
Frame-based Fair Queueing: A NewTra�c Scheduling Algorithm forPacket-Switched NetworksDimitrios StiliadisAnujan VarmaUCSC-CRL-95-39July 18, 1995Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractIn this paper we introduce and analyze frame-based fair queueing, a novel tra�c schedul-ing algorithm for packet-switched networks. The algorithm provides end-to-end delaybounds identical to those of PGPS (packet-level generalized processor sharing), without thecomplexity of simulating the uid-model system in the background as required in PGPS.The algorithm is therefore ideally suited for implementation in packet switches supportinga large number of sessions. Implementations of the algorithm are described for both generalpacket switches supporting variable packet sizes, and ATM switches supporting �xed-sizecells. In addition, we prove that the algorithm is fair in the sense that sessions are not pe-nalized for excess bandwidth they received while other sessions were idle. Frame-based fairqueueing belongs to a general class of scheduling algorithms, which we call Rate-ProportionalServers. This class of algorithms provides the same end-to-end delay and burstiness boundsas PGPS, but allows more exibility in the design and implementation of the algorithm. Weprovide a systematic analysis of this class of schedulers and obtain bounds on their fairness.Keywords: Packet scheduling, ATM switch scheduling, fair queueing, delay bounds,fairness.This research is supported by the NSF Young Investigator Award No. MIP-9257103

1 IntroductionMany future applications of computer networks such as distance education, remote collab-oration, and teleconferencing will rely on the ability of the network to provide Quality-of-Service(QoS) guarantees. These guarantees are usually in the form of bounds on end-to-end delay, band-width, delay jitter (variation in delay), packet loss rate, or a combination of these parameters.Broadband packet networks based on ATM (Asynchronous Transfer Mode) are currently enablingthe integration of tra�c with a wide range of characteristics within a single communication net-work. QoS guarantees can also be provided in conventional packet networks by the use of properpacket scheduling algorithms in the packet switches.Providing QoS guarantees in a packet network requires the use of tra�c scheduling algo-rithms in the switches (or routers). The function of a scheduling algorithm is to select, for eachoutgoing link of the switch, the packet to be transmitted in the next cycle from the available packetsbelonging to the ows sharing the output link. Implementation of the algorithm may be in hard-ware or software. Because of the small size of the ATM cell, the scheduling algorithm must usuallybe implemented in hardware in an ATM switch. In a packet network with larger packet-sizes, suchas the current Internet, the algorithm can be implemented in software.Several service disciplines are known in the literature for bandwidth allocation and trans-mission scheduling in output-bu�ered switches. In general, schedulers can be characterized aswork-conserving or non-work-conserving. A scheduler is work-conserving if the server is never idlewhen a packet is bu�ered in the system. A non-work-conserving server may remain idle even if thereare available packets to transmit. A server may, for example, postpone the transmission of a packetwhen it expects a higher-priority packet to arrive soon, even though it is currently idle. When thetransmission time of a packet is short, as is typically the case in an ATM network, however, such apolicy is seldom justi�ed. Non-work-conserving algorithms are also used to control delay jitter bydelaying packets that arrive early [1]. Work-conserving servers always have lower average delaysthan non-work-conserving servers. Examples of work-conserving schedulers include GeneralizedProcessor Sharing (GPS) [2], Weighted Fair Queueing [3], VirtualClock [4], Delay-Earliest-Due-Date (Delay-EDD) [5], Weighted Round Robin [6], and De�cit Round Robin [7]. On the otherhand, Hierarchical-Round-Robin (HRR) [8], Stop-and-Go queueing [9], and Jitter-Earliest-Due-Date [1] are non-work-conserving schedulers.Another classi�cation of schedulers is based on their internal structure [10]. Accordingto this classi�cation there are two main architectures: sorted-priority and frame-based. In asorted-priority scheduler, there is a global variable | usually referred to as the virtual time |associated with each outgoing link of the switch. Each time a packet arrives or gets serviced,this variable is updated. A timestamp, computed as a function of this variable, is associated witheach packet in the system. Packets are sorted based on their timestamps, and are transmittedin that order. VirtualClock, Weighted Fair Queueing, and Delay-EDD follow this architecture.Two factors determine the implementation complexity of all sorted-priority algorithms: First, thecomplexity of updating the priority list and selecting the packet with the highest priority is atleast O(logV) where V is the number of connections sharing the outgoing link. The second is thecomplexity of calculating the timestamp associated with each packet; this factor depends heavilyon the algorithm. For example, maintaining the virtual time in Weighted Fair Queueing requires1

the processing of a maximum of V events during the transmission of a single packet, whereastimestamps in VirtualClock can be calculated in O(1) time.In a frame-based scheduler, time is split into frames of �xed or variable length. Reservationsof sessions are made in terms of the maximum amount of tra�c the session is allowed to transmitduring a frame period. Hierarchical Round Robin and Stop-and-Go Queueing are frame-basedschedulers that use a constant frame size. As a result, the server may remain idle if sessionstransmit less tra�c than their reservations over the duration of a frame. In contrast, WeightedRound Robin and De�cit Round Robin schedulers allow the frame size to vary within a maximum.Thus, if the tra�c from a session is less than its reservation, a new frame can be started early.Therefore, both of these schedulers are work-conserving.A tra�c scheduling algorithm must possess several desirable features to be useful in practice:1. Isolation of ows: The algorithm must isolate an end-to-end session from the undesirablee�ects of other (possibly misbehaving) sessions. That is, the algorithm must be able tomaintain the QoS guarantees for a session even in the presence of other misbehaving ows.Note that isolation is necessary even when policing mechanisms are used to shape the owsat the entry point of the network, as the ows may accumulate burstiness within the network.2. Low end-to-end delays: The algorithm must provide end-to-end delay guarantees for individ-ual sessions. In particular, it is desirable that the end-to-end delay of a session depends onlyon its bandwidth reservation, and is independent of the behavior of other sessions.3. Utilization: The algorithm must utilize the link bandwidth e�ciently.4. Fairness: The available link bandwidth must be divided among the connections sharing thelink in a fair manner. Two algorithms with the same maximum delay guarantee may havesigni�cantly di�erent fairness characteristics. An unfair scheduling algorithm may o�er widelydi�erent service rates to two connections with the same reserved rate over short intervals.5. Simplicity of implementation: The scheduling algorithm must have a simple implementation.In an ATM network, the available time for completing a scheduling decision is very short. AtSONET OC-3 speeds the transmission time of an cell is less than 3 �s. For higher speedsthe available time is even less. This forces a hardware implementation. In packet networkswith larger packet sizes and/or lower speeds, a software implementation may be adequate,but scheduling decisions must still be made at a rate close to the arrival rate of packets.6. Scalability: The algorithm must perform well in switches with a large number of connections,as well as over a wide range of link speeds.Based only on the end-to-end delay bounds and fairness properties, Generalized-Processor-Sharing (GPS) is an ideal scheduling discipline [2]. GPS multiplexing is de�ned with respect toa uid-model, where packets are considered to be in�nitely divisible. The share of bandwidthreserved by session i is represented by a real number �i. Let B(�; t) be the set of connections thatare backlogged in the interval (�; t]. If r is the rate of the server, the service Wi(�; t) o�ered to aconnection i that belongs in B(�; t) is proportional to �i. That is,Wi(�; t) � �iPj2B(�;t)�j r(t� �):2

The minimum service that a connection can receive in any interval of time is�iPVj=1 �j r(t� �);where V is the maximum number of connections that can be backlogged in the server at the sametime. Thus, GPS serves each backlogged session with a minimum rate equal to its reserved rate ateach instant; in addition, the excess bandwidth available from sessions not using their reservationsis distributed among all the backlogged connections at each instant in proportion to their individualreservations. This results in perfect isolation, ideal fairness, and low end-to-end session delays.A packet-by-packet version of the algorithm, known as PGPS or Weighted Fair Queueing,was de�ned in terms of a virtual clock that is increased with rate equal to1Pi2B(�;t)�i :A GPS system is simulated in parallel with the packet-by-packet system in order to identify theset of connections that are backlogged at each time. The virtual time v(t) is a piecewise linearfunction of the real time t, and its slope changes depending on the number of busy sessions andtheir service rates. At the arrival of a new packet, the virtual time must be calculated �rst. Then,the time-stamp TSi associated with the kth packet of virtual channel i is calculated as:TSki max(TSk�1i ; v(t)) + L�i ;where L is the size of the kth packet.A maximum of V events may be triggered in the GPS simulator during the transmissionof one packet. Thus, the process overhead for completing a scheduling decision is O(V). In orderto reduce this complexity, an approximate implementation of GPS multiplexing was proposed in[11] and was later analyzed in [12] under the name Self-Clocked Fair Queueing (SCFQ). In thisimplementation, the timestamp of an arriving packet is computed based on the packet currently inservice. Thus, if TScur denotes the timestamp of the packet in service, and if the new packet is thekth packet of session i, the timestamp of the new packet is calculated asTSki max(TScur; TSk�1i) + L�i :This approach reduces the complexity of the algorithm greatly. However, the price paid is thereduced level of isolation among the sessions, causing the end-to-end delay bounds to grow linearlywith the number of sessions that share the outgoing link [13]. Thus, the worst-case delay of asession can no longer be controlled just by controlling its reservation, as is possible in PGPS. Thehigher end-to-end delay also a�ects the burstiness of sessions within the network, increasing thebu�er requirements.The VirtualClock scheduling algorithm provides the same end-to-end delay and burstinessbounds as PGPS with a simple timestamp computation algorithm, but the price paid is in terms offairness. A backlogged session in the VirtualClock server can be starved for an arbitrary period of3

time as a result of excess bandwidth it received from the server when other sessions were idle [2]. Ascheduling algorithm that combines the delay and burstiness behavior of PGPS, simple timestampcomputations, and bounded unfairness, has so far remained elusive. Our objective in this paper isto develop an analytical framework for the design of such algorithms and, in particular, present anovel scheduling algorithm based on this framework, called Frame-based Fair Queueing.Frame-based fair queueing (FFQ) is a sorted-priority algorithm, and therefore uses times-tamps to order packet transmissions. However, it requires only O(1) time for the timestamp calcu-lation independent of the number of sessions sharing the server. At the same time, the end-to-enddelay guarantees of FFQ are identical to those obtained from a corresponding PGPS server. Inaddition, the server is fair in the sense that connections are always served proportionally to theirreservations when they are backlogged, and are not penalized for an arbitrary amount of time forbandwidth they received while the system was empty. The algorithm uses a framing approachsimilar to that used in frame-based schedulers to update the state of the system; the transmissionof packets, however, is still based on timestamps.The rest of this paper is organized as follows: In Section 2, we present some de�nitionsand a brief summary of the concept of Latency-Rate Servers (or LR-servers) [13]. LR-serversprovide a general framework for modeling the worst-case behavior of scheduling algorithms. Allwork-conserving servers known to us can be modeled using this framework. In Section 3, wede�ne a class of scheduling algorithms, called Rate-Proportional Servers which provide the sameworst-case delay behavior as GPS, but allow the design of algorithms with a wide range of fairnesscharacteristics. We derive bounds on the end-to-end delay and burstiness in a network of rate-proportional servers and analyze their fairness behavior. In Section 4, we de�ne the frame-basedfair queueing algorithm and show that it is a rate-proportional server. The basic algorithm isde�ned using the uid model, but its extension to the packet-level version is straightforward. InSection 5 we present two implementation of the frame-based fair queueing algorithm, the �rst for ageneral packet network with variable-size packets and the second for ATM networks with �xed-sizecells. The latter takes into account the constraints of a hardware implementation. Finally, someconcluding remarks are presented in Section 6. Appendix A contains the proofs of many lemmasand theorems, while Appendix B provides some results from simulations of the FFQ algorithm.2 PreliminariesWe assume a packet switch where a set of V connections share a common output link.The terms connection, ow, and session will be used synonymously. We denote with �i the rateallocated to connection i.We assume that the servers are non-cut-through devices. Let Ai(�; t) denote the arrivalsfrom session i during the interval (�; t] andWi(�; t) the amount of service received by session i duringthe same interval. In a system based on the uid model, both Ai(�; t) and Wi(�; t) are continuousfunctions of t. However, in the packet-by-packet model, we assume that Ai(�; t) increases onlywhen the last bit of a packet is received by the server; likewise, Wi(�; t) is increased only when thelast bit of the packet in service leaves the server. Thus, the uid model may be viewed as a specialcase of the packet-by-packet model with in�nitesimally small packets.4

t1 t2 t3 t4

A i

i

iFigure 2.1: Intervals (t1; t2] and (t3; t4] are two di�erent busy periods.De�nition 1: A system busy period is a maximal interval of time during which the server isnever idle.During a system busy period the server is always transmitting packets.De�nition 2: A backlogged period for session i is any period of time during which packetsbelonging to that session are continuously queued in the system.Let Qi(t) represent the amount of session i tra�c queued in the server at time t, that is,Qi(t) = Ai(0; t)�Wi(0; t):A connection is backlogged at time t if Qi(t) > 0.De�nition 3: A session i busy period is a maximal interval of time (�1; �2] such that for anytime t 2 (�1; �2]; packets of connection i arrive with rate greater than or equal to �i, or,Ai(�1; t) � �i(t� �1):A session busy period is the maximal interval of time during which if the session wereserviced with exactly the guaranteed rate, it would be remain continuously backlogged (Figure 2.1).Multiple session-i busy periods may appear during a system busy period.The session busy period is de�ned only in terms of the arrival function and the allocatedrate. It is important to realize the basic distinction between a session backlogged period and asession busy period. The latter is de�ned with respect to a hypothetical system where a backloggedconnection i is serviced at a constant rate �i, while the former is based on the actual system wherethe instantaneous service rate varies according to the number of active connections and their servicerates. Thus, a busy period may contain intervals during which the actual backlog of session i tra�cin the system is zero; this occurs when the session receives an instantaneous service rate of morethan �i during the busy period.For a given session-i backlogged period, the corresponding busy period can be longer. Inaddition, if (s1; f1] is a busy period for session i, multiple backlogged periods may occur in theactual system during the interval (s1; f1]. The beginning of a busy period is always caused by the5

arrival of a packet into the system. Since we are interested in a worst-case analysis of the system,the session busy period provides us a convenient means to bound the queueing delays within thesystem.In [13], we introduced a general model for tra�c scheduling algorithms, called Latency-Rate(LR) servers. Any server in this class is characterized by two parameters: latency �i and minimumallocated rate �i. Let us assume that the jth busy period of connection i starts at time � . We denoteby WSi;j(�; t) the total service provided to the packets of the connection that arrived after time �and until time t by server S. Notice that the total service o�ered to connection i in this interval,WSi (�; t), may actually be more than WSi;j(�; t) since some packets from a previous busy period,that are still queued in the system, may be serviced as well.De�nition 4: A server S belongs in the class LR if and only if for all times t after time � thatthe j-th busy period started and until the packets that arrived during this period are serviced,WSi;j(�; t) � max(0; �i(t� � � �Si)):�Si is the minimum non-negative number that can satisfy the above inequality.The right-hand side of the above equation de�nes an envelope to bound the minimum serviceo�ered to session i during a busy period. It is easy to observe that the latency �Si represents theworst-case delay seen by a session-i packet arriving into an empty queue. For a uid-model server,this is the worst-case delay until the �rst bit of the packet is transmitted; for a packet-by-packetserver, �Si denotes the maximum delay before the last bit of the packet is serviced. The maximumdelay through a network of LR-servers can be computed from the knowledge of the latencies of theindividual servers and the tra�c model. Thus, the theory of LR-servers allows us to determinetight upper-bounds on end-to-end delays in a network of servers where the servers on a path maynot all use the same scheduling algorithm.The function WSi;j(�; t) may be a step function in a packet-by-packet scheduler. As in thecase of Wi(�; t), we update WSi;j(�; t) only when the last bit of a packet has been serviced. Only inthe case of a uid-server packets can be arbitrarily small and thus WSi;j(�; t) may be continuous.To determine end-to-end delay bounds, we assume that tra�c from session i at the sourceis leaky-bucket shaped [14]. That is, Ai(�; t) � �i + �i(t� �)during any time interval (�; t]. Also, we assume that session i is allocated a minimum rate of �i inthe network. We state without proof the following key result from [13].Theorem 1: The maximum delay DKi and the maximum backlog QKi of session i after the Kthnode in an arbitrary network of LR-servers are bounded asDKi � �i�i + KXj=1�(Sj)i ;QKi � �i + �i KXj=1�(Sj)i ;where �(Sj)i is the latency of the jth server on the path of the session.6

Server Latency Fairness ComplexityGPS 0 0 -PGPS Li�i + Lmaxr max(Li�i + Ci; Lj�j + Cj ;Lmax�j + Li�i ; Lmax�i + Lj�j), whereCi = min((V � 1)Lmax�i ; max1�n�V (Ln�n)). O(V)SCFQ Li�i + Lmaxr (V � 1) Li�i + Lj�j O(logV)VirtualClock Li�i + Lmaxr 1 O(logV)De�cit Round Robin (3F��i)r 3Fr O(1)Weighted Round Robin (F��i+Lc)r Fr O(1)Table 2.1: Latency, fairness and implementation complexity of several work-conservingservers. Li is the maximum packet size of session i and Lmax the maximum packet sizeamong all the sessions. Ci is the maximum normalized service that a session may receivein a PGPS server in excess of that in the GPS server. In weighted round-robin and de�citround-robin, F is the frame size and �i is the amount of tra�c in the frame allocated tosession i. Lc is the size of the �xed packet (cell) in weighted round-robin.This theorem allows us to calculate bounds on end-to-end delays and bu�er requirementsfor an arbitrary topology network where the only constraint is that individual switches use schedul-ing algorithms belonging to the class LR. Furthermore, all known work-conserving schedulers| such as GPS, PGPS, Weighted Round Robin, Self-Clocked Fair Queueing, VirtualClock andDe�cit-Round-Robin | have been shown to be LR-servers [13]. In Table 2 we summarize thelatencies of many well-known work-conserving schedulers, along with bounds on their fairness andimplementation complexity. The fairness parameter in the table is the maximum di�erence in nor-malized service o�ered by the scheduler to two connections over any interval during which bothconnections are continuously backlogged. The implementation complexity is at least O(log2 V) forall sorted-priority schedulers.The packet-by-packet approximation of GPS (PGPS) has the lowest latency among allthe packet-by-packet servers; thus, from Theorem 1, PGPS has the lowest bounds on end-to-enddelay and bu�er requirements. However, PGPS also has the highest implementation complexity.VirtualClock has the same latency as PGPS, but is not a fair algorithm [4, 2]. Notice, however,that none of the other algorithms su�ers from such a high level of unfairness. In SCFQ as wellas the round-robin schedulers, latency is a function of the number of connections that share theoutput link. In a broadband network, the resulting end-to-end delay bounds may be prohibitivelylarge. 7

The GPS scheduler provides ideal fairness by o�ering the same normalized service to allbacklogged connections at every instant of time. Thus, if we represent the total amount of servicereceived by each session by a function, then these functions can be seen to grow at the same ratefor each backlogged session. Golestani [12] introduced such a function and called it virtual time.Virtual time of a backlogged session is a function whose rate of growth at each instant is exactlythe rate of service provided to it by the scheduler at that instant. Similarly, we can de�ne a globalvirtual-time function that increases at the rate of the total service performed by the scheduler ateach instant during a server-busy period. In a GPS scheduler, the virtual times of all backloggedconnections are identical at every instant, and is equal to the global virtual time. This is achievedby setting the virtual time of a connection to the global virtual time when it becomes backloggedand then increasing the former at the rate of the instantaneous normalized service received bythe connection during the backlogged period. This allows an idle connection to receive serviceimmediately once it becomes backlogged, resulting in zero latency.We introduce such a function to represent the state of each connection in a scheduler andcall it potential. The potential of a connection is a non-decreasing function of time during a system-busy period. When connection i is backlogged, its potential increases exactly by the normalizedservice it received. That is, if Pi(t) denotes the potential of connection i at time t, then, duringany interval (�; t] within a backlogged period for session i,Pi(t)� Pi(�) = Wi(�; t)�i :Note that the potentials of all connections can be initialized to zero at the beginning of a system-busy period, since all state information can be reset when the system becomes idle.From the above de�nition of potentials, it is clear that a fair algorithm must attemptto increase the potentials of all backlogged connections at the same rate, the rate of increase ofthe system potential. Thus, the basic objective is to equalize the potential of each connection.Sorted-priority schedulers such as GPS, PGPS, SCFQ, and VirtualClock all attempt to achievethis objective. However, in our de�nition of potential, we did not specify how the potential ofa connection is updated when it is idle, except that the potential is non-decreasing. Schedulingalgorithms di�er in the way they update the potentials of idle connections. Ideally, during everytime interval that a connection i is not backlogged, its potential must increase by the normalizedservice that the connection could receive if it were backlogged. We will call this service the missedservice of connection i, denoted by Si(t1; t2). If the potential of an idle connection is increased bythe service it missed, it is easy to see that, when the connection becomes busy again, its potentialwill be identical to that of other backlogged connections in the system, allowing it to receive serviceimmediately.One way to update the potential of a connection when it becomes backlogged is to de�ne asystem potential that keeps track of the progress of the total work done by the scheduler. The systempotential P (t) is a non-decreasing function of time. When an idle session i becomes backloggedat time t, its potential Pi(t) can be set to P (t) to account for the service it missed. Schedulersuse di�erent functions to maintain the system potential, giving rise to widely di�erent delay- andfairness-behaviors. In general, the system potential at time t can be de�ned as a non-decreasingfunction of the potentials of the individual connections before time t, and the real time t.8

t1 t2 t3

A1
2

A

P1

P

W

P

W

P

2
W

2

t3t3t2t1

W1Figure 2.2: Evolution of the potential and o�ered service for two connections in the GPSmultiplexer. P (t) = F(P1(t�); P2(t�); : : : ; PV (t�); t): (2.1)For example, the GPS server initializes the potential of newly backlogged connection to that of aconnection currently backlogged in the system. That is,P (t) = Pi(t); for any i 2 B(t);where B(t) is the set of backlogged connections at time t. The VirtualClock scheduler, on the otherhand, initializes the potential of a connection to the real time when it becomes backlogged, so thatP (t1; t2) = t2 � t1:We will later show how the choice of the function P (t) inuences the delay and fairness behaviorof the scheduler.The concept of potential is illustrated with respect to a GPS scheduler in Figure 2.2. Letus assume that only two connections with rates �1 = �2 are continuously serviced for the intervalof time (t1; t2]. By the de�nition of the GPS multiplexer they are serviced with rates proportionalto the reserved, and therefore their potentials increase by exactly the same amount. During theinterval (t2; t3], no tra�c arrives for connection 2 and it is thus receiving no service. Connection 1 isexclusively serviced during this interval, and its potential is increasing by the normalized service itreceives. Tra�c from connection 2 arrives at the server again at time t3 and the two connections areagain serviced proportional to their reservations. Since connection 2 was absent from the systemduring the interval (t2; t3] it lost some service compared to the other connection that was busy. Theservice it lost is equal to the service that the other connection received during the same interval.Connection 2 will never receive this service. We therefore see that during the interval (t2; t3] thepotential of connection 2 should increase by exactly the same amount as that of connection 1although it is not in the system. Thus, when connection 2 becomes backlogged again, the potentialof the two connections will be equal, and they will be serviced proportional to their requests. If we9

tt1 t2 t3

A1

2
A

P1

P

W

P

W

P

2
W

2

t3t3t2t1t4 t4Figure 2.3: Evolution of the potential and o�ered service for two connections in the SCFQmultiplexer.take into account this de�nition of the potential, the scheduling algorithm can be de�ned as theprocess that tries to equalize the potential of all backlogged connections and adjusts the potentialof the connections when they are not in the system.The utility of the system potential function P (t) is in estimating the amount of servicemissed by a connection while it was idle. In an ideal server like GPS, the system potential is alwaysequal to the potential of the connections that are currently backlogged and are thus receivingservice. However, this approach requires that all connections can receive service at the same time.In a packet-by-packet scheduler we need to relax this constraint since only one connection can beserviced at a time. In the next section we will formulate the necessary conditions that the systempotential function must satisfy in order for the server to have zero latency.The self-clocked fair queueing (SCFQ) algorithm is a self-contained approach to estimatethe system potential function. The potential of the system is estimated by the potential of theconnection that is currently being serviced. Packets are transmitted in increasing order of their�nishing potential. Consider again the example we used earlier to present the evolution of thepotential function in a GPS server. Assume a uid-model server based on the SCFQ algorithm.The evolution of the potentials of the two connections is shown in Figure 2.3. The objective ofthe algorithm is to service the backlogged connections in such a way that their potentials will beequalized. Therefore, if a connection has a lower potential than others it will be exclusively serviceduntil its potential catches up with the potentials of others. In Figure 2.3, connection 2 becomesbacklogged again at time t3, and is assigned a potential equal to the �nishing potential of thepacket being serviced, P1(t4). Thus, connection 2 will receive no service until time t4, and will bebe serviced at a rate proportional to its reservation after t4. This behavior is di�erent from that inGPS, where an idle connection starts to receive service immediately when it becomes backlogged.The above example illustrates that, if the potential of a newly backlogged connection isestimated higher than the potential of the connections currently being serviced, the former mayhave to wait for one packet to be transmitted from each of the other connections before it can be10

serviced. This results in a latency that is proportional to the number of active connections. Thus,since the potential of a newly backlogged connection is set to the system potential, the systempotential should not be allowed to exceed the potential of backlogged connections to achieve zerolatency in a uid server. Although we have used a uid server to illustrate this point, the conceptapplies to a packet-by-packet server as well. In the next section we formalize these intuitive results,and de�ne a class of schedulers to achieve low latency.3 Rate-Proportional ServersWe now use the concept of potential introduced in the last section to de�ne a general classof schedulers, which we call Rate-Proportional Servers (RPS). We will �rst de�ne these schedulesbased on the uid model and later extend the de�nition to the packet-by-packet version. Theseschedulers are characterized by their service discipline which adjusts the instantaneous servicerate to individual backlogged connections so as to equalize their potentials. In addition, thede�nition also requires that the system potential P (t) be maintained at or below the potentialof any connection backlogged at time t, at every instant of time the server is busy. This ensuresthat a newly backlogged connection acquires a starting potential not higher that of any otherconnection currently backlogged in the system, enabling it to receive service immediately. Thus, arate-proportional server is a zero-latency server. However, beyond this constraint, we do not de�neexactly how the system potential function P (t) is synthesized, giving rise to a range of possiblescheduling algorithms in this class. For example, GPS and VirtualClock are rate-proportionalservers, but their system-potential functions are quite di�erent. Self-clocked fair queueing, on theother hand, is not a rate-proportional server since it does not meet the constraint on the system-potential function.We can now de�ne the RPS class of scheduler formally. We denote the set of backloggedconnections at time t by B(t).De�nition 5: A rate proportional server has the following properties:1. Rate �i is allocated to connection i and VXi=1 �i � rwhere r is the total service rate of the server.2. A potential function Pi(t) is associated with each connection i in the system, describing thestate of the connection at time t. This function must satisfy the following properties:(a) When a connection is not backlogged, its potential remains constant.(b) If a connection becomes backlogged at time � , thenPi(�) = max(Pi(��); P (��)) (3.1)(c) For every time t > � , that the connection remains backlogged, the potential function ofthe connection is increased by the normalized serviced o�ered to that connection duringthe interval (�; t]. That is, Pi(t) = Pi(�) + Wi(�; t)�i (3.2)11

3. The system potential function P (t) describes the state of the system at time t. Two mainconditions must be satis�ed for the function P (t):(a) For any any interval (t1; t2] during a system busy period,P (t2)� P (t1) � (t2 � t1):(b) The system potential is always less than or equal to the potential of all backloggedconnections at time t. That is, P (t) � minj2B(t)(Pj(t)): (3.3)4. Connections are serviced at each instant t according to their instantaneous potentials as perthe following rules:(a) Among the of backlogged connections, only the set of connections with the minimumpotential at time t is serviced.(b) Each connection in this set is serviced with an instantaneous rate proportional to itsreservation, so as to increase the potentials of the connections in this set at the samerate.The above de�nition speci�es the properties of the system potential function for constructinga zero-latency server, but does not de�ne it precisely. In practice, the system potential functionmust be chosen such that the scheduler can be implemented e�ciently. When we introduce theframe-based fair queueing algorithm in the next section, it will become clear how this de�nitioncan be used to design a practical scheduling algorithm.GPS multiplexing is a rate-proportional server where the system potential is always equalto the potential of the backlogged connections. Since the service rate o�ered to the connectionsis proportional to their reservations at every instant, the normalized service they receive duringan interval (t1; t2] is always greater than (t2 � t1). Thus, the amount of service received by aconnection i, backlogged during the interval (t1; t2), is given byWi(t1; t2) � �i(t2 � t1);and therefore, P (t2)� P (t1) = Pi(t2)� Pi(t1)= Wi(t1; t2)�i� t2 � t1:VirtualClock is a rate-proportional server as well. Consider a server where the system potentialfunction is de�ned as P (t) = t:It is easy to verify that such a server satis�es all the properties of a rate-proportional server.Consider a packet-by-packet server that transmits packets in increasing order of their �nishingpotentials. Such a server is equivalent to the packet-by-packet VirtualClock server.12

21

P(t)
P (t)i

P (t)
i+1

3 4

Initially backlogged connections

Figure 3.1: An example illustrating the evolution of potential functions in a rate-proportional server.We now proceed to show that every rate-proportional server is a zero-latency server. Thiswill establish that this class of servers provide the same upper-bounds on end-to-end delay as GPS.To prove this result, we �rst introduce the following de�nitions:De�nition 6: A session-i active period is a maximal interval of time during a system busy period,over which the potential of the session is not less than the potential of the system. Any other periodwill be considered as an inactive period for session i.The concept of active period is useful in analyzing the behavior of a rate-proportional scheduler.When a connection is in an inactive period, it can not be backlogged and therefore can not bereceiving any service. On the other hand, an active period need not be the same as a backloggedperiod for the connection. Since, in a rate-proportional server, the potential of a connection canbe below the system potential only when the connection is idle, a transition from inactive to activestate can occur only by the arrival of a packet of a connection that is currently idle, whose potentialis below that of the system. A connection in an active period may not receive service throughout theactive period since a rate-proportional server services only connections with the minimum potentialat each instant. However, it always receives service at the beginning of the active period, since itspotential is set equal to the system potential at that time.We can view the evolution of the potential function as in Figure 3.1. Assume that thesystem potential is always maintained below the potential of every backlogged connection. Attime �1, connection i i becomes active and receives all the bandwidth, trying to achieve the samepotential as the rest of the connections. At time �2 a second connection i+ 1 becomes active, andthe service of i is temporarily suspended. The potentials of the two new connections become equalat �4; during the interval (�3; �4], each of them receives service proportional to its reservation sothat their potentials remain equal. That is, 13

Wi(�3; �4)�i = Wi+1(�3; �4)�i+1At �4, the potentials of i and i+1 become equal to that of other connections already backlogged inthe system; therefore, from �4, all backlogged connections in the system receive service proportionalto their allocated rates. If another new connection becomes active after time �4, service to all theconnections will be suspended until the new connection reaches the same potential. In addition, ifa connection �nishes service, the instantaneous service rates of other backlogged connections willincrease because of the work-conserving nature of the scheduler. However, a connection may betemporarily suspended if it has received more than its allocated bandwidth earlier during the sameactive period.Since LR-servers are de�ned in terms of busy periods, it is necessary to establish thecorrespondence between busy periods and active periods in a rate-proportional server. We will nowshow that the beginning of a busy period is the beginning of an active period as well.Lemma 1: If � is the beginning of a session-i busy period in a rate-proportional server, then � isalso the beginning of an active period for session i.A proof of this lemma is given in Appendix A. When connection i becomes active, its poten-tial is the minimum among all backlogged connections, enabling it to receive service immediately.However, if a subsequent connection j becomes active during the busy period of connection i, thenthe service of i may be temporarily suspended until the potentials of i and j become equal. In thefollowing lemma, we derive a lower bound on the amount of service received by connection i duringan active period.Lemma 2: Let � be the time at which a connection i becomes active in a rate-proportional server.Then, at any time t > � that belongs in the same active period, the service o�ered to connection iis Wi(�; t) � �i(t � �):This lemma is proved in Appendix A. Intuitively, this result asserts that the service of a backloggedconnection is suspended only if it has received more service than its allocated rate earlier duringthe active period.A session busy period may actually consist of multiple session active periods. In order toprove that a rate proportional server is an LR server with zero latency, we need to prove that forevery time t after the beginning of the j-th busy period at time � ,Wi;j(�; t) � �i(t � �):The above lemmas lead us to one of our key results:Theorem 2: A rate-proportional server belongs to the class LR and has zero latency.The main argument for proving this theorem is that during inactive periods the connectionis not backlogged and is thus receiving no service. By Lemma 2, the connection can receive lessthan its allocated bandwidth only during an inactive period. However, since no packets are waitingto be serviced in an inactive period, the connection busy period must have ended by then. Theformal proof is provided in Appendix A. 14

Thus, the de�nition of rate-proportional servers provides us a tool to design scheduling algo-rithms with zero latency. Since both GPS and VirtualClock can be considered as rate-proportionalservers, by Theorem 2, they have the same worst-case delay behavior.3.1 Packet-by-Packet Rate-Proportional ServersIn the previous section we de�ned the rate proportional servers using a uid-model, wherepackets from di�erent connections can be served at the same time with di�erent rates. However,in a real system only one connection can be serviced at each time and in addition packets can notbe split in smaller units. A packet-by-packet rate proportional server can be de�ned in terms ofthe uid-model as one that transmits packets in increasing order of their �nishing potential. Letus assume that when a packet from connection i �nishes service in the uid server, the potential ofconnection i is TSi. We can use this �nishing potential to timestamp packets and schedule themin increasing order of their time-stamps. We call such a server a packet-by-packet rate-proportionalserver (PRPS).In the following, we denote the maximum packet size of session i as Li and the maximumpacket size among all the sessions as Lmax.In order to analyze the performance of a packet-by-packet rate-proportional server we willbound the di�erence of service o�ered between the packet-by-packet server and the uid-serverwhen the same pattern of arrivals is applied to both the servers. Let us assume that the serviceo�ered to session i during the interval (�; t] by the uid server is WFi (�; t) and by the packet-by-packet server is WPi (�; t). Let us assume that the kth packet leaves the system under the PRPSservice discipline at time tPk . The same packet leaves the RPS server at time tFk . Using a similarapproach as the one used for GPS servers [2], we can prove the following lemma:Lemma 3: For all packets in a packet-by-packet rate-proportional server,tPk � tFk + Lmaxr :If we include the partial service received by packets in transmission, the maximum lag in servicefor a session i in the packet-by-packet server occurs at the instant when a packet starts service. Letus denote with Ŵi(t) the service o�ered to connection i at time t if this partial service is included.At the instant when the kth packet starts service in PRPS,ŴFi (0; tk) � ŴFi (0; tk � Lmaxr) + Lmax� ŴPi (0; tk) + Lmax:Thus, we can state the following corollary:Corollary 1: At any time t, WFi (0; t)�WPi (0; t) � Lmax:15

In order to be complete we also have to bound the amount by which the service of a session in thepacket-by-packet server can be ahead of that in the uid-server. Packets are serviced in PRPS inincreasing order of their �nishing potentials. If packets from multiple connections have the same�nishing potential, then one of them will be selected for transmission �rst by the packet-by-packetserver, causing the session to receive more service temporarily than in the uid server. In order tobound this additional service, we need to determine the service that the connection receives in theuid-server. The latter, in turn, requires knowledge of the potentials the other connections sharingthe same outgoing link. We will use the following lemma to derive such an upper bound.Lemma 4: Let (0; t] be a server-busy period in the uid server. Let i be a session backlogged in theuid server at time t such that i received more service in the packet-by-packet server in the interval(0; t]. Then there is another session j, backlogged in the uid server at time t, with Pj(t) � Pi(t)that received more service in the uid server than in the packet-by-packet server during the interval(0; t]. A proof of this lemma can be found in Appendix A. We will now use the above lemma anda method similar to the one presented in [15] for the PGPS server to �nd an upper bound for theamount of service a session may receive in PRPS as compared to that in the uid server.Lemma 5: At any time t,ŴPi (0; t)� ŴFi (0; t) � min((V � 1)Lmax; �i max1�n�V (Ln�n))Lemma 5 establishes two distinct upper bounds for the excess service received by a sessionin the packet-by-packet server. A formal proof of the lemma is given in Appendix A, but weprovide some intuition here on these bounds. Consider any session i, backlogged in both servers.By Lemma 3, any backlogged session in the packet-by-packet server may lag in service by as muchas Lmax from the uid server. Thus, in an extreme case, every backlogged session excluding i maybe lagging in service by Lmax in the packet-by-packet server. Since the server is work-conserving,session i can therefore be ahead in the packet-by-packet server by as much as (V � 1)Lmax, whereV is the number of sessions sharing the outgoing link.The bound of (V �1)Lmax may be too loose in many cases. The second bound in the lemmaprovides a much tighter bound in those cases. To illustrate this bound, let us assume thatLi�i = max1�n�V (Ln�n):Assume two packets arrive at the server simultaneously, one from session i and the other from asecond session j. Assume that the packets are assigned the same �nishing potential. If the packetsstart service in the uid server at time t, they also �nish service simultaneously at time t+ Li=�i.If the packet-by-packet transmits the session-j packet �rst, the service received by session j inthe packet-by-packet server can be ahead by �Li�i ��j . This reasoning gives rise to the secondupper-bound of Lemma 5. 16

3.2 Delay AnalysisBased on the bounds on the discrepancy between the service o�ered by the packet-by-packetserver and that by the uid server at any time during a session busy period, we can bound theperformance of the PRPS system using the worst-case performance of the uid-system. Thus, wewill now prove that a packet-by-packet rate proportional server is an LR-server and estimate itslatency.Let us assume that a packet from connection i leaves the PRPS system at time tP and theuid-system at time tF . Then, by Lemma 3,tPk � tFk + Lmaxr :For the analysis of a network of LR servers it is required that the service is bounded for any timeafter the beginning of a busy period. In addition, we can only consider that a packet left thepacket-by-packet server if all of its bits have left the server. These requirements are necessary inorder to provide accurate bounds for the tra�c burstiness inside the network. Therefore, just beforetime tP + Lmaxr the whole packet has not yet departed the packet-by-packet server. Let Li be themaximum packet size of connection i. The service o�ered to connection i in the packet-by-packetserver will be equal to the service o�ered to the same connection in the uid server until time tP ,minus this last packet. Therefore, the service received by session i during the jth busy period inthe packet-by-packet server is given byWPi;j(�; t) � WFi;j(�; t� Lmaxr)� Li� max(0; �i(t� � � Lmaxr)� Li); by Theorem 2� max(0; �i(t� � � Lmaxr � Li�i)) (3.4)Hence, we can state the following corollary:Corollary 2: A packet-by-packet rate proportional server is an LR server and its latency isLmaxr + Li�i :Note that this latency is the same as that of PGPS. Thus, any packet-by-packet rate-proportional server has the same upper bound on end-to-end delay and bu�er requirements asthose of PGPS when the tra�c in the session under observation is shaped by a leaky bucket.Although all servers in the RPS class have zero latency, their fairness characteristics can bewidely di�erent. Therefore, we take up the topic of fairness in the next section and derive boundson the fairness of rate-proportional servers.3.3 Fairness of Rate-Proportional ServersIn our de�nition of rate-proportional servers, we speci�ed only the conditions the systempotential function must satisfy to obtain zero latency, but did not explain how the choice of the17

actual function a�ects the behavior of the scheduler. The choice of the system-potential functionhas a signi�cant inuence on the fairness of service provided to the sessions. In the last section,we showed that a backlogged session in a rate-proportional server receives an average service overan active period at least equal to its reservation. However, signi�cant discrepancies may exist inthe service provided to a session over the short term among scheduling algorithms belonging to theRPS class. The scheduler may penalize sessions for service received in excess of their reservationsat an earlier time. Thus, a backlogged session may be starved until others receive an equivalentamount of normalized service, leading to short-term unfairness.Since, in a uid-model rate-proportional server, backlogged connections are serviced at thesame normalized rate in steady state, unfairness in service can occur only when an idle connectionbecomes backlogged. If the estimated system potential at that time is far below that of thebacklogged connections, the new connection may receive exclusive service for a long time untilits potential rises to that of other backlogged connections. This behavior can be illustrated withrespect to the VirtualClock algorithm. The system potential in VirtualClock grows at the rateof real time, regardless of the potentials of the sessions in the system. Thus, the potential of aconnection receiving more service than its reserved rate will continue to diverge from the systempotential. Should an idle connection become active later, the connection that received the excessservice will be penalized severely. This shows that, to avoid short-term unfairness, the systempotential should be maintained close to that of backlogged connections receiving service. We willformalize this idea and show that if the di�erence between the system potential and those ofindividual backlogged sessions is bounded, the unfairness is also bounded.In VirtualClock, the di�erence between the system potential and the potential of individualbacklogged connections cannot be bounded. Thus, the unfairness is also not bounded. This can beseen as a result of the scheduler performing an averaging process on the rate of service providedto individual sessions. In VirtualClock, the averaging interval can be arbitrarily long. The GPSscheduler, on the other hand, occupies the opposite extreme where no memory of past bandwidthusage of connections is maintained. Every backlogged connection has the same potential at all timesin a GPS server, giving rise to its ideal fairness behavior. In practice, the scheduling algorithmmust trade o� short-term unfairness with other desirable properties such as low latency and easeof implementation.The ideal fairness behavior of GPS is compromised in self-clocked fair queueing, but thedi�erence in potentials is still bounded. Therefore, SCFQ can be considered as a fair schedulingalgorithm. However, SCFQ is not a rate-proportional server as it allows the system potential toexceed that of a backlogged connection, resulting in worse delay behavior.There is no common accepted method for estimating the fairness of a scheduling algorithm.In general, we would like the system to always serve connections proportional to their reservationsand never penalize connections for bandwidth they received earlier, The measure of fairness thatwe will use is an extension of the de�nition presented for SCFQ [12]. Let us assume that at time� two connections i; j become greedy, requesting an in�nite amount of bandwidth. Thus, the twoconnections will be continuously backlogged in the system after time � . A scheduler is consideredas fair if the di�erence in normalized service o�ered to the two connections i; j during any intervalof time (t1; t2] after time � is bounded. That is,18

�����Ŵi(t1; t2)�i � Ŵj(t1; t2)�j ����� � FR; (3.5)where FR < 1 is a measure of the fairness of the algorithm. Note that the requirement of anin�nite supply of packets from sessions i and j arises because we require the two sessions to bebacklogged at every instant after � in each of the schedulers we study. Since, for the same arrivalpattern, the backlogged periods of individual sessions can vary across schedulers, a comparison offairness of di�erent scheduling algorithms can yield misleading results without this condition. Whenthe connections have an in�nite supply of packets after time � , they will be continuously backloggedin the interval (t1; t2] irrespective of the scheduling algorithm used. Thus, to compare the fairnessof di�erent schedulers, we can analyze each of the schedulers with the same arrival pattern anddetermine the di�erence in normalized service o�ered to the two connections in a speci�ed intervalof time.Let us denote with �P , the maximum di�erence between the system potential and thepotential of the connections being serviced in a rate-proportional server. The following theoremformalizes our basic result on the fairness properties of rate-proportional servers.Theorem 3: If the system potential function in a rate-proportional server never lags behind morethan a �nite amount �P from the potential of the connections that are serviced in the system, thedi�erence in normalized service o�ered to any two connections during any interval of time that theyare continuously backlogged is also bounded by �P . That is, if �P <1, then for all i; j 2 B(t1; t2)during the interval (t1; t2], �����Ŵi(t1; t2)�i � Ŵj(t1; t2)�j ����� � �P:A proof of this theorem is given in Appendix A. The theorem applies to the uid system.A real system can only use a packet-by-packet rate-proportional server. We will now expand theabove theorem to prove that a similar relationship holds for the packet-by-packet version of thealgorithm. Let us de�ne Ci as Ci = min((V � 1)Lmax�i ; max1�n�V (Ln�n))That is, Ci is the maximum normalized service that a connection can receive over any interval inthe packet-by-packet server in excess of that o�ered by the uid-server.Theorem 4: In a packet-by-packet rate-proportional server, for every time interval (t1; t2] aftertime � that both connections became greedy,�����Ŵi(�; t)�i � Ŵj(�; t)�j ����� � max(�P + Li�i + Ci;�P + Lj�j + Cj ; Lmax�j + Li�i ; Lmax�i + Lj�j): (3.6)A proof of this theorem can be found in Appendix A. Since PGPS is a packet-by-packet rateproportional server with �P = 0, we obtain the following result on the fairness of a PGPS schedulerby setting �P = 0 in Eq. (3.6). 19

Corollary 3: For a PGPS scheduler,�����Ŵi(�; t)�i � Ŵj(�; t)�j ����� � max(Li�i + Ci; Lj�j + Cj ; Lmax�j + Li�i ; Lmax�i + Lj�j):It can be shown that the above bound is tight. For example, consider the case where connectioni is already backlogged in the system, and assume that connection j becomes backlogged at time� . Then, connection i may have received an additional amount of service equal to Ci in the PGPSserver. If Pi(�) is the potential of connection i at time � , the �nishing potential of the next packetof connection i is Fi � Pi(�) +Ci+ Li�i . Connection j will see a starting potential of Pj(�) = Pi(�),and is therefore exclusively serviced until the timestamps of its packets become greater than Fi.The total normalized service that connection j may receive while connection i is waiting is boundedby Ci + Li�i .4 Frame-based Fair QueueingOur analysis of rate-proportional servers in the previous section was based only on theproperties of the potential functions. We established that every rate-proportional server belongsto the class of LR-servers with zero latency and showed that their unfairness can be bounded bybounding the di�erence between the system potential and the potentials of backlogged connections.In this section, we introduce a novel scheduling algorithm called frame-based fair queueing (FFQ)and prove that it is a rate-proportional server. The algorithm is de�ned in this section in terms of theuid model. Later, in the next section, we will present a self-contained approach for implementinga packet-by-packet version of the algorithm without requiring the parallel simulation of the uid-model. The basic di�culty in the design of a scheduling algorithm in the RPS class is in maintainingthe system potential function. We use a potential function that can be calculated in a simple way,and use a framing mechanism to bound its di�erence �P from the potential of a backloggedconnection.The uid version of the frame-based fair queueing (FFQ) algorithm is de�ned as follows:FFQ is a rate-proportional server and therefore follows all the conditions in De�nition 5. That is,at each instant, it services only the set of backlogged connections with the minimum potential andconnections in this set are serviced at rates proportional to their reservations. We assume that arate �i is allocated to connection i. Let ri = �i=r denote the fraction of the link rate allocated toconnection i. We split the time in frames and assume that F bits may transmitted during a frameperiod. Furthermore, let us de�ne T as the frame period. Then,T = Fr :We de�ne �i as �i = ri � F = �i � T:�i denotes the amount of session i tra�c that can be serviced during one frame. If a connectionis backlogged its potential is increasing by the normalized service o�ered to it. Thus, when �i bitsare serviced from connection i, its potential will increase by20

�i�i = T:We impose one more restriction on the value of �i, that if Li is the maximum packet size forconnection i, then Li � �i: (4.1)That is, the largest packet of a connection can be transmitted during a frame period. Wedenote the current frame in progress at time t by f(t). The function f(t) is a step function. Whenthe system is empty f(t) is reset to 0 and the potentials of all connections are also reset to 0. Whenthe potentials of all backlogged connections become equal to T , the value of f(t) is increased by T .Similarly, when the potentials of all connections reach the value k �T for any integer k, the functionf(t) is stepped up to k � T .In a uid server, all backlogged connections reach the value k �T at the same time. However,in a packet-by-packet server this is not the case. In order to allow frame updates to occur onlywhen a packet �nishes or starts service in the packet-by-packet server, we relax the above updaterule for f(t) in the packet-by-packet version of the algorithm as follows: f(t) can be updated to thevalue k � T at any time after all backlogged connections reach the potential k � T and before theirpotentials become higher than (k + 1) � T . Thus, we update the frame at time t when both of thefollowing conditions hold:1. The potentials of all backlogged connections belong in the next frame. That is,Pi(t) � f(t) + T; 8i 2 B(t); (4.2)where B(t) is the set of connections currently backlogged.2. Pi(t) < f(t) + 2T; i = 1; 2; : : : ; V:Note that the above conditions may hold at di�erent instants of time. Updating the system potentialfunction at any time during these intervals will result in a valid algorithm. Let us assume that wedecide to update the frame at time � . Then, at time � we setf(�) = f(��) + T; (4.3)where �� is the instant just before the update occurred.The system potential is estimated in terms of the function f(t) which keeps track of theprogress of the total work performed by the server. When f(t) is updated, say at time � , the systempotential is set to P (�) = max(P (��); f(�)): (4.4)At any other time t, the system potential is computed asP (t) = P (�) + (t � �); (4.5)where � is the last instant of time when an update occurred.If P (t) is used to initialize the potential of a connection when it becomes backlogged, it iseasy to see that the potential of every backlogged connection cannot be less than P (t) at any timet. The potential of a connection i can drift away from P (t) within a frame, but the discrepancy21

is corrected when the next frame-update occurs. Thus, the frame update mechanism is the meansby which FFQ bounds the di�erence between the system potential and the potentials of individualconnections. The maximum interval between successive updates acts as bound for the di�erence inpotentials �P . A tight bound for �P will be derived later.4.1 Performance Bounds for Frame-based Fair QueueingIn this section we show that FFQ belongs to the class of rate-proportional servers. Notethat, in our description of FFQ, we did not de�ne exactly the time when the frame is updated, butinstead de�ned an interval during which the update must occur. We will show that this is su�cientto prove that frame-based fair-queueing is a rate-proportional server. This exibility in updatingthe frame will allow us to provide a simple implementation for the packet-by-packet version of thealgorithm.We now prove a sequence of two lemmas to classify frame-based fair queueing as a rate-proportional server.Lemma 6: If the system potential function is updated as described by the frame-based fair queueingalgorithm, then for any interval (t1; t2] during a system busy period,P (t2)� P (t1) � (t2 � t1):Proof: Assume that the busy period under observation started at time 0. If no frame updatesoccurred during the interval (t1; t2], then the lemma is true by Eq. (4.5). Now consider the case whenone or more frame updates occurred during the interval (t1; t2]. Let �1; �2; : : : ; �k be the instantsin this interval just after a frame update, and �1�; �2�; : : : ; �k� the corresponding instants justbefore the update. Then, by equations (4.4) and (4.5),P (t2) = P (�k) + (t2 � �k)� P (�k�) + (t2 � �k)� P (�k�1) + (t2 � �k�1):Proceeding similarly, P (t2) = P (�1) + (t2 � �1)� P (�1�) + (t2 � �1)� P (t1) + (t2 � t1):Lemma 7: If the system potential function is updated as described by the frame-based fair queueingalgorithm, then P (t) � Pi(t); 8i 2 B(t): (4.6)22

Proof: We will prove that, if P (t) � Pi(t) at any instant t during a system busy period, thenP (t+ �t) � Pi(t+�t). Since P (0) = Pi(0), this will provide an inductive proof for all instants oftime at which the system is busy.We need to consider two cases:Case 1: No frame updates occurred during the interval (t; t + �t). Assume, if possible,that Pi(t + �t) < P (t + �t), for some connection i. We can choose �t as the minimum intervalof time such that Pi(t) � P (t) and Pi(t + �t) < P (t + �t). Then i is a session with minimumpotential during the interval (t; t + �t]. Therefore, it is serviced with rate at least �i during thisinterval. Thus, the potential of session i at (t+�t) must be at leastPi(t) + �i�t�i � P (t) + �t � P (t+ �t):Thus, the result is true by contradiction.Case 2: A frame update occurred at time t. Let t� denote the instant just before theupdate and t the instant just after the update. Then, by Eq. (4.2),Pi(t�) � f(t�) + T: (4.7)The new system potential after the update is given byP (t) = max(P (t�); f(t�) + T): (4.8)Using equations (4.7) and (4.8), as well as the fact that Pi(t�) � P (t�),Pi(t) � P (t): (4.9)2Theorem 5: Frame-based fair queueing is a rate-proportional server.Proof: It is su�cient to prove that frame-based fair queueing has all the properties of De�nition 5.Lemmas 6 and 7 prove that the system potential function satis�es the two main conditions imposedby the de�nition. The rest of the conditions are satis�ed by the de�nition of the algorithm.Therefore, frame-based fair queueing is a rate-proportional server.Since we proved that every rate-proportional server is an LR-server with zero latency,frame-based fair queueing is also an LR-server with zero latency. Therefore, it provides the sameupper bound on end-to-end delay as GPS in a network of servers.4.2 Fairness of Frame-based Fair QueueingSince frame-based fair queueing is a rate-proportional server, in order to analyze its fairnessit is su�cient to prove that the di�erence between the system potential and the potential of anybacklogged connection is always bounded. We can state the following Lemma:Lemma 8: For every connection i that is backlogged at time t,Pi(t)� P (t) � 2T � �ir :23

Proof: While a connection is backlogged in the FFQ server, its potential is increasing by thenormalized service o�ered to it. The system potential, on the other hand, is increased in twocases. While the frame is not changing it is increased by the real time, and when the framechanges it becomes at least equal to the starting potential of the current frame. Let us assumethat the current time is t. The next frame-update will occur after the time when all backloggedconnections have crossed the current frame. Since �i > Li, this will occur before the potential ofany connection becomes greater than f(t)+2T . The largest di�erence between the system potentialand a connection potential will appear just before the frame update. At this timePi(t) � f(t) + 2T; (4.10)and P (t) � f(t) + �ir : (4.11)Subtracting Eq. (4.11) from (4.10), Pi(t)� P (t) � 2T � �ir :Note that the fastest way for the potential of a connection to reach the value Pi(t) from thetime that the frame was last updated is through its normalized service. However, by the time thenext frame update occurs, the system potential function would have increased by at least the timeto service �i bits of connection i. This bounds the di�erence in potentials to 2T � �ir . 2The above bound applies to the uid server. The packet-by-packet version of frame-basedfair queueing, described in the next section, guarantees that a frame update will always occur beforethe �nishing potential of any packet becomes greater than f(t) + 2T . Thus, when we estimate thefairness of the packet-by-packet algorithm (PFFQ), the maximum di�erence between the startingpotential of a connection and the �nishing potential of any other connection is still bounded by2T � �ir . Using the general proof of Theorem 4 for rate-proportional servers and the fact thatT = F=r, it is easy to show thatCorollary 4: For any two connections i; j that are continuously backlogged in the interval (t1; t2]in the PFFQ server,�����Ŵi(t1; t2)�i � Ŵj(t1; t2)�j ����� � max(2F � �ir + Li�i ; 2F � �ir + Lj�j ; Lmax�j + Li�i ; Lmax�i + Lj�j):The fairness of the algorithm depends on the selection of the frame size. The latter, in turn,depends on the maximum packet size of each connection and its minimum bandwidth allocation.Thus, the algorithm is especially suited to application in ATM networks where the packets aretransmitted in terms of small cells and the frame size can be kept small. Notice, however, thatthe frame size does not a�ect the latency of the server as is the case in frame-based schedulerssuch as weighted-round-robin and de�cit-round-robin. In addition, some short-term unfairness isunavoidable in any packet-level scheduler. We have already seen in Theorem 4 that the di�erencein normalized service received by two connections can be proportional to the number of backloggedconnections even in a PGPS server. Most applications can tolerate a small amount of short-termunfairness as long as the unfairness is bounded. 24

5 Implementation of Frame-Based Fair QueueingIn the last section we described frame-based fair queueing and showed that it is a rate-proportional server. A straightforward implementation of the algorithm will be similar to that ofany other rate-proportional server. That is, the uid server is simulated in parallel and packetsare transmitted in increasing order of their �nishing potentials. This approach, however, is veryexpensive since up to V events may be triggered in the simulator of the uid model during theservice time of one packet. This results in an algorithm with O(V) time complexity that is notacceptable in a high-speed network.We will now describe how we can extract the information needed by the scheduler fromthe packet-by-packet system itself, without requiring the parallel simulation of the uid server.The resulting algorithm has O(1) implementation complexity. We will �rst describe a generalalgorithm for use with variable-size packets and then present an even more simpli�ed version forATM networks where all packets are of the same size.We �rst prove the following lemma that enables us to �nd a suitable time to update theframe in FFQ by using only information extracted from the packet-by-packet system. Let us �rstde�ne the starting potential sji of a packet j of connection i as the potential of the connectionwhen packet j starts being serviced in the corresponding uid server. Let B̂(t) denote the set ofbacklogged sessions at time t in the packet-by-packet server.Lemma 9: Assume that at time t, for each backlogged session in the packet-by-packet system, thestarting potential of its �rst packet belongs in the next frame. That is,sji � f(t) + T; 8i 2 B̂(t):Then, the potential of each backlogged session in the uid server is also greater than f(t) + T .Proof: We will prove the lemma by contradiction. Let us denote with i the connection with theminimum potential in the uid server and let us assume that the potential of connection i is lessthan f(t) + T . Connection i has received until time t more service in the packet-by-packet serverthan in the uid-server. By Lemma 4, there is another connection k with potential Pk(t) � Pi(t)that has received less service in the packet-by-packet server than in the uid-server. Let sk be thestarting potential of the packet that is being serviced in the uid-server at time t from connectionk. Then sk � Pk(t) and thus sk � f(t) + T . This is a contradiction. 2The intuition behind the lemma is that we can determine a valid update time for the frameby using information extracted by the packet-by-packet server. The scheduler can keep track of allthe connections that are backlogged and have packets with starting potential in the next frame.When the starting potentials of the packets at the head of the queue of all backlogged sessions havecrossed the frame, we know that the potentials of the connections in the uid-system have alsocrossed the frame. Therefore, the crossing time of the last connection is a valid time to update theframe and the system potential function. This can be seen better by an example. Let us assumethat the frame size F is set to 100 cells. Assume that connections 1; 2; : : : ; 50 reserved 1=100 of theoutput link bandwidth and connection 0 reserved half of the link bandwidth. At time 0, a packetof size 1 arrives for each of the 50 connections, and 50 packets of size 1 arrive for connection 0. Thetimestamps of the packets of connection 0 will be 2; 4; : : : ; 100; and the timestamp of the packet of25

each if the other connections will all be 100. This means that all packets from connection 0 maybe serviced �rst in the packet-by-packet system. At this time the potential of all connections inthe uid-system will be equal to 50. Only at the time that all packets with �nish time equal to100 �nish service under the packet-by-packet system, will the potential of all connections in theuid-system be 100 as well. At this time, all backlogged connections will have a packet with astarting potential of greater or equal to 100, and the frame can be updated.5.1 Implementation for General Packet-Switched NetworksWithout loss of generality we can assume that the service rate of the server is 1. Thus thetime to transmit F bits is also equal to F . A fraction ri of the output link bandwidth is allocatedto connection i and therefore �i = F � ri bits can be sent from connection i during a frame. Anadditional requirement is that the maximum packet size must be less than �i, so that a single packetcan be transmitted within one frame. On the arrival of a packet, it is stamped with a timestampequal to the potential of the connection when the packet �nishes service. Packets are then servicedin increasing order of their timestamps. When a packet �nishes service, a frame update mechanismis used to calculate the new system potential. On the arrival of a packet the following algorithm isexecuted:temp = P + (Time since last update of P)/Fstart max(TSi(k � 1); temp)TSi(k) start+ Li(k)�iif (bstartc < bTSi(k)c) then (if �nishg potential is in next frame)B[bstartc] B[bstartc] + 1mark packetendifAn explanation of the algorithm follows: The variable P keeps track of the system potential. P isa oating-point number with two parts | the integer part representing the current frame numberand the fractional part representing the elapsed real time since the last frame update. On arrivalof a packet, the current potential is estimated in the variable temp, scaled to the frame size. Thestarting potential of the packet is then computed as the maximum of the �nishing potential of itsprevious packet and the system potential. The packet is then stamped with its �nishing potential,computed from knowledge of its length and the reserved rate. If the starting and �nishing potentialsof the packet belong to di�erent frames, the current packet is one that crosses over to the nextframe. Therefore the packet is marked to indicate that this is the �rst packet of the session tocross over to the next frame. In addition, a counter is incremented to keep track of the number ofconnections that have crossed over into the new frame. The algorithm maintains one counter perframe to keep track of the number of sessions whose packets cross into the frame. Later, when themarked packet is scheduled for transmission, the corresponding counter is decremented; when thecounter reaches zero, the potentials of all the backlogged connections have crossed over to the nextframe, and a frame update can be performed. 26

The array of counters B is used to count the number of connections that have packets witha starting potential in each frame. Although an in�nite number of frames may need to be serviced,in practice the number of distinct frames in which the potentials of queued packets can fall into islimited by the bu�er size allocated to the connections. Thus, if bi denotes the bu�er space allocatedto connection i, the size of the array B can be limited toM = max1�i�V d bi�i e:If M is rounded up to the nearest power of 2, then the array can be addressed with the dlog2Meleast signi�cant bits of the current frame number. Obviously, instead of the array, a linked-listimplementation of the counters can be used as well.On the departure of a packet, the following algorithm is executed to update the state of thesystem. We assume that the current packet being transmitted is the kth packet of connection i.P P + Li(k)=F (update system potential)if (frame-index < bTSi(k)c) thenif (B[frame-index] > 0) thenif (current packet is marked) thenB[frame-index] B[frame-index]� 1end ifend ifif (B[frame-index] = 0) then (update frame)frame-index bTSi(k)cP max(frame-index; P)end ifend ifThe system potential is �rst increased by the transmission time of the current packet. The variableframe-index keeps track of the index of the frame currently in progress. If the packet currentlybeing transmitted has a �nishing potential within the next frame and if the packet is marked (�rstpacket from the connection to cross the frame), the counter corresponding to the current frame isdecremented. If the counter becomes zero, the session being serviced is the last to cross the currentframe, and both the frame number and the system potential can be updated.5.2 Implementation for ATM NetworksAlthough the algorithm described above can be applied to an ATM network, in this sectionwe present a simpli�ed version suitable for hardware implementation. In ATM networks theavailable time for completing a scheduling decision is very short. At SONET OC-3 speeds thetransmission time of a cell is less than 2.6 �s. For higher speeds the available time is even less.Therefore, it is desirable that the scheduling algorithm be implementable without oating-pointoperations. 27

bb+1

frame index

TimestampFigure 5.1: Timestamp is formed by the index of the current frame plus an o�set. Aframe-crossing point of the connection is detected when the (b+1)th bit of the timestampips during the timestamp computation.The time axis is again split in frames, with a maximum frame size of F . We require thatF is a power of two. The unit of time is the time required to transmit one cell at the link rate.Therefore, F is the time required to transmit F ATM cells on the output link. As before, let usassume that a fraction ri of the output link bandwidth is allocated to connection i. Then, duringa frame there are �i credits allocated to connection i, where�i = dF � rie:This means that no more than �i cells may be transmitted from connection i during one frame.If all connections were busy during a frame period, then by the end of the frame each connectionwould have sent exactly �i cells, thus satisfying its bandwidth reservation, and the size of the framewould be F . However, if some connections are absent during a frame, then the real time at whichall of the active connections complete sending their cells belonging to the frame will occur earlier.We de�ne the system potential P (t) as the current frame number multiplied by the max-imum frame size plus the units of time that passed since the last update of the frame. Forcingthe frame size to be a power of two enables the multiplication step to be implemented as a shiftoperation over b = log2 F bits. When the server is idle the system potential is reset to zero.The variable P that denotes the system potential function in the algorithm is composedof two �elds, as shown in Figure 5.1. The b least signi�cant bits indicate the time that passedsince the beginning of the frame and the remaining bits indicate the index of the current frame. Atimestamp TSi(k) is associated with the kth cell of connection i. The format of the timestamp isthe same as that of the system potential function P . That is, the b least signi�cant bits indicatethe time within the frame, and the most signi�cant bits indicate the frame during which this cellmust depart the system. If a cell has a timestamp whose frame index �eld is larger than that ofthe previous cell, it marks the point at which the connection crosses a frame. When such as cell isserviced, subsequent cells from the connection will be treated as belonging to the next frame. Theframe crossing point is detected when, during the calculation of the timestamp, the (b + 1)th bitof the timestamp ips.In an ATM switch, cell arrivals can be processed at the end of transmission of each cell. Onthe arrival of the kth cell in the server, the timestamp TSi(k) associated with the cell is calculatedaccording to the following algorithm, The operation x >> y indicates shift of operand x by y bits.The constant b is equal to log2 F . 28

start max(TSi(k � 1); P) (get starting potential of cell)TSi(k) start+ 1�i (compute timestamp)if ((start >> b) < (TSi(k) >> b)) then ((b+ 1)th bit of timestamp ipped)B[start >> b] B[start >> b] + 1mark cellendifCells are serviced in increasing order of their timestamps. The cells that represent frame-crossing points for the connections are marked. As in the general version of the algorithm, a counteris decremented during the transmission of each such cell, and the frame is updated when the counterbecomes zero. The following algorithm summarizes the actions performed to update the systempotential when a cell departs the server.P P + 1if (frame-index < (TSi(k) >> b)) thenif (B[frame-index] > 0) thenif (cell is marked) thenB[frame-index] B[frame-index]� 1end ifend ifif (Bframe-index] = 0) thenframe-index TSi(k) >> bP max(frame-index << b; P)end ifend ifThe algorithm is essentially the same as the one presented in the previous section. However,we take advantage of the fact that only integers are used, and replace the oating point operationsin the original algorithm by shifts. In addition, the priority list implementation can be simpli�edas well by using the techniques described in [16].6 ConclusionsIn this paper, we introduced and analyzed frame-based fair queueing, a novel tra�c schedul-ing algorithm with application in both ATM and general packet networks. The algorithm providesthe same end-to-end delay guarantees as a PGPS server if the input tra�c is leaky-bucket shaped.We also analyzed the fairness properties of the algorithm, and showed that the di�erence in nor-malized service o�ered to any two connections that are continuously backlogged is always bounded.The main advantage of the algorithm compared to PGPS is that it does not require simulation ofthe uid server, enabling it to be implemented in a simple and e�cient manner. All the informationneeded for the algorithm can be extracted from the packet-by-packet server itself.The design of a tra�c scheduling algorithm involves an inevitable tradeo� among its delay,complexity of implementation, and fairness. Among the three, the delay and implementationcomplexity are clearly the most important criteria for the use of an algorithm in a real system.29

In addition to minimizing the end-to-end delay in a network of servers, the delay behavior ofan ideal algorithm must include (i) insensitivity to tra�c patterns of other sessions (isolation),(ii) delay bounds that are independent of the number of sessions sharing the outgoing link, and(iii) ability to control the delay bound of a session by controlling only its bandwidth reservation.SCFQ simpli�es the timestamp computation of PGPS considerably, but at the expense of seriouslydegrading its delay behavior. VirtualClock, on the other hand, has both simple implementationand delay bounds identical to that of PGPS, but its fairness behavior makes it unacceptable formany applications. Frame-based fair queueing maintains the same delay behavior of PGPS andhas a simple implementation, still providing fairness to individual sessions.Apart from the scheduling algorithm itself, a major contribution of this paper is in develop-ing a framework for designing schedulers with low latency and bounded fairness. This frameworkof rate-proportional servers (RPS) provides valuable insight into the behavior of scheduling algo-rithms. It is hoped that this framework will lead to the development of other algorithms in thefuture. Further work will include the analysis of frame-based fair queueing under probabilistic inputtra�c models, such as the exponentially-bounded-burstiness model [17]. We also plan to implementthe algorithm in hardware using our FPGA-based ATM Simulation Testbed [18]. A network ofswitches will be simulated in order to evaluate the performance of the algorithm in conjunctionwith variable-bit-rate tra�c.References[1] D. Verma, D. Ferrari, and H. Zhang, \Guaranteeing delay jitter bounds in packet switchingnetworks," in Tricomm 91, April 1991.[2] A. K. Parekh and R. G. Gallager, \A generalized processor sharing approach to ow control -the single node case," in Proceedings of INFOCOM '92, vol. 2, pp. 915{924, May 1992.[3] A. Demers, S. Keshav, and S. Shenker, \Analysis and simulation of a fair queueing algorithm,"Internetworking: Research and Experience, vol. 1, no. 1, pp. 3{26, 1990.[4] L. Zhang, \VirtualClock: a new tra�c control algorithm for packet switching networks," ACMTransactions on Computer Systems, vol. 9, pp. 101{124, May 1991.[5] D. Ferrari and D. Verma, \A scheme for real-time channel establishment in wide-area networks,"IEEE Journal on Selected Areas in Communications, vol. 8, pp. 368{379, April 1990.[6] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, \Weighted round-robin cell multiplexingin a general-purpose ATM switch chip," IEEE Journal on Selected Areas in Communications,vol. 9, pp. 1265{79, October 1991.[7] M. Shreedhar and G. Varghese, \E�cient Fair Queueing using De�cit Round Robin," in Proc.SIGCOMM'95, September 1995.[8] C.Kalmanek, H.Kanakia, andS.Keshav, \Rate controlled servers for veryhigh-speednetworks,"in IEEE Global Telecommunications Conferece, pp. 300.3.1{300.3.9, December 1990.[9] S. Golestani, \A framing strategy for congestion management," IEEE Journal on Selected Areasin Communications, vol. 9, pp. 1064{1077, September 1991.30

[10] H. Zhang and S. Keshav, \Comparison of rate based service disciplines," in Proceedings of ACMSIGCOMM '91, pp. 113{122, 1991.[11] J. Davin andA.Heybey, \A simulation study of fair queueing and policy enforcement,"ComputerCommunication Review, vol. 20, pp. 23{29, October 1990.[12] S. Golestani, \A self-clocked fair queueing scheme for broadband applications," in Proceedingsof INFOCOM '94, pp. 636{646, IEEE, April 1994.[13] D. Stiliadis and A. Varma, \Latency-rate servers: A general model for analysis of tra�cscheduling algorithms," Tech. Rep. UCSC-CRL-95-38, U.C. Santa Cruz, Dept. of ComputerEngineering, July 1995.[14] J. Turner, \New directions in communications (or which way to the information age?)," IEEECommunications Magazine, vol. 24, pp. 8{15, October 1986.[15] J. Rexford, A. Greenberg, and F. Bononi, \A fair leaky-bucket shaper for atm networks."AT&Tunpulbished report.[16] J. L. Rexford, A. Greenberg, and F. Bonomi, \Hardware e�cient fair queueing architecturesfor high-speed networks," in Proceedings of INFOCOM 96, IEEE, 1996.[17] O. Yaron and M. Sidi, \Performance and stability of communication networks via robustexponential bounds," IEEE/ACMTransactions on Networking, vol. 1, pp. 372{385, June 1993.[18] A. Varma and D. Stiliadis, \FAST: an FPGA-based simulation testbed for ATM switchingsystems," in Interop'95 Engineer Conference, April 1995.

31

Appendix A: Proofs of Main ResultsProof of Lemma 1: We will prove the lemma by contradiction. Assume, if possible, that time �is not the beginning of an active period. We have two cases:Case 1: Time � belongs in inactive period. Since connection i was not busy before time � andit becomes busy at time � , a packet must have arrived. But then, the potential of the connectionwould have become equal to the system potential and thus � is the beginning of an active period.Case 2: An active period started at time �0 < � and is currently in progress. Then, for every timet 2 (�o; �], we must have Pi(t) � P (t): (A.1)During the interval (�0; �], the potential of connection i has only increased by the normalized serviceo�ered to connection i. Therefore, at any time t during the interval (�0; �],Pi(t)� Pi(�0) = Wi(�0; t)�i : (A.2)But, since �0 is the beginning of an active period,Pi(�0) = P (�0): (A.3)From equations (A.1) and (A.3), Pi(t)� Pi(�0) � P (t)� P (�0)� (t� �0): (A.4)Therefore, from equations (A.2) and (A.4),Wi(�0; t) � �i(� � �0): (A.5)Before time �0, the system was not backlogged and therefore we can write:Ai(�0; t) � Wi(�0; t) � �i(t� �0):Thus, time �0 belongs in the same busy period as any time t in the interval (�0; �]. Therefore, time� cannot be the beginning of a busy period. 2Proof of Lemma 2: Let us consider any time t during the connection active period. By thede�nition of active period, Pi(t) � P (t); (A.6)and Pi(�) = P (�): (A.7)From the de�nition of rate-proportional servers we also know that,P (t)� P (�) � (t� �): (A.8)32

From equations (A.6), (A.7), and (A.8) we can easily conclude thatPi(t)� Pi(�) � (t� �): (A.9)During an active period, the potential of a connection is only increased by the normalized serviceo�ered to it. Therefore, Pi(t)� Pi(�) = Wi(�; t)�i� t� �: (A.10)From equations (A.9) and (A.10), Wi(�; t) � �i(t� �) (A.11)2Proof of Theorem 2: Let us again trace the evolution of the potential function of connectioni. We can split the busy period in intervals during which the connection is in active or inactivestates. During an inactive period, the connection is not receiving any service and no packets fromthe connection are backlogged in the system. We will prove the theorem by contradiction. Let usdenote with t� the �rst time such thatWi(�; t�) < �i(t� � �): (A.12)Assume that t� belongs to a busy period that started at time � . We distinguish two cases:Case 1: Time t� belongs in an active period. Let us denote with ta, the time that this activeperiod started. We know from Lemma 1, that ta � � . Then, since t� > ta,Wi(�; ta) � �i(ta � �): (A.13)From Lemma 2, we also know that for time t� that belongs in the same active period,Wi(ta; t�) � �i(t� � ta) (A.14)From equations (A.13) and (A.14) we can conclude thatWi(�; t�) � �i(t� � �): (A.15)Case 2: Time t� is part of an inactive period. Consider time t� ��t. At this time, we know thatWi(�; t� ��t) � �i(t� ��t� �): (A.16)Since the connection is in an inactive period, there are no packets backlogged from that connection,and therefore, Wi(�; t���t) = Ai(�; t���t): (A.17)In addition, no packets were serviced from the connection in the interval (t� ��t; t�], or,Wi(�; t� ��t) = Wi(�; t�): (A.18)33

It is clear that no arrivals of session-i packets occurred during the interval (t���t; t�); if there wasan arrival during this interval, the connection would have entered an active period. Thus,Ai(�; t� ��t) = Ai(�; t�): (A.19)From equations (A.12), (A.17), (A.18), and (A.19) we can conclude thatAi(�; t�) < �i(t� � �): (A.20)This means that time t� does not belong in the same busy period as t� ��t. 2Proof of Lemma 3: Assume that a system-busy period starts in both servers at time 0. Let thepackets transmitted by the PRPS system during the system-busy period be numbered 1; 2; : : : ; k; : : :in their order of transmission. Since both servers are work-conserving, the system-busy period mustend in both at the same time. However, the order in which the last bit of packets leave the systemin the uid server can be di�erent from that in the packet-by-packet server because multiple packetscan be in service at the same time in the former. Therefore, we need to consider two cases:Case 1: The last bits of packets 1; 2; : : : ; k � 1 left the uid server before the last bit of the kthpacket. Then, the time of departure of the last bit of the kth packet in the uid server, denoted bytFk , must satisfy tFk � 1r kXj=1Lj ; (A.21)where Lj is the size of the jth packet and r the service rate on the outgoing link.The corresponding departure time of the last bit of the kth packet in the packet-by-packetserver is given by tPk = 1r kXj=1Lj : (A.22)From (A.21) and (A.22), tPk � tFk : (A.23)Case 2: Now consider the case when one or more of the packets 1; 2; : : : ; k� 1 were still in servicein the uid server when the last bit of the kth packet left the server. Among this set of packets,let the packet with the largest index be the mth packet, m < k, with a length of Lm. This packetleft the packet-by-packet server at time tPm and started transmission at LPm � Lmr . At this point,packets m + 1; m+ 2; : : : ; k had not arrived in the system; if they had, they would have receivedtimestamps lower than that of packet m, and therefore would have been serviced earlier than m inthe packet-by-packet server. Also, the packets m+ 1; m+ 2; : : : ; m+ k were serviced completely inthe uid server before packet k left the system.Since packets m+1; m+2; : : : ; k were serviced completely during the interval (tPm� Lmr ; tFk],we must have tFk � (tPm � Lmr) � 1r kXj=m+1Lj ;or, tFk � tPm + 1r kXj=m+1Lj � Lmr : (A.24)34

But, tPk = tPm + 1r kXm+1Lj : (A.25)From (A.24) and (A.25), and noting that Lm � Lmax,tPk � tFk + Lmaxr : (A.26)Thus, combining (A.23) and (A.26), we get the upper bound astPk � tFk + Lmaxr : 2Proof of Lemma 4:Since both servers are work-conserving, it is clear that if session i receives more service inthe packet-by-packet server, then there must be another backlogged session j that has received lessservice in the interval (0; t]. We only need to prove that Pj(t) � Pi(t) for one such session j.We will distinguish two cases:Case 1: Session i has the maximum potential among the backlogged sessions in the uid server attime t. In this case Pj(t) � Pi(t) for every backlogged session j.Case 2: There are other sessions at time t with potentials higher than that of i. Let S be the setof sessions with potentials higher than Pi(t) at time t in the uid server. Then, by the de�nition ofrate-proportional servers, these connections are not receiving service at time t in the uid server.Let � be the most recent time when a session from the set S was in service in the uid server. Then,during the interval (�; t], none of the connections in the set S were serviced by the uid server.Furthermore, the current backlogged period of session i started at or after time � ; otherwise, aconnection from the set S would not have been serviced just before � .Thus, during the interval (�; t], session i received less service in the uid server than in thepacket-by-packet server, and sessions in the set S received no service in the former. Hence, theremust be another session j that received more service in the uid server during the interval (�; t].Since j =2 S, it follows that Pj(t) � Pi(t). 2Proof of Lemma 5: Both RPS and PRPS are work-conserving servers. Let us assume that aconnection i has received more service in the packet-by-packet server than in the uid-server. Inthe worst case, every other backlogged session may have received less service in the former. ByLemma 3, any backlogged session in the packet-by-packet server may lag in service by as much asLmax from the uid server. Thus, in an extreme case, every backlogged session excluding i may belagging in service by Lmax in the packet-by-packet server. Since the servers are work-conserving,session i must be ahead in service in the packet-by-packet server by an amount equal to the totallag of all other sessions. That is,̂WPi (0; t)� ŴFi (0; t) � (V � 1)Lmax:35

A tighter bound may be obtained in some cases. Let us denote with tki the time a packetk from session i �nishes service in the PRPS system. The maximum di�erence in service seen bysession i between the two servers will occur at time tki . Let Lki denote the size of packet k. Thispacket started service in the PRPS system at time �ki = tki � Lkir . We will distinguish two cases forthe time �ki .Case 1: ŴPi (0; �ki) � ŴFi (0; �ki): Then we can writeŴPi (0; tki) = ŴPi (0; �ki) + Lki� ŴFi (0; �ki) + Lki� ŴFi (0; tki) + Lki� ŴFi (0; tki) + �i max1�n�V (Ln�n): (A.27)The last inequality follows from the fact thatLki�i � max1�n�V (Ln�n):Case 2: ŴPi (0; �ki) > ŴFi (0; �ki): Let F ki be the �nishing potential of packet k of session i inthe uid server. Pi(tki) is the potential of session i in the uid server at time tki , and F ki thecorresponding potential in the packet-by-packet server. Then, at tki , session i will have to receivean additional amount of service equal to �i(F ki � P (tki)) in the uid server to catch up with thepotential in the packet-by-packet server. Thus,ŴPi (0; tki)� ŴFi (0; tki) = �i(F ki � Pi(tki))� �i(F ki � Pi(�ki)); since Pi(tki) � Pi(�ki). (A.28)At time �ki , session i has received less service in the uid server as compared to the packet-by-packetserver. Therefore, by Lemma 4, there is another session j, backlogged in the uid server at time �ki ,with potential Pj(�ki) � Pi(�ki) that has received more service in the uid server. Let the packetin service of this session at time �ki in the uid server be the mth packet. Let Smj and Fmj denotethe potentials of session j in the uid server when this packet begins and ends service, respectively.Then, Smj � Pj(�ki). Since the packet has not completed service in the packet-by-packet server,Fmj � F ki . Thus, we have Pi(�ki) � Pj(�ki) � Smj ; (A.29)and F ki � Fmj : (A.30)Substituting for F ki and Pi(tki) in Eq. (A.28) from equations (A.30) and (A.29), respectively,ŴPi (0; tki)� ŴFi (0; tki) = �i(Fmj � Smj)� �iLj�j� �i max1�n�V (Ln�n): (A.31)36

This completes the proof of Lemma 5. 2Proof of Theorem 3: Consider time t1. Without loss of generality, let us assume that at timet1, Pj(t1) > Pi(t1). Since connection i is backloggedPi(t1) � P (t1): (A.32)We also know that Pj(t1) � P (t1) + �P: (A.33)Since both sessions are backlogged in the interval (t1; t2], their potentials in this interval haveincreased only by the normalized service o�ered to the two connections. Therefore,Pi(t2)� Pi(t1) = Wi(t1; t2)�i ; (A.34)and Pj(t2)� Pj(t1) = Wj(t1; t2)�j : (A.35)At time t2, the potential of connection i can not be more than that of connection j. Let us denotetheir di�erence with x. Then, x = Pj(t2)� Pi(t2) � 0: (A.36)From equations (A.32),(A.34), and (A.36),Wi(t1; t2)�i � Pj(t2)� P (t1)� x: (A.37)Similarly, from equations (A.33) and (A.35),Wj(t1; t2)�j � Pj(t2)� P (t1)��P: (A.38)From equations (A.37) and (A.38) we can easily conclude thatWi(t1; t2)�i � Wj(t1; t2)�j � �P � x � �P: (A.39)If Pj(t1) < Pi(t2), we can derive in the same way thatWj(t1; t2)�j � Wi(t1; t2)�i � �P: (A.40)Therefore, jWi(t1; t2)�i � Wj(t1; t2)�j j � �P: (A.41)Thus, if �P is �nite, the di�erence in normalized service o�ered to any two backlogged connectionsis also bounded. 237

Proof of Theorem 4: Let us assume, without loss of generality, that before time � session i wasnot backlogged. Note that, since both sessions have an in�nite supply of packets from time � , thetimestamp of every packet is calculated from that of the previous packet of the same session. Letus denote with Ski and Smj , the starting potentials of the �rst packet in the queue for sessions iand j, respectively. Also, let us denote with Fni and F lj , the �nishing potentials of the last packetserviced from the two sessions before time t2.Case 1: Ski � Smj : We will separate the problem into two sub-cases: First, let us assume that atleast one packet was serviced from session j after time � . Then, Fm�1j = Smj and F ki � Fm�1j .Since the maximum packet size for session i is Li,Smj � Li�i � Ski : (A.42)Now consider the sub-case when no other packet was serviced from j after time � . ThenSmj � Pj(�) + Cj : (A.43)We also know that Ski � Pi(�): (A.44)By subtracting (A.44) from (A.43),Smj � Ski � (Pj(�)� Pi(�)) + Cj� �P + Cj : (A.45)Therefore, combining the two subcases,Smj � Ski � max(�P + Cj ; Li�i): (A.46)The service o�ered to session i in the interval (t1; t2] is equal to the di�erence in time-stampsFni � Ski . Also, Fni � F lj + Lj�j :Therefore, Ŵi(�; t)�i � Fni � Ski� F lj � Ski + Lj�j : (A.47)Similarly, the normalized service o�ered to session j is equal to the di�erence between the time-stamps. That is, Ŵj(�; t)�j = F lj � Smj : (A.48)38

Therefore, Ŵi(�; t)�i � Ŵj(�; t)�j � Smj � Ski + Lj�j� max(�P + Cj; Li�i) + Lj�j : (A.49)Similarly, we can write that Ski � Smj � 0: (A.50)For session j, F lj � Fni + Li�i (A.51)and Ŵj(�; t)�j � F lj � Smj� Fni � Smj + Li�i : (A.52)For session i, Ŵi(�; t)�i = Fni � Ski : (A.53)Subtracting (A.53) from (A.51),̂Wj(�; t)�j � Ŵi(�; t)�i � (Ski � Smj) + Li�i (A.54)� Li�i : (A.55)Case 2: Ski > Smj . In order to estimate a tight bound we will need to separate the problem intoseveral sub-cases.Subcase (a): The starting potential of session i was estimated by the system potential. Then,this is the �rst packet that will be serviced from session i after time � . Since Pi(�) = Ski > Smj andPi(�) � Pj(�), from the de�nition of rate-proportional servers, session j received less service in thepacket-by-packet server than in the uid server. Therefore, for the normalized service o�ered toconnection j between time � and t2, we can write:Ŵj(�; t2)�j � Fni � Ski + Li�i + ŴGj (0; �)� ŴFj (0; �)�j� Ŵi(t1; t2)�i + Li�i + Lmax�j : (A.56)This means that the maximum normalized service that can be o�ered to session j is bounded bythe maximum increase in the potential of session i plus the excess normalized service that sessionj received in the packet-by-packet server. Since the service is non-decreasing, we haveŴj(�; t2) � Ŵj(t1; t2):39

Therefore, Ŵj(t1; t2)�j � Ŵi(t1; t2)�i � Li�i + Lmax�j : (A.57)Subcase (b): The starting potential of the kth packet of connection i was computed from thepotential of the (k � 1)th packet. Again, we will have to consider several sub-problems. First ofall, let us assume that there was another packet serviced from connection i after time � . SinceSki = F k�1i and Fmj � F k�1i ; we can writeSki � Lj�j � Smj ; (A.58)or equivalently Ski � Smj � Lj�j : (A.59)Now let us assume that there is no other packet serviced from session i after time � . Then,the packet-by-packet server has o�ered more service to session i until time � than the uid system.Let us denote with t� the time at which the (k� 1)th packet was serviced from session i. If sessionj was backlogged at time t�, then F aj � Lj�j � F k�1i � F aj ; (A.60)for some packet a of connection j. But since F k�1i = Ski and Smj � F aj � Lj�j , we can conclude thatSki � Smj � Lj�j : (A.61)If connection j was not backlogged at time t�, then when it becomes backlogged at some timet� < t � � , Pj(t) � Pi(t�)��P;and Saj � Pj(t);for some packet a of connection j. The second inequality follows from the fact that the uid-servercan only be behind the packet-by-packet server for connection j at time t� since the packet-by-packet server is not backlogged. Also, Smj � Saj . Therefore,Smj � Pi(t�)��P:We also know from Lemma 5 that F k�1i = Ski � Pi(t�) + Ci:Subtracting, Ski � Smj � �P + Ci (A.62)40

Therefore, from equations (A.59), (A.61), and (A.62),Ski � Smj � max(�P + Ci; Lj�j):For session j, the maximum service o�ered in the interval (t1; t2] will beŴj(�; t)�j � F lj � Smj� Fni � Smj + Li�i : (A.63)For session i, Ŵi(�; t)�i = Fni � Ski : (A.64)Subtracting, Ŵj(�; t)�j � Ŵi(�; t)�i � Ski � Smj + Li�i� max(�P + Ci; Lj�j) + Li�i : (A.65)Finally, if session i has received more normalized service in this interval, we can writeŴi(�; t)�i �Fni � Ski�F lj � Ski + Lj�j ; (A.66)and Ŵj(�; t)�j = F lj � Smi : (A.67)By subtracting and using the assumption that Ski > Smi ,Ŵi(�; t)�i � Ŵj(�; t)�j � Lj�j : (A.68)Combining equations (A.49), (A.55), (A.57), (A.65), and (A.68) we can conclude thatjŴi(�; t)�i � Ŵj(�; t)�j j � max(�P + Li�i + Ci;�P + Lj�j + Cj ; Lmax�j + Li�i): (A.69)A symmetrical argument for the case where session j becomes backlogged after i willcomplete the proof of the theorem. 241

Appendix B: Simulation ResultsThis appendix provides some simulation results to further illustrate the ability of frame-based fair queueing (FFQ) to provide low session latencies and isolation from other misbehavingows. We simulated the packet-by-packet version of the algorithm (PFFQ) as applied to a singleoutput port of an ATM switch. For comparison, we also simulated the self-clocked fair-queueing(SCFQ) algorithm since its implementation complexity is comparable to that of FFQ. Our modelconsists of eight sessions sharing the same output link. The reservation of each of these sessions isshown in Table 2. An ON-OFF tra�c model was used to generate tra�c within each session. Thetra�c was then shaped through a leaky bucket.Since our interest is in evaluating the delay in the scheduler rather than the e�ect of inputburstiness, we selected a � of 2 for each connection. We also assumed that one session (session 1)is misbehaving, attempting to transmit more than its reservation. We assumed an in�nite numberof bu�ers, causing session 1 to remain backlogged throughout the simulation. With this model,we measured the delays and bandwidth allocations received by all the sessions. A summary of ourresults is presented in Table 2. Delays are shown in the table in terms of cell-transmission times.The upper bounds for delay for each session in the two servers, computed using Theorem 1, are asshown in Table 3.Both the average and maximum delays of session 0, which has reserved 50% of the linkbandwidth, are substantially lower in the PFFQ server as compared to the SCFQ server. PFFQprovides a maximum end-to-end delay of 2 for this session. By using Theorem 1, the maximumend-to-end delay for virtual channel 0 can be computed as 20:5 + 1 = 5. The delays of sessions2{7 are also lower in the PFFQ server. The higher delays experienced in the SCFQ server are aresult of its poor isolation properties. The SCFQ algorithm provided more service to session 1 thanits reservation, sacri�cing the delays of other channels. In contrast, the PFFQ is able to providestricter isolation, and does not allow the misbehaving connection to inuence the end-to-end delaysof the other connections. This example veri�es the excellent isolation properties of PFFQ.An important property of PFFQ is that the maximum latency seen by a session can becontrolled by varying its reservation. That is, increasing the reservation results in a correspondingdecrease in the latency, a�ecting both the maximum and average delays in a real system, as is thecase in a GPS server. With SCFQ, on the other hand, the delay bound is much less a�ected bythe reservation of the session. The simulation results in Table 4 verify this important property. Inthis set of simulations, the reservations of the individual sessions are identical to those in Table 2,but all sessions are transmitting within their reservations. Again, both the average and maximumdelays seen by session 0 are substantially lower in the PFFQ server as compared to the SCFQserver. The delays of sessions 2{7 are slightly higher in PFFQ owing to their lower reservations,but the di�erences are small.Thus, the simulations in this appendix illuminate some of the important properties of theframe-based fair queueing algorithm. 42

Session Reserved Arrival PFFQ SCFQBandwidth Rate Avg. Delay Max Delay Avg. Delay Max Delay0 0.500000 0.498 1.003 2.0 3.231 7.01 0.062500 0.100 N/A N/A N/A N/A2 0.062500 0.062 5.343 22.0 13.777 23.03 0.062500 0.061 7.394 24.0 14.600 26.04 0.078125 0.076 3.726 12.0 9.146 19.05 0.078125 0.076 4.265 12.0 9.822 19.06 0.078125 0.076 5.305 13.0 10.447 19.07 0.078125 0.076 5.985 15.0 10.750 17.0Table 2.1: Comparison of delays from a simulation of PFFQ and SCFQ algorithms. Theeight sessions shown share the same output link. Delays are measured in terms of cell-transmission times. Session 1 is misbehaving while others are transmitting within theirreservations. Session PFFQ SCFQ0 5 111 33 392 33 393 33 394 27 335 27 336 27 337 27 33Table 2.2: Analytical delay bounds for the sessions in the simulation.Session Reserved Arrival PFFQ SCFQBandwidth Rate Avg. Delay Max Delay Avg. Delay Max Delay0 0.500000 0.498 1.002 2.0 2.480 7.01 0.062500 0.062 6.985 14.0 5.598 11.02 0.062500 0.062 7.191 20.0 6.391 11.03 0.062500 0.061 7.512 24.0 6.952 16.04 0.078125 0.076 5.726 16.0 4.146 10.05 0.078125 0.076 6.265 16.0 4.822 11.06 0.078125 0.076 5.653 16.0 5.255 15.07 0.078125 0.076 6.194 16.0 5.603 16.0Table 2.3: Comparison of delays from a simulation of PFFQ and SCFQ algorithms. Theeight sessions shown share the same output link. Delays are measured in terms of cell-transmission times. All sessions are transmitting within their reservations.43

