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1 IntroductionMany future applications of computer networks such as distance education, remote collaboration, and tele-conferencing will rely on the ability of the network to provide multicast services. Multicasting is usuallysupported in a point-to-point packet network by setting up a multicast tree connecting the members of themulticast group. Many of the multicast applications also require the network to support dynamic multicastsessions, where the membership of the multicast group changes frequently. Supporting such applicationse�ciently requires the ability to alter an existing multicast tree to accommodate membership changes asnodes join and leave the multicast session. While much has been written on the subject of establishing astatic multicast tree in point-to-point networks [1, 4, 10], algorithms to modify an existing multicast tree byadding and deleting members is a relatively unexplored area of research. Since many multicast applicationsare delay-sensitive, the e�ciency of the algorithm used to maintain the multicast tree assumes special signif-icance. This paper presents a new, e�cient heuristic for updating the multicast tree for dynamic multicastgroups. Previous authors have established that determining an optimal multicast tree for a static multicastgroup may be modeled as the NP-complete Steiner problem in networks [3, 4, 5, 7, 16]. Consequently. itsexplicit solutions are prohibitively expensive. For example, two popular explicit algorithms, the spanningtree enumeration algorithm and the dynamic programming algorithm [16], have algorithmic complexities ofO(p22(n�p) + n3) and O(n3p + n22p + n3), respectively, where n is the number of nodes in the graph and pthe number of multicast members. A number of good, inexpensive heuristics exist for the Steiner problemin networks and have been reviewed extensively elsewhere [1, 5, 7, 10, 11, 12, 13, 16].This paper addresses the problem of modifying an existing multicast tree when new members enteror existing members leave the multicast group. The problem of updating the multicast tree after eachaddition and deletion is known as the on-line multicast problem in networks. This paper focuses on itsSteiner equivalent, the on-line Steiner problem in networks [15]. If the m multicast members added ordeleted are represented by a vector R = fr1; r2; : : :rmg, where each element of vector R is a request to addor delete a member, the on-line multicast problem is de�ned formally as follows.GIVEN: A simple, undirected, connected graph G = (V;E) with n nodes, non-negative edge costs,p multicast members Z � V , request vector R = fr1; r2; : : : rmg, and existing multicast treeT = (V 0; E0), V 0 � V and E0 � E.FIND: Multicast trees T1; T2; : : :Tm such that each tree Ti's members are those of tree T modi�ed by requestsr1; r2; : : : ri and Ti's cost (sum of edge weights) is minimum among all possible choices for tree Ti.In the extreme case, a multicast tree may be completely rebuilt after each change using a staticmulticast heuristic. This approach, however, is prohibitively expensive if used for each addition and deletion.In addition, real-time multicast sessions cannot tolerate large changes in the multicast tree after each update.This is because data packets are constantly in ight within the multicast tree and large changes to the treemight cause an unacceptable disruption in the packet ow. An ideal multicast algorithm, therefore, mustminimize both the number of changes between successive updates and the cost of the multicast tree formedafter each update. We know, however, that the Steiner problem in graphs is NP-complete and no such idealalgorithm exists which runs in polynomial time.The on-line multicast problem was �rst presented by Waxman [14] and has received little attentionsince [8, 9, 15]. We present a new heuristic for the on-line Steiner problem, balancing heuristic run-time1



against competitiveness, that is, the ratio between the cost of the heuristic tree and the cost of an optimaltree. The cost of the tree is taken as the sum of the weights of the edges in the tree. We derive analyticalbounds on the competitiveness of the new heuristic. In addition, we also compare the heuristic with previouson-line heuristics by simulation on a large number of random test graphs representing sparse, point-to-pointnetworks with low to medium multicast membership. We restrict our analysis to sparse networks for tworeasons: (i) they are more representative of real point-to-point networks, and (ii) they are inherently moredi�cult to solve because, in general, fewer feasible solutions exist in a sparse network than in a denseone. Similarly, the simulated multicast groups are small relative to the size of the network, reecting likelymulticast applications such as video-conferencing or distance education. The heuristics are compared on thebasis of three criteria: competitiveness, CPU time, and di�erences between successive trees. Note that ourresults are not speci�c to any particular type of network such as the Internet or ATM networks, but applyto both connectionless and virtual-circuit-based networks.Our results show that heuristic ARIES performs extremely well | often producing solutions close inquality to those generated by a good, static Steiner heuristic. In addition, it often outperformed two knownheuristics | the Edge-Bounded Algorithm (EBA) and GREEDY. Further, the algorithm may be tuned toachieve the desired tradeo� between performance and cost. The di�erence between successive trees producedby ARIES is often small, reducing the disruption caused by rearrangements.The remainder of this paper is organized as follows. Section 2 reviews previous heuristics for theon-line Steiner problem and summarizes their bounds. Section 3 describes our new on-line heuristic andSection 4 derives an upper bound on its competitiveness. Section 5 presents simulations results comparingour algorithm to previous on-line heuristics. Finally, Section 6 concludes the paper with a discussion of theresults.2 Previous Algorithms for the On-Line Steiner Problem in Net-worksThis section summarizes previous algorithms to solve the on-line Steiner problem. We use the following basicde�nitions and notations in the paper. Z is the set of multicast nodes, S is the set of non-multicast nodesV �Z, Pi;j is the shortest path between nodes i and j, and di;j is the length of path Pi;j. Because multicastnodes enter and leave the multicast tree over time, the node sets Z and S also vary over time. The cost ofa tree is the sum of its edge weights. Multicast nodes are referred to as members and non-multicast nodesas non-members. The distance between two nodes is de�ned to be the distance of the shortest path betweenthem. Likewise, the distance between a node and a tree is the minimum among the shortest paths betweenthe node and every node in the tree. Finally, the distance between two trees is the distance of the shortestamong all paths between any node in one tree and any node in the other tree.In his original paper on the on-line multicast problem (referred to as the dynamic multipoint problem),Waxman divides on-line heuristics into two types: those that allow rearrangement of the tree and those thatdo not [14]. In this �rst paper and a subsequent one, Waxman and Imase describe a heuristic of each type[8, 14]. We summarize both heuristics below for the reader's convenience.2



2.1 Heuristic GREEDYThe non-rearrangement on-line heuristic, GREEDY [8, 14], perturbs the existing tree as little as possible.For each add request, it connects the new member to the nearest tree node using the shortest path. For eachdelete request, GREEDY deletes only leaf nodes. If this deletion creates a non-member leaf, GREEDYalso deletes the new leaf. This continues until no non-member leaves remain.2.2 The Edge Bounded AlgorithmThe rearrangement heuristic EBA (the edge-bounded algorithm) [8] enforces bounds on the distance betweennodes in the tree after each change. In addition, every tree Ti must also be an extension tree for its set ofmulticast members. An extension tree is one that contains all multicast members and for which the degree ofevery non-member is greater than two. EBA starts by converting the original graph to a complete distancegraph. In a distance graph every edge represents the shortest path between nodes. The original tree is alsoconverted to its distance graph equivalent. For each add request, EBA connects the new member by itsshortest edge to the existing tree. This shortest edge represents the shortest path between the new memberand the closest tree node in the original graph. EBA then tests the length of each path in the tree from thenew member to every node in the tree. If the length of the path consisting entirely of tree edges betweenthe new member and a node in the tree does not fall within constant k times the length of the shortestpath in the original graph, EBA modi�es the tree as follows: The maximum-weight tree edge in the pathbetween the new node and the o�ending tree node is deleted, breaking the tree into two components. Thetwo components are then reconnected by adding the edge between the two nodes. This edge represents theirshortest path. If the new tree now contains non-members of degree less than three, these non-member nodesare deleted as described in the next paragraph. Since Imase and Waxman use constant k = 2 in [8], we alsouse k = 2 in our simulations.For each delete request, EBA's actions are related to the deleted node's degree with respect to themulticast tree. If the node has degree three or more, no action is taken. If the node has degree one, it isdeleted just as in GREEDY. If the node has degree two, it and its adjacent edges are deleted, splitting thetree into two components. These two components are reconnected by the path between the node's neighborsthat has the smallest maximum weight edge. If this deletion results in a non-member edge of degree two,the non-member is deleted and the process repeats until all non-member nodes in the tree have degree threeor more.2.3 The Geographic-Spread Dynamic Multicast HeuristicA second rearrangement heuristic is Kadirire's GDSM, the geographic-spread dynamic multicast routingalgorithm [9]. When adding nodes, this heuristic relies on exploring four explicit connection con�gurationsbetween nodes in the tree and the new member. For each add request, it identi�es the closest tree node tothe new member and the closest members in the tree on either side of the closest tree node. The heuristicthen chooses one of four ways to connect the new member through the three identi�ed nodes. If more thanone cheapest alternative exists, GDSM chooses the one with greatest geographic spread [9]. For each deleterequest, GDSM behaves exactly as GREEDY does. 3
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Figure 1: Bounds on non-rearrangement heuristics' competitiveness for add requests.2.4 Bounds for On-Line HeuristicsWaxman and Imase [8] provide bounds for the competitiveness of all non-rearrangement heuristics in generaland GREEDY in speci�c when only add requests are honored. Here competitiveness is de�ned as the ratiobetween the cost of a multicast tree found by the heuristic and that of an optimal tree. The lower boundfor all non-rearrangement algorithms is 1 + 12blog2(ni � 1)c;and the upper bound for GREEDY is log2(ni);where ni is the number of nodes added to the tree while processing the requests r1; r2; : : : ri. These boundsare shown in Figure 1. Westbrook [15] provides a tighter upper bound for heuristic GREEDY when onlyadd requests are honored. This upper bound isO(log2(dmaxCopt ni));where dmax is the maximum distance between members along the tree and Copt is the cost of an optimaltree for the modi�ed multicast group. Imase and Waxman have shown that no such �nite bound exists ifdelete requests are also honored [8].A rearrangeable heuristic, however, can have a �nite bound for competitiveness for both add anddelete requests. Heuristic EBA's upper bound is 4� where � is EBA's constant as described in Section 2.2.In both our simulations and Imase and Waxman's paper � = 2 and the upper bound is therefore 8 [8].4



= member
= deleted memberFigure 2: A tree with one deleted member.No similar bounds are given for GDSM. However, since GDSM is a non-rearrangement heuristic similar toGREEDY, we assume its bounds to be similar to GREEDY's.3 Heuristic ARIESWhile our simulation results show GREEDY to be superior to EBA in terms of competitiveness on ourrandom test graphs, the former still su�ers from the disadvantage that it may perform poorly for deleterequests. A superior rearrangeable heuristic would be one that combines GREEDY's light computationrequirements with the ability to force a rearrangement when the solution tree's competitiveness has degradedbeyond a certain threshold. This was our motivation for creating heuristic ARIES.Like GREEDY, ARIES does the minimumnecessary modi�cations for each add and delete request.For each add request, ARIES joins the new member to the existing tree by the shortest path. For eachdelete request, ARIES deletes the node only if it is a leaf. The di�erence lies in ARIES's rearrangementmechanism. When the accumulated damage to a part of the tree is judged to be too high, ARIES rearrangesthat region of the tree as described in the next paragraph. Formally, damage to the entire tree is measuredby the tree's degradation factor C(i) � Copt(i) where C(i) is the cost of the modi�ed tree after request riand Copt(i) is the cost of an optimal Steiner tree after this same request ri. As the tree is modi�ed, thisdegradation factor will tend to increase.Informally, ARIES monitors the degradation factor of the heuristic tree and rearranges portions ofthe tree as necessary to reduce the degradation factor. In the example given in Figure 2, the grey shadedregion of the tree is that portion of the tree most a�ected by the deletion of the white node. The \deleted"node is not removed from the tree, but merely marked as a former member of the multicast group. If ARIESjudges that the damage to the tree introduced by the white node exceeds a given threshold, only the greyshaded portion of the tree would be rearranged, sparing the majority of the tree from disruption during therearrangement. In this way, the e�ort required to maintain a low cost tree is performed only on the mostlikely region of the tree.Damage to the tree is monitored by a number of counters within multicast member nodes thatregister the number of changes (additions or deletions) in their immediate vicinity. Each member node hasone counter corresponding to each of its edges that form part of the tree. When a member node is deleted ora new node added, the node sends a message to all its multicast neighbors to increase their counters by one.Propagation of the counter-update messages is con�ned to regions within the tree bordered by multicast5



members, so that rearrangements can be con�ned to these regions as well. A rearrangement is triggeredwhen the value of a counter in a multicast node exceeds a chosen threshold. We will later formalize theconcept of the \region" used to con�ne the rearrangements.3.1 De�nitions and NotationsHaving outlined the basic concepts, we can now formalize our description of ARIES. We begin by introducingthe following assumptions and de�nitions. W assume that additions and deletions occur one at a time withadequate time between events to allow each node's edge counters to settle before the next addition ordeletion event. We further assume that a reliable protocol is used to communicate counter updates withinthe network.Let G(t) denote the set of nodes belonging to the multicast session at time t. Let t = 0 represent thetime the multicast session was �rst set up. In general, the multicast tree for G(t) may contain four di�erenttypes of nodes at any time t > 0:1. Active multicast nodes: These are nodes currently belonging to the multicast group G(t). A node i 2G(t) is de�ned as an active multicast node if it satis�es one of the following conditions:(a) Node i has remained a member of the multicast group since the group was �rst set up, that is,i 2 G(� ) for all � in the interval 0 � � � t;(b) A part of the multicast tree containing i was rearranged since the most recent addition of i to themulticast group.We refer to the set of active multicast nodes at time t as Z(t), or simply as Z.2. Deleted nodes: These are nodes that were once part of the multicast group, but were since deleted. Anode i =2 G(t) is de�ned as a deleted node if it satis�es the following condition: Let � < t be the lasttime i was a member of the multicast group. Then, no rearrangements have occurred in any part ofthe multicast tree containing i during the interval (�; t).We use D(t), or simply D, to denote the set of deleted nodes at time t.3. Appended nodes: An appended node is one that was added to the group after it was formed and hasnot been involved in a rearrangement since it was added. Formally, a node i 2 G(t) is de�ned as anappended node if the following condition is satis�ed: Let � > 0 be the time at which node i was lastadded to the multicast group G. Then no rearrangements have occurred in any part of the multicasttree containing i during the interval (�; t).We use A(t), or simply A, to denote the set of appended nodes at time t.4. Non-multicast nodes: These are nodes currently not belonging to any of the previous three categories.A node belongs to this set if it satis�es one of the following conditions.(a) Node j was never part of the multicast group G during the interval (0; t), or(b) node j was last deleted from G at time � < t, and a rearrangement occurred in a part of themulticast tree containing j after time � .We refer to this set of non-multicast nodes as S-nodes.6
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fFigure 3: A multicast tree containing two modi�ed regions R1 and R2.Thus, the damage to the multicast tree is in the areas surrounding the deleted and appended nodes.We use modi�ed node, or M -node, as a common term to refer to both these types of nodes. That is, the setof modi�ed nodes is de�ned by M (t) = D(t) [A(t):Since the area of damage to the multicast tree is con�ned to the modi�ed nodes and the activemulticast neighbors surrounding them, it becomes necessary to formalize the concept of multicast neighbor.Definition 1: Two nodes i; j 2 Z(t) [M (t) are multicast neighbors in T if and only if either (i)i and j are directly connected through an edge in T , or (ii) the path between i and j in T passes throughonly nodes in the set S(t).For example, in Figure 3, the multicast neighbors of node a are b; c; d; e, and f .If rearrangements are performed locally, they should be applied to areas where the damage is likelyto be maximum. The following de�nition allows grouping of M -nodes into regions so that rearrangementscan be con�ned within one or more of the regions where changes have occurred.Definition 2: A modi�ed region Ri of a multicast tree T is a subtree of T de�ned as follows:1. Ri contains at least one modi�ed node in the set M .2. If a modi�ed node j is in Ri, then every multicast neighbor of j in T is also in Ri.3. If two nodes j and k belong to Ri, then all the edges in the path between j and k in T are included inRj.Thus, for a givenM -node j, the modi�ed region containing j is the maximalconnected subtree of T containingonly S-nodes or M -nodes as its internal nodes. A leaf node of Ri may be either a Z-node or a pendant7



M -node in T , while an internal node must be an M -node.We refer to a modi�ed region simply as region for convenience. When a local rearrangement isperformed on T , the edges in the region are the candidates for rearrangement. For example, the modi�ednodes in the example tree of Figure 3 form two modi�ed regions R1 and R2.3.2 Algorithm DescriptionHaving introduced the concept of a region, we can now describe the details of the algorithm. The numberof modi�ed nodes in each region is monitored by a set of counters, one within each Z-node belonging to theregion. Since a Z-node can be part of as many distinct regions as its degree, the maximumnumber of countersneeded in a Z-node is equal to its degree. When the multicast tree is initially set up, the counters in eachnode are reset to zero. When a Z-node is deleted or a new node added, each Z-node in that region incrementits counter corresponding to the region. This can be achieved in a distributed system by the modi�ed nodebroadcasting a counter-update message to all the Z-nodes within the region along the multicast tree.The pseudocode of ARIES is shown in Figure 4. Given a Steiner tree Ti�1 and an update requestri, the objective of the algorithm is to determine a Steiner tree Ti for the modi�ed multicast group after theupdate. Note that ri can either be an add request or a delete request; these two cases are handled separately.If the request is an add, the new node v is connected to the existing tree Ti�1 via the shortest pathfrom v to Ti�1. The only exception to this is the trivial case when v is an S-node in the existing tree. Thenew node is then marked an an A-node. If all of v's multicast neighbors are currently Z-nodes, then a newregion is formed containing node v and its multicast neighbors. On the other hand, if v is already part ofa region, at least one of the multicast neighbors of v must be an M-node. In either case, let Rj denote theregion containing v. Every Z-node u within region Rj has a counter cu;j whose value is equal to the numberof M-nodes within Ri; each of these counters must be increased by 1 when v is added to the multicast tree.This is accomplished by broadcasting a counter-update message from v to all Z-nodes within the region.With delete requests, the situation can be more complex. First, if the node being deleted is a leafnode of the multicast tree, it is simply marked as an M-node and a counter-update message is transmitted toall the Z-nodes in the region as in the case of the add operation explained in the previous paragraph. Sincepaths to deleted leaf nodes can be removed from the multicast tree with little e�ort, an optional pruningalgorithm is used to remove any inactive subtrees in Ti left behind by the deleted node. This step is optionalbecause such subtrees will automatically be removed when the region undergoes a rearrangement.When the node being deleted, v, has a degree of 2 or more, it may belong to more than one region.Thus, when v is deleted, all regions containing v must be merged into a single region. This is achieved by vsending counter-update messages to all Z-nodes within regions it is currently part of. The counter incrementsent to a Z-node in region Rk is one plus the sum of all counters in v excluding that representing region Rk.Thus, when the counters are updated by adding the increment, all counters corresponding to the mergedregion are now set to the total number of M-nodes within the region.After processing each add or delete request, the algorithm checks to see if the quality of the treehas degraded beyond a threshold. This checking is accomplished simply by comparing the counter valuesfor the region enclosing the newly modi�ed node against a chosen threshold. If the counter values reach theset threshold, a rearrangement is triggered. Although any static Steiner heuristic can be used to performthe rearrangement, we use the Kruskal shortest-path heuristic (KSPH) for a number of reasons. First, it isnaturally suited to constructing multicast trees by combining fragments of the tree [1, 11, 16]. Second, thealgorithm lends itself to distributed, asynchronous implementation [2]. Finally, K-SPH has been shown to8



# Given existing tree Ti�1, �nd new tree Ti taking into account request ricase ri ofadd request for node v:if v 62 Ti�1 then# Join node v to Ti�1 by shortest path to closest node uTi  Ti�1 [ Pu;v# Node v joins region jRj  Rj [ vend ifmark node v as an A-node# Update edge counters in all Z-nodes of Rj# Let ck;j = node k's edge counter for Rjfor all Z-nodes, u 2 Rj docu;j  cu;j + 1if cu;j � threshold, u 2 Rj thenrearrange Rjdelete request for node v 2 Rj:mark node v as a D-nodeif v's degree = 1 thenfor all active nodes u 2 Rj docu;j  cu;j + 1perform optional pruning algorithm (Figure 6)end ifelse if v's degree > 1 then# Need to merge regions containing node v into onefor all Rk with v 2 Rk, do# Update counters in each region containing vfor all Z-nodes u 2 Rk docu;k  cu;k + 1 + Xmm6=k cv;mif cu;j � threshold, u 2 Rj thenrearrange merged regionend ifend case Figure 4: Pseudocode for heuristic ARIES.9
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Before rearrangement After rearrangementBefore deleting  E Figure 5: Operation of ARIES on a delete request.be among the best of Steiner heuristics in terms of the cost of the multicast trees produced in our previousevaluations [1, 2].Using K-SPH, the rearrangement algorithm proceeds as follows. If Rj is the region in which therearrangement was triggered, the algorithm removes all the D-nodes and edges in Rj. This fragments leftbehind are then combined into a new multicast tree by the K-SPH algorithm. Note that each of the A-nodesin Rj forms a fragment by itself. K-SPH combines the fragments pairwise, starting with two that have theshortest distance between them, and repeating the procedure until a single fragment remains. The counterscorresponding to the region that triggered the rearrangement are reset to zero once the rearrangement iscompleted.Figure 5 illustrates the operation of the algorithm with respect to a delete request. The numbersin the �gure denote counter values within nodes. Initially there is a single modi�ed region in the multicasttree containing the deleted node F; the counters in C, D, and E corresponding to this region have a value of1. When node E is deleted, the region expands to include nodes A and B, and the counters in A, B, C, Dcorresponding to this region are updated to 2. If the threshold is set as 2, a rearrangement is now triggered.The rearrangement algorithm removes the nodes E and F and all the edges within the region, leaving behindfour disconnected nodes A, B, C, D. The nodes are reconnected using K-SPH to obtain the new tree.The choice of the threshold to trigger a rearrangement a�ects the behavior of the algorithm sig-ni�cantly. A larger threshold reduces the frequency of rearrangements, but may cause large variations inthe cost of the multicast tree in comparison to that of an optimal tree. In addition, if rearrangements areperformed infrequently, more work may be needed each time the rearrangement algorithm is invoked. In thenext section, we derive an analytical upper bound on the competitiveness of the algorithm as a function ofthe threshold value selected.3.3 Pruning AlgorithmAfter each delete operation, the multicast tree may be further pruned by removing subtrees consisting ofonly deleted nodes. The optimization is initiated by each D-node that is currently a leaf of the multicasttree. The procedure is performed iteratively until no D-nodes remain as leaves of the tree. Each D-node10



that is currently a leaf of the multicast tree sends a message to its neighbor in the tree. Any S-nodes in thetree with a degree of 2 receiving such a message simply relay it along the tree. The message terminates whenit reaches a Z-node, an M -node, or an S-node with more than two incident edges in the tree. Dependingon the type of node where the message terminates, the following actions are performed by the terminatingnode:1. If the message reaches a Z-node, say x, the entire path from x to the leaf node that originated themessage is removed from the tree. The counter in x corresponding to the path is reset to zero.2. If the message terminates at an M -node, say y, the path from y to the originating leaf node is removedas in the previous case. In addition, y broadcasts a counter update message to all the nodes in itsregion. This decrements their counters by one.3. Finally, if the terminating node is an S-node, say s, the path from s to the originating node is removedas in the above cases. In addition, s is now marked as a D-node. Since the number of modi�ed nodesin the region enclosing the originating leaf node remains unchanged, no counter-update messages aregenerated in this case.It is easy to see that, when performed iteratively, the above distributed algorithm removes all inactivesubtrees from the multicast tree. Pseudocode for this pruning algorithm is shown in Figure 6.3.4 A Distributed Version of ARIESHeuristic ARIES was described in this section as a centralized algorithm for clarity. To be practical, however,the algorithmmust have a distributed implementation. The rearrangement heuristic we have chosen, heuristicK-SPH, already has a published distributed implementation [2]. The remaining portion of ARIES may beimplemented as shown by the �nite state machine in Figure 7. Each tree node would run the �nite statemachine shown.When a node joins the multicast tree, it enters the state wait. Inactive nodes leave this state onlywhen directed to by an active node to participate in the execution of the distributed algorithm. Active nodesleave the wait state and enter state update counter when they receive an update message from a modi�ednode. If the updated edge counter meets or exceeds the threshold value, it then enters the rearrange state.While in this state, the node initiates and participates in a distributed Steiner heuristic such as distributedK-SPH [2] to rearrange the nodes and edges in the modi�ed region. At the conclusion of a rearrangement,participating nodes return to state wait.4 Algorithm AnalysisWe now turn to an analysis of heuristic ARIES to evaluate its worst-case behavior. Our primary objective isto derive an upper bound on its competitiveness between rearrangements. Between rearrangements, ARIESbehaves the same as GREEDY and shares its bounds. From Imase and Waxman [8], we know that the upperbound considering only add requests is log2(ni), where ni is the number of nodes in the tree after requestri. However, no such �nite bounds exist for GREEDY with respect to delete requests. In this section, wederive an upper bound for the competitiveness of ARIES considering both adds and deletes. We show that,starting from an optimal solution, the ratio of the cost of the multicast tree produced by ARIES to that of11



while D-nodes with degree 1 remain in Ti dou D-node with degree 1c 0while u an S- or D-node of degree 2 doif u 2 D thenc c � 1delete u and its adjacent edgeu neighbor(u)end whileRi  u's regioncase u oftype Z:cu;i  0type D or A:if c < 0 thenbroadcast counter increment of c to all Z-nodes in Ritype S:Modify u's type to type Dc c + 1if c < 0 thenbroadcast counter increment of c to all Z-nodes in Riend caseend whileFigure 6: Pseudocode for the pruning algorithm.an optimal Steiner tree at any time before a rearrangement is triggered is given byC(t)Copt(t) � cth;where cth is the counter threshold that triggers a rearrangement.We �rst prove that, in steady state, the counters in Z-nodes corresponding to a modi�ed region haveall the same value, the number of modi�ed nodes in the region.Theorem 1: Let Ri be a modi�ed region in the multicast tree T containing ni modi�ed nodes,and let j be a Z-node within Ri. Let cj;i be the value of the counter in node j corresponding to the pathconnecting it to the rest of the nodes in Ri. When all the messages have converged since the last change tothe multicast group, cj;i is equal to ni, the number of modi�ed nodes in Ri.Proof: The proof is by induction on the number of modi�ed nodes in the region, ni.Base step, ni = 1: In this case, all multicast neighbors of the modi�ed node x are Z-nodes. Considerthe counter in each of these neighbors corresponding to the edge connecting them to x. Each of these countersmust be zero before x was modi�ed because there are no other multicast neighbors in modi�ed state that areaccessible through this edge. In addition, all the counters in x must also be zero before the change occurred.Since all multicast neighbors of x increment their counters by 1 in response to the change, the theorem isproved for ni = 1. 12
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Figure 7: The �nite state machine in member nodes corresponding to a distributed implementationof ARIES.Inductive step: Now assume that a state change increases ni by one. This may be the result of1. Adding an A-node that is not currently part of the multicast tree,2. converting an S-node currently in the multicast tree to an A-node, or3. deleting a Z-node from the tree.Let x be the node undergoing the state change. If all of x's multicast neighbors are Z-nodes, thebase step applies. Therefore, assume at least one of the multicast neighbors is a Z-node.Consider case 1 �rst: adding an A-node that is not currently part of the multicast tree. In thiscase, x will be connected to the existing multicast tree T along its shortest path to T . Assume this pathterminates on T at a node y along an edge e incident to y. Since ni > 0, y must be either an S-node oran M -node, and is already part of a region Ri. Furthermore, node y is not an active node and forwardscounter update messages on to the rest of the region. Thus, it follows that a counter increment of +1 willbe propagated from x to all the active multicast nodes in Ri along the tree T .Now consider case 2: converting an S-node currently in the multicast tree to an A-node. Sinceni > 0, at least one of x's multicast neighbors must belong to a region Ri. In addition, all of x's multicastneighbors that are M -nodes must belong to the same region Ri, since they were multicast neighbors beforex was added to the multicast group. Since x was an S-node, all of its counters were zero before the statechange occurred. Hence, a counter increment of +1 will reach every active multicast node in Ri.Finally, consider case 3: deleting a Z-node from the tree. Since x is an active multicast node andni > 0, x is already part of at least one region Ri. In the general case, x may have two types of incident edgesthat are part of the tree T | edges connecting x to its modi�ed multicast neighbors, and those connectingit to its active multicast neighbors. Each of the former type of edges must belong to a distinct region.Let e1; e2; : : : ; ek be edges of the former type incident to x, and let ek+1; ek+2; : : : ; em edges of the lattertype. Let R1; R2; : : : ; Rk be the regions containing e1; e2; : : : ; ek, respectively, and let n1; n2; : : : ; nk be thecorresponding number of M -nodes in the regions. On deleting x, the regions R1; R2; : : : ; Rk are merged intoa single region.Let cx;j, 1 � j � m, be the counter value of node x corresponding to its edge in region Rj before13



the state of x changed. Then, by induction hypothesis,cx;j = nj; 1 � j � k;and cx;j = 0 for k+1 � j � m. When node x is marked for deletion, every active multicast node in region jreceives a counter increment of kXi=1 cx;i � cx;j + 1, and its new counter value becomesnj + kXi=1 cx;i � cx;j + 1 = kXi=1 ni + 1:Since this is the total number of modi�ed nodes in the new region created by merging R1; R2; : : : ; Rk andx, the theorem is proved for case 3.This concludes the proof of Theorem 1. It is easy to see that the theorem holds even when theoptional pruning step of the algorithm is applied, since any change in the number of M -nodes in the regionis broadcast to all the counters in the Z-nodes at the periphery of the region.Each update to the multicast group can cause the cost of the multicast tree grown incrementallyby the algorithm to diverge from that of an optimal Steiner tree. The following theorem provides an upperbound on the cost of the multicast tree after a sequence of updates relative to an optimal Steiner tree forthe active multicast nodes at that time. We will later derive a di�erent bound based on the sizes of theindividual regions within the incremental multicast tree.Theorem 2: Let T (0) be an optimal Steiner tree for a network at time 0 for a given multicastgroup G(0), and let T (t) be the corresponding tree at t > 0 after a sequence of additions and deletions. LetC(t) be the solution cost of T (t) and Copt(t) be the corresponding cost of an optimal Steiner tree for G(t)at time t. If no rearrangements have occurred in the interval (0; t),Copt(t) � C(t)�m(t)dmax(t); (1)where m(t) is the total number of modi�ed nodes in T (t) and dmax(t) is the maximumdistance between twomulticast neighbors in T reached during the interval (0; t).Proof: We will �rst prove the theorem ignoring the pruning step of the algorithm and later extendthe result to cover the pruning step.Let t1; t2; : : : ; tk be the instants in the interval (0; t) at which updates to G occurred, with 0 < t1 <t2 < � � � < tk < t. Let C(ti) and Copt(ti) represent the values of C and Copt, respectively, after the updateat the time ti. We will show inductively that, if Eq. (1) is satis�ed at time ti, then it is also satis�ed at timeti+1. Since, in the basic algorithm, a modi�ed node is never removed from the tree until a rearrangementoccurs, the number of modi�ed nodes can never decrease with an update to the multicast group. Thus,m(ti+1) � m(ti); for every 0 � i � k, with t0 = 0:Eq. (1) is trivially satis�ed at time t0 = 0. Consider the update at time ti; i > 0. By inductionhypothesis, Copt(ti�1) � C(ti�1)�m(ti�1)dmax(ti�1); (2)The update at time ti may be either an add or a delete operation. We will consider these two cases separately.14



If the operation is an add, let x be the new member node that was added to G(t). If x was notpart of T (ti�1), it will now be connected to T (ti�1) along its shortest path. Let dx be the distance of thisshortest path. Then, dx � dmax(ti). C(ti) = C(ti�1) + dx� C(ti�1) + dmax(ti) (3)Since adding a node to the multicast group can, in no case, decrease the cost of an optimal Steiner tree,Copt(ti) � Copt(ti�1):Therefore, from Eq. (2), Copt(ti) � C(ti�1) �m(ti�1)dmax(ti�1):Substituting for C(ti�1) from Eq. (3), this becomesCopt(ti) � C(ti)� dmax(ti)�m(ti�1)dmax(ti�1):Since m(ti) = m(ti�1) + 1 and dmax(ti) � dmax(ti), it follows thatCopt(ti) � C(ti) �m(ti)dmax(ti): (4)Now if the appended node x was part of the tree at time (ti�1), that is, if x 2 S(ti�1) [D(ti�1),then C(ti) = C(ti�1) and Copt(ti) � Copt(ti�1). Thus, Eq. (4) is again satis�ed.Next, consider the case when the update at time ti is a delete operation. Then m(ti) = m(ti�1) + 1and C(ti) = C(ti�1). Let x be the node that was deleted from G(ti�1). Assume if possible that an optimalSteiner tree at time ti has cost Copt(ti) < C(ti) � m(ti)dmax(ti). In this case, we can append x to such atree along a path that has a cost of at most dmax(ti�1), resulting in a Steiner tree for G(ti�1) with cost lessthan C(ti) �m(ti)dmax(ti) + dmax(ti�1) = C(ti�1) �m(ti�1)dmax(ti�1):Since this contradicts the induction hypothesis, we conclude thatCopt(ti) � C(ti) �m(ti)dmax(ti):This concludes the proof of Theorem 2.We can now extend Theorem 2 to the case when the optimization procedure to prune inactivesubtrees is added to the algorithm. Note that it is easy to extend the proof if the subtree that was removeddid not consist of any of the multicast nodes in the original Steiner tree at time 0. For example, if a node xwas added to the tree at time ti and later deleted at time tj > ti, it is easy to see that at any time t > tj,both C(t) and Copt(t) are not a�ected by these updates. However, it is non-trivial to show that Eq. (1)holds even when a node initially part of the multicast group G(0) is removed from the tree as part of theoptimization step.The e�ect of the optimization step is to remove one or more D-nodes in a region of the multicasttree. Since the regions in T are edge-disjoint, it is su�cient to prove the result considering the e�ect of thepruning procedure in a single region.Lemma 1: Let T (0) be an optimal Steiner tree for a network at time 0 for a given multicast groupG(0), and let T (t) be the corresponding tree at t > 0 after a sequence of additions and deletions that did15



not trigger the optimization step. Let T (t+) be the tree obtained by pruning the inactive edges in a regionR of T (t), with cost C(t+); and Copt(t+) the the corresponding cost of an optimal Steiner tree for G(t+) attime t+. If no rearrangements have occurred in the interval (0; t),Copt(t+) � C(t+) �m(t+)dmax(t+); (5)where m(t+) is the total number of M -nodes in T (t+) and dmax(t+) is the maximumdistance between twomulticast neighbors in T during the interval (0; t+).Proof: The proof is by contradiction. Consider the set of M -nodes that were removed from T (t)as a result of the pruning. This set, in general, consists of nodes that were added to the multicast groupduring the interval (0; t), as well as nodes in the original multicast tree T (0) that remained in G throughoutthe interval (0; t). Of the nodes in the second category, we can further partition this set into two subsets| the �rst containing those nodes that caused the conversion of an S-node into an M -node and the secondcontaining those that didn't. Let us denote these subsets by P and Q respectively. Note that each node inQ appears on a subtree in the original tree T (0) that is completely removed during the pruning at time t.Let � denote the cardinality of P and EQ the total cost of the edges that were removed when nodes in Qwere pruned.We can convert the sequence of updates in the interval (0; t) into an equivalent sequence in which noupdates of the pruned nodes occur during the interval (0; � ) and only the pruned nodes are updated duringthe interval (�; t). Thus, the pruning at time t+ removes all the nodes that were newly added to M duringthe interval (�; t), and converts � of the S-nodes into M -nodes. Thus,m(t+) = m(� ) + �: (6)All newly-introduced edges in T during the interval (�; t) are removed during the pruning at time t.In addition, edges with a total cost of EQ are removed as a result of pruning nodes that were part of G(t).Hence, the cost of the tree left behind after pruning is given byC(t+) = C(� )� EQ: (7)Assume, if possible, that an optimal Steiner tree T̂ can be constructed for the nodes in G(t+) withcost Ĉ < C(t+)�m(t+)dmax(t+):Substituting for C(t+) and m(t+) from equations (7) and (6), respectively, this becomesĈ < C(� )�EQ � (m(� ) + �)dmax(t+): (8)Since C(� ) � C(0) +m(� )dmax(� ), Eq. (8) can be re-written asĈ < C(0)� EQ � �dmax(t+): (9)We can now construct an optimal Steiner tree for the initial multicast group G(0) as follows: T̂contains all nodes in G(0) except those in P [Q. Therefore, starting from T̂ , �rst add the edges that wereremoved from T (t) when nodes in the set Q were pruned. When these edges are added, every node in Qwould be connected to a Z-node in T̂ , and the cost of the tree increases by EQ. We can now connect each16
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Z1 ZZ Z2 3 kFigure 8: Example in the proof of Lemma 2.of the nodes in P along its shortest path to the tree. This increases the cost by at most dmax(t) for eachnode in P . Thus, the cost of the Steiner tree obtained is less thanĈ +EQ + �dmax(t):By Eq. (9), this is less than C(0). Since C(0) is the cost of an optimal Steiner tree for G(0), this results ina contradiction. This concludes the proof of Lemma 1.The bound in Theorem 2 did not take into account the locations of the updates. Partitioning theM -nodes into regions allows us to derive our main result, a bound based on the number of M -nodes inindividual regions.Theorem 3: Let T (0) be an optimal Steiner tree for a network at time 0 for a given multicastgroup G(0), and let T (t) be the corresponding tree at t > 0 after a sequence of additions and deletions. LetC(t) be the solution cost of T (t) and Copt(t) be the corresponding cost of an optimal Steiner tree for G(t)at time t. If no rearrangements have occurred in the interval (0; t),C(t)Copt(t) � cth; (10)where cth is the counter threshold to trigger a rearrangement.We will prove this theorem considering only the delete operations in the interval (0; t). Since thee�ect of add operations on the competitiveness is less than that of deletes, the bound also holds for arbitraryupdate sequences consisting of both add and delete operations. We assume that the optimization step of thealgorithm has been applied, with the result that no deleted nodes appear as leaves in the tree T (t).Before we prove the theorem, we �rst prove the following lemma.Lemma 2: Let Ri be a region in the multicast tree T (t) at time t after a sequence of delete operationsin the interval (0; t). Let Zi = fz1; z2; : : : ; zkg be the set of Z-nodes in Ri. Then, any Steiner tree in T (t)for the nodes in Zi must have a minimum cost of Cini + 1 ; (11)where Ci the total cost of edges in Ri and ni the number of M -nodes in Ri.Proof: Since the proof of this lemma for the general case is complex, we start with a simple prooffor the case ni = 1. In this case, the region Ri consists of one M -node, say x, and k Z-nodes z1; z2; : : : ; zk,17



as illustrated in Figure 8. Assume that a Steiner tree T̂ has been found in the network connecting the nodesz1; z2; : : : ; zk with cost less than Ci=2. Since x is not a leaf node in the tree T (t), there is a path from x toone of the Z-nodes in the region, say zi, with cost � Ci=2. We can append this path to the Steiner tree T̂ toobtain a subtree connecting nodes x; z1; z2; : : : ; zk, with total cost < Ci. This shows that the initial solutionT (0) was not an optimal Steiner tree for G(0), resulting in a contradiction. Note that the result is true evenif inactive subtrees were pruned o� the node x during the interval (0; t).Now consider the general case with ni � 1. Assume, again, that a Steiner tree T̂ has been foundconnecting the nodes z1; z2; : : : ; zk with cost Ĉ < Ci=(ni + 1).We can partition the edges in region Ri into two subsets as follows: Let Ei;1 be the set of edgesbelonging to segments in Ri that connect two M -nodes; and Ei;2 the set containing the remaining edges inRi. The edges in Ei;1 form a subtree of T (t) connecting the set of M -nodes in Ri. The edges in Ei;2 connectthis subtree to the Z-nodes in the region. Let Ci;1 and Ci;2 be the total costs of the edges in Ei;1 and Ei;2,respectively, with Ci;1 + Ci;2 = Ci.It is easy to see that any path from a Z-node in Ri to the subtree consisting of edges in Ei;1 musthave distance no more than Ĉ. If not, we can remove this path from Ri and add the edges in T̂ to obtain aconnected graph containing all the Z- and M -nodes in Ri with a cost lower than Ci.Similarly, it can be shown that Ci;1 � Ci � 2Ĉ. Otherwise we can add to Ei;1, the Steiner tree T̂and a path from the subtree formed by Ei;1, resulting in Steiner tree for all the Z- and M -nodes in Ri witha cost lower than Ci. Thus, Ci;1 � Ci � 2Ĉ: (12)Since the edges in Ei;1 form a subtree of T with at least ni nodes, one of the paths in this subtree betweentwo closest M -nodes must have distance greater than or equal toCi;1ni � 1 :Removing the edges on this path disconnects the subtree into two or more fragments. We can re-combinethese fragments into a Steiner tree connecting the M - and Z-nodes of Ri by adding to these fragments (i)all edges in Ei;2 and (ii) edges in T̂ , and pruning o� unnecessary edges. The cost of this tree is less than orequal to Ci � Ci;1ni � 1 + Ĉ: (13)Since the cost of the Steiner tree so constructed must be no more than Ci, we haveCi � Ci;1ni � 1 + Ĉ � Ci: (14)Using the inequality in Eq.(12) and simplifying, this becomesĈ � Cini + 1 : (15)This concludes the proof of Lemma 2. Note that the upper-bound of Eq.(15) can actually be reached. Forexample, Figure 9 shows a region that is a linear chain consisting of two Z-nodes at the ends and ni internalM -nodes. If each segment of the chain has a weight of 1 unit. The total cost of the chain is ni + 1. Assumethere is a network edge between the two Z-nodes with cost (1 + �). Then,Ĉ � 1 + �ni + 1 : (16)18
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= deleted nodeFigure 9: An example where the lower bound of Eq. (15) is actually reached.We can now prove Theorem 3.Proof of Theorem 3:Let Ri; 1 � i � k be the regions in T (t) and ni be the number of M -nodes in Ri. Denote by Ci thecost of the edges in Ri, and by Zi the set of Z-nodes in Ri. Letnmax = max1�i�kni:Since no rearrangements occurred during the interval (0; t), nmax � cth + 1. Hence, we need to show thatC(t)Copt(t) � nmax + 1;where Copt(t) is the cost of an optimal multicast tree Topt(t) for the multicast group G(t). Note that theedges in the regions are disjoint from each other. In addition, the edges in R1 [R2 � � � [ Rk form a subtreeconnecting all the Z-nodes in the k regions, as well as the M -nodes.Let CZ be the cost of an optimal Steiner tree T̂ for the nodes in Z1 [ Z2 � � � [ Zk. Consider anyoptimal Steiner T̂ tree for the multicast group G(t) at time t, with cost Ĉ. Assume that we add to T̂the edges in each of Ri. Since the nodes in Z1 [ Z2 � � � [ Zk are connected in both T̂ and the edges inR1 [R2 � � � [Rk, we must have Copt(t) + kXi=1 Ci � CZ � C(t): (17)19



That is, when the cost of a minimal Steiner tree is subtracted from Copt(t) +Pki=1 Ci, the result must begreater than or equal to the cost of the tree at time t.Dividing the terms in Eq. (17) by Copt(t) and rearranging, we getC(t)Copt(t) � 11� Pki=1 Ci�CZC(t) : (18)Consider the term Pki=1 Ci�CZC(t) . Since Pki=1 Ci � C, this can be written asPki=1 Ci � CZC(t) � Pki=1 Ci �CZPki=1 Ci �CZ� 1� CZPki=1 Ci (19)By Lemma 3, CZ � kXi=1 Cini + 1. Therefore, Eq. (19) can be written asPki=1Ci � CZC(t) � 1�  kXi=1 Cini + 1! = kXi=1 Ci� 1�  kXi=1 Cinmax + 1! = kXi=1 Ci� nini + 1 : (20)Substituting in Eq. (18), we get C(t)Copt(t) � ni + 1: (21)This concludes the proof of Theorem 3. Note that the theorem provides us a way to limit thedisparity between the incremental solution and the optimal solution by setting a threshold for the counters fortriggering a rearrangement. If the rearrangement algorithm leaves behind an optimal Steiner tree, the boundin Eq. (10) holds at any point in time for a given counter threshold. In practice, however, the rearrangementsmust be done using a heuristic algorithm, and the bound may not hold at all times. Nevertheless, the theoremprovides valuable insight into the behavior of the algorithm.5 Performance EvaluationHaving proved an analytical upper bound on the competitiveness of solutions produced by ARIES, we nowturn to its average behavior. Since the analytical upper bound provides little insight into the algorithm'saverage behavior, we simulated ARIES on a large number of random test networks. We found that in practicethe competitiveness of the solutions produced by ARIES were much better than the upper bound. In fact,the majority of the solutions found were within 10% of the best solution found by a static Steiner heuristic.The details of our simulations follow. 20



5.1 Evaluation MethodologyWe simulated our heuristic on 50 randomly generated, sparse, 200-node test networks, each with 60 multicastmembers. We also simulated heuristics GREEDY and EBA, and include their results for comparison. Wechose to use random networks because our choice of suitable existing networks was very limited. Instead, wegenerated random networks as described below. We consider our graphs to be sparse because each has lessthan 5% of the possible �2002 � edges present in a 200-node complete graph. We chose 60 multicast membersfor two reasons: (i) we believe it likely that a multicast group will consist of a minority of graph nodes and(ii) 60 multicast members in a 200-node graph presents a di�cult problem for Steiner heuristics.Each heuristic received 100 requests to add or delete a multicast member for each test network. Theprobability of an add request is related to t, the number of nodes in the tree, by the function [14]:(200 � t)(200� t) + (1� )t :The value of  determines the equilibrium point at which the probability of an add or delete is equallylikely. In our simulations  was set to 0:3, the fraction of multicast members. As a result, each test networkreceived approximately the same number of addition and deletion requests. In our simulations, each requestwas presented to the network only after the previous request was completely serviced.The 50 test graphs were generated to resemble real networks in a manner similar to that of Doar[6]. Each of the 200 nodes is distributed across a Cartesian coordinate plane with minimum and maximumcoordinates (0; 0) and (400; 400), creating a forest of 200 nodes spread across this plane. The nodes arethen connected by a random spanning tree. This tree is generated by iteratively considering a random edgebetween nodes and accepting those edges that connect distinct components. The remaining redundant edgesof the graph are chosen by examining each possible edge (x; y) and generating a random number 0 � r < 1.If r is less than a probability function P (x; y) based on the distance between x and y, then the edge isaccepted. Each edge's distance is its rectilinear distance. We used the probability functionP (x; y) = �e�dx;y400� ;where dx;y is the rectilinear distance between nodes x and y [6]. The parameters � and � govern thedensity of the graph. Increasing � increases the number of connections to nodes far away and increasing �increases the number of edges from each node. After some experimentation, we chose � = 0:10 and � = 0:20for generating the graphs used in this simulation. These values produced graphs of realistic density anddegree-distribution.Each heuristic was implemented on top of our Steiner problem simulation platform, designed toprovide the level playing �eld upon which to base comparisons. It supplies the basic graph manipulationroutines used by the heuristics such as adding and deleting edges.5.2 Simulation ResultsIn this section we present our simulation results for heuristic ARIES. For comparison, we also includesimulation results for heuristics GREEDY and EBA. The metrics we use are competitiveness, CPU time,and the number of edges that are di�erent between successive multicast trees. Competitiveness is de�nedto be the ratio between the heuristic tree cost and the cost of the static heuristic K-SPH for each test case.Ideally, we should be comparing heuristic results to the optimal tree for each case, but this is impractical.21
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Figure 10: The cumulative distribution of competitiveness for each heuristic.
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Figure 11: The cumulative distribution of CPU time for each heuristic.22



Instead, we use static heuristic K-SPH as our benchmark. Our second criterion, CPU time, is measured bythe CPU seconds on an IBM RS/6000 for a serial implementation of the algorithms. Our third criterion, thedi�erence between successive trees, is measured by the number of edges that are di�erent between successivetrees. Figure 10 presents the cumulative distribution for the competitiveness for four variants of heuristicARIES as well as heuristics GREEDY and EBA. Each variant of ARIES uses a di�erent threshold value: 2,4, 6, and 8. For example, in ARIES6, each region of the tree may have at most �ve modi�ed nodes withouttriggering a rearrangement. As seen in Figure 10, all of ARIES's variants occupy the favorable upper half. Asrearrangements ares postponed longer, ARIES's cumulative distribution becomes closer to that of GREEDY.It is noteworthy that EBA has the worst overall performance of any heuristic. This is because the heuristicruns on a complete distance graph. This means that each Steiner tree resembles a merged shortest path treewhen translated back to its real-world equivalent and we know merged shortest-path trees to be sub-optimal[13]. This disadvantage is exaggerated because EBA requires internal, non-member nodes to have degreegreater than two.Figure 11 complements Figure 10 by presenting the cumulative distributions for CPU seconds.Heuristic GREEDY has the lightest computation requirements and �nishes all cases well within the 1.2CPU seconds shown. By comparison, within the same CPU time ARIES's least expensive variant, ARIES8,completed 97% of its cases; while the most expensive variant, ARIES2, completed only 71% of its cases.However, heuristic EBA completed just 63% of its cases. Again, heuristic EBA displays the worst behavior.This is for at least two reasons: (i) EBA requires up-to-date distance information for both the graph andthe tree, and (ii) EBA frequently rearranges the tree. Although distance information for the original graphmay be pre-computed, distance information for the current tree requires additional computational e�ort foreach request. Because EBA rearranges the tree in roughly half its cases, its computational e�ort per requestbecomes signi�cant. EBA requires similar computational e�ort for processing each request. By contrast,most of the total CPU time for ARIES is concentrated in its rearrangements.Figure 12 completes the comparison of heuristics by displaying the number of edges that are di�erentbetween successive trees for all �fty test networks. This criterion would be important to applications seekingthe smallest possible change between multicast trees such as video conferencing and real-time data broadcasts.Heuristic GREEDY changes successive trees the least, accomplishing each change using no more than fouredges. The ARIES variants appear next followed by heuristic EBA. All of the ARIES variants changesuccessive trees by four or less edges for over 90% of the test cases. EBA changes only 50% of its cases usingfour or less edges. This is so because of the edge changes necessary to make the tree an extension tree aftereach request.For our �fty test networks, the two most promising variants of ARIES were ARIES4 and ARIES6.Both cases strike a middle ground between frequent rearrangements and degradation in tree quality. Theircompetitiveness is roughly equivalent even though ARIES6 rearranges the graph less frequently than ARIES4.For the rest of this paper, we use ARIES6 as our representative ARIES variant. We choose this variantbecause it represents the best balance among competitiveness, computational e�ort and edges changed forour simulations. The best threshold value in general will, of course, depend on the problem instance.The next two �gures, Figures 13 and 14, present tree cost and CPU time as a function of eachaddition or deletion request for one example network of the �fty test networks used in our simulations. InFigure 13 static heuristic K-SPH is the lowest curve and represents the baseline. ARIES closely follows thiscurve. Heuristic GREEDY deviates moderately from K-SPH's curve while heuristic EBA shows the largest23
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Figure 12: The cumulative distribution of edges changed for each heuristic.variation.In Figure 14 static heuristic K-SPH is the upper curve. This upper curve plots the CPU timenecessary to recompute each case using the static heuristic K-SPH. As seen in the �gure, the computationalrequirement of ARIES is light except for the occasional rearrangements shown by spikes in the curve. Thenumber and size of these spikes are dependent on the counter threshold chosen. Heuristic EBA, by contrast,performs a more uniform amount of work for most requests. This di�erence can be more clearly seen inFigure 15. Here, heuristic EBA is contrasted with heuristic ARIES6. While each of ARIES6' 7 spikes exceed5 CPU seconds, the remaining cases fall well below 0.5 CPU seconds. EBA, in contrast, often uses �ve timesas much CPU time as ARIES6 for the same request. This same di�erence is also reected in Table 1.In Table 1 we summarize the number of rearrangements, average number of edges changes and totalCPU time spent for each of the ARIES variants, EBA, and GREEDY. Heuristic EBA rearranges the treemost times, 47, with the highest average number of edges di�erent between successive trees, 9.4. However,this disadvantage is balanced by its modest CPU requirement of 91.6 CPU seconds. As observed above, thisCPU time is distributed more evenly over the 100 requests as compared to the ARIES variants. ARIESvariants perform between 5 and 31 rearrangements and have a smaller value for the average number of edgechanges between successive trees. This is primarily the result of con�ning rearrangements within modi�edregions. ARIES variants require the most CPU seconds overall, although most of this time is spent duringrearrangements. Even the most expensive variant of ARIES, ARIES2, requires less than 5% of the CPU timeof static K-SPH. We �nd this to be an acceptable tradeo� for increased competitiveness. In addition, theadvantage of EBA in terms of its lower CPU time is unlikely to hold in a distributed implementation, sincethe algorithm cannot be extended to the distributed case in a straightforward manner. Heuristic GREEDY,of course, performs no rearrangements, has the minimum value in terms of the average number of edges24
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Figure 13: Tree cost for one example graph over all requests.
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Figure 14: CPU time for one example graph over all requests.25
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Figure 15: Comparison of CPU time of heuristics EBA and ARIES6 for one example graph over all requests.changed between successive trees, and requires the least CPU time.6 Concluding RemarksIn this paper we proposed and evaluated a new, rearrangeable heuristic, ARIES, for the on-line multicastproblem. The algorithm is based on monitoring the accumulated damage to the multicast tree within localregions of the tree as nodes are added and deleted, and triggering a rearrangement when the number ofchanges within a connected subtree crosses a set threshold. We presented analytical upper bounds on thecompetitiveness of the algorithm and presented simulation results using competitiveness, CPU time, anddi�erences between successive trees as the metrics. The results were compared with those from two previousheuristics, GREEDY and EBA.Of the heuristics evaluated, heuristic ARIES performed closest in competitiveness to the baselinesolutions produced by the static Steiner heuristic K-SPH. It also lends itself to tuning by varying its counterthreshold that triggers a rearrangement. The quality of solutions produced by ARIES on our test networks,on average, was considerably better than the worst-case analytical bound. In addition, successive trees wereoften very close, reducing the disruption caused by large rearrangements. Among the variants of ARIES,ARIES6 emerged as the most promising for our 50 test networks. The best-performing variant for a particularcase will, of course, depend on the network and the pattern of updates to the multicast tree.In addition to our description of heuristic ARIES as a centralized heuristic, we have also outlinedhow this heuristic could be implemented as a distributed, asynchronous algorithm. This distributed versionwould likely have the greatest practical use.At least two open topics remain: First, the upper bound for competitiveness we have shown assumes26



Heuristic Number of Average Number of Total CPURearrangements Edges Changed SecondsStatic K-SPH 14834.0EBA 47 9.4 91.6ARIES2 31 2.3 670.5ARIES4 11 1.8 312.6ARIES6 7 1.5 286.8ARIES8 5 1.3 210.1GREEDY 0 0.9 4.4Table 1: The message and convergence bounds for distributed K-SPH.that the multicast tree is restored to an optimal tree after each rearrangement. A more di�cult, butinteresting problem would be to bound the competitiveness across more than one rearrangement, taking intoaccount the sub-optimal solutions produced by the rearrangement algorithm.Second, we have only sketched a distributed implementation of ARIES. Admittedly, a distributedimplementation in our ideal assumed environment would be straightforward. In a real environment, however,network nodes may enter and leave the multicast group simultaneously. Multiple simultaneous modi�cationsto the multicast membership could result in race conditions under which the distributed algorithm doesnot converge. Mechanisms must be devised to coordinate the updates in a consistent manner. In addition,counter updates need to be communicated to tree nodes within a local region reliably. These di�culties,however, are not unique to ARIES, but arise in the design of many distributed algorithms.ARIES represents a balance between the conicting demands of multicast tree quality, computationalrequirements and distributed implementation complexities. Of particular interest are its �nite theoreticbounds for multicast member addition and deletion. This coupled with its good average case behavior makeARIES a suitable choice for real-world on-line multicast routing applications.References[1] F. Bauer and A. Varma. \Degree-constrained multicasting in point-to-point networks," in Proc. IEEEINFOCOM, Boston, Apr. 1995, pp. 369{376.[2] F. Bauer and A. Varma. \Distributed algorithms for multicast path setup in data networks," in Proc.IEEE GLOBECOM, Singapore, Nov. 1995, to appear.[3] J. Beasley. \An SST-based algorithm for the Steiner problem in graphs," Networks, vol. 19, pp. 1{16,1989.[4] L. Berry. \Graph theoretic models for multicast communications," in Tra�c theories for new telecom-munications services ITC Specialists Seminar, Adelaide, Australia, Sep. 1989, pp. 95{99.[5] K. Bharath-Kumar and Ja�e. \Routing to multiple destinations in computer networks," IEEE Trans-actions on Communications, vol. COM-31, no. 3, pp. 343{351, Mar. 1983.[6] M. Doar and I. Leslie. \How bad is naive multicast routing?," in Proc. IEEE INFOCOM, San Francisco,CA, Apr. 1993, pp. 82{89. 27
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