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1. Introduction 11 IntroductionMeasured Equation of Invariance(MEI) is a new concept in computational electromag-netics[MPCL92] [HLM94] [HM94] [HML94]. MEI is used to derive the local �nite di�erence(FD) like equation at mesh boundaries where the conventional FD approach fails. It isdemonstrated that the MEI technique can be used to terminate the meshes very close to theobject boundary and still strictly preserves the sparsity of the FD equations. Therefore, the�nal system matrix encountered by MEI is a sparse matrix with size similar to that of inte-gral equation methods. Therefore, the method of MEI de�nitely results in dramatic savingsin computing time and memory usage compared to other known methods. It has been suc-cessfully used to analyze electromagnetic scattering problems [HLM94] [HM94], microwaveintegrated circuits, and IC interconnect parasitic extraction [HSD96] [SHD95].The typical treatment of a FD procedure is to make meshes on and around the object ininterest. By using loop integral method, the local FD equations can be easily deduced. Butthe derived FD equation is only applicable at interior nodes of the mesh. In paper [MPCL92],Mei postulated that the �nite di�erence/element equations at the mesh boundary pointsmay also be represented by a local linear equation. In conventional MEI, the distributionfunctions, called \metrons", are excited on the conductors or the surface of a penetrablemedia and the potential values on the MEI nodes are obtained from the integrals of themetrons multiplied by Green's function. Substituting the potential values at MEI nodesinto MEI will lead to a system of linear algebraic equations with respect to the MEIcoe�cients, where each equation corresponding to one metron. The MEI or MEI coe�cientsare determined by solving the system of linear algebraic equations. Finally, the potentialvalues at all nodes can be obtained by solving the system of linear algebraic equations whichconsist of FD equations at interior nodes and MEI at truncated mesh boundary nodes. Thecoe�cient matrix of the system of linear algebraic equations is a sparse matrix since in 2Dcases, each row contains either �ve non-zero elements from FD equations or M(or less) non-zero elements from MEI. Here, M is at most three without considering diagonal nodes. Itresults in great savings in memory needs compared with BEM or MoM etc. Furthermore,the computing time is proportional to N2 for solving a sparse matrix equation but N3 forsolving a full matrix equation. The order of coe�cient matrix in MEI approach is much lessthan that in conventional FD methods with absorbing boundary conditions, because MEIcan terminate the mesh very close to the region in which we are interested. These propertiesmake the method of MEI a powerful tool for computational electromagnetics.Nowadays however, some papers[JL94] [JL95] propose some doubts on the third postula-tion of the MEI coe�cients: invariant to excitations, which is the main topic of this report.In addition, even they have some doubts on MEI, they still admit in the papers that MEI isan e�cient technique for the truncation of mesh boundaries.



2 2. Basic MEI idea
(a) A scattering cylinder
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h (b) 2D mesh of cross-sectionFigure 1: A general cylinder and its 2D mesh scheme2 Basic MEI ideaConsidering the EM scattering problem of a general cylinder ( not necessary conducting,may be penetrable media) as shown in Fig.1(a), and several layers of 2D mesh around thecross-section of the cylinder shown in Fig.1(b). For the sake of convenience and without lossof generality, let the horizontal and vertical discretization step size the same and denoted ash. At the interior nodes of the mesh, the following 5-points �nite di�erence equation (FD)4Xi=0 ci�(�ri) = O(h4) (1)can be applied, where in Cartesian coordinate system and under uniform media assumption,c1 = c2 = c3 = c4 = 1; c0 = (kh)2 � 4, and �ri is the position vector of the ith node.On the boundary nodes as shown in Fig.1(b), a di�erent type of relation has to be applied,such as traditional E.W., M.W., and ABC's. Mei [MPCL92] postulated the existence of thefollowing linear equation for boundary nodes3Xi=0 ci�(�ri) = 0 (2)which is called MEI (measured equation of invariance), and ci; i = 0; 1; 2; 3 are calledMEI coe�cients, which MEI postulated have three properties (i) location dependent, (ii)



3. Proof of Invariance to Excitation 3geometric speci�c, (iii) invariant to the excitation on the surface of the object. Amongthem, the third one, invariance to excitation is the base of the method of MEI. We are goingto give a rigorous theoretical proof on this postulate.3 Proof of Invariance to ExcitationThe proof begins with de�nitions of some concepts.De�nition 1. Let C denote the continuous function space consisting of the continuousfunctions de�ned on the boundary � of the cylinder.For any incident �eld, the induced current distribution J(l) (l is the length along theboundary �) is always a continuous function, so J(l) 2 C.The scattered �eld �(�r) produced by the induced current J(l) can be calculated by thefollowing formula �(�r) = Z�0 J(l0)K(�r; �r0)dl0 = $[J(l0)] (3)where K(�r; �r0) is a kernel function, and $ is the integral operator.The �eld function �(�r) should satisfy the Helmholtz equation, so its derivatives of thesecond order should be continuous. According to the property of the kernel functionK(�r; �r0),in fact, the nth ( n > 2) order derivatives of the �eld function �(�r) are continuous.De�ning vector �� = (�(�r1); �(�r2); �(�r3); �(�r0)), here �ri is the position vector of the ithnode of MEI, thenDe�nition 2. � := f��; �(�r) = $[J(l)];8J(l) 2 Cg is the vector space consisting ofvectors �� produced by all currents.De�nition 3. M := f �c = (c1; c2; c3; 1); ci are any bounded complex numbersg is de�nedas the space of MEI coe�cients vectors, here the MEI coe�cient c0 has been normalized to1. De�nition 4. If �c � �� = P3i=0 ci�(�ri) = 0, then we say �c is perpendicular to ��, or �c ? ��.If 8�� 2 �; �c ? ��, then we say �c is perpendicular to the space �, or �c ? �.If �c ? �, we say �c is independent of �. Since �c � �� = 0;8�� 2 �() �c ? �, so if we wantto prove �c is independent of space �, we only need to prove that 8�� 2 �; �c � �� = 0:However, in numerical analysis, we usually have j�c � ��j � " 6= 0;8�� 2 �, here " is a verysmall quantity. In this case obviously, �c is not independent of space �, but we can say �c isindependent of space � on the sense of ".Let p = �c � �� as the projection from �c to ��, then p describes the interrelation between �cand ��. The less the projection p, the weaker the interrelation between �c and ��.We can rewrite the MEI Eq.2 as�c � �� = 0; or �c ? ��;8�� 2 � (4)



4 3. Proof of Invariance to Excitationwhich means �c is rigorously independent of the equivalent current distribution on the surfaceof the scattering cylinder, or independent of incident �eld because the current distributionis actually induced by the incident �eld.As mentioned above, the invariance to excitation is only a postulation or guess. Is therereally a MEI coe�cients vector �c that is rigorously independent of the excitation? Thequestion is answered by the following theorem.Theorem Assume a vector �c� is perpendicular to three linear independent vectors ofthe space �, i.e. �c� � ��m = 3Xi=0 c�i�m(�ri) = 0; m = 1; 2; 3 �m 2 � (5)then, �c� � �� = 3Xi=0 c�i�(�ri) = O(h2) 8� 2 � (6)which means the MEI coe�cient vector �c� is independent of excitation on the sense of O(h2).Proof: 8�� 2 �, de�ne the projection from �c� to �� asp = �c� � �� = 3Xi=0 c�i�(�ri) (7)The condition Eq.5 is just a system of linear algebraic equation with respect to the MEIcoe�cients c�1; c�2, and c�3264 �1(�r1) �1(�r2) �1(�r3)�2(�r1) �2(�r2) �2(�r3)�3(�r1) �3(�r2) �3(�r3) 375264 c�1c�2c�3 375 = �264 �1(�r0)�2(�r0)�3(�r0) 375 (8)whose solution can be easily expressed according to Gramm's rulec�i = DiD i = 1; 2; 3 (9)where D = ������� �1(�r1) �1(�r2) �1(�r3)�2(�r1) �2(�r2) �2(�r3)�3(�r1) �3(�r2) �3(�r3) ������� (10)D1 = � ������� �1(�r0) �1(�r2) �1(�r3)�2(�r0) �2(�r2) �2(�r3)�3(�r0) �3(�r2) �3(�r3) ������� (11)D2 = � ������� �1(�r1) �1(�r0) �1(�r3)�2(�r1) �2(�r0) �2(�r3)�3(�r1) �3(�r0) �3(�r3) ������� (12)



3. Proof of Invariance to Excitation 5D3 = � ������� �1(�r1) �1(�r2) �1(�r0)�2(�r1) �2(�r2) �2(�r0)�3(�r1) �3(�r2) �3(�r0) ������� (13)Therefore, the projection p can be expressed asp = �(�r1)c�1 + �(�r2)c�2 + �(�r3)c�3 + �(�r0)= �(�r1)D1 + �(�r2)D2 + �(�r3)D3 + �(�r0)DD= D4D (14)whereD4 = � ��������� �(�r1) �(�r2) �(�r3) �(�r0)�1(�r1) �1(�r2) �1(�r3) �1(�r0)�2(�r1) �2(�r2) �2(�r3) �2(�r0)�3(�r1) �3(�r2) �3(�r3) �3(�r0) ���������= � ��������� �(�r0)� h�0s(�r0) + 0:5h2�00s(�r0) +O(h3) �(�r0)� h�0n(�r0) +O(h2)�1(�r0)� h�0s1(�r0) + 0:5h2�00s1(�r0) +O(h3) �1(�r0)� h�0n1(�r0) +O(h2)�2(�r0)� h�0s2(�r0) + 0:5h2�00s2(�r0) +O(h3) �2(�r0)� h�0n2(�r0) +O(h2)�3(�r0)� h�0s3(�r0) + 0:5h2�00s3(�r0) +O(h3) �3(�r0)� h�0n3(�r0) +O(h2)�(�r0) + h�0s(�r0) + 0:5h2�00s(�r0) +O(h3) �(�r0)�1(�r) + h�0s1(�r0) + 0:5h2�00s1(�r0) +O(h3) �1(�r0)�2(�r) + h�0s2(�r0) + 0:5h2�00s2(�r0) +O(h3) �2(�r0)�3(�r) + h�0s3(�r0) + 0:5h2�00s3(�r0) +O(h3) �3(�r0) ���������= � ��������� �h�0s(�r0) + 0:5h2�00s(�r0) +O(h3) �h�0n(�r0) +O(h2)�h�0s1(�r0) + 0:5h2�00s1(�r0) +O(h3) �h�0n1(�r0) +O(h2)�h�0s2(�r0) + 0:5h2�00s2(�r0) +O(h3) �h�0n2(�r0) +O(h2)�h�0s3(�r0) + 0:5h2�00s3(�r0) +O(h3) �h�0n3(�r0) +O(h2)h�0s(�r0) + 0:5h2�00s(�r0) +O(h3) �(�r0)h�0s1(�r0) + 0:5h2�00s1(�r0) +O(h3) �1(�r0)h�0s2(�r0) + 0:5h2�00s2(�r0) +O(h3) �2(�r0)h�0s3(�r0) + 0:5h2�00s3(�r0) +O(h3) �3(�r0) ���������= h4 ��������� �0s(�r0) �0n(�r0) �00s(�r0) �(�r0)�0s1(�r0) �0n1(�r0) �00s1(�r0) �1(�r0)�0s2(�r0) �0n2(�r0) �00s2(�r0) �2(�r0)�0s3(�r0) �0n3(�r0) �00s3(�r0) �3(�r0) ���������+O(h5) (15)where �0si(�r0) = @@s�i(�r0), �0ni(�r0) = @@n�i(�r0), and s and n are the two orthogonal directionsthe mesh is built on. Similarly,D = � ������� �1(�r1) �1(�r2) �1(�r3)�2(�r1) �2(�r2) �2(�r3)�3(�r1) �3(�r2) �3(�r3) �������



6 4. Conclusion= � ������� �1(�r0)� h�0s1(�r0) +O(h2) �1(�r0)� h�0n1(�r0) +O(h2) �1(�r0) + h�0s1(�r0) +O(h2)�2(�r0)� h�0s2(�r0) +O(h2) �2(�r0)� h�0n2(�r0) +O(h2) �2(�r0) + h�0s2(�r0) +O(h2)�3(�r0)� h�0s3(�r0) +O(h2) �3(�r0)� h�0n3(�r0) +O(h2) �3(�r0) + h�0s3(�r0) +O(h2) �������= 2h2 ������� �0s1(�r0) �0n1(�r0) �1(�r0)�0s2(�r0) �0n2(�r0) �2(�r0)�0s3(�r0) �0n3(�r0) �3(�r0) �������+O(h3) (16)Therefore, the projectionp = h22 ��������� �0s(�r0) �0n(�r0) �00s (�r0) �(�r0)�0s1(�r0) �0n1(�r0) �00s1(�r0) �1(�r0)�0s2(�r0) �0n2(�r0) �00s2(�r0) �2(�r0)�0s3(�r0) �0n3(�r0) �00s3(�r0) �3(�r0) ���������������� �0s1(�r0) �0n1(�r0) �1(�r0)�0s2(�r0) �0n2(�r0) �2(�r0)�0s3(�r0) �0n3(�r0) �3(�r0) ������� = O(h2) (17)The theorem is proved.It should be noted that in the proof, if �� 2 �, but ��1; ��2; ��3 =2 �, the conclusion is stillright, which means the MEI with O(h2) residue is not unique, or there are in�nite sets ofMEI coe�cients that are independent of the excitation on the sense of O(h2).4 ConclusionIn this report, we rigorously prove that in MEI, the residue of the projection from MEIcoe�cients to any �eld distribution produced by possible sources on the surfaces of theinteresting object is in the order of O(h2), where h is the discretization error, which verifythe third key postulation of MEI and gave an error bound.References[HLM94] Wei Hong, Y.W. Liu, and K.K. Mei. Application of the measured equationof invariance to solve scattering problems invovling penetrable medium. RadioScience, April 1994.[HM94] Wei Hong and K.K. Mei. Application of the measured equation of invariance tothe scattering problem of an anisotropic mediumcylinder. In IEEE AP-S, Seattle,June 1994.[HML94] Wei Hong, K.K. Mei, and Y.W. Liu. On the metrons in the method of measuredequation of invariance. In The 10th Anniversary ACES Symposium, March 1994.



References 7[HSD96] Wei Hong, Weikai Sun, and Wayne Dai. Fast parameters extraction of multilayermulticonductor interconnects using geometry independent measured equation ofinvariance. In proceedings of IEEE MCM Conference, February 1996.[JL94] J. O. Jevtic and R. Lee. A theoretical and numerical analysis of the measuredequation invariance. IEEE Trans. on Antenn. Propagat., pages 1097{1105, August1994.[JL95] J. O. Jevtic and R. Lee. How invariance is the measured equation invariance.IEEE Microwave and Guided Wave Letters, pages 45{47, February 1995.[MPCL92] K.K.Mei,R.Pous, Z.Q.Chen, andY.W.Liu. Themeasured equation of invariance:A new concept in �eld computation. In IEEEAP-S, Digest, pages 2047{2050, July1992.[SHD95] Weikai Sun, Wei Hong, and Wayne Dai. Fast parameters extraction of generalthree-dimension interconnects using geometry independent measured equation ofinvarianceon the invariance of measured equation of invariance. Technical ReportUCSC-CRL-95-55, UCSC, Santa Cruz, 1995.


