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1. Introduction 1

Figure 1: An unrouted example of routing with exchangeable pins. Each pad in the centermust be connected to one pad on the edge connector.1 IntroductionIn this paper we explore the problem of routing with the freedom of exchangeable pins. Forexample, in Ball Grid Array (BGA) or Pin Grid Array (PGA) package design, we often wish toconnect each chip pad to a single package pin, but we may not always care which pad is connectedto which pin. This same type of problem also occurs in the design of test �xtures, footprint escapepatterns, and to some extent in routing signals inside an ASIC to one of the available pads on theperiphery. Figure 1 shows a typical problem instance before routing. We want to connect all padsin set A to set B while avoiding all obstacles. We do not care which pin in B a pad is connectedas long as there is some pin.Conventional routers cannot address these problems because they require the user to generate



2 1. Introductiona complete netlist before the routing process can be started. In addition to adding an extrastep to the design process, the choice of pin assignment can have a big impact on quality of therouting. Often a pin assignment is chosen that cannot be realized. Rather than performing pinassignment and routing as two separate steps, what is needed is a router that performs these twosteps simultaneously.Speci�c package routers like PGA or BGA routers[1, 2, 3, 4] have been developed that takeadvantage of special geometries of their respective problems and the exchangeable freedom of thepins. Although these methods are exceptionally e�cient, they have a number of limitations:� They rely on the symmetry of the arrays and rings to generate solutions and cannot copewith missing, skewed, or o�-grid pads.� Even in these very symmetric cases, these package routers[3, 2] may still produce designs thatare p2 times more dense than the best possible designs. In particular, the algorithms cannotalways tell if they have generated a routable solution, and have no strategy for changing anunroutable solution into a routable solution.� They do not consider the case where the number of pads in the two sets of pins to connect isunequal.� They do not take into account the presence of obstacles.In this paper, we o�er the following practical contributions. First, the package routing problemsdiscussed above have a natural formal description, which we call Planar Interchangeable Two-Terminal Routing (PI2TR). We show that although we can take advantage of the freedom ofexchangeable pins, PI2TR is NP-complete. Finally, we show that despite the NP-completeness, amin-cost ow heuristic can produce good results by considering only some cuts in a design.1.1 Formal Problem De�nitionThe fundamental features of the package problem routing are two sets of pins placed arbitrarilyin a single plane that we wish to connect to one another. We also need to model the routing areaand any obstacles that are present, as well as the particular design rules permitted by the wiring.Accordingly, we de�ne an instance of the Planar Interchangeable 2-Terminal Routing (PI2TR)problem as follows:



2. Network ow formulation of PI2TR 3De�nition 1: Planar Interchangeable 2-Terminal RoutingAn instance of the Planar Interchangeable 2-Terminal Routing (PI2TR) problem is a6-tuple of (b; A; B;O; w; s) where:b is a polygon representing the bounds of the routing area.A is a set of polygons for one class of pins.B is a set of polygons for the other class of pins.O is a set of polygons representing obstacles.w is a positive integer for the minimum wire width.s is a positive integer for the minimum wire spacing.A, B, O are non-overlapping polygons inside b. Without loss of generality jAj � jBj.A solution to the problem is a detailed routing of the design, i.e a set of wire paths that connectseach pad in A to a unique pad in B and obey the width and spacing rules. 1 PI2TR is in NP becausewe can check a given detailed wiring in polynomial time by verifying that each A is connected to aB, and that the design rules are correct. The problem is now to de�ne the set of detailed routingsthat are potential solutions, and then to choose one that is feasible.Maley[5] showed that the routability of any detailed routing can be checked by checking thefeasibility of its corresponding topological routing. A topological routing is the equivalence class ofdetailed routing under homotopic transformation. Two detailed routings that can be homotopicallytransformed from one to the other belongs to the same equivalence class and thus has the sametopological routing.The topological routing is routable if the total number of wires owing through cuts betweenany pair of features (the ow of the cut) is less than the maximum number of wires that could beaccommodated in the best case (the capacity).Because there are e�cient algorithms for �nding a correct detailed routing from a topologicalrouting[6], we will consider a feasible topological routing a solution for PI2TR.2 Network ow formulation of PI2TR1For simplicity, we will assume for now that the wires are permitted to run at any angle, although the formulationcould include another parameter to characterize the wiring style.



4 2. Network ow formulation of PI2TR
The decisive cuts on feature f

Wires flowing across cuts

Features

A cut with a flow of 4Figure 2: A topological routing with some cuts and ows illustratedIn this section we develop a network ow formulation for PI2TR. We showed that any owassignment can be transformed to a topological routing.2.1 The Routing NetworkIn the case of 2-terminal nets, we may recognize some similarities between a topological routingand a network ow. For example, a net can be modeled as a ow from a source (a terminal) to asink (the other terminal). Flow is conserved at nodes that are not source nor sink. Nets are alsoconserved because they only terminate at pins. Each source originate one unit of ow and eachsource terminate one unit of ow. Similarly, each pin either originate or terminate a net. To makethese ideas more concrete, we consider the routing network of a design.De�nition 2: If � is the dual of some triangulation of the vertices of A[B[O and the boundaryb. A Routing Network T (V;E; s; t) is a network where V = � [ A [ B. E contains a pair ofopposite arcs between each pair of adjacent triangles and one pair of opposite arcs between eachvertex in A[B and the triangles they are incident to. Each arc has a non-negative cost. The arcsoriginating from a pad of set A have unit capacities and arcs to a pad of set A have zero capacities.The opposite is true for set B. Finally, the arcs connecting triangles have a capacity equal to thecapacity of the cut between the two vertices in the triangulation dual in both directions.Note that the vertices in � are triangles. The reader should note that there are many possiblerouting networks for a given problem instance. Figure 3 shows a routing network of a PGA package.Each line segment in the �gure represents a pair of opposite arcs in the network. For each net oneof its terminals is adjacent to the supersource and the other to the supersink. The ow on the



2. Network ow formulation of PI2TR 5

Figure 3: The Routing Network of a PGA packagearcs of the routing network is the number of nets that intersect the corresponding cut. Any owassignment on the routing network are conservative.� The ow entering a vertex in A must be �1.� The ow entering a vertex in B must be either 0 or +1. (Some vertices in B may not beused.)� The net ow entering a vertex in � must be 0. (Wires end at pads, not in triangles.)We can show that ow assignment on the routing network of a design can be transformed into atopological routing of the design.Theorem 1: A ow assignment on a routing network of a design can be transformed into atopological routing of the same design.



6 3. PI2TR is NP-CompleteProof: We can transform the ow one triangle at a time. In each triangle, due to theconservation condition, we can always �nd a proper topological routing in the triangle. We delaythe discussion of speci�c cases to Section 4 where a speci�c algorithm is developed. The overalltopological routing can be formed by patching all the triangles together. 22.2 Routability of the topological routingMaley[5] showed that only a certain set of cuts, the decisive cutset, needs to be checked for atopological routing to determine its routability. The basic idea is that the safety of the shortestcut between two features implies the safety of all the cuts between them. If this cut is safe, thenall cuts between these two features are safe, and vice versa. If there are N features, then we needto check at most N(N � 1)=2 cuts. Thus, the number of cuts in the decisive cut set is bounded byO(jA+ B +Oj2).In the routing network only some cuts are represented as constraints. These cuts are the edgesof the triangulation. There are only O(N) cuts in a triangulation of N points while there are O(N2)cuts. It is obvious that many cuts are not explicitly represented by the triangulation. We call theseimplicit cuts. A ow solution only guarantees that all explicit cuts are safe but says nothing aboutimplicit cuts. In the next section we will show that PI2TR is in fact NP-complete so no polynomialtime algorithm that �nds a routable topological routing is likely to be found.3 PI2TR is NP-CompleteIn this section we describe a proof of NP-completeness of PI2TR by reduction from satis�abilityusing the method of components[7].PI2TR is in NP as was discussed in Section 1. It remains to show that PI2TR is completefor NP. Since 3-SAT is NP-complete, PI2TR is complete for NP if any instance of 3-SAT can bereduced to an instance of PI2TR.Given an instance of satis�ability in the form of a boolean expression in clausal normal form, wecan design a physical circuit layout in the form of a PLA with literals entering a switching matrixto be dispatched to a column of 3-input OR gates which feed into a large AND gate. Denote the



3. PI2TR is NP-Complete 7
Figure 4: 0-1 variables can be represented by ow in selected channelsfunction computed by this circuit as F . This ow circuit has a number of components (gates,crosspoints) that is polynomial in the number of input terms. Our objective will be to show howwe can implement this circuit as an instance of PI2TR and then use PI2TR to generate a satisfyingassignment.To achieve this we need a way of representing a boolean variable. In analogy to wires we willuse a single long circular tube with sources and sinks alternating along its length. (Fig. 4). Thetube may have some small openings, but none large enough to allow a whole wire to either ow inor out. All of the sources must connect to a neighboring sink inside the tube. All sources originateone unit of ow and all sinks terminate one unit. All tubes have the capacity of one. A feasiblesolution of PI2TR means we need integer ow assignment. The assignment of the variable x willcorrespond to the ow crossing a cut at a certain point in the tube. The complement of x is alsoavailable at some other location in the tube.We will now construct a gate. The basic idea is to allow two tubes carrying ow to touch atsome point along their length and to create a small opening, or window (Fig. 5). The windowis narrow enough that ow cannot leak from tube to tube, but the presence of ow in one tubecreates a bulge in the other tube that blocks it o�. We can then create arbitrary constraints of theform x+ y < 1. This basic switch element can be used to construct any logic gate. Fig. 6 shows a2-input AND/NAND gate. Since any logic expression can be reduced to using NAND gate alone,we can realize any logic expression. Other gates can easily be constructed in a similar fashion.



8 3. PI2TR is NP-Complete
Figure 5: Intersecting channels allow constraints to propagate from one variable to another

Figure 6: Intersections and ows can be used to construct logic gatesTo be able to construct non-planar circuits, we need to cross one signal over another signal.Fig. 7 shows a special construct to swap two variables.For a given assignment of ows, we can compute the resulting value of F . We need a way forthe output of the �nal AND gate to a�ect whether or not the whole PI2TR instance has a feasiblesolution. Observe that our variable representation allows us to access both the positive and negatedforms of a variable. That is, we can access either F or F 0 as we need. We can attach a tube with asingle source, s, and a single sink, t. Call the ow in this tube z. Now we are free for z to share awindow with the inverse of the function to be computed. If for some assignment of ow z is zero,



4. The Flow Router 9
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Crossover allows signal x to cross regardless of the value of yFigure 7: A special construction allows us to cross cycles over one another to constructnon-planar circuitsthen the source s has no connection to a sink and then the ow is infeasible. On the other hand, iffor some assignment z = 1, then we know that �F = 0 or the ow z would be pinched o�. Thus theonly feasible ow is one where F = 1. We can then �nd the satisfying assignment by looking atthe ow in the tubes corresponding to input variables. Thus PI2TR can be used to solve 3-SAT.It is instructive to note that changing PI2TR in some ways has no impact on its NP-completeness. For example, allowing fractional-width wires allows solutions to circuits that wouldotherwise be infeasible. We could require that ow across cuts always ow in the same source-sinkdirection, but since it is always possible to arrange for the ow in a bottleneck to always travel inone direction, this does not help. The critical factor seems to be the fact that the two cuts in thebottleneck cross. If this can be eliminated, then the construction fails.To summarize we have the following theorem.Theorem 2: PI2TR is NP complete.4 The Flow RouterIn this section we describe in detail the ow router as a heuristic to solve PI2TR. We use themin-cost formulation. The router has three steps:



10 4. The Flow Router1. Building the routing network.2. Solving the min-cost max-ow problem.3. Transforming the solution into a topological routing.4.1 Building the routing networkWe used the incremental Delaunay triangulation described by Lu[8] to construct the triangula-tion, although any other algorithms are equally good. The Delaunay triangulation ofN = jA[B[Ojpoints can be constructed in O(N logN) time[9]. The dual of the triangulation can be constructedin O(N) time. Additional edges can be added in O(jA[Bj) time. The capacity of each edge is setas follows:� If the edge is in the dual of the triangulation, then it represent a cut between two vertices.The capacity of the edge isbLength of cut� Pad sizes �Wire spacingWire spacing +Wire width c:This is the number of wires that can intersect this cut without overowing it.� If the edge terminate at a pin, then the capacity is set to 1.� The capacities of all edges of the supersink t and the supersource s are set to 1.There is more exibility in choosing the cost function. We choose the cost function to approxi-mate the wire length of the �nal topological routing. Since the position of a wire intersecting a cutis equally likely along the cut, we choose the edge that represent the cut in the routing network tobe the perpendicular bisector of the cut. The intersection of the three perpendicular bisectors of atriangle is the circumcenter of the circumcircle of the triangle. We therefore de�ne the cost of anedge to be the distance between the circumcenters where the edge terminate. Other points in thetriangle, such as the centroid, can be used too. Experiments show that the solutions between usingthe centroid and the circumcenter is not much di�erent. This means that both are reasonably goodestimators of real wire length.4.2 The Min-cost Max-ow Algorithm



4. The Flow Router 11Algorithm 1 (BUILDUP):Algorithm BUILDUP(Routing network T )for totalow  1 to jAjPath p SHORTESTPATH(T )if path is not found, return \T is unroutable".Increment ow on all edges of p by 1.endforAlgorithm 2 (SHORTESTPATH):Algorithm SHORTESTPATH(Routing network T )Set current cost on each vertex of T to 1.currcost(s)  0.Queue q fsg.Pass n 0.Vertex z  supersink t.while nonempty(q) and n � total number of edgesVertex v  dequeue(q).for 8w adjacent to vif ow(v; w) < capacity(v; w) and currcost(v) + cost(v; w) < currcost(w)currcost(w) currcost(v) + cost(v; w), parent(w) v.if w is not in q, enqueue(q; w).endifif ow(v; w) < 0 and currcost(v) � cost(v; w) < currcost(w)currcost(w) currcost(v) � cost(v; w), parent(w) v.if w is not in q, enqueue(q; w).endforif v = z, n n+ 1, z  last element in q.endwhileif nonempty(q) return \Path not found".�nd path by retracing back from the sink.return the shortest path. Figure 8: Algorithm buildupAfter the routing network is constructed, we run a min-cost max-ow algorithm on the net-work. The algorithm we used is based on the `buildup' algorithm described in Papadimitrou andSteiglitz[10]. Informally, we try to �nd a minimum total cost assignment of ows for a given ow.In this case, the given ow is the maximum ow because the ow is equal to the number of con-nections, i.e. jAj. This ow is maximum because the sum of capacities of edges of the supersourceis jAj. If we cannot push jAj ow across the network, the design is unroutable. This is because abottleneck of cuts in the triangulation is overowed.This algorithm requires a shortest path algorithm that handles negative-cost edges. We usedthe algorithm described in Tarjan[11]. This algorithm runs in O(jV jjEj) time. Note that the ow



12 4. The Flow Router
Figure 9: Three cases of mapping ows in a triangle to a topological routingon an edge can be positive or negative. The direction of the ow is always from the source to thesink. Fig. 8 shows both algorithms.4.3 Transforming a ow solution to a topological routingThe last step in the ow router is to convert a min-cost ow solution to a topological routing.This can be done on a triangle-by-triangle basis. Fig. 9 shows the three possible cases of owassignments on a triangle. Note that each edge of the triangle corresponds to a pair of oppositearcs in the routing network. In general the ow on both arcs are non-zero. We choose to simplythe cases by cancelling out the ow on opposite arcs and only realize the net ow. Reducing theow will certainly not violate any capacity constraint. We can only have three cases. Case 0 has noconnection to any of the pins in the triangle. Case 1 has one connection and Case 2 has two. Sincea topological routing is actually an equivalence class of homotopically equivalent detailed routings,Case 1b and Case 1c are redundant. Fig. 10 shows a homotopic transformation of a detailed routinginvolving a Case 1c triangle to a routing that does not use Case 1b or Case 1c triangles. Since thetwo routings are homotopically equivalent, they are the same topological routing.In a case 0 triangle, we can compute the subows �; �;  from the ows A, B, C by the following



4. The Flow Router 13Figure 10: A Case 1c triangle transformed homotopically to a Case 1a trianglesimple set of equations.  + � = jAj�+  = jBj� + � = jCj:We can solve this simple set of equations and obtain� = (jBj+ jCj � jAj)=2� = (jCj+ jAj � jBj)=2 = (jAj+ jBj � jCj)=2:Since the ow at any vertex is conserved, we have A+B + C = 0. The parity of A+B + C =parity(0) = E. It is straight forward to verify that parity(jBj+ jCj�jAj) = parity(jCj+ jAj�jBj) =parity(jAj+ jBj � jCj) = parity(A+ B + C) = E. Therefore �; � and  are all integers. Also,jAj+ jBj � jCj � jA+Bj � jCj= j � Cj � jCj= 0;so �; � and  are non-negative.It is a simple matter to �nd the subows in Case 1a and Case 2.We stitch the transformations of all triangles together to obtain the �nal topological routing.



14 5. Experimental Results

Figure 11: 96 pin PGA with the triangulation graph and wiring5 Experimental ResultsFig. 11 shows a small PGA with its triangulation and its routing done by the ow router. Afterrouting, the intermediate points can be relaxed using methods proposed in [12, 13, 6, 14].



6. Conclusion 15
Figure 12: 444-pin PGA package and 240-pin BGA packageThe router is used on a 444-pin pin grid array package with staggered pins, a 240-pin ball gridarray package and a 400-connection industry example. (Fig. 12 & 13). In all examples a topologicalrouting is created and transformed to a detailed routing with methods described by Dai et al[6]. Allthe examples are completed without design rule violations. The whole routing process includingtriangulation, building the routing network, running the min-cost algorithm and transform owinto topological routing takes less than 20 minutes on the probe card example on an HP9000 Model735/99.6 ConclusionA large number of diverse practical routing problems in ASIC, packaging and testing can bereduced to the Planar Interchangeable Two-terminal Routing problem. In this paper, we haveshown that despite the freedom of pin assignment, PI2TR is NP-complete. We developed a min-cost ow router heuristic to solve this problem. The router was applied to solve an array of routingproblems in PGA, BGA and other industry examples. Experimental results show that the heuristicwas e�cient in computing time and produced very good results. It is a simple matter to generalizethe routing network to multilayer with no vias.



16 6. Conclusion

Figure 13: 400-connection test probe card
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