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11. IntroductionThe B�ezier, multinomial (or Taylor), Lagrange and Newton bases are some of the mostpopular and useful representations for expressing polynomials of degree n in s variables. Sev-eral algorithms for evaluating multivariate polynomials, represented in these bases, have beenproposed. The de Casteljau algorithm with computational complexity O(ns+1) is well-knownfor evaluating multivariate B�ezier polynomials [dC85, Far86]. Several algorithms for evaluatingmultivariate polynomials in B�ezier or multinomial (Taylor) form with computational complex-ity O(ns) have been described [CG90a, dBR92, SV86]. Generalizations with computationalcomplexity O(ns+1) of the Aitken-Neville algorithm for evaluating univariate Lagrange polyno-mials to certain subclasses of multivariate Lagrange polynomials have been proposed [CG90b,Muh78, TM60]. Evaluation algorithms with computational complexity O(ns) for multivariatepolynomials expressed in Newton bases have also been described [Gas90]. In addition, evalu-ation algorithms related to the generalizations of forward and divided di�erence algorithms tomultivariate polynomials have also been discussed [Vol88, dB78, Vol90, LSP87, Sch81].Most of these evaluation algorithms seem to have been discovered independently from oneanother and, therefore, the literature as cited above is scattered and the various algorithmsappear to be unrelated. One of the major goals of this work is to demonstrate that theseseemingly disparate algorithms are, in fact, closely related. Indeed, all of these algorithmscan be derived from the evaluation algorithms for multivariate L-bases, a class of bases thatinclude the B�ezier, multinomial, and certain proper subclasses of Lagrange and Newton bases.This uni�cation of these algorithms provides a deeper, cleaner and much richer understandingof a large class of algorithms for evaluating multivariate polynomials. This understanding, inturn, has helped us to design a few new, more e�cient algorithms, for evaluating multivariatepolynomials.Our work easily generalizes to arbitrary dimensions. However, for the sake of simplicity, theresults are presented and derived here only for bivariate polynomials.We begin by describing a general parallel up recurrence algorithm with computationalcomplexity O(n3) for the evaluation of bivariate L-bases. This algorithm specializes to thestandard de Casteljau algorithm for evaluation of bivariate B�ezier surfaces [dC85, Far86]. Theup recurrence also specializes to O(n2) algorithms for the evaluation of multinomial (Taylor)bases, that include the algorithms proposed earlier by Carnicer-Gasca [CG90a] and de Boor-Ron [dBR92]. In addition, the up recurrence specializes to an algorithm for evaluating Newtonpolynomials, that has been previously discussed by Carnicer and Gasca [CG90a, Gas90]. The uprecurrence also yields a new generalization of the Aitken-Neville algorithm with computationalcomplexity O(n3) for the evaluation of bivariate Lagrange L-bases. By removing redundantcomputations, we show that the general parallel up recurrence algorithm can be improved to anew recurrence algorithm with computational complexity O(n2lgn) for evaluation of arbitraryL-bases. Furthermore, the up recurrence algorithm can be altered into a ladder recurrencealgorithm with computational complexity O(n2) by changing the structure of the parallel uprecurrence diagram for the evaluation of bivariate L-bases.



2 1. IntroductionNext we describe another class of algorithms for evaluating L-bases, based on certain changeof basis algorithms between L-bases. This class of algorithms include a divided di�erencealgorithm with computational complexity O(n2) per point, a forward di�erence algorithm withcomputational complexity O(1) per point, and a new Lagrange evaluation algorithm withamortized computational complexity O(n) per point. The change of basis algorithm can bespecialized into a new dual nested multiplication algorithm with computational complexityO(n2) for the evaluation of bivariate L-bases. This class of algorithms include an algorithm forevaluating multivariate polynomials in multinomial (Taylor) form described earlier by Schumakerand Volk [SV86].This paper is organized in the following manner. Section 2 reviews the de�nition of L-basesand presents examples of B�ezier, multinomial, Lagrange and Newton bases as L-bases. Section3 describes up recurrence algorithms { a parallel up recurrence algorithm with computationalcomplexity O(n3), a nested multiplication evaluation algorithm with computational complexityO(n2lgn), and a ladder recurrence algorithm with computational complexity O(n2). Section4 presents dual evaluation algorithms { a Lagrange evaluation algorithm with computationalcomplexity O(n) per point, a divided di�erence algorithm with computational complexity O(n2)per point, a forward di�erence algorithm with computational complexity O(1) per point, anda dual nested multiplication evaluation algorithm with computational complexity O(n2). Thedi�erence between the nested multiplication and the dual nested multiplication algorithm ishighlighted by presenting as an example the evaluation of a bivariate Lagrange L-basis. Section5 presents a brief description of other evaluation algorithms including factored and hybridalgorithms, that can be obtained by combining some of the above algorithms. Finally, Section6 concludes with some discussion of future work.



32. L-basesHere we review the basic de�nitions and certain well-known examples of a�ne L-bases. Wealso provide very brief geometric interpretations for the algebraic entities associated with theL-bases in order to explain how certain bivariate Lagrange and Newton bases arise as specialcases of L-bases. Complete details are provided in [LG95b].Throughout this paper, we shall adopt the following notation. A multi-index � is a 3-tupleof non-negative integers. If � = (�1; �2; �3), then j�j = �1+�2+�3 and �! = �1!�2!�3!. Othermulti-indices will be denoted by � and . A unit multi-index ek is a 3-tuple with 1 in the k-thposition and 0 everywhere else. Scalar indices will be denoted by i; j; k; l.A collection L of 3 sequences fL1;jg, fL2;jg, fL3;jg, j = 1; � � � ; n of a�ne polynomials intwo variables is called a knot-net of a�ne polynomials if (L1;�1+1; L2;�2+1; L3;�3+1) are a�nelyindependent polynomials for 0 � j�j � n � 1. An a�ne L-basis fln�; j�j = ng is a collection of�n+22 � bivariate polynomials de�ned as follows:ln� = �1Yi=1L1i �2Yj=1L2j �3Yk=1L3k: (2.1)It is well-known that fln�; j�j = ng is, in fact, an a�ne basis for the space of a�ne polynomialsof degree n on R2 [CM92].We assign to each a�ne polynomial ax + by + c the corresponding line in the a�ne planede�ned by the equation ax + by + c = 0. ( The polynomial c corresponds to the line atin�nity in the projective plane.) For full details, please refer to [LG95b]. Observe that thiscorrespondence between lines and polynomials depends on the coordinate system and is uniqueonly up to constant multiples. Nevertheless, in the following discussions, we shall identify thepolynomial with the line and vice-versa, whenever the coordinate system and constant multiplesare irrelevant for the context at hand. The advantage of this correspondence is to allow us tothink of algebraic entities such as polynomials in terms of geometric entities such as lines.2.1 B�ezier BasesWe can easily realize B�ezier bases as special cases of L-bases by choosing the knot-net ofpolynomials Li;j = Li; 1 � j � n, L1 = a1x+ b1y+ c1, L2 = a2x+ b2y+ c2, L3 = a3x+ b3y+ c3,where L1, L2 and L3 are a�nely independent polynomials such that no two of the associated linesare parallel. It can easily be veri�ed that the corresponding L-basis is, up to constant multiples,the B�ezier basis de�ned by the three intersection points of L1, L2 and L3. In particular, L1 = x,L2 = y and L3 = 1� x� y, yields the standard B�ezier basis, up to constant multiples, that is,ln� = x�1y�2(1� x� y)�3 :



4 2. L-bases2.2 Multinomial BasesThe multinomial basis is the standard generalization of the monomial basis to the multivari-ate setting. For example, the basis 1, x, y, x2, xy and y2 is the bivariate multinomial basisof degree 2. Sometimes the terminology Taylor basis or power basis is also used instead ofmonomial or multinomial basis. However, we shall refer to this basis as the multinomial basisin accordance with [GB92] and reserve the term power basis for the basis each element of whichis an n-th power of some linear polynomial [GB92].The standard multinomial basis is realized as a special case of an L-basis by choosing theknot-net of polynomials Li;j = Li; 1 � j � n, L1 = x, L2 = y and L3 = 1. This yields:ln� = x�1y�2 : More general multinomial bases can also be realized as L-bases [LG95b].2.3 Lagrange BasesLet f fLijg, fL2jg, fL3jg, j = 1; � � � ; n g be a knot-net of polynomials. Suppose that thepolynomials (L1;�1+1,L2;�2+1,L3;�3+1) are a�nely dependent for j�j = n, 0 � �k � n � 1. Ithas been established in [LG95b] that, up to constant multiples, the corresponding L-basis is aLagrange basis; that is, there exist points v� such that ln�(v�) = ln�(v�)���. Therefore, f ln�ln�(v�)gforms a Lagrange basis.To describe the points v�, let us analyze the dependency conditions. Overloading thenotation, let Lij also denote the line in the plane de�ned by the equation: Lij = 0. The lineardependency condition on the polynomials Li;�i+1 means that the lines Li;�i+1 are concurrentfor j�j = n, 0 � �k � n � 1. In general, these lines then meet at a point, in the a�neplane if the lines intersect or at in�nity in the projective plane if the lines are parallel. Letv� = T3k=1 Lk;�k+1 for j�j = n, 0 � �k � n� 1. These intersections give rise to �n+22 �� 3 pointscorresponding to �n+22 � � 3 dependency conditions. To these points, we shall add three morepoints: vn00 = L31TL21, v0n0 = L11TL31, and v00n = L11TL21. These are precisely the �n+22 �points that give rise to Lagrange interpolation conditions.In our earlier work, we described several interesting lattice or point-line con�gurations thatgenerate Lagrange L-bases [LG95b]. Here we simply describe one interesting lattice, known asa principal lattice or geometric mesh [CY77], that admits unique interpolation by a LagrangeL-basis. Figure 2.1 is an example of a principal lattice or geometric mesh [CY77] of ordern, which can be described by three sets of n lines ffL1ig, fL2jg, fL3kg, 1 � i; j; k � ngsuch that each set of three lines fL1;i+1; L2;j+1; L3;k+1, i + j + k = ng intersect at exactly onecommon point vijk. The lines in Figure 2.1 satisfy both the the linear independence condition for(L1;�1+1; L2;�2+1; L3;�3+1), 0 � j�j � n�1, which is required to de�ne a knot-net of polynomialsand the linear dependence condition that is required to de�ne a Lagrange basis. It is clear fromthe above construction that every geometric mesh of order n gives rise to a Lagrange L-basis.
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Figure 2.1: Geometric mesh of order 3 for Lagrange L-basis2.4 Newton BasesBy choosing the polynomials L1i = x� ai, L2i = y � bi and L3i = 1, we obtain the followinga�ne Newton basis: ln� = �1Yi=1(x� ai) �2Yj=1(y � bj):For example, when n = 2 this construction yields the basis functions: 1, (x�a1), (x�a1)(x�a2),(y � b1), (y � b1)(y � b2) and (x � a1)(y � b1). A slightly more general Newton L-basis isobtained by simply choosing the polynomials L1i = a1ix+ b1iy+ c1i, L2i = a2ix+ b2iy+ c2i, andL3i = a3x+ b3y+ c3. In our earlier work [LG95b], we established that each Newton L-basis canbe associated with a point and derivative interpolation problem with the following properties:(i) there exists a unique solution to the general interpolation problem expressed in this basis and(ii) the coe�cients a� of the interpolant L(u) = Pj�j=n a�ln� expressed in the Newton L-basisare the solutions of a lower triangular system of linear equations.In [LG95b], we also exhibited a rich collection of lattices or point-line con�gurations that ad-mit unique and natural solutions to an appropriate interpolation problem by means of a NewtonL-basis. These lattices include the principal lattices or geometric meshes (and the associatedLagrange interpolation problems) as well as natural lattices of order n, which are de�ned by n+2distinct lines. The corresponding Newton L-bases solve the Lagrange interpolation problem atthe associated �n+22 � distinct points of intersection. Figure 2.2 shows a natural lattice of order 3.



6 2. L-bases
 Figure 2.2: Natural lattice of order 3 for Newton L-basis[LG95b] also presents some examples of lattices usually associated with Hermite interpolationproblems [M�84, NR92] that can be solved uniquely with Newton L-bases.



73. Up Recurrence AlgorithmsThis section describes a class of evaluation algorithms for L-bases that arise from variationson a general parallel up recurrence algorithm, which is discussed next.3.1 Parallel Up Recurrence AlgorithmLet L(u) be a polynomial expressed in terms of an L-basis fln�g de�ned by the knot-net L =ffL1jg, fL2jg, fL3jg, j = 1; � � � ; ng. Suppose we wish to evaluate L(u) = Pj�j=n S�ln�(u) at anarbitrary but �xed u. Then we can use the up recurrence illustrated in Figure 3.1 to evaluateL(u), where the coe�cients C0� are normalized as C0� = �!n!S�. The diagram is to be interpretedas follows: the computation starts at the base of the tetrahedron. The value at any node iscomputed by multiplying the value along each arrow which enters the node by the value of thenode from which the arrow emerges and adding the results. Observe that the central node ofthe base of the tetrahedron is occluded by the apex node in Figure 3.1 and is therefore notshown. The value of L(u) is then given by Cn000 at the apex of the tetrahedron. More formallythe recurrence is described as follows:C0� = �!n!S�;Ci� = 3Xk=1Ci�1�+ek � Lk;�k+1 for i = 1; � � � ; n: for j�j = n � i:This algorithm is referred to as the parallel up recurrence and generalizes the parallel uprecurrence algorithm for the evaluation of univariate polynomials expressed in terms of P�olya
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Figure 3.2: Nested multiplication evaluation algorithm for L-basesbasis functions [GB92]. The computational complexity of this algorithm is O(n3), because thereare n(n+1)(n+2)6 nodes in the tetrahedron. A careful examination of the algorithm reveals thatthe label along the edge from the node �+ ei to the node � is Li;�i+1. Due to this property ofthe recurrence diagram, the labels along the \parallel" edges of the tetrahedron are the same;this feature justi�es the terminology parallel. Now observe that there are exactly n!�! paths fromthe node � at the base of the tetrahedron to the node at the apex of the tetrahedron. Moreoverby the parallel property the products of the labels along each path from a node � at the baseto the node at the apex are identical. These products are all equal to ln� because to pass fromthe multi-index � to the multi-index (0; 0; 0) each entry �i must be reduced to 0; thus each ofthe factors Li;k i = 1; 2; 3 0 � k � �i must be encountered exactly once along each path. Theseobservations establish the correctness of the algorithm, and are also the key to improving thisalgorithm as we shall soon see in the following section.3.2 Nested Multiplication AlgorithmThe nested multiplication evaluation algorithm for L-bases arises by observing that if wedo not scale the coe�cients in the parallel up recurrence algorithm described in Section 3.1,the same computation can be accomplished by choosing exactly one path from each node atthe base of the tetrahedron to the node at the apex. This structure can easily be achieved bymaking sure that at every level of the computation there is exactly one arrow pointing upwardsfrom each node. It is remarkable that it does not matter which set of arrows are used at eachlevel so long as they satisfy this uniqueness condition. Therefore, this observation gives rise toa whole class of algorithms, all of which have many fewer arrows than the general up recurrencealgorithm described in the previous section. A simple symmetric rule for selecting the arrows isto choose all the arrows in the topmost upright triangles, the two lower arrows on the rightmost



3.2. Nested Multiplication Algorithm 9triangles and the leftmost arrow in all the remaining triangles as shown in Figure 3.2. However,although the number of arrows is reduced with this choice, the computational complexity of thealgorithm still remains O(n3) because we have removed slightly less than 23 of the arrows.Carnicer and Gasca [CG90a] describe a class of evaluation algorithms for those multivariatepolynomials that are expressed as the sum of a constant plus some other polynomials, eachof which can be written as a product of a linear polynomial with a polynomial of degreestrictly lower than the degree of the original polynomial. Polynomials represented in termsof L-bases clearly satisfy this property. Therefore, the evaluation algorithms of Carnicer andGasca can be applied to L-bases. However their algorithm and the resulting computationalcomplexity depend upon the way the polynomial is represented. In general, the computationalcomplexity of their algorithm for bivariate polynomial bases including bivariate Lagrange bases[CG90b] is O(n3). We shall refer to this class of algorithms, including up recurrence algorithmsand algorithms described by Carnicer and Gasca, as nested multiplication algorithms becausethese algorithms can clearly be viewed as nested multiplication. Both Carnicer and Gasca[CG90a] and de Boor and Ron [dBR92] describe this class of nested multiplication algorithmsas the generalization of Horner's nested multiplication algorithm for the evaluation of univariatepolynomials. However, as we shall see later in Section 4, there is another di�erent class ofnested multiplication algorithms for the evaluation of multivariate polynomials that also qualifyas generalizations of Horner's algorithm. Therefore, it is not clear which of these algorithms canclaim to be the generalization of Horner's evaluation algorithm, although all of them are a formof nested multiplication.We can reduce the computational complexity of the our nested multiplication algorithm fromO(n3) to O(n2lgn) by observing that it is not necessary to have an arrow emerging from a nodeif there are no arrows entering that node. Such a node will be referred to as a dead node.Other nodes will be referred to as active nodes. To reduce the computational complexity of thealgorithm, we desire to increase the number of dead nodes as much as possible. One way toachieve this end is to point as many arrows as possible towards the corners and towards thesides rather than towards the center.We now briey illustrate how this idea can be used to reduce the computational complexityof the analogous evaluation algorithm for univariate polynomials from O(n2) to O(nlgn). Thisproblem is purely combinatorial; one simply needs to choose enough arrows so that there isexactly one path from every node at the base to the node at the apex. The left diagram of Figure3.3 shows how this can be achieved for univariate polynomials when n = 3. This approach canbe generalized to polynomials of arbitrary degree n by a divide and conquer strategy. Here aproblem of size n is broken down into two subproblems of size bn2 c at the base followed by atmost dn2 e arrows on both sides of the triangle. An example for n = 7 is shown in Figure 3.4,where evaluation of a univariate polynomial of degree 7 is broken down into two subproblems ofevaluation for univariate polynomials of degree 3 at the base. This approach yields the followingrecurrence equation for the computational complexity T (n):T (n) = 2T (bn2 c) +O(n):
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Figure 3.4: Nested multiplication evaluation algorithm for univariate L-bases of degree7Solving this recurrence, we obtain T (n) = nlgn, which establishes the claim for univariatepolynomials.To generalize this technique to the bivariate case, we run the univariate algorithm layer bylayer as illustrated in the right diagram of Figure 3.3. For the nodes in the frontmost layer ofthe base of the tetrahedron, we run an evaluation algorithm for a univariate L-basis of degreen. For the layer behind it at the base of the tetrahedron, we run the evaluation algorithm for a
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L 23Figure 3.10: Evaluation algorithm for Newton L-basesdiscussed in the previous section and described in Figure 3.7. First, replace the labels L1i byx, L2i by y and L3i by 1� x � y in Figure 3.7 to reect the fact that we are working with thestandard B�ezier basis. Now reorganize the diagonal edge in Figure 3.7 with labels 1�x�y into theunivariate de Casteljau evaluation algorithm as shown in Figure 3.9 and compensate for the extrafactors of x+y by dividing each label of the lower triangles by x+y. Introducing the parameterst = 1�x�y and s = yx+y , we obtain the tensor product evaluation algorithm presented in Figure3.9. Observe that the coe�cients C� in Figure 3.9 are the usual coe�cients for a polynomialexpressed in terms of a B�ezier basis. This tensor product algorithm has n(n+1)(n+5)3 arrows forthe evaluation of polynomials of degree n. Therefore this algorithm is still O(n3). Howeverobserve that the standard bivariate de Casteljau algorithm for the evaluation of polynomialsof total degree n has n(n+1)(n+2)2 arrows, as shown in Figure 3.1. Therefore the tensor productalgorithm is more e�cient than the standard bivariate de Casteljau algorithm for the evaluationof polynomials of total degree greater than or equal to 4.3.3.3 Newton EvaluationSince all the polynomials in one of the sequences in the knot-net of a Newton basis are 1,considerable simpli�cations take place as well in both the parallel up recurrence algorithm andthe nested multiplication algorithm for the evaluation of Newton bases. In this case too it paysto choose arrows with labels 1 as often as possible. The left diagram of Figure 3.10 shows such achoice, where the arrows pointing downwards have the label 1. Since no multiplication needs tobe done for arrows with labels 1, one can \pull up" these nodes as shown in the right diagramof Figure 3.10. The right diagram of Figure 3.10 shows the same computation as in the leftdiagram, but now arranged in a triangular format. Since the triangular format has only O(n2)nodes, this �gure shows that the computational complexity of this evaluation algorithm is O(n2).



16 3. Up Recurrence AlgorithmsThis algorithm is exactly the same as the evaluation algorithm described by Gasca in [Gas90].3.3.4 Lagrange Evaluation: Generalization of the Aitken-Neville AlgorithmWe now derive a variation of the parallel up recurrence diagram for the evaluation of LagrangeL-bases, which gives rise to a bivariate generalization of the univariate Aitken-Neville algorithm.In the past the Aitken-Neville algorithm has been generalized to some restricted classes ofbivariate Lagrange polynomials [Ait32, Nev34, Gas90, CG90b, CG90a, Muh78, GL87, GM89,Muh74, TM60, Muh88]. This new generalization extends the class of multivariate Lagrangepolynomials to which an Aitken-Neville algorithm can be applied.Given a knot-net L = ffL1jg, fL2jg, fL3jg, j = 1; � � � ; ng of linear homogeneous polynomi-als, consider the three knot-nets M1 = f(L̂11; � � � ; L1n), (L21; � � � ; L̂2n), (L31; � � � ; L̂3n)g; M2 =f(L11; � � � ; L̂1n), (L̂21; � � � ; L2n), (L31; � � � ; L̂3n)g; and M3 = f(L11; � � � ; L̂1n), (L21; � � � ; L̂2n),(L̂31; � � � ; L3n)g respectively, where L̂ means that the term L is missing. Observe that if Lsatis�es the linear independence condition on the knot-net of polynomials for 0 � j�j � n � 1,then the knot-net M1 satis�es the linear independence condition for 0 � j�j � n � 2. Thisobservation follows by setting �1 = �1 + 1, �2 = �2 and �3 = �3. Similarly the knot-nets M2and M3 satisfy the linear independence condition for 0 � j�j � n� 2. Moreover, if the knot-netL satis�es the linear dependence condition for a Lagrange L-basis, then the three knot-netsM1, M2 and M3 also satisfy the linear dependence condition for a Lagrange L-basis. Let fln�g,fpn�11;� g, fpn�12;� g and fpn�13;� g be the L-bases corresponding to the knot-nets L, M1, M2 and M3respectively.We can associate point interpolation problems to these knot-nets as follows. Let L(u) be theunique polynomial of degree n that interpolates the values S� at the points v�, where the pointsv� are the points of intersection of certain lines from the collection L as described in Section2.3. Then, L(u) = Pj�j=n S� ln�ln�(v�) . Similarly let M1(u), M2(u) and M3(u) be the uniquepolynomials of degree n � 1 that satisfy the point interpolation conditions Mi = S�+ei��� forj�j = n� 1. Then Mi(u) = Pj�j=n�1 S�+ei pn�1i;�pn�1i;� (v�) .Now create the following variation of the parallel up recurrence algorithm: Replace the labelsLk;�k by the labels Lk;�kLk;�k (v�+lek ) on the arrows pointing from the node Cl� to the node Cl+1��ek .Then we can express the solution to the point interpolation problem as an a�ne combination ofthe three subproblems of point interpolation and thus generalize the Aitken-Neville algorithm forthe evaluation of Lagrange polynomials from univariate to bivariate polynomials [Ait32, Nev34].Theorem 1: L(u) = L11L11(vn00)M1(u) + L21L21(v0n0)M2(u) + L31L31(v00n)M3(u):Proof: The proof is by induction. The case n = 1 reduces to a simple triangular point interpo-lation problem and in this case the linear solution L(u) is indeed a barycentric combination ofconstant solutions given byL(u) = L11L11(v100)C100+ L21L21(v010)C010+ L31L31(v001)C001:
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L21Figure 3.11: Ladder recurrence algorithm for bivariate L-basesThe inductive hypothesis assumes that the statement of the theorem is true for n � 1. We willnow prove that the statement of the theorem holds for n. First, observe that for i = 1; 2; 3Mi(u) = Xj�j=n�1S�+ei pn�1i;�pn�1i;� (v�) : (3.1)The inductive hypothesis asserts that the values at the three nodes that contribute to the apexof the tetrahedron, which are simply the apexes of the recurrence diagrams of the three sub-problems, are M1(u), M2(u) and M3(u). Now letM(u) = L11L11(vn00)M1(u) + L21L21(v0n0)M2(u) + L31L31(v00n)M3(u): (3.2)We will prove that M(u) = L(u). Substituting Equation 3.1 into Equation 3.2 and recallingalso that Li1pn�1i;� = ln�+ei ;we obtain M(u) = Xj�j=nS� ln�ln�(v�)I(v�);where I(v) = L11(v)L11(vn00) + L21(v)L21(v0n0) + L31(v)L31(v00n) :To show that I = 1, we observe that I is a linear polynomial, which evaluates to 1 at threea�nely independent points vn00, v0n0 and v00n; therefore I is identically equal to 1. This provesthat M(u) = L(u) and establishes the theorem. 23.4 Ladder Recurrence AlgorithmBy removing redundant arrows, we were able to design in the previous section an O(n2lgn)algorithm for the evaluation of bivariate L-bases. Can we do better? The answer is yes, althoughwe must modify still further the structure of the up recurrence algorithm. In the previous



18 3. Up Recurrence Algorithmssection, we derived an O(n2lgn) algorithm by extending a univariate evaluation algorithm withcomputational complexity O(nlgn). By modifying the structure of the univariate parallel uprecurrence, Warren developed a ladder recurrence algorithm for the evaluation of univariateL-bases (or P�olya bases) with computational complexity O(n) [War94]. Since each triangle inFigure 3.7 has the same structure as the univariate parallel up recurrence, we can replace eachtriangle of height p by a ladder of height p.Figure 3.11 presents an example of the bivariate ladder recurrence algorithm for degree 3.The recurrence starts at the bottom of Figure 3.11, at all the nodes shown as cross-hatchedcircles. These nodes have values 1. As before, the value at any node is computed by multiplyingthe value along each arrow that enters the node by the value of the node from which the arrowemerges and adding the results. The computation proceeds upwards and the value of L(u)emerges at the apex node of the triangle, shown as a black circle in Figure 3.11. A more formaldescription of this algorithm for arbitrary degree n can be found in [LGW94]. Since a ladderwith p steps requires O(p) computations, the computational complexity of this algorithm isPnp=1O(p) = O(n2). Observe that in contrast to other algorithms described in this work, thisalgorithm employs coe�cients as labels along the edges.



194. Dual Evaluation AlgorithmsThus far we have described a generic O(n3), a generic O(n2lgn), and a generic O(n2)algorithm for the evaluation of bivariate L-bases. In this section we describe dual evaluationalgorithms with computational complexity O(n2), O(n), and O(1) per point. This class ofalgorithms is based upon certain change of basis algorithms between L-bases which we discussnext.4.1 Change of Basis AlgorithmsIn our earlier work [LG95a], we derived change of basis algorithms with computationalcomplexity O(n3) between any two bivariate L-bases. Here we establish how these changeof basis algorithms can be used to derive evaluation algorithms with computational complexityO(n) or O(1) per point for bivariate L-bases. This class of algorithms include a Lagrangeevaluation algorithm, a divided di�erence algorithm, and a forward di�erence algorithm, eachof which we shall now describe.4.1.1 Lagrange Evaluation AlgorithmThe general change of basis algorithm between any two L-bases was derived using the dualitybetween B-bases and L-bases and is dual to the general change of basis algorithm between anytwo B-bases [Sei91], derived using the blossoming principle [Ram87, Ram89]. We begin witha speci�c example of a change of basis algorithm from a B�ezier L-basis to a Lagrange L-basisto: (i) illustrate the general procedure for change of basis between any two L-bases that will beneeded subsequently to derive the divided di�erence and the forward di�erence algorithm, and(ii) to describe how this algorithm can be used to evaluate any L-basis at O(n2) points withcomputational complexity O(n3), that is, an amortized cost of O(n) computations per point.Suppose we are given the coe�cients R� of a quadratic polynomial L with respect to theB�ezier L-basis fpn�g de�ned by a knot-net L = ffL1jg; fL2jg; fL3jg; j = 1; 2g, whereL11 = x ; L12 = x ;L21 = y ; L22 = y ;L31 = 1� x� y ; L32 = 1� x� y .The corresponding B�ezier L-basis is then given by p2200 = x2, p2020 = y2, p2002 = (1 � x � y)2,p2110 = xy, p2101 = x(1� x� y), and p2011 = y(1� x� y).We would like to compute the coe�cients U� of this quadratic polynomial L with respect tothe Lagrange L-basis fln�g de�ned by the knot-net M = ffM1jg; fM2jg; fM3jg; j = 1; 2g, whereM11 = x ;M12 = x� 12 ;M21 = y ;M22 = y � 12 ;M31 = 1� x � y ;M32 = 12 � x� y .
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4.1. Change of Basis Algorithms 21For the �rst tetrahedron the known coe�cients R� with j�j = 2 are placed at the nodesalong one of the lateral faces of the tetrahedron as depicted in the �rst diagram of Figure 4.2.The labels gk;� are computed as follows: For j�j = 0; 1, let i = 2� j�j; thenL3i = g1;�L1;�1+1 + g2;�L2;�2+1 + g3;�M3;�3+1:Thus �nding gk;� amounts to solving a 3� 3 system of linear equations. For our example, thelabels are: g3;001 = 2, and g1;001 = g2;001 = g3;010 = g3;100 = g3;000 = 1. The rest of the labels arezero. These labels are shown in the �rst diagram of Figure 4.2. The computation is now carriedout as follows. At the start all the nodes at all levels of the pyramid are empty or zero otherthan the nodes � with j�j = 2, where the coe�cients R� are placed. The empty or zero nodesare shown as hatched circles in Figures 4.1 and 4.2. The computation starts at the apex of thetetrahedron and proceeds downwards. A value at an empty node is computed by multiplyingthe label along each arrow that enters the node by the value of the node from which the arrowemerges and adding the results. A value at a non-empty node is computed by applying the sameprocedure and simply adding the value already at that node. After the computation is complete,the new coe�cients S�+(2�j�j)e3 emerge at the nodes � on the base triangle. These coe�cientsare as follows: S200 = R200, S110 = R110, S020 = R020, S101 = R002 +R101, S011 = R002 + R011,S002 = 2R002. These new coe�cients now express the polynomial L with respect to the L-basisde�ned by the knot-net ffL1jg; fL2jg; fM3jg; j = 1; 2g.We now repeat the above procedure with a second tetrahedron, where the coe�cients S�are placed at the nodes � with j�j = 2 as shown in the middle diagram of Figure 4.2. Thelabels on the tetrahedron are permuted from (i; j; k) to (i; k; j) because now we wish to retainthe polynomial M3j and replace the polynomials L2j by M2j . The labels gk;� are now computedas follows: For j�j = 0; 1, let i = 2� j�j; thenL2i = g1;�L1;�1+1 + g2;�M2;�2+1 + g3;�M3;�3+1:These labels are also shown in the middle diagram of Figure 4.2 and in our special case turn out tobe the same as in the �rst tetrahedron. After the computation is complete, the new coe�cientsT� emerge at the nodes on the base triangle. These coe�cients are as follows: T200 = S200,T110 = S020+S110, T020 = 2S020, T101 = S101, T011 = S020+S011, T002 = S002. These coe�cientsnow express the polynomial L with respect to the L-basis de�ned by the knot-net ffL1jg, fM2jg,fM3jg, j = 1; 2g.Finally we repeat the above procedure with a third tetrahedron, where the coe�cients T�are placed at the nodes � with j�j = 2 as shown in the rightmost diagram of Figure 4.2. Thelabels on this tetrahedron are permuted from (i; j; k) to (j; k; i) because now we wish to retainthe polynomials M2j and M3j and replace the polynomials L1j by M1j . The labels gk;� arecomputed as follows: For j�j = 0; 1, let i = 2� �; thenL1i = g1;�M1;�1+1 + g2;�M2;�2+1 + g3;�M3;�3+1:Again in our special case these labels are the same as in the �rst tetrahedron and are shown inthe rightmost diagram of Figure 4.2. After the computation is complete, the new coe�cients U�



22 4. Dual Evaluation Algorithmsemerge at the nodes on the base triangle. These new coe�cients are as follows: U200 = 2T200,U110 = T200 + T110, U020 = T020, U101 = T200 + T101, U011 = T011, U002 = T002. Thesecoe�cients express the polynomial L with respect to the L-basis de�ned by the knot-net M =ffM1jg; fM2jg; fM3jg; j = 1; 2g. The change of basis algorithm is now complete. In terms of theoriginal coe�cients R�, the �nal coe�cients U�, are: U200 = 2R200, U110 = R200+R020 +R110,U020 = 2R020, U101 = R200 +R002 +R101, U011 = R020 +R002 + R011, U002 = 2R002.The above change of basis algorithm is the crucial step in the Lagrange evaluation algorithmthat we now describe. Given the coe�cients R0� of the quadratic polynomial L in the quadraticB�ezier basis x2, y2, (1 � x � y)2, 2xy, 2x(1� x � y), and 2y(1 � x � y), we �rst compute thecoe�cients R� with respect to the B�ezier L-basis by R� = n!�!R0�, where n = 2 in this case. Thenwe run the change of basis algorithm to compute the coe�cients U� of the quadratic polynomialL with respect to the Lagrange L-basis ln�. Since the Lagrange basis is given by f ln�ln�(v�)g, thecoe�cients U 0� with respect to the Lagrange basis are computed by U 0� = U�ln�(v�). In thecurrent case, since v200 = (1; 0), v020 = (0; 1), v002 = (0; 0), v110 = (12 ; 12), v101 = (12 ; 0), v011 =(0; 12), we �nd l2200(v200) = 12 , l2020(v020) = 12 , l2002(v002) = 12 , l2110(v110) = 14 , l2101(v101) = 14 ,l2011(v011) = 14 . The coe�cients U 0� are the values of the quadratic polynomial L at the pointsv�; that is, L(v�) = U 0�. This completes the evaluation algorithm.The general Lagrange evaluation algorithm is obtained similarly by �rst converting thecoe�cients in a given basis to an L-basis by multiplying if necessary by appropriate constants,running the change of basis algorithm from the given L-basis to the Lagrange L-basis, and�nally multiplying the derived coe�cients by appropriate constants to obtain the value of thepolynomial at the points de�ned by the Lagrange L-basis.A general change of basis algorithm from any L-basis to any other L-basis is obtainedby following essentially the same procedure. Suppose we are given the coe�cients R�of a polynomial L of degree n with respect to an L-basis fln�g de�ned by the knot-netL = ffL1jg; fL2jg; fL3jg; j = 1; � � � ; ng. We would like to compute the coe�cients U� ofthis polynomial L with respect to another L-basis fpn�g de�ned by another knot-net M =ffM1jg; fM2jg; fM3jg; j = 1; � � � ; ng.The general change of basis algorithm is constructed in the following manner:1. Build three tetrahedra. For each tetrahedron, (n+1�i)(n+2�i)2 nodes are placed at the i-th level of the tetrahedron for i = 0; � � � ; n. The labels gk;� along the edges of the �rsttetrahedron are computed for j�j = 0; � � � ; n� 1, fromL3i = g1;�L1;�1+1 + g2;�L2;�2+1 + g3;�M3;�3+1; i = n� j�j:The labels for the second and the third tetrahedron are computed in a similar fashion. Weassume that the intermediate knot-nets ffL1jg, fL2jg, fM3jg, j = 1; � � � ; ng are linearlyindependent.2. Point the arrows on the tetrahedron downwards and place the original coe�cients R� alongthe lateral face of the pyramid. Carry out the computation and collect the new coe�cientsS� along the base of the pyramid.
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x3Figure 4.3: Univariate divided and forward di�erence evaluation algorithms3. Repeat steps 1 and 2 two more times with the second and third tetrahedron using theoutput of the previous step as the input into the next step. After 3 steps, the coe�cientsat the base of the tetrahedron are the desired coe�cients U�.This general change of basis algorithm is O(n3) since each tetrahedron has O(n3) nodes. There-fore, a general Lagrange evaluation algorithm takes O(n3) computations to evaluate the polyno-mial at O(n2) points. Since the geometric mesh or principal lattice con�guration admits uniqueinterpolation by a Lagrange L-basis, this algorithm can be used repeatedly to evaluate any bi-variate L-basis on a regular rectangular lattice with an amortized cost of O(n) computationsper point.4.1.2 Divided and Forward Di�erence AlgorithmsThe divided di�erence algorithm is an algorithm for evaluating polynomials at several points,where successive computations take advantage of previous computations. The forward di�erenceevaluation algorithm is a divided di�erence algorithm for evaluating a polynomial at severalequidistant points. In the univariate case, these algorithms can be viewed as change of basisalgorithms from one Newton basis to another Newton basis. We shall establish that the situationis analogous in the multivariate setting.To appreciate the divided di�erence algorithm in the multivariate setting, we �rst very brieydescribe this algorithm in the univariate setting. Suppose a polynomial L(x) of degree n in onevariable is to be evaluated at points x1; � � �xm, where m is much larger than the degree n ofthe polynomial. For the sake of illustration, assume that the given polynomial is of degreethree. Moreover suppose that the polynomial is represented in the Newton basis 1, x � x1,(x� x1)(x� x2) and (x� x1)(x� x2)(x� x3). If that is not the case, then the polynomial canalways be evaluated at n+1 distinct points and then the coe�cients of the polynomial L(x) withrespect to the Newton basis can be computed using well-known techniques. The coe�cients ofthe polynomial with respect to the Newton basis are the divided di�erences as shown below:L(x) = L[x1]+L[x2; x1](x�x1)+L[x3; x2; x1](x�x1)(x�x2)+L[x4; x3; x2; x1](x�x1)(x�x2)(x�x3):Given these coe�cients, one can compute the new coe�cients of the same polynomial withrespect to the new Newton basis 1, x � x2, (x � x2)(x � x3) and (x � x2)(x � x3)(x � x4) byapplying the change of basis algorithm from one Newton basis to another Newton basis as shown
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26 4. Dual Evaluation Algorithms4.2 Dual Nested Multiplication Evaluation AlgorithmWe now describe the dual nested multiplication evaluation algorithm for an L-basis that isobtained from the dual formulation of the de Boor evaluation algorithm for a B-basis [LG95a].To evaluate a polynomial expressed in terms of an L-basis at a point u, let M and N betwo polynomials that vanish at u, that is, M(u) = N(u) = 0. We now peform a change ofbasis algorithm from the L-basis de�ned by the given knot-net L to the L-basis de�ned by theknot-net fL1j ; L2j; N ; j = 1; � � �ng and then from this basis to the L-basis de�ned by the knot-net fL1j ;M;N ; j = 1; � � �ng. Since all the basis functions in the L-basis de�ned by this lastknot-net have a factor of M or N except the basis function lnn00 = L11 � � �L1n, the value of thegiven polynomial at u can now be computed simply by multiplying the coe�cient of lnn00 withlnn00(u).We shall refer to this algorithm as the dual nested multiplication algorithm. It is shownin [LG95a] that for polynomials written in terms of the multinomial basis, this algorithm spe-cializes to a bivariate generalization of Horner's evaluation algorithm for univariate polynomialsexpressed in the monomial (Taylor) basis, and agrees with the algorithm for evaluation of multi-variate polynomials proposed by Schumaker and Volk [SV86]. Notice that in this algorithm, oneperforms computations only for two tetrahedra in contrast to computations for three tetrahedrain the general change of basis algorithm. Also, for the �rst tetrahedron, the computation needsto be carried out only along one of the faces of the tetrahedron, as shown in the left diagramof Figure 4.6, because only the values along one of the edges at the base of the tetrahedron areneeded as input for the next tetrahedron. Therefore, the computational complexity for the �rsttetrahedron is only O(n2). For the second tetrahedron, the computation needs to be carried outonly along one edge of the tetrahedron, as shown in the right diagram of Figure 4.6, becauseonly the value at one corner of the base of the tetrahedron is needed to evaluate the givenpolynomial. The computational complexity of this step is therefore only O(n), giving an overallcomputational complexity of O(n2).Observe that this dual nested multiplication algorithm can be generalized somewhat in orderto further simplify the computation of the labels along the edges. In this evaluation algorithmif we are given only one value of u, then we have a good deal of exibility in choosing M andN . In fact, even more generally, we can choose any set of 2n lines fMi; Ni; i = 1; � � � ; ng passingthrough u and the same argument goes through as long as the intermediate knot-nets are linearlyindependent.In the case of a B�ezier or multinomial L-basis, L1j = L1, L2j = L2 and L3j = L3. Givenv0 = (x0; y0), one possible choice is M = x � x0 and N = y � y0. But another possible choiceM = L3(v0)L1 � L1(v0)L3 and N = L2(v0)L1 � L1(v0)L2 is more symmetric and has theadvantage that the labels gk;� are much simpler, as the following identities reveal:L3 = 0� L2 + L3(v0)L1(v0)L1 � 1L1(v0)M;L2 = 0�M + L2(v0)L1(v0)L1 � 1L1(v0)N:
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dFigure 4.6: Dual nested multiplication evaluation algorithm for L-basesWe close this section by highlighting with an example the di�erence between the up recur-rence algorithms described in Section 3 and the dual nested multiplication algorithm introducedhere. Consider a polynomial L(u) represented in terms of the Lagrange L-basis de�ned by theknot-netL11 = x ; L12 = x� 12 ;L21 = y ; L22 = y � 12 ;L31 = 1� x� y ; L32 = 12 � x� y .Suppose L(u) =Pj�j=nR�ln� is to be evaluated at a point (x0; y0). Then a typical up recurrencealgorithm organizes the computation as follows:L(u) = R200(x0�12)x0+(R110x0+R020(y0�12))y0+(R101x0+R011y0+R002(12�x0�y0))(1�x0�y0):In contrast, the dual nested multiplication algorithm organizes the computation very di�er-ently. We �rst need to make choices. Let us de�ne N = x+y�x0�y0 and M = y�y0. For the�rst tetrahedron, one obtains the following required labels by solving the appropriate system oflinear equations: g1;000 = g2;000 = a, g1;100 = g2;100 = g1;010 = g2;010 = b, where a = 12(x0+y0) � 1,and b = 12(x0+y0)�1 � 1, as shown on the left diagram of Figure 4.6. This tetrahedron yieldsthe computation: S200 = (R002a + R101)b + R200, S110 = (R002a + R101)b +(R002a + R011)b+R110, and S020 = (R002a+R011)b+R020. For the second tetrahedron, the necessary labels are:g1;000 = c, and g1;100 = d, where c = 2y0�12x0 and d = 2y02x0�1 . These labels are shown on the rightdiagram of Figure 4.6. This tetrahedron yields the computation: T200 = (S020c+ S110)d+ S200.The value of the original polynomial is then �nally obtained by multiplying the value T200 byl2200(x0; y0), which in this case is x0(x0 � 12).



28 5. Other Algorithms5. Other AlgorithmsIn this section, we briey review a few other algorithms that are closely related to theevaluation algorithms discussed so far.5.1 Hybrid AlgorithmsIn addition to the algorithms for evaluating multivariate polynomials discussed so far, weare aware of some di�erent algorithms for evaluating multivariate polynomials, most of whichare spurred by considerations of stability in numerical computations [LSP87, Vol90, Pet94].First, Volk [Vol88] has proposed a hybrid univariate nested multiplication and divided di�erencealgorithm. Volk [Vol90] has also proposed a slightly di�erent evaluation algorithm based on theforward di�erence algorithm for evaluation of polynomials at several points. In order to improvethe stability of the forward di�erence evaluation algorithm, Volk reduces the level of indirectionin the computation by solving an upper triangular system [Vol90]. A second method, discussedby Peters [Pet94], is again motivated by concerns of stability and e�ciency. This algorithmextracts univariate polynomials along isoparameter lines and then performs the evaluationalgorithms for univariate polynomials using a forward di�erence or dual nested multiplicationalgorithm. We have not addressed the very important considerations of stability in numericalcomputations, for which we refer the reader to [FR88, Far91, FR87], because rather than stabilitythe focus of this work has been to provide a conceptual framework for the uni�cation of a largevariety of evaluation algorithms for multivariate polynomials.5.2 Factored AlgorithmsBy factored algorithms we mean algorithms where an intermediate basis is used to performevaluation. For example, the divided and forward di�erence algorithms for evaluation wereobtained by \factoring" through the Newton basis, while the Lagrange evaluation algorithm isobtained by \factoring" through the Lagrange basis.We have concentrated on evaluation algorithms for multivariate polynomials that are ex-pressed in terms of L-bases. Another important class of bases are B-bases, bases that are dualto L-bases. B-bases are blending functions for B-patches which were introduced by Seidel [Sei91]and shown to agree with certain multivariate B-splines on a special region of the parameter do-main [DMS92]. Evaluation algorithms with computational complexity O(ns+1) for multivariatepolynomials of degree n in s variables expressed in terms of B-bases have been derived in [Sei91]using blossoming. Barry and Goldman [BG93b] and Sankar, Silbermann and Ferrari [SSF94]have discussed a technique for speeding up knot insertion and evaluation of univariate polyno-mials expressed in terms of univariate progressive or B-spline bases by factoring through theNewton dual basis, that is, the dual to the univariate Newton basis. Here, we only indicate whythis technique of factoring can easily be extended to speed up the algorithms for evaluating mul-tivariate polynomials, expressed in terms of B-bases, at several points. This factoring algorithm



5.3. Derivative and Other Algorithms 29can be viewed as dual to the divided di�erence algorithm. To derive this algorithm, one �rstconverts the given polynomial into the special Newton dual B-basis de�ned by the knot-net ofpoints u1i = (a1i; b1i), u2i = (1; 0) and u3i = (0; 1) for i = 1; � � � ; n. The interesting and crucialproperty of this basis is that one can express a point u = (x; y) as follows:u = 1u1i + (x� a1i)(1; 0)+ (y � b1i)(0; 1):Therefore, the labels 1, x� ai1, and y� b1i do not involve any divisions. This observation is thecrucial property that is needed to minimize divisions and speed up the computations.5.3 Derivative and Other AlgorithmsAlthough we have focused only on algorithms for evaluating multivariate polynomials, thesealgorithms are closely related to and can easily be extended to procedures to compute derivativesof multivariate polynomials. This technique of unifying evaluation algorithms and derivativealgorithms has been discussed for univariate polynomials by Goldman and Barry [GB92]. Herewe briey indicate how this extension from evaluation algorithms to derivative algorithms canbe derived. The key observation is that a multinomial (Taylor) basis is de�ned by a point andtwo vectors and, therefore, change of basis algorithms to a multinomial basis de�ned by a pointp and two vectors v1 and v2 amounts to computing the directional derivatives of the polynomialat the point p in the directions v1 and v2. In particular, given a B�ezier B-basis de�ned by threepoints p1, p2 and p3, the change of basis algorithm to the multinomial B-basis de�ned by thepoint p1 and the unit vectors in the direction p2p1 and p3p1 is the generalization of the Boehm'sderivative algorithm from curves to surfaces. To compute the directional derivatives at a point palong the vectors v1 and v2 of a polynomial L(u) given with respect to an L-basis, perform thechange of basis algorithm from the given L-basis to the uniform L-basis de�ned by the followingthree lines: the line through p along the direction v1, line through p along the direction v2, andthe line at in�nity.Using principles of homogenization, blossoming, and duality [BGD91, BG93a, CLR80, LM86,Mar70, Boe80] univariate evaluation and di�erentiation algorithms have been uni�ed with sev-eral other very well-known algorithms, formulas, and identities, including the Oslo algorithm,Boehm's knot-insertion and derivative algorithms, Marsden's identity, the binomial theorem,Ramshaw's blossoming algorithm, a two-term di�erentiation algorithm, and a two-term degreeelevation formula. Although in this work we have focused solely on evaluation algorithms, itfollows in conjunction with our earlier work [LG95a, LG95b] that the principles of blossoming,duality, and homogenization can be extended to provide a similar uni�cation in the multivariatesetting.



30 6. Conclusions and Future Work6. Conclusions and Future WorkWe have presented a uni�ed framework for evaluation algorithms for multivariate polynomialsexpressed in a wide variety of polynomial bases including the B�ezier, multinomial, Lagrange,and Newton bases. Although in the past several di�erent evaluation algorithms have beenconstructed by organizing the nested multiplications in di�erent ways, the interpretation anduni�cation of all these algorithms either as a way of reorganizing the computation in an uprecurrence algorithm or as change of basis algorithms is new.Variations of the up recurrence algorithm include a parallel up recurrence algorithm withcomputational complexity O(n3), a nested multiplication algorithm with computational com-plexity O(n2lgn), a ladder recurrence algorithm with computational complexity O(n2), and ageneralization of the Aitken-Neville algorithm for Lagrange L-bases with computational com-plexity O(n3). Specializations of this class of algorithms include the de Casteljau algorithm forB�ezier bases, the evaluation algorithms for multinomial and Newton bases proposed by Carnicerand Gasca, and the evaluation algorithms for multinomial bases proposed by de Boor and Ron.Variations of change of basis algorithms between L-bases yielded a divided di�erence al-gorithm with computational complexity O(n2) per point, a forward di�erence algorithm withcomputational complexity O(1) per point, and a Lagrange evaluation algorithm with amortizedcomputational complexity O(n) per point for the evaluation of polynomials at several points.This class of algorithms also include a dual nested multiplication algorithm with computationalcomplexity O(n2) which along with the up recurrence algorithms described in the previous para-graph can be considered as generalization of Horner's algorithm for the evaluation of univariatepolynomials. The evaluation algorithm for multinomial bases proposed by Schumaker and Volkis a special case of a dual nested multiplication algorithm.New algorithms derived and discussed in this work can best be appreciated in the case ofLagrange bases, where unlike multinomial or Newton bases considerable simpli�cations do notoccur. For multivariate polynomials expressed in Lagrange L-bases, we have described severalevaluation algorithms including a nested multiplication algorithm with computational complex-ity O(n2lgn) generated by removing redundant arrows from the up recurrence algorithm, ageneralization of the Aitken-Neville algorithm with computational complexity O(n3), a ladderrecurrence algorithm with computational complexity O(n2), and a dual nested multiplicationalgorithm with computational complexity O(n2). We have presented speci�c examples to demon-strate that these algorithms are all distinct both conceptually and in practice.It has been very satisfying to discuss all the well-known algorithms for evaluating multivariatepolynomials in a single uni�ed framework. In fact, we are not aware of any evaluation algorithmfor multivariate polynomials that cannot be derived from the techniques presented in this work.It would be satisfying to integrate into our formulation evaluation algorithms for multivariatepolynomials expressed in terms of other useful bases such as multivariate Hermite bases. Ageneralization of the Aitken-Neville recurrence for Hermite bases de�ned over geometric meshesis currently under investigation by Habib and Goldman [HG95].Acknowledgments: This work was partially supported by National Science Foundation grants
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