
The Perceptron algorithm vs.Winnow: linear vs. logarithmicmistake bounds when few inputvariables are relevantJyrki Kivinen�Manfred K. WarmuthyUCSC-CRL-95-44October 6, 1995Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractWe give an adversary strategy that forces the Perceptron algorithm to make(N � k + 1)=2 mistakes when learning k-literal disjunctions over N variables. Ex-perimentally we see that even for simple random data, the number of mistakes madeby the Perceptron algorithm grows almost linearly with N , even if the number k ofrelevant variable remains a small constant. In contrast, Littlestone's algorithm Win-now makes at most O(k logN) mistakes for the same problem. Both algorithms usethresholded linear functions as their hypotheses. However, Winnow does multiplica-tive updates to its weight vector instead of the additive updates of the Perceptronalgorithm.�Supported by the Academy of Finland. This work was done while the author was visiting University ofCalifornia, Santa Cruz.Address: Department of Computer Science, P.O. Box 26 (Teollisuuskatu 23), FIN-00014 University ofHelsinki, Finland, jkivinen@cs.helsinki.�.ySupported by NSF grant IRI-9123692.Address: Computer and Information Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064,USA, manfred@cse.ucsc.edu.

1. Introduction 11 IntroductionThis paper addresses the familiar problem of predicting with a linear classi�er . Theinstances , for which one tries to predict a binary classi�cation, are N -dimensional realvectors. A linear classi�er is represented by a pair (w; �), where w 2 RN is an N -dimensional weight vector and � 2 R is a threshold . The linear classi�er represented by thepair (w; �) has the value 1 on an instance x if w � x � �, and the value 0 otherwise. Eachinstance x 2 RN can be thought of as a value assingment for N input variables: xi is thevalue for the ith input variable.Monotone disjunctions are a special case of linear classi�ers. The monotone k-literaldisjunction Xi1_: : :_Xik corresponds to the linear classi�er represented by the pair (w; 1=2)where wi1 = � � � = wik = 1 and wj = 0 for j 62 f i1; : : : ; ik g. For a given disjunction, thevariables in the disjunction are called relevant and the remaining variables irrelevant . Inthis paper we study the performance of two known learning algorithms for linear classi�erswhen they are applied to learning monotone disjunctions in which the number k of relevantvariables is much smaller than the total number N of variables.We analyze the algorithms in the following simple on-line prediction model of learning.The learning proceeds in trials. In trial t, the learning algorithm is given an instance xt andproduces its prediction ŷt using its current hypothesis, which is a linear classi�er given bythe algorithm's current weight vector wt and threshold �t. The algorithm then receives abinary outcome yt and may update its weight vector and threshold to wt+1 and �t+1. If theoutcome di�ers from the prediction, we say that the algorithm made a mistake. FollowingLittlestone [Lit89, Lit88], our goal is to minimize the total number of mistakes that thelearning algorithm makes for certain sequences of trials.The standard on-line algorithm for learning with linear classi�ers is the simple Percep-tron algorithm of Rosenblatt [Ros58]. An alternate algorithm called Winnow was introducedby Littlestone [Lit89, Lit88]. To see how the algorithms work, consider a binary vectorxt 2 f 0; 1 gN as an instance, and assume that the algorithm predicted 0 while the outcomewas 1. Then both algorithms increment those weights wt;i for which the correspondinginput xt;i was 1, but do not change the weights wt;i with xt;i = 0. Thus, wt+1 �xt > wt �xt,and the dot product increases as it should. The di�erence between the algorithms is in howthey increment the weights in question. The Perceptron algorithm adds a positive constantto each of them, whereas Winnow multiplies each of them by a constant that is larger thanone. Similarly, if the prediction was 1 and the outcome 0, the weights wt;i with xt;i = 1are decremented either by subtracting a positive constant or dividing by a constant largerthan one. The choice of the constants for the updates, as well as the initial weights andthresholds, can signi�cantly a�ect the performance of the algorithms. We call choosingthese parameters tuning .If there is a linear classi�er (u;) such that for all t we have yt = 1 if and only if u�xt � ,we say that the trial sequence is consistent with the classi�er (u;) and say that the classi�er(u;) is a target of the trial sequence. It is easy to tune Winnow so that it makes at mostO(k logN) mistakes [Lit88, Lit91] on any sequence with a k-literal disjunction as a target.If the tuning is allowed to depend on k, the tighter bound O(k+ k log(N=k)) is obtainable.This upper bound is optimal to within a constant factor since the Vapnik-Chervonenkis(VC) dimension [VC71, BEHW89] of the class of k-literal disjunctions is
(k+ k log(N=k))[Lit88] and this dimension is always a lower bound for the optimal mistake bound. Thebest upper bound we know for learning k-literal monotone disjunctions with the Perceptron

2 1. Introductionalgorithm is O(kN) mistakes. This bound comes from the Perceptron Convergence Theorem[DH73], and we suspect it is not very tight for our case, particularly when k is large.The main result of this paper is to give a simple adversary strategy that forces thePerceptron algorithm to make N � k + 1 mistakes, assuming that the initial weight vectorw1 of the algorithm is zero. If the Perceptron algorithm is allowed to choose an arbitraryinitial weight vector, we can still prove a lower bound of (N � k + 1)=2. The lower boundof (N � k+ 1)=2 actually holds for all algorithms with the property that the weight vectorof the algorithm is obtained by adding to the initial weight vector a linear combination ofthe instances seen thus far, i.e., wt = w1 + t�1Xj=1�t;jxj (1:1)for some scalars �t;j 2 R. We call such algorithms additive. The class of additive algorithmsincludes the classical Perceptron algorithm as well as a more complicated algorithm that isbased on the ellipsoid method for linear programming [MT94]. Additive algorithms includeall algorithms that do not change their predictions if the instances are rotated, i.e., if eachinstance xt is replaced by Axt where A 2 RN�N is orthonormal. In contrast, the weightvectors of Winnow satisfy wt;i = w1;i t�1Yj=1 �xj;it;j (1:2)for some positive scalars �t;j , so Winnow could be called a multiplicative algorithm. ThePerceptron algorithm has the special property that for it the scalars �t;j in (1.1) satisfy�t;j = �j+1;j for all t > j. Similarly, the scalars �t;j for Winnow in (1.2) satisfy �t;j = �j+1;jfor all t > j. Hence, for these two algorithms the new weight vector wt+1 can be obtainedfrom wt and xt without knowledge of the past instances xj where j < t.When k is small, the mistake bound of the Perceptron algorithm is exponential in theoptimal mistake bound (in this case essentially the VC dimension). This may be seen as aninstance of what is called the curse of dimensionality in the literature of neural networks andstatistics [DH73]. It may seem surprising that the Perceptron algorithm performs so badlyfor monotone disjunctions even though these concepts are simple linear classi�ers with smallweights and threshold. The di�erence in the performances of the algorithms shows that thealgorithms have a di�erent bias in their search for a good hypothesis. Intuitively, Winnowfavors weight vectors that are in some sense sparse, and wins if the target weight vector issparse (k � N in the disjunction case). If the target weight vector is dense (k =
(N) inthe disjunction case), the advantage of Winnow in the worst-case bounds becomes muchsmaller. In experiments we have seen that the Perceptron algorithm actually makes fewermistakes than Winnow when the target is dense and the learning rate and threshold is set asin the theorems that guarantee the O(k+k log(N=k)) mistake bound. In these experimentswe made the instances sparse, i.e., for each instance xt most of the components xt;i were setto zero. This assures that roughly half of the instances are still positive. We believe thatthe sparseness of the instances is advantageous for the Perceptron algorithm. Note that ifit is known that k is close to N , Winnow can be tuned so that it simulates the classicalelimination algorithm for learning disjunctions [Val84], in which case it makes at mostN�kmistakes for k literal monotone disjunctions but is not robust against noise.The trade-o� in which Winnow is able to take advantage of sparse targets and denseinstances and the Perceptron algorithm is able to take advantage of sparse instances and

1. Introduction 3dense targets is similar to the situation in on-line linear regression [KW94]. In the regressionproblem, the classical Gradient Descent algorithm makes Perceptron-style additive updates,and a new family of Exponentiated Gradient algorithms makes multiplicative Winnow-styleupdates. Again, the Exponentiated Gradient algorithms win for sparse targets and denseinstances, while the gradient descent algorithm wins for dense targets and sparse instances.In the regression problem the incomparability of the algorithm is brought out more clearlythan in the classi�cation problem. The proven worst-case loss bounds are incomparable aswell as the experimental performance on simple arti�cial data.Our lower bounds for the Perceptron algorithm are proven by an adversary argument inwhich the instances are obtained by a simple transformation from the rows of a Hadamardmatrix. Since the rows of a Hadamard matrix are orthogonal, and the Perceptron algorithmupdates its weight vector wt by adding to it some multiple of the current instance xt, theresult is that the predictions of the Perceptron algorithm are independent of the precedingtrials. Similar proofs have been devised for linear regression [LLW91]. The proofs presentedhere for the case of linear classi�cation are slightly more involved.We also wish to point out that the behavior similar to that predicted by the worst-case lower bounds already takes place on random data. In this case, too, the number ofmistakes made by the Perceptron algorithms gets close to N , while it is signi�cantly lowerfor Winnow if the number k of relevant variables is small. Possibly this is explained byfact that for large N , the dot product between two random N -dimensional binary vectorsis likely to be close to the �xed value N=4.One might argue that random inputs are not natural, either. However, even a fewgenuine random inputs may lead to a large number of pseudo-random variables when inputsare expanded to form new variables. In this case the number of mistakes of the Perceptronalgorithm may grow almost linearly in the number of pseudo-random variables.The Perceptron algorithm's susceptibility to irrelevant input variables is also present inthe batch setting. If the Perceptron algorithm is trained on the N=2 instances derived fromthe �rst half of the rows of an N �N Hadamard matrix, it will still be wrong roughly halfof the time on the instances derived from the second half of the Hadamard matrix.Winnow opens up a new venue of algorithm design. Since additional irrelevant inputvariables do not degrade the algorithm's prediction performance too badly, one can extendthe algorithm's capabilities to nonlinear prediction by introducing as additional inputsthe values for a large number of nonlinear basis functions. Ignoring for the momentcomputational e�ciency, we could as an extreme case consider learning DNF using Winnow.Introducing one new input variable for each of the possible 3N conjunctions in the DNFformula, one gets a worst-case bound of O(kN) mistakes for k-term DNF formulas. Notethat this mistake bound is very good in light of the fact that the logarithm of the numberof such formulas is O(kN). However, the computational cost of maintaining the 3N weightssoon becomes prohibitive. Instead of introducing all the new variables at once, one might asa heuristic �rst introduce only a few. Later one could use the weights of the tested variablesas a guide for choosing variables for the next iteration.We did some experiments with the above method for learning DNF and noticed that forrandom instances with respect to the uniform distribution the number of mistakes madeby Winnow did not even get close to its theoretical bound. For this simple arti�cial datathe Perceptron algorithm actually outperformed Winnow that was tuned according to theupper bound theorems of Littlestone [Lit88].

4 2. The prediction model and algorithmsWe introduce the details of the on-line prediction model and the algorithms we considerin Section 2. Section 3 gives our adversarial lower bound constructions for the class ofadditive algorithms. Our experimental results are presented in Section 4.2 The prediction model and algorithms2.1 The basic settingWe use a pair (u;) to represent a linear classi�er with the weight vector u 2 RN andthe threshold . The classi�er represented by (u;) is denoted by �u; and de�ned forx 2 RN by �u; (x) = 1 if u � x � and �u; (x) = 0 otherwise. We are mostly concernedwith the special case when x 2 f 0; 1 gN .An N -dimensional trial sequence is a game played between two players, the learner andthe teacher. For the purposes of the present paper, we restrict ourselves to learners thatpredict using linear classi�ers, in a manner we shall soon describe in more detail. The gamehas ` rounds, or trials , for some positive integer `. In a trial sequence, trial t for t = 1; : : : ; `proceeds as follows:1. The learner chooses its hypothesis (wt; �t), with wt 2 RN and �t 2 R.2. The teacher presents the instance xt 2 f 0; 1 gN .3. The learner's prediction is now de�ned to be ŷt = �wt;�t(xt).4. The teacher presents the outcome yt 2 f 0; 1 g.After the last trial, the teacher must present a target (u;), with u 2 RN and 2 R, suchthat �u; (xt) = yt for all t. The goal of the learner is to minimize the number of mistakes ,i.e., trials with yt 6= ŷt. The teacher, on the other hand, tries to force the learner to makemany mistakes.This seemingly very strong worst-case model of prediction, with an adversarial teacher,can be justi�ed by the fact that there are algorithms that can be guaranteed to make areasonable number of mistakes as learners in this model. We soon introduce two suchalgorithms, the Perceptron algorithm and Winnow, and their mistake bounds. The modelcould be made even more adversarial by allowing the teacher a given number of classi�cationerrors , i.e., trials with �u; (xt) 6= yt. On the other hand, we often restrict the teacher byrestricting the target. In this paper we consider the case where the target is required tobe a monotone k-literal disjunction, i.e., to have = 1=2 and u 2 f 0; 1 gN with exactly kcomponents ui with value 1.An on-line linear prediction algorithm is a deterministic algorithm that can act as thelearner in the game described above. A general on-line prediction algorithm would beallowed to choose as its hypothesis any mapping from f 0; 1 gN to f 0; 1 g instead of a linearclassi�er. For the restriction to linear classi�ers to be e�ective, it is essential that the learneris required to �x its hypothesis before the instance xt is given. Otherwise, the learner couldemulate an arbitrary on-line algorithm by choosing its hypothesis to be either the constantthreshold function (0;�1) or (0; 1) depending on what the prediction of that algorithmwould be on the instance xt.We use the term trial sequence for the sequence S = ((x1; y1); : : : ; (x`; y`)) that givesthe teacher's part of the game. Given a �xed deterministic learning algorithm, the learner'spart is completely determined by the trial sequence.

2. The prediction model and algorithms 52.2 The algorithmsBoth for the Perceptron algorithm and Winnow, the new hypothesis (wt+1; �t+1) dependsonly on the old hypothesis (wt; �t) and the observed instance xt and outcome yt. We callthis dependence the update rule of the algorithm. In addition to the update rule, we mustalso give the initial hypothesis (w1; �1) to characterize an algorithm. The most usual initialweight vectorsw1 are the zero vector 0 = (0; : : : ; 0) and the vector 1 = (1; : : : ; 1). Note thatthe de�nition of a linear on-line prediction algorithm allows the new hypothesis (wt+1; �t+1)to depend on earlier instances xi and outcomes yi, i < t, and there are indeed some moresophisticated algorithms with such dependencies.The Perceptron algorithm and Winnow are actually families of algorithms, both param-eterized by the initial hypothesis and a learning rate � > 0. To give the update rules ofthe algorithms, let us �rst denote by �t the sign of the prediction error at trial t, that is,�t = ŷt � yt. In their basic forms, both the Perceptron algorithm and Winnow maintain a�xed threshold, i.e., �t = �1 for all t. Given an instance xt 2 f 0; 1 gN , the sign �t, and alearning rate �, the update of the Perceptron algorithm can be written componentwise aswt+1;i = wt;i � ��txt;i (2:1)and the update of Winnow as wt+1;i = wt;ie���txt;i : (2:2)Note that this basic version of Winnow (the algorithm Winnow2 of [Lit88]) only usespositive weights (assuming that the initial weights are positive). The algorithm can begeneralized for negative weights by a simple reduction [Lit88]. See Littlestone [Lit89] for adiscussion on the learning rates and other parameters of Winnow. Here we just point outthe standard method of allowing the threshold to be �xed to 0 at the cost of increasingthe dimensionality of the problem by one. To do this, each instance x = (x1; : : : ; xN) isreplaced by x0 = (x1; : : : ; xN ; 1). Then a linear classi�er (w; �) with a nonzero threshold canbe replaced by (w0; 0) where w0 = (w1; : : : ; wN ;��). This useful technique gives a methodfor e�ectively updating the threshold together with the components of the weight vector.It is known that if the target is a monotone k-literal disjunction, Winnow makesO(k logN) mistakes [Lit88]. There are several other algorithms that make multiplicativeweight updates and achieve similar mistake bounds [Lit89]. The best upper bound we knowfor the Perceptron algorithm comes from the Perceptron Convergence Theorem given, e.g,by Duda and Hart [DH73, pp. 142{145]. Assuming that the target is a monotone k-literaldisjunctions and the instances xt 2 f 0; 1 gN satisfy Pi xt;i � X for some value X , thebound is O(kX) mistakes. Note that always X � N .As Maass and Tur�an [MT94] have pointed out, several linear programming methods canbe transformed into e�cient linear on-line prediction algorithms. Most notably, this appliesto Khachiyan's ellipsoid algorithm [Kha79] and to a newer algorithm due to Vaidya [Vai89].Vaidya's algorithm achieves an upper bound of O(N2 logN) mistakes for an arbitrary linearclassi�er as the target when the instances are from f 0; 1 gN . The Perceptron algorithm andWinnow are not suitable for learning arbitrary linear classi�ers over the domain f 0; 1 gN .Maass and Tur�an show that in the worst case the number of mistakes of both algorithms isexponential in N . The proof of the O(N2 logN) mistake bound for general linear classi�ersis based on �rst observing that arbitrary real weights in a linear classi�er can be replacedwith integer weights no larger than O(NO(N)) without changing the classi�cation of any

6 2. The prediction model and algorithmspoint in f 0; 1 gN . For monotone disjunctions, all the weights ui and the threshold candirectly be chosen from f 0; 1; 2 g, which leads to the better bound of O(N logN) mistakes.In what follows we assume that the arithmetic operations of the various algorithms canbe performed exactly, without rounding errors.2.3 Special classes of algorithmsThe main theoretical results of this paper are lower bounds for the class of additivealgorithms.De�nition 1: A linear on-line prediction algorithm is additive if for all t, the algorithm'stth weight vector wt can be written aswt = w1 + t�1Xj=1�t;jxj (2:3)for some �xed initial weight vector w1 and for some coe�cients �t;j 2 R.As we are considering on-line prediction algorithms, the coe�cients �t;j in (2.3) of coursedepend only on the instances xt;i and outcomes yi for i < t. However, the lower bounds weshall prove would be valid even if the algorithm were allowed to set the coe�cients �t;j totheir best possible values using the future instances and even the future outcomes.The Perceptron algorithm is additive. By comparing (2.1) and (2.3) we see that we cantake �t;j = ���j for the Perceptron algorithm.Consider now Winnow with initial weights w1 = 1, learning rate � = ln 2, and threshold�1 = N = 3. Let x1 = (1; 1; 0), x2 = (1; 0; 1), and y1 = y2 = 1. This is consistent with thetarget ((1; 0; 0); 1=2), and gives w3 = (4; 2; 2). As the vector w3 � w1 = (3; 1; 1) is not inthe span of fx1;x2 g, we see that Winnow is not additive.Recall that a square matrix A 2 Rm�m is orthogonal if its columns are orthogonalto each other, and orthonormal if it is orthogonal and its columns have Euclidean norm1. Thus, for an orthogonal matrix A the product ATA is a diagonal matrix, and for anorthonormal matrix ATA = I where I is the m�m identity matrix.Consider an orthonormal matrix A 2 Rm�m. If we think of a vector x 2 Rm as a listof coordinates of some point in m-dimensional space, then Ax can be considered the list ofcoordinates of the same point in a new coordinate system. The basis vectors of the newcoordinate system are represented in the original coordinate system by the column vectorsof A. Thus, orthonormal matrices represent rotations of the coordinate system. Let us writeex = Ax. Rotations preserve angles: ew �ex = (Aw)TAx = wT (ATA)x = w �xt. In a situationin which this geometric interpretation is meaningful, it would be natural to assume that thechoice of coordinate system is irrelevant, i.e., nothing changes if one systematically replacesx by ex everywhere.De�nition 2: A linear on-line prediction algorithm is rotation invariant if for all orthonor-mal matrices A 2 RN�N and all trial sequences S = ((x1; y1); : : : ; (x`; y`)), the predictionsmade by the algorithm given the trial sequence S are the same as its predictions given thetrial sequence eS = ((Ax1; y1); : : : ; (Ax`; y`)).

2. The prediction model and algorithms 7In general, being rotation invariant is not necessarily a natural property of an algorithm.For instance, the components xt;i of the instances often represent some physical quantitiesthat for di�erent imay have entirely di�erent units. It is also common to scale the instancesto make, for example, �1 � xt;i � 1 hold for all t and i. In such cases, the original coordinatesystem clearly has a special meaning. However, there are several common algorithms thatare rotation invariant.The Perceptron algorithm is rotation invariant. The linear on-line prediction algorithmone obtains by applying the reduction given by Maass and Tur�an to the ellipsoid methodfor linear programming is also rotation invariant. This is because the initial ellipsoid usedby the algorithm is a ball centered at the origin, and the updates of the ellipsoid are donein a rotation invariant manner. If one uses Vaidya's algorithm for the linear programmingin the reduction, one gets an algorithm that is not rotation invariant. Vaidya's algorithmuses a polytope that is updated in a rotation invariant manner, but the initialization of thepolytope cannot be rotation invariant.Winnow is not rotation invariant, either. To see this, consider a two-dimensional trialsequence with x1 = (1; 0), x2 = (0; 1), and y1 = y2 = 1. Assume that Winnow uses theinital weight vector w1 = 1 and a threshold such that ŷ1 = ŷ2 = 0. Then after the twotrials, Winnow has the weight vector w3 = (e�; e�). Consider now the orthonormal matrixA = 2�1=2 1 11 �1 ! :After seeing the counterexamples (Ax1; 1) and (Ax2; 1), Winnow has the hypothesis ew3 =(e�p2; 1). As w3 is linear in e� and ew3 is not, it is clear that Winnow cannot be rotationinvariant. To be speci�c, consider the instance x3 = (r;�r) for some r 2 R. Thenw3 � x3 = 0, while ew3 � Ax3 = rp2. Therefore, for some values of r the predictions ofWinnow are not the same for the rotated and the original instances.We have the following general result.Theorem 3: If a linear on-line prediction algorithm is rotation invariant, then it is anadditive algorithm with zero initial weight vector.Proof Let (wt+1; �t+1) be the hypothesis of a rotation invariant algorithm after it has seenthe instances x1; : : : ;xt and outcomes y1; : : : ; yt. We claim that wt+1 is in the subspacespanned by the set X = fx1; : : : ;xt g. It is easy to construct an orthonormal matrixA 2 RN�N such that Axi = xi for i = 1; : : : ; t, and Ax = �x for any vector x thatis orthogonal to X . Since Axt = xt, the de�nition of a rotation invariant algorithmimplies for all x 2 RN that wTt+1x � �t+1 if and only if wTt+1Ax � �t+1. Therefore,wTt+1x = wTt+1Ax for all x. If we choose a vector x that is orthogonal to X , we havewTt+1x = wTt+1Ax = �wTt+1x. Hence, wt+1 is in the subspace spanned by X . 2Conversely, consider an algorithm that is additive and has zero initial weight vector. Iffurther the algorithm's thresholds �t and the coe�cients �t;j in (2.3) depend only on theoutcomes and the dot products xi � xj, then the algorithm is easily seen to be rotationinvariant.

8 3. Lower bounds for additive algorithms3 Lower bounds for additive algorithmsGiven two vectors p 2 f�1; 1 gN and q 2 f�1; 1 gN , we denote by D(p;q) theirHamming distance, i.e., the number of indices i such that pi 6= qi.In the proofs we use some basic properties of Hadamard matrices . A Hadamard matrixis an orthogonal matrix with its element in f�1; 1 g. Multiplying a row or a column of aHadamard matrix by �1 leaves it a Hadamard matrix. Note that if p and q are two di�erentrows in an N�N Hadamard matrix, we have D(p;q) = N=2. The following de�nition givesthe most straightforward way of obtaining high-dimensional Hadamard matrices.De�nition 4: When n = 2d for some d, let Hn be the n�n Hadamard matrix obtained bythe recursive construction H1 = (1),H2n = Hn HnHn �Hn ! :We also have the following result.Lemma 5: For n = 2d where d is a positive integer, let Hn be the n� n Hadamard matrixde�ned in De�nition 4. Then for any vector p 2 f�1; 1 gn there is an index j such thatD(p;q) � N=2 holds if q is the jth column of Hn.Consider now an additive algorithm and its hypothesis given in (2.3). Its prediction onthe instance xt can depend only on the dot products w1 � xt and xi � xt where i < t. Thus,for an adversary it would be helpful to have for xt two di�erent candidates z0 and z00 forwhich these dot products do not di�er. This motivates the following de�nition.De�nition 6: Let B = ((z01; z001); : : : ; (z0̀ ; z00̀)), where z0t and z00t are in f 0; 1 gN for all t. Wesay that B is a sequence with pairwise constant dot products if for 1 � i < t � ` we havez0i � z0t = z0i � z00t and z00i � z0t = z00i � z00t .Our basic idea is to form a sequence with pairwise constant dot products by choosing z0tto be the tth row of an `� ` Hadamard matrix, and z00t = �z0t, but a simple transformationsis necessary to make the instances binary.Merely having pairwise constant dot products is not su�cient for generating mistakes.The adversary needs a target (u;) that is suitably di�erent from the algorithm's initialhypothesis. To get an idea about this, consider two instance candidates z0t and z00t with,say, wt � z0t � wt � z00t . Depending on the algorithm's threshold �t, the algorithm may eitherpredict ŷt = 0 for both xt = z0t and xt = z00t , predict ŷt = 0 for xt = z0t and ŷt = 1 forxt = z00t , or predict ŷt = 1 for both xt = z0t and xt = z00t . If the target (u;) now is such thatu � z00t < < u � z0t, then by choosing either z0t or z00t for the tth instance xt the adversarycan force the algorithm to make a mistake regardless of its choice of �t. Note that if theadversary is choosing its instances from a sequence with pairwise constant dot products andthe algorithm is additive, the condition wt � z0t � wt � z00t is equivalent with w1 � z0t � w1 � z00tand hence independent of the updates made by the algorithm. This leads to the followingde�nition.De�nition 7: Let B = ((z01; z001); : : : ; (z0̀ ; z00̀)), where z0t and z00t are in f 0; 1 gN for all t. Letw 2 RN be a weight vector and (u;) 2 RN �R a linear classi�er. We say that the weightvector w and the classi�er (u;) di�er at trial t on the sequence B if either w1 �z0t � w1 �z00tand u � z0t > > u � z00t , or w1 � z0t � w1 � z00t and u � z0t < < u � z00t .Using the basic idea given above, one can now prove the following result.

3. Lower bounds for additive algorithms 9Theorem 8: Let B be a sequence with pairwise constant dot products. Consider an additivelinear on-line prediction algorithm with the initial weight vector w1. For any target (u;),the adversary can choose the instances xt in such a way that the algorithm makes a mistakesat all trials at which w1 and (u;) di�er on B.Proof Consider a trial sequence S = ((x1; y1); : : : ; (x`; y`)), in which yt = �u; (xt)for t = 1; : : : ; `. Assume that for i = 1; : : : ; t � 1 we have xi 2 f z0i; z00i g where B =((z01; z001); : : : ; (z0̀ ; z00̀)) is a sequence with pairwise constant dot products. Let (wt; �t) bethe hypothesis of an additive linear on-line prediction algorithm before trial t. Writewt = w1+Pt�1j=1 �t;jxj , and assume that the initial weight vector w1 and the target (u;)di�er at trial t on the sequence B.Consider �rst the case with w1 �z0t � w1 �z00t and u �z0t > > u �z00t . Since B has pairwiseconstant dot products, we also have wt � z0t � wt � z00t . If �t � wt � z0t, the adversary choosesxt = z00t . In this case ŷt = 1 and yt = 0, so the algorithm makes a mistake. Otherwise, theadversary chooses xt = z0t, so ŷt = 0 and yt = 1 and again the algorithm makes a mistake.The case w1 � z0t � w1 � z00t and u � z0t < < u � z00t is similar. 2Thus, proving lower bounds is reduced to �nding for a given initial weight vector asequence with pairwise constant dot products and a target such that the initial weightvector and the target di�er su�ciently often. The sequence we use is given in the followingde�nition.De�nition 9: Let N = 2d+k�1 for some positive integers d and k, and write ` = N�k+1.Let H` be the `� ` Hadamard matrix de�ned in De�nition 4, and for t = 1; : : : ; `, let ht bethe tth row of H`. We de�ne a sequence BH = ((z01; z001); : : : ; (z0̀ ; z00̀)) by settingz0t = ((ht;1 + 1)=2; : : : ; (ht;` + 1)=2; 0; : : : ; 0)z00t = ((�ht;1 + 1)=2; : : : ; (�ht;` + 1)=2; 0; : : : ; 0) :Lemma 10: The sequence BH de�ned in De�nition 9 has pairwise constant dot products.Proof Follows from the facts that ht � ht0 = 0 for t 6= t0 and PNi=1 ht;i = �PNi=1 ht;i = 0for t � 2. 2Lemma 11: Let N = 2d+k�1 for some positive integers d and k, and write ` = N�k+1,and let BH be as in De�nition 9. There is a monotone k-literal disjunction (u; 1=2) suchthat the zero vector 0 and (u; 1=2) di�er at every trial on the sequence BH.Proof Let u 2 f 0; 1 gN be the vector with ui = 1 for i = 1 and ` + 1 � i � N , andui = 0 for 2 � i � `. For all t we have 0 � z0t = 0 � z00t = 0. For the sequence BH we haveu � z00t = 0 < 1=2 < 1 = u � z0t. 2Lemma 12: Let N = 2d+k�1 for some positive integers d and k, and write ` = N�k+1,and let BH be as in De�nition 9. For any vector w 2 RN there is a monotone k-literaldisjunction (u;) such that w and (u;) di�er at at least `=2 trials on the sequence BH.

10 4. Experiments
0 1000 2000 3000 4000 5000 6000

0

100

200

300

400

500

600

700

trials

to
ta

l n
um

be
r

of
 m

is
ta

ke
s

Perceptron

Winnow

N=200

N=200

N=400

N=400Figure 4.1: Cumulative mistake counts for the Perceptron algorithm and Winnowwith random instances and a monotone 20-literal disjunction as target.Proof De�ne a vector p 2 f�1; 1 g` by pt = �1 if w � z0t � w � z00t , and pt = 1 otherwise.According to Lemma 5, we can choose an index i such that D(p;q) � `=2 when q is the ithcolumn of the Hadamard matrixH`. We now choose u with uj = 1 if j = i or `+1 � j � N ,and uj = 0 otherwise. By the construction of BH, we have u � z0t = 0 and u � z00t = 1 whenqi = �1, and u � z0t = 1 and u � z00t = 0 when qi = 1. Therefore, for = 1=2 the vector wand the k-literal disjunction (u;) di�er at trial t on B whenever pt 6= qt. 2By combining Theorem 8 and Lemma 10 with Lemmas 11 and 12 we now get our mainresults.Theorem 13: Let N = 2d+k�1 for some positive integers d and k, and write ` = N�k+1.For any additive linear on-line prediction algorithm there is an N -dimensional trialsequence with a monotone k-literal disjunction as a target such that the algorithm makes`=2 mistakes on the trial sequence.For any additive linear on-line prediction algorithm with a zero initial weight vectorw1 = 0 there is an N -dimensional trial sequence with a monotone k-literal disjunction asa target such that the algorithm makes ` mistakes on the trial sequence.By the comments made in Section 2, Theorem 13 gives a lower bound of N � k + 1mistakes for the ellipsoid algorithm and for the Perceptron algorithm with zero as its initialweight vector. We also obtain a lower bound of (N � k + 1)=2 mistakes for the Perceptronalgorithm with arbitrary initial weight vectors. Both of the above lower bounds for thePerceptron algorithm allow the algorithm to use arbitrary thresholds in each trial.4 ExperimentsIn this section we describe some simple experiments on the Perceptron algorithm andWinnow. The experiments are not intended as a thorough empirical evaluation of thealgorithms. Rather, they illustrate the fact that in certain circumstances the actual behaviorof the algorithms is qualitatively similar to what could be expected from considering theworst-case bounds.

4. Experiments 11
0 5000 10000 15000

0

500

1000

1500

2000

2500

trials

to
ta

l n
um

be
r

of
 m

is
ta

ke
s Winnow

Perceptron

N=200

N=200

N=400

N=400

Figure 4.2: Cumulative mistake counts for the Perceptron algorithm and Winnowwith sparse random instances and k = 2N=5 literals in the target.Figure 4.1 shows the results of experiments in which the target was a monotone disjunc-tion with k = 20 literals. The instances were generated according to the uniform distributionon f 0; 1 gN . The number N of variables was 200 in the �rst experiment and 400 in the sec-ond one. We used for Winnow the parameters w1 = (1; : : : ; 1), � = ln(3=2), and �t = N=kfor all t. With this tuning Winnow is guaranteed to make at most O(k+log(N=k)) mistakesif the target is a k-literal monotone disjunction, and the algorithm is even robust againstnoise [Lit91]. For the Perceptron algorithm we have used zero initial weights and elimi-nated the threshold by the transformation given in Section 2. In this case the choice of thelearning rate of the Perceptron algorithm makes no di�erence.As we see, in this sparse case Winnow made clearly fewer mistakes. Even more notableis how little Winnow's performance degraded when the dimensionality of the instances wasdoubled. On the other hand, the number of mistakes of the Perceptron algorithm increasedmuch more drastically.Figure 4.2 shows the results of experiments in which the number k of literals in thetarget monotone disjunction was 2N=5 for N -dimensional instances. Thus, the targets weremuch denser that the ones used for Figure 4.1. Again, we made experiments with N = 200and N = 400. The instances were chosen from f 0; 1 gN at random with each componentxt;i having probability 1� 2�1=k of having value 1. This makes the probability of having apositive example 1=2. With the values k and N we considered, this gave approximately 1:7as the average number of input variables with value one; that is, 1̀Pt̀=1(PNi=1 xt;i) � 1:7.In the experiments of Figure 4.2 the Perceptron algorithm outperformed Winnow. Notethat we used the tuning that gives for Winnow the O(k+ log(N=k)) worst-case bound andmakes it robust against noise. For the tuning � = 1 and � very large, the algorithm wouldmake at mostN�k mistakes in our noise-free setting. This bound is lower than the numberof mistakes of the Perceptron algorithm in the experiments of Figure 4.2.There are several issues that need to be addressed in further experimental work. The ex-periments reported here were made with noiseless data. Both Winnow and the Perceptronalgorithm tolerate noise reasonably well, but the presence of noise could a�ect the com-parison. Finally, it remains to see whether the algorithm's behavior on data from actualapplications is similar to their behavior on random data.

12 5. Open problems5 Open problemsSo far the evaluation of our algorithms on random data is only experimental. However,it seems possible to obtain closed formulas for the expected total number of mistakes ofthe Perceptron algorithm on some thermodynamic limit (see, e.g, [SST91, WRB93]). Wewish to study how these closed formulas relate to the worst-case upper bounds and theadversary lower bounds. Studying this behavior will lead to a deeper understanding of howhigh dimensionality hurts the Perceptron algorithm and other additive algorithms. A moreextensive experimental comparison of various on-line algorithms for learning disjunctionsin the presence of attribute noise has recently been done by Littlestone [Lit95].Bounds on the worst-case number of mistakes have earlier been obtained for both thePerceptron algorithm and Winnow. Both of these upper bound proofs can be interpreted asusing amortized analysis with a potential function. Di�erent potential functions are used:a generalized version of the entropy function for Winnow [Lit91, AW95] and the squaredEuclidean distance in the Perceptron Convergence Theorem [DH73]. Our observations areanalogous to the case of on-line linear regression. Again, there are two algorithms, andworst-case loss bounds for them can be proved using the two potential functions [KW94].In the case of linear regression it is even possible to derive the updates from the two potentialfunctions in addition to using them in a worst-case analysis. It is an open problem to devisea framework for deriving updates from the potential functions in the linear classi�cationcase.The Perceptron algorithm is not specialized to learn disjunctions. However, the purposeof this paper is to show that the number of mistakes made by this and any other additivealgorithm can grow linearly in the number of variables even for simple linear classi�ers suchas small disjunctions. If only few variables are relevant then additive algorithms seem touse all the dimensions in a futile search for a good predictor. A cleaner comparison betweenthe related algorithms has been obtained in the linear regression case [KW94].When the targets are small disjunctions, the ellipsoid method also exhibits similar lineargrowth of its number of mistakes as the computationally trivial Perceptron algorithm. Wedo not know whether Vaidya's algorithm for linear programming exhibits the linear growth.Applying linear programming methods to learning simple disjunctions remains a subjectfor further study. There are some implementation issues that need to be addressed to makethe general linear programming methods perform optimally on this very restricted problem.In any case, these algorithms require signi�cantly more computation time per update thanthe Perceptron algorithm or Winnow.In this paper we considered only the case in which there is a target disjunction thatis consistent with the trial sequence. If the instances or outcomes are corrupted by noise,such a target does not usually exist. The noisy case has been considered by Littlestone[Lit91] and more recently by Auer and Warmuth [AW95]. Auer and Warmuth also proveworst-case loss bounds for the situation in which the target may change over time.References[AW95] P. Auer and M. K. Warmuth. Tracking the best disjunction. In Proc. 36thSymposium on the Foundations of Comp. Sci. IEEE Computer Society Press,Los Alamitos, CA, 1995.

References 13[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability andthe Vapnik-Chervonenkis dimension. J. ACM, 36(4):929{965, 1989.[DH73] R. O. Duda and P. E. Hart. Pattern Classi�cation and Scene Analysis. Wiley,1973.[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming (in Russian).DokladyAkademii NaukSSSR, 244:1093{1096,1979. (English translation: SovietMathematics Doklady 20:191{194, 1979.)[KW94] J. Kivinen and M. K.Warmuth. Exponentiated gradient versus gradient descentfor linear predictors. Report UCSC-CRL-94-16, University of California, SantaCruz, June 1994. An extended abstract appeared in STOC '95.[Lit88] N. Littlestone. Learning quickly when irrelevant attributes abound: A newlinear-threshold algorithm. Mach. Learning, 2:285{318, 1988.[Lit89] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Al-gorithms. PhD thesis, Report UCSC-CRL-89-11, University of California SantaCruz, 1989.[Lit91] N. Littlestone. Redundant noisy attributes, attribute errors, and linear thresholdlearning using Winnow. In Proc. 4th Workshop on Comput. Learning Theory,pages 147{156. Morgan Kaufmann, 1991.[Lit95] N. Littlestone. Comparing several linear-threshold learning algorithms on tasksinvolving superuous attributes. In Proc. 12th International Machine LearningConference (ML-95), pages 353{361, 1995.[LLW91] N. Littlestone, P. M. Long, and M. K. Warmuth. On-line learning of linearfunctions. In Proc. 23rd ACM Symposium on Theory of Computing, pages 465{475, 1991.[MT94] W. Maass and G. Tur�an. How fast can a threshold gate learn. In ComputationalLearning Theory and Natural Learning Systems, Volume I, pages 381{414. MITPress, 1994.[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information storageand organization in the brain. Psych. Rev., 65:386{407, 1958. (Reprinted inNeurocomputing (MIT Press, 1988).).[SST91] H. Sompolinsky, H. S. Seung, and N. Tishby. Learning curves in large neuralnetworks. In Proc. 4th Workshop on Comput. Learning Theory, pages 112{127.Morgan Kaufmann, 1991.[Vai89] P.M. Vaidya. A new algorithm for minimizing convex functions over convex sets.In Proc. 30th Symposium on Foundations of Computer Science, pages 338{343.IEEE Computer Society, 1989.[Val84] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134{1142,1984.[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relativefrequencies of events to their probabilities. Theory of Probab. and its Applications,16(2):264{280, 1971.[WRB93] T. L. H. Watkin, A. Rau, and M. Biehl. The statistical mechanics of learning arule. Rev. Mod. Phys., 65:499{556, 1993.

