
An Experimental Comparison of New Property List Designs

John Panzer and Linda Werner
Dept. of Computer and Information Sciences

University of California Santa Cruz
Santa Cruz CA 95060 USA

UCSC-CRL-95-43 December, 1995
panzer@cse.ucsc.edu and linda@cse.ucsc.edu

ABSTRACT
Property li sts are a common way to display and edit object
attributes. They are often organized alphabeticall y, which
can lead to usabilit y problems when the number of
properties grows large. Two alternative property li st
designs, categorical li sts and split li sts, are presented. An
experimental comparison found that categorical li sts can
reduce selection times by 62% for novice users, while split
lists show potential for a 43% reduction.

Keywords
Property sheet, property list, split list, categories, grouping

INTRODUCTION
Property li sts allow users to edit object properties in a
spreadsheet–li ke interface. Property li sts are compact,
simple, and extensible. They are particularly useful in
environments with many object types and are used in
several interface builders [1,2,5] to display and edit the
properties of interface elements. A property li st usually
displays properties for the currently selected object(s) in a
separate window, allowing the user to browse object
properties simply by changing the selection. A property li st
can handle multiple objects of different types simply by
displaying the intersection of their properties. This would
be diff icult to do with other kinds of property editors such
as specialized dialogs.

Applications often organize property li sts alphabeticall y by
property name (Figure 1). This was initiall y the case with
Vibe, an interface builder tool for The Santa Cruz
Operation (SCO) Visual Tcl scripting language [7].
Preliminary usabilit y testing of Vibe revealed several
problems with its alphabetical property li st. For example,
users often wanted to edit Width and Height properties as
part of the same task, but the alphabetical li st kept these
related properties far apart. The alphabetical organization

can hinder novice users, who are unfamiliar with property
names and so must often scan the entire li st when
searching for a property.

Figure 1 Alphabetical List

In short, the alphabetical organization does not organize
the properties in a task oriented way. Advantages of an
alphabetical organization are that it is easy to learn and
that finding an individual property is easy if the property
name is familiar. There are, however, faster ways to find
properties if the name is known (by using the keyboard, for
example). The alphabetical organization is a compromise
between ease of learning and ease of use in which neither
goal is completely satisfied.

ALTERNATIVE LIST DESIGNS
Prior to Vibe, SCO used a script based programming
environment for creating Visual Tcl applications. Because
of this, it was possible to look at existing usage patterns for
Visual Tcl object properties. Both of the new property li st
designs were based on this information [4].

A standard way to organize items on menus is to group
conceptually related items together. The same can be done
for property li sts. A sorting experiment with existing
Visual Tcl users revealed a common set of “natural
categories” [3] for the properties. These were used to
create a categorical li st (Figure 2) in which properties are
grouped according to meaning and function. The li st is
implemented as an expandable two level hierarchical
outline. The first level contains category names, while the
second level contains individual properties. This design
allows users to display the parts of the category tree they

are currently working with, or to rapidly search the
properties by expanding and collapsing categories. (Other
property li sts [1,2] categorize properties by providing
separate li sts which the user may view one at a time
through a set of tabs similar to a notebook.)

Figure 2 Categorical List

Sears [6] suggests split menus as a way to cache frequently
accessed menu items near the top of a long menu. A search
through existing script source code found that a small
subset of the properties accounted for roughly 50% of
property usage. The split li st (Figure 3) takes advantage of
this skewed distribution by placing copies of a few
commonly used properties in a nonscrolli ng cache located
above the main list.

Figure 3 Split List

It is also possible to combine the two approaches,
producing a split categorical li st. In this organization the
cache li st is an alphabetical li st while the main li st is a
categorical li st. Thus there are four possible interface
designs: Alphabetical (the baseline), categorical, split , and
split categorical.

EXPERIMENT
An experiment was conducted to determine which
interface to implement for Vibe. Six “expert” subjects had
experience with Visual Tcl properties, while six “novice”
subjects had no experience. The subjects found properties
based on short descriptions. They used simulated property
li sts which contained approximately 40 categories. The
hypotheses were that the categorical interface would

benefit novices, while the split i nterface would primaril y
benefit the experts.

The categorical interface produced the fastest selection
times for novices, yielding a 62% average reduction in
time over the alphabetical li st. For the expert group, there
was no significant effect on selection time. The experts did
select properties from the cache li sts in 72% less time than
from the main li sts of the split and split categorical
interfaces. This indicates that a split li st could produce a
substantial (43%) reduction in selection time over the
alphabetical li st, given the 50% cache hit ratio predicted in
the split li st design. Based on subjective numerical ratings
of the interfaces, both groups strongly preferred a
categorical organization. These results are significant at
the .05 level (t-test).

CONCLUSION
Alphabetical property li sts grow unwieldy as the number of
properties increases. Grouping properties according to
function or frequency, following the example of menus,
can provide substantial benefits. The next version of Vibe
implements a categorical li st with an optional, user
configurable cache. This version will be used to investigate
whether the cache is useful under field conditions, and
whether the categorical organization holds up under
sustained use.

ACKNOWLEDGMENTS
The Santa Cruz Operation’s Human Factors department
was instrumental in usability testing for this project.

REFERENCES
1. Delphi User’s Guide. Borland International, 1995.

2. Microsoft Visual Basic Programmer’s Reference.
Microsoft Press, 1993.

3. Paap, K., and Roske-Hofstrand, R. The optimal
number of menu options per panel. Human Factors
28, 4 (1986), 377-85.

4. Panzer, J. Property Lists: An Experimental
Comparison of New Property Editor Designs. A M.S.
thesis, University of Cali fornia at Santa Cruz.
Available at <http://www.cse.ucsc.edu/~panzer/th/>.

5. Pausch, R., Young II , N., and DeLine, R. Suit: The
pascal of user interface toolkits. In UIST ‘91 (1991),
117-125.

6. Sears, A. and Shneiderman, B. Split menus:
Effectively using selection frequency to organize
menus. ACM Transactions on Computer-Human
Interaction (March 1994), 27-51.

7. Young, D. SCO Visual Tcl: A new tool to crack the
Motif barrier! Draft for SCO World Magazine,
November 1994.

