
Satis�ability Testing with More Reasoning and Less GuessingAllen Van Gelder Yumi K. Tsuji�Baskin Center for Computer Engineering and Information SciencesUniversity of California, Santa Cruz 95064UCSC-CRL-95-34avg@cs.ucsc.edu tsuji@cs.ucsc.eduApril 21, 1995AbstractA new algorithm for testing satis�ability of propositional formulas in conjunctive normal form (CNF)is described. It applies reasoning in the form of certain resolution operations, and identi�cation ofequivalent literals. Resolution produces growth in the size of the formula, but within a global quadraticbound; most previous methods avoid operations that produce any growth, and generally do not iden-tify equivalent literals. Computational experience indicates that the method does substantially less\guessing" than previously reported algorithms, while keeping a polynomial time bound on the workdone between guesses. Experiments indicate that, for larger problems, the time investment in reasoningreturns a pro�t in reduced searching, and the pro�t increases with increasing problem size.Experimental data compares six branching strategies of the proposed algorithm on a variety of prob-lems, including several Dimacs benchmarks. These branching strategies were shown to perform di�erentlywith statistical signi�cance. A new scheme based on Johnson's maximum satis�ability approximationalgorithm was found to be the best overall.Both satis�able and unsatis�able random 3-CNF formulas with 50{283 variables and 4.27 ratio ofclauses to variables have been tested; this class is generally acknowledged to be relatively \hard" andrequired extensive backtracking by other algorithms. Unsatis�able random problems were found todeviate from the easy-hard-easy pattern.The new algorithm solves random formulas with surprisingly little backtracking: the average numberof guesses was 3,267 for 200 variables at this ratio, and 57,503 for 283 variables. Larger unsatis�ableformulas from circuit-fault analysis, with 500{12,800 variables were solved with no backtracking in somecases. Extensive statistics on guesses and time are reported. Statistical and experimental techniques andtraps are discussed. An exponential growth rate for random formulas is estimated.Keywords: Satis�ability, Boolean formula, propositional formula, resolution, 2-satis�ability, k-closure.To appear in Cliques, Coloring, and Satis�ability: Second DIMACS Implementation Challenge, Johnson,D. S. and Trick, M. eds., American Mathematical Society, 1996.�Authors were supported in part by NSF grant CCR-8958590.1

1 OverviewThe problem of Boolean, or propositional, satis�ability is the fundamental NP-complete problem and hasmany practical applications as well. We assume the reader is generally familiar with it, and give de�nitionsonly when needed for clarity. In Section 2, we present the idea of k-closure, an operation on a propositionalformula that is in conjunctive normal form (CNF). The method involves a limited use of resolution, calledk-limited resolution (De�nition 2.1). Starting from the given formula, derivation of clauses by k-limitedresolution continues until no further such derivations are possible. Since the number of such clauses in aformula of n variables is O(nk), k-closure takes polynomial time. We describe an algorithm for satis�abilitybased on k-closure in Section 3.The k-closure approach is compared with other approaches, and some of its properties are described.An earlier version of this algorithm (presented at the 1993 AAAI Spring Symposium) used 3-closure, butsome operations were much too expensive as implemented. The new version reported here, called 2cl, uses2-closure, plus certain resolution operations on longer clauses (see Section 4). Two-closure is achievable inquadratic time per eliminated variable.Section 5 presents the experimental data comparing the di�erent branching strategies used by theproposed 2cl algorithm on a variety of problems. The Student's paired t-test was applied to the number ofguesses for these branching strategies to demonstrate the statistical signi�cance of their di�erences. A newscheme based on Johnson's maximum satis�ability approximation algorithm was found to perform the beston random 3-CNF formulas, and was always close to the best on other varieties.Section 7 addresses the question of whether the added time for reasoning that is occurred by 2cl paysdividends in terms of reduced search space (as measured by the number of guesses). The time performanceof 2cl is compared to the traditional satis�ability algorithm of Davis, Putnam, Logemann and Loveland[DP60, DLL62] on families of increasingly large random formulas. Above 2000 literals (about 150 variables)2cl emerges as the clear winner.Achieving acceptable performance depends strongly on e�cient data structures. We found that memorywas often more of a problem than time for large numbers of variables: for an n variable formula, it was notfeasible to use an n�n array to remember the 2-closure results. Space-e�cient data structures often requiresome overhead in time. Keeping that overhead low was the primary implementation challenge. We believethere is room for signi�cant additional improvement without changing the basic structure of the algorithm.Appendix A provides further discussion on the statistical traps and techniques for NP-hard problems.Concerning experimental techniques generally, it was found that variable reordering (Section 6.2) has asigni�cant impact on the performance of satis�ability testing of Boolean formulas associated with structuredproblems. We investigated the e�ect of variable reordering by shu�ing the variables in the input formula, sothat ties would be broken in a variety of ways; a seed for the random number generator used by this shu�ingprocedure can be changed at the invocation time. The e�ectiveness of this approach was experimentallycon�rmed for many of the Dimacs benchmark problems. Appendix B gives the results on the benchmarkproblems for the Second DIMACS Challenge.2 CNF Formulas and ClosuresIn this paper we regard a CNF propositional formula in the standard way as a set of clauses, where eachclause is regarded as a set of literals. Whether x is a positive or negative literal, ~x denotes its complement.We may classify CNF formulas by their widest clause as 2-CNF, 3-CNF, etc. Sometimes the shortest clauselength is of interest, too. The empty clause is written as ;, and represents false.2

Recall that clause C is said to subsume clause D, and D is subsumed by C if the literals of C are a subsetof those of D. A tautologous clause is one that contains both a literal and its complement, can be thought ofas true, and is considered to be subsumed by any clause. We assume familiarity with the terms resolution,unit clause rule, and pure literal rule.A Krom formula (or 2-CNF formula) has an associated implication graph: its nodes are literals of theformula, and clause fx; yg induces directed edges ~x! y and ~y ! x. The notation a!! b means that thereis a path from literal a to literal b in the implication graph.We shall use n to represent the number of variables, m for the number of clauses, and L for the numberof occurrences of literals, in a formula.De�nition 2.1: Several notions of closure for sets of clauses will be used.1. A set of clauses S is said to be closed under resolution, or simply closed , if no clause of S is subsumedby a di�erent clause of S, and the resolvent of each pair of resolvable clauses is implied by (subsumedby) some clause in S.2. A closure of a CNF formula F is a CNF formula that derived from F by a series of resolutions (whichadd clauses) and subsumptions (which delete clauses), and is closed.3. The operation of k-limited resolution is de�ned to be resolution in which the operands and the resolventhave at most k literals each.4. A set of clauses S is said to be k-closed if no clause of S is subsumed by a di�erent clause of S, and theresolvent of each possible k-limited resolution with operands in S is implied by (subsumed by) someclause in S.5. A k-closure of a CNF formula F is a CNF formula that derived from F by a series of k-limitedresolutions (which add clauses) and subsumptions (which delete clauses), and is k-closed.It is easy to see that both closure and k-closure are unique.By the completeness of resolution, a set of clauses that is closed under resolution is unsatis�able if andonly if it contains the empty clause, ;.The size of the closure of formula F with n propositional variables may be exponential in n. However,the k-closure has a size that is O(nk), and so can be computed in polynomial time if k is a constant. Weshall be interested primarily in k = 2 or 3.2.1 Two-ClosureFor a 2-CNF formula, all resolvents have at most two literals, so its 2-closure is also its closure. It followsthat computing the 2-closure provides a polynomial-time decision procedure for 2-SAT. Using the techniqueof strongly connected components, it is possible to decide 2-CNF formulas more e�ciently by avoidingthe explicit construction of the 2-closure [APT79]. However, this method does not compute all availableinferences on satis�able 2-CNF; such inferences are valuable when the 2-CNF is embedded in a larger formula.Larrabee's algorithm [Lar92] (in e�ect) uses the 2-closure of the 2-CNF part of more general CNFformulas. This paper extends that idea by adding e�cient subsumption resolution, and by incrementallyupdating the 2-closure and backtracking out of the updates when necessary. Pretolani [Pre95], as well asJaumard et.al. [JSD95] presented satis�ability algorithms that exploit 2-SAT relaxation. Combining someresolution with searching was also reported by Billionnet and Sutter [BS92], but they do not give enoughspeci�cs to permit a detailed comparison. 3

2.2 Three-ClosureFor a 3-CNF formula F , it might happen that its 3-closure is also its closure, in which case absence orpresence of the empty clause ; immediately decides satis�ability. In general, of course, the 3-closure is notthe closure, as the resolvent of two 3-clauses is normally a 4-clause, which is not in the 3-closure. However,the 3-closure might contain the empty clause ; anyway, demonstrating unsatis�ability.De�nition 2.2: Suppose a set of clauses S contains a variable v such that some resolvent involving v asthe annihilated variable is not subsumed by any clause in S. Then v is said to have implicit informationassociated with it.If no variable has implicit information, then the set S is closed and the satis�ability question is trivial(look for ;). It may also be possible to exploit the fact that one variable has no implicit information.Theorem 2.1: If a variable x contains no implicit information in a CNF formula, then all clauses containingthat variable can be deleted without changing the satis�ability of the formula.Proof : A valid step of the original (resolution-based) Davis Putnam procedure is to perform resolution withx as the annihilated variable, then delete all clauses containing x. But, by De�nition 2.2, all resolvents ofthis operation are already in the formula, or are subsumed by clauses already in the formula.Unfortunately, testing for implicit information is very expensive. Nevertheless the concept can still beuseful. A 2-closed set of binary clauses has no implicit information, which leads to one of our principalguidelines:Fact It is never necessary to guess an assignment to a variable that occurs only in binaryclauses.Although we do not want to pay to verify the presence of implicit information before choosing a variable tobranch on, we can restrict the choice to those that most probably do have such implicit information.3 The \Ideal" AlgorithmThe above considerations suggest an algorithm that performs 3-closure on the current formula, checks for;, then checks whether there is any variable with implicit information. If so, then \guess" an assignment tothat variable. If this guess leads to an unsatis�able formula, then backtrack and \guess" the complementaryassignment. In both cases the guessed assignment is added to the current formula as a new unit clause, andthe algorithm is called recursively.It is interesting to compare the above approach with the older algorithms for CNF satis�ability. The �rstalgorithm oriented toward CNF formulas was due to Davis and Putnam [DP60], and was based on variableelimination through resolution. It used the unit clause rule and pure literal rule as heuristics for choosinga variable, but when those were not applicable, it speci�ed to choose a variable from a shortest clause. Allpossible resolutions with this variable are done, and clauses containing this variable (or its complement) areeliminated. There is no \guessing" or branching, but longer and more numerous clauses may be created.Subsumption checking is an option to reduce the size of the formula.What is often referred to in current literature as the Davis-Putnam algorithm is actually a modi�cationdue to Davis, Logemann, and Loveland [DLL62], and will be called the DPLL algorithm here. Neither longerclauses nor new clauses are created by DPLL. The DPLL algorithm uses the unit clause rule (a special caseof resolution), and the pure literal rule, but when these are inapplicable, it chooses a variable from a shortest4

clause and \guesses" an assignment, essentially by adding that literal to the current formula as a new unitclause and recursively calling the algorithm. If this guess leads to an unsatis�able formula, the complementis guessed and the algorithm again called recursively; this step is called backtracking. If both guesses createunsatis�able formulas, then the current formula is reported as unsatis�able. Section 7 presents performanceresults for DPLL.However, the chosen variable may or may not contain implicit information. For example, if the currentformula contains (v _ a), (~v _ b _ c), (a _ b _ c), and other clauses, but no more occurrences of v or ~v, thenv contains no implicit information, but might be chosen by DPLL as the branching or guessing variable.Several variants of this procedure have been proposed, but all have the same property that the branchingvariable may have no implicit information. The motivation for choosing a variable in a shortest clause isprobably to create more unit clauses.The 3-closure method combines the ideas of resolution and assignment guessing. By only doing resolutionwhen the resolvent is three or fewer literals, we are assured of a polynomial bound (per guess) on thisoperation. By always choosing a variable with implicit information for assignment guessing, we bring theformula closer to one whose 3-closure is its closure. We add two further optimizations to reduce formula size:1. The pure literal rule: requires no comment.2. Equivalent literal recognition: if (~a _ b) and (~b _ a) are present, then all occurrences of b and ~b maybe replaced by a and ~a, respectively. This reduces the number of variables and usually causes manyclauses to be subsumed.De�nition 3.1: In the context of a k-closure algorithm, we say that a k-CNF formula is k-stable if it isk-closed, does not contain ;, has no pure literals, and has no equivalent literals, as described above.Casual experimentation shows that it is quite di�cult to construct a 3-stable formula that also containsbinary clauses. One example is shown below.An unusual feature of our \ideal" algorithm is that it may, and normally does, detect satis�ability withoutconstructing a satisfying assignment. Consider this formula(a _ b); (x _ y); (~a _ ~x _ ~y); (~y _ ~b _ ~a); (b _ ~x _ ~y); (x _ ~b _ ~a);It is seen to be 3-stable, and is in fact the smallest 3-stable formula containing binary clauses we have beenable to construct. Because it is closed, and does not contain the empty clause, it must be satis�able.Some applications require an explicit satisfying assignment to be produced. Fortunately, this can be donee�ciently by relying on the following observation:Theorem 3.1: If literal x occurs in a closed formula S, then S has a model in which x is true.Proof : The formula S has no implicit information, so ~x cannot be a logical consequence of S by thecompleteness of resolution.So a satisfying assignment for a closed k-stable formula S can be found recursively by choosing any literalx in a non-unit clause of S, and then �nding a satisfying assignment for the closure of (S [(x)).4 The Practical AlgorithmAs mentioned before, to determine whether a variable contains implicit information it is necessary �rst thatthe formula be 3-closed, and then all possible resolutions must be tried to see if any produce an unsubsumed4-clause. We programmed a short-cut that chooses variable that is likely to have implicit information.5

Once we abandon strict implicit information, there is little motivation for performing complete 3-closure.However certain of these operations on \long" clauses (3 or more literals) are e�cient and very valuable.1. Krom subsumption resolution removes one literal from a long clause: fa; xg and f~a; x; y; : : :g resolve tofx; y; : : :g, which subsumes the original f~a; x; y; : : :g.2. Simple subsumption removes a long clause when a binary clause or unit clause implies it. This reducesthe \non-information" in long clauses, so branching choices will be more pertinent.In addition, the following reduction might gain e�ciency.Corollary 4.1: If a variable x (including ~x) occurs only in binary clauses in a 2-closed CNF formula (possiblycontaining longer clauses), then all clauses containing that variable can be deleted without changing thesatis�ability of the formula.Proof : Variable x has no implicit information, so Theorem 2.1 applies.While removing such clauses is an option in our implementation, the situation seems to arise rarely, andwe have not observed clear-cut bene�ts in practice.Our 2cl algorithm is a modi�cation of DPLL. Between guesses, DPLL repeatedly performs unit clausesimpli�cation and pure literal simpli�cation until no further simpli�cations are possible. Between guesses,2cl repeatedly performs 2-closure (which includes unit clause simpli�cation), pure literal simpli�cation,equivalent literal simpli�cation, Krom subsumption resolution, and simple subsumption, until a 2-stableformula (De�nition 3.1) is attained.The implementation for which we report experimental results maintains explicit 2-closure; that is, everyderivable, unsubsumed binary clause is represented explicitly in the data structure. Each literal is associatedwith the sorted list of clauses containing it, so that it is reasonably e�cient to locate all long clauses containingtwo speci�ed literals by the intersection operation. This secondary index supports Krom subsumptionresolution and simple subsumption.Recall that the set of 2-clauses can be regarded as edges in an implication graph. Explicit 2-closureamounts to maintaining its transitive closure.The important information that may be present in the transitive closure that cannot be detected fromthe strong component analysis is a path from a literal to its complement, x !! ~x, from which the unitclause ~x can be inferred.However, updating the transitive closure is potentially expensive: following a guess (a backtrackablevariable assignment), one new inferred edge can generate O(n2) secondary updates. Moreover, they all needto be \retracted" upon backtracking. While e�cient transitive closure has been much studied, we are notaware of any work that considers the need to backtrack out of updates to the graph. We use a straightforwardmethod in which the transitively closed graph is an array (indexed by variable) of adjacency lists. Each newedge that is added is recorded in a \journal", and upon backtracking, the journal is used to \roll back" theupdates, as is common in database systems.5 Experimental ResultsThis section presents experimental data on the proposed 2cl algorithm, with attention to variations thatall have the same reasoning component. See Section 7 for comparisons with DPLL, and discussion of thetrade-o� between reasoning and guessing.Six branching strategies were tested on a variety of problems, including several Dimacs benchmarks.These branching strategies were shown to perform di�erently with statistical signi�cance. A new strategy6

based on Johnson's maximum satis�ability approximation algorithm proved the best for the class of random3-CNF formulas. However, for the circuit fault-detection formulas the performance of the branching strategiesdisplayed a less clear pattern. Student's paired t-test was used to test for the signi�cantly di�erent means ofthe number of guesses for these branching strategies. Such statistical tests must be applied with care; furtherdiscussions on the statistical traps and techniques for NP-complete problems are found in Appendix A.5.1 Typical QuestionsThere are numerous satis�ability algorithms and corresponding implementations. We consider the followingtypical questions that arise in comparative evaluations of satis�ability programs:1. Are there signi�cant di�erences among the observed performances of the given set of programs on thesame distribution of formulas?2. Is the relative goodness of programs a�ected if we use di�erent distributions of formulas?3. Is performance of an algorithm sensitive to the presentation of the formula? By \presentation" wemean choice of variable numbering, clause order, etc.5.2 Performance MeasuresOur principal measure of resource usage, other than CPU time, is the number of \guesses", or branches. A\guess" is a variable assignment that may change the satis�ability of the formula, so its complement mayhave to be considered (or was considered earlier). The number of guesses has the advantage of being areproducible measure, so it is used for most presentations. See Appendix A for further discussion.For the random formulas reported upon here, we have found by regression analysis that CPU time (forSunSS10/41) for 2cl is modeled quite accurately by the equationcpusec = �:264 + g(:00000304L+ :00000000451L2)where g is the number of guesses and L is the number of literal occurrences. The root mean square error ofthe model was 3.7 on data whose standard deviation was 111, so, informally, it explains 97% of the variationobserved. The regression data included all branching strategies, all tested clause/variable ratios, and mosttested formula sizes.For structured formulas, no adequate regression equation was found. Statistics on guesses and CPU timefor both random and structured formulas are given in various tables and �gures, as discussed throughoutthe paper.5.3 Branching StrategiesTo provide some answers to the above questions, we conducted satis�ability experiments on various classes offormulas; we also compared six variants of our implementation of the 2cl algorithm described in Section 4.These variants correspond to the six di�erent selection criteria for the branching variables.For all criteria, a positive score and a negative score are computed for each variable. The variable's �nalscore is the product of the positive and negative components. The eligible variable (eligibility is de�ned byeach branching rule) with the maximum �nal score is chosen for branching.Our use of the product, instead of the sum, appears to be unique in the literature. It is motivated by thedesire to reduce the size of each subproblem substantially. For example, if branching on x achieves reductions7

Circuit Number of BranchesFamily statistics maxscore minlen minlen23 maxlen maxlen23 dsjssa0432 Mean 184 527 184 511 184 268StdDev 86 263 86 194 86 1360 sat Min 70 220 70 278 70 807 unsat Median 202 494 202 496 202 320Max 272 920 272 858 272 400bf0432 Mean 1398 5066 1398 1853 1270 1407StdDev 2641 8216 2641 1980 2233 24291 sat Min 6 12 6 14 6 620 unsat Median 250 1296 250 851 250 240Max 10968 31214 10968 6310 8756 8412ssa7552 Mean 25 3446 25 22 23 23StdDev 5 6438 5 7 7 680 sat Min 12 7 12 8 9 70 unsat Median 25 31 25 25 24 22Max 39 18040 42 37 39 34Circuit CPU seconds for SunSS10/41Family statistics maxscore minlen minlen23 maxlen maxlen23 dsjssa0432 Mean 0.68 1.27 0.73 1.07 0.68 0.77Max 0.77 1.69 0.86 1.38 0.77 0.91bf0432 Mean 6.67 20.33 6.81 11.07 6.41 5.85Max 30.22 103.69 32.30 33.85 26.73 22.30ssa7552 Mean 2.00 2.69 2.02 2.02 2.00 1.93Max 2.86 6.04 2.86 2.81 2.87 2.77Figure 1: The statistics for the number of guesses and the running time by the six branching strategies of2cl on circuit fault-detection formulas. More information on the number of variables and literals for thesegroups of formulas can be found in Figure 7.of 4 and 18, while branching on y achieves reductions of 10 and 10, we prefer y, with the higher product,rather than higher sum.maxscore All variables are eligible; score is sum of occurrences in all clauses.minlen Variables that occur in a minimumlength clause are eligible; score is sum of occurrences in minimumlength clauses.minlen23 Variables that occur in a minimum length clause are eligible; score is sum of occurrences in allclauses.maxlen Variables that occur in a clause of length at least 3 are eligible; score is sum of occurrences inclauses of length at least 3. (If there are only binary clauses, then this reverts to minlen.)maxlen23 Variables that occur in a clause of length at least 3 are eligible; score is sum of occurrences inall clauses. (If there are only binary clauses, then this reverts to minlen.)dsj All variables are eligible; score is the weighted sum of occurrences in all clauses. Binary clauses counttwice as much as 3-clauses, and 3-clauses count twice as much as the clauses of longer length. This isthe modi�ed version of the weighting used in D. S. Johnson's maximum satis�ability approximationalgorithm [Joh74]. 8

clauses samples maxscore minlen minlen23 maxlen maxlen23 dsj300 100 16.78 15.91 16.61 15.31 16.83 17.20� 3.18 � 3.17 � 3.12 � 2.79 � 3.21 � 3.28400 100 40.45 32.30 40.39 105.51 40.45 34.82� 43.67 � 33.59 � 40.90 � 148.54 � 43.64 � 33.42427 100 92.00 75.70 85.95 226.43 92.00 70.30� 70.17 � 56.71 � 65.33 � 189.58 � 70.17 � 51.33450 100 101.84 77.33 91.74 230.79 101.84 78.47� 47.85 � 32.63 � 41.72 � 129.46 � 47.85 � 32.54550 100 45.36 31.50 39.72 74.60 45.36 36.64� 14.35 � 9.06 � 12.59 � 28.84 � 14.35 � 10.34Figure 2: The average number of guesses by the six branching strategies of 2cl on random 3-CNF formulas(constant width model) with 100 variables and varying numbers of clauses. Standard deviations are pre�xedby \�".Jeroslow and Wang [JW90] have reported on a satis�ability algorithm that uses a somewhat similarbranching strategy, except they maximize over positive and negative components, where we multiply.Their motivation is \most likely to satisfy".Hooker and Vinay have challenged the \most likely to satisfy" explanation (see also Section 8), and haveproposed the \2-sided Jeroslow-Wang" rule, with the motivation \maximize size reduction" [HV94].This rule is like dsj, except that it adds, where we multiply.There may be multiple candidates for the choice of a branching variable. A tie between any two suchvariables is broken by selecting a lower or higher variable number depending on the parity of their sum. Weprovide further randomization by shu�ing the variable numbers at the preprocessing stage.5.4 Observations on the Branching StrategiesThe six branching strategies were run on some classes of circuit fault-detection formulas. Results appear inFigure 1. We observed evident weakness of minlen strategy on the 432.bf family. Due to the small samplesizes and large variance for these classes of formulas we have not been successful in establishing signi�canceof the di�erences in the average number of guesses. Figure 7 presents additional results for dsj only on alarger set of circuit fault-detection formulas.The six branching strategies were also run on random 3-CNF formulas, which were generated accordingto the \constant width" model: each triple of distinct variables is equally likely to be selected for a clause,each variable is signed plus or minus with equal probability, and all clauses are drawn independently \withreplacement".Results appear in Figure 2. The dsj and minlen branching strategies had the lowest overall averages.Because of the poor performance of the minlen strategy on circuit fault-detection formulas, we chose dsj asthe best candidate. To determine the statistical signi�cance of the results, the dsj strategy was comparedagainst each of the other �ve on �ve samples of varying clause/variable ratio, making 25 cases in all.The application of the Student's paired t-test [WEC91], using a published C-language implementation[PTVF92], (reviewed in Appendix A) yields the conclusion that dsj branching strategy outperforms otherswith statistical signi�cance (at level .02) in 16 cases, underperforms signi�cantly in 3 cases, and is notsigni�cantly di�erent in 6 cases. The details, including exact probability values, are given in Figure 3.9

clauses samples maxscore minlen minlen23 maxlen maxlen23300 100 0.2817 # � 0.0017 0.1188 # � 0.0000 0.3463400 100 � 0.0091 0.2654 � 0.0139 � 0.0000 � 0.0090427 100 � 0.0000 0.0997 � 0.0000 � 0.0000 � 0.0000450 100 � 0.0000 0.5760 � 0.0000 � 0.0000 � 0.0000550 100 � 0.0000 # � 0.0000 � 0.0000 � 0.0000 � 0.0000Figure 3: Student's paired t-test signi�cance probabilities of the mean di�erence from the dsj branchingstrategy on random 3-CNF formulas (constant width model) with 100 variables. We indicate the signi�cancelevel of 0.02 for the paired t-test by \�". For each entry with a signi�cant mean di�erence, dsj performedbetter unless it is also marked with \#". satis�able unsatis�ableclauses variables samples branches time samples branches time300 100 100 17.20 0.07 0 NA NA400 100 93 27.74 0.33 7 128.86 1.46427 100 61 41.31 0.52 39 115.64 1.49450 100 17 32.18 0.43 83 87.95 1.19550 100 0 NA NA 100 36.64 0.58Figure 4: The di�erent di�culty patterns of satis�able and unsatis�able random 3-CNF formulas. Time isin seconds for SunSS10/41.These tests convinced us that the new dsj strategy was the best among the alternatives considered for2cl. Most subsequently reported experiments use this strategy exclusively.5.5 Satis�able vs. Unsatis�able Random FormulasWe have tested both satis�able and unsatis�able random 3-CNF formulas with 100 variables and from300 to 550 clauses, including 427 clauses, believed to be the hardest point in the spectrum [MSL92, LT92].The result for the dsj branching strategy appears in Figure 4. This �gure shows:1. Unsatis�able random problems do not follow the easy-hard-easy pattern.2. Satis�able problems are much easier on balance.5.6 Growth Rate Function on Random 3-CNF FormulasWe have also tested a range from 50 to 283 variables maintaining the 4.27 clause-to-variable ratio. The2cl algorithm has solved them with surprisingly little backtracking: for 200 variables, the average numberof guesses was 3,267; for 283 variables, the average number of guesses was 57,503. For 283 variables thenumber of guesses ranged from 105 to 127,538 for satis�able, and from 25,834 to 182,006 for unsatis�able.CPU times are reported in Section 7. Figure 5 summarizes the results.Growth rate was analyzed separately for unsatis�able and satis�able formulas, since the satis�able are 3to 4 times easier, and the fraction of satis�able formulas at a �xed ratio changes with the number of variables.10

1

10

100

1000

10000

100000

500 1000 1500 2000 2500 3000 3500 4000

n
u

m
b

e
r

o
f

g
u

e
ss

e
s

(l
o

g
 s

ca
le

d
)

number of literals

Unsatisfiable Formulas
All Formulas

Satisfiable Formulas

Total Sample BranchesResult Vars literals Size Ave Stderr Stddev Min Median Maxunsat 50 642 87 14 0 4 6 14 3071 909 87 38 1 12 18 36 72100 1281 91 115 3 31 48 116 212141 1806 83 540 14 132 208 524 944200 2562 110 4860 159 1671 2164 4454 9836283 3624 57 83706 4505 34010 25834 75780 182006sat 50 642 113 9 0 5 3 8 2971 909 113 18 1 12 4 14 58100 1281 109 43 4 39 6 27 175141 1806 117 168 17 181 10 105 1151200 2562 90 1320 149 1409 18 835 7002283 3624 43 22768 4057 26601 105 10618 127538Figure 5: Growth rate of 2cl on random 3-CNF formulas using the dsj option. The average number ofguesses is plotted against the number of literals on a logscale. The formulas generated all have the clauses-to-variables ratio of 4.27. 11

Cpu secs (SunSS10/41) / BranchesFamily Fmlas Solved Ave Stddev Min Median Maxii8 14 7 203.88 283.01 0.07 108.14 779.2731534 45902 8 22185 132210ii16 10 2 1839.54 2476.61 88.31 88.31 3590.7710674 14854 170 170 21177ii32 17 16 251.91 571.64 0.36 1.78 1985.412753 6634 67 142 26215Figure 6: Performance of 2cl with dsj branching strategy on \inductive inference" Dimacs benchmarkformulas. # of Mean MeanCircuit # of Sat # of # of Number of BranchesFamily Fmlas Fmlas Vars Lits Ave Stddev Min Median Maxssa0432 7 0 501 2481 268 137 80 320 400ssa2670 12 0 1530 7835 520449 260399 99642 507782 866328ssa6288 3 0 12836 92216 0 0 0 0 0ssa7552 80 80 1626 8208 23 6 7 22 34bf0432 21 1 1183 8296 1407 2430 6 240 8412bf1355 149 0 2829 19319 13254 9038 2 12742 31194bf2670 53 16 1531 8366 109347 576585 2 2428 4174892CPU seconds for SunSS10/41Ave Stddev Min Median Maxssa0432 7 0 501 2481 0.77 0.12 0.61 0.77 0.91ssa2670 12 0 1530 7835 1539.60 639.34 177.16 1483.45 2424.46ssa6288 3 0 12836 92216 39.45 6.10 32.41 42.95 43.00ssa7552 80 80 1626 8208 1.93 0.28 1.47 1.92 2.77bf0432 21 1 1183 8296 5.85 6.48 0.75 3.04 22.30bf1355 149 0 2829 19319 41.81 20.85 2.94 37.70 86.29bf2670 53 16 1531 8366 439.01 2436.85 0.79 14.18 17724.57Figure 7: Performance of 2cl with dsj branching strategy on the Circuit formulas.However, no signi�cant di�erence in growth rate was observed between these two groups. See Figure 5.Our experiments for the dsj branching strategy indicate an exponentialgrowth rate of 2:0039L, where L is the number of occurrences of literals in the formula. The estimatedcoe�cient, C = :0039, was obtained by �tting the equationmean branches = A2C�Lto the observed values of 57,503 for L = 3624 and 3,267 for L = 2562. Based on the standard errors inFigure 5, the standard error of C is about :0001. At this ratio variables occur an average of 12.81 times, sothe growth rate in terms of n variables appears to be 2:050n; this coe�cient's standard error is about :001.5.7 Observations on the \Inductive Inference" FormulasThe Dimacs \inductive inference" benchmark formulas were attempted with spotty results. Resultsappear in Figure 6. With a limit of 1 hour CPU time imposed, the algorithm only solved 25 out of 4112

problems. All of the tests given in the result were done with the same variable shu�ing algorithm. Withoutthe variable shu�ing we observed that one more formula was solved within the given time limit; however,one formula was no longer solved with the net result being very similar.5.8 Observations on the Circuits FormulasFigure 7 shows the 2cl result on all the \circuits" formulas that have been submitted to the DIMACSdatabase of cnf formulas. Perhaps the most remarkable result in this group is that the three unsatis�ablessa6288 formulas, with an average of 12,836 variables, were solved with no guessing at all. We are not awareof any other algorithm that has succeeded solving these formulas. All formulas in the group were solved,although one required 5 CPU hours.6 Experimental TechniquesThis section discusses two techniques used in our experiments: the �rst one assures the randomness of theformulas while maintaining the repeatability of the experiment; the second provides information about thesensitivity of an algorithm to accidents in the presentation of the formula.6.1 Seed ConversionThe basic assumption in the experiments on the randomly generated formulas is that the input formulasare chosen independently at random from a speci�ed parent population and distribution. Such randomnessis typically simulated by a formula generator that uses a reliable \random number generator" whose initialseed value is either produced internally or provided at invocation time by the user. In either case, unless oneremembers all the initial seeds, the repeatability of the experiment is lost. This becomes an unreasonableburden for the experimenter, since easily remembered set of seeds can compromise the randomness factor.For example, if the same initial seed was used to generate a formula of 400 clauses and one with 500 clauses,both with the same number of variables, then there is a dependence between those two formulas; in fact,one is a pre�x of the other.To avoid this problem, for those experiments in Sections 5.4, 5.6 and 7, we used a script that convertsa user speci�ed seed in an easily remembered range, such as 1{200, into a unique actual seed to be used bythe formula generator via the following formula:((v + 59 � c) � 123 + i) mod 1000000where v, c, and i are the parameter values corresponding to the number of variables, the number of clauses,and the user speci�ed seed, respectively. The same range, say 1{200, can be used for a variety of values ofv and c without incurring any dependence.6.2 Internal Variable Shu�ingTo determine sensitivity to the formula presentation, we provide the option to shu�e internal variablenumbers at the preprocessing stage. By default, variables are internally numbered in order of �rst appearance,and these numbers may determine how ties are broken. This shu�ing does not change the formula in anessential way. It is also referred to as variable reordering.The programs we used in this experiment have an execution time option to shu�e the variable numbersin the input formula at the preprocessing stage. The default seed value is 0 to indicate no shu�ing, but13

0.1

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

500 1000 1500 2000 2500 3000 3500 4000

n
u

m
b

e
r

o
f

g
u

e
ss

e
s

(l
o

g
 s

ca
le

d
)

number of literals

Guesses Growth Comparison: DPLL with maxscore, 2cl with maxscore, and 2cl with dsj

DPLL -maxscore
2cl -maxscore

2cl -dsj

number number Number of guessesof of DPLL maxscore 2cl maxscore 2cl dsjvariables literals Mean StdErr Mean StdErr Mean StdErr50 642 79 4 12 0 11 071 909 263 14 31 1 27 1100 1281 1354 79 100 5 76 4141 1806 10474 672 457 26 322 17200 2562 322426 19625 5216 282 3267 166283 3624 23420708 2232070 111590 9233 57503 4329Figure 8: Growth rate comparison of 2cl and DPLL on random 3-CNF formulas. The average number ofguesses is plotted against the number of literals on a logscale. The formulas generated all have the clauses-to-variables ratio of 4.27.user may specify any integer as the seed for the variable shu�ing. This technique was used as a tool ininvestigating the sensitivity of the algorithmic performance to the formula presentation. As indicated inSection 5.7 and in Appendix B, variable shu�ing by 2cl could make a big performance di�erence in somestructured formulas. However, it made very little di�erence in random formulas.7 Time Trade-O�s for Reasoning vs. Guessing14

0.1

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

500 1000 1500 2000 2500 3000 3500 4000

n
u

m
b

e
r

o
f

se
co

n
d

s
(l
o

g
 s

ca
le

d
)

number of literals

CPU Time Growth Comparison: DPLL with maxscore, 2cl with maxscore, and 2cl with dsj

DPLL -maxscore
2cl -maxscore

2cl -dsj

number of number of Mean CPU seconds for SunSS10/41variables literals DPLL maxscore 2cl maxscore 2cl dsj50 642 0.30 0.26 0.1971 909 0.37 0.42 0.33100 1281 0.84 1.34 1.02141 1806 5.80 9.21 6.60200 2562 214.65 195.96 123.84283 3624 21500.14 7743.29 4256.60Figure 9: Growth rate comparison of 2cl and DPLL on random 3-CNF formulas. The average number ofCPU seconds (Sun equivalent, as explained in text) is plotted against the number of literals on a logscale.The formulas generated all have the clauses-to-variables ratio of 4.27.The theme of 2cl is to reduce the size of the search space, as measured by the number of guesses, byincorporating an e�cient reasoning component into the search. A natural question is whether the timeinvested in reasoning pays dividends in terms of reduced search. To address this question we compared 2clwith an e�cient implementation of DPLL. The same samples of random formulas reported in Section 5.6were used, ranging from 50 to 283 variables at the 4.27 ratio; all sizes had 200 samples, except that 283 had100 samples. Besides relative magnitudes, we were especially interested in growth rates.Because the theme of DPLL is to guess as fast as possible, it is not consistent to spend time maintainingthe information needed to implement the dsj strategy. However, the maxscore strategy can be implemented15

with little overhead, and proved to be far superior to the published strategy of choosing \any variable ina minimum-length clause" (on random formulas, at least). Results are based on the maxscore strategy forDPLL. We ran 2cl with both the maxscore and dsj strategies.Figure 8 shows the growth rates in terms of guesses for both algorithms. Unsurprisingly, 2cl does lessguessing. The important observation is that exponential growth rate for guessing is much lower for 2cl thanfor DPLL, as shown by the diverging lines. Assuming these rates persist to larger problems, it is inevitablethat 2cl will eventually require less time, because it spends only a polynomial factor greater time per guessthan DPLL.Using the method of Section 5.6, where dsj was found to grow at the rate 2:0039L, here we �nd that2cl with maxscore grows at 2:0042L, while DPLL grows at 2:0058L. (The standard errors of all of thesecoe�cients is about :0001.)Figure 9 shows the growth rates in terms of CPU time for both algorithms. DPLL was executed onSunSS10/41 while 2cl was executed on a slower DECStation 5000/240. The CPU times measured onDECStation 5000/24 were transformed to the SunSS10/41 equivalent times by using the conversion factorof 0.5813. This graph con�rms that \the future is now". For the dsj branching strategy, the extra reasoningbegins showing a pro�t around 150 variables (2000 literals), and the margin widens rapidly for larger sizes.Roughly speaking, by considering time instead of guesses, the DPLL curve translates downward relative to2cl, but still has the greater slope. To show that the performance di�erence between 2cl and DPLL isattributable to reasoning, and not a di�erence in branching strategies, we also ran 2cl with the less e�ectivemaxscore strategy, which is the strategy that worked best for DPLL. We see the similar situation in thiscase, although the cross-over point with the DPLL is higher, about 200 variables (2600 literals).8 Conclusion and Future WorkThe combination of reasoning and guessing seems to be bene�cial. Careful implementation is needed to keepthe cost of reasoning down. Further investigation is needed to determine whether the expensive 3-closureoperations can be done more e�ciently and put back into service. Analysis of the asymptotic complexity,both of the worst case, and of the average case on random formulas, is another avenue of investigation. Thereare some known results on the worst-case performance of satis�ability on CNF formulas using algorithmsthat add various forms of reasoning to the basic DPLL framework [MS85, VG88, Sch93, Kul94, KL95]. Forrandom CNF formulas of length L at the 4.27 ratio studied here, the smallest known worst case bound is2:046L. This is still far above our observed growth rate of 2:0039L.Statistical techniques, including nonparametric methods [GC92], for the comparative evaluation of di�er-ent strategies is another topic that can be further pursued. Distributions for NP-hard problems are typicallyhighly skewed. For most of the structured, i.e., nonrandom formulas, we observed that the maximumnumberof guesses was 2 to 3 times the second largest number of guesses in the same sample. Consequently, it isimportant to report a variety of statistics to give a good picture of the algorithm's behavior. Besides theaverage and standard deviation, we have also reported the minimum, median, and maximum.Hooker has advocated an empirical approach to algorithm analysis that involves hypothesis formationand prediction, in analogy with natural sciences [Hoo94]. Many heuristics are proposed in the literature,with informal explanations of why they work well. Hooker believes that the explanations should be examinedmore critically, and proposes a framework for doing so: if the explanation is \correct", then we should beable to make new predictions and verify them. If, on the other hand, the predictions are not borne out, thenthat indicates that the intuitive explanation has somehow not really captured the reason for the heuristic'sobserved success. In the latter case, we should begin looking for a better explanation. Hooker and Vinay have16

reported on an application of this technique, as discussed in Section 5.3 [HV94]. Gent and Walsh indirectlyapplied the technique to arrive at negative conclusions about the importance of greediness and randomnessin local search [GW93]. This technique seems to o�er great promise for discovery of better algorithms forintractable problems.AcknowledgementsWe thank the anonymous referee for many suggestions on improving the paper. Many of the experimentswere facilitated by equipment that was donated by Sun Microsystems, Inc. Both authors were supported inpart by NSF grant CCR-8958590.References[APT79] B. Aspvall, M. Plass, and R. Tarjan. A linear-time algorithm for testing the truth of certainquanti�ed Boolean formulas. Information Processing Letters, 8(3):121{123, March 1979.[BS92] A. Billionnet and A. Sutter. An e�cient algorithm for the 3-satis�ability problem. OperationsResearch Letters, 12:29{36, July 1992.[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Communi-cations of the ACM, 5:394{397, 1962.[DP60] M. Davis and H. Putnam. A computing procedure for quanti�cation theory. Journal of theAssociation for Computing Machinery, 7:201{215, 1960.[GC92] J. D. Gibbons and S. Chakraborti. Nonparametric Statistical Inference. Marcel Dekker, Inc.,1992.[GW93] I. P. Gent and T. Walsh. Towards an understanding of hill-climbing procedures for SAT. InProceedings of the Eleventh National Conference on Arti�cial Intelligence; AAAI-93 and IAAI-93 (Washington, DC, USA, 11-15 July 1993), pages 28{33. Menlo Park, CA, USA: AAAI Press,1993.[Hoo94] J. N. Hooker. Needed: An empirical science of algorithms. Operations Research, 42(2):201{12,March-April 1994.[HV94] J. N. Hooker and V. Vinay. Branching rules for satis�ability. In Third International Symposiumon Arti�cial Intelligence and Mathematics, Fort Lauderdale, Florida, 1994.[Joh74] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer andSystem Sciences, 9:256{278, 1974.[JSD95] B. Jaumard, M. Stan, and J. Desrosiers. Tabu search and a quadratic relaxation for thesatis�ability problem. In D. S. Johnson and M. Trick, editors, Cliques, Coloring, and Satis�ability:Second DIMACS Implementation Challenge., DIMACS Series in Discrete Mathematics andTheoretical Computer Science. American Mathematical Society, 1995.[JW90] R. Jeroslow and J. Wang. Solving propositional satis�ability problems. Annals of Mathematicsand Arti�cial Intelligence, 1:167{187, 1990.17

[KL95] O. Kullmann and H. Luckhardt. Various complexity upper bounds for decisions on propositionaltautology. Information and Computation, 1995. To apppear.[Kul94] O. Kullmann. Methods for 3-SAT-decision in less than 1:5045n steps. Technical report, Universityof Frankfurt, 1994.[Lar92] T. Larrabee. Test pattern generation using Boolean satis�ability. IEEE Transactions onComputer-Aided Design, 11(1):6{22, January 1992.[LT92] T. Larrabee and Y. Tsuji. Evidence for a satis�ability threshold for random 3CNF formulas.Technical Report UCSC{CRL{92{42, UC Santa Cruz, Santa Cruz, CA., October 1992.[MS85] B. Monien and E. Speckenmeyer. Solving satis�ability in less than 2n steps. Discrete AppliedMathematics, 10:287{295, 1985.[MSL92] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT problems. InProceedings of the Tenth National Conference on Arti�cial Intelligence (AAAI-92), San Jose,CA., pages 459{465, July 1992.[Pre95] D. Pretolani. E�ciency and stability of hypergraph SAT algorithms. In D. S. Johnson andM. Trick, editors, Cliques, Coloring, and Satis�ability: Second DIMACS Implementation Chal-lenge., DIMACS Series in Discrete Mathematics and Theoretical Computer Science. AmericanMathematical Society, 1995.[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C.Cambridge University Press, second edition, 1992.[Sch93] I. Schiermeyer. Solving 3-satis�ability in less than 1:579n steps. In Computer Science Logic. 6thWorkshop, CSL '92 (San Miniato, Italy, 28 Sept.-2 Oct. 1992) LN Comp. Sci. 702 (1993), pages379{94. Berlin, Germany: Springer-Verlag, 1993.[VG88] A. Van Gelder. A satis�ability tester for non-clausal propositional calculus. Information andControl, 79(1):1{21, October 1988.[WEC91] J. Welkowitz, R. B. Ewen, and J. Cohen. Introductory Statistics for the Behavioral Sciences.Harcourt Brace Jovanovich College, fourth edition, 1991.A Statistical Traps and Techniques for NP-Complete ProblemsNP-hard problems can produce highly skewed distributions of certain performance measures. Care is neededto avoid erroneous interpretations and unjusti�ed conclusions.Consider the performance of 4 algorithms on randomly generated formulas from the same family. Thetable below shows averages for independent samples of 1000 runs, in cpu times and branching.Average AverageAlgorithm CPU Secs. BranchesA 3.36 120.75B 3.42 124.23C 3.44 124.65D 3.61 130.4418

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Branches
CPU

Figure 10: Cumulative distribution of 100 independent samples of the Student signi�cance statistic SAlgorithms B and C look pretty indistinguishable. But with 1000 samples, clearly A is better than D, right?Wrong ! All four runs were made with the same deterministic algorithm, with independent randomlygenerated formulas. This data is not \cooked up". It is the summary of our only attempt to prove our point,not the worst case over many attempts.Trap 1 Look only at the averages.It is well known that standard deviations or other measures of dispersion are necessary to know the accuracyof averages, but we see a great many tables with just averages, and no measures of their accuracy. In theabove data, the standard deviations were greater than the averages.A fairly standard way to test for a signi�cant di�erence between two average values is the Student's t-test[WEC91]. This test was derived assuming that both samples were drawn from Gaussian distributions withthe same variance, but possibly di�erent means (average values).Trap 2 Use the Student t-test without knowing whether the actual distribution is approximately Gaussian.The Student t-test has a reputation for being \robust", that is, not overly sensitive to the distributionassumptions. However, exponential time algorithms can stress those assumptions beyond the limits foreseenby traditional statisticians.Is the Student t-test still reliable, although the distribution is decidedly non-Gaussian? Under idealconditions, if two samples are drawn from the same distribution, the end result of their Student t-test, call itS, is a uniformly distributed random variable in the range 0 to 1. That is why, upon observing S to be 0.05in an experiment, one can say, \If the two distributions were identical (the null hypothesis), the probabilityof getting an S this small or smaller is 0.05." 19

So construct some samples where you know the null hypothesis holds! Calculate the Student statistic (S,not t) over numerous independent pairs of such samples. These values of S should appear to be uniformlydistributed. If not, the distribution is too skewed for the Student t-test to be accurate.We carried out this experiment using our program with both the number of branches and the CPU timein seconds as the measures. We ran 100 pairs of samples, each consisting of 100 independent formulas (20000runs in all). In every case, 2cl with the dsj branching rule was run with a random input from the samefamily of formulas (100 variables, 400 clauses). This yielded 100 independent S values whose cumulativedistribution is plotted in Figure 10. The slightly concave appearance suggests that the distribution is shifteda little to the high end, making it conservative. Because our program is designed to reduce branching, wesuspect the skewness is lower than might be exhibited in other programs.As mentioned, exponential time algorithms can stress the assumptions on underlying distributions beyondthe limits foreseen by traditional statisticians.Trap 3 Fail to distinguish between random variables with no known upper bounds or known variances andthose for which these quantities are estimable and of reasonable size.Informally, the problem is this: to know how accurate an estimate of the mean is, one must know thestandard deviation. But again, only an estimate of the standard deviation is available, so how does oneknow how accurate that is?Standard statistical methods handle this question by assuming that the underlying distribution is Gaus-sian. This is not realistic in this setting. The only constraint on the distribution that we can expect inpractice is a �rm upper bound.Some examples having �rm upper bounds include:� Any probability is bounded between 0 and 1 and has standard deviation at most 0:5.� The size of the optimum, for most optimization-based NP-complete problems is easily bounded by alow degree polynomial.On the other hand, the CPU time required to solve a random problem in a given family normally has noknown upper limit or known variance. As mentioned, without knowing something about the distribution,one cannot say how accurate is an estimate of the variance, calculated from a sample.We strongly advocate measuring something in addition to CPU time, for performance evaluation. Thealternate measure should preferably be strongly correlated to CPU time, but it should be a measure forwhich an upper bound is known for the whole sample space, a priori . For example, in simple DPLL, 2n isan easy upper bound on the number of branches. Closer analysis can sharpen that. Therefore, some �rmstatistical statements can be made about the accuracy of an estimate of the average number of branchesrequired over some sample space.Trap 4 Use the Student t-test when the pairs test is applicable.To compare two algorithms' performance, it is common sense to eliminate as much noise as possible, byrunning them on the same set of problems. But it is a common mistake to try to work with averages andstandard deviations of the two samples, rather than all the data. The pairs test compares two algorithms,input by input, and computes the di�erence in the performance measure for each input. Thus the noise dueto varying di�culty of inputs is eliminated. The standard deviation of the di�erence may well be an orderof magnitude lower than the standard deviations of the samples themselves, and much higher discriminationresults. 20

clauses samples maxscore minlen minlen23 maxlen maxlen23300 100 0.3589 0.1937 0.4205400 100 � 0.3071 0.5954 � 0.2929 � 0.3070427 100 0.4811 � 0.0611450 100 0.8049550 100 � 0.0602Figure 11: Student's t-test signi�cance probabilities of the mean di�erence from the dsj branching strategyon random 3-CNF formulas. Only those entries that are not signi�cant at level 0.02 are shown. Thosemarked by \�" showed signi�cance in Figure 3, based on the paired t-test for same data.The phenomenon is illustrated with the data for comparison of dsj with �ve alternative strategies, fromSection 5.4. Figure 11 shows the insigni�cant entries (at level 0.02) that would result from using the non-paired t-test. Of these, those that were signi�cant in Figure 3 are marked with a \�". For this data andsigni�cance level, the paired t-test �nds 5 out of 11 additional signi�cant di�erences.B Second DIMACS Challenge Satis�ability Benchmark ResultsGENERAL INFORMATIONAuthors: Allen Van Gelder and Yumi K. Tsuji (University of California, Santa Cruz)Title: Satis�ability Testing with More Reasoning and Less GuessingName of Algorithm: 2clBrief Description of Algorithm: Complete: Combination of branching and limited resolutionType of Machine: SunSS10/41Compiler and ags used: gcc (version 2.4.5) -O2MACHINE BENCHMARKSUser time for instances: r100.5 r200.5 r300.5 r400.5 r500.50.04 0.93 8.05 49.06 189.29ALGORITHM BENCHMARKSAuthors' Comments:� Parameters: For this Appendix, the following invocation parameter values were used.{ Branching Strategy: The program can use any of the six di�erent branching strategies; weselected the one based on Johnson's maximum satis�ability approximation algorithm.{ Randomization: The program shu�es the order of the variables; there is an invocation param-eter to set a seed value for the random number generator used by this shu�ing procedure. Themultiple runs presented in the Appendix were produced by varying this initial seed.21

� Additional columns in the Table:We have two additional columns in the Appendix table. The column named RelStdErr refers to therelative standard error of the mean. It is calculated as the percentage of the standard error of themean with respect to the mean: (Std:Dev �100)=(Mean�pn). The last column,Median, refers to theint((n+ 1)=2)-th value in the ordered list of the \cpu" values of the runs in each sample.� Failed Runs:The failed runs given in the table had the maximum time limit set to 7 hours. For the ii32d3 andpar32-2-c formulas, we have also tried 100 di�erent seeds to do the variable scrambling with the timelimit set to 10 minutes for each; they had all failed.� Note on the Special sequences:We found that moving the �rst 52 clauses to the end of the formula permitted the program to succeedin 2 seconds with 2046 guesses on pret60 25 and pret60 75. These runs are not included in the table.

22

Results on Benchmark Instances: TimeName Runs(Fail) Min Avg (StdDev) Max Resultaim-100-2 0-no-1 100 0.06 43.45 (22.31) 93.88 Noaim-100-2 0-no-2 100 0.09 24.19 (17.28) 65.61 Noaim-100-2 0-no-3 100 0.52 14.48 (7.35) 29.89 Noaim-100-2 0-no-4 100 0.03 25.64 (17.79) 69.16 Noaim-100-2 0-yes1-1 100 0.53 0.73 (0.09) 0.98 Yesaim-100-2 0-yes1-2 100 0.04 0.50 (0.41) 1.25 Yesaim-100-2 0-yes1-3 100 0.64 0.85 (0.11) 1.25 Yesaim-100-2 0-yes1-4 100 0.04 0.22 (0.12) 0.58 Yesbf0432-007 100 20.77 22.85 (1.59) 35.71 Nobf2670-001 100 4.03 4.43 (0.29) 6.57 Nodubois20 100 18.34 36.51 (11.42) 94.87 Nodubois21 100 23.60 64.27 (21.24) 151.00 Nof400 2 (1) 10869.85 Yesf800 DNRf1600 DNRf3200 DNRf6400 DNRg125.17 1 (1)g125.18 1 (1)g250.15 DNRg250.29 DNRii32b3 100 2.88 16.47 (32.31) 113.78 Yesii32c3 100 2.67 3.03 (0.35) 4.40 Yesii32d3 101(101)ii32e3 100 2.34 2.53 (0.11) 2.98 Yespar16-2-c 100 5.05 145.04 (95.65) 310.45 Yespar16-4-c 100 2.42 145.28 (87.76) 352.39 Yespar32-2-c 101(101)par32-4-c 1 (1)par8-2-c 100 0.12 0.26 (0.07) 0.44 Yespar8-4-c 100 0.15 0.23 (0.04) 0.35 Yespret150 25 1 (1)pret150 75 1 (1)pret60 25 100 4.73 50.82 (29.81) 169.44 Nopret60 75 100 5.18 49.83 (28.43) 140.98 Nossa0432-003 100 0.45 0.55 (0.06) 0.79 Nossa2670-141 100 148.70 164.58 (8.16) 193.66 Nossa7552-038 100 1.76 1.85 (0.05) 2.04 Yesssa7552-158 100 1.05 1.14 (0.05) 1.30 Yesssa7552-159 100 1.07 1.14 (0.05) 1.38 Yesssa7552-160 100 1.36 1.44 (0.04) 1.57 Yes
23

Benchmark (cont.) Avg Rel.Std MedianName Time Err (%) Timeaim-100-2 0-no-1 43.45 5.13 47.08aim-100-2 0-no-2 24.19 7.14 22.01aim-100-2 0-no-3 14.48 5.08 15.46aim-100-2 0-no-4 25.64 6.94 25.06aim-100-2 0-yes1-1 0.73 1.26 0.73aim-100-2 0-yes1-2 0.50 8.22 0.17aim-100-2 0-yes1-3 0.85 1.30 0.83aim-100-2 0-yes1-4 0.22 5.68 0.18bf0432-007 22.85 0.69 22.67bf2670-001 4.43 0.64 4.38dubois20 36.51 3.13 33.97dubois21 64.27 3.30 62.54f400 10869.85f800f1600f3200f6400g125.17g125.18g250.15g250.29ii32b3 16.47 19.62 3.09ii32c3 3.03 1.14 2.87ii32d3ii32e3 2.53 0.44 2.52par16-2-c 145.04 6.59 191.52par16-4-c 145.28 6.04 133.18par32-2-cpar32-4-cpar8-2-c 0.26 2.75 0.25par8-4-c 0.23 1.78 0.23pret150 25pret150 75pret60 25 50.82 5.87 46.11pret60 75 49.83 5.71 47.41ssa0432-003 0.55 1.04 0.55ssa2670-141 164.58 0.50 162.22ssa7552-038 1.85 0.27 1.85ssa7552-158 1.14 0.41 1.14ssa7552-159 1.14 0.43 1.14ssa7552-160 1.44 0.29 1.45
24

