Frame-based Fair Queueing: A New
Traffic Scheduling Algorithm for
Packet-Switched Networks

Dimitrios Stiliadis

Anujan Varma

UCSC-CRL-95-39
July 18, 1995

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

In this paper we introduce and analyze frame-based fair queueing, a novel traffic schedul-
ing algorithm for packet-switched networks. The algorithm provides end-to-end delay
bounds identical to those of PGPS (packet-level generalized processor sharing), without the
complexity of simulating the fluid-model system in the background as required in PGPS.
The algorithm is therefore ideally suited for implementation in packet switches supporting
a large number of sessions. Implementations of the algorithm are described for both general
packet switches supporting variable packet sizes, and ATM switches supporting fixed-size
cells. In addition, we prove that the algorithm is fair in the sense that sessions are not pe-
nalized for excess bandwidth they received while other sessions were idle. Frame-based fair
queueing belongs to a general class of scheduling algorithms, which we call Rate-Proportional
Servers. This class of algorithms provides the same end-to-end delay and burstiness bounds
as PGPS, but allows more flexibility in the design and implementation of the algorithm. We
provide a systematic analysis of this class of schedulers and obtain bounds on their fairness.

Keywords: Packet scheduling, ATM switch scheduling, fair queueing, delay bounds,
fairness.

This research is supported by the NSF Young Investigator Award No. MIP-9257103

1 Introduction

Many future applications of computer networks such as distance education, remote collab-
oration, and teleconferencing will rely on the ability of the network to provide Quality-of-Service
(QoS) guarantees. These guarantees are usually in the form of bounds on end-to-end delay, band-
width, delay jitter (variation in delay), packet loss rate, or a combination of these parameters.
Broadband packet networks based on ATM (Asynchronous Transfer Mode) are currently enabling
the integration of traffic with a wide range of characteristics within a single communication net-
work. QoS guarantees can also be provided in conventional packet networks by the use of proper
packet scheduling algorithms in the packet switches.

Providing QoS guarantees in a packet network requires the use of traffic scheduling algo-
rithms in the switches (or routers). The function of a scheduling algorithm is to select, for each
outgoing link of the switch, the packet to be transmitted in the next cycle from the available packets
belonging to the flows sharing the output link. Implementation of the algorithm may be in hard-
ware or software. Because of the small size of the ATM cell, the scheduling algorithm must usually
be implemented in hardware in an ATM switch. In a packet network with larger packet-sizes, such
as the current Internet, the algorithm can be implemented in software.

Several service disciplines are known in the literature for bandwidth allocation and trans-
mission scheduling in output-buffered switches. In general, schedulers can be characterized as
work-conserving or non-work-conserving. A scheduler is work-conserving if the server is never idle
when a packet is buffered in the system. A non-work-conserving server may remain idle even if there
are available packets to transmit. A server may, for example, postpone the transmission of a packet
when it expects a higher-priority packet to arrive soon, even though it is currently idle. When the
transmission time of a packet is short, as is typically the case in an ATM network, however, such a
policy is seldom justified. Non-work-conserving algorithms are also used to control delay jitter by
delaying packets that arrive early [1]. Work-conserving servers always have lower average delays
than non-work-conserving servers. Examples of work-conserving schedulers include Generalized
Processor Sharing (GPS) [2], Weighted Fair Queueing [3], VirtualClock [4], Delay-Earliest-Due-
Date (Delay-EDD) [5], Weighted Round Robin [6], and Deficit Round Robin [7]. On the other
hand, Hierarchical-Round-Robin (HRR) [8], Stop-and-Go queueing [9], and Jitter-Earliest-Due-
Date [1] are non-work-conserving schedulers.

Another classification of schedulers is based on their internal structure [10]. According
to this classification there are two main architectures: sorted-priority and frame-based. 1In a
sorted-priority scheduler, there is a global variable — usually referred to as the wvirtual time —
associated with each outgoing link of the switch. Each time a packet arrives or gets serviced,
this variable is updated. A timestamp, computed as a function of this variable, is associated with
each packet in the system. Packets are sorted based on their timestamps, and are transmitted
in that order. VirtualClock, Weighted Fair Queueing, and Delay-EDD follow this architecture.
Two factors determine the implementation complexity of all sorted-priority algorithms: First, the
complexity of updating the priority list and selecting the packet with the highest priority is at
least O(log V') where V' is the number of connections sharing the outgoing link. The second is the
complexity of calculating the timestamp associated with each packet; this factor depends heavily
on the algorithm. For example, maintaining the virtual time in Weighted Fair Queueing requires

1

the processing of a maximum of V' events during the transmission of a single packet, whereas
timestamps in VirtualClock can be calculated in O(1) time.

In a frame-based scheduler, time is split into frames of fixed or variable length. Reservations
of sessions are made in terms of the maximum amount of traffic the session is allowed to transmit
during a frame period. Hierarchical Round Robin and Stop-and-Go Queueing are frame-based
schedulers that use a constant frame size. As a result, the server may remain idle if sessions
transmit less traffic than their reservations over the duration of a frame. In contrast, Weighted
Round Robin and Deficit Round Robin schedulers allow the frame size to vary within a maximum.
Thus, if the traffic from a session is less than its reservation, a new frame can be started early.
Therefore, both of these schedulers are work-conserving.

A traffic scheduling algorithm must possess several desirable features to be useful in practice:

1. Isolation of flows: The algorithm must isolate an end-to-end session from the undesirable
effects of other (possibly misbehaving) sessions. That is, the algorithm must be able to
maintain the QoS guarantees for a session even in the presence of other misbehaving flows.
Note that isolation is necessary even when policing mechanisms are used to shape the flows
at the entry point of the network, as the flows may accumulate burstiness within the network.

2. Low end-to-end delays: The algorithm must provide end-to-end delay guarantees for individ-
ual sessions. In particular, it is desirable that the end-to-end delay of a session depends only
on its bandwidth reservation, and is independent of the behavior of other sessions.

3. Utilization: The algorithm must utilize the link bandwidth efficiently.

4. Fairness: The available link bandwidth must be divided among the connections sharing the
link in a fair manner. Two algorithms with the same maximum delay guarantee may have
significantly different fairness characteristics. An unfair scheduling algorithm may offer widely
different service rates to two connections with the same reserved rate over short intervals.

5. Simplicity of implementation: The scheduling algorithm must have a simple implementation.
In an ATM network, the available time for completing a scheduling decision is very short. At
SONET OC-3 speeds the transmission time of an cell is less than 3 us. For higher speeds
the available time is even less. This forces a hardware implementation. In packet networks
with larger packet sizes and/or lower speeds, a software implementation may be adequate,
but scheduling decisions must still be made at a rate close to the arrival rate of packets.

6. Scalability: The algorithm must perform well in switches with a large number of connections,
as well as over a wide range of link speeds.

Based only on the end-to-end delay bounds and fairness properties, Generalized-Processor-
Sharing (GPS) is an ideal scheduling discipline [2]. GPS multiplexing is defined with respect to
a fluid-model, where packets are considered to be infinitely divisible. The share of bandwidth
reserved by session i is represented by a real number ¢;. Let B(7,t) be the set of connections that
are backlogged in the interval (7,t]. If r is the rate of the server, the service W;(7,t) offered to a
connection 7 that belongs in B(r,t) is proportional to ¢;. That is,

o

Wi (Tv t) >
jeB(rt) O

r(t—7).

The minimum service that a connection can receive in any interval of time is

o

-
7=1 ¢]

where V' is the maximum number of connections that can be backlogged in the server at the same

r(t—7),

time. Thus, GPS serves each backlogged session with a minimum rate equal to its reserved rate at
each instant; in addition, the excess bandwidth available from sessions not using their reservations
is distributed among all the backlogged connections at each instant in proportion to their individual
reservations. This results in perfect isolation, ideal fairness, and low end-to-end session delays.

A packet-by-packet version of the algorithm, known as PGPS or Weighted Fair Queueing,
was defined in terms of a virtual clock that is increased with rate equal to

1
ZieB(T,t) Gi '

A GPS system is simulated in parallel with the packet-by-packet system in order to identify the
set of connections that are backlogged at each time. The virtual time v(t) is a piecewise linear
function of the real time ¢, and its slope changes depending on the number of busy sessions and
their service rates. At the arrival of a new packet, the virtual time must be calculated first. Then,
the time-stamp T.5; associated with the kth packet of virtual channel 7 is calculated as:

TSF max(TSF1v(t)) + %,

where L is the size of the kth packet.

A maximum of V events may be triggered in the GPS simulator during the transmission
of one packet. Thus, the process overhead for completing a scheduling decision is O(V). In order
to reduce this complexity, an approximate implementation of GPS multiplexing was proposed in
[11] and was later analyzed in [12] under the name Self-Clocked Fair Queueing (SCFQ). In this
implementation, the timestamp of an arriving packet is computed based on the packet currently in
service. Thus, if T'S.,, denotes the timestamp of the packet in service, and if the new packet is the
kth packet of session ¢, the timestamp of the new packet is calculated as

k k—1 L
TS max(TSey,, TS;™") + g
K3

This approach reduces the complexity of the algorithm greatly. However, the price paid is the
reduced level of isolation among the sessions, causing the end-to-end delay bounds to grow linearly
with the number of sessions that share the outgoing link [13]. Thus, the worst-case delay of a
session can no longer be controlled just by controlling its reservation, as is possible in PGPS. The
higher end-to-end delay also affects the burstiness of sessions within the network, increasing the
buffer requirements.

The VirtualClock scheduling algorithm provides the same end-to-end delay and burstiness
bounds as PGPS with a simple timestamp computation algorithm, but the price paid is in terms of
fairness. A backlogged session in the VirtualClock server can be starved for an arbitrary period of

time as a result of excess bandwidth it received from the server when other sessions were idle [2]. A
scheduling algorithm that combines the delay and burstiness behavior of PGPS, simple timestamp
computations, and bounded unfairness, has so far remained elusive. Our objective in this paper is
to develop an analytical framework for the design of such algorithms and, in particular, present a
novel scheduling algorithm based on this framework, called Frame-based Fair Queueing.

Frame-based fair queueing (FFQ) is a sorted-priority algorithm, and therefore uses times-
tamps to order packet transmissions. However, it requires only O(1) time for the timestamp calcu-
lation independent of the number of sessions sharing the server. At the same time, the end-to-end
delay guarantees of FFQ are identical to those obtained from a corresponding PGPS server. In
addition, the server is fair in the sense that connections are always served proportionally to their
reservations when they are backlogged, and are not penalized for an arbitrary amount of time for
bandwidth they received while the system was empty. The algorithm uses a framing approach
similar to that used in frame-based schedulers to update the state of the system; the transmission
of packets, however, is still based on timestamps.

The rest of this paper is organized as follows: In Section 2, we present some definitions
and a brief summary of the concept of Latency-Rate Servers (or LR-servers) [13]. LR-servers
provide a general framework for modeling the worst-case behavior of scheduling algorithms. All
work-conserving servers known to us can be modeled using this framework. In Section 3, we
define a class of scheduling algorithms, called Rate-Proportional Servers which provide the same
worst-case delay behavior as GPS, but allow the design of algorithms with a wide range of fairness
characteristics. We derive bounds on the end-to-end delay and burstiness in a network of rate-
proportional servers and analyze their fairness behavior. In Section 4, we define the frame-based
fair queueing algorithm and show that it is a rate-proportional server. The basic algorithm is
defined using the fluid model, but its extension to the packet-level version is straightforward. In
Section 5 we present two implementation of the frame-based fair queueing algorithm, the first for a
general packet network with variable-size packets and the second for ATM networks with fixed-size
cells. The latter takes into account the constraints of a hardware implementation. Finally, some
concluding remarks are presented in Section 6. Appendix A contains the proofs of many lemmas
and theorems, while Appendix B provides some results from simulations of the FFQ algorithm.

2 Preliminaries

We assume a packet switch where a set of V connections share a common output link.
The terms connection, flow, and session will be used synonymously. We denote with p; the rate
allocated to connection 1.

We assume that the servers are non-cut-through devices. Let A;(7,t) denote the arrivals
from session 7 during the interval (7, ¢] and W;(7,t) the amount of service received by session ¢ during
the same interval. In a system based on the fluid model, both A;(7,t) and W;(7,t) are continuous
functions of t. However, in the packet-by-packet model, we assume that A;(7,t) increases only
when the last bit of a packet is received by the server; likewise, W;(7,t) is increased only when the
last bit of the packet in service leaves the server. Thus, the fluid model may be viewed as a special
case of the packet-by-packet model with infinitesimally small packets.

Figure 2.1: Intervals (¢1, 2] and (ts,%4] are two different busy periods.

Definition 1: A system busy period is a mazimal interval of time during which the server is
never idle.

During a system busy period the server is always transmitting packets.

Definition 2: A backlogged period for session ¢ is any period of time during which packets
belonging to that session are continuously queued in the system.

Let Q;(t) represent the amount of session 7 traffic queued in the server at time ¢, that is,
Qz(t) = AZ»(O, t) — Wi(O, t).

A connection is backlogged at time ¢ if (Q;(¢) > 0.

Definition 3: A session ¢ busy period is a mazimal interval of time (71, 2] such that for any
time t € (11, T3], packets of connection i arrive with rate greater than or equal to p;, or,

Ai(y,t) > pi(t —).

A session busy period is the maximal interval of time during which if the session were
serviced with exactly the guaranteed rate, it would be remain continuously backlogged (Figure 2.1).
Multiple session-¢ busy periods may appear during a system busy period.

The session busy period is defined only in terms of the arrival function and the allocated
rate. It is important to realize the basic distinction between a session backlogged period and a
session busy period. The latter is defined with respect to a hypothetical system where a backlogged
connection ¢ is serviced at a constant rate p;, while the former is based on the actual system where
the instantaneous service rate varies according to the number of active connections and their service
rates. Thus, a busy period may contain intervals during which the actual backlog of session 7 traffic
in the system is zero; this occurs when the session receives an instantaneous service rate of more
than p; during the busy period.

For a given session-¢ backlogged period, the corresponding busy period can be longer. In
addition, if (s1, f1] is a busy period for session i, multiple backlogged periods may occur in the
actual system during the interval (sq, fi]. The beginning of a busy period is always caused by the

5

arrival of a packet into the system. Since we are interested in a worst-case analysis of the system,
the session busy period provides us a convenient means to bound the queueing delays within the
system.

In [13], we introduced a general model for traffic scheduling algorithms, called Latency-Rate
(LR) servers. Any server in this class is characterized by two parameters: latency ©; and minimum
allocated rate p;. Let us assume that the jth busy period of connection ¢ starts at time 7. We denote
by W;Z(r, t) the total service provided to the packets of the connection that arrived after time 7
and until time ¢ by server §. Notice that the total service offered to connection ¢ in this interval,
W$(7,t), may actually be more than W;Z(r, t) since some packets from a previous busy period,
that are still queued in the system, may be serviced as well.
Definition 4: A server S belongs in the class LR if and only if for all times t after time T that
the j-th busy period started and until the packets that arrived during this period are serviced,

W;Z(r, t) > max(0, p;(t — 7 — @f))

Of is the minimum non-negative number that can satisfy the above inequality.

The right-hand side of the above equation defines an envelope to bound the minimum service
offered to session ¢ during a busy period. It is easy to observe that the latency @f represents the
worst-case delay seen by a session-i¢ packet arriving into an empty queue. For a fluid-model server,
this is the worst-case delay until the first bit of the packet is transmitted; for a packet-by-packet
server, @;S denotes the maximum delay before the last bit of the packet is serviced. The maximum
delay through a network of LR-servers can be computed from the knowledge of the latencies of the
individual servers and the traffic model. Thus, the theory of LR-servers allows us to determine
tight upper-bounds on end-to-end delays in a network of servers where the servers on a path may
not all use the same scheduling algorithm.

The function W;Z(r, t) may be a step function in a packet-by-packet scheduler. As in the
case of W;(7,t), we update W;Z(r, t) only when the last bit of a packet has been serviced. Only in
the case of a fluid-server packets can be arbitrarily small and thus W;Z(r, t) may be continuous.

To determine end-to-end delay bounds, we assume that traffic from session ¢ at the source
is leaky-bucket shaped [14]. That is,

Ai(r,t) <o+ pilt—7)

during any time interval (7,¢]. Also, we assume that session ¢ is allocated a minimum rate of p; in
the network. We state without proof the following key result from [13].

Theorem 1: The mazimum delay DX and the mazimum backlog Q¥ of session i after the Kth
node in an arbitrary network of LR -servers are bounded as

.
DE <4y e,
pi 4

K
QF < oi+pi Z QESJ)'

i=1
where @ESJ) is the latency of the jth server on the path of the session.
6

H Server Latency ‘ Fairness ‘ Complexity H

GPS 0 0 -
L; L ,
max (3 + Cf, 0
Lma.r h Lma-’ﬁ L_J
PGPS Loy Loae b T en T+), where I O(V)
Ci = min((V — 1)Lmaz - max (Z2)).
Pi T1<n<V " py,
Li Lma.r _ h L_
SCFQ oL mmar(V — 1) ra O(logV)
VirtualClock % + L’",,i 00 O(log V)
Deficit Round Robin M 3 o(1)
Weighted Round Robin w g 0O(1)

Table 2.1: Latency, fairness and implementation complexity of several work-conserving
servers. L; is the maximum packet size of session ¢ and L,,,, the maximum packet size
among all the sessions. C} is the maximum normalized service that a session may receive
in a PGPS server in excess of that in the GPS server. In weighted round-robin and deficit
round-robin, F'is the frame size and ¢; is the amount of traffic in the frame allocated to
session 7. L. is the size of the fixed packet (cell) in weighted round-robin.

This theorem allows us to calculate bounds on end-to-end delays and buffer requirements
for an arbitrary topology network where the only constraint is that individual switches use schedul-
ing algorithms belonging to the class £LR. Furthermore, all known work-conserving schedulers
— such as GPS, PGPS, Weighted Round Robin, Self-Clocked Fair Queueing, VirtualClock and
Deficit-Round-Robin — have been shown to be LR-servers [13]. In Table 2 we summarize the
latencies of many well-known work-conserving schedulers, along with bounds on their fairness and
implementation complexity. The fairness parameter in the table is the maximum difference in nor-
malized service offered by the scheduler to two connections over any interval during which both
connections are continuously backlogged. The implementation complexity is at least O(log, V') for
all sorted-priority schedulers.

The packet-by-packet approximation of GPS (PGPS) has the lowest latency among all
the packet-by-packet servers; thus, from Theorem 1, PGPS has the lowest bounds on end-to-end
delay and buffer requirements. However, PGPS also has the highest implementation complexity.
VirtualClock has the same latency as PGPS, but is not a fair algorithm [4, 2]. Notice, however,
that none of the other algorithms suffers from such a high level of unfairness. In SCFQ as well
as the round-robin schedulers, latency is a function of the number of connections that share the
output link. In a broadband network, the resulting end-to-end delay bounds may be prohibitively
large.

The GPS scheduler provides ideal fairness by offering the same normalized service to all
backlogged connections at every instant of time. Thus, if we represent the total amount of service
received by each session by a function, then these functions can be seen to grow at the same rate
for each backlogged session. Golestani [12] introduced such a function and called it virtual time.
Virtual time of a backlogged session is a function whose rate of growth at each instant is exactly
the rate of service provided to it by the scheduler at that instant. Similarly, we can define a global
virtual-time function that increases at the rate of the total service performed by the scheduler at
each instant during a server-busy period. In a GPS scheduler, the virtual times of all backlogged
connections are identical at every instant, and is equal to the global virtual time. This is achieved
by setting the virtual time of a connection to the global virtual time when it becomes backlogged
and then increasing the former at the rate of the instantaneous normalized service received by
the connection during the backlogged period. This allows an idle connection to receive service
immediately once it becomes backlogged, resulting in zero latency.

We introduce such a function to represent the state of each connection in a scheduler and
call it potential. The potential of a connection is a non-decreasing function of time during a system-
busy period. When connection ¢ is backlogged, its potential increases exactly by the normalized
service it received. That is, if P;(¢) denotes the potential of connection ¢ at time ¢, then, during
any interval (7,¢] within a backlogged period for session 1,

VVZ'(T7 t)

Pt) - Pi(r) = =

Note that the potentials of all connections can be initialized to zero at the beginning of a system-
busy period, since all state information can be reset when the system becomes idle.

From the above definition of potentials, it is clear that a fair algorithm must attempt
to increase the potentials of all backlogged connections at the same rate, the rate of increase of
the system potential. Thus, the basic objective is to equalize the potential of each connection.
Sorted-priority schedulers such as GPS, PGPS, SCFQ, and VirtualClock all attempt to achieve
this objective. However, in our definition of potential, we did not specify how the potential of
a connection is updated when it is idle, except that the potential is non-decreasing. Scheduling
algorithms differ in the way they update the potentials of idle connections. Ideally, during every
time interval that a connection ¢ is not backlogged, its potential must increase by the normalized
service that the connection could receive if it were backlogged. We will call this service the missed
service of connection i, denoted by S;(¢1,2). If the potential of an idle connection is increased by
the service it missed, it is easy to see that, when the connection becomes busy again, its potential
will be identical to that of other backlogged connections in the system, allowing it to receive service
immediately.

One way to update the potential of a connection when it becomes backlogged is to define a
system potential that keeps track of the progress of the total work done by the scheduler. The system
potential P(¢) is a non-decreasing function of time. When an idle session 7 becomes backlogged
at time ¢, its potential P;(¢) can be set to P(t) to account for the service it missed. Schedulers
use different functions to maintain the system potential, giving rise to widely different delay- and
fairness-behaviors. In general, the system potential at time ¢ can be defined as a non-decreasing
function of the potentials of the individual connections before time ¢, and the real time t.

8

! !
t1 t2 t3 tl t2 t3

Figure 2.2: Evolution of the potential and offered service for two connections in the GPS
multiplexer.

P(t) = F(P(t=), By(t—), ..., Py(t—),1). (2.1)

For example, the GPS server initializes the potential of newly backlogged connection to that of a
connection currently backlogged in the system. That is,

P(t) = P;(t), forany i€ B(t);

where B(t) is the set of backlogged connections at time ¢. The VirtualClock scheduler, on the other
hand, initializes the potential of a connection to the real time when it becomes backlogged, so that

Pty ty) =ty —t;.

We will later show how the choice of the function P(t) influences the delay and fairness behavior
of the scheduler.

The concept of potential is illustrated with respect to a GPS scheduler in Figure 2.2. Let
us assume that only two connections with rates p; = po are continuously serviced for the interval
of time (t1,t2]. By the definition of the GPS multiplexer they are serviced with rates proportional
to the reserved, and therefore their potentials increase by exactly the same amount. During the
interval (t3,ts], no traffic arrives for connection 2 and it is thus receiving no service. Connection 1 is
exclusively serviced during this interval, and its potential is increasing by the normalized service it
receives. Traffic from connection 2 arrives at the server again at time 5 and the two connections are
again serviced proportional to their reservations. Since connection 2 was absent from the system
during the interval (fq,¢3] it lost some service compared to the other connection that was busy. The
service it lost is equal to the service that the other connection received during the same interval.
Connection 2 will never receive this service. We therefore see that during the interval (¢q,%s] the
potential of connection 2 should increase by exactly the same amount as that of connection 1
although it is not in the system. Thus, when connection 2 becomes backlogged again, the potential
of the two connections will be equal, and they will be serviced proportional to their requests. If we

9

—_——— —_—— W

t1 t2 t3 t4 t t1 t2 t3 t4

Figure 2.3: Evolution of the potential and offered service for two connections in the SCFQ
multiplexer.

take into account this definition of the potential, the scheduling algorithm can be defined as the
process that tries to equalize the potential of all backlogged connections and adjusts the potential
of the connections when they are not in the system.

The utility of the system potential function P(¢) is in estimating the amount of service
missed by a connection while it was idle. In an ideal server like GPS, the system potential is always
equal to the potential of the connections that are currently backlogged and are thus receiving
service. However, this approach requires that all connections can receive service at the same time.
In a packet-by-packet scheduler we need to relax this constraint since only one connection can be
serviced at a time. In the next section we will formulate the necessary conditions that the system
potential function must satisfy in order for the server to have zero latency.

The self-clocked fair queueing (SCFQ) algorithm is a self-contained approach to estimate
the system potential function. The potential of the system is estimated by the potential of the
connection that is currently being serviced. Packets are transmitted in increasing order of their
finishing potential. Consider again the example we used earlier to present the evolution of the
potential function in a GPS server. Assume a fluid-model server based on the SCFQ algorithm.
The evolution of the potentials of the two connections is shown in Figure 2.3. The objective of
the algorithm is to service the backlogged connections in such a way that their potentials will be
equalized. Therefore, if a connection has a lower potential than others it will be exclusively serviced
until its potential catches up with the potentials of others. In Figure 2.3, connection 2 becomes
backlogged again at time t¢3, and is assigned a potential equal to the finishing potential of the
packet being serviced, Pj(t4). Thus, connection 2 will receive no service until time ¢4, and will be
be serviced at a rate proportional to its reservation after t4. This behavior is different from that in
GPS, where an idle connection starts to receive service immediately when it becomes backlogged.

The above example illustrates that, if the potential of a newly backlogged connection is
estimated higher than the potential of the connections currently being serviced, the former may
have to wait for one packet to be transmitted from each of the other connections before it can be

10

serviced. This results in a latency that is proportional to the number of active connections. Thus,
since the potential of a newly backlogged connection is set to the system potential, the system
potential should not be allowed to exceed the potential of backlogged connections to achieve zero
latency in a fluid server. Although we have used a fluid server to illustrate this point, the concept
applies to a packet-by-packet server as well. In the next section we formalize these intuitive results,
and define a class of schedulers to achieve low latency.

3 Rate-Proportional Servers

We now use the concept of potential introduced in the last section to define a general class
of schedulers, which we call Rate-Proportional Servers (RPS). We will first define these schedules
based on the fluid model and later extend the definition to the packet-by-packet version. These
schedulers are characterized by their service discipline which adjusts the instantaneous service
rate to individual backlogged connections so as to equalize their potentials. In addition, the
definition also requires that the system potential P(¢) be maintained at or below the potential
of any connection backlogged at time ¢, at every instant of time the server is busy. This ensures
that a newly backlogged connection acquires a starting potential not higher that of any other
connection currently backlogged in the system, enabling it to receive service immediately. Thus, a
rate-proportional server is a zero-latency server. However, beyond this constraint, we do not define
exactly how the system potential function P(t) is synthesized, giving rise to a range of possible
scheduling algorithms in this class. For example, GPS and VirtualClock are rate-proportional
servers, but their system-potential functions are quite different. Self-clocked fair queueing, on the
other hand, is not a rate-proportional server since it does not meet the constraint on the system-
potential function.

We can now define the RPS class of scheduler formally. We denote the set of backlogged
connections at time ¢ by B(¢).

Definition 5: A rate proportional server has the following properties:

1. Rate p; is allocated to connection ¢ and

v
dopi<r
=1

where r is the total service rate of the server.
2. A potential function P;(t) is associated with each connection i in the system, describing the
state of the connection at time t. This function must satisfy the following properties:
(a) When a connection is not backlogged, its potential remains constant.

(b) If a connection becomes backlogged at time T, then
Bi(r) = max(Pi(r—), P(t-)) (3.1)

(c) For every time t > T, that the connection remains backlogged, the potential function of
the connection is increased by the normalized serviced offered to that connection during
the interval (1,t]. That is,

W, (T, t)

Pt) = Pr) + =

(3.2)

11

3. The system potential function P(t) describes the state of the system at time t. Two main
conditions must be satisfied for the function P(t):
(a) For any any interval (t1,t2] during a system busy period,

P(ty) — P(t1) > (t2 — 11).

(b) The system potential is always less than or equal to the potential of all backlogged
connections at time t. That is,

P() < min (P (0). (3.3
4. Connections are serviced at each instant t according to their instantaneous potentials as per
the following rules:

(a) Among the of backlogged connections, only the set of connections with the minimum
potential at time t is serviced.

(b) Fach connection in this set is serviced with an instantaneous rate proportional to its
reservation, so as to increase the potentials of the connections in this set at the same
rate.

The above definition specifies the properties of the system potential function for constructing

a zero-latency server, but does not define it precisely. In practice, the system potential function
must be chosen such that the scheduler can be implemented efficiently. When we introduce the
frame-based fair queueing algorithm in the next section, it will become clear how this definition
can be used to design a practical scheduling algorithm.

GPS multiplexing is a rate-proportional server where the system potential is always equal
to the potential of the backlogged connections. Since the service rate offered to the connections
is proportional to their reservations at every instant, the normalized service they receive during
an interval (f1,t3] is always greater than ({3 — ¢1). Thus, the amount of service received by a
connection 7, backlogged during the interval (¢1,%2), is given by

Wit t2) > pilta — ta),
and therefore,

P(ty) — P(t1) = Pi(ty) — Pi(ty)

_ Wi(tht?)
Pi
>ty — 1.

VirtualClock is a rate-proportional server as well. Consider a server where the system potential
function is defined as

P@t) =1t.

It is easy to verify that such a server satisfies all the properties of a rate-proportional server.
Consider a packet-by-packet server that transmits packets in increasing order of their finishing
potentials. Such a server is equivalent to the packet-by-packet VirtualClock server.

12

Initially backlogged connections

Figure 3.1: An example illustrating the evolution of potential functions in a rate-
proportional server.

We now proceed to show that every rate-proportional server is a zero-latency server. This
will establish that this class of servers provide the same upper-bounds on end-to-end delay as GPS.
To prove this result, we first introduce the following definitions:

Definition 6: A session-i active period is a mazximal interval of time during a system busy period,
over which the potential of the session is not less than the potential of the system. Any other period
will be considered as an inactive period for session 1.

The concept of active period is useful in analyzing the behavior of a rate-proportional scheduler.
When a connection is in an inactive period, it can not be backlogged and therefore can not be
receiving any service. On the other hand, an active period need not be the same as a backlogged
period for the connection. Since, in a rate-proportional server, the potential of a connection can
be below the system potential only when the connection is idle, a transition from inactive to active
state can occur only by the arrival of a packet of a connection that is currently idle, whose potential
is below that of the system. A connection in an active period may not receive service throughout the
active period since a rate-proportional server services only connections with the minimum potential
at each instant. However, it always receives service at the beginning of the active period, since its
potential is set equal to the system potential at that time.

We can view the evolution of the potential function as in Figure 3.1. Assume that the
system potential is always maintained below the potential of every backlogged connection. At
time 71, connection ¢ ¢ becomes active and receives all the bandwidth, trying to achieve the same
potential as the rest of the connections. At time 7 a second connection 7 + 1 becomes active, and
the service of 7 is temporarily suspended. The potentials of the two new connections become equal
at 74; during the interval (73, 74], each of them receives service proportional to its reservation so
that their potentials remain equal. That is,

13

Wi(7—377—4) _ Wi—|—1(7—377—4)

Pi Pi+1

At 74, the potentials of ¢ and ¢4 1 become equal to that of other connections already backlogged in
the system; therefore, from 74, all backlogged connections in the system receive service proportional
to their allocated rates. If another new connection becomes active after time 74, service to all the
connections will be suspended until the new connection reaches the same potential. In addition, if
a connection finishes service, the instantaneous service rates of other backlogged connections will
increase because of the work-conserving nature of the scheduler. However, a connection may be
temporarily suspended if it has received more than its allocated bandwidth earlier during the same
active period.

Since LR-servers are defined in terms of busy periods, it is necessary to establish the
correspondence between busy periods and active periods in a rate-proportional server. We will now
show that the beginning of a busy period is the beginning of an active period as well.

Lemma 1: If 7 is the beginning of a session-i busy period in a rate-proportional server, then 7 is
also the beginning of an active period for session 1.

A proof of this lemma is given in Appendix A. When connection ¢ becomes active, its poten-
tial is the minimum among all backlogged connections, enabling it to receive service immediately.
However, if a subsequent connection j becomes active during the busy period of connection ¢, then
the service of ¢ may be temporarily suspended until the potentials of 7 and j become equal. In the
following lemma, we derive a lower bound on the amount of service received by connection ¢ during
an active period.

Lemma 2: Let 7 be the time at which a connection i becomes active in a rate-proportional server.
Then, at any time t > 7 that belongs in the same active period, the service offered to connection 1
15

Wi(r,t) > pi(t — 7).

This lemma is proved in Appendix A. Intuitively, this result asserts that the service of a backlogged
connection is suspended only if it has received more service than its allocated rate earlier during
the active period.

A session busy period may actually consist of multiple session active periods. In order to
prove that a rate proportional server is an LR server with zero latency, we need to prove that for
every time ¢ after the beginning of the j-th busy period at time 7,

Wii(r,t) > pilt - 7).

The above lemmas lead us to one of our key results:
Theorem 2: A rate-proportional server belongs to the class LR and has zero latency.

The main argument for proving this theorem is that during inactive periods the connection
is not backlogged and is thus receiving no service. By Lemma 2, the connection can receive less
than its allocated bandwidth only during an inactive period. However, since no packets are waiting
to be serviced in an inactive period, the connection busy period must have ended by then. The
formal proof is provided in Appendix A.

14

Thus, the definition of rate-proportional servers provides us a tool to design scheduling algo-
rithms with zero latency. Since both GPS and VirtualClock can be considered as rate-proportional
servers, by Theorem 2, they have the same worst-case delay behavior.

3.1 Packet-by-Packet Rate-Proportional Servers

In the previous section we defined the rate proportional servers using a fluid-model, where
packets from different connections can be served at the same time with different rates. However,
in a real system only one connection can be serviced at each time and in addition packets can not
be split in smaller units. A packet-by-packet rate proportional server can be defined in terms of
the fluid-model as one that transmits packets in increasing order of their finishing potential. Let
us assume that when a packet from connection ¢ finishes service in the fluid server, the potential of
connection ¢ is T'5;. We can use this finishing potential to timestamp packets and schedule them
in increasing order of their time-stamps. We call such a server a packet-by-packet rate-proportional
server (PRPS).

In the following, we denote the maximum packet size of session 7 as L; and the maximum
packet size among all the sessions as L4,

In order to analyze the performance of a packet-by-packet rate-proportional server we will
bound the difference of service offered between the packet-by-packet server and the fluid-server
when the same pattern of arrivals is applied to both the servers. Let us assume that the service
offered to session ¢ during the interval (7,¢] by the fluid server is W/ (7,t) and by the packet-by-
packet server is WX (7,t). Let us assume that the kth packet leaves the system under the PRPS
service discipline at time tf. The same packet leaves the RPS server at time tf. Using a similar
approach as the one used for GPS servers [2], we can prove the following lemma:

Lemma 3: For all packets in a packet-by-packet rate-proportional server,

L
th <tf + ”;“’.

If we include the partial service received by packets in transmission, the maximum lag in service
for a session ¢ in the packet-by-packet server occurs at the instant when a packet starts service. Let
us denote with W;(t) the service offered to connection i at time ¢ if this partial service is included.
At the instant when the kth packet starts service in PRPS,

T T Lmaac
WiF(O7 tk) < WZF(07 by — ") + Lmaac
S WZP (07 tk) + Lmaac-

Thus, we can state the following corollary:

Corollary 1: At any time t,
W 0,t) = WE(0,t) < Lias

15

In order to be complete we also have to bound the amount by which the service of a session in the
packet-by-packet server can be ahead of that in the fluid-server. Packets are serviced in PRPS in
increasing order of their finishing potentials. If packets from multiple connections have the same
finishing potential, then one of them will be selected for transmission first by the packet-by-packet
server, causing the session to receive more service temporarily than in the fluid server. In order to
bound this additional service, we need to determine the service that the connection receives in the
fluid-server. The latter, in turn, requires knowledge of the potentials the other connections sharing
the same outgoing link. We will use the following lemma to derive such an upper bound.

Lemma 4: Let (0,t] be a server-busy period in the fluid server. Let i be a session backlogged in the
fluid server at time t such that @ received more service in the packet-by-packet server in the interval
(0,t]. Then there is another session j, backlogged in the fluid server at time t, with P;(t) < P;(t)
that received more service in the fluid server than in the packet-by-packet server during the interval
(0,t].

A proof of this lemma can be found in Appendix A. We will now use the above lemma and
a method similar to the one presented in [15] for the PGPS server to find an upper bound for the
amount of service a session may receive in PRPS as compared to that in the fluid server.

Lemma 5: At any time t,

. . L
Wi (0,¢) = Wi (0,) < min((V 1)Lmax,pzlr§n%xv(pn))

Lemma 5 establishes two distinct upper bounds for the excess service received by a session
in the packet-by-packet server. A formal proof of the lemma is given in Appendix A, but we
provide some intuition here on these bounds. Consider any session i, backlogged in both servers.
By Lemma 3, any backlogged session in the packet-by-packet server may lag in service by as much
as L,z from the fluid server. Thus, in an extreme case, every backlogged session excluding ¢ may
be lagging in service by L., in the packet-by-packet server. Since the server is work-conserving,
session 7 can therefore be ahead in the packet-by-packet server by as much as (V — 1)L, where
V' is the number of sessions sharing the outgoing link.

The bound of (V —1) L4 may be too loose in many cases. The second bound in the lemma
provides a much tighter bound in those cases. To illustrate this bound, let us assume that

— = max (—).
pi 1<nVopy
Assume two packets arrive at the server simultaneously, one from session ¢ and the other from a
second session j. Assume that the packets are assigned the same finishing potential. If the packets
start service in the fluid server at time ¢, they also finish service simultaneously at time t + L;/p;.
If the packet-by-packet transmits the session-j packet first, the service received by session j in
Li

the packet-by-packet server can be ahead by (p—) p;. This reasoning gives rise to the second

upper-bound of Lemma 5.

16

3.2 Delay Analysis

Based on the bounds on the discrepancy between the service offered by the packet-by-packet
server and that by the fluid server at any time during a session busy period, we can bound the
performance of the PRPS system using the worst-case performance of the fluid-system. Thus, we
will now prove that a packet-by-packet rate proportional server is an LR-server and estimate its
latency.

Let us assume that a packet from connection 7 leaves the PRPS system at time ¢/’ and the
fluid-system at time t/. Then, by Lemma 3,

Lmax

r .

t <t +

For the analysis of a network of LR servers it is required that the service is bounded for any time
after the beginning of a busy period. In addition, we can only consider that a packet left the
packet-by-packet server if all of its bits have left the server. These requirements are necessary in
order to provide accurate bounds for the traffic burstiness inside the network. Therefore, just before
time t¥ + L";# the whole packet has not yet departed the packet-by-packet server. Let L; be the
maximum packet size of connection 7. The service offered to connection 7 in the packet-by-packet
server will be equal to the service offered to the same connection in the fluid server until time ¢¥,
minus this last packet. Therefore, the service received by session ¢ during the jth busy period in
the packet-by-packet server is given by

Lmal’
"
Lmal’
> max(0, p(t — 7 — ——) — L;), by Theorem 2
r
Lpax L;
-—)) (3.4)

r Pi

VVi{Dj(T7 t) > ij(r,t—

) — L

> max(0, p;(t — 7 —

Hence, we can state the following corollary:

Corollary 2: A packet-by-packet rate proportional server is an LR server and its latency is

r Pi

Lmaac Lz
I

Note that this latency is the same as that of PGPS. Thus, any packet-by-packet rate-
proportional server has the same upper bound on end-to-end delay and buffer requirements as
those of PGPS when the traffic in the session under observation is shaped by a leaky bucket.

Although all servers in the RPS class have zero latency, their fairness characteristics can be
widely different. Therefore, we take up the topic of fairness in the next section and derive bounds
on the fairness of rate-proportional servers.

3.3 Fairness of Rate-Proportional Servers

In our definition of rate-proportional servers, we specified only the conditions the system
potential function must satisfy to obtain zero latency, but did not explain how the choice of the

17

actual function affects the behavior of the scheduler. The choice of the system-potential function
has a significant influence on the fairness of service provided to the sessions. In the last section,
we showed that a backlogged session in a rate-proportional server receives an average service over
an active period at least equal to its reservation. However, significant discrepancies may exist in
the service provided to a session over the short term among scheduling algorithms belonging to the
RPS class. The scheduler may penalize sessions for service received in excess of their reservations
at an earlier time. Thus, a backlogged session may be starved until others receive an equivalent
amount of normalized service, leading to short-term unfairness.

Since, in a fluid-model rate-proportional server, backlogged connections are serviced at the
same normalized rate in steady state, unfairness in service can occur only when an idle connection
becomes backlogged. If the estimated system potential at that time is far below that of the
backlogged connections, the new connection may receive exclusive service for a long time until
its potential rises to that of other backlogged connections. This behavior can be illustrated with
respect to the VirtualClock algorithm. The system potential in VirtualClock grows at the rate
of real time, regardless of the potentials of the sessions in the system. Thus, the potential of a
connection receiving more service than its reserved rate will continue to diverge from the system
potential. Should an idle connection become active later, the connection that received the excess
service will be penalized severely. This shows that, to avoid short-term unfairness, the system
potential should be maintained close to that of backlogged connections receiving service. We will
formalize this idea and show that if the difference between the system potential and those of
individual backlogged sessions is bounded, the unfairness is also bounded.

In VirtualClock, the difference between the system potential and the potential of individual
backlogged connections cannot be bounded. Thus, the unfairness is also not bounded. This can be
seen as a result of the scheduler performing an averaging process on the rate of service provided
to individual sessions. In VirtualClock, the averaging interval can be arbitrarily long. The GPS
scheduler, on the other hand, occupies the opposite extreme where no memory of past bandwidth
usage of connections is maintained. Every backlogged connection has the same potential at all times
in a GPS server, giving rise to its ideal fairness behavior. In practice, the scheduling algorithm
must trade off short-term unfairness with other desirable properties such as low latency and ease
of implementation.

The ideal fairness behavior of GPS is compromised in self-clocked fair queueing, but the
difference in potentials is still bounded. Therefore, SCFQ can be considered as a fair scheduling
algorithm. However, SCFQ is not a rate-proportional server as it allows the system potential to
exceed that of a backlogged connection, resulting in worse delay behavior.

There is no common accepted method for estimating the fairness of a scheduling algorithm.
In general, we would like the system to always serve connections proportional to their reservations
and never penalize connections for bandwidth they received earlier, The measure of fairness that
we will use is an extension of the definition presented for SCFQ [12]. Let us assume that at time
7 two connections ¢, j become greedy, requesting an infinite amount of bandwidth. Thus, the two
connections will be continuously backlogged in the system after time 7. A scheduler is considered
as fair if the difference in normalized service offered to the two connections ¢, 7 during any interval
of time (t1,t;] after time 7 is bounded. That is,

18

Wi(th t2) . W] (th t2)
pi P

< FR, (3.5)

where F'R < oo is a measure of the fairness of the algorithm. Note that the requirement of an
infinite supply of packets from sessions ¢ and j arises because we require the two sessions to be
backlogged at every instant after 7 in each of the schedulers we study. Since, for the same arrival
pattern, the backlogged periods of individual sessions can vary across schedulers, a comparison of
fairness of different scheduling algorithms can yield misleading results without this condition. When
the connections have an infinite supply of packets after time 7, they will be continuously backlogged
in the interval (t1,t3] irrespective of the scheduling algorithm used. Thus, to compare the fairness
of different schedulers, we can analyze each of the schedulers with the same arrival pattern and
determine the difference in normalized service offered to the two connections in a specified interval
of time.

Let us denote with AP, the maximum difference between the system potential and the
potential of the connections being serviced in a rate-proportional server. The following theorem
formalizes our basic result on the fairness properties of rate-proportional servers.

Theorem 3: If the system potential function in a rate-proportional server never lags behind more
than a finite amount AP from the potential of the connections that are serviced in the system, the
difference in normalized service offered to any two connections during any interval of time that they
are continuously backlogged is also bounded by AP. That is, if AP < oo, then for all i,j € B(t1,t2)
during the interval (t1,ts],

Wi(th t2) . W] (th t2)
pi P

< AP

A proof of this theorem is given in Appendix A. The theorem applies to the fluid system.
A real system can only use a packet-by-packet rate-proportional server. We will now expand the
above theorem to prove that a similar relationship holds for the packet-by-packet version of the
algorithm. Let us define C; as
L,

Lmal’
C; =min((V - 1) , max (—))
Pi 1<n<V " Py

That is, C; is the maximum normalized service that a connection can receive over any interval in
the packet-by-packet server in excess of that offered by the fluid-server.

Theorem 4: In a packet-by-packet rate-proportional server, for every time interval (t1,t3] after
time T that both connections became greedy,

Li Lmaac L]

AZ» t V. t Lz L; Lmaac
W(Tv) _W](T7) §max(AP—l——-l—C“AP‘F—]‘|‘C]7—‘|'_7—+_) (36)

A proof of this theorem can be found in Appendix A. Since PGPS is a packet-by-packet rate
proportional server with AP = 0, we obtain the following result on the fairness of a PGPS scheduler
by setting AP = 0 in Eq. (3.6).

19

Corollary 3: For a PGPS scheduler,

Wi ,t W ,t L; L; Loz Li Ly L;
00 WD) ey, Lt g R
Pi Pj Pi Pj Pj Pi P Pj

).

It can be shown that the above bound is tight. For example, consider the case where connection
? is already backlogged in the system, and assume that connection j becomes backlogged at time
7. Then, connection ¢ may have received an additional amount of service equal to C; in the PGPS
server. If P;(7) is the potential of connection ¢ at time 7, the finishing potential of the next packet
of connection 7 is F; < Py(7)+C; + % Connection j will see a starting potential of P;(1) = Pi(7),
and is therefore exclusively serviced until the timestamps of its packets become greater than F;.
The total normalized service that connection j may receive while connection ¢ is waiting is bounded

by C; + L.
4 Frame-based Fair Queueing

Our analysis of rate-proportional servers in the previous section was based only on the
properties of the potential functions. We established that every rate-proportional server belongs
to the class of LR-servers with zero latency and showed that their unfairness can be bounded by
bounding the difference between the system potential and the potentials of backlogged connections.
In this section, we introduce a novel scheduling algorithm called frame-based fair queueing (FFQ)
and prove that it is a rate-proportional server. The algorithm is defined in this section in terms of the
fluid model. Later, in the next section, we will present a self-contained approach for implementing
a packet-by-packet version of the algorithm without requiring the parallel simulation of the fluid-
model.

The basic difficulty in the design of a scheduling algorithm in the RPS class is in maintaining
the system potential function. We use a potential function that can be calculated in a simple way,
and use a framing mechanism to bound its difference AP from the potential of a backlogged
connection.

The fluid version of the frame-based fair queueing (FFQ) algorithm is defined as follows:
FFQ is a rate-proportional server and therefore follows all the conditions in Definition 5. That is,
at each instant, it services only the set of backlogged connections with the minimum potential and
connections in this set are serviced at rates proportional to their reservations. We assume that a
rate p; is allocated to connection i. Let r; = p;/r denote the fraction of the link rate allocated to
connection z. We split the time in frames and assume that F’ bits may transmitted during a frame
period. Furthermore, let us define 7" as the frame period. Then,

T="—.
T

We define ¢; as
(bZ'IT‘Z'XF:pZ'XT.

¢; denotes the amount of session ¢ traffic that can be serviced during one frame. If a connection
is backlogged its potential is increasing by the normalized service offered to it. Thus, when ¢; bits
are serviced from connection ¢, its potential will increase by

20

b
Pi

=T.

We impose one more restriction on the value of ¢;, that if L; is the maximum packet size for
connection ¢, then
L; < ¢;. (4.1)

That is, the largest packet of a connection can be transmitted during a frame period. We
denote the current frame in progress at time ¢ by f(¢). The function f(¢) is a step function. When
the system is empty f(¢) is reset to 0 and the potentials of all connections are also reset to 0. When
the potentials of all backlogged connections become equal to T', the value of f(¢) is increased by T'.
Similarly, when the potentials of all connections reach the value k-7 for any integer k, the function
f(t) is stepped up to k- T'.

In a fluid server, all backlogged connections reach the value k-7 at the same time. However,
in a packet-by-packet server this is not the case. In order to allow frame updates to occur only
when a packet finishes or starts service in the packet-by-packet server, we relax the above update
rule for f(t) in the packet-by-packet version of the algorithm as follows: f(¢) can be updated to the
value k - T at any time after all backlogged connections reach the potential k- 7T and before their
potentials become higher than (k4 1) - 7. Thus, we update the frame at time ¢ when both of the
following conditions hold:

1. The potentials of all backlogged connections belong in the next frame. That is,
P(t)> [0+ T, Vi€ B, (1.2

where B(t) is the set of connections currently backlogged.
2. Pty < f(ty+2T, i=1,2,...,V.
Note that the above conditions may hold at different instants of time. Updating the system potential
function at any time during these intervals will result in a valid algorithm. Let us assume that we
decide to update the frame at time 7. Then, at time 7 we set

flr)=flr=)+T, (4.3)

where 7— is the instant just before the update occurred.

The system potential is estimated in terms of the function f(¢) which keeps track of the
progress of the total work performed by the server. When f(¢) is updated, say at time 7, the system
potential is set to

P(1) = max(P(r-), f(1)). (4.4)

At any other time ¢, the system potential is computed as
P(t) = P(r) + (t — 1), (4.5)

where 7 is the last instant of time when an update occurred.

If P(t) is used to initialize the potential of a connection when it becomes backlogged, it is
easy to see that the potential of every backlogged connection cannot be less than P(t) at any time
t. The potential of a connection ¢ can drift away from P(t) within a frame, but the discrepancy

21

is corrected when the next frame-update occurs. Thus, the frame update mechanism is the means
by which FFQ bounds the difference between the system potential and the potentials of individual
connections. The maximum interval between successive updates acts as bound for the difference in
potentials AP. A tight bound for AP will be derived later.

4.1 Performance Bounds for Frame-based Fair Queueing

In this section we show that FFQ belongs to the class of rate-proportional servers. Note
that, in our description of FFQ, we did not define exactly the time when the frame is updated, but
instead defined an interval during which the update must occur. We will show that this is sufficient
to prove that frame-based fair-queueing is a rate-proportional server. This flexibility in updating
the frame will allow us to provide a simple implementation for the packet-by-packet version of the
algorithm.

We now prove a sequence of two lemmas to classify frame-based fair queueing as a rate-
proportional server.

Lemma 6: If the system potential function is updated as described by the frame-based fair queueing
algorithm, then for any interval (t1,t2] during a system busy period,

P(ty) — P(t) > (t2 — t1).

Proof: Assume that the busy period under observation started at time 0. If no frame updates
occurred during the interval (¢, t3], then the lemma is true by Eq. (4.5). Now consider the case when
one or more frame updates occurred during the interval (¢1,¢3]. Let 7, 72,..., 7% be the instants
in this interval just after a frame update, and 7 —, 75—, ..., 7x— the corresponding instants just
before the update. Then, by equations (4.4) and (4.5),

P(tz) = P(mg) + (t2 — %)
(te—) + (t2 —)
(Th—1) + (t2 — Th—1).

Proceeding similarly,

P(tg) = P(Tl) + (tz - Tl)
(=) + (2 —7)
(t1) + (t2 — t1).

Lemma 7: If the system potential function is updated as described by the frame-based fair queueing
algorithm, then
P(t) < P(t), Yie B(t). (4.6)

22

Proof: We will prove that, if P(t) < F;(t) at any instant ¢ during a system busy period, then
P(t+ At) < P(t+ At). Since P(0) =

time at which the system is busy.

i (
P;(0), this will provide an inductive proof for all instants of

We need to consider two cases:

Case 1: No frame updates occurred during the interval (¢,¢ 4+ At). Assume, if possible,
that P;(t + At) < P(t 4+ At), for some connection i¢. We can choose At as the minimum interval
of time such that P;(t) > P(t) and P;(t + At) < P(t + At). Then ¢ is a session with minimum
potential during the interval (¢, 4+ At]. Therefore, it is serviced with rate at least p; during this
interval. Thus, the potential of session ¢ at (t + At) must be at least

piAt

Pi(t) + > P(t) + At > P(t + At).

Pi
Thus, the result is true by contradiction.

Case 2: A frame update occurred at time t. Let {— denote the instant just before the
update and ¢ the instant just after the update. Then, by Eq. (4.2),

Pt=) > f(t-) + T. (4.7
The new system potential after the update is given by

P(t) = max(P(t—), f(t—=)+T). (4.8)
Using equations (4.7) and (4.8), as well as the fact that P;(t—) > P(t—),

Pi(1) > Pt). (4.9)

Theorem 5: Frame-based fair queueing is a rate-proportional server.
Proof: It is sufficient to prove that frame-based fair queueing has all the properties of Definition 5.
Lemmas 6 and 7 prove that the system potential function satisfies the two main conditions imposed
by the definition. The rest of the conditions are satisfied by the definition of the algorithm.
Therefore, frame-based fair queueing is a rate-proportional server.

Since we proved that every rate-proportional server is an LR-server with zero latency,
frame-based fair queueing is also an LR-server with zero latency. Therefore, it provides the same
upper bound on end-to-end delay as GPS in a network of servers.

4.2 Fairness of Frame-based Fair Queueing

Since frame-based fair queueing is a rate-proportional server, in order to analyze its fairness
it is sufficient to prove that the difference between the system potential and the potential of any
backlogged connection is always bounded. We can state the following Lemma:

Lemma 8: For every connection @ that is backlogged at time t,
ol

Pi(t) = P() < 27 - =

23

Proof: While a connection is backlogged in the FFQ server, its potential is increasing by the
normalized service offered to it. The system potential, on the other hand, is increased in two
cases. While the frame is not changing it is increased by the real time, and when the frame
changes it becomes at least equal to the starting potential of the current frame. Let us assume
that the current time is t. The next frame-update will occur after the time when all backlogged
connections have crossed the current frame. Since ¢; > L;, this will occur before the potential of
any connection becomes greater than f(¢)+27". The largest difference between the system potential
and a connection potential will appear just before the frame update. At this time

Pi(t) < f(t) + 2T, (4.10)
and
P(t) > f(t) + % (4.11)
Subtracting Eq. (4.11) from (4.10),
i

Note that the fastest way for the potential of a connection to reach the value P;(¢) from the
time that the frame was last updated is through its normalized service. However, by the time the
next frame update occurs, the system potential function would have increased by at least the time
to service ¢; bits of connection . This bounds the difference in potentials to 27T — %

O

The above bound applies to the fluid server. The packet-by-packet version of frame-based
fair queueing, described in the next section, guarantees that a frame update will always occur before
the finishing potential of any packet becomes greater than f(¢) +27. Thus, when we estimate the
fairness of the packet-by-packet algorithm (PFFQ), the maximum difference between the starting
potential of a connection and the finishing potential of any other connection is still bounded by
2T — % Using the general proof of Theorem 4 for rate-proportional servers and the fact that
T = F/r, it is easy to show that
Corollary 4: For any two connections i, j that are continuously backlogged in the interval (t1,12]
in the PFF() server,

Vit t Vit t OF —¢; Li 2F—¢; L: Lpuw Li Liuw L
W(h 2)_W](17 2) ax((b ‘|‘_7 (b ‘I'_]‘v 4 ‘I'_y _I__])

pi Pj B r pi r Pi Pj pi pi Pi

The fairness of the algorithm depends on the selection of the frame size. The latter, in turn,
depends on the maximum packet size of each connection and its minimum bandwidth allocation.
Thus, the algorithm is especially suited to application in ATM networks where the packets are
transmitted in terms of small cells and the frame size can be kept small. Notice, however, that
the frame size does not affect the latency of the server as is the case in frame-based schedulers
such as weighted-round-robin and deficit-round-robin. In addition, some short-term unfairness is
unavoidable in any packet-level scheduler. We have already seen in Theorem 4 that the difference
in normalized service received by two connections can be proportional to the number of backlogged
connections even in a PGPS server. Most applications can tolerate a small amount of short-term
unfairness as long as the unfairness is bounded.

24

5 Implementation of Frame-Based Fair Queueing

In the last section we described frame-based fair queueing and showed that it is a rate-
proportional server. A straightforward implementation of the algorithm will be similar to that of
any other rate-proportional server. That is, the fluid server is simulated in parallel and packets
are transmitted in increasing order of their finishing potentials. This approach, however, is very
expensive since up to V events may be triggered in the simulator of the fluid model during the
service time of one packet. This results in an algorithm with O(V)) time complexity that is not
acceptable in a high-speed network.

We will now describe how we can extract the information needed by the scheduler from
the packet-by-packet system itself, without requiring the parallel simulation of the fluid server.
The resulting algorithm has O(1) implementation complexity. We will first describe a general
algorithm for use with variable-size packets and then present an even more simplified version for
ATM networks where all packets are of the same size.

We first prove the following lemma that enables us to find a suitable time to update the
frame in FFQ by using only information extracted from the packet-by-packet system. Let us first
define the starting potential sf of a packet j of connection ¢ as the potential of the connection
when packet j starts being serviced in the corresponding fluid server. Let B(t) denote the set of
backlogged sessions at time ¢ in the packet-by-packet server.

Lemma 9: Assume that at time t, for each backlogged session in the packet-by-packet system, the
starting potential of its first packet belongs in the next frame. That is,

sS>)+ T, VieB(@).

Then, the potential of each backlogged session in the fluid server is also greater than f(t) +T.

Proof: We will prove the lemma by contradiction. Let us denote with ¢ the connection with the
minimum potential in the fluid server and let us assume that the potential of connection 7 is less
than f(t) + 7. Connection i has received until time ¢ more service in the packet-by-packet server
than in the fluid-server. By Lemma 4, there is another connection k with potential Py(t) < P;(¢)
that has received less service in the packet-by-packet server than in the fluid-server. Let s; be the
starting potential of the packet that is being serviced in the fluid-server at time ¢ from connection
k. Then si < Py(t) and thus s < f(¢t) + 7. This is a contradiction. O

The intuition behind the lemma is that we can determine a valid update time for the frame
by using information extracted by the packet-by-packet server. The scheduler can keep track of all
the connections that are backlogged and have packets with starting potential in the next frame.
When the starting potentials of the packets at the head of the queue of all backlogged sessions have
crossed the frame, we know that the potentials of the connections in the fluid-system have also
crossed the frame. Therefore, the crossing time of the last connection is a valid time to update the
frame and the system potential function. This can be seen better by an example. Let us assume
that the frame size F'is set to 100 cells. Assume that connections 1,2, ...,50 reserved 1/100 of the
output link bandwidth and connection 0 reserved half of the link bandwidth. At time 0, a packet
of size 1 arrives for each of the 50 connections, and 50 packets of size 1 arrive for connection 0. The
timestamps of the packets of connection 0 will be 2,4, ...,100; and the timestamp of the packet of

25

each if the other connections will all be 100. This means that all packets from connection 0 may
be serviced first in the packet-by-packet system. At this time the potential of all connections in
the fluid-system will be equal to 50. Only at the time that all packets with finish time equal to
100 finish service under the packet-by-packet system, will the potential of all connections in the
fluid-system be 100 as well. At this time, all backlogged connections will have a packet with a
starting potential of greater or equal to 100, and the frame can be updated.

5.1 Implementation for General Packet-Switched Networks

Without loss of generality we can assume that the service rate of the server is 1. Thus the
time to transmit F bits is also equal to F'. A fraction r; of the output link bandwidth is allocated
to connection ¢ and therefore ¢; = F' X r; bits can be sent from connection ¢ during a frame. An
additional requirement is that the maximum packet size must be less than ¢;, so that a single packet
can be transmitted within one frame. On the arrival of a packet, it is stamped with a timestamp
equal to the potential of the connection when the packet finishes service. Packets are then serviced
in increasing order of their timestamps. When a packet finishes service, a frame update mechanism
is used to calculate the new system potential. On the arrival of a packet the following algorithm is
executed:

temp = P + (Time since last update of P)/F
start <— max(T5;(k — 1), temp)

TS;(k) « start+ %

if (|start] < |T'S;(k)]) then (if finishg potential is in next frame)
B|start]] < B[[start|]+ 1
mark packet

endif

An explanation of the algorithm follows: The variable P keeps track of the system potential. P is
a floating-point number with two parts — the integer part representing the current frame number
and the fractional part representing the elapsed real time since the last frame update. On arrival
of a packet, the current potential is estimated in the variable temp, scaled to the frame size. The
starting potential of the packet is then computed as the maximum of the finishing potential of its
previous packet and the system potential. The packet is then stamped with its finishing potential,
computed from knowledge of its length and the reserved rate. If the starting and finishing potentials
of the packet belong to different frames, the current packet is one that crosses over to the next
frame. Therefore the packet is marked to indicate that this is the first packet of the session to
cross over to the next frame. In addition, a counter is incremented to keep track of the number of
connections that have crossed over into the new frame. The algorithm maintains one counter per
frame to keep track of the number of sessions whose packets cross into the frame. Later, when the
marked packet is scheduled for transmission, the corresponding counter is decremented; when the
counter reaches zero, the potentials of all the backlogged connections have crossed over to the next
frame, and a frame update can be performed.

26

The array of counters B is used to count the number of connections that have packets with
a starting potential in each frame. Although an infinite number of frames may need to be serviced,
in practice the number of distinct frames in which the potentials of queued packets can fall into is
limited by the buffer size allocated to the connections. Thus, if b; denotes the buffer space allocated
to connection ¢, the size of the array B can be limited to
b;
M = max [—].
1<V @y
If M is rounded up to the nearest power of 2, then the array can be addressed with the [log, M]
least significant bits of the current frame number. Obviously, instead of the array, a linked-list
implementation of the counters can be used as well.
On the departure of a packet, the following algorithm is executed to update the state of the
system. We assume that the current packet being transmitted is the kth packet of connection q.
P « P + L;(k)/F (update system potential)
if (frame-index < |T'5;(k)]) then

if (B[frame-indez] > 0) then

if (current packet is marked) then
Blframe-indez] «+ B[frame-indez] — 1

end if

end if

if (B[frame-indez] = 0) then (update frame)
frame-index < |T5;(k)]
P max(frame-indez, P)

end if

end if

The system potential is first increased by the transmission time of the current packet. The variable
Sframe-index keeps track of the index of the frame currently in progress. If the packet currently
being transmitted has a finishing potential within the next frame and if the packet is marked (first
packet from the connection to cross the frame), the counter corresponding to the current frame is
decremented. If the counter becomes zero, the session being serviced is the last to cross the current
frame, and both the frame number and the system potential can be updated.

5.2 Implementation for ATM Networks

Although the algorithm described above can be applied to an ATM network, in this section
we present a simplified version suitable for hardware implementation. In ATM networks the
available time for completing a scheduling decision is very short. At SONET OC-3 speeds the
transmission time of a cell is less than 2.6 us. For higher speeds the available time is even less.
Therefore, it is desirable that the scheduling algorithm be implementable without floating-point
operations.

27

frameindex

/\—/\’—\

1
| b+1) b

I I
Timestamp

Figure 5.1: Timestamp is formed by the index of the current frame plus an offset. A
frame-crossing point of the connection is detected when the (b+ 1)th bit of the timestamp
flips during the timestamp computation.

The time axis is again split in frames, with a maximum frame size of F. We require that
Fis a power of two. The unit of time is the time required to transmit one cell at the link rate.
Therefore, F is the time required to transmit F© ATM cells on the output link. As before, let us
assume that a fraction r; of the output link bandwidth is allocated to connection ¢. Then, during
a frame there are ¢; credits allocated to connection ¢, where

(bi = {FX Tﬂ.

This means that no more than ¢; cells may be transmitted from connection ¢ during one frame.
If all connections were busy during a frame period, then by the end of the frame each connection
would have sent exactly ¢; cells, thus satisfying its bandwidth reservation, and the size of the frame
would be F. However, if some connections are absent during a frame, then the real time at which
all of the active connections complete sending their cells belonging to the frame will occur earlier.

We define the system potential P(t) as the current frame number multiplied by the max-
imum frame size plus the units of time that passed since the last update of the frame. Forcing
the frame size to be a power of two enables the multiplication step to be implemented as a shift
operation over b = log, F' bits. When the server is idle the system potential is reset to zero.

The variable P that denotes the system potential function in the algorithm is composed
of two fields, as shown in Figure 5.1. The b least significant bits indicate the time that passed
since the beginning of the frame and the remaining bits indicate the index of the current frame. A
timestamp 7°5;(k) is associated with the kth cell of connection ¢. The format of the timestamp is
the same as that of the system potential function P. That is, the b least significant bits indicate
the time within the frame, and the most significant bits indicate the frame during which this cell
must depart the system. If a cell has a timestamp whose frame index field is larger than that of
the previous cell, it marks the point at which the connection crosses a frame. When such as cell is
serviced, subsequent cells from the connection will be treated as belonging to the next frame. The
frame crossing point is detected when, during the calculation of the timestamp, the (b + 1)th bit
of the timestamp flips.

In an ATM switch, cell arrivals can be processed at the end of transmission of each cell. On
the arrival of the kth cell in the server, the timestamp 7'5;(k) associated with the cell is calculated
according to the following algorithm, The operation z >> y indicates shift of operand z by y bits.
The constant b is equal to log, F.

28

start < max(TS;(k — 1), P) (get starting potential of cell)

TS;(k) « start+ i (compute timestamp)

if ((start >>b) < (T'S;(k) >> b)) then ((b+ 1)th bit of timestamp flipped)
Blstart >> b] « B[start >> b] + 1
mark cell

endif

Cells are serviced in increasing order of their timestamps. The cells that represent frame-
crossing points for the connections are marked. Asin the general version of the algorithm, a counter
is decremented during the transmission of each such cell, and the frame is updated when the counter
becomes zero. The following algorithm summarizes the actions performed to update the system
potential when a cell departs the server.

P—P+1
if (frame-index < (T'S;(k) >> b)) then
if (B[frame-indez] > 0) then
if (cell is marked) then
Blframe-indez] «+ B[frame-indez] — 1
end if
end if
if (Bframe-indez] = 0) then
frame-index < T'S;(k) >> b
P + max(frame-index << b, P)
end if
end if

The algorithm is essentially the same as the one presented in the previous section. However,
we take advantage of the fact that only integers are used, and replace the floating point operations
in the original algorithm by shifts. In addition, the priority list implementation can be simplified
as well by using the techniques described in [16].

6 Conclusions

In this paper, we introduced and analyzed frame-based fair queueing, a novel traffic schedul-
ing algorithm with application in both ATM and general packet networks. The algorithm provides
the same end-to-end delay guarantees as a PGPS server if the input traffic is leaky-bucket shaped.
We also analyzed the fairness properties of the algorithm, and showed that the difference in nor-
malized service offered to any two connections that are continuously backlogged is always bounded.
The main advantage of the algorithm compared to PGPS is that it does not require simulation of
the fluid server, enabling it to be implemented in a simple and efflicient manner. All the information
needed for the algorithm can be extracted from the packet-by-packet server itself.

The design of a traffic scheduling algorithm involves an inevitable tradeoff among its delay,
complexity of implementation, and fairness. Among the three, the delay and implementation
complexity are clearly the most important criteria for the use of an algorithm in a real system.

29

In addition to minimizing the end-to-end delay in a network of servers, the delay behavior of
an ideal algorithm must include (i) insensitivity to traffic patterns of other sessions (isolation),
(ii) delay bounds that are independent of the number of sessions sharing the outgoing link, and
(iii) ability to control the delay bound of a session by controlling only its bandwidth reservation.
SCFQ simplifies the timestamp computation of PGPS considerably, but at the expense of seriously
degrading its delay behavior. VirtualClock, on the other hand, has both simple implementation
and delay bounds identical to that of PGPS, but its fairness behavior makes it unacceptable for
many applications. Frame-based fair queueing maintains the same delay behavior of PGPS and
has a simple implementation, still providing fairness to individual sessions.

Apart from the scheduling algorithm itself, a major contribution of this paper is in develop-
ing a framework for designing schedulers with low latency and bounded fairness. This framework
of rate-proportional servers (RPS) provides valuable insight into the behavior of scheduling algo-
rithms. It is hoped that this framework will lead to the development of other algorithms in the
future.

Further work will include the analysis of frame-based fair queueing under probabilistic input
traffic models, such as the exzponentially-bounded-burstiness model [17]. We also plan to implement
the algorithm in hardware using our FPGA-based ATM Simulation Testbed [18]. A network of
switches will be simulated in order to evaluate the performance of the algorithm in conjunction
with variable-bit-rate traffic.

References

[1] D. Verma, D. Ferrari, and H. Zhang, “Guaranteeing delay jitter bounds in packet switching
networks,” in Tricomm 91, April 1991.

[2] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control -
the single node case,” in Proceedings of INFOCOM ’92, vol. 2, pp. 915-924, May 1992.

[3] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing algorithm,”
Internetworking: Research and Fzperience, vol. 1, no. 1, pp. 3-26, 1990.

[4] L. Zhang, “VirtualClock: a new traffic control algorithm for packet switching networks,” ACM
Transactions on Computer Systems, vol. 9, pp. 101-124, May 1991.

[5] D.Ferrariand D. Verma, “A scheme for real-time channel establishment in wide-area networks,”
IFEFE Journal on Selected Areas in Communications, vol. 8, pp. 368-379, April 1990.

[6] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted round-robin cell multiplexing
in a general-purpose ATM switch chip,” ITEFE Journal on Selected Areas in Communications,
vol. 9, pp. 1265-79, October 1991.

[7] M. Shreedhar and G. Varghese, “Efficient Fair Queueing using Deficit Round Robin,” in Proc.
SIGCOMM’95, September 1995.

[8] C.Kalmanek, H. Kanakia, and S. Keshav, “Rate controlled servers for very high-speed networks,”
in IFFE Global Telecommunications Conferece, pp. 300.3.1-300.3.9, December 1990.

[9] S. Golestani, “A framing strategy for congestion management,” IEEFE Journal on Selected Areas
in Commaunications, vol. 9, pp. 1064-1077, September 1991.

30

[10] H.Zhang and S. Keshav, “Comparison of rate based service disciplines,” in Proceedings of ACM
SIGCOMM °91, pp. 113-122, 1991.

[11] J.Davin and A. Heybey, “A simulation study of fair queueing and policy enforcement,” Computer
Communication Review, vol. 20, pp. 23-29, October 1990.

[12] S. Golestani, “A self-clocked fair queueing scheme for broadband applications,” in Proceedings
of INFOCOM °94, pp. 636646, IEEE, April 1994.

[13] D. Stiliadis and A. Varma, “Latency-rate servers: A general model for analysis of traffic
scheduling algorithms,” Tech. Rep. UCSC-CRL-95-38, U.C. Santa Cruz, Dept. of Computer
Engineering, July 1995.

[14] J. Turner, “New directions in communications (or which way to the information age?),” IEEFE
Communications Magazine, vol. 24, pp. 815, October 1986.

[15] J. Rexford, A. Greenberg, and F. Bononi, “A fair leaky-bucket shaper for atm networks.” AT&T
unpulbished report.

[16] J. L. Rexford, A. Greenberg, and F. Bonomi, “Hardware efficient fair queueing architectures
for high-speed networks,” in Proceedings of INFOCOM 96, IEEE, 1996.

[17] O. Yaron and M. Sidi, “Performance and stability of communication networks via robust

exponential bounds,” IEEE/ACM Transactions on Networking, vol. 1, pp. 372-385, June 1993.

[18] A. Varma and D. Stiliadis, “FAST: an FPGA-based simulation testbed for ATM switching
systems,” in Interop’95 FEngineer Conference, April 1995.

31

Appendix A: Proofs of Main Results

Proof of Lemma 1: We will prove the lemma by contradiction. Assume, if possible, that time 7
is not the beginning of an active period. We have two cases:

Case 1: Time 7 belongs in inactive period. Since connection ¢ was not busy before time 7 and
it becomes busy at time 7, a packet must have arrived. But then, the potential of the connection
would have become equal to the system potential and thus 7 is the beginning of an active period.
Case 2: An active period started at time 79 < 7 and is currently in progress. Then, for every time
t € (1,,7], we must have

Pi(t) > P(t). (A.1)

During the interval (7o, 7], the potential of connection i has only increased by the normalized service
offered to connection ¢. Therefore, at any time ¢ during the interval (7o, 7],

Wi(Tg, t)

Bty = Firo) = —> (A.2)
But, since 79 is the beginning of an active period,
Pi(r0) = P(m0). (A.3)
From equations (A.1) and (A.3),
Bi(t) = Bi(ro) = P(t) = P(m0)
> (t — 70). (A.4)
Therefore, from equations (A.2) and (A.4),
Wi(ro,t) 2 pi(T — 710). (A.5)

Before time 7p, the system was not backlogged and therefore we can write:
Ai(1o,t) > Wi(ro,t) > pi(t — 10).

Thus, time 7 belongs in the same busy period as any time ¢ in the interval (7, 7]. Therefore, time
7 cannot be the beginning of a busy period.
O

Proof of Lemma 2: Let us consider any time ¢ during the connection active period. By the
definition of active period,

Pi(t) > P(1), (A.6)

and

Pi(r) = P(7). (A.7)

From the definition of rate-proportional servers we also know that,

Pit)—P(r) > (t—r1). (A.8)

32

From equations (A.6), (A.7), and (A.8) we can easily conclude that
Pit) = P(r) > (t— 7). (A9)

During an active period, the potential of a connection is only increased by the normalized service
offered to it. Therefore,

(7,1
Rt) - i) = AT
pi
>t —T. (A.10)
From equations (A.9) and (A.10),
Wi(r,t) > pi(t — 1) (A.11)

a

Proof of Theorem 2: Let us again trace the evolution of the potential function of connection
1. We can split the busy period in intervals during which the connection is in active or inactive
states. During an inactive period, the connection is not receiving any service and no packets from
the connection are backlogged in the system. We will prove the theorem by contradiction. Let us
denote with t* the first time such that

Wi(r,t*) < pi(t* — 7). (A.12)

Assume that ¢* belongs to a busy period that started at time 7. We distinguish two cases:

Case 1: Time t* belongs in an active period. Let us denote with t,, the time that this active
period started. We know from Lemma 1, that ¢, > 7. Then, since t* > t,,

Wi(r,ty) > pi(ta — 7). (A.13)
From Lemma 2, we also know that for time ¢* that belongs in the same active period,
Wita,t™) > pi(t" —t,) (A.14)
From equations (A.13) and (A.14) we can conclude that
Wi(r,t™) > pi(t" — 7). (A.15)
Case 2: Time t* is part of an inactive period. Consider time t* — A¢. At this time, we know that
Wi, t" — At) > pi(t* — At — 7). (A.16)

Since the connection is in an inactive period, there are no packets backlogged from that connection,
and therefore,

Wi(r, t" — At) = A; (1,17 — At). (A.17)
In addition, no packets were serviced from the connection in the interval (t* — At,t*], or,
Wi(r, t™ — At) = Wi(r,t7). (A.18)
33

It is clear that no arrivals of session-i packets occurred during the interval (t* — At, t*); if there was
an arrival during this interval, the connection would have entered an active period. Thus,

A (1,7 — At) = A(7, 7). (A.19)
From equations (A.12), (A.17), (A.18), and (A.19) we can conclude that
A; (7’7 t*) < ,Oi(t* — T). (A.QO)

This means that time ¢* does not belong in the same busy period as t* — At.
O

Proof of Lemma 3: Assume that a system-busy period starts in both servers at time 0. Let the
packets transmitted by the PRPS system during the system-busy period be numbered 1,2,...,k, ...
in their order of transmission. Since both servers are work-conserving, the system-busy period must
end in both at the same time. However, the order in which the last bit of packets leave the system
in the fluid server can be different from that in the packet-by-packet server because multiple packets
can be in service at the same time in the former. Therefore, we need to consider two cases:
Case 1: The last bits of packets 1,2,...,k — 1 left the fluid server before the last bit of the kth
packet. Then, the time of departure of the last bit of the kth packet in the fluid server, denoted by
tf, must satisfy

th >

1 k
> Ly, (A.21)
r
J=1
where L; is the size of the jth packet and r the service rate on the outgoing link.
The corresponding departure time of the last bit of the kth packet in the packet-by-packet

server is given by

k
th = %Z L. (A.22)
j=1
From (A.21) and (A.22),
th <l (A.23)
Case 2: Now consider the case when one or more of the packets 1,2,...,k— 1 were still in service

in the fluid server when the last bit of the kth packet left the server. Among this set of packets,
let the packet with the largest index be the mth packet, m < k, with a length of L,,. This packet
left the packet-by-packet server at time ¢” and started transmission at LZ — LT’" At this point,
packets m + 1, m + 2,...,k had not arrived in the system; if they had, they would have received
timestamps lower than that of packet m, and therefore would have been serviced earlier than m in
the packet-by-packet server. Also, the packets m+ 1, m+2,..., m+ k were serviced completely in
the fluid server before packet k left the system.

Since packets m+1,m+2,..., k were serviced completely during the interval (tI — LT’", t{:],
we must have
oo Lm 1L
t (tm r) Z rj:;_l L]7
1 & L
or, tE>P 4 = Z L;— —. (A.24)
ri r

But,
1 k
th=th +->" L, (A.25)
r m+1
From (A.24) and (A.25), and noting that L,, < Lyaz,

Lmax
th <t 4 . (A.26)

Thus, combining (A.23) and (A.26), we get the upper bound as

Lmax

” .

t <t +

Proof of Lemma 4:

Since both servers are work-conserving, it is clear that if session ¢ receives more service in
the packet-by-packet server, then there must be another backlogged session j that has received less
service in the interval (0,¢]. We only need to prove that P;(t) < P;(t) for one such session j.

We will distinguish two cases:

Case 1: Session ¢ has the maximum potential among the backlogged sessions in the fluid server at
time ¢. In this case P;(t) < P;(t) for every backlogged session j.

Case 2: There are other sessions at time ¢ with potentials higher than that of 7. Let .S be the set
of sessions with potentials higher than P;(¢) at time ¢ in the fluid server. Then, by the definition of
rate-proportional servers, these connections are not receiving service at time ¢ in the fluid server.
Let 7 be the most recent time when a session from the set .S was in service in the fluid server. Then,
during the interval (7,¢], none of the connections in the set S were serviced by the fluid server.
Furthermore, the current backlogged period of session ¢ started at or after time 7; otherwise, a
connection from the set S would not have been serviced just before 7.

Thus, during the interval (7,¢], session ¢ received less service in the fluid server than in the
packet-by-packet server, and sessions in the set S received no service in the former. Hence, there
must be another session j that received more service in the fluid server during the interval (7,¢].
Since j ¢ S, it follows that P;(t) < Pi(t).

O
Proof of Lemma 5: Both RPS and PRPS are work-conserving servers. Let us assume that a
connection 7 has received more service in the packet-by-packet server than in the fluid-server. In
the worst case, every other backlogged session may have received less service in the former. By
Lemma 3, any backlogged session in the packet-by-packet server may lag in service by as much as
Lyyay from the fluid server. Thus, in an extreme case, every backlogged session excluding ¢ may be
lagging in service by L4, in the packet-by-packet server. Since the servers are work-conserving,
session ¢ must be ahead in service in the packet-by-packet server by an amount equal to the total
lag of all other sessions. That is,

Wip(ovt) - WiF(Ovt) S (V - 1)Lmax-

35

A tighter bound may be obtained in some cases. Let us denote with tf the time a packet
k from session ¢ finishes service in the PRPS system. The maximum difference in service seen by
session i between the two servers will occur at time t¥. Let LY denote the size of packet k. This

k
packet started service in the PRPS system at time 75 = t¥ — LT’ We will distinguish two cases for
the time 7F.
Case 1: WP (0,7F) < WF(0,7F). Then we can write
Wip (0, tf) = Wip(ov Tik) + Lf
WO,) + L
< W (0,85 + L
. L
< W, " i =y, A2
WL 4 pi ma (22) (A.27)
The last inequality follows from the fact that
L¥ Ly,

Case 2: WF(0,7F) > WF(0,7F). Let FF be the finishing potential of packet k of session i in

the fluid server. P;(t¥) is the potential of session i in the fluid server at time t¥, and FF the

corresponding potential in the packet-by-packet server. Then, at t¥

+, session ¢ will have to receive

an additional amount of service equal to p;(F¥ — P(t¥)) in the fluid server to catch up with the
potential in the packet-by-packet server. Thus,
WZ'P((Ltf) - WZF(Ovtf) = pZ(Fk - R(tk))

K3 K3

< pi(FF = Pi(7F)), since Pi(tF) > Pi(rF). (A.28)

K3

At time 7F, session ¢ has received less service in the fluid server as compared to the packet-by-packet

k

server. Therefore, by Lemma 4, there is another session j, backlogged in the fluid server at time 7,

with potential P;(7F) < P;(rF) that has received more service in the fluid server. Let the packet

in service of this session at time 7% in the fluid server be the mth packet. Let S7" and FJ™ denote

K3
the potentials of session j in the fluid server when this packet begins and ends service, respectively.
Then, 57" < Pj(Tf). Since the packet has not completed service in the packet-by-packet server,
> Ff Thus, we have

Pi(tFYy > P(rF) > s, (A.29)

and

rF<rr. (A.30)
Substituting for F* and P;(¢¥) in Eq. (A.28) from equations (A.30) and (A.29), respectively,

WE(0,t8) = W (0, 1) = pi(F]" = ST)

< piﬁ
Py
Ly,
< p; — . .
< pi ma, (1) (A.31)

36

This completes the proof of Lemma 5.
O

Proof of Theorem 3: Consider time t;. Without loss of generality, let us assume that at time
t1, P;(t1) > P;(t1). Since connection ¢ is backlogged

Pi(t) > P(ty). (A.32)

We also know that
Pi(t1) < P(t1) + AP. (A.33)

Since both sessions are backlogged in the interval (¢1,?], their potentials in this interval have
increased only by the normalized service offered to the two connections. Therefore,

Wi (th t2)

Pita) - Ptn) = L2, (A.31)
and
Pj(t2) = Pj(t1) = %ﬁtz) (A.35)

At time t,, the potential of connection ¢ can not be more than that of connection j. Let us denote
their difference with z. Then,

From equations (A.32),(A.34), and (A.36),

Wi (th t2)

P < Pi(t2) = Pty) — 2. (A.37)
Similarly, from equations (A.33) and (A.35),

Wity t2)

B2 Bi(t) = P(tn) - AP, (A.38)

From equations (A.37) and (A.38) we can easily conclude that

Wi(tlth) _ Wj(t17t2) < AP -z <AP. (A39)
pi Pj

If P;(t1) < Pi(t3), we can derive in the same way that

W;(t, t2) B Wi(ty, t2)
pi pi

AP. (A.40)

Therefore,

| Wi(th t2) _ W] (th t2)
pi P

Thus, if AP is finite, the difference in normalized service offered to any two backlogged connections

| < AP. (A.41)

is also bounded. O

37

Proof of Theorem 4: Let us assume, without loss of generality, that before time 7 session 7 was
not backlogged. Note that, since both sessions have an infinite supply of packets from time 7, the
timestamp of every packet is calculated from that of the previous packet of the same session. Let
us denote with Sf and 57", the starting potentials of the first packet in the queue for sessions 1
and j, respectively. Also, let us denote with F* and F]l7 the finishing potentials of the last packet
serviced from the two sessions before time 5.
Case 1: Sf < 57". We will separate the problem into two sub-cases: First, let us assume that at
least one packet was serviced from session j after time 7. Then, ij_l = 57" and Ff > ij_l.
Since the maximum packet size for session ¢ is L,

gm_ Lo gk (A.42)

J =
Pi

Now consider the sub-case when no other packet was serviced from j after time 7. Then
S]m SP]‘(T)—I—C]‘. (A.43)

We also know that
Sk > Pi(r). (A.44)
By subtracting (A.44) from (A.43),
i = SE < (B(r) = Pi(r)) + €
< AP+ C;. (A.45)

Therefore, combining the two subcases,
ST =57 <max(AP +Cj, —). (A.46)

The service offered to session 7 in the interval (¢1,%3] is equal to the difference in time-stamps

Fr — Sk Also,

W§ﬁ+ﬁ.
Pj
Therefore,
Wi(r,t) < P - sk
pi
! ko L
<E -S04 —. (AA4T)
Pj

Similarly, the normalized service offered to session j is equal to the difference between the time-
stamps. That is,

{ m
Pj

38

Therefore,

Pi Pj Pj
L; L;
< max(AP+ Cj, —) + o (A.49)
i J
Similarly, we can write that
k m
S; =57 <0. (A.50)
For session j,
L;
I (A.51)
and
p; 7 j
n_ om y Li
<E-S5T+—. (A.52)
Pi
For session ¢,)
W,(r,t
,(oT» L (A.53)
Subtracting (A.53) from (A.51),
W‘ 4 WZ 4 L;
](7—7)_ (Tv) S(SZk_S]m)_I__ (A54)
Pj Pi P
L;
< —. (A.55)
pi

Case 2: Sf > 57", In order to estimate a tight bound we will need to separate the problem into
several sub-cases.

Subcase (a): The starting potential of session ¢ was estimated by the system potential. Then,
this is the first packet that will be serviced from session i after time 7. Since P;(1) = S¥ > S7" and
P;(1) < P;(7), from the definition of rate-proportional servers, session j received less service in the
packet-by-packet server than in the fluid server. Therefore, for the normalized service offered to
connection 7 between time 7 and t,, we can write:

W;(,t3)

G i F
p; pi pj
Wi 3 7t Lz Lmaac
< Willinfo) | L Lo (A.56)
Pi Pi Pj

This means that the maximum normalized service that can be offered to session j is bounded by
the maximum increase in the potential of session ¢ plus the excess normalized service that session
j received in the packet-by-packet server. Since the service is non-decreasing, we have

Wi(r,ty) > W;(t,ta).
39

Therefore,

Wj(tlth) _ Wi(thtZ) S &_I_ Lmax‘
Pj Pi Pi Pj

(A.57)

Subcase (b): The starting potential of the kth packet of connection ¢ was computed from the
potential of the (k — 1)th packet. Again, we will have to consider several sub-problems. First of
all, let us assume that there was another packet serviced from connection ¢ after time 7. Since

Sk = Ff_1 and F7" > Ff_l, we can write

L;

SF— L <sm, (A.58)
Pj
or equivalently
L .
SF—sm< L, (A.59)
Pj

Now let us assume that there is no other packet serviced from session ¢ after time 7. Then,
the packet-by-packet server has offered more service to session ¢ until time 7 than the fluid system.
Let us denote with ¢* the time at which the (k — 1)th packet was serviced from session i. If session
J was backlogged at time t*, then

a LJ k—1 a
Fp— =L <P, (A.60)
P;

for some packet a of connection j. But since E»k_l = SF and ST > F — j;—J, we can conclude that
J

(A.61)

If connection j was not backlogged at time ¢*, then when it becomes backlogged at some time
r<t<T,

and

ST > Py(t),

for some packet a of connection j. The second inequality follows from the fact that the fluid-server
can only be behind the packet-by-packet server for connection j at time t* since the packet-by-
packet server is not backlogged. Also, S7" > S7. Therefore,

S}«n > Pi(t") — AP.
We also know from Lemma 5 that
FF' = SF< P() + C

Subtracting,
SF— 87 < AP+ C; (A.62)

40

Therefore, from equations (A.59), (A.61), and (A.62),

Sk — ST < max(AP 4+ Cy, &)

Pj

For session j, the maximum service offered in the interval (¢, 3] will be

W]‘ (T, t)

o
pi r
L;
<E-ST+ —. (A.63)
Pi
For session ¢,)
Wi(r,t
(0 _ gk, (A.64)
Pi

Subtracting,

VV‘(T7 t) Wi(T, t) m o Li
i) W) gp_gp L
Pj Pi Pi
L; L;
<max(AP+Cj, —) + —. (A.65)

Pj pi

Finally, if session ¢ has received more normalized service in this interval, we can write

Wi(Tv t)g];;n _ Szk
pi
! ko Li
<F; — 874+ —, (A.66)
J ? .
Pj
and A
W;(r,t
JS’) _ Fl - s, (A.67)
J

- < =i (A.68)
pi pj pj

Combining equations (A.49), (A.55), (A.57), (A.65), and (A.68) we can conclude that
. L

Wi(r,t) W,(rt L; L; Lo
(7)_ i (T)|SmaX(AP+——|—Ci7AP‘|‘_]‘|‘Cj7—+_)' (A.69)
Pi Pj Pi Pj Pj Pi

A symmetrical argument for the case where session j becomes backlogged after ¢ will
complete the proof of the theorem. a

41

Appendix B: Simulation Results

This appendix provides some simulation results to further illustrate the ability of frame-
based fair queueing (FFQ) to provide low session latencies and isolation from other misbehaving
flows. We simulated the packet-by-packet version of the algorithm (PFFQ) as applied to a single
output port of an ATM switch. For comparison, we also simulated the self-clocked fair-queueing
(SCFQ) algorithm since its implementation complexity is comparable to that of FFQ. Our model
consists of eight sessions sharing the same output link. The reservation of each of these sessions is
shown in Table 2. An ON-OFF traffic model was used to generate traffic within each session. The
traffic was then shaped through a leaky bucket.

Since our interest is in evaluating the delay in the scheduler rather than the effect of input
burstiness, we selected a o of 2 for each connection. We also assumed that one session (session 1)
is misbehaving, attempting to transmit more than its reservation. We assumed an infinite number
of buffers, causing session 1 to remain backlogged throughout the simulation. With this model,
we measured the delays and bandwidth allocations received by all the sessions. A summary of our
results is presented in Table 2. Delays are shown in the table in terms of cell-transmission times.
The upper bounds for delay for each session in the two servers, computed using Theorem 1, are as
shown in Table 3.

Both the average and maximum delays of session 0, which has reserved 50% of the link
bandwidth, are substantially lower in the PFFQ server as compared to the SCFQ server. PFFQ
provides a maximum end-to-end delay of 2 for this session. By using Theorem 1, the maximum
end-to-end delay for virtual channel 0 can be computed as % 4+ 1 = 5. The delays of sessions
2-7 are also lower in the PFFQ server. The higher delays experienced in the SCFQ server are a
result of its poor isolation properties. The SCFQ algorithm provided more service to session 1 than
its reservation, sacrificing the delays of other channels. In contrast, the PFFQ is able to provide
stricter isolation, and does not allow the misbehaving connection to influence the end-to-end delays
of the other connections. This example verifies the excellent isolation properties of PFFQ.

An important property of PFFQ is that the maximum latency seen by a session can be
controlled by varying its reservation. That is, increasing the reservation results in a corresponding
decrease in the latency, affecting both the maximum and average delays in a real system, as is the
case in a GPS server. With SCFQ, on the other hand, the delay bound is much less affected by
the reservation of the session. The simulation results in Table 4 verify this important property. In
this set of simulations, the reservations of the individual sessions are identical to those in Table 2,
but all sessions are transmitting within their reservations. Again, both the average and maximum
delays seen by session 0 are substantially lower in the PFFQ server as compared to the SCFQ
server. The delays of sessions 2-7 are slightly higher in PFFQ owing to their lower reservations,
but the differences are small.

Thus, the simulations in this appendix illuminate some of the important properties of the
frame-based fair queueing algorithm.

42

Session | Reserved | Arrival PFFQ SCFQ
Bandwidth Rate | Avg. Delay | Max Delay | Avg. Delay | Max Delay
0 0.500000 0.498 1.003 2.0 3.231 7.0
1 0.062500 0.100 N/A N/A N/A N/A
2 0.062500 0.062 5.343 22.0 13.777 23.0
3 0.062500 0.061 7.394 24.0 14.600 26.0
4 0.078125 0.076 3.726 12.0 9.146 19.0
5 0.078125 0.076 4.265 12.0 9.822 19.0
6 0.078125 0.076 5.305 13.0 10.447 19.0
7 0.078125 0.076 5.985 15.0 10.750 17.0

Table 2.1: Comparison of delays from a simulation of PFFQ and SCFQ algorithms. The
eight sessions shown share the same output link. Delays are measured in terms of cell-
transmission times. Session 1 is misbehaving while others are transmitting within their
reservations.

Session | PFFQ | SCFQ
0 5 11
1 33 39
2 33 39
3 33 39
4 27 33
5 27 33
6 27 33
7 27 33

Table 2.2: Analytical delay bounds for the sessions in the simulation.

Session | Reserved | Arrival PFFQ SCFQ
Bandwidth Rate | Avg. Delay | Max Delay | Avg. Delay | Max Delay
0 0.500000 0.498 1.002 2.0 2.480 7.0
1 0.062500 0.062 6.985 14.0 5.598 11.0
2 0.062500 0.062 7.191 20.0 6.391 11.0
3 0.062500 0.061 7.512 24.0 6.952 16.0
4 0.078125 0.076 5.726 16.0 4.146 10.0
5 0.078125 0.076 6.265 16.0 4.822 11.0
6 0.078125 0.076 5.653 16.0 5.255 15.0
7 0.078125 0.076 6.194 16.0 5.603 16.0

Table 2.3: Comparison of delays from a simulation of PFFQ and SCFQ algorithms. The
eight sessions shown share the same output link. Delays are measured in terms of cell-

transmission times. All sessions are transmitting within their reservations.

43

