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ABSTRACT

Visualized data often has dubious origins. One way to define data lineage is by
describing the uncertainty. In addition, different forms of uncertainty and errors are also
introduced as the data is derived, transformed, interpolated, and finally rendered. In the
absence of integrated presentation of data and its associated uncertainty, the analysis of the
visualization is incomplete at best and often leads to inaccurate or incorrect conclusions.
This paper presents several techniques of presenting data together with uncertainty. The
idea behind these techniques can be applied to both spatial (e.g. surface) and temporal
(i.e. animation) domains. We describe these techniques of representing the truths about
the data as verity visualization. The same techniques can also be used to make the users
aware of the data quality or to emphasize and draw their attention to the uncertainty.
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2. Uncertainty

1 Introduction

With few exceptions, most of the visualization
work done to date have ignored or isolated the
presentation of uncertainty from the data. Part
of the reason for this practice i1s the inherent diffi-
culty in defining, characterizing, and controlling
the introduction of uncertainty in the visualiza-
tion pipeline (figure 2.1). Another difficulty is the
absence of methods that integrate the presenta-
tion of data together with uncertainty. Finally,
there is also a need for a framework to evalu-
ate the effectiveness of these verity visualization
methods. This paper focuses on the problem of
visually mapping data and uncertainty together
into a holistic view.

From one perspective;, one might consider
adding uncertainty parameters as additional di-
mensions or fields to visualize using existing sur-
face, volume, flow, and multi-dimensional visu-
alization methods. In fact, we do start with ex-
isting methods. However, even with the simple
task of designing glyphs or icons that incorpo-
rate uncertainty information [1, 2, 3], the pro-
cess 18 sometimes counter-intuitive. For example,
while a glyph may appear appropriate by itself,
the user’s perception of the glyph may be differ-
ent when a group of them is presented in various
scales and locations. Thus, while some of the
methods we have examined are not necessarily
new, they must be able to render and convey the
data in complete accordance with the facts. We
call this verity visualization since the word ver-
ity (according to Webster) suggests the quality or
state of being true or real. While this has been
recognized and is often stated as a worthy goal in
scientific visualization ( e.g. in the IEEE Visual-
ization discussion on How to Lie with Visualiza-
tion and the NCGIA initiative on Visualization
of Spatial Data Quality [4] ), it has rarely been
pursued or realized. This paper presents some
methods that represent significant steps toward
achieving this goal.

2 Uncertainty

2.1 What is Uncertainty?

We define uncertainty as statistical variation
or spread, error, and minimum-maximum ranges.
NIST has written a standards report on uncer-
tainty, which includes operator error [5], but for
the discussion in this paper we consider three

types of uncertainty: statistical — either given
by the estimated mean and standard deviation,
which can be used to calculate a confidence inter-
val, or an actual distribution of the data; error —
a difference, or an absolute valued error among
estimates of the data, or between a known correct
datum and an estimate; and range — an interval
in which the data must exist, but which cannot
be quantified into either the statistical or error
definitions. Note that the term data quality has
an inverse relationship with data uncertainty [6]
and hence can also take advantage of the tech-
niques presented in this paper.

2.2 Sources of Uncertainty

In order to understand what is overlooked in
visualization, we quickly review the sources of un-
certainty, errors, and ranges within data. Figure
2.1 illustrates the three major blocks in a visual-
ization pipeline leading to the analysis of the vi-
sualization output. It is clear that different forms
of uncertainty are introduced into the pipeline
as data are acquired, transformed, and visual-
ized. Starting with the data acquisition stage,
one will note that nearly all data sets, whether
from instrument measurements, numerical mod-
els, or data entry have a statistical variation [7].
With instruments, there is an experimental vari-
ability whether the measurements are taken by
a machine or by a scientist. The more times
the measurement is taken, the more confident
the measurement. But there will be a statisti-
cal variation in these measurements. The same is
true for data from numerical models and human
observations or inputs. In numerical modeling,
the model and 1ts parameters have been decided
by a domain specialist, and is inherently a sim-
plification (e.g. linearization of a nonlinear sys-
tem) of the system being modeled. In addition to
model simplification and sensitivity of these mod-
els to input parameters, numerical calculations
performed on these models also introduce errors
due to the integration algorithms and the limited
precision of the computing machinery. Likewise,
there is variability in human observations both in
terms of difference in perception among individ-
uals and also to slight differences when asked to
perform a task repeatedly.

2.3 Uncertainty in Visualization

As can be seen in figure 2.1, derived uncer-
tainty is introduced in the transformation or sec-
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Figure 2.1: This visualization pipeline shows measurement uncertainty, derived uncertainty,

and visualization uncertainty.

ond stage of the visualization pipeline. What is
more interesting and perhaps not self evident is
that uncertainty is also introduced in the visu-
alization stage itself. Within the area rendering
with radiosity, there has been some recent work
in controlling the errors introduced in the render-
ing process [8, 9, 10]. As these researchers also
pointed out, the rendering process introduces un-
certainty arising from the data collection process,
algorithmic errors, and computational accuracy
and precision.

Aside from radiosity, other rendering and visu-
alization methods also suffer from unintentional
and perhaps unavoidable errors introduced dur-
ing the visualization process. For example, while
the holes arising from ambiguities in the march-
ing cubes algorithm [11] have been fixed [12], the
iso-surfaces are obtained using interpolation and
may not reconstruct the original surface. The
same 1s true for flow visualization methods, where
implementors are faced with decisions on which
integration algorithm to use. Surface modeling
and animation are not immune.
terpolation a variety of tradeoffs exist in perfor-
mance and results, and there i1s no ideal surface
in many cases because of the many free parame-
ters available [13]. In many cases the data that
are to be interpolated have numerous errors, and
may even lack topology information [14]. In ani-
mation, the process of creating the key frames is
error prone. The in-betweening to fill in frames
between the key frames is analogous to surface
interpolation, and though no method is correct,
there are many methods available, and all of
them will result in slight variations.

In surface in-

3  Existing Methods of
Visualizing Uncertainty

Many researchers are fully aware of the uncer-
tainty in their data usually in the form of errors.
These are usually displayed using some straight-
forward method such as side by side comparison
or differencing. For example, [9] used line plots
to render uncertainty, [8] used difference images,
and [10] used norms for the entire image. In sur-
face interpolation, pseudo-coloring of the surface
curvature or other properties of the surface is
used [15].

In geographic and information systems, re-
searchers are aware of the statistical variation,
However, they
use essentially multivalued visualization meth-
ods, and simply add uncertainty as another pa-
rameter into the picture. For example, GIS re-
searchers used the color of the areas on a map
to represent the uncertainty of the data at that
point on the map. They have assumed that the
variety of techniques available is fixed, and wish
to simply use available solutions from the visual-
ization community.

and have been more creative.

New techniques are being developed for higher
order data such as tensors, for new hardware fea-
tures such as texture mapping for flow visualiza-
tion, and for adding more and more variables into
existing methods such as streamlines which re-
sult in stream balls [16]. Some newer approaches
include animation for the display of uncertainty
in fuzzily classified regions [17]. With few ex-
ceptions, most of the existing methods for visu-
alizing uncertainty rely on the overloading ap-
proach where uncertainty parameters are treated
as additional data fields to be mapped to visual
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cues. This has the disadvantage of contention be-
tween data and uncertainty information for the
visual cues. The approach that we are advocating
is called the wverity visualization approach where
new and/or modification of existing techniques
are used to integrate the display of both data
and uncertainty in the same picture without us-
ing overloading. We believe that these techniques
will help the scientists, graphics users, and lay
people doing visualization. One example of our
work 1s the development of a new type of vec-
tor glyph which shows statistical variation, er-
ror, or range in both the magnitude and bearing
[3]. Another one uses iterated function systems
to indicate the level of uncertainty in surface in-
terpolation [18].

We have done a classification of uncertainty vi-
sualization techniques, and concluded that only
the scalar low density plot has been adequately
explored, where the uncertainty may be shown
with economy using Tukey’s box plots [19],
Tufte’s quartile plots [20] and/or Cleveland’s
framed rectangles [21]. What we demonstrate in
the following section are new methods for dis-
playing higher dimensional uncertainty (e.g. a
vector of uncertainty parameters) in surfaces and
in animation applications.

4  Visual Mappings of Data with
Uncertainty

We present four different methods, representa-
tive of the verity visualization approach, which
presents data and uncertainty in an integrated
fashion. These methods are: uncertainty glyphs,
fat surfaces, surface perturbations, and oscilla-
tions. Although these methods imply the exis-
tence of some surface, we will show that they can
also be applied to the visualization of uncertainty
in animation algorithms.

Uncertainty glyphs: Glyphs or icons are graph-
ics objects that encode information through their
shape, color, size, and other attributes. Uncer-
tainty glyphs are probes which can be placed in a
graphic to indicate the confidence interval, error,
or range. Examples of uncertainty glyphs for vec-
tor fields were presented in [3] and included both
the uncertainty in direction and magnitude of the
vector. The challenging aspects of uncertainty
glyph design are in the design of their shapes,
density and placement, and scaling.

Fat surfaces: These are surfaces or envelopes
which show the range of possible values in the

data. They are most appropriate for uncertainty
represented by a range of min/max values.

Perturbations: The idea here is to represent
uncertainty as randomized surface roughness.
These perturbed surfaces give an indication of
the location and degree of uncertainty in the
data.

Oscillations: This is an alternative way of
presenting min/max values. Instead of using
fat surfaces, a single surface 1s made to oscillate
between the range of possible values. An extra
degree of freedom with oscillation is to map the
duration of the surface at a particular position to
the likelihood of the data value at that position.

We now illustrate how these methods can be
used to visualizing uncertainty in surface model-
ing and animation.

4.1 Visualizing uncertainty in

surface interpolations

As an illustration for the four methods of visu-
alizing uncertainty in surface interpolations, con-
sider the errors or differences between two in-
terpolation methods: bilinear and multi-quadric.
Figure 4.1 shows the bilinearly interpolated sur-
face and figure 4.2 shows the surface obtained
through multi-quadric.  As mentioned, tradi-
tional approaches at visualizing the differences
between the two interpolation methods include
side by side comparison, difference images (figure
4.3), pseudo coloring the differences (figure 4.4),
and transparency. On the other hand, using our
proposed methods, they appear as figure 4.5 with
line glyphs or figure 4.6 with ellipsoidal glyphs.
The glyph shapes are simple in this case as the
the uncertainty parameter is simply the magni-
tude of the difference. With fat surfaces, figure
4.7 indicates the distance between the two inter-
polated surfaces. The “fat” parameter has been
scaled up to emphasize the difference between the
two surfaces. To indicate the regions where the
most variation occurs, we use surface perturba-
tions as illustrated in figure 4.8. As described,
oscillations can be used to indicate the location
and magnitude of the differences between the two
surfaces. (These can be seen in the accompanying
video). The point to note with all of these figures
is that the uncertainty information is combined
with the rendering itself.
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Figure 4.1: Bilinearly interpolated
surface.

Figure 4.3: Difference image of fig-
ures 4.1 and 4.2.
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Figure 4.2: Surface obtained using
multi-quadric interpolation.

4.2  Visualizing uncertainty in

animations

A popular method of animation is by speci-
fying key-frames and generating the in-between
frames using interpolation. This method is usu-
ally used in character animation and more re-
cently in morphing. Depending on the interpola-
tion method selected, the animation paths may
vary slightly. In this section, we use a simple
animation over a 2D M-shaped path to illustrate
how the verity visualization methods can be used
to highlight the differences between a linear and
a cubic interpolation method for generating the
in-between frames.

As with the surface interpolation example,
the uncertainty parameter here is an error term
between the position/path of the in-between
frames. Figure 4.9 shows how simple line glyphs

Figure 4.4: Pseudo colored differ-
ence on surface of image.

indicate the paths and positions of linear (red)
interpolation versus cubic (green) interpolation.
Alternatively, sphere based glyphs can also be
used (figure 4.10). The equivalent of fat surfaces
in animation is to simultaneously animate the
balls (or actors) using both paths. Figure 4.11 is
a snapshot showing how random path perturba-
tion (constrained or controlled by the difference)
can be used instead. Finally, we use motion blur-
ring to indicate the variation between the two
paths in figure 4.12.

5 Evaluation

So far, we have presented some verity visu-
alization methods. We are in the process of
adding other methods and extending the appli-

cation base. More importantly, we are also in
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Figure 4.5: Bilinear interpolated
surface with difference between bi-
linear and multi-quadric shown with
line glyphs.

Figure 4.6:

Bilinear interpolated
surface with difference between bi-
linear and multi-quadric shown with
ellipsoidal glyphs.

the process of evaluating the effectiveness of these
new methods. Two approaches are being taken in
this effort. One, the quantitative approach pro-
vides a domain independent measure. Examples
include those suggested by Tufte [20, 2]: data-ink
maximization, clutter and moire pattern mini-
mization, and multi-functionality of graphic ele-
ments. Two, the qualitative approach provides a
more subjective measure of the methods. The
measure may vary among different application
domains. In addition, it relates to perceptual
issues, the ability of the user to correlate data
and uncertainty from the presentation, training
time to understand the new presentation, rela-

Figure 4.7: Fat surfaces from the bi-
linear and multi-quadric interpola-
tions with line glyphs. The clipping
plane Is used to show the exagger-
ated difference.

Figure 4.8: Random displacement
mapping scaled to the difference to

give an indication of areas with a
greater deviation.

tive improvements over existing methods, and
any changes in the conclusions drawn from the
presentation, etc. The results from this study
will be the subject of another paper.

6 Conclusions

In this paper, we presented some verity visual-
ization methods (uncertainty glyphs fat surfaces,
perturbations, and oscillations) and applied them
to surface interpolation and animation applica-
tions. The resulting visualizations of data and
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Figure 4.9: Animation with line
glyphs and paths.

Figure 4.10: Animation with sphere
glyphs and paths.

uncertainty are integrated and present an accu-
rate depiction to the user. We believe that these
methods will prove valuable to people who need
to make informed decisions based on imperfect
data.
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