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1. Introduction 11 IntroductionWe introduce a technique for the design of e�cient learning algorithms, that yields supe-rior (and in many cases essentially optimal) learning algorithms for a number of frequentlystudied concept classes in the most common formal model of on-line learning. In this on-linemodel [Lit88, Lit89a] learning proceeds on a trial by trial basis. In each trial the algorithmreceives an instance and is to produce a binary prediction for that instance. After pre-dicting, the algorithm receives the binary label for the instance w.r.t. the unknown targetconcept. A mistake occurs if the prediction and received label disagree. The mistake boundof an algorithm for a concept class is the worst-case number of mistakes that the algorithmcan make on any sequence of examples (instance/label pairs) that are labeled consistentlywith a target concept in the class. The goal in this model is to �nd e�cient algorithms withsmall mistake bounds for important concept classes.The idea of this paper is to reduce learning particular concept classes to the case oflearning disjunctions or more generally linear threshold functions over exponentially manyvariables. Then the algorithm Winnow [Lit88] is applied which learns for example k-literalmonotone disjunctions over v variables with a mistake bound of O(k + k log(v=k)). Thisbound is optimal to within a constant factor since the Vapnik-Chervonenkis dimension[VC71, BEHW89] of the class of k-literal monotone disjunctions is 
(k+k log(v=k)) [Lit88]and this dimension is always a lower bound for the optimal mistake bound.The key feature of Winnow is that its mistake bound grows logarithmically with thenumber of variables v (when the number of relevant variables k is small). In contrast thenumber of mistakes of the Perceptron algorithm [Ros58] grows linearly in the number ofvariables when learning the same concept class of k-literal monotone disjunctions [KW95].Both the Perceptron algorithm and Winnow actually learn the class of arbitrary linearthreshold functions and use linear threshold functions as hypotheses. Monotone disjunctionsare a very simple subclass of linear threshold functions: if the instances x are v-dimensionalBoolean vectors, i.e., x 2 f0; 1gv, then the k-literal disjunction xi1_xi2_: : :_xik correspondsto the linear threshold function w � x � �, where w is a coe�cient vector with wi1 = wi2 =� � � = wik = 1 and wj = 0 for j 62 fi1; : : : ; ikg, and the threshold � is 1.Good on-line learning algorithms should have mistake bounds that grow polynomiallywith the parameters of the concept class. That means that the logarithmic growth of themistake bound of Winnow in the number of variables allows us to use exponentially manyvariables. For example one can learn Boolean formulas in Disjunctive Normal Form (DNF)using Winnow. Let N be the number of variables of the DNF formula to be learned. Thenby introducing one new input variable for each of the possible 3N terms in the DNF formula(i.e. v = 3N ) and applying Winnow to the expanded v-dimensional instances one gets amistake bound of O(k(N � log k)) for k-term DNF formulas over N variables. For thisbound the tuning of the parameters of Winnow depends on the number of terms k in thetarget DNF formula. Note that this mistake bound is optimal to within a constant factorsince the VC dimension of k-term DNF is 
(k(N � log k)) [DK95]. Also the logarithm ofthe number of k-term DNF formulas is O(k(N � log k)).Winnow keeps one weight for each of the v variables and the cost for producing aprediction and for updating the weights after a mistake is O(1) per variable in the straight-forward implementation. This makes the above algorithm for learning DNF computationallyprohibitive. However the second key feature of our method is to speedup the computationtime. We have found cases where we do not need to explicitly maintain the v weights but



2 1. Introductionstill can compute the predictions of Winnow based on the exponentially many \virtual"weights in polynomial time. In the case of DNF such a speedup does not seem to bepossible. However for certain geometric concept classes large \blocks" of virtual variableshave the same weights and the speedup is obtained by using some clever data structures.The simplest case where a speedup is possible is the concept class BOXdn of d-dimensionalaxis-parallel boxes with discretized boundaries in Xn = f1; : : : ; ng which is de�ned asfollows: ( dYi=1fai; ai + 1; : : : ; big : ai; bi 2 Xn for i = 1; : : : ; d) :Thus a 2-dimensional box is a rectangle with its sides parallel to the x and y-axis such thatthe coordinates of the boundaries are integers in Xn.The complement C = Xdn � C of any concept C 2 BOXdn can be represented as theunion of the 2d halfspaces fx 2 Xdn : (x)i < aig for i = 1; : : : ; d and fx 2 Xdn : (x)i > big fori = 1; : : : ; d (where (x)i denotes the ith coordinate of the vector x). We design an e�cientlearning algorithm for learning the complement CT of an arbitrary rectangle CT 2 BOXdnby applying Winnow to a set of v = 2dn Boolean \virtual variables" u<i;c and u>i;c fori = 1; : : : ; d and c = 1; : : : ; n. These v new variables are the indicator functions of the 2dnhalfspaces H<i;c := fx 2 Xdn : (x)i < cg and H>i;c := fx 2 Xdn : (x)i > cg. By the precedingobservation any C for C 2 BOXdn can be represented as the disjunction of 2d of these newvariables. Hence we can exploit the advantage of Winnow which is able to achieve a goodmistake bound when \irrelevant variables abound" [Lit88].Note that it takes logn bits to describe one of the discretized boundaries. Thus areasonable goal is to aim for a computation time of the learning algorithm that is polynomialin d and logn. Hence we cannot a�ord to actually run Winnow for the previously describedset of v = 2dn variables whose number is exponential in the number of bits it takes toencode a boundary. Instead, we treat the v variables as \virtual" variables and neverexplicitly compute the v-dimensional weight vector. Using our data structures we keeptrack of various dynamically changing blocks of variables that currently have the sameweight. After every incorrect prediction the number of these blocks increases. Hence itis essential for this approach that the worst-case number of mistakes that Winnow makesgrows only logarithmically in the number v of virtual variables. This allows us to bound thenumber of blocks that ever have to be considered by a polynomial in d and logn and we canlearn the concept class BOXdn with a mistake bound of O(d logn). Our algorithm requiresO(d(logd + log log n)) time for computing a prediction and updating the data structurerepresenting the virtual weights after a mistake occurs.This algorithm for learning BOXdn is optimal in a very strong sense since it has beenshown that any algorithm for learning this class must make 
(d logn) mistakes even if thealgorithm is given unbounded computational resources [MT92]. Note that if the hypothesesof the on-line algorithm are required to lie in BOXdn, then the best known bounds forlearning this class are O(d2 logn) [CM92] and 
( d2logd logn) mistakes [Aue93].Our methods are particularly useful when we are trying to learn lower dimensionalsubboxes that don't span all d dimensions. Such situations naturally arise when the originalinstances are expanded to a large number of basis functions and the target boxes are de�nedin terms of few basis functions. Winnow was designed for applications \when irrelevantattributes abound" [Lit88]. We now can learn boxes when \irrelevant dimensions abound".



1. Introduction 3Using our methods we can also learn a number of more general geometric conceptclasses such as unions of up to k boxes: S�k BOXdn. The mistake bound and computationtime of this algorithm is polynomial if either the number of boxes k or the dimensiond is �xed. In this introduction we only state the results for unions of boxes when thedimension is �xed. This concept class has received considerable attention recently [CH95,FGMP94, BCH94, BGGM94]. We can learn S�k BOXdn with a mistake bound of O(kd logn)and O((kd logn)2d) time for computing a prediction and updating the hypothesis after amistake occurs. The best previous bounds [BGGM94] were O((kd logn)d) mistakes andtotal computation time. Note that algorithms with mistake or time bounds that have thedimension d in the exponent are of limited interest. The previous bounds have d in theexponent for both the mistake bound as well as the time bound. For our algorithm this onlyhappens for the time bound. Moreover we show that our mistake bound is optimal in thatit cannot improved by more than a constant factor. The remaining problem of improvingthe time bound so that it is polynomial in k and d is very ambitious since the concept classof k-term DNF formulas is a special case of S�k BOXdn, where n = 2, and this would solvea major open problem in Computational Learning Theory: Learning k-term DNF over dvariables such that the number of mistakes and the time for updating and predicting ispolynomial in k and d.Winnow is robust against noise when learning disjunctions. Our algorithms inherit thisnoise robustness of Winnow. By using balanced trees the algorithm for learning BOXdncan be made very e�cient. It is interesting to compare our algorithm with a previousalgorithm due to Auer which also learns the class BOXdn in the presence of noise [Aue93].The hypotheses of the latter algorithm are required to lie in target class BOXdn, whereasthe hypotheses of our algorithm usually lie outside of the target class. The additionalrequirement leads to larger mistake bounds (at least cubic in the dimension d for Auer'salgorithm). His algorithm also applies a simple on-line algorithm related to Winnow calledthe Weighted Majority algorithm [Lit95, LW94] and uses the same set of virtual variablesas our application of Winnow for learning BOXdn. Furthermore the virtual variables aremaintained as blocks as done in this paper.Other learning models: So far we have used the most common formal model for on-linelearning introduced by Nick Littlestone [Lit88] where the algorithm is to predict on unseenexamples with the goal of minimizing the number of prediction mistakes. This model caneasily be shown to be the same as Angluin's model for on-line learning with equivalencequeries [Ang88] where each mistake corresponds to a query that is answered negatively(we refer to [MT92] for a survey of these and related formal models for on-line learning).In Littlestone's model the hypotheses of the learner are usually not required to be in anyparticular form, whereas in Angluin's model one distinguishes between proper equivalencequeries (the hypotheses of the query must be in the target class) and arbitrary equivalencequeries (the hypotheses of the queries can be arbitrary). The hypotheses of the algorithmsdeveloped in this paper are e�ciently evaluatable but they are always more general than thetarget class and thus when translated to Angluin's model they correspond to generalizedequivalence queries.There are standard conversion methods [Lit89b] for translating an on-line algorithmwith a worst-case mistake bound to a learning algorithm for the PAC-model [Val84]: Ifthe mistake bound is M then the corresponding PAC-algorithm has sample complexityO((1=�)(M + log(1=�)). However when all examples are given to the learning algorithm atonce (as in the PAC-model), then there exists an alternative simple method for learning



4 2. Preliminariesconcept classes of the type that are considered in this paper. In these concept classes eachconcept may be viewed as a union of concepts from a simpler concept class and hencelearning can be reduced to learning disjunctions of concepts from these simpler conceptclasses. The standard PAC-algorithm for learning disjunctions is a simple greedy coveringalgorithm [BEHW89, Hau89, KV94]. This algorithm has the advantage that its hypothesisis a disjunction (but not of minimal size). The best sample size bound obtained for learningk-literal monotone disjunctions over v variables in the PAC model [KV94] with the greedyalgorithm is O((1=�)(k log(v) log(1=�) + 1=�). Winnow together with the conversion of[Lit89b] leads to the better bound of O((1=�)(k + k log(v=k) + 1=�). Thus it is feasiblethat our reductions to Winnow will also lead to better sample complexity bounds in thePAC model when the hypothesis class is allowed to be larger than the concept class to belearned. However the improvements would only eliminate log factors.Outline of the paper: After some preliminaries (Section 2) we describe the versions ofWinnow that we use in our reductions (Section 3). The second version allows noise in thedata. So an added bonus of our method is that our algorithms can tolerate noise. In Section5 we apply our methods to the case of learning lower dimensional boxes. The next sectioncontains our results for the case when the dimension is variable. We give algorithms forsingle boxes and unions of a constant number of boxes. In Section 6 we learn unions ofboxes when the dimension is �xed. In the last section we discuss how to apply our methodsto other learning problems.2 PreliminariesA learning problem is given by an instance domain X and a family of subsets C of thisdomain called concepts. Examples are f0; 1g-labeled instances. A concept C 2 C is a subsetof the domain as well as an indicator function: for an instance x 2 X , C(x) is one if x 2 cand zero otherwise. A sequence of examples is labeled consistently with a concept C if alllabels of the examples agree with the indicator function C.3 The Winnow algorithmsThe results of this paper use two versions of Littlestone's algorithm Winnow. If thenumber of variables is v, then the algorithms keep a v-dimensional weight vector of positiveweights. Furthermore the algorithms have two parameters: a threshold � 2 R and anupdate factor � > 1. For a given instance Boolean hx1; : : : ; xvi 2 f0; 1gv the algorithmspredict one i� vPi=1 xiwi � �. Thus the hypotheses of these learning algorithms are linearthreshold functions over f0; 1gv. For all our results we assume that all weights are initiallyequal to one.Assume now that the Winnow1 or Winnow2 make a mistake for some instancehx1; : : : ; xvi 2 f0; 1gv. If the algorithm predicts 0 and the received label is 1 then bothWinnow1 and Winnow2 replace all weights wi for which xi = 1 by the larger weight � �wi.If the prediction is 1 and the label 0 then Winnow1 replaces all weights wi for which xi = 1by 0, whereas Winnow2 replaces these weights by wi=�. Note that Winnow1 can wipeout weights completely whereas Winnow2 decreases weights more gradually. This makes itpossible that Winnow2 can handle noise.



3. The Winnow algorithms 5Both algorithms learn the concept class of k-literal monotone disjunction over v variableswith a small mistake bound. Such a disjunction is a f0; 1g�valued function on the domainf0; 1gv given by the formula xi1 _ : : :_ xik , where the indices ij lie in f1; : : : ; vg. Let Ck;vdenote the class of all such formulas. Since the indices are not required to be distinct, Ck;valso contains all disjunctions with less than k literals.We now state some mistake bounds for the Winnow algorithms [Lit88, Lit89a, Lit91].They were proven for certain tunings of the parameters � and �. In the bounds we givehere we let � depend on the size of the disjunction k. Only slightly worse bounds can beobtained when the tuning is not allowed to depend on k.An example hx; bi 2 f0; 1gv � f0; 1g contains z attribute errors w.r.t. a target conceptCT if z is the minimum number of attributes/bits of x that have to be changed so thatb = CT (x0) for the resulting vector x0. The number of attribute errors for a sequence ofexamples w.r.t. a target concept is simply the total number of such errors for all examplesof the sequence.(1.1) With � := 2 and � := v2k the algorithm Winnow1 makes at most 2k(1 + log v=k)mistakes on any sequence of examples labeled consistently with any target conceptfrom Ck;v.(1.2) With � := 1:5 and � := v=k the algorithm Winnow2 makes at most 4z + 8k +14k ln(v=k) mistakes on any sequence of examples which has at most z attributeerrors w.r.t. some target concept from Ck;v.So the bound for Winnow1 is better but Winnow2 can handle noise. A sequence hasq classi�cation errors w.r.t. a target concept if q labels have to be 
ipped so that thesequence is consistent with the target. It is easy to see that each classi�cation error canbe compensated by up to k attribute errors if the target CT is a k-literal disjunction.The theorems of this paper mostly deal with attribute errors. Analogous theorems forclassi�cation errors or a mixture of both can be obtained easily using the above observation.Note that the tunings for Winnow2 are independent of the amount of noise in the sequenceof examples. So noise simply causes more mistakes but the algorithm does not change.Note that if the number of attributes that are relevant for a target concept from Ck;v(there are at most k of them) is small then the mistake bounds for both versions of Winnowgrow only logarithmically in the total number of attributes v. This is essential for the resultsof this paper where we will reduce the given learning problems to applications of Winnowwith exponentially many attributes. The other property of the algorithms that we exploitin this approach is that they change their weights in a very uniform manner: all wi withxi = 1 are multiplied with the same factor which is either �, 1=� or 0.Note that the threshold � in the above tunings for Winnow1 and Winnow2 depend onk, the maximum size of the target disjunction. There are alternate tunings in which noinformation is used of the size of the target disjunction. For example � can be set to thenumber of variables v and if � is adjusted appropriately then the main change in the abovebounds is that the log(v=k) terms are replaced by log v terms and the constants before thesummands change [Lit88].One can also take the route of using more information for tuning the algorithms andlet the tunings of the parameters � and � depend on k as well as an upper bound Z ofthe number of attribute errors of the target disjunction [AW95]. In this case it is possibleto obtain mistake bounds of the type 2z + (2p2 + o(1))pAk ln(n=k), where z � Z is thenumber of attribute errors of some target disjunction from Ck;v. The constant of 2 in frontof the number of attribute errors z is now optimal and this constant drops to one in the



64. E�cient On-line Learning of Simple Geometrical Objects When Dimension is Variableexpected mistake bound of a probabilistic algorithm. For the sake of simplicity we did notstate the mistake bounds for the more sophisticated tunings in this paper.4 E�cient On-line Learning of Simple Geometrical Objects WhenDimension is VariableWe �rst consider learning the concept class BOXdn of axis-parallel rectangles over thedomain Xdn. As outlined in the introduction the complement of such boxes can be describedas the disjunction of 2dn variables that represent halfspaces which are parallel to some axis.It is our goal that the computation time of the learning algorithm is polynomial in d andlogn. Hence we cannot a�ord to actually run Winnow for the set of v = 2dn variables.Instead, we simulate Winnow by keeping track of various dynamically changing blocks ofvariables that currently have the same weight. After every incorrect prediction the numberof these blocks increases by 2d. Hence it is essential for this approach that the worst-case number of mistakes that Winnow makes grows only logarithmically in the number vof virtual variables. This allows us to bound the number of blocks that ever have to beconsidered by a polynomial in d and logn and we can prove the following result.Theorem 1: There exists an on-line learning algorithm for BOXdn that makes at mostO(d logn) mistakes on any sequence of examples labeled consistently with a target conceptfrom BOXdn. This algorithm uses at most O(d(logd+ log logn)) time for predicting and forupdating its data structures after a mistake.Before we prove this theorem, we would like to note that this learning algorithm isoptimal in a rather strong sense [CM92]: using a simple adversary argument one can showthat any on-line learning algorithm can be forced to make 
(d logn) mistakes on somesequence of examples labeled consistently with a target in BOXdn.For the sake of completeness and since similar methods are used for Theorem 7 wereprove this lower bound here. For a simple start consider the concept class of initialsegments on f1; : : : ; ng. Each initial segment is determined by its right endpoint. We claimthat an adversary can force any algorithm to do a binary search for the endpoint whichleads to lower bound of blog nc mistakes. We prove this bound as follows. For any set ofexamples the set of remaining consistent initial segments is characterized by an intervalof possible right endpoints. The adversary always chooses its next instance in the middleof the remaining interval and forces a mistake by choosing a label for the instance thatdisagrees with the algorithm's prediction. Originally the interval is of length n and eachexample cuts the length of the interval in half. At the end the length of the interval in oneand the adversary ends up with an initial segment that is consistent with all the examples.Similarly for the class of intervals on f1; : : : ; ng an adversary can force 2blog(n=2)cmistakes, blog(n=2)c for the left and right boundary. For the concept class BOXdn theinterval argument is repeated for each of the d dimensions. While forcing the two binarysearches in one dimension the other dimensions are set to a middle point. This gives anoverall lower bound for the class BOXdn of 2dblog(n=2)c mistakes.The mistake bound for a concept class is always one less than the maximum numberof equivalence queries required for learning the class [Lit88]. By a result from [AL94] itimmediately follows that even if membership queries are allowed then the total number ofequivalence and membership queries is still 
(d logn). If the hypotheses of the equivalencequeries must be boxes in BOXdn as well, then this lower bound can be raised to 
( d2logd logn)[Aue93].



4. E�cient On-line Learning of Simple Geometrical Objects When Dimension is Variable7Proof of Theorem 1: We now give a detailed description of the technique that wasoutlined at the beginning of this section. Obviously it su�ces to exhibit an e�cient on-linelearning algorithm for the complements C := Xdn � C of arbitrary rectangles C 2 BOXd(in order to turn this into an e�cient on-line learning algorithm for BOXdn one just has tonegate the output-bit for each of its predictions). Assume that the environment has �xedsome CT with CT 2 BOXdn . In order to predict for some arbitrary given y 2 f1; : : : ; ngdwhether y 2 CT one applies the following variable transformation y 7! u(y) 2 f0; 1gv, whichreduces this prediction problem to a prediction problem for a \virtual threshold gate" withv = 2dn Boolean input variables.For each halfspace H<i;c := fx 2 Xdn : (x)i < cg we consider an associated \virtualvariable" u<i;c, and for each halfspace H>i;c := fx 2 Xdn : (x)i > cg we consider an associated\virtual variable" u>i;c (i = 1; : : : ; d; c = 1; : : : ; n). For any y 2 f1; : : : ; ngd we set theassociated virtual variable u<i;c (resp. u>i;c) equal to 1 if y 2 H<i;c (resp. H>i;c), and else equalto 0. This de�nes the desired variable transformation f1; : : : ; ngd 3 y 7! u(y) 2 f0; 1gv forv = 2dn.One can then apply Winnow1 or Winnow2 to the resulting learning problem over f0; 1gv.For each CT 2 BOXdn and any y 2 f1; : : : ; ngd the set of virtual variables in u(y) withvalue 1 forms for each i 2 f1; : : : ; dg a �nal segment of the sequence u<i;1; : : : ; u<i;n (sincey 2 H<i;c ) y 2 H<i;c0 for all c0 > c), and dually an initial segment of the sequenceu>i;1; : : : ; u>i;u. Assume that CT = dQi=1fai; : : : ; big with 1 � ai � bi � n for i = 1; : : : ; d. ThenCT = dSi=1H<i;ai [ dSi=1H>i;bi , and one can therefore reduce the problem of on-line learning CTto the problem of on-line learning of the disjunction dWi=1 u<i;ai _ dWi=1 u>i;bi over the v = 2dnvariables u<i;c; u>i;c, for i = 1; : : : ; d and c = 1; : : : ; n. For this reduction one simply takeseach prediction for \u(y) 2 dWi=1u<i;ai _ dWi=1 u>i;bi ?" of Winnow and uses it as a prediction for\y 2 CT ?". This prediction for \y 2 CT ?" is incorrect if and only if the prediction for\u(y) 2 dWi=1 u<i;ai _ dWi=1 u>i;bi ?" is incorrect. Hence the worst-case number of mistakes of theresulting on-line learning algorithm for the complements CT of rectangles CT 2 BOXdn isbounded by the worst-case number of mistakes of Winnow for learning a disjunction of 2dout of 2dn variables.If one applies Winnow1 with � = 2 and � = v=4d = n=2, then one obtains a mistakebound 4d(1+ logn) for learning BOXdn.The computation time of our learning algorithm for this simulation of Winnow1 (re-spectively Winnow2) can be estimated as follows. After s mistakes each group of variablesu<i;1; : : : ; u<i;n (resp. u>i;1; : : : ; u>i;n) consists of up to s + 1 \blocks" u<i;a; u<i;k+1; : : : ; u<i;b (re-spectively u>i;a; u>i;k+1; : : : ; u>i;b) of variables that currently all have the same weight. Thisstructure arises from the fact that whenever the weight of any of these variables is changed,then all weights of a �nal or an initial segment of this group of n variables are changed inthe same way (i.e. multiplied with the same factor). Of course it su�ces to store for each ofthe 2d groups of n virtual variables just the endpoints of these up to s+ 1 blocks, togetherwith the current weight of the associated virtual variables.



84. E�cient On-line Learning of Simple Geometrical Objects When Dimension is VariableBy the preceding analysis the total number of mistakes s is O(d logn). Hence withoutuse of a more sophisticated data structure at most O(d2 � logn) computation steps (on aRAM) are needed to decide for any given y 2 f1; : : : ; ngd whether \y 2 H ?" for the currenthypothesis H , or to update the hypothesis after a mistake. The improved time bound ofO(d(logd+ log logn)) which uses balanced trees is given in the appendix.By using Winnow2 instead of Winnow1 it is easy to generalize the above theorem tothe noisy case. (See [BGGM94] for earlier results on learning similar geometric objects inthe presence of noise.) For this purpose the notion of attribute error is generalized in thestraightforward way: An example hx; bi 2 Xdn � f0; 1g contains z attribute errors w.r.t. atarget box CT in BOXdn if z is the minimum number of conponents of x that have to bechanged so that b = CT (x0) for the resulting vector x0. As before, the number of attributeerrors for a sequence of examples w.r.t. a target concept is simply the total number of sucherrors for all examples of the sequence.Theorem 2: There exists an on-line learning algorithm that makes at most O(z + d logn)mistakes on any sequence that has at most z attribute errors w.r.t. a target concept inBOXdn. This algorithm requires O(d log(z+d logn)) time for predicting and for updating itsdata structures after a mistake occurs.Proof: We proceed exactly as in the proof of Theorem 1, except that we apply Winnow2instead of Winnow1 to the virtual variables. As indicated in Section 3, Winnow2 toleratesattribute errors in the examples. Hence Theorem 2 follows with the help of the followingobservation immediately from (1.2) and the proof of Theorem 1. Each single attribute errorin an example hx; bi that occurs in a learning process for some target concept CT 2 BOXdngives rise to at most one error in a relevant attribute for the transformed learning process,where one learns a disjunction of 2d of the v = 2dn virtual variables. Note however that itmay give rise to a rather large number of errors in irrelevant attributes of the transformedsequence of examples. The time bound for predicting and updating is again O(d log r),where r is the number of mistakes done so far. The argument is given in the appendix.The above mistake bound grows linearly in the number of attribute errors. The boundimmediately leads to a similar theorem for classi�cation errors, since q classi�cation errorscorrespond to at most k q attribute errors when the concept class is k-literal monotonedisjunctions. It is well-known that for classi�cation errors there exists for Winnow a trade-o� between noise-tolerance and computation time: the factor k before q can be decreasedat the expense of a larger computation time. Since this trade-o� requires a transformationof the input variables for Winnow, it is not a-priori clear that a similar result (with a nottoo drastic increase in the computation time) can also be shown for the learning algorithmused for Theorem 2. However the following result shows that our new learning algorithmfor BOXdn does in fact inherit this attractive feature of Winnow.Theorem 3: Let R 2N be some arbitrary parameter. Then there exists an on-line learningalgorithm for BOXdn that makes at most O(d=R+d logn+q d=R) mistakes on any sequenceof examples that has � q classi�cation errors w.r.t. some target in BOXdn. This learningalgorithm requires O(R(d=R + d logn + q d=R)R) time for predicting and updating itshypothesis after a mistake.Proof: Consider the 2d groups of virtual variables that were discussed in the proof ofTheorem 1. We partition these 2d groups into g := d2dR e classes B1; : : : ; Bg that eachconsist of R or less groups of virtual variables. For the sake of simplicity we assume in thefollowing that each of these classes consists of exactly R groups of virtual variables. Wethen create new \virtual variables" of the types B1; : : : ; Bg. For each Bj(j 2 f1; : : : ; gg)



4. E�cient On-line Learning of Simple Geometrical Objects When Dimension is Variable9the variables of type Bj represent arbitrary disjunctions of R variables with one arbitraryvariable chosen from each of the R groups of virtual variables that belong to class Bj . Hencethere are nR variables of type Bj .Thus we have created altogether g nR new virtual variables, and each complement of atarget concept CT 2 BOXdn can be represented as a disjunction of g of these new variables.We then apply Winnow2 with � := nR and � := 3=2 in order to learn arbitrary complementsof concepts from BOXdn with regard to this new representation. Each classi�cation error iscompensated by g attribute errors. Thus according to (1.2) we have that for any sequenceof examples which has at most q classi�cation errors w.r.t. a target in BOXdn the sketchedalgorithm makes at most 8g + 14gR lnn + 4gq mistakes.In order to compute each prediction of Winnow2 in an e�cient manner, one exploitsthat for each of the g types Bj of variables, the variables can be identi�ed with points inthe R-dimensional space f1; : : : ; ngR. Further whenever a mistake occurs for some examplehy; bi, then the set of variables of type Bj whose weight is increased (respectively decreased),forms a union of R orthogonal halfspaces. Hence after r mistakes the nR variables of typeBj (viewed as points in f1; : : : ; ngR) have been partitioned by these unions of halfspacesinto up to (r + 1)R axis-parallel \rectangles" of variables so that all variables in the same\rectangle" have the same current weight.It is convenient to keep for each type Bj of virtual variables the records for theserectangles in lexicographical order with regard to their \leftmost" corner point, and toattach the current common weight of the variables in this rectangle to each of these records.In this way each prediction of Winnow2 and each update of this data structure requiresafter r mistakes at most O(R(r+ 1)R) computation time.The preceding results can be extended to learning the class of k-fold unions of boxesS�k BOXdn , which can we expressed as follows:fB1 [ : : :[Bk0 : k0 � k and B1; : : : ; Bk0 2 BOXdng:The following theorem shows that unions of k = O(1) arbitrary boxes from BOXdn canbe learned by applying Winnow to a virtual threshold gate so that the complexity boundsremain polynomial in d and logn.Theorem 4: For any constant k, there is a noise-robust on-line learning algorithm thatmakes at most O(dk logn + z) mistakes on any sequence of examples which has up toz attribute errors w.r.t. some concept in S�k BOXdn. This algorithm uses at mostO(dk(dk log n+ z)k) time for predicting and for updating its hypothesis after a mistake.Proof: We �rst consider the 2dn axis-parallel halfspaces H<i;c and H>i;c (for i = 1; : : : ; d; c =1; : : : ; n) from the proof of Theorem 1. Any concept C 2 S�k BOXdn can obviously berepresented as the 2d-fold union of k intersections of complements of such halfspaces. Thatis any concept is in the form d\i=1H<i;c1(i) \ d\i=1H>i;~c1(i)! [ : : :[  d\i=1H<i;ck(i) \ d\i=1H>i;~ck(i)!with suitable values cj(i); ~cj(i) 2 f1; : : : ; ng. This implies that the complement of anyC 2 S�k BOXdn can be represented in the form(2d)k[s=1 k\j=1H(j; s);



10 5. Learning Lower-Dimensional Boxeswhere each H(j; s) is a halfspace of the form H<i;c or H>i;c0 with certain i 2 f1; : : : ; dg andc; c0 2 f1; : : : ; ng. Hence we create for each intersection kTj=1H(j) of k halfspaces of thisform a new virtual variable u, which receives the value 1 in the variable transformationf1; : : : ; ngd 3 y 7! u(y) 2 f0; 1g(2dn)k if and only if y 2 kTj=1H(j). This yields (2dn)k virtualvariables.Analogously as in the proof of Theorem 1 one reduces in this way the learning of thecomplement of an arbitrary target concept CT 2 S�k BOXdn to the learning of a disjunctionof at most (2d)k of these (2dn)k virtual variables. One applies Winnow2 to this new learningproblem for a \virtual threshold gate" of size (2dn)k. The desired mistake bound followsdirectly from (1.2).For the analysis of the computation time of the resulting learning algorithm forS�k BOXdn we observe that the (2dn)k virtual variables naturally fall into (2d)k sets ofvariables of called types. We say here that two virtual variables have the same type if theyrepresent two intersections kTj=1H(j) and kTj=1 ~H(j) of k halfspaces using the same k-tuple ofdimensions and the same k-tuple of orientations of the halfspaces. In symbols this meansthat for each j 2 f1; : : : ; kg there exist a common dimension i 2 f1; : : : ; dg, a commonorientation o 2 f<;>g, and integers c; ~c 2 f1; : : : ; ng such that H(j) = Hoi;c and ~H(j) = Hoi;~c.After s mistakes the virtual variables of each type are partitioned into up to (s + 1)kk-dimensional \rectangles" of variables that currently have the same weight. The sum ofthe weights of all variables in any such k-dimensional \rectangle" can be computed bycomputing in k = O(1) computation steps its \volume", and by multiplying this volumewith the common weight of these variables. According to (1.2), Winnow2 makes at mosts = O(dk + dk log n+ z) mistakes on any sequence of examples which has up to z attributeerrors w.r.t. some concept in S�k BOXdn. Thus the time for predicting and updating theweights after a mistake is O((2d)k(s+ 1)k) which is O(dk(dk log n+ z)k).5 Learning Lower-Dimensional BoxesWinnow was designed for learning disjunctions when the size of the disjunction is smallcompared to the number of variables. Similarly, one might want to learn lower dimensionalboxed (i.e. boxes that depend on only few variables). This is particularly useful when theoriginal instances are expanded to a large number d of basis functions and the dimension ofthe target boxes are much smaller than d (only a small number of the basis functions areused in the target concept).This leads to the following de�nition and theorem. For u � d a u-dimensional subboxof BOXdn is given by u dimensions ij 2 f1; : : : ; dg and two boundaries aij ; bij 2 Xn perdimension ij . The corresponding box is de�ned asnx 2 Xdn : 81 � j � u : aij � xij � bijgLet BOXu;dn denote the set of all such boxes.Theorem 5: There exists an on-line learning algorithm that makes at most O(z+u log(dn=u))mistakes on any sequence that has at most z attribute errors w.r.t. a target concept inBOXu;dn . This algorithm requires O(d log(z + u log(dn=u))) time for predicting and for up-dating its data structures after a mistake occurs.



6. E�cient On-line Learning of Simple Geometrical Objects When Dimension is Fixed 11Proof: As in Theorem 2 use Winnow2 with 2dn variables. Complements of Boxes inBOXu;dn become disjunctions of size 2u over these variables.One of the most basic applications of our method of reducing learning problems todisjunctions over exponentially many virtual variables leads a learning algorithm for thefollowing simple generalization of k out v literal monotone boolean disjunctions. Here thebase variables are non-boolean and lie in the domain Xn. The generalized disjunctions aremappings from Xvn to f0; 1g given by the formulas of the form(xi1 � a1) _ : : :_ (xik � ak);where the indices ij lie in f1; : : : ; vg and the boundaries aj lie in Xn. Let LIN k;v the classof all such formulas.Theorem 6: There exists an on-line learning algorithm that makes at most O(z+u log(dn=u))mistakes on any sequence that has at most z attribute errors w.r.t. a target concept inLIN k;v. This algorithm requires O(d log(z + u log(dn=u))) time for predicting and for up-dating its data structures after a mistake occurs.Proof: Note that concepts in LIN k;v are complements of boxes which have the origin asone corner. So we only need to use one variable per dimension v and boundary in Xn.The concepts become k literal monotone disjunctions over the vn variables. In this case nocomplementation of the concepts is necessary. Again we simulate Winnow2 with the usualdata structures.6 E�cient On-line Learning of Simple Geometrical Objects WhenDimension is FixedWe show that with the same method as in the preceding section one can also designan on-line learning algorithm for S�k BOXdn whose complexity bounds are polynomial in kand logn provided that d is a constant. We assume that n � 2k, so that the bounds areeasy to state.Theorem 7: For any constant dimension d, there exists an on-line learning algorithm forS�k BOXdn that makes at most O(kd logn + z) mistakes on any sequence of examples forwhich there is a concept in S�k BOXdn with at most z attribute errors. The algorithm usesO((kd lnn+ z))2d) time for predicting and for updating its hypothesis after a mistake.Also any algorithm regardless of computational resources for learning S�k BOXdn makesat least O(kd logn) mistakes on some sequence of examples consistent with a concept inS�k BOXdn.Proof: For every point p := ha1; : : : ; ad; b1; : : : ; bdi 2 f1; : : : ; ng2d we introduce a virtualvariable up. For any y 2 f1; : : : ; ngd we assign to this virtual variable in the transformationf1; : : : ; ngd 3 y 7! u(y) 2 f1; : : : ; ng2dthe value up(y) = 1 if and only if y 2 dQi=1fai; : : : ; big.Obviously any target concept CT 2 S�k BOXdn can be represented as a disjunction ofup to k of the n2d virtual variables. According to (1.2) at most O(k + k log(n2d=k) + z)mistakes can occur when one applies Winnow2 to the transformed learning problem. Thismistake bound is O(kd logn + z) for n � 2k.



12 7. ConclusionsFurthermore if the resulting learning algorithm for S�k BOXdn makes an incorrectprediction for some example y 2 f1; : : : ; ngd, then the set of virtual variables up withup(y) = 1 forms a \rectangle" in f1; : : : ; ng2d: this set consist of those virtual variablesup that are associated with vectors p = ha1; : : : ; ad; b1; : : : ; bdi 2 f1; : : : ; ng2d such thaty 2 dQi=1fai; : : : ; big, i.e. ai � (y)i � bi for i = 1; : : : ; d. Hence after r mistakes thevirtual variables are partitioned into � (r+1)2d rectangles of equal weight over the domainf1; : : : ; ng2d.It is easy to predict in time linear in the current number of rectangles. With somesimple data structures one can also update the list of rectangles in time linear in thenumber of rectangles that exist after the update is completed. (Note that the dimension ofthe rectangles is assumed to be constant.)The lower bound is proven using an adversary argument that is similar to the oneused for BOXdn (See comments after the statement of Theorem 1). For the concept classS�k BOXdn the adversary �rst forces 2kblog(n=2k)c mistakes to �x the k intervals of theboxes in the �rst dimension. This is done by forcing 2k binary searches over ranges of sizebn=2kc for each of the 2k boundaries in the �rst dimension. The �rst box's interval liesin f1; � � � ; 2bn=2kcg, the interval of the second box in f2bn=2kc + 1; � � � ; 4bn=2kcg; and soforth. Since the k rectangles are already disjoint in the �rst dimension, the searches in theremaining dimensions can start with a range of size n=2. In total the adversary can forceat least 2k � blog n2k c+ 2(d� 1)kblog n2 c mistakes, which is 
(kd logn) when n � 2k.7 ConclusionsThere are a number of algorithms that can learn k-literal monotone disjunctions withroughly the same mistake bound as Winnow: the Balanced algorithm [Lit89a] and theWeighted Majority algorithm [Lit95, LW94]. All of them maintain a linear thresholdfunction and do multiplicative weight updates. It is likely that the results of this papercan also be obtained if we use these other algorithms for the reductions of this paper inplace of Winnow. The Weighted Majority algorithm is in some sense the simplest one sinceits weights are only multiplied by one factor instead of two. We chose Winnow since for thepurpose of learning disjunctions it is the most studied of the group.Winnow is robust against malicious attribute noise and our reductions preserve theseproperties. Slight modi�cations of Winnow have shown to give good mistake bounds inrelation to the best shifting disjunction [AW95]. By combining these recent results with the�ndings of this paper one immediately obtains an algorithm with a small mistake boundcompared to the best shifting box.Mistake bounds for Winnow have also been developed for j-of-k threshold functions.Such functions are one when at least j out of a subset k of the v literals are one. Disjunctionsare 1-of-k threshold functions. Using these additional capabilities of Winnow we get forexample an algorithm for learning the following concept class with a good mistake bound:A concept is de�ned by k boxes in BOXdn and an instance in Xdn is in the concept if it liesin at least j of the k boxes. Using the reduction of Theorem 7, Winnow2 when suitablytuned makes at most O(j2 + jkd logn+ z) mistakes on any sequence of examples that hasat most z attribute errors w.r.t. one of such concept. The algorithm is again noise robustand its time bound for predicting and updating its hypothesis remains O(r2d), where r iscurrent number of mistakes.
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16 Referenceslength. The internal nodes � of a 2 - 3 tree are labeled with the largest number L[�] bywhich any leaf below the leftmost child of � is labeled, and with the largest number M [�] bywhich any leaf below the second child of � is labeled. Furthermore the numbers by whichthe leaves are labeled are increasing from left to right.For each of the 2d groups of n virtual variables we employ a 2 - 3 tree that has additionallabels at each node. The leafs of the tree for a group are labeled in increasing order from leftto right by the left endpoints of the previously considered \blocks" of variables, togetherwith the current weight shared by the variables of the block and the length of the block.We would like to label each internal node � of this 2 - 3 tree with the sum of weights ofthe set V [�] of all variables that belong to blocks whose left endpoints occur as a label ofsome leaf below �. However if we would do this, then it would become too time consumingto update all of these labels when the weights of all variables in a �nal (or initial) segmentof this group of n variables are multiplied with by the factor �. Therefore we label insteadthe internal nodes � of the 2 - 3 trees with two numbers: a factor and a preliminary sum ofcurrent weights of the variables in V [�]. The actual current sum of weights of the variablesin V [�] can be easily computed from these labels of internal nodes in the 2 - 3 tree bymultiplying the contents of the factor labels of all nodes on the path starting at � to theroot of the tree and by multiplying the \preliminary sum" of � by the resulting number.With this data structure one can compute the following very e�ciently for any of the 2dgroups of virtual variables: the sum of current weights for all variables in that group whoseindex is above (respectively below) i0 for any given i0 2 f1; : : : ; ng. The time neededfor this operation is proportional to the depth of the tree, hence one needs only O(log r)time. Therefore each prediction of the learning algorithm requires altogether only O(d log r)computation steps on a RAM.In order to update the 2 - 3 trees after a mistake, one has to multiply for each of the2d groups of variables the weights of an initial or �nal segment of these variables with acommon factor. Furthermore if the left endpoint e of that segment does not coincide withone of the endpoints of blocks that occur as labels of the respective 2 - 3 tree, then one hasto create a new leaf for this endpoint e, restructure the tree so that it becomes again a 2 -3 tree (this is necessary if the node immediately above the new leaf has already 3 children),and update the labels of nodes in this tree in accordance with the changed weights of aninitial or �nal segment of variables in this group.It is rather easy to see that for each of the 2d di�erent 2 - 3 trees the described updatingoperation requires only time proportional to the depth of the tree (and hence is bounded byO(log r)). If necessary, one �rst adds a new leaf corresponding to the new endpoint of aninterval of variables in that group (use for example the procedure SEARCH of algorithm 4.4in [AHU74]). Simultaneously one can move all \factors" that occur in the labels of nodeson the path from the root to the new leaf downwards, and compute for all internal nodes �that lie on or immediately below this path the actual sum of current weights of all variablesin V [�]. One updates in an analogous manner the labels of all nodes � on the path from theroot to the next leaf to the left of the new leaf (note that in general the set V [�] changesfor these nodes � because the interval in the leaf to the left of the new leaf is shortened).Finally one restructures the resulting tree into a 2 - 3 tree (in the same way as described in[AHU74]). For that, the structure of the tree is changed only along the path from the rootto the new leaf. For these internal nodes � we have already computed the actual currentsum of weights of all variables in V [�], and hence we can compute appropriate new labels for



References 17all nodes in the new 2 - 3 tree with a total number of computation steps that is proportionalto the depth of the tree.


