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ABSTRACT

In this paper, we develop a general model, called Latency-Rate servers (LR-servers), for
the analysis of traffic scheduling algorithms in broadband packet networks. The behavior
of an LR scheduler is determined by two parameters — the latency and the allocated rate.
We show that several well-known scheduling algorithms, such as Weighted Fair Queueing,
VirtualClock, Self-Clocked Fair Queueing, Weighted Round Robin, and Deficit Round
Robin, belong to the class of LR-servers. We derive tight upper bounds on the end-to-
end delay, internal burstiness, and buffer requirements of individual sessions in an arbitrary
network of LR-servers in terms of the latencies of the individual schedulers in the network,
when the session traffic is shaped by a leaky bucket. Thus, the theory of LR-servers
enables computation of tight upper-bounds on end-to-end delay and buffer requirements in
a network of servers in which the servers on a path may not all use the same scheduling
algorithm. We also define a self-contained approach to evaluate the fairness of LR-servers
and use it to compare the fairness of many well-known scheduling algorithms.
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1 Introduction

Broadband packet networks are currently enabling the integration of traffic with a wide
range of characteristics within a single communication network. Different types of traffic have
significantly different quality-of-service (QoS) requirements [1]. Rigid real-time applications require
a guaranteed portion of the link bandwidth, as well as bounded end-to-end delay, low delay jitter,
and low packet loss rate. Adaptive applications can adjust their behavior to the current network
state, as long as they can receive a specific portion of the link bandwidth over a period of time;
that is, they can receive the guaranteed bandwidth over an averaging period longer than that of
rigid real-time applications. Finally, most of the data traffic is transmitted in “best-effort” mode,
requiring no bandwidth guarantees. The instantaneous bandwidth left over after allocating the
bandwidth to real-time flows can be used to transmit packets belonging to best-effort traffic.

Providing QoS guarantees in a packet network requires the use of traffic scheduling algo-
rithms in the switches (or routers). The function of a scheduling algorithm is to select, for each
outgoing link of the switch, the packet to be transmitted in the next cycle from the available pack-
ets belonging to the flows sharing the output link. Implementation of the algorithm may be in
hardware or software. Because of the small cell-size in an ATM (Asynchronous Transfer Mode)
network, the scheduling algorithm must usually be implemented in hardware in an ATM switch.
In a packet network with larger packet-sizes, such as the current Internet, the algorithm can be
implemented in software.

Several service disciplines are known in the literature for bandwidth allocation and transmis-
sion scheduling in output-buffered switches. FIFO scheduling is perhaps the simplest to implement,
but does not provide any isolation between individual sessions that is necessary to achieve deter-
ministic bandwidth guarantees. Several service disciplines are known in the literature for providing
bandwidth guarantees to individual sessions in output-buffered switches [2, 3, 4, 5, 6, 7, 8, 9, 10].
Many of these algorithms are also capable of providing deterministic delay guarantees when the
burstiness of the session traffic is bounded (for example, shaped by a leaky bucket).

In general, schedulers can be characterized as work-conserving or non-work-conserving. A
scheduler is work-conserving if the server is never idle when a packet is buffered in the system.
A non-work-conserving server may remain idle even if there are available packets to transmit. A
server may, for example, postpone the transmission of a packet when it expects a higher-priority
packet to arrive soon, even though it is currently idle. When the transmission time of a packet is
short, as is typically the case in an ATM network, however, such a policy is seldom justified. Non-
work-conserving algorithms are also used to control delay jitter by delaying packets that arrive
early [11]. Work-conserving servers always have lower average delays than non-work-conserving
servers. Examples of work-conserving schedulers include Generalized Processor Sharing (GPS) [4],
Weighted Fair Queueing [3], VirtualClock [2], Delay-Earliest-Due-Date (Delay-EDD) [6], Weighted
Round Robin [7], and Deficit Round Robin [8]. On the other hand, Hierarchical-Round-Robin
(HRR) [9], Stop-and-Go queueing [10], and Jitter-Earliest-Due-Date [11] are non-work-conserving
schedulers.

Another classification of schedulers is based on their internal structure [12]. According to
this classification there are two main architectures: sorted-priority and frame-based. In a sorted-
priority scheduler, there is a global variable — usually referred to as the virtual time — associated
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with each outgoing link of the switch. Each time a packet arrives or gets serviced, this variable
is updated. A timestamp, computed as a function of this variable, is associated with each packet
in the system. Packets are sorted based on their timestamps, and are transmitted in that order.
VirtualClock, Weighted Fair Queueing, and Delay-EDD follow this architecture.

In a frame-based scheduler, time is split into frames of fixed or variable length. Reservations
of sessions are made in terms of the maximum amount of traffic the session is allowed to transmit
during a frame period. Hierarchical Round Robin and Stop-and-Go Queueing are frame-based
schedulers that use a constant frame size. As a result, the server may remain idle if sessions
transmit less traffic than their reservations over the duration of a frame. In contrast, Weighted
Round Robin and Deficit Round Robin schedulers allow the frame size to vary within a maximum.
Thus, if the traffic from a session is less than its reservation, a new frame can be started early.
Therefore, both of these schedulers are work-conserving.

While there is a significant volume of work on the analysis of various traffic scheduling
algorithms, most of these studies apply only to a particular scheduling algorithm. Little work
has been reported on analyzing the characteristics of the service offered to individual sessions in a
network of servers where the schedulers on the path of the session may use different scheduling
algorithms. Since future networks are unlikely to be homogeneous in the type of scheduling
algorithms employed by the individual switches (routers), a general model for the analysis of
scheduling algorithms will be a valuable tool in the design and analysis of such networks. Our
basic objective in this paper is to develop such a general model to study the worst-case behavior
of individual sessions in a network of schedulers where the schedulers in the network may employ
a broad range of scheduling algorithms. Such an approach will enable us to calculate tight bounds
on the end-to-end delay of individual sessions and the buffer sizes needed to support them in an
arbitrary network of schedulers.

Our basic approach consists in defining a general class of schedulers, called Latency-Rate
servers, or simply LR-servers. The theory of LR servers provides a means to describe the worst-
case behavior of a broad range of scheduling algorithms in a simple and elegant manner. For a
scheduling algorithm to belong to this class, it is only required that the average rate of service
offered by the scheduler to a busy session, over every interval starting at time © from the beginning
of the busy period, is at least equal to its reserved rate. The parameter © is called the latency of
the scheduler. All the work-conserving schedulers known to us, including Weighed Fair Queueing
(or PGPS), VirtualClock, SCFQ, Weighted Round Robin, and Deficit Round Robin, exhibit this
property and can therefore be modeled as LR-servers.

The behavior of an LR scheduler is determined by two parameters — the latency and the
allocated rate. The latency of an LR-server is the worst-case delay seen by the first packet of the
busy period of a session, that is, a packet arriving when the session’s queue is empty. The latency of
a particular scheduling algorithm may depend on its internal parameters, its transmission rate on
the outgoing link, and the allocated rates of various sessions. However, we show that the maximum
end-to-end delay experienced by a packet in a network of schedulers can be calculated from only
the latencies of the individual schedulers on the path of the session, and the traffic parameters of
the session that generated the packet. Since the maximum delay in a scheduler increases directly
in proportion to its latency, the model brings out the significance of using low-latency schedulers
to achieve low end-to-end delays. Likewise, upper bounds on the queue size and burstiness of
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individual sessions at any point within the network can be obtained directly from the latencies of
the schedulers. We also show how the latency parameter can be computed for a given scheduling
algorithm by deriving the latencies of several well-known schedulers.

Our approach in modeling the worst-case behavior of scheduling algorithms with respect
to an end-to-end session is related to the work of Cruz [13, 14], Zhang [15], and Parekh and
Gallager [4, 16]. Cruz [13, 14] analyzed the end-to-end delay, buffer requirements, and internal
network burstiness of sessions in an arbitrary topology network where all sources are leaky-bucket
controlled. While the objectives of our analysis are similar, there are three major differences between
the approaches taken: First, the class of scheduling algorithms we study are capable of providing
bandwidth guarantees to individual sessions. Therefore, we can derive deterministic end-to-end
delay guarantees that are independent of the behavior of other sessions. Second, we do not study
individual schedulers in isolation and accumulate the session delays as in Cruz’s work , but instead
model the behavior of the chain of schedulers on the path of the connection as a whole. Third,
we estimate the latency parameters for the individual schedulers tightly, taking into account their
internal structure. Thus, our approach, in general, provides much tighter end-to-end delay bounds
for individual sessions.

Parekh and Gallager analyzed the worst-case behavior of sessions in a network of GPS
schedulers [4, 16] and derived upper bounds on end-to-end delay and internal burstiness of sessions.
However, the analysis applies to a homogeneous network consisting of only GPS schedulers. Our
analysis accommodates a broad range of scheduling algorithms and the ability to combine the
schedulers in arbitrary ways in a network.

Zhang [15] derived end-to-end delay bounds for a class of non-work-conserving scheduling
algorithms when traffic is re-shaped at each node of the network. This allows the delays of individual
schedulers on the path to be accumulated in a simple manner. Our approach differs from this work
in that we consider the broader class of work-conserving schedulers in our analysis, and we do not
assume any traffic re-shaping mechanisms within the network.

Another model for delay-analysis based on a class of guaranteed-rate servers was presented
in [17]. The main problem of this model, however, is that it is closely coupled with time-stamp
based algorithms; the analysis of scheduling algorithms based on a different architecture is not
straightforward. The LR-class provides a more natural approach for analyzing the worst-case be-
havior of traffic-scheduling algorithms, independent of the scheduler architecture. Finally, Golestani
recently presented a delay analysis of a class of fair-queueing algorithms including Self-Clocked Fair
Queueing [18]. However, this analysis does not apply to unfair algorithms like VirtualClock.

In addition to the delay analysis, we also study the fairness characteristics of £LR-schedulers.
The fairness analysis was motivated by Golestani’s work [5], where a self-contained approach for
fairness was defined. This approach is based on comparing the normalized service offered to any
two connections that are continuously backlogged over an interval of time. We will analyze many
well-known scheduling algorithms belonging to the LR class using this approach.

The rest of this paper is organized as follows: In Section 2, we discuss the necessary
properties that a scheduling algorithm must satisfy for application in a real network. In Section 3,
we define the class of Latency-Rate (LR) servers and derive upper bounds on the end-to-end delays,
buffer requirements, and traffic burstiness of individual sessions in an arbitrary-topology network of
LR servers when the session traffic is shaped by a leaky bucket. In Section 4 we prove that several
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well-known scheduling algorithms, such as VirtualClock, Packet-by-Packet Generalized Processor
Sharing (PGPS), Self-Clocked Fair Queueing (SCFQ), Weighted-Round-Robin (WRR), and Deficit-
Round-Robin (DRR) all belong to the class of LR servers, and derive their latencies. In Section 5,
we derive a slightly improved upper bound on end-to-end delay in a network of LR servers by
bounding the service of the last server on the path more tightly. In Section 6, we analyze the
fairness properties of these algorithms. Finally, Section 7 presents some conclusions and directions
for future work. Appendix A contains the proofs of many lemmas and theorems presented in the

paper.
2 A Common Framework for Scheduling Algorithms

Scheduling algorithms for output-buffered switches have been classified based on two crite-
ria: work-conservation and internal architecture. Neither of these classifications provides us with
a common framework that will allow evaluation of their relative performance in real networks. In
this section we discuss the three important attributes of scheduling algorithms that are most im-
portant in their application in real networks. These are (i) delay behavior, (ii) fairness, and (iii)
implementation complexity. We will, therefore, compare schedulers along these three dimensions.

2.1 End-to-End Delay Guarantees

The algorithm must provide end-to-end delay guarantees for individual sessions, without
severely under-utilizing the network resources. In order to provide a deterministic delay bound, it
is necessary to bound the burstiness of the session at the input of the network. The most common
approach for bounding the burstiness of input traffic is by shaping through a leaky bucket [19].
Several previous studies have used this traffic model [4, 13, 14, 16]. We use the same traffic model
in our derivations of end-to-end session delays and assume that the traffic of session ¢ is smoothed
through a leaky bucket with parameters (o;, p;), where o; is the maximum burstiness and p; is the
average arrival rate. In deriving the end-to-end delay bound for a particular session, however, we
do not make any assumptions about the traffic from the rest of the sessions sharing the same links
of the network.

In addition to minimizing the end-to-end delay in a network of servers, the delay behavior
of an ideal algorithm includes the following attributes:

1. Insensitivity to traffic patterns of other sessions: Ideally, the end-to-end delay guarantees for
a session should not depend on the behavior of other sessions. This is a measure of the level
of isolation provided by the scheduler to individual sessions. Note that isolation is necessary
even when policing mechanisms are used to shape all the flows at the entry point of the
network, as the flows may accumulate burstiness within the network.

2. Delay bounds that are independent of the number of sessions sharing the outgoing link: This
is necessary if the algorithm is to be used in switches supporting a large number of flows.

3. Ability to control the delay bound of a session by controlling only its bandwidth reservation:
This property of the algorithm provides significant flexibility in trading off session delays with
their bandwidth allocations.



Note that the three attributes are related. We will show later that the worst-case delay behavior
of a session can differ greatly in two different schedulers with identical bandwidth reservations.

2.2 TFairness

Significant discrepancies may exist in the service provided to different sessions over the short
term among scheduling algorithms. Some schedulers may penalize sessions for service received in
excess of their reservations at an earlier time. Thus, a backlogged session may be starved until others
receive an equivalent amount of normalized service, leading to short-term unfairness. Therefore,
two scheduling algorithms capable of providing the same delay guarantee to a session may exhibit
vastly different fairness behaviors.

While there is no common accepted method for estimating the fairness of a scheduling
algorithm, it is easy to define fairness in an informal manner. In general, we would like the system
to always serve connections proportional to their reservations and distribute the unused bandwidth
left behind by idle sessions equally among the active ones. In addition, sessions should not be
penalized for excess bandwidth they received while other sessions were idle. Following Golestani’s
work [5], we define the fairness parameter of a scheduling algorithm as the maximum difference
between the normalized service received by two backlogged connections over an interval in which
both are continuously backlogged.

Based only on the end-to-end delay bounds and fairness properties, Generalized-Processor-
Sharing (GPS) is an ideal scheduling discipline [4]. GPS multiplexing is defined with respect to
a fluid-model, where packets are considered to be infinitely divisible. The share of bandwidth
reserved by session i is represented by a real number ¢;. Let B(7,t) be the set of connections that
are backlogged in the interval (7,t]. If r is the rate of the server, the service W;(7,t) offered to a
connection 7 that belongs in B(r,t) is proportional to ¢;. That is,

Wil 1) > (i~ 7).
ZjEB(T,t) ¢]
The minimum service that a connection can receive in any interval of time is
V(bi T‘(t - T)7
Z]‘:1 oF

where V' is the maximum number of connections that can be backlogged in the server at the same
time. Thus, GPS serves each backlogged session with a minimum rate equal to its reserved rate at
each instant; in addition, the excess bandwidth available from sessions not using their reservations
is distributed among all the backlogged connections at each instant in proportion to their individual
reservations. This results in perfect isolation, ideal fairness, and low end-to-end session delays.
The VirtualClock algorithm, in contrast, does not bound the difference in service received
by two backlogged sessions over an interval that is smaller than the backlogged period. This is
the result of the scheduler performing an averaging process on the rate of service provided to
individual sessions. In VirtualClock, the averaging interval can be arbitrarily long. The GPS
scheduler, on the other hand, occupies the opposite extreme where no memory of past bandwidth
usage of sessions is maintained. Note that, according to our definition of fairness, some amount of
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short-term unfairness between sessions is inevitable in any packet-level scheduler, since each packet
must be serviced exclusively. In practice, we can only require that the difference in normalized
service received by two sessions be bounded by a constant.

2.3 Implementation Complexity

Finally, schedulers differ greatly in their implementation complexity. The scheduling algo-
rithm may need to be implemented in hardware in a high-speed network. In addition, it is desirable
to have the time-complexity of the algorithm not depend on the number of active connections in
the scheduler.

If V' is the maximum number of connections that may share an output link, the imple-
mentation of a scheduler based on the sorted-priority architecture involves three main steps for
processing each cell [12]:

1. Calculation of the timestamp: The PGPS scheduler has the highest complexity in this respect,
since a GPS scheduler must be simulated in parallel in order to update the virtual time.
This simulation may result in a process overhead of O(V) per packet transmission in the
worst-case. On the other hand, in both VirtualClock and self-clocked fair queueing the time-
stamp calculation involves only a constant number of computations, resulting in a worst-case
complexity of O(1).

2. Insertion in a sorted priority list: The first cell of each session’s queue must be stored in a
sorted priority list. When a cell arrives into an empty queue, its insertion into the priority
list requires O(log V') steps.

3. Selection of the cell with the minimum timestamp for transmission: Since the cells are stored
in a sorted-priority structure, the cell with the highest priority may be retrieved in O(log V)
time [20].

The last two operations are identical for any sorted-priority architecture. A parallel implementation
of these operations with O(1) time complexity by using a set of O(V) simple processing elements
has been shown [21, 22].

Frame-based algorithms such as Weighted Round Robin and Deficit Round Robin can be
implemented in O(1) time, without any timestamp calculations. Unfortunately, these algorithms
yield delay bounds that may grow linearly with the number of sessions sharing the outgoing link.
Thus, in practice, the scheduling algorithm must trade off the complexity of implementation with
the other desirable properties of low delay and bounded short-term unfairness.

3 LR-Servers

In this section we introduce LR-servers and derive some key results on their delay behavior.
This model will allow us to derive deterministic bounds on end-to-end delays in an arbitrary
topology network. In addition, it will help us define the necessary properties of a scheduling
algorithm to utilize the network resources efficiently.

We assume a packet switch where a set of V connections share a common output link.
The terms connection, flow, and session will be used synonymously. We denote with p; the rate
allocated to connection 1.
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Figure 3.1: Intervals (¢1, 2] and (t3,%4] are two different busy periods.

We assume that the servers are non-cut-through devices. Let A;(7,t) denote the arrivals
from session 7 during the interval (7, ¢] and W;(7,t) the amount of service received by session ¢ during
the same interval. In a system based on the fluid model, both A;(7,t) and W;(7,t) are continuous
functions of t. However, in the packet-by-packet model, we assume that A;(7,t) increases only
when the last bit of a packet is received by the server; likewise, W;(7,t) is increased only when the
last bit of the packet in service leaves the server. Thus, the fluid model may be viewed as a special
case of the packet-by-packet model with infinitesimally small packets.

Definition 1: A system busy period is a mazimal interval of time during which the server is
never idle.

During a system busy period the server is always transmitting packets.

Definition 2: A backlogged period for session ¢ is any period of time during which packets
belonging to that session are continuously queued in the system.

Let Q;(t) represent the amount of session 7 traffic queued in the server at time ¢, that is,
Qz(t) = AZ»(O, t) — Wi(O, t).

A connection is backlogged at time ¢ if (Q;(¢) > 0.

Definition 3: A session ¢ busy period is a mazimal interval of time (71, 2] such that for any
time t € (11, T2, packets of session i arrive with rate greater than or equal to p;, or,

Ai(T,t) > pi(t — 11).

A session busy period is the maximal interval of time during which if the session were
serviced with exactly the guaranteed rate, it would be remain continuously backlogged (Figure 3.1).
Multiple session-¢ busy periods may appear during a system busy period.

The session busy period is defined only in terms of the arrival function and the allocated
rate. It is important to realize the basic distinction between a session backlogged period and a
session busy period. The latter is defined with respect to a hypothetical system where a backlogged
connection ¢ is serviced at a constant rate p;, while the former is based on the actual system where
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Figure 3.2: An example of the behavior of an LR scheduler.

the instantaneous service rate varies according to the number of active connections and their service
rates. Thus, a busy period may contain intervals during which the actual backlog of session 7 traffic
in the system is zero; this occurs when the session receives an instantaneous service rate of more
than p; during the busy period.

For a given session-¢ backlogged period, the corresponding busy period can be longer. In
addition, if (s1, f1] is a busy period for session i, multiple backlogged periods may occur in the
actual system during the interval (s1, fi]. The beginning of a busy period of session ¢ always marks
the beginning of a backlogged period, but the converse is not always true. In addition, the beginning
of a busy period is always caused by the arrival of a packet into the system. A busy period cannot
end before the backlogged period that started it.

Note that, when the same traffic distribution is applied to two different schedulers with
identical reservations, the resulting backlogged periods can be quite different. This makes it difficult
to use the session-backlogged period for analyzing a broad class of schedulers. The session busy
period, on the other hand, depends only on the arrival pattern of the session and its allocated
rate, and can therefore be used as an invariant in the analysis of different schedulers. This is the
fundamental reason why the following definition of an LR-server is based on the service received
by a session over a busy period. Since we are interested in a worst-case analysis of the system, the
session busy period provides us a convenient means to bound the delay within the system.

We can now define the general class of Latency-Rate (LR) servers. A server in this class
is characterized by two parameters: latency ©; and allocated rate p;. Let us assume that the jth
busy period of session i starts at time 7. We denote by W#

Z7j
packets of the session that arrived after time 7 and until time ¢ by server §. Notice that the total

(7,%) the total service provided to the

service offered to session ¢ in this interval (7] may actually be more than Wg,(7,t) since some
packets from a previous busy period, that are still queued in the system, may be serviced as well.

Definition 4: A server S belongs in the class LR if and only if for all times t after time T that
the jth busy period started and until the packets that arrived during this period are serviced,

W;Z(r, t) > max(0, p;(t — 7 — @f))

@;S s the minimum non-negative number that satisfies the above inequality.



The definition of LR servers involves only the two parameters, latency and rate. The
right-hand side of the above equation defines an envelope to bound the minimum service offered to
session ¢ during a busy period (Figure 3.2). It is easy to observe that the latency @;S represents the
worst-case delay seen by the first packet of a busy period of session 7. Notice that the restriction
imposed is that the service provided to a session from the beginning of its busy period is lower-
bounded. Thus, for a scheduling algorithm to belong to this class, it is only required that the
average rate of service offered by the scheduler to a busy session, over every interval starting at
time @;S from the beginning of the busy period, is at least equal to its reserved rate. This is much
less restrictive than GPS multiplexing, where the instantaneous bandwidth offered to a session is
bounded. That is, the lower bound on the service rate of GPS multiplexing holds for any interval
(7,t] that a session is backlogged, whereas in LR-servers the restriction holds only for intervals
starting at the beginning of the busy period. Therefore, GPS multiplexing is only one member of
the LR class.

The latency parameter depends on the scheduling algorithm used as well as the allocated
rate and traffic parameters of the session being analyzed. For a particular scheduling algorithm,
several parameters such as its transmission rate on the outgoing link, number of sessions sharing
the link, and their allocated rates, may influence the latency. However, we will now show that the
maximum end-to-end delay experienced by a packet in a network of schedulers can be calculated
from only the latencies of the individual schedulers on the path of the session, and the traffic
parameters of the session that generated the packet. Since the maximum delay in a scheduler
increases directly in proportion to its latency, the model brings out the significance of using low-
latency schedulers to achieve low end-to-end delays. Likewise, upper bounds on the queue size and
burstiness of individual sessions at any point within the network can be obtained directly from the
latencies of the schedulers.

In our definition of LR servers, we made no assumptions on whether the server is based
on a fluid model or a packet-by-packet model. The only requirement that we impose, however, is
that a packet is not considered as departing the server until its last bit has departed. Therefore,
packet departures must be considered as impulses. This assumption is needed to bound the arrivals
into the next switch in a chain of schedulers. We will remove this assumption later from the last
server of a chain to provide a slightly tighter bound on the end-to-end session delay in a network
of schedulers. In a fluid system, we require that all schedulers operate on a fluid basis and the
maximum packet size to be infinitesimally small.

We will now present delay bounds for LR schedulers. We will first consider the behavior
of a session in a single node, and subsequently extend the analysis to networks of LR servers. In
both cases, we will assume that the input traffic of the session we analyze is leaky-bucket smoothed
and the allocated rate is at least equal to the average arrival rate. That is, if 7 is the session under
observation, its arrivals at the input of the network during the interval (7, ¢] satisfy the inequality

Ai(1,t) <o+ pi(t — 1), (3.1)

where o; and p; denote its burstiness and average rate, respectively. However, we make no
assumptions about the input traffic of other sessions.



3.1 Analysis of a Single LR Server

Assume a set of V sessions sharing the same output link of an LR server. First, we show
that the packets of a busy period in the server complete service no later than @;S after the busy
period ends.

Lemma 1: Let (t1,t3] be a session-i busy period. All packets that arrived from session i during
the busy period will be serviced by time ty + OF.

Proof: Let us assume that the last packet of the jth busy period completes service at time ¢. Then
at ¢,
Ai(ty ta) = WEi(ty, ). (3.2)

But we know from the definition of the busy period that
Ai(thtg) = pz(tZ - tl). (33)

From the definition of LR servers and equations (3.2) and (3.3),

pilt =11 = OF) = pilts = 1) <0 (3.4)

or equivalently,
t<ty+0°%. (3.5)
O

The following theorem bounds the queueing delays within the server, as well as the buffer
requirements, for session 1.

Theorem 1: If S is an LR-server, then the following bounds must hold:
1. If Q7 (t) is the backlog of session i at time t, then

Q7 (1) < oi + pi©F . (3.6)
2. 1f D;S s the delay of any packet of session v in server S,

pf<Z o8, (3.7)

k3

3. The output traffic conforms to the leaky bucket model with parameters (o; + 0% p;, p;).
Proof: We will prove each of the above statements separately.

1. Upper bound on session-i backlog: Assume that the jth busy period covered the time
interval (s;, f;]. Let us denote with W;Z(r, t) the service offered to the packets of the jth busy
period of session i in the interval (7,¢], with 7 > s; and t < f; +0%. We will denote by W (r,¢) the
total service offered to session ¢ during the same interval of time. Note that W7 (r,t) > W&i(7,1),
since, during the interval (7,¢] the server may transmit packets of a previous busy period as well.

During a system busy period, let us denote with 7; the time at which the last packet of
the jth busy period completes service. At this point of time all backlogged packets belong to busy
periods that started after time f;. Note also that 7; < f; + @f. We will prove the theorem by
induction over the time intervals (7;_1, 7;].
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Base step: Assume that a session ¢ busy period started at time s; = 7. Since this is the first busy
period for session ¢, there are no other packets backlogged from session ¢ at 79. By the definition
of LR-servers, we know that for every time ¢t with 79 <t < 7y,

WZ»‘?I(TO, t)= Wfl(sl, t) > max(0, p;(t — s1 — @f))
From the definition of leaky bucket,
Ai(s1,t) <o+ pi(t — s1).

The backlog at time ¢ is defined as the total amount of traffic that arrived since the beginning of
the system busy period minus those packets that were serviced. Therefore,

Qi(t) = Ai(s1,t) — Wii(s1,1). (3.8)

We will consider two cases for ¢:
Case 1: If t < 51 + @;S then,
Wi (s1,t) > 0.

K3

Therefore,

QF (1) < Ay(s1,1)
<o+ pi(t —s9)
<o+ ,OZQ;S (3.9)

The first inequality follows from the definition of the leaky bucket and the second from the restriction
t< s +065.
Case 2: If t > s + @f, then from the definition of LR-server,

W{i(sht) > pi(t — 51 — OF).
From equations (3.1) and (3.8),
QS (1) < i+ pilt = 1) = pilt = 51 — ©F)
<o+ pi6F. (3.10)

Inductive step: We will assume that the theorem holds until the end of the nth busy period.
That is, for every time t < 7,, Q% (t) < 0; + p;05. We will now prove that it holds also during the
interval (7, 7,41]. After time 7,,, only packets from the (n+ 1)th busy period will be serviced, and
by time 7,41 all of the packets that belong in the (n 4 1)th busy period will complete service. In
addition, no packet from the (n 4 1)th busy period has been serviced before time 7,. Therefore,
for every time ¢ with 7, <t < 7,41, We can write

an—l—l (Tn7 t) = an—l—l (Sn—l—l 9 t) .
From the definition of the LR-servers,
an—l—l(Tn? t) > max(()? pl(t — Sp+1 — Gf))
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The amount of packets that are backlogged in the server is equal to those packets that arrived after
the end of the nth busy period minus those packets that were serviced after time 7,,; but we know
that , since s,41 is the beginning of the (n + 1)th busy period, the first packet of the busy period
arrived at time s,41. Therefore,

Qf (t) < Ai(sn-l-l?t) - an-l—l (Tn7 t)
< 07+ pilt — snp1) — max(0, pi(t — 5,41 — OF))
<o+ piO5.

2. Upper bound on delay: Let us assume that the maximum delay D;S was obtained for a
packet that arrived at time t* during the jth busy period. This means that the packet was serviced
at time t* + Df. Hence, the amount of service offered to the session until time ¢t* + D;S is equal to
the amount of traffic that arrived from the session until time ¢. Since s; is the beginning of the jth
busy period,

W{Z(sw ™+ Df) = Ai(s;,t7). (3.11)

Since the server may provide no service for time ©F, D > ©7. From the definition of LR-server,
Wei(sj, "+ DY) > pi(t" + DY = s — ©F). (3.12)
From (3.11),(3.12), and the leaky bucket constraint (3.1), we have
it + DF — 55— OF) <oy + pi(t" = 55), (3.13)

or equivalently,
pf<Z o8 (3.14)

K3
3. Upper bound on burstiness of output traffic: We will now prove that the output traffic
of the scheduler conforms to the leaky-bucket model as well. It is sufficient to show that, during
any interval (7,¢] within a session-i busy period,

Wi(r,t) < o; + piOF + pilt — 7).

Let us denote with o?* the burstiness of session ¢ at the output of the switch. We will try to find
the maximum value for this burstiness. We will assume that the server is work-conserving and that
it can service any amount of traffic from a given session without interruption, if the given session
is the only active session in the system. Let us denote with ¢;(7) the amount of tokens that remain
in the leaky bucket at time 7. Q% (7) is the amount of backlogged packets in the server at time 7.
If we assume that we have infinite-capacity input links, at time 7+ it is possible that an amount
of ¢;(7) packets is added to the server queue and no packet is serviced; but we already proved that
the maximum backlog of the session 7 is bounded by o; 4+ p;0%. Therefore,

(1) + Q% (1) < 0y 4 p©F. (3.15)

The arrivals A;(7,t) cannot exceed the amount of tokens in the leaky bucket at time 7 plus the
amount of tokens that arrived during the interval (7,¢], minus the amount of tokens at time ¢. That
is,

A (1,t) < ei(T)+ pi(t — 7) — (1) (3.16)
12



We can also calculate the service offered to session ¢ in the interval (7,¢] as

WE(r,1) = Qi(r) + Ai(7, 1) — Qi(t)
< Qilr) + Aulr, 1), (3.17)

Then, from (3.16) and (3.17),

W (r,1) < Qi) + ei(r) + pilt = 7) = eilt)
< (i +piOF) + pilt — 7). (3.18)
Therefore,
o?" < o+ ,02@;5. (3.19)

We can show that this bound is tight. If session 7 is the only active session in the system, it will
be explicitly serviced. Let us assume that the maximum backlog for this session is reached at time
t. After t, packets arrive from the session with rate p;. The server will first service the backlogged
packets and then continue servicing with rate p;. Therefore, we have

o?" > o; + ,02@;5. (3.20)

From Equations (3.19) and (3.20), we can conclude that o¢% = o; 4 p;0F O

3.2 Analysis of a Network of LR Servers

In the previous section we considered a single LR-server and analyzed the delay behavior
of a session when the session traffic is leaky-bucket controlled. We will now proceed to prove
bounds on backlog and delay over multiple nodes. The straightforward approach would be to
accumulate the maximum delays over each node. This approach was used by Cruz [14]. However,
this method ignores the correlation between arrivals at two servers in series, and therefore results
in very loose bounds. Tighter bounds can be provided by following the approach used by Parekh
and Gallager [16] that tries to capture the behavior of a session over multiple nodes at the same
time.

The only restrictions that we impose in the network is that all the servers belong to the
LR class and that the traffic of session ¢ under observation is shaped at the source with a leaky
bucket (o, p;). We will also assume that the bandwidth reservation of the session at every node in
its path is at least p;.

We first prove the following lemma:
Lemma 2: The traffic process after the kth node in a chain of LR servers is a leaky bucket process
with parameters

k
g; ‘|‘PzZ®£S])7 and Pis

i=1

where @ESJ) s the latency of the jth scheduler on the path of the session.
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Proof: We already proved in Theorem 1, that the output traffic of an LR server conforms to the
leaky bucket model with parameters (o; + ,02'@?,,02'). But this means that the input traffic in the
next node conforms to the same model. Therefore, after the (K — 1)th node, the output traffic of
session 7, and correspondingly the input traffic of node k, will conform to a leaky bucket model.

That is,
k—1

Ap(r ) < {04 p S0 ) 4 pi(t = 7). (3.21)
j=1

O
This is a an important result that allows us to bound the burstiness of session-i traffic at
each point in the network. Notice that the increase in burstiness that a session may see in the
network is proportional to the sum of the latencies of the servers it has traversed. Therefore, even
a session with no burstiness at the input of the network may accumulate a significant amount of

burstiness in the network because of the latency of the servers.
We can now state the following lemma that will bound the backlog of session ¢ in each node

of the network.

Lemma 3: The mazimum backlog Qgsk)(t) in the kth node of a session is bounded as

k
Q§S’“)(t) <o+ pi Z GESJ)-

i=1

Proof: Let Uf denote the maximum burstiness of session ¢ at the output of the kth node. By
Theorem 1 and Lemma 2 we have,
Q(Sk) < O.k—l ‘|‘pz®(5k)

k
<oitp > 007 (3.22)

i=1
O

As a result of the increased burstiness, the maximum backlog and therefore the maximum
buffer requirements for each node in the network are also proportional to the latency of the servers.
In Lemma 3 we bounded the maximum backlog for session ¢ in any node of the network. This
bound may be seen as the maximum number of buffers needed in the corresponding node of the
network to guarantee zero packet loss for session 7. However, this does not mean that we can
bound the maximum number of packets in the network for session ¢ by adding the backlog bounds
of each switch on the path. Such a bound does not take into account the correlation among arrival
processes at the individual nodes and therefore can be very loose.

To derive tighter bounds for session delay in a network of LR servers, we first show that
the maximum end-to-end delay in a network of two LR-servers in series is the same as that in a
single LR server whose latency is the sum of the latencies of the two servers it replaces. This result
allows an arbitrary number of LR servers in the path of a session to be modeled by combining their
individual latencies.

14
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Figure 3.3: lllustration of busy periods of a session in two servers in series. The network
busy period for session ¢ in this case is split into multiple busy periods in the second server.
The busy period in the first server is (aq,31]. The packets arriving at the second server
from this busy period form multiple busy periods (si, fi], (s2, f2], (s3, f3] in the second
server. The line with slope p; that starts at ©! bounds all these busy periods.

Analyzing two LR servers in series introduces a difficulty: If the first server has non-zero
latency, the busy period of a session in the second server may not coincide with the corresponding
busy period in the first server. That is, a packet that started a busy period in the first server may
not start a busy period in the second, but instead might arrive while a busy period is in progress
at the second server. Also, since the actual service rate seen by session ¢ in the first server can
be more than p;, a single busy period in the first server may result in multiple busy periods in
the second server. This is illustrated in Figure 3.3. We will take these effects into account in our
analysis of a network of LR servers.

In the following, we will use the term network busy period to mean a busy period of the
session being analyzed in the first server on its path. Similarly, when we refer to service offered
by the network to session ¢ during an interval of time, we mean the amount of session-: traffic
transmitted by the last server on the path during the interval under consideration. We will use
W; ;(7,t) to denote the amount of service offered by the network to session 7 during an interval (7, ]
within its jth network busy period. Also, we will use W}’]«(Tl, t1) to denote the amount of service
offered by the first server during an interval (7y,¢;) within its local busy period, and ij(rg,tg)
the same parameter for the second server during an interval (72, ¢3) within its busy period.

We first prove the following lemma to bound the service provided by the network to a

session during an interval within a network busy period.
(S1)

Lemma 4: Consider a network of two LR-servers Si and Sy in series, with latencies ©;”"’ and

9552), respectively. If p; is the rate allocated to session i in the network, the service offered by the
network to the packets of the jth network busy period of that session during an interval (7,t] within

the busy period is bounded as
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W; ;(7,t) > max (07 pilt =1 — (@gsl) + 6552)))) .

Proof: We will prove the lemma by induction on the number of network busy periods. Let us
denote with (a;, 3;] the starting and ending times of the jth network busy period of session i.
VV1 (04]7 t) denotes the service offered by the first server S to the packets of the jth network busy
perlod until time ¢. Note that the jth network busy period is the same as the jth session-busy
period on the first server. However, the busy periods seen by the the second server S may be
different from these periods. Let (sk, fi] denote the kth busy period of session ¢ in S;. Then
Wfk(sk, t) is the service offered by S, during its kth busy period until time ¢.

Let 73 denote the time at which packets from the kth busy period of session ¢ in S5 start
service in S;. Similarly, let {5 be the instant at which the last packet from the kth busy period in

So is completely serviced by S3. Then, it is easy to observe that
Tk > Sk, Uk < fr A+ 9552)7 and gy < Tryq.

Base step: Consider any time ¢ during the first network busy period, that is, oy <t < 1. When
the first busy period for session ¢ starts there are no other packets from that session in the system.
As observed earlier, the first network busy period of session ¢ may result in multiple busy periods
in the second server. Let (s1, fi], (S2, f2], - - -, (Sm, fm] be the successive busy periods in the second
server in which packets from the the first network busy period were serviced.

Let t* denote the last instant of time at which a packet from the first network busy period
was in service in S3. We need to show that, for any time ¢, oy <t < t*,

Wi,l(alvt) Z max (Ovpi(t — Q1 — (6551) + 6552)))) )

We need to consider three separate cases for t.

Case 1: t < 7y. In this case, no service has occurred in the second server, that is, W; 1(ay,t) = 0.

Also,

st <ap+ 6551), and
1 < 81+ 9552)
Therefore,
L—ay <0 4 ol%) (3.23)
Hence, we can write
Win(as, 1) > max (0, pi(t — oy — (%) + 01%)))). (3.24)

Case 2: 7, <t <ty, 1 <k <m (within the kth busy period in S3).

Wia(aq,t) = Wi (an, i) + Wi i (g, t) (3.25)
But,
WZ 1 (0417 Tk) W (0417 Sk)
and W i(mg,t) = W w(Th ) = Wﬁk(sk,t).
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Substituting in eq. (3.25),

Wi71(0417 t) = Wzl,l (0517 Sk) + ng(Sk, t)
2 max (0, pi(si — a1 = ©F)) + max (0, pilt - 51— 6:°))

7 7

> max (0, pi(t — o1 — (O + ©(5)))
Case 3: ¢, <t < 7441 (between busy periods in S3): We can write
WZ'J(Oél, t) = VViJ(O&l7 Tk_|_1) — WZ'J(t, Tk_|_1). (326)

Since no packet arrives at the second server between its busy periods, the second term on the
right-hand side is zero. Also, Wi (a1, Tep1) = Wi (a1, sp41). Therefore, eq. (3.26) reduces to

Wii(an,t) = Wiy (ar, sp41)
2> max (07Pi(5k+1 — oy — 9(51))) . (3.27)

1
(S2)
But, t <7y <spy1 +0;77, or
Sky1 21— 0%,

K3

Therefore, we can rewrite eq. (3.27) as

Wii(on,t) > max (Ovpi(t —ar - (O 4 9552)))) :

If f,, marks the last instant of time when a packet from the first network busy period was
serviced by Sz, then we have accounted for all the traffic arrived in the network during (ay, 1]
However, it is possible that the transmission of packets arrived during (a1, 1] extends into the
(m 4+ 1)th busy period in Sz. If so, let t* be the last instant of time when a packet from the first
network busy period was serviced by S3. Then we need to consider the additional time intervals
(tm, Tm+1] and (Tm41,t"] in the proof. These can be handled exactly like in case 3 and case 2,
respectively. This concludes the base step of the proof.

Inductive step: We assume that for all network busy periods 1,...,n, the lemma is true, and
thus
Win(an, 1) > max (0, pi(t — a, — (01 4+ (%))

7

We will now prove that, for the (n 4 1)th busy period,
Wintt(@ng1 ) = max (0, pilt = anps — (07 +6[™))) ).

In the simple case, the first session-i packet of the (n+ 1)th network busy period also starts a busy
period in the second server. This case can be handled exactly as in the base step. The more difficult
case occurs if, when the (n+ 1)th network busy period starts, some packets of session ¢ from earlier
busy periods are still backlogged in the second server. That is, the beginning of a network busy
period of session 7 may not always coincide with the beginning of a busy period for S;, as was the
case in the base step. However, we will now show that this does not affect our analysis.
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Let us assume that the mth busy period of S, is in progress when the first packet from the
(n + 1)th network busy period arrives at S;. Assume that the mth busy period of S; started at
time s,,, and the first packet from the (n + 1)th network busy period was serviced by Sy at time
7. Then,

Vvﬁn+1(an+lvo ::Vvﬁn+1(77ﬁ
= sz,m (Sm7 t) - W7 (5m7 T) (328)

1,m

Note that the mth busy period currently in progress in S3 may contain packets from multiple
network busy periods, since multiple busy periods of .51 may merge into a single busy period in
So. Assume that the mth busy period of Sy contained packets from the network busy periods
n—L.,n—L+1,....,n41. The total number of packets that are served during the mth busy period
of the second server until time 7 is equal to the total number of packets served from the network
busy periods n — L,n — L+ 1,...,n minus those packets served from the (n — L)-th busy period
before time s,,. Thus,

n

Z AZ (aj7 ﬂ]) = Wil,n—L (Oén_L7 Sm) + WZQ,m (Sm7 T)7 (329)
j=n—"L
or equivalently,
MQWASW7T)_' 2: 14407#%)_ an_L(an—L7Sm)
7=n—L
< S pilBs - ay) — max(0, pilse — ang, — O°))
7=n—L
< pilBu — @n—r) — max(0, pi(sm — au_r, — 6551))) 3.30)
< pi(Bn — 5 + O 3.31)

From equations (3.28) and (3.31), and the definition of LR servers,
) = Wiz,m(smv t) - W (8m7 T)

1,m

Wint1(@nt1,t
> max(0, pilt = sm = OF™))) = pi( B — s+ O
> max (0, pift = B, - (01" + ©>)))

7 7

> max (0, pi(t = anss — (01 + 09)).

K3 K3
The last inequality holds since 3, < ouq1.

Now, if the (n 4+ 1)th network busy period is later split into multiple busy periods in Sg,
we can use the same approach used in the base step for subsequent busy periods in S; to complete
the proof. a

Lemma 4 asserts that the service offered to a session in a network of two LR servers in
series is no less in the worst case than the service offered to the session by a single LR server
whose latency is equal to the sum of the latencies of the two servers it replaces. Since we make no
assumptions on the maximum service offered by the servers to a session, we can merge an arbitrary
number of servers connected in series to estimate the service offered after the kth node. We can
therefore state the following corollary.
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Corollary 1: Let 7 be the start of the jth network busy period of session t in a network of LR
servers. If p; is the minimum bandwidth allocated to session i in the network, the service offered to
packets of the jth network busy period after the kth node in the network is given by

k
Wf]k (1,8) > max | 0, pi(t — 7 — ZGESJ)) 7
Jj=1

where @ESJ) is the latency of the jth server in the network for session 1.

Using the above corollary we can bound the end-to-end delays of session ¢ if the input traffic
is leaky-bucket shaped and the average arrival rate is less than p;.

Theorem 2: The mazimum delay D; of a session t in a network of LR servers, consisting of K
servers in series, is bounded as

K
Di<Z 43 el (3.32)

K3 ]‘:1

where @ESJ) is the latency of the jth server in the network for session 1.

Proof: From Corollary 1, we can treat the whole network as equivalent to a single LR-server with
latency equal to the sum of their latencies. By using Theorem 1, we can directly conclude that the

maximum delay is
k

D; < 2-I-Z:GESJ)-
pi i3

a

This maximum delay is independent of the topology of the network. The bound is also
much tighter than what could be obtained by analyzing each server in isolation. Note that the
end-to-end delay bound is a function of only two parameters: the burstiness of the session traffic at
the source and the latencies of the individual servers on the path of the session. Since we assumed
only that each of the servers in the network belongs to the LR class, these results are more general
than the delay bounds due to Parekh and Gallager [16]. In the next section, we will show that all
well-known work-conserving schedulers are in fact LR servers. Thus, our delay bound applies to
almost any network of schedulers.

The delay bound in Eq. (3.32) shows that there are two ways to minimize delays and buffer
requirements in a network of LR servers: i) allocate more bandwidth to a session, thus reducing
the term o;/p;, or ii) use LR servers with low latencies. Since the latency is accumulated through
multiple nodes, the second approach is preferred in a large network. The first approach reduces
the utilization of the network, thus allowing only a smaller number of simultaneous sessions to
be supported than would be possible with minimum-latency servers. Minimizing the latency also
minimizes the buffer requirements of the session at the individual servers in the network.

Proposition 1: The end-to-end delay and increase in burstiness of a session in a network of LR
servers is proportional to the latency @f of the servers. We can minimize both of these parameters
by designing servers with minimum latency.
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Note that the latency of a server depends, in general, on its internal parameters and the
bandwidth allocation of the session under consideration. In addition, the latency may also vary
with the number of active sessions and their allocations. Such a dependence of the latency of one
session on other sessions indicates the poor isolation properties of the scheduler. Likewise, in some
schedulers the latency may depend heavily on its internal parameters, and less on the bandwidth
allocation of the session under observation. Such schedulers do not allow us to control the latency of
a session by controlling its bandwidth allocation. On the other hand, the latency of a PGPS server
depends heavily on the allocated bandwidth of the session under consideration. This flexibility is
greatly desirable.

3.3 Delay Bound for Sessions with Known Peak Rate

Since the definition of an LR server is not based on any assumptions on the input traffic,
it is easy to derive delay bounds for traffic distributions other than the (o, p) model. For example,
when the peak rate of the source is known, a modified upper bound on the delay of an LR server
can be obtained. Let us denote with g; the service rate allocated to connection ¢, and let p; and
P; respectively denote the average and peak rate at the source of connection i. The arrivals at the
input of the server during the interval (7,¢] now satisfy the inequality

Ai(r,t) <min (o; + pi(t —7), P(t —7)). (3.33)

We can prove the following lemma:
Lemma 5: The mazimum delay D; of a session ¢ in an LR server, where the peak rate of the
source is known, is bounded as

P_g o
D? < ( : ) ( : )+®f. 3.34
i P —p; (3:34)

Proof: Let us assume that the maximum delay D;S was obtained for a packet that arrived at time
t* during the jth busy period. This means that the packet was serviced at time t* + Df. Hence,
the amount of service offered to the session until time ¢* + D;S is equal to the amount of traffic that
arrived from the session until time ¢. Since s; is the beginning of the jth busy period,

Wi (s;,t" + DP) = Ai(s, t%). (3.35)
From Eq. (3.33), this becomes

ij(s]', 4+ Df) < min (o; + p;(t* — s;), B(t" — s5)) . (3.36)
Since the server may provide no service for time @f, D;S > @;S. From the definition of LR-server,
Wi (5,7 + DY) > gi(t" + DY — 55— ©7). (3.37)

From (3.36) and (3.37), we have
gi(l* + D7 = 5; — ©F) < min (05 + pi (1" = 55), P(" = 57)) . (3.38)
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Case 1: When P;(t* — s;) < 0; + pi(t* — s;), we have

P — g
(-551)(ﬁ-—sﬂ-+®f; (3.39)

DS

K3

IN

and

Pi(t" = s;) < o4 pi(t™ — 55),
a;

P —pi

or, t* —s; <
Substituting for (¢ — s;) in Eq. (3.39), we get

P. _g o
ng(l Z)( : )+®§ 3.40
i P —p; (3.40)

Case 2: When P;(t* — s;) > 0; + pi(t* — 55), we get

a;

(t* —s;) > P (3.41)
From Eq. (3.38),
(9i — pi) (1" = 5;) < 01 — g:DF + g:OF; (3.42)
and by substituting for t* — s; from Eq. (3.41),
o< (550 (72 ver 3
O

A network of LR servers can be modeled as a single LR server with latency equal to the
sum of the latencies. Thus, the following main result can be derived:

Corollary 2: The mazimum delay D; of a session t in a network of LR servers, consisting of K
servers in series, where the peak rate of the source is known, is bounded as

P — g o K s
< 7 P P 5 ‘
e (222) (52) + o o

9i i T P
where @fj is the latency of the jth node.

4 Schedulers in the Class LR

In this section we will show that several well-known work-conserving schedulers belong to
the class LR and determine their latencies. Recall that our definition of LR servers in the previous
section is based on session-busy periods. In practice, however, it is easier to analyze scheduling
algorithms based on session backlogged periods. The following lemma enables the latency of an
LR server to be estimated based on its behavior in the session backlogged periods. We will use
this as a tool in our analysis of several schedulers in this section.

21



Lemma 6: Let (s;,t;] indicate an interval of time in which session i is continuously backlogged in
server 8. If the service offered to the packets that arrived in the interval (s;,t;] can be bounded at
every instant t, s; <t <{; as

Wi(s;,t) > max(0, pi(t — s; — ©;)),

then § is an LR server with a latency less than or equal to ©;.

This lemma will allow us to estimate the latency of an LR-server. However, it does not
necessarily provide us a tight bound for the parameter ©;. An easy way to determine if the bound
is tight is to present at least one example in which the offered service is actually equal to the bound.
This is the approach we will take in this section to determine the latencies of several LR servers.

Proof: We will prove the lemma by induction on the number of busy periods. Let us use (ay, O]
to denote the kth busy period of session 7 in the server.

Base step: At time «y, the beginning of the first session-¢ busy period, the system becomes
backlogged for the first time. Let us assume that the first busy period consists of a number of
backlogged periods (s;,t;]. By the definition of session busy period, the following inequality must
hold at the beginning of the jth backlogged period:

Alar, s5) > pi(sj — aq).
However, the system is empty at time s;. Therefore,

Aloq, s;) = Wii(aq, s;). (4.1)
Consider any time ¢ in the interval (s;,¢;]. We can write

Wilaq,t) = Wi 1(aq,t)
= Wii(ar,s;) + Wials;, t)
> pi(sj — a1) + max(0, pi(t — s; — ©;))
> max(0, p;(t — g — ©;)) (4.2)

Now consider any time ¢ within the busy period, but between two backlogged periods; that
is, t; <t < s;41. Since session ¢ receives no service during the interval (¢, s;41], we can write

VVi(O&l7 t) = WZ'J(Oél, t) = WZ'J(Oél, S]‘_|_1). (43)
But,

Wi, sj41) = Ai(on, sj41)
> pi(sjt1 — 1)
> pil(t — o). (4.4)
Therefore, from (4.3) and (4.4),
Wilaq,t) > pi(t — aq). (4.5)
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Combining (4.2) and (4.5), we can conclude that, at any instant ¢ during the first busy period

(a1, 4],
Wi(aq,t) > max(0, pi(t — oq — ©;)). (4.6)

Inductive step: Assume that the lemma is true for all busy periods 1,2,...,n. We will now prove
that the lemma is true for the (n 4 1)th busy period as well.

If the system is not backlogged when the (n + 1)th busy period starts, we can repeat the
same proof as in the base step. However, it is possible that, when the (n+ 1)th busy period starts,
the system is still backlogged with packets from the nth or earlier busy periods. Let us assume
that the backlogged period in progress when the (n+ 1)th busy period starts is the mth backlogged
period. This backlogged period started at time s,,; in the general case, we can assume that packets
from L earlier busy periods were serviced during the backlogged period (s, t,]. Let 7 denote the
instant at which the last packet from the nth busy period was serviced. Then,

5m7 Z Az O‘]vﬁ] Wi,n—L(an—L7Sm)
=n—L
S z(ﬁn — Oy L) pz(sm - an—L)
< pi(Bn = $m) (4.7)

We need to show that W; 11 (n41,t) > max(0, p;(t — a1 — ©;)). We can proceed as follows:

Winti(antr, t) = Wi(r, 1)
= W(Sm, ) (vaT)
> max(0, pi(t — s — ©0)) — pi(Bo — $m)
> max(0, it — i — 00)
> max(0, pi(t — apy1 — 0;).

The last inequality follows from the fact that 3,, < a,4+1 and that the service offered to a session can
never be negative. If, after time ¢, the packets of the (n+1)th busy period form multiple backlogged
periods, the proof for the base step can be repeated to complete the proof of the lemma. O

A main contribution of the theory of LR-servers is the notion of the busy period. The
bound on the service offered by an LR-server is based on the busy period. This is a more general
approach than bounding the service offered by the server based on the concept of the backlogged
period. An approach based on the latter was proposed in [23] for providing QoS guarantees. This
model bounds the service offered to a connection during one or more backlogged periods, thus
providing a means to design a class of scheduling algorithms that can provide specific end-to-end
delay guarantees. Using the concept of busy period instead of backlogged period in this model will
likely result in tighter end-to-end delay bounds and a larger class of schedulers that can provide
these delay bounds.

In Lemma 6 we proved that, if we use the backlogged period to bound the service offered
by a server §, then § is an LR server and its latency can not be larger than that found for the
backlogged period. However, we must emphasize the fact that the opposite is not true. Consider
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Figure 4.1: Difference in bounding service based on the backlogged and busy periods.

I Server Latency |
GPS 0
PGPS % _|_ Lmr#
SCFQ s fmar(V — 1)
VirtualClock % n LW;J
Deficit Round Robin 3F—r—2¢z
Weighted Round Robin 7F_¢7{+Lc

Table 4.1: Some LR servers and their latencies. L; is the maximum packet size of session
v and L4, the maximum packet size among all the sessions. In weighted round-robin
and deficit round-robin, F' is the frame size and ¢; is the amount of traffic in the frame
allocated to session i. L. is the size of the fixed packet (cell) in weighted round-robin.

the example of Figure 4.1. Let us assume an LR-server with rate p and latency ©. Referring to
Figure 4.1, time-intervals (0,¢;] and (¢g, %3] form two busy periods. However, the server remains
backlogged during the whole interval (¢1,¢3]. If the backlogged period was used to bound the service
offered by the server, a latency O, > O would result. By extending the above example over multiple
busy periods, it is easy to verify that O can not be bounded. This shows that if backlogged period
was used instead of busy period in the definition of the LR server model, the end-to-end delays of
the server would not be bounded.

By using the above lemma as our tool, in Appendix 7 we analyze several work conserving
servers and prove that they belong in the class LR. A summary of our results is presented in
Table 4.1.

It is easy to see that PGPS and VirtualClock have the lowest latency among all the servers.
In addition, their latency does not depend on the number of connections sharing the same outgoing
link. As we will show in Section 6, however, that VirtualClock is not a fair algorithm.
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In self-clocked fair queueing, the latency is a linear function of the maximum number of
connections sharing the outgoing link. In Deficit Round Robin, the latency depends on the frame
size F. By the definition of the algorithm, the frame size, in turn, is determined by the granularity
of the bandwidth allocation and the maximum packet size of its session. That is,

v
=1

where L; is the maximum packet-size of session ¢. Thus, the latency in Deficit Round Robin is also
a function of the number of connections that share the outgoing link. Weighted Round Robin can
be thought of as a special case of Deficit Round Robin and its latency is again a function of the
maximum number of connections sharing the outgoing link.

5 An Improved Delay Bound

The latencies of LR servers computed in the last section are based on the assumption that
a packet is considered serviced only when its last bit has left the server. Thus, the latency @;S
was computed such that the service performed during a session busy period at time ¢, W; ;(7,t), is
always greater than or equal to p;(t — 7 — ©F ). Since the maximum difference between W; ;(r,t)
and p;(t — 7) occurs just before a session-i packet departs the system, the latency ©F is calculated
at such points. This is necessary to be able to bound the arrivals to the next server in a chain of
servers; since our servers are not cut-through devices, a packet can be serviced only after its last
bit has arrived. Our assumption that the packet leaves as an impulse from the server allows us to
model the arrival of the packet in the next server as an impulse as well.

When we compute the end-to-end delay of a session, however, we are only interested in
finding the time at which the last bit of a packet leaves the last server. Thus, for the last server
in a chain, we can determine the latency ©F based only on the instants of time just after a packet
was serviced from the session. This results in a lower value of latency and, consequently, a tighter
bound on the end-to-delay in a network of servers than that given by eq. (3.32).

To apply this idea, the analysis of the network is separated into two steps. If the session
passes through k hops, we bound the service offered to the session in the first k—1 servers considering
arbitrary instants during session-busy periods. On the last node, however, we calculate the latency
based only on the points just after a packet completes service.

This idea is best illustrated by an example in the case of the PGPS server. Assume that a
busy period starts at time 7, and that a packet leaves the PGPS server at time t;. Then, on the
corresponding GPS server, this packet left at time t;, — L4, /7 or later. Therefore, if we consider
only such points ¢z, we can write

L
W te) = Wi(rit, — =)

Lmal’
r )

> pilty — 7 —

This results in a latency of L,,.,/r as compared to (L;/p; + Lmax/r) computed in eq. (A.1).
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Figure 5.1: Illustration of the two envelopes used to bound the service received by session ¢
in a session-busy period. Each step in the arrival function indicates a new packet. The
lower envelope is a valid lower-bound for the service at any point in the busy period, while
the upper one is valid only at the points when a packet leaves the system.

Figure 5.1 shows the two envelopes based on bounding the service received by the session in
the two different ways. The lower envelope applies to arbitrary points in the session-busy period,
while the upper envelope is valid only at points when a packet leaves the system. For computing
end-to-end delay bounds in a network of servers, we can use the upper envelope in the last server. In
all the work-conserving schedulers we have studied, the two envelopes are apart by L;/p;, where L; is
the maximum packet-size for session i. Therefore, for these LR servers, we can obtain an improved
bound for the end-to-end delay in a network by subtracting L;/p; from eq. (3.32). Therefore,

k
i Li
D;< 4y el - 2L (5.1)
Pi i3 pi
If we substitute the latency obtained for PGPS from eq. (A.1) in this expression, that is,
GES]) = Lz/pz + Lmax/rv we get
3 Lz Lmaac
Dy < Zg (= 1) e

7 Pi

) (5.2)

which agrees with the bound obtained by Parekh and Gallager [16] for a network of PGPS servers.
Since the latencies of PGPS and VirtualClock are identical, the bound of (5.2) applies to Virtual-
Clock as well; this is also in agreement with the results of Lam and Xie [24].

While we have verified that this improvement of L;/p; in the delay bound is valid for all
the LR servers analyzed in this paper, whether this is true for all LR servers remains an open
question. We have not yet found a formal proof on its validity for arbitrary LR servers.
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6 Fairness of LR Servers

In Section 3, we showed that the worst-case delay behavior of individual sessions in a network
of LR servers can be analyzed knowing only their latencies. However, the latency of an LR server,
by itself, provides no indication of its fairness. For example, VirtualClock and PGPS are two
different LR servers with the same latency, but with substantially different fairness characteristics.
In this section we analyze the fairness characteristics of several well-known LR servers and compare
them.

The fairness parameter that we use is based on the definition presented by Golestani [5]
for analysis of self-clocked fair queueing. Let us assume that W$(r,t) is the service offered to
connection 7 in the interval (7,¢] by server S. If p; is the bandwidth allocated to connection ¢, we
will call the fraction W#(r,t)/p; the normalized service offered to connection i in the interval (7, 1].
A scheduler is perfectly fair if the difference in normalized service offered to any two connections
that are continuously backlogged in the system in the interval (7,?] is zero. That is,

WE(r,t)  Wi(r,t)
pi pj

= 0.

GPS multiplexing is proven to have this property. However, this condition cannot be met by
any packet-by-packet algorithm since packets must be serviced exclusively. Therefore, in a packet
by packet server, we can only require that the difference in normalized service received by the
connections be bounded by a constant.

Golestani [5] suggested use of the difference in normalized service offered to any two
connections as the measure of fairness for the algorithm [5]. More precisely, an algorithm is
considered close to fair if, for any two connections ¢,j that are continuously backlogged in an
interval of time (¢1,¢;],

WE(ty,ty) Wt ta)
Pi Pj

< FS,

where 7 is a constant. Let us call 7€ as the fairness of server S. A difficulty arises, however, in the
use of the above definition in comparing the fairness of different schedulers. For the same pattern
of session arrivals, the backlogged periods of the session can vary across schedulers; a comparison
of fairness of different scheduling algorithms can therefore yield misleading results if the arrival
pattern is not chosen so as to produce the same backlogged periods in all the schedulers. Hence, we
modify Golestani’s definition slightly. We consider a time 7 at which the connections ¢ and j being
compared have an infinite supply of packets. This forces them to be continuously backlogged in the
servers, regardless of the scheduling algorithm used. We use as a measure of fairness the difference
in normalized service offered to the two connections for any time interval (¢1,¢2] after time 7.

A typical example of unfairness occurs in the VirtualClock algorithm, as illustrated in
Figure 6.1. Assume that two connection share an outgoing link and are allocated equal shares of
the link bandwidth. Assume each packet is of unit size and the rate of the server is also unity.
Consider an interval of time 0-1000 during which only connection 1 is active, and sends 1000 packets.
Connection 2 becomes active at time 1000, and both connections send packets after 1000. Assume
that the scheduler is based on the VirtualClock algorithm. Since the server is work-conserving,
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Figure 6.1: Unfair behavior of the VirtualClock scheduling algorithm. The two connections
are allocated equal portions of the outgoing link bandwidth.

it will service all 1000 packets from connection 1 by ¢ = 1000. However, at time ¢ = 1000, the
next arriving packet of connection 1 will receive a timestamp of 2000, reflecting the average service
received by the connection until 1000. Thus, connection 1 will be starved until time 1500, when
the timestamps of the packets of the two connections become equal. If the maximum burstiness
of the sources is not bounded, we can see that the interval over which a backlogged connection is
denied service can grow to infinity. A PGPS server, in contrast, provides equal service to the two
connection after t = 1000, regardless of the excess bandwidth received by connection 1 earlier.

We now evaluate the fairness of a number of well-known servers. We use L; to denote
the maximum packet-size for session 7 and L,,,,; the maximum packet-size over all sessions. For
VirtualClock, we have already seen that there is no finite value of F¢ satisfying our definition of
fairness.

6.1 Fairness of a PGPS Scheduler

Based on the above measure of fairness, the fairness of a PGPS server is given by the
following lemma. A detailed proof of the lemma can be found in [25].

Lemma 7: For a PGPS scheduler,

Lmax

L; Lmaac Lz
=+ =5, Cit + =)

7 P P Pi

FS = max(max(C; +

where C; is the mazimum normalized service that a session may receive in a PGPS server in excess
of that in the GPS server, given by

L L,
C; = min ((V — 1)ﬂ7 max (—)) .
Pi 1<n<V " Py

It can be shown that the above bound is tight.
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6.2 Fairness of Self-Clocked Fair Queueing
Golestani [5] proved the following bound for SCFQ:

Fe_Li i
pi P
We now prove that this bound is tight by presenting an example where the bound is actually
reached.
Let us assume that at time ¢, the kth packet from connection ¢ has just been serviced by
the SCFQ server. The next packet will have a virtual finishing time equal to

L.
k+1 k
Fit =+

K3
Packets from connection j may be serviced after the kth packet of connection ¢, as long as their
virtual finishing times are less than or equal to Ff"’l. Let us assume that connection j has a packet
x of size L; with the same finishing time Ff Assume also that j has a set of packets queued behind

x with total size equal to
L;
EP]‘-
The last of these packets will get a virtual finishing time of

L.
k
= F7 4+ —.

K3
Therefore, a total amount of traffic equal to L; 4 %pj may be serviced from connection j before
the (k4 1)th packet from connection ¢ is serviced. Let t3 be time at which the packets of j finish
service. Then,

W;lti,ts)  Wilty, b 1 Li
](, ) I : )If(Lj+—,Pj)
Pj Pi Pj Pi
_Li L
pi  Pj

6.3 Fairness of a Round-Robin Scheduler

Deficit Round Robin was proposed by Sreedhar and Varghese [8] as an O(1) algorithm for
providing bandwidth guarantees in an output-buffered switch. Deficit Round Robin is a generaliza-
tion of the Weighted-Round-Robin algorithm that was proposed in the context of ATM networks [7].
The latter assumes that packets from all connections have the same size and connections are ser-
viced in a round-robin order. The time is split into frames of maximum size F' and a connection
is not allowed to send more than ¢; packets during a frame period. Therefore, the bandwidth
allocated to a connection is
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Deficit Round Robin estimates the service offered to a connection during a round in terms of bytes
and not in terms of packets, allowing it to be used with variable-size packets. Connections are
serviced in a round-robin fashion. Once a connection is selected, up to ¢; bytes may be sent for
that connection. If the transmission of a whole packet forces the connection to send more than ¢;
packets, the last packet is not sent and a deficit counter Df is updated, indicating the service that
was missed from the connection during the kth round. This deficit is then added to ¢; in the next
round while servicing traffic from connection 1.

Another variation of the round-robin service disciplines is the Surplus Round Robin (SRR)
[26, 27]. The difference of this policy from Deficit Round Robin is that, if a packet forces the
connection to send more than ¢; bytes in a frame, the packet is sent and a surplus counter Sf is
updated to reflect the amount of excess service that was offered to the connection during the kth
round. This service will be lost during the next round.

It has been shown that, in the Deficit Round Robin algorithm, the difference in service
offered to any two connections that have the same bandwidth reservation is bounded by 3¢;, where
¢; is the number of bytes allocated to these connections in each frame [8]. Here we extend the
result to the case of two connections with arbitrary bandwidth allocations.

Lemma 8: For a Deficit-Round-Robin scheduler,
Fs =3
r
Proof: Let us assume a time interval (¢, ¢,], where ¢g is the beginning of a round and ¢,, is the end
of the nth round after {y5. For each kK = 1,2...,n when the connection is continuously backlogged,

Wi(ti—1,tr) = ¢; + DF1 — DF, (6.1)

where D is the value of the deficit counter of connection i at the end of the kth round. Summing
over k,

Wi(to, tk) =ko; + D? — le (6.2)
Since D¥ < ¢;, for every k, we can write
Wi(to, te) < ki + ¢ (6.3)
Similarly, if connection j is continuously backlogged over the same interval, we can write

Wilto, ) = ko; + D = DJ.
> hoj — o (6.4)

From equations (6.3) and (6.4) we can easily conclude that

pi Pj pi Pj
2F
<

Wilto,ts)  Wjlto tr) | _ & L+ @

r
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This bound applies to time intervals that span complete frames. For an arbitrary interval, the
difference in service offered to the two connections may increase by another ¢; or ¢; bytes. By
normalizing this additional difference, we can obtain the general bound for fairness as

_3F
==

FS (6.5)

a

In the case of Weighted Round Robin, where the deficit is always zero across the rounds,
an extension of the above proof will lead us to the following corollary:
Corollary 3: For a Weighted-Round-Robin scheduler,

Fe=l
r

In concluding this section, we note that all the algorithms studied, except VirtualClock,
can be considered as fair based on our definition of fairness. However, it is interesting to note that
self-clocked fair queueing (SCFQ) has the best fairness among all the packet-by-packet schedulers,
even better than that of PGPS in some cases. On the other hand, the latency of an SCFQ server can
be much higher than that of a PGPS server; this is because SCFQ may delay service to connections
when they become backlogged after an idle period, while PGPS penalizes the connections that have
already received their allocated bandwidth to serve newly backlogged connections.

7 Conclusions

In Table 2, we have summarized the characteristics of several scheduling algorithms belong-
ing to the LR class based on the three parameters discussed in Section 2. Based on this summary,
it is easy to see that the PGPS scheduler has the best performance both in terms of latency and
fairness properties. However, it also has the highest implementation complexity. VirtualClock has
latency identical to that of PGPS, but is not a fair algorithm.

All the other algorithms studied have bounded unfairness, but also have much higher
latencies than PGPS. From our analysis of networks of LR servers, it becomes clear how this
increased latency leads to high end-to-end delay bounds, large buffer requirements in the switch
nodes, and increased traffic burstiness inside the network. Even with constant-bit-rate traffic at
the source, sessions may accumulate considerable burstiness after many hops through the network
if the the servers have high latencies. Thus, the use of servers with minimum latency is extremely
important in a broadband packet network. In both the SCFQ server and the round-robin schedulers,
the latency and fairness are greatly affected by the number of connections sharing a common
outgoing link. This property makes it difficult to control end-to-end session delays in networks
where a large number of flows may share the links.

Our comparison of schedulers along the three dimensions leaves open the question whether
a scheduling algorithm can be designed that has the same low latency as that of PGPS, bounded
unfairness, and an efficient implementation. In [25], we extend this work by presenting such a
scheduling discipline that we call Frame-based Fair Queueing (FFQ). FFQ is a sorted-priority
algorithm in which the calculation of timestamps can be performed in O(1) time. The latency of
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Table 7.1: Latency, fairness and implementation complexity of several work-conserving
servers. L; is the maximum packet size of session ¢ and L,,,, the maximum packet size
among all the sessions. C} is the maximum normalized service that a session may receive
in a PGPS server in excess of that in the GPS server. In weighted round-robin and deficit
round-robin, F'is the frame size and ¢; is the amount of traffic in the frame allocated to
session 7. L. is the size of the fixed packet (cell) in weighted round-robin.

frame-based fair queueing is identical to that of a PGPS server, yet the algorithm can be shown to
be fair based on the criterion we used in this paper to evaluate fairness.

It should be noted that our approach of modeling a network of LR servers as a single
LR server did not make any assumptions about the input traffic. Although the bounds derived
in this paper for the end-to-end delays and buffer requirements hold only when the input traffic
is leaky-bucket shaped, the same model can be used for analysis with other input-traffic models.
For example the Erponentially-Bounded-Burstiness (EBB) model was used in [28, 29] for analyzing
the behavior of a GPS multiplexer. Future work will include the use of other traflic models for
providing end-to-end delay guarantees in a network of LR servers.

The fairness analysis presented in Section 6 did not cover the intervals of time where

a connection may be idle. A more complete analysis should include such intervals. In a fair
algorithm, the service lost by two connections while they were idle should also be proportional to
their reservations. In addition, if one connection is idle and the other backlogged, the idle connection
must be losing normalized service proportional to the service that the backlogged connection is
receiving. Future work will include the definition of a universal method for estimating the fairness

of a scheduling algorithm. This measure must depend only on the characteristics of the server, and
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not on the traffic parameters of individual sessions. However, it must be a sufficient condition to
prove that the server is providing service to a connection comparable to that provided by by a GPS
multiplexer.
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Appendix A: Schedulers in the Class LR and Their Latencies

This appendix contains the proofs for showing that many well-known scheduling algorithms
belong to the class of LR servers and derives their latencies. In the following proofs, L; denotes
the maximum packet-size for session ¢ and L4, the maximum packet-size among all sessions.

A.1 Weighted-Fair-Queueing

We first start by showing that a GPS scheduler is an LR server.
Lemma 9: A G'PS scheduler belongs to the class LR and its latency is zero.

Proof: From the definition of the GPS multiplexer, during any interval of time that connection ¢

is continuously backlogged,
WEPS (7.1) > pi(t — 7).
From Lemma 6 it easy to conclude that a GPS scheduler is an LR-server with zero latency.
O
Weighted-Fair-Queueing or Packet-by-packet GPS (PGPS) scheduling algorithm is the

packet-by-packet equivalent of GPS multiplexing. In [4] it was proven that, if ¢, ¢"" are the times
that a packet finishes under WFQ and GPS, respectively, then

ﬁ<ﬁ+&ﬂ
- r

9

where r is the transmission rate of the server. For the analysis of a network of LR servers it
is required that the service be bounded for any time after the beginning of a busy period. In
addition, we can only consider that a packet left a packet-by-packet server if all of its bits have left
the server. These requirements are necessary in order to provide accurate bounds for the traffic
burstiness inside the network. Therefore, just before time ¢* the whole packet has not yet departed
the packet-by-packet server. Let L; be the size of the packet. The service offered to connection 7 in
the packet-by-packet server will be equal to the service offered to the same connection by the GPS
multiplexer until time ¢© minus this last packet. Notice also that in a GPS multiplexer, since the
latency is zero, the beginning of a busy period finds the system always empty. Therefore,

Lmax
Wi t) 2 Wii(r, = =255 = L

Lmal’
> max(0, p;(t — 7 — ) — L)

r
Lmaac Lz

> 0, pilt — 7 — =maz _ iy,

> max(0, it - 7 — 5% - )

Hence, we can state the following corollary:
Corollary 4: Weighted-Fair-Queueing is an LR server with latency
Lmaa: —I— &
r Pi
This latency can be shown to be tight.
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A.2 VirtualClock

The VirtualClock service discipline is based on the calculation of a timestamp for each
packet that arrives in the system. The timestamp is calculated based on the timestamp of the
previous packet of the same connection and the real time that passed after the beginning of the
system busy period. In [25], we prove the following theorem that classifies VirtualClock as an LR
server.

Theorem 3: The VirtualClock service discipline is an LR server and ils latency is

r Pi

Lmaac Lz
_I_

A.3 Self-Clocked Fair Queueing

In this section we will analyze the self-clocked fair queueing (SCFQ) algorithm and prove
that it is also an LR-server. SCFQ was proposed as a simplification of the PGPS server and is a
sorted-priority algorithm. When a connection becomes backlogged, the virtual time is estimated by
the virtual finishing time of the packet that is being serviced. Let T'S.,, indicate this time. Then,
the virtual finishing time of the jth packet of connection 7 is estimated as
) ) Il
EJ = maX(E']_ly TScur) + _2'7
K3
where Lf is the length of the jth packet of connection :. Packets are always serviced in increasing
order of their virtual finishing times. When the system becomes empty, all variables are reset to
zero.
Let us assume that a connection becomes backlogged at time 7 and let this be the kth
packet of the connection. We first prove the following lemmas:
Lemma 10: If the kth packet of session ¢ starts a backlogged period in SCFQ server, its virtual
finishing time will be estimated by the system virtual time:
J
FE = TS0 + 2
Pk

Proof: We will prove the lemma by contradiction. Let us assume that

FF1 S TS

K3

Then, the packet E»k_l has not been serviced yet and thus the kth packet does not find the system
empty. a
We can now prove the following theorem:

Theorem 4: At ant time t during a session ¢ backlogged period in an SCFQ) server,

Lmax L, )

Wi, t) > pit =7 = (V = 1)
r Pi
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Proof: Let 7 be the start of a backlogged period for session ¢ in the SCFQ server. Assume that
the backlogged period was started by the arrival of the kth packet of session :. By Lemma 10, the
virtual finishing time of this packet will be
Il
Ff=TSe + =L (A1)
Consider the nth of the same backlogged period of session ¢, that is, the (k + n — 1)th packet of
session ¢. Let us mark this packet. The virtual finishing time of this packet will be

Ffn=l =718, + ni (A.2)
K3
Let us calculate how much traffic will be serviced from other sessions ahead of this marked packet
in the worst case. Every other session may have a packet of size L., with finishing time = T'S.,,.
In addition, every connection j # ¢ may transmit a maximum of (nL;/p;)p; total traffic before the
marked packet is transmitted, as their timestamps will be within T'S.,, + nL;/p;. Thus, the time
at which the marked packet will be transmitted is given by

I 1 k+n—1 14 L.
DE=l < r (V- 1) TR 4 E Li+ ) n—p;
T r ,_ — Pi
=k i=1
J#e
Lmaac 1 — P
<rp (Vo 1)Tmas g - <nLi+nMLi)
roor pi
Lmaac Lz

Consider any time ¢ > 7 during the session backlogged period. Assume the marked packet was the
last serviced during the period (7,¢] from session i. Then, the total service received by session ¢
during (7,t] is given by

W; (7’7 t) =nlL;. (A4)

But, ¢t must be less than the time at which the (k4 n)th packet of the session will leave the server.
That is,

Lpax L;
t<r+(V-D="+m+1)—, (A.5)
or equivalently
Lpax L;
nl; >pi(t—17—(V—-1) -— . (A.6)
r pi
Substituting for nL; from (A.6) in (A.4),
Lmal’ LZ
L (A7)
Since W;(7,t) cannot be negative, we can write this as
Lpax L;
Wi(r, ) > max <O,pi(t (Ve ;)) (A.8)
a

By using Lemma 6 we can state the following corollary:
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Corollary 5: The SCFQ scheduler belongs to the class LR and its latency is less than or equal to

Lmax

L;
+ 2

V=1 pi

To prove that this latency is tight, it is sufficient to show an example where it actually
occurs. Let the transmission rate of the server be 1. Assume that connection 7 is allocated rate
p; and the other V — 1 connections are allocated rate (1 — p;)/(V — 1). Assume further that all
the connections except ¢ became backlogged at time 0 with a packet of size L,,4,. They all get
the same virtual finishing time T'S.,,. Just after the first packet of one of these connections starts
being serviced, a packet of size L; arrives from connection . Then,

L.
FZ'I =TScur + —Z
K3
This packet and all subsequent packets that belong in the same backlogged period of ¢ will be delayed
by the packets with virtual finishing time equal to T'S.,,.. Now assume that each connection j # ¢
transmits packets with total size equal to

L.
S="p,.
pi’
The virtual finishing times of the last packet in this group will be equal to T'S.,,. + %, for each
connection j. Thus, in the worst case, the packet from connection ¢ may be serviced only after all
these packets complete service. Thus, the first packet of connection 7 will only finish at time

Lyar | 1= Li | L
D;= (V-1 S N O i
( ) ” —I—r;pip]—l_r

J#e

Lmaac Lz - P LZ
(v = 1y lmes | Lilr ’0)+7

T Pi T
Lmaac Lz
=(V-1) =,
pi

A.4 Deficit Round Robin

In this section we will analyze the Deficit Round Robin algorithm. We prove the following
lemma:
Lemma 11: Let tg be the beginning of a backlogged period of session i in a Deficit Round Robin
server. The, at any time t during the backlogged period,

(BF —2¢;)

Wi(to, t) > max(0, p;(t — to —
-

)-

Proof: Let a connection become backlogged at time tp. Let ¢ indicate the time that a round
finishes in the Deficit Round Robin algorithm. It has been shown in [8] that, if connection ¢ is
continuously backlogged in the interval (7,%x] then at the end of the kth round,

Wi(to, tk) > ko — le (AQ)
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For each interval of time (tx_1, k], we can write

1 \4
th— th- 1<—(F—|—ZD’“ ! ZDf). (A.10)
i=1

71=1

By summing over k,

F 14 , 14

P Z
< k + (b
"
or equivalently,
ly — 1o (bz
> — — 1. .

kSt o (A.11)

Replacing k in Equation (A.9),
ty — to ’
Wi(to, tr) > ¢i( kF +¢;—1) D}
> pilty —to) — ¢i(1 — %) - Dk (A.12)

In the worst-case connection ¢ was the last to receive service during the kth round. We will
distinguish two cases:

Case 1: Connection ¢ transmitted more than ¢; during the kth round. Then, the maximum
amount of packets sent is bounded by 2¢; — Df. Therefore, for any time from the beginning of the
kth round until these packets start being serviced,

Wi(to, t) > max(0, pi(tr — to) — ¢:(1 — (bl) DF - 2¢; + DF)
mewmw—m>3@+@@>
> max(0, p;(t — to — w))

The last inequality holds from the fact that at least ¢; bytes were serviced from the connection
¢ in the kth round. Therefore ¢t < ¢ — (% + DF). When these packets start being serviced they
are serviced with rate r» > p; and therefore the above relation holds for any time ¢ during the kth
round.

Case 2: The amount of packets serviced during the kth round for connection ¢ was less than or
equal to ¢;. Then, again for any time ¢ before these packets are serviced during the kth round,

Wi(to, t) > max(0, pi(tx — to) — ¢i(1 — @) — Df — ¢i + Df)
mewmw—m>2@+@@>
> max(0, p;(t — to — 2— @))
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Since ¢; < F,
F— 26
Wi(to,t) > max(0, pi(t — to — BF - 2¢)

)-

The case where connection ¢ may have transmitted less than ¢; bytes in the last round is covered

r

in the analysis if we assume that the deficit counter is reset to zero only after the end of the round.
Thus, the counter will be equal to ¢; minus the number of bytes that were transmitted during this
round, even if the queue was empty during the round.
Using Lemma 6 we can state the following corollary:
Corollary 6: Deficit Round Robin is an LR-scheduler and its latency is equal to (35 — 2¢;)/r.
In order to be complete we have to show that the latency that we calculated is as tight
as possible. It is sufficient to show an example that satisfies the above relation. Let us assume
that connection ¢ becomes backlogged at time 7. At this time, all other connections have a deficit
counter D; = ¢; — A¢;. Connection ¢ is the last that will be serviced in the round and thus it has
to wait for time at least equal to 3 ,;(¢;+ D;). Let us assume that the first packet of connection
has a size of A¢; and the second packet has a size of ¢;. Then, only the first packet will be serviced.
After that time, ¢; packets of each one of the other connections may be serviced before the second
packet is serviced. The time that this packet finishes service will be equal to

DG+ D) +D b5+ ¢+ Ady
i i#i

or equivalently

v
3Y b5 — 20— Y Ad; + A
j=1 j#i

If Ag; << F we can easily see that the bound is very close to 3F — 2¢;.

Weighted round robin scheduling can be considered as a special case of the Deficit Round
Robin algorithm. However, there is no requirement for the deficit counter, since ¢; is always an
integer multiple of packets (cells). The extension of the above proof to weighted-round-robin is
straightforward.

Lemma 12: Weighted-round-robin is an LR-server with latency

(F_ ¢2 ‘|’Lc)
" )

where L. is the size of an ATM cell.

Proof: In the worst case all cells of session ¢ will be transmitted in the end of the round. Let
ty,...l; denote the ending times of the k-th round after the beginning of a backlogged period at
time tg. Let t be a time during the k-th round after the beginning of a backlogged period for session
¢ that the j-th cell of session ¢ starts transmission. Then,

Wi(to,t):Wi(to,tk_l) + Wi(tk_l,t) (A.13)
—max(0, (k= 1)é;) + (j — 1) L. (A.14)
(A.15)
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But since session ¢ is continuously backlogged,

F
th1 —to < (k — 1)?

From Equations (A.15) and (A.16) and substituting for (k — 1),
Wi(to, t)>max(0, (tg—1 — to)%r) +(G-1)L.
>max (0, pi(tg-1 — to)) + (j — 1) Le
But we also know that at time ¢,

S et b+ jLe
t<tp_y + _n#F

-
F— ;1 .Lc
<ty 4 L Oitile
r
Or,
F—¢;+ 7L,
boy >t - L0t ile
r
Substituting in Equation (A.18),
F—¢i+jLc

Wi(to,t) > max(0, p;(t — to
-

N+ 0 -

1)L,

(A.16)

(A.19)

(A.20)

(A.21)

(A.22)

Since the minimum value of the right-hand side of the above inequality occurs when 7 = 1, we can

write
F— ¢2 + Lc

Wi(to,t) > max(0, p;(t — to —
-

)

(A.23)

This is essential the latency of a cell that arrives in the beginning of a round and is serviced at the

end of the round. It can be easily verified that this bound for the latency is tight.
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