. When a momentum term was added, the oscillations were
damped and the convergence was accelerated.®

Using fixed scheduling turned out to be a competitive alternative to the expensive line-
searches. All these phenomena are depicted at the top part of Figure 5.2.

The gradient ascent update with exponential parameterization appears inferior to all
other methods. This may be due to the ad-hoc exponential parameterization. A good
fixed scheduling for that method is difficult to obtain as the optimal learning rate has
large oscillations. The EM,, and EG,, updates have about the same performance, which is
expected as the EM,, update approximates the EG, update. Both methods outperform the
EM algorithm and the EM,, and EG,, updates are superior to the EM algorithm even when
7 is set to a fixed value greater than one (see Figure 5.3).

The EM,, and EG,, updates are competitive with the gradient projection update, and in
fact there is no clear winner. As discussed in Section 4, we have some theoretical evidence

5The conjugate gradient search is a method for iteratively searching a quadratic cost function [9, 5].
When the cost function is non-quadratic, as is the likelihood function in our case, a variant of the conjugate
gradient method can be devised. This variant, termed partial conjugate gradient (PCG), is restarted after
every K conjugate gradient steps, so that the search direction every K iteration becomes the gradient.
Adding a momentum term can be seen as an approximation of the partial conjugate gradient algorithm,
with no restarts (i.e., the PCG method with K — o0).

16 5. Experimental Results

-1.231
-1.232
o
o L
2
S 1233 [&
3 . £F EGeta (with momentum) -
D 19034 | o7 EGeta (line search) -+
s @ ox EGeta (eta=3.5) o
o EGeta (eta=2.5) =
-1.235 £
-1.236 L L L L L L L L L
10 20 30 40 50 60 70 80 90 100
Iteration #
0.025
0.02
0.015
8
[
om
0.01
0.005

10 20 30 40 50 60 70 80 90 100
Iteration #

Figure 5.2: Top: The log-likelihood using the exponentiated gradient algorithm,
with line-searches, line-searches plus a momentum term, and fixed scheduling with
n = 3.5 and n = 2.5. The fixed schedulings are only slightly worse than setting
the rate by expensive line-searches, while adding a momentum term accelerates
the increase in the likelihood. Bottom: The values of § = 7”7 when using line-
searches for the exponentiated gradient update. The f-value oscillates, eventually
converging to a typical value. This anomaly is common with gradient ascent
algorithms.

that the gradient projection update beats both EM, and EG, when the algorithms are
started at the uniform vector and most of the components of the ML solution are large.
However, when most of the components of the ML solution are very small, the EM, and
EG,, updates tend to be better. Thus, as in other settings [6, 7, 8], updates based on the
relative entropy tend to be the best when the solution is sparse (see Figure 5.4).

We also compared the performance of the various updates with second order methods.
Second order methods (also known as Newton methods) are based on a quadratic approxi-
mation of the objective function. Near the solution we can approximate the log-likelihood
by the truncated Taylor series,

LogLike(w) ~ LogLike(w;)+ VL(w,)!(w —wy)

) H) w -).

where H(wy) is the Hessian calculated at wy,

82

H,;; =
](Wt) awmawm

LogLike(wy) .

6. Applications and future research 17

-1.230
-1.232 |
8
o-1.234
<=
2
5-1.236 o EMeta (line search)
> L EMeta (eta = 2.5)
S g EM
-1.238 +
-1.240 ¢

10 20 30 40 50 60 70 80 90 100
Iteration #

-1.231

Log-Likelihood
kN kN i
N) N
w w w
N w N

Exponential Parm.

1235 [

10 20 30 40 50 60 70 80 90 100
Iteration #

Figure 5.3: Top: Comparison of the performance of the EM,-update algorithm
and the standard EM algorithm. The EM,-update clearly outperforms the stan-
dard EM algorithm, even when a fixed conservative scheduling is used. Bottom:
comparison of the EM,-update with gradient ascent algorithms. The gradient-
projection is comparable to the EM,-update and the gradient ascent update with
exponential parameterization is inferior.

The right-hand side is minimized at,
Wit = Wy — H(Wt)_1V£(Wt) .

This is the basic Newton method, which requires calculations of second order derivatives and
inversions of the Hessian. Newton methods converge to a vector close to the solution in fewer
updates than the EM, and EG, updates. However, the EM,, and EG, updates can often
do significantly more iterations than Newton methods with the same computational effort.
When N is sufficiently large (we found experimentally that it is enough that N > 10), the
EM,, and EG,, outperform Newton methods when computational cost (rather than number
of iterations) is considered.

6 Applications and future research

A thorough understanding of the mixture proportions problem has many important
applications. For example, an s-state hidden Markov model (HMM) may be viewed as
2s + 1 essentially independent mixtures: one for the initial state distribution, one for the
transitions leaving each state, and one for the output probabilities at each state. Our
distance functions are easily generalized to the HMM case by summing the distances for

18 6. Applications and future research

-1.226
‘--‘--‘--“-'“"Nx-u--uxxxu-uu--u--!'::
" i ..9000000“000000““.“ e
-1.227 & “’“““
* >
3 o
o :“
= -1.228 %
[}
=
= L
e 4
T GP =
EG «
-1.230 #
20 40 60 80 100 120 140 160 180 200
Iteration #
-1.10 + Loee
Lo R il S
g et -,u-x
o .
o
E x
2
o -1.18 +
e »®
3 x
3
122"
»® CE;% ’
-1.26

0 20 40 60 zal‘?eéggnlgo 140 160 180 200

Figure 5.4: Comparisons the performance of the EG, and GP, algorithms. In
both plots there were 10 Gaussian distributions with centers on the unit circle.
On the left, the observations were generated from a (slightly perturbed) uniform
mixture of the Gaussians. On the right, the observations were generated from a
perturbation of the uniform mixture on only 5 of the Gaussians. This (and similar
experiments) indicate that the EG, algorithm performs better when the optimum
mixture vector u has few large components.

each of the 2s + 1 probability vectors defining the s state HMM. Thus, the EM,-update
is derived using the sum of the x? distances over all 2s 4+ 1 mixtures. Similarly, the EG,-
update for HMMs is obtained by summing the relative entropies as the distance function.
Again, the EMj-update is EM (which is usually called Baum-Welch in this context) and
the EM,-update is a first order approximation to the EG,-update.

Identifying the distance function associated with an update helps explain what the
update is doing and facilitates comparisons between iterative methods. After explaining the
standard algorithms using distance functions we might ask what are the distance functions
most appropriate for a particular situation. One important area for future research is
identifying good distance functions when the parameters do not form a probability vector.
In particular, we are attempting to apply this methodology to mixtures of Gaussians with
arbitrary mean and variance. In this more complicated setting we need distance functions
that depend on the means and variances given to the Gaussians as well as the mixture
probabilities assigned to them.

Our framework naturally leads to on-line versions of our algorithms where only a single
observation (instead of the whole matrix) is used each iteration. In particular, we have
derived an on-line version of EM,. Experimentally, this version outperforms the known

References 19

-7.265 .
©000000000000000029922222 92222200000

<7275 t
o
o
=
K7
=
—-7.285 ¢ Newton -
2 . EGeta -
-l

-7.295 +

0 5 10 15 2‘_0 25 30 35 40
Iteration #
Figure 5.5: Comparison of EM,-update with second order algorithms (Newton
methods). Second order methods are better than the EM,-update algorithms

with line searches however they require second order derivative calculations and
expensive N X N matrix inversions.

on-line versions of EM (called Generalized-EM). We have also applied the on-line version of
our algorithms to a portfolio selection problem investigated by Cover [2]. Although Cover’s
analytical bounds appear better than ours, preliminary experimental results indicate that
EM,, and EG,, outperform Cover’s algorithm on historical stock market data. Furthermore,
our algorithms are computationally efficient while Cover’s algorithm is exponential in the
number of possible investments. A complete analysis of this on-line version of the mixtures
problem will be presented in a companion paper.

Acknowledgments

We thank Jyrki Kivinen for helpful discussions. Yoram Singer acknowledges the Clore
Foundation for its support. Part of this research was done while he was at the Hebrew
University of Jerusalem, and visiting the Computer and Information Sciences department
at the University of California, Santa Cruz. Manfred K. Warmuth received funding from
NSF grant IRI-9123692.

References

[1] N. Abe, J. Takeuchi, and M. K. Warmuth. Polynomial learnability of probablistic con-
cepts with respect to the Kullback-Leibler divergence. In Proceedings of the Fourth
Annual Workshop on Computational Learning Theory, pages 277-289. Morgan Kauf-
mann, 1991.

[2] T. Cover. Universal portfolios. Mathematical Finance, 1(1):1-29,1991.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, B39:1-38, 1977.

[4] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.

[6] G. H. Golub and C. F. Van Loan. Matriz Computations. Johns-Hopkins University
Press, 1989.

[6] J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient updates. In

Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing,
1995.

20 References

[7] J. Kivinen and M. K. Warmuth. The perceptron algorithm vs. winnow: linear vs.
logarithmic mistake bounds when few input variables are relevant. In Proceedings of the
FEighth Annual Workshop on Computational Learning Theory, July 1995.

[8] N. Littlestone. Learning when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285-318, 1988.

[9] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 1984.

[10] R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies incremental
and other variants. Unpublished manuscript, 1993.

[11] S. J. Nowlan. Soft Competative Adaption: Neural Network Learning Algorithms Based
on Fitting Statistical Mixtures. PhD thesis, Carnegie Mellon University, 1991.

[12] B. C. Petersand H. F'. Walker. An iterative procedure for obtaining maximum-likelihood
estimates of the parameters for a mixture of normal distributions. SIAM Journal of
Applied Mathematics, 35:362-378, 1978.

[13] B. C. Peters and H. F. Walker. The numerical evaluation of the maximum-likelihood
estimates of a subset of mixture proportions. SIAM Journal of Applied Mathematics,
35:447-452, 1978.

[14] R. A. Redner and H. . Walker. Mixture densities, maximum likelihood, and the EM
algorithm. Siam Review, 26:195-239, 1984.

