
FAST: An FPGA-Based SimulationTestbed for ATM NetworksDimitrios StiliadisAnujan VarmaUCSC-CRL-95-47September 8, 1995Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractSimulation of ATM switches and networks is a computationally demanding problem as comparedto simulation of conventional packet-based networks, owing to the large number of cell eventsthat need to be simulated in the former. To address this problem, we are developing a exiblehardware testbed for simulation of ATM-based networks. The testbed, called FAST (FPGA-based ATM simulation testbed), uses high-density �eld-programmable gate arrays (FPGAs) to allowimplementation of the key simulation components such as tra�c generators, switching fabric, bu�ermanagement, tra�c scheduling, congestion control mechanisms, and statistics recording in hardware.In the �rst version of the testbed (FAST-1), each board consists of 13 Altera FLEX devices (including4 multichip modules), providing a total of 336,000 usable gates. Each board can be used to simulatean ATM switch. Multiple boards may be interconnected to simulate large ATM networks. Softwaretools haven been developed for specifying the components of the underlying simulationmodel, such asthe switch structure, tra�c model, tra�c scheduling algorithm, and congestion control mechanisms;synthesizing the speci�cations into the individual FPGAs; controlling and monitoring the simulation;and collecting and reporting statistics.Keywords: ATM switch scheduling, �eld-programmable gate array (FPGA), simulation testbedThis research is supported by NSF Young Investigator Award MIP-9257103, faculty research funds granted bythe University of California, Santa Cruz, Altera Corporation and a software donation by Mentor Graphics.

1 IntroductionBroadband networks based on Asynchronous Transfer Mode (ATM) are enabling the inte-gration of tra�c with a wide range of characteristics within a single communication network. Inthese networks, all communication at the ATM layer is in terms of �xed-size packets, called \cells"in ATM terminology. Routing of cells is accomplished through packet switches over virtual circuitsset up between endpoints.ATM technology places stringent demands on the underlying switching system. In order tosupport a wide variety of applications, ATM networks will need to provide guarantees on bandwidth,delay, jitter, and cell loss rate. Implementation of these quality-of-service (QoS) guarantees requiresthe use of appropriate tra�c scheduling algorithms in the switches so that the available resourcesare properly allocated to the individual tra�c streams. A large number of such tra�c schedulingalgorithms have been proposed in recent literature [1, 2, 3]. In addition, congestion controlmechanisms may need to be incorporated in the individual switches for the transport of best-e�ort tra�c. A number of disparate approaches to congestion control in ATM networks have beenproposed and are currently being discussed for standardization [4].Evaluating the performance of tra�c-scheduling algorithms and congestion control mecha-nisms in the ATM switches is a challenging problem. Although analytical techniques can providevaluable insight into the operation of the system, these are often inadequate for modeling theswitch and the algorithms at the needed level of detail. In addition, the characteristics of the tra�cstreams carried by the switch can vary over a wide range, making analysis di�cult. Simulation isoften the only alternative available to evaluate the performance. Even when analytical modeling isfeasible, simulation is needed to verify the validity of the simplifying assumptions used in modeling.Simulation of ATM switches and networks using the conventional software approach istime-consuming. Because of the small size of the ATM cell, a large number of cell events may needto be simulated to reach satisfactory con�dence levels. One approach to improve the speed of thesimulation is to resort to parallel or distributed simulation, but this is a relatively expensive option.In addition, the speedup obtained by parallelizing event-driven simulators may be small becauseof their inherently serial nature [5]. Communication and synchronization bottlenecks also limit theachievable speedup.To address this problem, we are developing a exible hardware testbed for the simulation of1

ATM switches and networks at the University of California, Santa Cruz. The testbed, called FAST(FPGA-based ATM simulation testbed), uses high-density �eld-programmable gate arrays (FPGAs)to allow implementation of the key simulation components in an ATM network such as tra�cgenerators, switching fabric, bu�er management, tra�c scheduling, congestion control mechanisms,and statistics recording in hardware. Our approach consists in implementing a functional model ofthe switching system in hardware, using �eld-programmable gate arrays (FPGAs). FPGAs o�errelatively fast and inexpensive means for prototyping hardware systems. Although FPGAs typicallyprovide much lower densities (gates/chip) as compared to gate arrays, they are currently reachingthe density levels needed to model complex subsystems. For example, the Altera FLEX familycurrently o�ers devices with densities as high as 16,000 usable gates in a single chip. In addition,developments in the multichip-module and interconnection technologies have made available deviceswith as many as 48,000 usable gates, such as the Altera FLEX 8050 multichip module [6].In the �rst version of the testbed (FAST-1), each board consists of 13 Altera FLEX devices(including 4 multichip modules), providing a total of 336,000 usable gates on each board. Eachboard can be used to simulate a single ATM switch with its associated algorithms. Multiple boardsmay be interconnected to simulate large ATM networks. Software tools are being developed forspecifying the components of the simulation model, such as the switch structure, packet arrivalprocess, tra�c scheduling algorithm, and congestion control mechanisms; synthesizing the speci�-cations into the individual FPGAs; controlling and monitoring the simulation; and collecting andreporting statistics.FPGAs are ideally suited to building recon�gurable hardware systems. Devices such asthe Altera FLEX family and the Xilinx FPGAs use RAM-based lookup tables as their basic logicelement, thus allowing in-system con�gurability [6, 7]. FPGA-based prototyping aids are a valuabletool in hardware development. For example, the QuickTurn system, based on Xilinx FPGA devices,is widely used in the industry for hardware prototyping [8]. Several other e�orts have been reportedin the literature for building recon�gurable hardware systems for prototyping or emulation ofcomplex systems such as SIMD architectures [9, 10], MIMD parallel processors [11], neural networks[12], accelerators for scienti�c computation [13], and general-purpose coprocessors [14, 15].In addition, advances in high-level hardware description languages and synthesis tools havesigni�cantly reduced the time for hardware system prototyping [16]. The FAST-1 testbed plans touse VHDL as the high-level modeling language. Commercial hardware synthesis tools will then be2

used for producing the �nal logic that is automatically mapped to the FPGAs. The logic producedby such tools is of course not optimal, but allows the completion of complex designs in a very shorttime. In the case of our testbed, hardware performance, although important, is not critical sincethe model does not need to run in real time.FAST is a functional emulation system, not a prototyping system. Most of the recon�gurablesystems built so far using FPGAs are designed to serve as either hardware prototyping platformsor general purpose coprocessors. A general-purpose FPGA-based prototyping system would not bee�cient for our application since their internal organization is not usually optimized for simulatingan ATM switch architecture. In addition, a prototyping system is usually used to implementthe complete hardware of the target system. The same hardware design could then be used tomanufacture the system, often using ASIC technology. In our simulation testbed, however, theFPGAs are used as the building blocks for the functional simulation of the system. This allowsdi�erent parts of the system to be modeled at di�erent levels of detail. For example, the size andformat of ATM cells used in the simulation may be di�erent from that speci�ed by ATM standards.The cells may include only �elds that are relevant to the simulation model; cells may carry no data,or may contain only part of the data �eld essential to the protocols implemented in the simulation.The testbed is intended for modeling at the ATM layer and above; details of the physical layerare not modeled. However, delays at the physical layer can be incorporated in the simulationmodel. A host processor is used to guide the simulation and run parts of it that are not critical toperformance.The remainder of this paper is organized as follows: Section II describes the architectureof the FAST system and its key components. Section III discusses an example implementationof a tra�c scheduling algorithm based on weighted round-robin scheduling on the FAST-1 boardand compares its performance with conventional software simulation on a workstation. Section IVconcludes the paper with a summary of the current status and future directions for this research.2 FAST-1 ArchitectureThe �rst version of the testbed, called FAST-1, uses a printed-circuit board consistingof thirteen Altera FPGA devices as its building block. The board provides a total of 336,000usable gates for implementing the simulation model of the target system, and up to 17 Mbytes ofstatic RAM. The FAST-1 board is designed such that a single board can be used to simulate an3

Shared
Memory

EPF81500 EPF81500

EPF81500 EPF81500

EPF8050M

EPF8050M

EPF81500

Traffic
Generator

Traffic
Generator

Input
Module

Output
Module

Input
Module

Output
Module

1 1

4 4

Interface
ModuleFigure 1.1: Architecture of the FAST-1 board.ATM switch, and multiple boards can be interconnected via available connectors to simulate morecomplex switch fabrics or an entire ATM network consisting of multiple switches. The FPGAsallow implementation of the key simulations components in hardware. The testbed is currentlyinterfaced through the ISA bus to a PC serving as the host system; however, since the interfacelogic of the testbed is implemented using programmable hardware, it can be interfaced to otherbusses by reprogramming the interface logic. Software tools control the programming of the FPGAsand the running of the simulations.Many di�erent architectures for designing ATM switches have been proposed in the litera-ture. These include shared memory, bus, crossbar, and multistage networks (for a survey, see [17]).The architecture and interconnection structure of the FAST-1 board have been chosen so that any4

of these architectures can be mapped e�ciently on the board. Di�erent bu�ering approaches suchas input and output bu�ering can be accommodated. In addition, the board allows implementationof tra�c-scheduling algorithms and congestion control mechanisms associated with the switch tostudy their behavior. Finally, tra�c sources for simulations can be implemented on the board inhardware.A block diagram of the testbed is shown in Figure 1.1. It consists of four tra�c gener-ator modules, four input modules and four output modules. Each of the modules consists of anFPGA device and local memory in the form of static RAM. The input and output modules areinterconnected with each other via 18-bit wide paths forming a full bipartite graph. Each tra�cgenerator module is connected to the corresponding input and output modules through 16-bit widebusses. Thus, the input and output modules together can e�ciently simulate the function of a4� 4 crossbar switch with bu�ering at the input or output, and the tra�c generator modules canbe used to drive the switch model with the desired tra�c distribution during the simulation. Anadditional module, called the shared-memory module is connected through a shared bus to all theinput and output modules. The shared-memory module is also connected to all the tra�c generatormodules. This module can be used to implement a globally-accessible memory for simulations ofswitch architectures employing shared memories. In addition, this module is used for coordinatingthe loading of the local memories from the host system for setting up a simulation run.Each of the input modules, tra�c generator modules, and the shared-memory module usesan Altera FLEX 81500 as the programmable device. The 81500 device provides and equivalent of16,000 usable gates and up to 200 I/O pins. Each of the four output modules employs a denserFPGA device, the FLEX 8050.� The 8050 is a multichip module (MCM) providing a total of48,000 usable gates and 360 I/O pins. Each 8050 combines four FLEX 81188 FPGAs and an AptixField-Programmable Interconnect Chip (FPIC) in one package [18]. The FPIC is a passive devicethat can be programmed to interconnect the pins of the 81188 devices in a exible manner, witha maximum of �ve pins being connected together [19]. All devices are SRAM-based allowing easyrecon�guration.The use of FLEX 8050 devices allows more functions to be implemented in the outputmodules. This con�guration is ideally suited to the mapping of simulation models where theoutput modules need to implement substantially more logic as compared to the input modules. For�The FLEX 8050 is currently the densest FPGA device available commercially.5

example, tra�c-scheduling algorithms are often implemented within the output module; the use ofthe MCM device in the output modules allows us to simulate a much wider range of schedulingalgorithms than that would be feasible with a single-chip FPGA device. The con�guration, however,does not restrict us to simulation models where the majority of functions are implemented in theoutput modules. Since the architecture of the board is symmetric, the functions of the input andoutput modules can easily be reversed, thus allowing the MCM devices to function as the inputmodules.Each of the tra�c generator modules on the board consists of one FLEX 81500 FPGA andup to 1 Mbyte of static RAM organized in 16-bit words. Its function is to generate the input tra�cfor the simulations. The tra�c generator uses a hardware algorithm to �rst generate a uniformdistribution of random numbers. Such a sequence can be converted to any other distribution by atable lookup and interpolation. The local memory of each tra�c generator module can be used forstoring the lookup tables. More complex tra�c models, for example a video stream, that can bemodeled using Markov chains can be synthesized by implementing the Markov chain in hardware.In addition, if a more realistic tra�c model is desired, tra�c can be injected into the testbedfrom an external source. Each tra�c generator module can be connected to an external source viaa 20-bit connector, and can be programmed to implement the handshaking protocol for interfacingto the tra�c source. The local memory can now be used for temporary storage of incoming ATMcells before they are forwarded to the input modules. For this purpose we plan to utilize the \CPUDesign Kit", that can be used as a general purpose interface to an ISA-based computer [33]. Thisboard consists of six FLEX 81500 devices and can be programmed to provide a 20-bit interface tothe FAST-1 board.For example, in order to evaluate the performance of the switch under MPEG video tra�c,the ATM cell sequence that corresponds to an MPEG video source can be produced in a PC andforwarded to the testbed through the interface boards. Notice, that it is not necessary to transmitthe whole data part of the cells. The video sequence can be stored in both the source and destinationPC. A sequence number is su�cient to reconstruct the data on the destination PC and determinethe e�ect of cell-losses on the quality of the image.The tra�c-generator modules can also be used to simulate delays in the physical link andinterface. This is achieved by implementing a pipeline of ATM cells in the tra�c-generator module,causing cells to be delayed for a constant amount of time before they are forwarded to the input6

module. The pipeline can be implemented by two sliding pointers a constant distance apart. The�rst pointer shows the cell currently being serviced and the second the memory location where anew cell can be stored. At each cell-time, both pointers are advanced by one cell in memory (withcyclic wrap-around), to simulate the passage of time.The input modules are typically used to emulate the functions at the input ports of theswitch. Each input module consists of a FLEX 81500 and local memory of up to 1 Mbyte of staticRAM organized in 16-bit words. There is a dedicated set of wires connecting each input moduleto each of the output modules. Each of these paths is 18 bits wide with two additional lines forsignaling. The input module receives ATM cells from the tra�c generator modules, determinesthe destination port of the cell (performing a translation from the virtual channel number to theoutgoing port address, if necessary), and forwards the cell to the corresponding output module.If input bu�ering is used, the cell may be also bu�ered in the local memory associated with theinput module. In a switch architecture based on shared memory, the cell can be forwarded to theshared-memory module through the shared bus. Some dedicated logic is also required for keepingstatistics of various events at the input module.The output modules are typically used for multiplexing cells arriving from the di�erentinputs as well as scheduling their transmissions to the output port. Assuming that the board isused to simulate a 4 � 4 output bu�ered switch, the output module must be able to receive upto four cells per cell-time, bu�er them, and schedule the next cell for transmission. Each outputmodule consists of a FLEX 8050 and local memory of up to 2 Mbytes organized in 32-bit words.The local memory is also accessible as 16-bit words. The output modules often perform the mostcomplex functions in the switch, and therefore the use of high-density MCM devices to implementthem is justi�ed. However, as pointed out earlier, the functions of the input and output modulescan be swapped if necessary.The shared-memory module consists of a FLEX 81500 device and up to 1 Mbyte of staticRAM organized in 16-bit words. The function of the shared-memory module is to provide ane�cient means for emulating shared memory in switch architectures. The shared-memory moduleis connected to the input and output modules through a 34-bit wide common bus; in addition,there are 6 dedicated lines from each input module and each output module to the shared-memorymodule that can be used for arbitrating accesses to the bus.In addition to providing the shared-memory function, the shared-memory module is de-7

signed to serve also as a controller. This module is used to connect the testbed to the hostprocessor; hence, all data from and to the host pass through it. Since it is connected to all theinput and output modules, the shared-memory module can be used to coordinate their actionsduring the simulation; if, for example, a shared-memory switch architecture is being simulated, theshared-memory module can provide the arbitration function for accesses to the shared bu�ers. Inaddition, the shared bus can be used to load the local memories during the programming phase.Finally, some of the logic in the shared-memory module can be used to augment the logic in theinterface module, if required, to implement the bus interface to the host system.The �nal part of the FAST-1 board is the interface module. This module is responsible forproviding the interface function to the host-bus and for controlling the programming of the otherFPGAs on the board at startup time. The interface module consists of a FLEX 8820 device, aclock generator, and a small programmable logic device (PLD). The PLD enables the board tobe accessed by the host at startup by decoding its base address in hardware. Using this basicaddressing capability, the host processor �rst programs the interface FPGA; once the interface iscon�gured, the programming of the rest of the FPGAs, as well as the loading of the memories,is done under control of the interface chip. This method was used for portability of the interfaceof the testbed. Use of an FPGA device to implement the interface function allows the board tobe interfaced to any workstation- or PC-bus by reprogramming the FPGA. Although our testbedis currently connected to the ISA bus of a PC, any other bus could be accommodated by simplyreprogramming the interface chip. Note that the ISA interface currently utilizes only 10% of theavailable logic in the FLEX 8820; thus, a more complex interface can easily be accommodated inthe device. The clock generator provides a basic 40 MHz clock that can be divided within theinterface FPGA to provide the clock(s) for the testbed. A special bus is used to distribute up tofour di�erent clocks from the interface FPGA to all the other modules. These lines are connectedto the four pins designated to serve as clock inputs on each of the 81500 devices.Programming of the FPGA devices on the board is accomplished through a programmingbus. All the tra�c generator modules can be programmed either independently or in parallel. Thelatter capability is useful when the tra�c generator modules need to be programmed with identicaldesigns. Similarly, all the input modules and output modules can be programmed either in parallelor individually. During normal operation the programming lines may be used as global control linesbetween the host processor and the testbed. 8

FAST-1 provides the ability to cascade multiple boards. Each output module is connectedto an interface connector on the board, providing 20 signal lines to connect externally. The outputmodules can send out cells to another board or to an external system through this interface. The 20lines are intended to be con�gured as a 16-bit datapath plus 4 control signals. A simple handshakingprotocol can be then used to send data from an output port of one testbed to an input port ofanother testbed, thus enabling the emulation of a network of ATM switches or multistage switchfabrics. A global simulation clock is required to synchronize the multiple boards. One of theboards is determined as the master and the rest are the slaves. The master board will determinethe starting time for the processing of a new cell. The processing will not �nish until all boardshave completed their operation.A simulation model on the FAST-1 board may use either centralized or distributed control.With centralized control, the control function is performed by the interface module and/or theshared-memory module. After the programming of the board is complete, the interface modulecan be reprogrammed to implement the global controller function. The programming bus fromthe interface module to other modules can be used to provide the necessary connectivity betweenthem. With distributed control, the programming bus can again be used for exchanging informationamong the di�erent modules.A photograph of the FAST-1 board is shown in Figure 2.1. The chips are laid out on a10-layer printed-circuit board of size 1600 � 1700. The board is currently connected to the ISA busof a PC via a ribbon cable. A separate interface board is used to connect the ribbon cable to theISA bus.2.1 Mapping AlternativesThe main goal of the design of the testbed architecture was to provide the means toemulate a broad range of ATM switching fabrics and provide the insights of how the hardwareimplementation can a�ect the performance of higher level protocols. In the previous section weprovided a description of the testbed mainly in the context of output bu�ering switches.However it is easy to see that the same architecture could be used for mapping otherapproaches. For example in an input bu�ering switch the input modules can also do the bu�eringof packets. The shared module can be then used as a controller driving the crossbar switch that9

Figure 2.1: The FAST-1 board.will send the packets from the inputs to the outputs. The dedicated lines between the input andoutput modules can represent the non-blocking crossbar switch.In this case the main bottleneck of the logic become the input modules and it may beargued that there is not enough logic for these functions. A mapping we propose is to invert thefunctionality of the modules. Note that the tra�c modules are connected directly to the outputmodules through a 40-bit wide bus. We can therefore interchange the functionality of the input andoutput modules. The FLEX 8050s will implement the input port functions and the FLEX 81500swill implement the output port functions.In the case of a shared-bus or shared memory architecture the shared bus between all theinput and output modules provide us with the necessary paths. If bu�ering is required in both theinputs and the outputs of the switch, the local SRAMs available to each module can be used forthis purpose.2.2 Design ProcessDesigns of di�erent architectures are entered using either VHDL or Verilog. A library ofcommonly used modules has already been developed. Among others we have developed modulesfor a FIFO controller, random number generators, memory interface unit, as well as multiplexing10

Figure 2.2: Graphical user interface of the FAST-1 board.and distribution modules. These designs are optimized in order to better utilize the resources of thetarget FPGA architecture. Higher level designs will use this library as a basic tool to accelerate theprototyping process. We are currently in the process of designing di�erent schedulers and bu�ermanagement modules.A functional simulation of the design is performed using commercial tools [20]. High-leveltools are also used for synthesizing the behavioral design into the target FPGA technology. Softwareinterfaces between the tools are available from Altera and Mentor Graphics, and the whole designprocess is completed in a simple and e�cient way [21, 22].Furthermore, we have developed a graphical user interface that facilitates the programmingof the FPGAs and provides the necessary mechanisms for debugging the designs. The softwaretools allow access to the memories and the internal registers of the designs (see Figure 2.2) as wellas clock and control signals. The software can be customized to debug di�erent architectures.3 Design ExampleIn this section we present an example simulation model we have developed to demonstratethe use of the FAST-1 testbed and describe its implementation on the FAST-1 board. The model we11

Distributor Distributor

Concentrator Concentrator

1

1

FIFOs FIFOs

4

4

Output Modules

Input Modules

Weighted
Round−Robin

Scheduler

Weighted
Round−Robin

SchedulerFigure 3.1: General model of an output-bu�ered ATM switch.consider is that of a 4� 4 output-bu�ered ATM switch with weighted round robin scheduling [23].Each output port in the model can support up to 32 virtual channels and has su�cient amountof memory for bu�ering up to 32K cells. Since we are performing a functional simulation of thetarget system, the data �elds of the ATM cells are not represented in the model and only parts ofthe header that are essential to the simulation are used.The general architecture of the system is shown in Figure 3.1. The switch consists oftwo main stages, a distribution stage and a concentration stage. The distribution stage routesincoming cells to the output ports based on their virtual channel identi�ers. Since multiple cellscan be destined to the same output port at the same time, a multiplexing function is required.The concentration stage performs this function. The scheduling function follows the concentrationstage. The scheduler bu�ers the incoming cells and schedules them for transmission based on theirrelative priorities.A simple and e�cient approach to scheduling is the weighted round robin algorithm (Fig-ure 3.2). This algorithm can be used to provide bandwidth guarantees for individual ows passingthrough the switch. In our model of the algorithm, incoming cells at an output port are stored12

.

.

.

Virtual
Channels

Packet Transmission

Weighted Round−Robin
Scheduler

Seperate queues
for each VC

Figure 3.2: Weighted round-robin scheduling.
Credit Count

Cycle
Counter
(modulo N)

of cycle
(Keeps track

within round)

GBR Queue 1 GBR Queue 2 GBR Queue k GBR Queue n

ABR QueueFigure 3.3: Implementation of weighted round robin scheduling.in di�erent FIFO queues depending on their Virtual Channel Identi�er (VCI). During each celltime, the algorithm selects a cell for transmission in a round-robin fashion. Since di�erent virtualchannels may require di�erent portions of the output bandwidth, a credit mechanism is employedto allocate bandwidth to the individual VC. With this approach, scheduling of cells is organized inframes such that a maximum of N cells can be sent during each frame. A credit ni is associatedwith each VC i and is renewed at the beginning of the frame. Each time a cell is sent from a virtualchannel, its credit is decremented. A VC can only participate in the round-robin selection processif it has available credits. During a frame period, if ai cells from virtual channel i arrived at anoutput port, and si cells were sent, then si � min(ai; ni):That is, each virtual channel is allocated a portion of the bandwidth equal to ni=N , where N isthe size of the frame.Bandwidth guarantees are usually required only for real-time tra�c ows. Data tra�c13

requires only best-e�ort service. Tra�c requiring no bandwidth guarantees is referred to asavailable-bit-rate (ABR) tra�c. The instantaneous bandwidth left over after allocating to real-time ows can be used to transmit cells belonging to ABR tra�c. ABR cells are selected fortransmission only when no real-time ow with valid credits has a cell to send.The implementation of the scheduling algorithm in the switch is illustrated in Figure 3.3.Incoming ATM cells belonging to a virtual channel with guaranteed bandwidth is added to one ofthe n queues based on its Virtual Channel Identi�er (VCI). We refer to the queue correspondingto VC i as GBR queue i (for guaranteed bit rate). Cells belonging to ABR tra�c enter a separateABR queue.During the start of each frame, each of the GBR queues is assigned a credit count corre-sponding to the bandwidth allocated to it. The credit count is the maximum number of cells thatcan be transmitted from the queue during the frame period. Cell transmissions from the queues tothe outgoing link during the frame period are scheduled by an enable signal, which we call token.Any GBR queue with non-zero credit count that has a cell to send may block the token and trans-mit a cell. Let us assume that a cell from GBR queue k is being transmitted during the currentcell cycle. The controller from queue k injects a token to the next queue. The token propagatesthrough the chain until it is blocked by a queue that has a non-zero credit count and a cell to send;this queue may then transmit the next cell. If none of the queues with non-zero credit count has acell to send, the token returns to GBR queue k and the next cell can be transmitted from queue k ifit is non-empty and has available credits. In the case when none of the GBR queues with availablecredits has a cell to send, the next cell is selected from the ABR queue. If the ABR queue is alsoempty, a second round of token propagation is initiated. During this round any non-empty GBRqueue can block the token regardless of its credit count. The second round is required to keepthe output link busy when there are cells queued in the system (that is, to make the system workconserving).The mapping of this model to the FAST-1 board is straightforward. The distributionfunction is conveniently implemented in the input modules and the concentration and schedulingfunctions in the output modules. The tra�c modules are used to inject tra�c to the switch model.This partitioning is indicated in Figure 3.1. 14

1 N+1 N+L

L−bit Random Number

q pFigure 3.4: A simple implementation of Tausworthe random number generator.3.1 Tra�c GenerationThe tra�c generator modules can be used to implement the tra�c sources needed for thesimulations. Using a uniform random number generator in conjunction with lookup tables, theycan be programmed to produce various tra�c distributions. In an ATM simulation environment,the random number generator must satisfy several criteria such as independence of the distributionsand long period of sequences to be able to simulate the target system for a long time. Forexample, if the target system needs to be simulated for 109 cells (approximately 45 minutes witha 155 Mbits/sec link speed), the random number generator must produce a non-periodic sequenceof at least 109 numbers. In addition, the random-number generator needs to be invoked multipletimes for generating cells from the di�erent virtual channels sharing the same input port.The random number generator we used is based on the algorithm proposed by Taus-worthe [24]. Arbitrary long sequences of random numbers can be generated from linear shift-registersequences based on the primitive trinomials Xp + Xq + 1; over GF(2). Tausworthe proved thatnumber sequences formed by L consecutive bits spaced any � bits apart along a sequence of bitsproduced by such a trinomial form a sequence of uniformly distributed random numbers with goodstatistical properties.A straightforward implementation of such a random number involves a linear-feedback shiftregister (LFSR) as illustrated in Figure 3.4. The characteristic polynomial of the shift register isp(x) = 1 + xq + xp. The shift register has L outputs which provide an L-bit random number;producing a new random number requires shifting the LFSR L times. This approach, althoughsimple, is relatively slow as it requires at least L cycles to generate a new random number. In ourdesign we followed the method proposed in [25, 26] that parallelizes the L shifts by splitting theshift register into L smaller shift registers as shown in Figure 3.5. In our implementation, we usedL = 16, p = 127, and q = 1, thus producing 16-bit random numbers. One shift operation of this15

.........

..........

1 2 15 16

17

33

49

65

81

97

113

18

34

50

66

82

98

114

31

47

63

79

95

111

127

32

48

64

80

96

112Figure 3.5: Parallel implementation of a Tausworthe random number generator (p =127; q = 1; L = 16).structure is equivalent to sixteen shifts of the simple linear-feedback shift register. Therefore, anew 16-bit random number can be produced in each cycle.Uniformly distributed random numbers can be used in conjunction with the alias method,that is described in Appendix A, to produce random numbers from arbitrary distributions. Ourcurrent design of the tra�c source, including the interface from the host processor to the localmemory of the tra�c-generator modules, runs at a maximum clock speed of 15 MHz and utilizesless than 35% of the FPGA. A total of six cycles is required for generating a cell. Note that, evenif the target system were running in real-time at a link speed of 155 Mbits/sec, approximately2.5 �seconds would be available for generating a new cell; thus the tra�c generator is currentlycapable of producing tra�c at a much higher rate than is needed by the system.More complex tra�c sources can be accommodated in the tra�c generator modules. Forexample, an ON-OFF tra�c source can be implemented using three lookup tables [30]. In thismodel, the ON and OFF intervals of the source are exponentially distributed. While in the ONstate, it generates a burst of packets whose size is drawn from a geometrical distribution. Twolookup tables are required to determine how long the source stays in each of the two states and onelookup table is required to determine the size of the burst.Models of video sources can be designed using Markov chains [31]. Implementation of theseMarkov chain models in hardware also involves the use of multiple lookup tables. A uniform randomnumber is used to select the initial state of the Markov chain. Packets are sent at a rate determined16

by the current state of the Markov chain. A transition vector is associated with each state thatdetermines the next state with di�erent probabilities. Each of these transition vectors needs to beimplemented by means of a separate lookup table. However, because the number of transitions withnon-zero probabilities are small, the set of lookup tables needed can be accommodated with theavailable memory. In addition, adjacent states in the Markov chain can be aggregated to reduce theamount of memory needed without a�ecting the accuracy signi�cantly. As we mentioned earlier,more accurate models of video tra�c can be produced by injecting real MPEG video sequencesthrough the interface board.3.2 Distribution StageThe distribution function of the switch is easily mapped to the input modules. A globalsimulation clock signals the start of a new cell cycle. Each input module reads a cell through thebus connecting it to the corresponding tra�c-generator module, together with a ag indicatingwhether the cell is valid. The translation of the Virtual Circuit Identi�er (VCI) in the cell to itsoutput port is done through a lookup table that is stored in the local memory. The cell is thenforwarded to the proper output port. In our current model, a cell is represented by just 9 bits, 8bits for the VCI and one bit for the ag. Thus, only half of the available datapath between themodules is utilized. The rest of datapath can be used for expanding the design to support morecomplex functions. The current design of the distribution stage utilizes approximately 30% of theFPGA in the input module.3.3 Concentration and SchedulingA block-level diagram of the logic implemented in the output modules is shown in Figure 3.7.The local memory is partitioned into two regions, a control-memory used for storing the controlinformation associated with the scheduling queues and a cell memory that is used as a bu�er-poolfor storing the incoming cells. The design consists of a number of modules. The receiver modulereceives cells from the input modules and adds them to the scheduling queues depending on theirVCI values. The selection logic operates in parallel with the receiver; its function is to select thequeue from which the next cell will be transmitted. Once the cell is selected, the sender moduledrives the necessary logic to reect the transmission of a cell and removes the cell from the queue.The sender module is also responsible for updating a number of counters used to maintain statistics.17

E
M

P
T

Y
Z

E
R

O

A
C

T
IV

E

CTRLEL

E
M

P
T

Y
Z

E
R

O

A
C

T
IV

E

CTRLEL

E
M

P
T

Y
Z

E
R

O

A
C

T
IV

E

CTRLEL

E
M

P
T

Y
Z

E
R

O

A
C

T
IV

E

CTRLEL

E
M

P
T

Y
Z

E
R

O

A
C

T
IV

E

CTRLEL

E
M

P
T

Y
Z

E
R

O

A
C

T
IV

E

CTRLEL

E
M

P
T

Y
Z

E
R

O

A
C

T
IV

E

CTRLELFF FF
30 29 28 3 2 1 0

ABR CTRL

E
M

P
T

Y
Z

E
R

O

A
C

T
IV

E

CTRLEL

31 Figure 3.6: Block diagram of the selection module.
RECEIVER
MODULE

SENDER
MODULE

0

1

0

1

0

1

ADDRESS

DATAout

MEM_CTRL

EMPTY

CONTROL
UNIT

T
IM

E
R

ZERO

RESTART

DATAin

Q
U

E
U

E
_F

U
LL

SELECTION LOGIC

STATISTICS
MODULE

Cell Memory

Control Memory

V
C

Figure 3.7: Internal architecture of the scheduler.The control unit implements the state machine that coordinates the action of all the modules. Thestatistics module operates in parallel with the sender module and updates the event counters thatkeep track of the queueing delays of cells.The receiver module can accept up to four new cells during each cell-time. In the worse case,the incoming cells from all the four inputs may be destined to the same output port. A separatequeue is associated with each VC. A head and tail pointer for each VC are stored in the memoryand are accessed immediately after the VCI is decoded. The queue for each VC is implemented asa linked list. All available bu�ers are shared through a free-bu�er pool. Once a cell is received, anew bu�er is allocated from the free pool, the cell is timestamped and added to its correspondingqueue. This allows determination of the queueing delay of the cell at the time of its transmission.Finally, the head and tail pointers are updated and stored back in the control memory. The use18

of linked lists for implementing the queues allows full sharing of the available memory among thequeues.The selection logic uses two registers EMPTY and ZERO to select the queue from whichthe next cell is transmitted. The EMPTY register stores one bit for each of the queues indicatingwhether the queue is empty; similarly, the ZERO register consists of one bit per queue indicatingwhether there are available credits for each queue. The register is reset at the end of each frame toindicate the availability of credit for all queues. The RESTART register stores one bit per queue;each bit indicates whether the corresponding credit counter has been reloaded after a new framehas started. Use of this register avoids the need to reload all the counters at the beginning of eachframe, allowing the counters to be stored in the control memory. TIMER is a simple down-counterthat keeps track of the frame time.A block diagram of the implementation of the weighted round robin algorithm by theselection logic is shown in Figure 3.6. There is a maximum of 32 distinct queues of VCs representingguaranteed bit-rate tra�c and an additional queue for available-bit-rate (ABR) tra�c. There isone control element (CTRLEL) assigned to each of the 32 queues associated with guaranteed bit-rate tra�c. The CTRLEL that sent a cell during the previous cell-period initiates the selectionprocess by activating its CARRY OUT line to propagate the token signal through the chain. Thenext CTRLEL in the chain checks if its corresponding queue has a cell to transmit and if thereare available credits. These conditions can be checked by simply checking the corresponding bitsof the EMPTY and ZERO registers. If both conditions are true, it changes state by setting theFIRST ROUND ip-op and propagates a carry of zero to the next element. Otherwise, a carry ofone is propagated to the next control element, allowing it to be selected.The process is similar to that of a simple carry-chain adder. However, the logic involvedin each stage is more complex. As a result, the carry propagation through the entire chain of32 control elements can not be completed during one cycle. Instead, the control elements areorganized in groups of four, as in a carry lookahead adder. All control elements belonging to thesame group complete their operation during the same cycle. In the end of the cycle, the carry-outinformation from the last control element is stored in a ip-op. Subsequent groups can completetheir operation during subsequent cycles. The information from the last ip-op is sent back to the�rst control element. Note that the control element that initiates the process is not necessarily the�rst one. After 8 cycles a complete decision cycle has been completed. If the carry has propagated19

back to the initial control element, no other queue was selected to send.If, during the �rst round, a control element is selected to send, its FIRST ROUND ip-opwould be activated. In this case the propagation of a carry would have stopped. If no controlelement was selected in the �rst round, the ABR queue is checked. If it has available cells, thecell at its head is selected for transmission and the propagating carry is set to zero. Otherwise, asecond round of selection process is initiated. During this round, the �rst queue that has a cell tosend is selected without checking its bit in the ZERO register and clearing the propagating carryto zero. In any case, the whole selection process is completed in at most 16 cycles when at leastone of the queues has a cell to send.After the selection logic has determined the queue from which the next cell will be trans-mitted, the sender module reads the corresponding head and tail pointers. The �rst cell is removedfrom the queue and the available bu�er is added to the free list. The timestamp of the cell is usedto update the counters in the statistics module. Finally, the new head and tail pointers are storedback in the control memory and the EMPTY register is updated.The total logic implemented in the output module occupied two of the four FLEX 81188swithin the FLEX 8050 multichip module, with a utilization of approximately 70% for one chipand 50% for the other. The maximum achievable speed for the output module was approximately14 MHz. This was achieved by the use of pipelining in the processing of cells within the module.At this speed, the logic required approximately 3 �secs to process an ATM cell. Note that this iswithin 20% of the time required to transmit an ATM cell on a 155 Mbits/sec link.3.4 Connection SetupSo far, we did not mention anything about how a new VC connection is setup or how aconnection is removed. Note that the goal was to design a system that will have enough logic toemulate a complete ATM switch. In each module there is some logic available for accessing thelocal memory through the host-processor. Note also, that all the crucial information like VC tablesand credits are stored in the local memories of the modules.The host processor is responsible for monitoring the simulation. When the software deter-mines that a new virtual channel needs to be added to the system, the simulation is stopped andthe host processor can access the local memories of the modules. In order to add a new virtualchannel, the virtual table of the corresponding input module has to be updated with a new entry.20

After the operation is completed the simulation can continue. In a similar way we can specify thebandwidth allocated to each virtual channel in the output link. The host-processor will access thelocal memory of the corresponding output module and update the value of the maximum number ofcredits available to the VC. Removing a VC is done in the same way by deleting the correspondingentries from the local memories. The host processor will function as a global controller of the ATMswitch. Since the operations of adding or removing a virtual channel are not done very frequently,the speed of the simulation will not be a�ected by the speed of the processor or the interface bus.3.5 PerformanceTo determine an estimate of the speedups o�ered by FAST-1 over conventional softwaresimulation, we measured the running time for an example simulation of the switch model describedin the previous paragraphs on the FAST-1 and compared with the running time of a simulation ofthe same model in a workstation. The results are summarized in Table I. The table provides theactual times taken to simulate the switch for 1 million cell-times.The software simulations were run on a DEC Alpha 3000/400 workstation with 92 Mbytesof main memory using a simulator written in CSIM [32]. We then measured its running timeby varying the number of virtual-channels used by the round-robin scheduling algorithm from 4to 32. Note that the running time of the simulation on FAST-1 is not a�ected by the number ofVCs, the allocation of credits among the VC, or the frame size; in the case of software simulation,however, the simulation time increased with the number of VCs owing to the sequential nature ofthe simulation.The speedup of FAST-1 over software simulation varied over the range 140{180 in ourexample. With a more complex simulation model, the speedup of the hardware testbed would beeven more dramatic. Note that the hardware approach does not incur the overheads of schedulingevents, context switches, etc., that typically arise in conventional event-driven simulations.The necessary time to program the FPGAs is also very low. Notice that multiple modulescan be programmed in parallel. The software supports programming of all the tra�c and input inparallel. Since in most architectures the design of these modules is the same, the total programmingis completed in less than four seconds. An additional time of 5 to 10 seconds may be required fordownloading the memories with the tra�c distributions and control information. Notice also, that21

Number of Simulation time (seconds)VCs CSIM FAST-14 410 38 434 316 470 332 540 3Table 3.1: Times for simulating the example 4� 4 ATM switch model for 1 million cell-times using a software simulator based on CSIM running on a DEC Alpha workstationand on the FAST-1 board.updates in the con�guration of the switch are usually performed by selectively writing to memorylocations; this operation requires negligible time.4 ConclusionsTwo problems are of fundamental importance in realizing the promise of ATM broadbandnetworks: (i) Tra�c scheduling algorithms in ATM switches to provide guarantees on bandwidth,delay, jitter, and cell loss rate; and (ii) congestion control algorithms to allow e�ective utilization ofthe capacity of these networks. In an ATM network, these functions will need to be implementedin hardware. A serious di�culty in evaluating tra�c scheduling and congestion control algorithmsin ATM networks is the lack of a hardware testbed where the algorithms could be implementedand simulated. Conventional software simulations are often inadequate for studying the behaviorof these algorithms in ATM networks, owing to the large number of cell events that need to be sim-ulated. The FAST project is an attempt to address this problem by developing a hardware testbedfor functional simulation of ATM switches and networks. The testbed would allow us to evaluatethe algorithms by simulating them at speeds several orders of magnitude over software simulation,and will serve as a valuable tool in our ongoing research in tra�c scheduling algorithms [34, 35]and congestion control [36]. In addition to estimating the performance of the di�erent algorithms,the testbed enables us to evaluate the hardware complexity of the algorithms and the e�ect of anysimpli�cations made during implementation.The FAST project is currently in its �rst phase: The hardware for FAST-1 is operational;a graphical user interface for accessing the board, programming the FPGAs and acceleratingdebugging has been also developed. We are currently in the process of enhancing our software toolsto support the collection and presentation of the simulation data. Furthermore, we are working22

on expanding our library of modules with more sophisticated scheduling algorithms. Based on ourexperiences with FAST-1, we are also de�ning the architecture of a second version of the testbedthat would allow simulation of entire ATM networks in real time under tra�c generated by higher-level protocols running on a set of workstations. As the FPGA technology improves both in densityand speed | Altera and Xilinx have already announced single-chip devices providing as many as100,000 gates and speeds of 75 MHz | it will be possible to simulate systems of signi�cantly morecomplexity and provide even higher speedups in the future.References[1] A.Demers, S. Keshav, and S.Shenker, \Analysis and simulation of a fair queueing algorithm,"Journal of Internetworking Research and Experience, vol. 1, pp. 3{26, September 1990.[2] L. Zhang, \VirtualClock: a new tra�c control algorithm for packet switching networks," ACMTransactions on Computer Systems, vol. 9, pp. 101{124, May 1991.[3] D. D. Clark, S. Shenker, and L. Zhang, \Supporting real-time applications in an integratedservices packet network: Architecture and mechanism," in Proc. ACM SIGCOMM '92, pp. 14{26, August 1992.[4] P. Newman, \Tra�cmanagement forATM local area networks," IEEECommunications, pp. 34{50, August 1994.[5] R. Fujimoto, \Parallel event-driven simulation,"Communications of theACM, vol. 33, pp. 30{53,October 1990.[6] Altera Corporation, FLEX 8000 Handbook, July 1994.[7] Xilinx, Inc., The Programmable Logic Data Book, 1994.[8] S. Walters, \Computer-aided prototyping of ASIC-based systems," IEEE Design & Test ofComputers, pp. 4{10, June 1991.[9] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R.Minnich, D. Sweely, and D. Lopresti, \Buildingand using a highly parallel programmable logic array," IEEEComputer, no. 24, pp. 81{89, 1991.[10] J. M. Arnold, D. A. Buell, and E. G. Davis, \Splash 2," in Proceedings of the 4th Annual ACMSymposium on Parallel Algorithms and Architectures, pp. 316{324, June 1992.[11] L. Barroso, S. Iman, J. Jeong, K. Oner, K. Ramamurthy, and M. Dubois, \The USC multi-processor testbed project: Project overview," Tech. Rep. 15, University of Southern California,1994.[12] C. Cox and W. Blanz, \GANGLION - a fast �eld-programmable gate array implementation ofa connectionist classi�er," IEEE Journal of Solid-State Circuits, vol. 27, March 1992.[13] S. Monaghan and P. Noakes, \Recon�gurable special-purpose hardware for scienti�c computa-tion and simulation," Computer & Control Engineering Journal, vol. 3, pp. 225{234, September1992. 23

[14] P. Bertin, D. Roncin, and J. Vuillemin, \Programmable active memories: a performanceassessment," in Proc. International ACM/SIGDA Workshop on Field Programmable GateArrays, pp. 57{59, February 1992.[15] D. A. Thomas, T. Petersen, and D. Van den Bout, \The Anyboard rapid prototyping envi-ronment," in Advanced Research in VLSI, Proceedings of the 1991 UC Santa Cruz Conference,pp. 356{370, 1991.[16] G. D. Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill Series in Electricaland Computer Engineering, 1994.[17] F. A. Tobagi, \Fast packet switch architectures for broadband integrated services digital net-works," Proceedings of the IEEE, vol. 78, pp. 133{167, November 1990.[18] Altera Corporation, FLEX 8050M Data Sheet, August 1994.[19] Aptix Corporation, Aptix System Data Book, 1993.[20] Mentor Graphics Corporation, QuickSim User's Manual, 1995[21] Mentor Graphics Corporation, Autologic II Reference Manual, 1995[22] Altera Corporation, Mentor Graphics & MaxPlus II Logic Design, 1994, Application Note 32.[23] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, \Weighted round-robin cell multiplexingin a general-purpose ATM switch chip," IEEE Journal on Selected Areas in Communications,vol. 9, pp. 1265{79, October 1991.[24] R. Tausworthe, \Random numbers generated by linear recurrence modulo two," Mathematicsof Computation, vol. 19, pp. 100{119, 1965.[25] J. Saarinen, J. Tomberg, L. Vehmanen, and K. Kaski, \VLSI implementation of Tauswortherandom number generator for parallel processing environment," IEEE Proceedings-E, vol. 138,May 1991.[26] M. Barel, \Fast hardware random number generator for the Tausworthe sequence," in Proc.16th Annual Simulation Symposium, pp. 121{135, March 1983.[27] A. M. Law and W. Kelton, Simulation Modeling & Analysis. McGraw-Hill, Inc., 1991.[28] A. Walker, \An e�cient method for generating random variables with general distributions,"ACM Transactions on Math. Software, vol. 3, pp. 253{256, 1977.[29] R. Kronmal and A. Peterson, \On the alias method for generating random variables from adiscrete distribution," Am. Statistician, vol. 33, pp. 214{218, 1979.[30] R. Jain and S. Routhier, \Packet trains|measurements and a new model for computer networktra�c," IEEE Journal on Selected Areas in Communications, vol. 4, pp. 986{995, September1986.[31] D. Heyman, A.Tabatabai, and T. Lakshman, \Statistical analysis and simulation study of videoteleconference tra�c in ATM networks," IEEE Transactions on Circuits and Systems for VideoTechnology, vol. 2, pp. 49{59, March 1992.[32] H. Schwetman, \CSIM Reference Manual," Tech. Rep. ACT-ST-252-87, Rev. 16, Microelec-tronics and Computer Technology Corporation, 1992.[33] L. Kalampoukas, A. Varma, D. Stiliadis and Q. Jacobson, \The CPU Design Kit: An In-structional Prototyping Platform for Teaching Processor Design," Workshop on ComputerArchitecture Education, Int'l Symposium in Computer Architecture, June 1995.24

[34] D. Stiliadis and A. Varma, \Providing bandwidth guarantees in an input-bu�ered crossbarswitch," in Proc. IEEE INFOCOM '95, April 1995.[35] D. Stiliadis and A. Varma, \Frame-based fair queueing: A new tra�c scheduling algorithm forpacket-switched networks," Tech. Rep. UCSC-CRL-95-39, U.C. Santa Cruz, Dept. of ComputerEngineering, July 1995.[36] L. Kalampoukas, A. Varma and K.K. Ramakrishnan, \An e�cient rate allocation algorithm forpacket-switched networks providing max-min fairness," in Proc. High-Performance Networks,September 1995.A Tra�c GeneratorsOnce a uniform random number is generated, it can be used as an index into a lookuptable to generate any other discrete distribution of random numbers. The lookup table is storedin the local memory of the tra�c modules. The uniform random number is used as the addressof the lookup table. The straightforward way to produce a discrete random variate X that hasany distribution F is by using the inverse transform method [27]. If p(xi); i = 1; 2; : : : ; n, is theprobability mass function of the distribution, its distribution function is given byF (x) = prob(X � x) = Xxi�x p(xi):Without loss of generality we can assume that x1 < x2 < � � �xn. Then we can generate a randomvariate with distribution F by generating a uniform random variate U and returning the X = xj ,where j is the smallest positive integer such that U � F (xj). A binary search is required todetermine j in the second step of the algorithm. Thus, although the space requirements of theinverse transform method is only O(n), the time complexity is O(logn). This approach is thereforeunsuitable for hardware implementation.In our system we used the alias method [27, 28, 29]. The alias method can be used togenerate any discrete random variate having a �nite range of values. If the range of the distributionis f0; 1; : : : ; ng, the algorithm requires maintaining two tables of length n+ 1 each. The �rst tablecontains the cuto� values Fi and the second table the aliases Li. Once these tables are generated, weneed to calculate two uniform and independent random variates, one from a continuous distributionover (0; 1) and the other a discrete number from f0; 1; : : : ; ng. Let U be the former and I the latter.If U � FI , that is the value obtained from the �rst table by indexing with the random number I ,then I is returned as the desired random variate; otherwise LI , the value from the second tableindexed by I , is returned. Thus, the cuto� values represent the probabilities of returning I insteadof its alias. By a suitable choice of cuto� values and aliases, the distribution produced by thismethod can be matched to the desired one.The alias method requires the generation of two random numbers, one comparison and twoaccesses to the memory. Thus, it is ideally suited to hardware implementation. Note also that theTausworthe random number generator allows us to generate multiple random numbers in parallelby using di�erent distances between the selected bits of the LFSR. The main limitation of the alias-method is that it requires 2(n + 1) words of storage for the lookup tables. In our case, however,the available memory is not a bottleneck for even large values of n.25

There are several algorithms that can be used to generate the tables of cuto� values andaliases. The tables produced by these algorithms, in general, are not identical, but they producethe same distribution. A method proposed by Walker generates the tables in O(n logn) time [28].The most time consuming operation in this algorithm is an initial sorting of the p(i)'s. A moree�cient algorithm was proposed by Kronmal and Peterson [29], based on simple operations on sets.However, if the sum of the probabilities p(i) does not add exactly to one, the latter algorithm couldsu�er from roundo� errors. It is reported in [27] that the latter method failed when the sum of theprobabilities di�ered from 1 by as little as 10�5. Note that the run-time e�ciency of the algorithmis not critical in our case as the tables are computed only once by the host processor and are notmodi�ed during the simulations.

26

