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ABSTRACT

We reduce learning simple geometric concept classes to learning disjunctions over
exponentially many variables. We then apply an on-line algorithm called Winnow
whose number of prediction mistakes grows only logarithmically with the number of
variables. The hypotheses of Winnow are linear threshold functions with one weight
per variable. We find ways to keep the exponentially many weights of Winnow
implicitly so that the time for the algorithm to compute a prediction and update its
“virtual” weights is polynomial.

Our method can be used to learn d-dimensional axis-parallel boxes when d is
variable, and unions of d-dimensional axis-parallel boxes when d is constant. The
worst-case number of mistakes of our algorithms for the above classes is optimal to
within a constant factor, and our algorithms inherit the noise robustness of Winnow.

We think that other on-line algorithms with multiplicative weight updates whose
loss bounds grow logarithmically with the dimension are amenable to our methods.
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1 Introduction

We introduce a technique for the design of efficient learning algorithms, that yields supe-
rior (and in many cases essentially optimal) learning algorithms for a number of frequently
studied concept classes in the most common formal model of on-line learning. In this on-line
model [Lit88, Lit89a] learning proceeds on a trial by trial basis. In each trial the algorithm
receives an instance and is to produce a binary prediction for that instance. After pre-
dicting, the algorithm receives the binary label for the instance w.r.t. the unknown target
concept. A mistake occurs if the prediction and received label disagree. The mistake bound
of an algorithm for a concept class is the worst-case number of mistakes that the algorithm
can make on any sequence of examples (instance/label pairs) that are labeled consistently
with a target concept in the class. The goal in this model is to find efficient algorithms with
small mistake bounds for important concept classes.

The idea of this paper is to reduce learning particular concept classes to the case of
learning disjunctions or more generally linear threshold functions over exponentially many
variables. Then the algorithm Winnow [Lit88] is applied which learns for example k-literal
monotone disjunctions over v variables with a mistake bound of O(k + klog(v/k)). This
bound is optimal to within a constant factor since the Vapnik-Chervonenkis dimension
[VCT71, BEHWS89] of the class of k-literal monotone disjunctions is Q(k+ klog(v/k)) [Lit88]

and this dimension is always a lower bound for the optimal mistake bound.

The key feature of Winnow is that its mistake bound grows logarithmically with the
number of variables v (when the number of relevant variables & is small). In contrast the
number of mistakes of the Perceptron algorithm [Ros58] grows linearly in the number of
variables when learning the same concept class of k-literal monotone disjunctions [KW95].
Both the Perceptron algorithm and Winnow actually learn the class of arbitrary linear
threshold functions and use linear threshold functions as hypotheses. Monotone disjunctions
are a very simple subclass of linear threshold functions: if the instances z are v-dimensional
Boolean vectors, i.e., 2 € {0,1}", then the k-literal disjunction z;, V&;, V...V, corresponds
to the linear threshold function w -z > 0, where w is a coefficient vector with w;, = w;, =
coo=w;, = 1and w; =0 for j & {¢1,..., i}, and the threshold § is 1.

Good on-line learning algorithms should have mistake bounds that grow polynomially
with the parameters of the concept class. That means that the logarithmic growth of the
mistake bound of Winnow in the number of variables allows us to use exponentially many
variables. For example one can learn Boolean formulas in Disjunctive Normal Form (DNF')
using Winnow. Let NV be the number of variables of the DNF formula to be learned. Then
by introducing one new input variable for each of the possible 3V terms in the DNF formula
(i.e. v = 3Y) and applying Winnow to the expanded v-dimensional instances one gets a
mistake bound of O(k(N — logk)) for k-term DNF formulas over N variables. For this
bound the tuning of the parameters of Winnow depends on the number of terms £ in the
target DN formula. Note that this mistake bound is optimal to within a constant factor
since the VC dimension of k-term DNF is Q(k(N —logk)) [DK95]. Also the logarithm of
the number of k-term DNF formulas is O(k(N — log k)).

Winnow keeps one weight for each of the » variables and the cost for producing a
prediction and for updating the weights after a mistake is O(1) per variable in the straight-
forward implementation. This makes the above algorithm for learning DNF computationally
prohibitive. However the second key feature of our method is to speedup the computation
time. We have found cases where we do not need to explicitly maintain the v weights but
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still can compute the predictions of Winnow based on the exponentially many “virtual”
weights in polynomial time. In the case of DNF such a speedup does not seem to be
possible. However for certain geometric concept classes large “blocks” of virtual variables
have the same weights and the speedup is obtained by using some clever data structures.

The simplest case where a speedup is possible is the concept class BOX% of d-dimensional
axis-parallel boxes with discretized boundaries in X, = {1,...,n} which is defined as
follows:

d
{H{ai,ai—l—l,...,bi}:ai,biEXn for ¢ = 1,...,d}.

=1

Thus a 2-dimensional box is a rectangle with its sides parallel to the 2 and y-axis such that
the coordinates of the boundaries are integers in X,.

The complement ' = X?— C of any concept C € BOX% can be represented as the
union of the 2d halfspaces {z € X7 : (2); < a;} fori=1,...,dand {z € X2 : (2); > b;} for
it =1,...,d (where (z); denotes the ith coordinate of the vector z). We design an efficient
learning algorithm for learning the complement C'r of an arbitrary rectangle C7 € BOX?
by applying Winnow to a set of v = 2dn Boolean “virtual variables” ufc
1=1,...,dand ¢ = 1,...,n. These v new variables are the indicator functions of the 2dn
halfspaces HS, := {z € Xd:(z); < ¢} and H?. :={z ¢ X2 :(z); > ¢}. By the preceding
observation any C' for C' € BOXY can be represented as the disjunction of 2d of these new
variables. Hence we can exploit the advantage of Winnow which is able to achieve a good

mistake bound when “irrelevant variables abound” [Lit88].

and u?. for

Note that it takes logn bits to describe one of the discretized boundaries. Thus a
reasonable goal is to aim for a computation time of the learning algorithm that is polynomial
in d and logn. Hence we cannot afford to actually run Winnow for the previously described
set of v = 2dn variables whose number is exponential in the number of bits it takes to
encode a boundary. Instead, we treat the v variables as “virtual” variables and never
explicitly compute the v-dimensional weight vector. Using our data structures we keep
track of various dynamically changing blocks of variables that currently have the same
weight. After every incorrect prediction the number of these blocks increases. Hence it
is essential for this approach that the worst-case number of mistakes that Winnow makes
grows only logarithmically in the number v of virtual variables. This allows us to bound the
number of blocks that ever have to be considered by a polynomial in d and logn and we can
learn the concept class BOX? with a mistake bound of O(dlogn). Our algorithm requires
O(d(logd + loglogn)) time for computing a prediction and updating the data structure
representing the virtual weights after a mistake occurs.

This algorithm for learning BOX% is optimal in a very strong sense since it has been
shown that any algorithm for learning this class must make ©(dlogn) mistakes even if the
algorithm is given unbounded computational resources [MT92]. Note that if the hypotheses
of the on-line algorithm are required to lie in BOX%, then the best known bounds for

learning this class are O(d?logn) [CM92] and Q(%log n) mistakes [Aue93].

Our methods are particularly useful when we are trying to learn lower dimensional
subboxes that don’t span all d dimensions. Such situations naturally arise when the original
instances are expanded to a large number of basis functions and the target boxes are defined
in terms of few basis functions. Winnow was designed for applications “when irrelevant
attributes abound” [Lit88]. We now can learn boxes when “irrelevant dimensions abound”.
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Using our methods we can also learn a number of more general geometric concept
classes such as unions of up to k boxes: |Jo, BOX?. The mistake bound and computation
time of this algorithm is polynomial if either the number of boxes k or the dimension
d is fixed. In this introduction we only state the results for unions of boxes when the
dimension is fixed. This concept class has received considerable attention recently [CH95,
FGMP94, BCH94, BGGM94]. We can learn |J), BOX? with a mistake bound of O(kdlogn)
and O((kdlogn)??) time for computing a prediction and updating the hypothesis after a
mistake occurs. The best previous bounds [BGGM94] were O((kdlogn)?) mistakes and
total computation time. Note that algorithms with mistake or time bounds that have the
dimension d in the exponent are of limited interest. The previous bounds have d in the
exponent for both the mistake bound as well as the time bound. For our algorithm this only
happens for the time bound. Moreover we show that our mistake bound is optimal in that
it cannot improved by more than a constant factor. The remaining problem of improving
the time bound so that it is polynomial in k& and d is very ambitious since the concept class
of k-term DNF formulas is a special case of J<, BOX%, where n = 2, and this would solve
a major open problem in Computational Learning Theory: Learning k-term DNF over d
variables such that the number of mistakes and the time for updating and predicting is
polynomial in k& and d.

Winnow is robust against noise when learning disjunctions. Our algorithms inherit this
noise robustness of Winnow. By using balanced trees the algorithm for learning BOX?
can be made very efficient. It is interesting to compare our algorithm with a previous
algorithm due to Auer which also learns the class BOX? in the presence of noise [Aue93].
The hypotheses of the latter algorithm are required to lie in target class BOX%, whereas
the hypotheses of our algorithm usually lie outside of the target class. The additional
requirement leads to larger mistake bounds (at least cubic in the dimension d for Auer’s
algorithm). His algorithm also applies a simple on-line algorithm related to Winnow called
the Weighted Majority algorithm [Lit95, LW94] and uses the same set of virtual variables
as our application of Winnow for learning BOX%. Furthermore the virtual variables are

maintained as blocks as done in this paper.

Other learning models: So far we have used the most common formal model for on-line
learning introduced by Nick Littlestone [Lit88] where the algorithm is to predict on unseen
examples with the goal of minimizing the number of prediction mistakes. This model can
easily be shown to be the same as Angluin’s model for on-line learning with equivalence
queries [Ang88] where each mistake corresponds to a query that is answered negatively
(we refer to [MT92] for a survey of these and related formal models for on-line learning).
In Littlestone’s model the hypotheses of the learner are usually not required to be in any
particular form, whereas in Angluin’s model one distinguishes between proper equivalence
queries (the hypotheses of the query must be in the target class) and arbitrary equivalence
queries (the hypotheses of the queries can be arbitrary). The hypotheses of the algorithms
developed in this paper are efficiently evaluatable but they are always more general than the
target class and thus when translated to Angluin’s model they correspond to generalized
equivalence queries.

There are standard conversion methods [Lit89b] for translating an on-line algorithm
with a worst-case mistake bound to a learning algorithm for the PAC-model [Val84]: If
the mistake bound is M then the corresponding PAC-algorithm has sample complexity
O((1/e)(M +log(1/6)). However when all examples are given to the learning algorithm at
once (as in the PAC-model), then there exists an alternative simple method for learning
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concept classes of the type that are considered in this paper. In these concept classes each
concept may be viewed as a union of concepts from a simpler concept class and hence
learning can be reduced to learning disjunctions of concepts from these simpler concept
classes. The standard PAC-algorithm for learning disjunctions is a simple greedy covering
algorithm [BEHWS89, Hau89, KV94]. This algorithm has the advantage that its hypothesis
is a disjunction (but not of minimal size). The best sample size bound obtained for learning
k-literal monotone disjunctions over v variables in the PAC model [KV94] with the greedy
algorithm is O((1/¢)(klog(v)log(1/e) + 1/6). Winnow together with the conversion of
[Lit89b] leads to the better bound of O((1/¢)(k 4 klog(v/k) 4+ 1/6). Thus it is feasible
that our reductions to Winnow will also lead to better sample complexity bounds in the
PAC model when the hypothesis class is allowed to be larger than the concept class to be
learned. However the improvements would only eliminate log factors.

Outline of the paper: After some preliminaries (Section 2) we describe the versions of
Winnow that we use in our reductions (Section 3). The second version allows noise in the
data. So an added bonus of our method is that our algorithms can tolerate noise. In Section
5 we apply our methods to the case of learning lower dimensional boxes. The next section
contains our results for the case when the dimension is variable. We give algorithms for
single boxes and unions of a constant number of boxes. In Section 6 we learn unions of
boxes when the dimension is fixed. In the last section we discuss how to apply our methods
to other learning problems.

2 Preliminaries

A learning problem is given by an instance domain X and a family of subsets C of this
domain called concepts. Fzamples are {0, 1}-labeled instances. A concept C' € C is a subset
of the domain as well as an indicator function: for an instance z € X, C(x) is one if © € ¢
and zero otherwise. A sequence of examples is labeled consistently with a concept C' if all
labels of the examples agree with the indicator function C'.

3 The Winnow algorithms

The results of this paper use two versions of Littlestone’s algorithm Winnow. If the
number of variables is v, then the algorithms keep a v-dimensional weight vector of positive
weights. Furthermore the algorithms have two parameters: a threshold ® € R and an
update factor @ > 1. For a given instance Boolean (a1,...,2,) € {0,1}" the algorithms

=1
threshold functions over {0,1}". For all our results we assume that all weights are initially

v
predict one iff >~ a;w; > ©. Thus the hypotheses of these learning algorithms are linear

equal to one.

Assume now that the Winnowl or Winnow2 make a mistake for some instance
(x1,...,2,) € {0,1}". If the algorithm predicts 0 and the received label is 1 then both
Winnowl and Winnow?2 replace all weights w; for which ; = 1 by the larger weight « - w,.
If the prediction is 1 and the label 0 then Winnow1 replaces all weights w; for which z; = 1
by 0, whereas Winnow?2 replaces these weights by w;/a. Note that Winnowl can wipe
out weights completely whereas Winnow2 decreases weights more gradually. This makes it
possible that Winnow?2 can handle noise.
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Both algorithms learn the concept class of k-literal monotone disjunction over v variables
with a small mistake bound. Such a disjunction is a {0, 1 }—valued function on the domain
{0,1}" given by the formula z;, V...V 2;,, where the indices ¢; lie in {1,...,v}. Let Cy,
denote the class of all such formulas. Since the indices are not required to be distinct, Cy
also contains all disjunctions with less than k literals.

We now state some mistake bounds for the Winnow algorithms [Lit88, Lit89a, Lit91].
They were proven for certain tunings of the parameters a and 0. In the bounds we give
here we let ® depend on the size of the disjunction k. Only slightly worse bounds can be
obtained when the tuning is not allowed to depend on k.

An example (z,b) € {0,1}" x {0, 1} contains z attribute errors w.r.t. a target concept
Cr if z is the minimum number of attributes/bits of z that have to be changed so that
b = Cr(a) for the resulting vector 2’. The number of attribute errors for a sequence of
examples w.r.t. a target concept is simply the total number of such errors for all examples
of the sequence.

(1.1) With « := 2 and © := 57 the algorithm Winnowl makes at most 2k(1 + logv/k)
mistakes on any sequence of examples labeled consistently with any target concept
from Cg .

(1.2) With a := 1.5 and © := v/k the algorithm Winnow2 makes at most 4z 4+ 8k +
14k1In(v/k) mistakes on any sequence of examples which has at most z attribute
errors w.r.t. some target concept from Cy, ,.

So the bound for Winnowl is better but Winnow2 can handle noise. A sequence has
q classification errors w.r.t. a target concept if ¢ labels have to be flipped so that the
sequence is consistent with the target. It is easy to see that each classification error can
be compensated by up to k attribute errors if the target C'r is a k-literal disjunction.
The theorems of this paper mostly deal with attribute errors. Analogous theorems for
classification errors or a mixture of both can be obtained easily using the above observation.
Note that the tunings for Winnow?2 are independent of the amount of noise in the sequence
of examples. So noise simply causes more mistakes but the algorithm does not change.

Note that if the number of attributes that are relevant for a target concept from Cy ,
(there are at most k of them) is small then the mistake bounds for both versions of Winnow
grow only logarithmically in the total number of attributes v. This is essential for the results
of this paper where we will reduce the given learning problems to applications of Winnow
with exponentially many attributes. The other property of the algorithms that we exploit
in this approach is that they change their weights in a very uniform manner: all w; with
x; = 1 are multiplied with the same factor which is either a, 1/ or 0.

Note that the threshold © in the above tunings for Winnowl and Winnow2 depend on
k, the maximum size of the target disjunction. There are alternate tunings in which no
information is used of the size of the target disjunction. For example © can be set to the
number of variables v and if « is adjusted appropriately then the main change in the above
bounds is that the log(v/k) terms are replaced by log v terms and the constants before the
summands change [Lit88].

One can also take the route of using more information for tuning the algorithms and
let the tunings of the parameters a and © depend on k as well as an upper bound Z of
the number of attribute errors of the target disjunction [AW95]. In this case it is possible
to obtain mistake bounds of the type 2z 4 (2v/2 + o(1))\/AkIn(n/k), where » < Z is the
number of attribute errors of some target disjunction from (' ,. The constant of 2 in front
of the number of attribute errors z is now optimal and this constant drops to one in the
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expected mistake bound of a probabilistic algorithm. For the sake of simplicity we did not
state the mistake bounds for the more sophisticated tunings in this paper.

4 Efficient On-line Learning of Simple Geometrical Objects When
Dimension is Variable

We first consider learning the concept class BOX% of axis-parallel rectangles over the
domain X¢. As outlined in the introduction the complement of such boxes can be described
as the disjunction of 2dn variables that represent halfspaces which are parallel to some axis.
It is our goal that the computation time of the learning algorithm is polynomial in d and
logn. Hence we cannot afford to actually run Winnow for the set of v = 2dn variables.
Instead, we simulate Winnow by keeping track of various dynamically changing blocks of
variables that currently have the same weight. After every incorrect prediction the number
of these blocks increases by 2d. Hence it is essential for this approach that the worst-
case number of mistakes that Winnow makes grows only logarithmically in the number »
of virtual variables. This allows us to bound the number of blocks that ever have to be
considered by a polynomial in d and logn and we can prove the following result.

Theorem 1: There exists an on-line learning algorithm for BOX® that makes at most
O(dlogn) mistakes on any sequence of examples labeled consistently with a target concept
from BOX?. This algorithm uses at most O(d(logd + loglogn)) time for predicting and for
updating its data structures after a mistake.

Before we prove this theorem, we would like to note that this learning algorithm is
optimal in a rather strong sense [CM92]: using a simple adversary argument one can show
that any on-line learning algorithm can be forced to make Q(dlogn) mistakes on some
sequence of examples labeled consistently with a target in BOX%.

For the sake of completeness and since similar methods are used for Theorem 7 we
reprove this lower bound here. For a simple start consider the concept class of initial
segments on {1,...,n}. Each initial segment is determined by its right endpoint. We claim
that an adversary can force any algorithm to do a binary search for the endpoint which
leads to lower bound of [logn| mistakes. We prove this bound as follows. For any set of
examples the set of remaining consistent initial segments is characterized by an interval
of possible right endpoints. The adversary always chooses its next instance in the middle
of the remaining interval and forces a mistake by choosing a label for the instance that
disagrees with the algorithm’s prediction. Originally the interval is of length n and each
example cuts the length of the interval in half. At the end the length of the interval in one
and the adversary ends up with an initial segment that is consistent with all the examples.

Similarly for the class of intervals on {1,...,n} an adversary can force 2|log(n/2)|
mistakes, |log(n/2)] for the left and right boundary. For the concept class BOX? the
interval argument is repeated for each of the d dimensions. While forcing the two binary
searches in one dimension the other dimensions are set to a middle point. This gives an
overall lower bound for the class BOX? of 2d[log(n/2)| mistakes.

The mistake bound for a concept class is always one less than the maximum number
of equivalence queries required for learning the class [Lit88]. By a result from [AL94] it
immediately follows that even if membership queries are allowed then the total number of
equivalence and membership queries is still (dlogn). If the hypotheses of the equivalence
queries must be boxes in BOX? as well, then this lower bound can be raised to Q(% logn)

[Aue93].
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Proof of Theorem 1: We now give a detailed description of the technique that was
outlined at the beginning of this section. Obviously it suffices to exhibit an efficient on-line
learning algorithm for the complements C' := X2 — C of arbitrary rectangles C € BOX?
(in order to turn this into an efficient on-line learning algorithm for BOXY one just has to
negate the output-bit for each of its predictions). Assume that the environment has fixed
some C'7 with Cr € BOXZ. In order to predict for some arbitrary given y € {1,. Ln}d
whether y € C'r one applies the following variable transformation y — u(y) € {0,1}, Wthh
reduces this prediction problem to a prediction problem for a “virtual threshold gate” with
v = 2dn Boolean input variables.

For each halfspace ch = {2z € X¢: (2); < ¢} we consider an associated “virtual
variable” ufc, and for each halfspace Hﬁc = {z € X?:(2); > ¢} we consider an associated
“virtual variable” uzc (it = 1,...,d;¢c = 1,...,n). For any y € {1,....n}? we set the
associated virtual variable u, (resp. u7,) equal to 1if y € H - (resp. H>) and else equal

to 0. This defines the desired variable transformation {1, ... n}d >y~ u(y) €{0,1}" for
v = 2dn.

One can then apply Winnow1 or Winnow?2 to the resulting learning problem over {0, 1}".
For each C7 € BOXY and any y € {1,...,n}? the set of virtual variables in u(y) with
value 1 forms for each 7 € {1,.. .,d} a ﬁnal segment of the sequence ufl, .. .,ufm (since
Yy € HS = y € HS, for all ¢ > ¢), and dually an initial segment of the sequence

,C 7,¢!

d
Uy, ... us,. Assume that Cr = [[{a;,...,b;} with 1 <a; <b; <nfori=1,...,d. Then
’ ’ =1
d —
= U Hf U U sz , and one can therefore reduce the problem of on-line learning C'r

d
to the problem of on-line learning of the disjunction \/ u ARV u?, over the v = 2dn
=1 i=1 "

variables ufc, fori =1,...,dand ¢ =1,...,n. For thls reduction one simply takes

2 ,C?
d
each prediction for “u(y) € \/ us, V V u, 77 of Winnow and uses it as a prediction for
:1 bk ? 221 thad
“y € C'r 7. This prediction for “y € Cr 77 is incorrect if and only if the prediction for
d d
“u(y) € V us, VvV V u7, 77 is incorrect. Hence the worst-case number of mistakes of the
— :1 bk ? 221 thad

resulting on-line learning algorithm for the complements C'r of rectangles Cr € BOX? is
bounded by the worst-case number of mistakes of Winnow for learning a disjunction of 2d
out of 2dn variables.

If one applies Winnowl with @ = 2 and © = v/4d = n/2, then one obtains a mistake
bound 4d(1 4+ logn) for learning BOX.

The computation time of our learning algorithm for this simulation of Winnowl (re-
spectively Winnow2) can be estimated as follows. After s mistakes each group of variables

fl, ces ufn (resp. uZy,...,u’, ) consists of up to s + 1 “blocks” ufa,ufk_l_l, coul, (re-
spectively uZ " i>k—|—17 ...,uZ;) of variables that currently all have the same weight. This

structure arises from the fact that whenever the weight of any of these variables is changed,
then all weights of a final or an initial segment of this group of n variables are changed in
the same way (i.e. multiplied with the same factor). Of course it suffices to store for each of
the 2d groups of n virtual variables just the endpoints of these up to s 4+ 1 blocks, together
with the current weight of the associated virtual variables.
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By the preceding analysis the total number of mistakes s is O(dlogn). Hence without
use of a more sophisticated data structure at most O(d? - logn) computation steps (on a
RAM) are needed to decide for any given y € {1,...,n}? whether “y € H ?” for the current
hypothesis H, or to update the hypothes_is after a mistake. The i_mproved time bound of
O(d(logd + loglog n)) which uses balanced trees is given in the appendix. n

By using Winnow2 instead of Winnowl it is easy to generalize the above theorem to
the noisy case. (See [BGGMO94] for earlier results on learning similar geometric objects in
the presence of noise.) For this purpose the notion of attribute error is generalized in the
straightforward way: An example (z,b) € X2 x {0,1} contains z attribute errors w.r.t. a
target box C'r in BOX% if z is the minimum number of conponents of z that have to be
changed so that b = Cp(a’) for the resulting vector 2’. As before, the number of attribute
errors for a sequence of examples w.r.t. a target concept is simply the total number of such
errors for all examples of the sequence.

Theorem 2: There exists an on-line learning algorithm that makes at most O(z + dlogn)
mistakes on any sequence that has at most z attribute errors w.r.t. a target concept in
BOXY. This algorithm requires O(dlog(z+dlogn)) time for predicting and for updating its
data structures after a mistake occurs.
Proof: We proceed exactly as in the proof of Theorem 1, except that we apply Winnow?2
instead of Winnowl to the virtual variables. As indicated in Section 3, Winnow?2 tolerates
attribute errors in the examples. Hence Theorem 2 follows with the help of the following
observation immediately from (1.2) and the proof of Theorem 1. Each single attribute error
in an example (z,b) that occurs in a learning process for some target concept C'r € BOX?
gives rise to at most one error in a relevant attribute for the transformed learning process,
where one learns a disjunction of 2d of the v = 2dn virtual variables. Note however that it
may give rise to a rather large number of errors in irrelevant attributes of the transformed
sequence of examples. The time bound for predicting and updating is again O(dlogr),
where r is the number of mistakes done so far. The argument is given in the appendix. 1
The above mistake bound grows linearly in the number of attribute errors. The bound
immediately leads to a similar theorem for classification errors, since ¢ classification errors
correspond to at most k ¢ attribute errors when the concept class is k-literal monotone
disjunctions. It is well-known that for classification errors there exists for Winnow a trade-
off between noise-tolerance and computation time: the factor £ before ¢ can be decreased
at the expense of a larger computation time. Since this trade-off requires a transformation
of the input variables for Winnow, it is not a-priori clear that a similar result (with a not
too drastic increase in the computation time) can also be shown for the learning algorithm
used for Theorem 2. However the following result shows that our new learning algorithm
for BOX? does in fact inherit this attractive feature of Winnow.

Theorem 3: Let R € N be some arbitrary parameter. Then there exists an on-line learning
algorithm for BOX? that makes at most O(d/R+dlogn+q d/R) mistakes on any sequence
of examples that has < q classification errors w.r.t. some target in BOX%. This learning
algorithm requires O(R(d/R + dlogn + ¢ d/R)F) time for predicting and updating its
hypothesis after a mistake.

Proof: Consider the 2d groups of virtual variables that were discussed in the proof of
Theorem 1. We partition these 2d groups into g := [%1 classes By,..., B, that each
consist of R or less groups of virtual variables. For the sake of simplicity we assume in the
following that each of these classes consists of exactly R groups of virtual variables. We

then create new “virtual variables” of the types By,..., B,. For each B;(j € {1,...,9})
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the variables of type B; represent arbitrary disjunctions of R variables with one arbitrary
variable chosen from each of the R groups of virtual variables that belong to class B;. Hence
there are nft variables of type B;.

Thus we have created altogether ¢ nf new virtual variables, and each complement of a
target concept C7 € BOX? can be represented as a disjunction of g of these new variables.
We then apply Winnow?2 with © := nf* and o := 3/2in order to learn arbitrary complements
of concepts from BOX? with regard to this new representation. Each classification error is
compensated by ¢ attribute errors. Thus according to (1.2) we have that for any sequence
of examples which has at most ¢ classification errors w.r.t. a target in BOX% the sketched
algorithm makes at most 8¢ + 14gRIn n + 49 mistakes.

In order to compute each prediction of Winnow?2 in an efficient manner, one exploits
that for each of the g types B; of variables, the variables can be identified with points in
the R-dimensional space {1,...,n}?. Further whenever a mistake occurs for some example
(y,b), then the set of variables of type B; whose weight is increased (respectively decreased),
forms a union of R orthogonal halfspaces. Hence after  mistakes the nf* variables of type
B; (viewed as points in {1,...,n}f) have been partitioned by these unions of halfspaces
into up to (r 4 1)f axis-parallel “rectangles” of variables so that all variables in the same
“rectangle” have the same current weight.

It is convenient to keep for each type B; of virtual variables the records for these
rectangles in lexicographical order with regard to their “leftmost” corner point, and to
attach the current common weight of the variables in this rectangle to each of these records.
In this way each prediction of Winnow2 and each update of this data structure requires
after r mistakes at most O(R(r + 1)) computation time. n

The preceding results can be extended to learning the class of k-fold unions of boxes
U<r BOXE, which can we expressed as follows:

{BiU...UBp : k' <kand By,..., By € BOX%}.

The following theorem shows that unions of k& = O(1) arbitrary boxes from BOXZ can
be learned by applying Winnow to a virtual threshold gate so that the complexity bounds
remain polynomial in d and log n.

Theorem 4: For any constant k, there is a noise-robust on-line learning algorithm that
makes at most O(dk logn + z) mistakes on any sequence of examples which has up to
z attribute errors w.r.t. some concept in |Jo, BOXE.  This algorithm uses at most
O(d*(d*log n + 2)*) time for predicting and for updating its hypothesis after a mistake.
Proof: We first consider the 2dn axis-parallel halfspaces ch and Hﬁc (fori=1,...,d; c=
1,...,n) from the proof of Theorem 1. Any concept C' € Jo, BOX? can obviously be
represented as the 2d-fold union of k intersections of complements of such halfspaces. That
is any concept is in the form

d d d d
<7 > < >
(Q HS 0 Hm(i)) u...u (Q HS )N Qﬂi,gk(i))

=1

with suitable values ¢;(¢),¢;(¢) € {1,...,n}. This implies that the complement of any
C € Ucp BOX can be represented in the form

(2d)F &

U N HG ),

s=1 j7=1
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where each H(j,s) is a halfspace of the form ch or H7, with certain i € {1,...,d} and

k
¢, € {1,...,n}. Hence we create for each intersection (| H(j) of k halfspaces of this

j=1
form a new virtual variable u, which receives the value 1 in the variable transformation
k
{1,....n} 3>y — u(y) € {0, 1}(2d”)k if and only if y € (| H(j). This yields (2dn)* virtual
4 4 2=

variables.

Analogously as in the proof of Theorem 1 one reduces in this way the learning of the
complement of an arbitrary target concept Cr € J<,, BOX to the learning of a disjunction
of at most (2d)* of these (2dn)* virtual variables. One applies Winnow?2 to this new learning
problem for a “virtual threshold gate” of size (2dn)*. The desired mistake bound follows
directly from (1.2).

For the analysis of the computation time of the resulting learning algorithm for
U<y BOXI we observe that the (2dn)* virtual variables naturally fall into (2d)* sets of

variables of called types. We say here that two virtual variables have the same type if they
k ko

represent two intersections (| H(j) and () H(j) of k halfspaces using the same k-tuple of
, i

]:1 =
dimensions and the same k-tuple of orientations of the halfspaces. In symbols this means
that for each j € {1,...,k} there exist a common dimension ¢ € {1,.. .,d},~a common

orientation o € {<, >}, and integers ¢,é € {1,...,n} such that H;) = H. and H ;) = H{:.

After s mistakes the virtual variables of each type are partitioned into up to (s + 1)’“
k-dimensional “rectangles” of variables that currently have the same weight. The sum of
the weights of all variables in any such k-dimensional “rectangle” can be computed by
computing in & = O(1) computation steps its “volume”, and by multiplying this volume
with the common weight of these variables. According to (1.2), Winnow2 makes at most
s = O(d* + d*logn + 2) mistakes on any sequence of examples which has up to z attribute
errors w.r.t. some concept in (J., BOX?. Thus the time for predicting and updating the

weights after a mistake is O((2d)*(s + 1)¥) which is O(d*(d*logn + 2)¥). n

5 Learning Lower-Dimensional Boxes

Winnow was designed for learning disjunctions when the size of the disjunction is small
compared to the number of variables. Similarly, one might want to learn lower dimensional
boxed (i.e. boxes that depend on only few variables). This is particularly useful when the
original instances are expanded to a large number d of basis functions and the dimension of
the target boxes are much smaller than d (only a small number of the basis functions are
used in the target concept).

This leads to the following definition and theorem. For u < d a u-dimensional subbox
of BOX% is given by u dimensions i; € {1,...,d} and two boundaries a;,b;, € X, per
dimension 7;. The corresponding box is defined as

{QEX;L[:Vlgjgu:aijgxijgbij}

Let BOX%? denote the set of all such boxes.

Theorem 5: There exists an on-line learning algorithm that makes at most O(z+ulog(dn/u))
mistakes on any sequence that has at most z attribute errors w.r.t. a target concept in
BOX“?. This algorithm requires O(dlog(z + ulog(dn/u))) time for predicting and for up-
dating its data structures after a mistake occurs.
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Proof: As in Theorem 2 use Winnow?2 with 2dn variables. Complements of Boxes in
BOX“? become disjunctions of size 2u over these variables. n

One of the most basic applications of our method of reducing learning problems to
disjunctions over exponentially many virtual variables leads a learning algorithm for the
following simple generalization of k& out v literal monotone boolean disjunctions. Here the
base variables are non-boolean and lie in the domain X,,. The generalized disjunctions are
mappings from X to {0, 1} given by the formulas of the form

(4, @) V...V (2 < ag),

where the indices 4; lie in {1,...,v} and the boundaries a; lie in X,,. Let LIN} , the class
of all such formulas.

Theorem 6: There exists an on-line learning algorithm that makes at most O(z+ulog(dn/u))
mistakes on any sequence that has at most z attribute errors w.r.t. a target concept in
LIN . This algorithm requires O(dlog(z + ulog(dn/u))) time for predicting and for up-
dating its data structures after a mistake occurs.

Proof: Note that concepts in LIN,, are complements of boxes which have the origin as
one corner. So we only need to use one variable per dimension v and boundary in X,.
The concepts become k literal monotone disjunctions over the vn variables. In this case no
complementation of the concepts is necessary. Again we simulate Winnow?2 with the usual
data structures. |

6 Efficient On-line Learning of Simple Geometrical Objects When
Dimension is Fixed

We show that with the same method as in the preceding section one can also design

an on-line learning algorithm for |J,, BOX% whose complexity bounds are polynomial in &
and logn provided that d is a constant. We assume that n > 2k, so that the bounds are
easy to state.
Theorem 7: For any constant dimension d, there exists an on-line learning algorithm for
U<y, BOXY that makes at most O(kdlogn + 2) mistakes on any sequence of examples for
which there is a concept in U<, BOX? with at most » attribute errors. The algorithm uses
O((kd1nn 4 2))*?) time for predicting and for updating its hypothesis after a mistake.

Also any algorithm regardless of computational resources for learning |, BOX% makes
at least O(kdlogn) mistakes on some sequence of examples consistent with a concept in
Uck BOX;.

Proof: For every point p := (ai,...,aq4, bi,...,0q) € {1,.. .,n}?? we introduce a virtual
variable up,. Forany y € {1,.. .,n}? we assign to this virtual variable in the transformation

{1,...,n}d9gl—>g(g)€ {1,...,n}%

d
the value up(y) = 1 if and only if y € [] {ai,...,b;}.

=1
Obviously any target concept C7 € U<, BOX? can be represented as a disjunction of
up to k of the n?? virtual variables. According to (1.2) at most O(k + klog(n??/k) + 2)
mistakes can occur when one applies Winnow?2 to the transformed learning problem. This
mistake bound is O(kdlogn + z) for n > 2k.
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Furthermore if the resulting learning algorithm for U, BOX? makes an incorrect

prediction for some example y € {1,...,n}?, then the set of virtual variables up Wwith
up(y) = 1 forms a “rectangle” in {1,...,n}?%: this set consist of those virtual variables
up that are associated with vectors p = (aq,...,aq,b1,...,04) € {1,...,n}?" such that

d
y € [l{ai,...,bi}, ie. a; < (y); < b; for ¢ = 1,...,d. Hence after r mistakes the
4= g

virtual variables are partitioned into < (r 4+ 1)?? rectangles of equal weight over the domain
{1,...,n}%.

It is easy to predict in time linear in the current number of rectangles. With some
simple data structures one can also update the list of rectangles in time linear in the
number of rectangles that exist after the update is completed. (Note that the dimension of
the rectangles is assumed to be constant.)

The lower bound is proven using an adversary argument that is similar to the one
used for BOX? (See comments after the statement of Theorem 1). For the concept class
U<, BOXY the adversary first forces 2k|log(n/2k)| mistakes to fix the k intervals of the
boxes in the first dimension. This is done by forcing 2k binary searches over ranges of size
|n/2k] for each of the 2k boundaries in the first dimension. The first box’s interval lies
in {1,---,2|n/2k|}, the interval of the second box in {2|n/2k] + 1,---,4|n/2k]}, and so
forth. Since the k rectangles are already disjoint in the first dimension, the searches in the
remaining dimensions can start with a range of size n/2. In total the adversary can force
at least 2k - [log 57| + 2(d — 1)k|log %] mistakes, which is Q(kdlogn) when n > 2k. n

7 Conclusions

There are a number of algorithms that can learn k-literal monotone disjunctions with
roughly the same mistake bound as Winnow: the Balanced algorithm [Lit89a] and the
Weighted Majority algorithm [Lit95, LW94]. All of them maintain a linear threshold
function and do multiplicative weight updates. It is likely that the results of this paper
can also be obtained if we use these other algorithms for the reductions of this paper in
place of Winnow. The Weighted Majority algorithm is in some sense the simplest one since
its weights are only multiplied by one factor instead of two. We chose Winnow since for the
purpose of learning disjunctions it is the most studied of the group.

Winnow is robust against malicious attribute noise and our reductions preserve these
properties. Slight modifications of Winnow have shown to give good mistake bounds in
relation to the best shifting disjunction [AW95]. By combining these recent results with the
findings of this paper one immediately obtains an algorithm with a small mistake bound
compared to the best shifting box.

Mistake bounds for Winnow have also been developed for j-of-k threshold functions.
Such functions are one when at least j out of a subset k of the v literals are one. Disjunctions
are l-of-k threshold functions. Using these additional capabilities of Winnow we get for
example an algorithm for learning the following concept class with a good mistake bound:
A concept is defined by k boxes in BOX% and an instance in X? is in the concept if it lies
in at least j of the £ boxes. Using the reduction of Theorem 7, Winnow2 when suitably
tuned makes at most O(j% + jkdlogn + z) mistakes on any sequence of examples that has
at most z attribute errors w.r.t. one of such concept. The algorithm is again noise robust
and its time bound for predicting and updating its hypothesis remains O(TZd), where r is
current number of mistakes.
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In this paper the most basic geometric objects we considered were axis-parallel boxes
over the discretized domain {1,...,n}¢. Instead we could have defined boxes and other
geometric objects corresponding to <, BOXE in terms of an arbitrary set of directions
D € R (see e.g. [BCHY4]). The basic virtual variables would then correspond to the
following halfspaces over the domain R:

{zeRY:z-a<Olor{zeR:2-a>0) where @ € {1,...,n} and a € D}.

It is easy to apply our methods to this case by simply changing the transformation to
the virtual threshold gate. The key ingredient is that the concepts class to be learned
can be reduced to small disjunctions over an exponentially large set of virtual variables so
that Winnow can still be simulated efficiently. It would also be interesting to form virtual
variables from past examples. For example when the dimension is fixed and m examples
have been seen so far, then subsets of size d (i.e. (7)) of them) determine hyperplanes
(halfspaces) that corresponding a useful set of virtual variables.

The class of axis-parallel boxes is a simple example of an intersection-closed concept
class and nested differences of concepts from this class are efficiently learnable in the PAC
model [HSW90]. A challenging open problem is to find an on-line algorithm for learning
nested differences of axis-parallel boxes over the discretized domain {1,...,n}? with at most
O(pdlogn) mistakes (where p is the depth of the target concept) and time polynomial in
p, d, and log n.

There is a large family of on-line algorithms (besides Winnow and its relatives) with
multiplicative weight updates whose loss bounds grow logarithmically with the dimension
of the problem [Vov90, HKW94, KW94]. We expect that further applications will be found
where these algorithm can be simulated for exponentially many “virtual variables”. In
parallel work such applications have been found in [HW95, HS95, AKMW95]. A more
challenging goal is to apply this family of algorithms to continuously many variables. See
Cover [Cov91] for an example problem for which this was done.
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Appendix: The improved time bound for Theorem 1 and Theorem 2

We will show a time bound of O(dlogr) for prediction and for updating the representa-
tion of the hypothesis after a mistake, where r is the current number of mistakes. This is
done by using for each of the 2d groups of virtual variables an appropriately labeled 2 - 3
tree for storing their current weights. A 2 - 3 tree [AHUT74] is a tree in which each vertex
which is not a leaf has 2 or 3 children, and every path from the root to a leaf is of the same
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length. The internal nodes v of a 2 - 3 tree are labeled with the largest number L[v] by
which any leaf below the leftmost child of v is labeled, and with the largest number M [v] by
which any leaf below the second child of v is labeled. Furthermore the numbers by which
the leaves are labeled are increasing from left to right.

For each of the 2d groups of n virtual variables we employ a 2 - 3 tree that has additional
labels at each node. The leafs of the tree for a group are labeled in increasing order from left
to right by the left endpoints of the previously considered “blocks” of variables, together
with the current weight shared by the variables of the block and the length of the block.

We would like to label each internal node v of this 2 - 3 tree with the sum of weights of
the set V[v] of all variables that belong to blocks whose left endpoints occur as a label of
some leaf below v. However if we would do this, then it would become too time consuming
to update all of these labels when the weights of all variables in a final (or initial) segment
of this group of n variables are multiplied with by the factor a. Therefore we label instead
the internal nodes v of the 2 - 3 trees with two numbers: a factor and a preliminary sum of
current weights of the variables in V[v]. The actual current sum of weights of the variables
in V[rv] can be easily computed from these labels of internal nodes in the 2 - 3 tree by
multiplying the contents of the factor labels of all nodes on the path starting at v to the
root of the tree and by multiplying the “preliminary sum” of v by the resulting number.
With this data structure one can compute the following very efliciently for any of the 2d
groups of virtual variables: the sum of current weights for all variables in that group whose
index is above (respectively below) iy for any given ig € {1,...,n}. The time needed
for this operation is proportional to the depth of the tree, hence one needs only O(logr)
time. Therefore each prediction of the learning algorithm requires altogether only O(dlogr)
computation steps on a RAM.

In order to update the 2 - 3 trees after a mistake, one has to multiply for each of the
2d groups of variables the weights of an initial or final segment of these variables with a
common factor. Furthermore if the left endpoint e of that segment does not coincide with
one of the endpoints of blocks that occur as labels of the respective 2 - 3 tree, then one has
to create a new leaf for this endpoint e, restructure the tree so that it becomes again a 2 -
3 tree (this is necessary if the node immediately above the new leaf has already 3 children),
and update the labels of nodes in this tree in accordance with the changed weights of an
initial or final segment of variables in this group.

It is rather easy to see that for each of the 2d different 2 - 3 trees the described updating
operation requires only time proportional to the depth of the tree (and hence is bounded by
O(logr)). If necessary, one first adds a new leaf corresponding to the new endpoint of an
interval of variables in that group (use for example the procedure SEARCH of algorithm 4.4
in [AHU74]). Simultaneously one can move all “factors” that occur in the labels of nodes
on the path from the root to the new leaf downwards, and compute for all internal nodes v
that lie on or immediately below this path the actual sum of current weights of all variables
in V[v]. One updates in an analogous manner the labels of all nodes v on the path from the
root to the next leaf to the left of the new leaf (note that in general the set V[v] changes
for these nodes v because the interval in the leaf to the left of the new leaf is shortened).
Finally one restructures the resulting tree into a 2 - 3 tree (in the same way as described in
[AHU74]). For that, the structure of the tree is changed only along the path from the root
to the new leaf. For these internal nodes v we have already computed the actual current
sum of weights of all variables in V[r], and hence we can compute appropriate new labels for
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all nodes in the new 2 - 3 tree with a total number of computation steps that is proportional
to the depth of the tree. [ |



