
Linear Time Unit Resolution forPropositional Formulas|in Prolog, yetAllen Van GelderBaskin Center for Computer Engineering and Information SciencesUniversity of California, Santa Cruz 95064UCSC-CRL-95-32avg@cs.ucsc.eduApril 19, 1995AbstractA procedure to analyze a propositional formula in clause form by unit resolution is described andillustrated with a Prolog implementation. It runs in worst-case time that is linear in the length ofthe formula. The main idea has been independently rediscovered by several implementers. Apparently,its �rst journal appearance was a sketch by Dalal and Etherington in 1992. However, there also hadarisen a folkloric belief that unit resolution requires quadratic time.This report shows that the implementation sketched for imperative languages, such as C, consumesquadratic time if translated to Prolog. This degradation occurs even if clause indexing permits theretrieval of an asserted clause in constant time. It is rather due to the way Prolog handles assertionsinvolving data structures, such as lists. A modi�ed Prolog implementation that restores linear time isdescribed.The time remains linear even if the procedure is run \on-line", meaning that new clauses appear inthe input as processing proceeds. This property is useful in applications that have several mechanismsfor deriving new clauses. The technique may have application in other problems that can be describedas inductive closures on �nite domains. Ad hoc solutions to such problems are error-prone and oftenine�cient.Keywords: Propositional logic, satis�ability, validity, boolean formula, unit resolution, Prolog internals,algorithms, inductive closure.
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1 IntroductionThe decision problem of Boolean, or propositional, satis�ability is the \original" NP -hard problem. Weassume the reader is generally familiar with it, and give de�nitions only when needed for clarity. Weshall consider exclusively propositional formulas in conjunctive normal form (CNF), also called clause form.Each clause is a disjunction of literals, and clauses are joined conjunctively. A closely related problem is todetermine validity of a formula in disjunctive normal form. As language recognition problems, satis�abilityis in NP , while validity is in co-NP . However, as decision problems, they are essentially equivalent.In the search for e�ciency, certain special classes have been found to be decidable in polynomial time.The best known of these are:� 2-CNF , in which each clause has at most two literals, also called Krom formulas,� Horn clause formulas, in which each clause has at most one positive literal.On the other hand, certain procedures are guaranteed to terminate in polynomial time on all propositionalformulas, but may do so without reaching a decision; such procedures are called incomplete. Unit resolution�ts into both worlds, in a way, because it is known to terminate in polynomial time on all formulas, and isguaranteed to reach a decision on Horn clause formulas.Recently, incomplete procedures have found application as subroutines within complete procedures. Bydrawing what inferences they can quickly, they assist the main procedure to avoid some unnecessary guessingand backtracking. In this application:� It is important that such repeatedly used subroutines be as fast as possible; more than linear time israrely practical.� It is essential that the procedures deliver whatever information is derivable, even when a �rm decisionis not reached.� E�cient on-line operation is desirable, as other parts of the overall program will discover or hypothesizenew clauses as the processing proceeds.As early examples, Gallo and Urbani embedded Horn SAT as a subroutine in a full-blown satis�abilitychecker [GU89], and Larrabee embedded 2-SAT [Lar92].There has been a steady trickle of papers over the years that address how e�ciently two problemsconcerning propositional Horn formulas can be solved:� Horn SAT: Is a given Horn formula satis�able?� Horn Renameability: Can a given formula be \renamed" into a Horn formula by inverting the senseof some of its variables?A brief historical perspective follows.Horn SAT is easily seen to be equivalent to several problems in formal language theory and databasetheory for which linear time algorithmswere known in the 1970s. A partial list is: identi�cation of nullable (oreraseable) symbols of a context free grammar [Har78], emptiness of a context free grammar, and implicationof functional dependencies [BB79]. This correspondence was observed by Dowling and Gallier [DG84], whoadopted a bottom-up algorithm from Harrison [Har78], who in turn credited A. Yehudai. Dowling andGallier also introduced a top-down linear-time algorithm. A correction to the latter was o�ered by Scutella[Scu90]. 2



Horn Renameability has been resolved since 1980 by Aspvall, in a much overlooked (but accessible) paper[Asp80]. However, he overlooked (and rediscovered) Lewis' elegant original solution [Lew78], which requiredquadratic time in the presence of long clauses.1 Aspvall's extension was to convert the formula to 3-CNF �rst,then apply Lewis' transformation (which is linear-time on 3-CNF), and �nally apply the recently discoveredlinear-time 2-SAT algorithm [APT79].I hope the numerous later researchers who have published on Horn Renameability will forgive me for notciting them, and will forgive Aspvall for not giving his paper a better title.More recently, Ausiello and Italiano showed how to make Dowling and Gallier's bottom-up algorithmrun on-line without a loss of performance [AI91]. They also described another version, which also deliversadditional information, and requires time kn, for k propositional variables and n atoms in the formula. Thepaper assumes k is known in advance for both versions; this assumption can be relaxed, as shown in thispaper. The on-line property is useful in applications that have several mechanisms for deriving new clauses.Dalal and Etherington sketched a linear-time algorithm for unit resolution [DE92, Sect. 4], which appearsto have been independently rediscovered by several implementers. This paper describes that algorithm indetail for an imperative language, such as C, and then shows what modi�cations are needed to achieve lineartime performance in Prolog.The basic algorithm may be regarded as a generalization of widely known bottom-up algorithm men-tioned [Har78, BB79, DG84, AI91]. Nevertheless, there are some aspects of it that might make a detailedpresentation worthwhile:1. It dispels the folkloric belief that unit resolution requires quadratic time. Dowling and Gallier mentionthat unit resolution takes quadratic time, and Gallo and Urbani make quite a point of it, including em-pirical evidence [GU89]. These remarks were not incorrect, being based on a particular implementationof unit resolution, but they gave the impression that improvement was not possible.2. Unit resolution is a complete decision method for Horn clauses. Although a linear method for Hornclauses is already known, the present technique may be applicable to other special cases.3. It has been implemented in Prolog to run in linear time, using commonly available Prolog features,such as dynamic clause indexing and local cut. The code is available electronically. This contrastswith most of the cited papers, which reported no implementation and used pseudo-code.4. The implementation is straightforward; the inference engine worked correctly on the third try, aftercorrecting a few \typos". (The I/O interface, actually about 70% of the code, took a few more passes.)5. It serves as a model for re-implementation in a more e�cient language, like C. In my experience itis usually much faster to develop a working high-level prototype, and re-implement into C if resultswarrant it, than to start from scratch in C. Of course, this is only successful if you avoid \clever" usesof the high level language that would be di�cult to convert.6. Unit resolution inference is an example of a class of problems that can be characterized as inductiveclosure with respect to a set of operators on a �nite domain. Such problems arise in many applications,such as building parsing tables, determining deadlock, mode inference, etc. These problems arenotoriously treacherous in Prolog (or any language) when approached by ad hoc methods. The idea ofthis algorithm may o�er a systematic approach to such problems.1Lewis showed that the problem could be transformed into a 2-SAT question in quadratic time; since the linear-time 2-SATalgorithm was not known when he published, he was not motivated to improve the transformation time.3



7. Besides a decision (or lack thereof) on satis�ability, the data structures can deliver e�ciently allinferences drawn during the procedure, in the form of inferred literals, identi�cation of clauses subsumedby inferred literals, and strengthened clauses (whose original version contained complements of inferredliterals).8. The time remains linear even if the procedure is run \on-line".9. Testing for Horn renameability becomes less important. The motivation is usually to see if the formulacould be converted to a form on which a specialized Horn SAT algorithm could run. But unit resolutionnow can be run in linear time on the original formula. (We know of no implementations that performHorn renaming.) Also, unit resolution may �nd a refutation when the formula is not Horn renameable,as shown by (a), (:a), (b; c), (b;:c), (:b; c), (:b;:c).10. The Prolog implementation can be extended easily to permit backtracking, i.e., retracting added clausesin a LIFO manner. The reason is that asserta is used, and there is no retract in the basic on-linealgorithm. Backtracking in an imperative language is a more di�cult task, but the task can be guidedby the Prolog method.The famous satis�ability algorithm of Davis, Putnam, Logemann and Loveland [DP60, DLL62] relies heavilyon a combination of unit resolution and backtracking. This algorithm should speed up the unit-resolutioncomponent.2 The AlgorithmThe main idea of the linear-time unit resolution algorithm is not to keep track exactly of the derivedclauses, but just count the number of literals in them. When the count is reduced to one, a unit clause hasbeen derived. Which literal remains, from those in the original clause, is then determined, and placed on the\agenda". When a literal is taken out of the agenda, if that literal is \new information" it is processed asdescribed below, otherwise it is discarded. As seen in Figure 1, there is no essential di�erence between \batch"mode (unitRes()) and \on-line" mode (unitRes() followed by an arbitrary number of updateClauses()calls). In the discussion, we shall say the algorithm is in \on-line" mode if updateClauses() was the mostrecent top-level goal.Excerpts of the code give details of the algorithm; the high level of Prolog makes pseudo-code unnecessary.For expressions involving local cut , (C -> A ; B) is usually readable as \if C, then A else B".One key data structure is occs(x; Lp; Ln). Associated with each propositional variable x is a pair oflists: One list, Lp, contains the clause numbers in which x occurs positively; the other list Ln contains theclauses in which x occurs negatively. If either x or :x is derived, it is placed on a list called the Agenda.(Agenda is not global.) When this literal is removed from the Agenda, if it turns out to be a new unit clause,occs(x; Lp; Ln) is processed and a new minModel fact for x is asserted.2 (If x was already known, it is justdiscarded.) If positive x was derived, each clause in Ln (which contains :x) has its literal count reduced byone. If the negative :x was derived, each clause in Lp has its literal count reduced by one. Literal countsare maintained in clauseStatus, discussed next. The total length of all lists in occs is proportional to thelength of the formula, and each list is processed at most once, so all the processing requires only linear time.These time bounds hold whether the clauses appear \on-line", or in one batch, or in several batches. Thetime required to construct the occs structure involves Prolog internals, and is discussed later.2The name minModel is imprecise: although these literals must be true in any model, their bindings are not necessarilysu�cient to satisfy every clause. 4



unitRes(InFile, Result) :-initDB,asserta(minModel(true,true)),asserta(minModel(false,false)),see(InFile), getClauses(ClauseList), seen,buildClauses(ClauseList, AgendaIn).unitReason(AgendaIn, _AgendaOut, Result).updateClauses(UpdateFile, Result) :-see(UpdateFile), getClauses(ClauseList), seen,buildClauses(ClauseList, AgendaIn).unitReason(AgendaIn, _AgendaOut, Result).buildClauses([], []).buildClauses([Lits | Clauses], AgendaOut) :-genClauseNum(ClauseNum),processLits(Lits, ClauseNum, 0, Len, 0, LenOrig),asserta(clauseStatus(ClauseNum, Len, LenOrig)),asserta(clauseLits(ClauseNum, Lits)),( Len == 0 ->AgendaOut = [false | AgendaRem]; Len == 1 ->findLastLit(Lits, LastLit),AgendaOut = [LastLit | AgendaRem]; AgendaOut = AgendaRem),buildClauses(Clauses, AgendaRem).Figure 1: The main line of the algorithm: unitRes() begins a formula and processes it, whileupdateClauses() adds to a formula and processes it.The second key data structure is clauseStatus(k;Len;LenOrig). As each clause is read in the input,it is assigned an integer index k, and its literal count LenOrig is determined. The �eld Len is the count ofliterals that are \live" in the sense that they are not contradicted by a known unit clause. Initially, this canbe di�erent from LenOrig only in on-line mode. Also in on-line mode, if some literal in the clause agreeswith a known unit clause, then the clause is \subsumed", which is denoted by a negative Len .Each input clause is converted into a list of literals, Lits, from whatever input format the program uses.(In an imperative language, external propositional variable names are mapped to integers via a symbol tableduring this step.3) A list of literal lists is the input to buildClauses, which among other things, assertseach clause as clauseLits(k;Lits).As mentioned before, if Lits contains the complement of a literal that has just been removed from theAgenda, then the associated value of Len is reduced by one. Whenever Len = 1, the procedure findLastLit3Dowling and Gallier unnecessarily shied away from claiming that the symbol table could be built and accessed in lineartime. Assuming a �xed input alphabet, when there are many variable names, some names will require multiple letters, and thesymbol table can indeed be built in time proportional to the number of letters in the input. This can be guaranteed with aTRIE structure, which is found in many algorithms texts. However, most implementors use a hash table and take their chances.5



unitReason(Agenda0, AgendaOut, Result) :-( Agenda0 = [] ->AgendaOut = Agenda0,Result = dontknow; Agenda0 = [false | AgendaRem] ->asserta(minModel(false, true)),AgendaOut = AgendaRem,Result = unsat; Agenda0 = [+(PropVar) | AgendaRem] ->processUnit(PropVar, true, AgendaRem, AgendaNew),unitReason(AgendaNew, AgendaOut, Result); Agenda0 = [~(PropVar) | AgendaRem] ->processUnit(PropVar, false, AgendaRem, AgendaNew),unitReason(AgendaNew, AgendaOut, Result); write('% should never get here'), nl, fail).processUnit(PropVar, Tval, AgendaRem, AgendaNew) :-( minModel(PropVar, V) ->( V = Tval ->AgendaNew = AgendaRem; asserta(minModel(PropVar, Tval)),AgendaNew = [false | AgendaRem]); asserta(minModel(PropVar, Tval)),getOccs(PropVar, ClauseListP, ClauseListN),( Tval = true ->reduceClauses(ClauseListN, AgendaRem, AgendaNew); reduceClauses(ClauseListP, AgendaRem, AgendaNew))).Figure 2: The unit resolution engine. Other �gures show reduceClauses() and two versions of getOccs().determines the one remaining \live" literal, which is placed on the Agenda. Procedure findLastLit isexecuted at most once per clause and can be done in time proportional to the clause's original length.2.1 Prolog Implementation IssuesThe code to maintain the occs data structure appears in Figure 4 in a form suitable for translation into animperative language, such as C. Procedure processLits(), not shown, simply calls processLit C() for each6



reduceClauses([], AgendaRem, AgendaRem).reduceClauses([ClNum | ClNums], AgendaRem, AgendaNew) :-getClauseStatus(ClNum, Len, LenOrig),Len1 is Len - 1,pushClauseStatus(ClNum, Len1, LenOrig),( Len1 = 1 ->getClauseLits(ClNum, Lits),findLastLit(Lits, LastLit),Agenda1 = [LastLit | AgendaRem]; Agenda1 = AgendaRem),reduceClauses(ClNums, Agenda1, AgendaNew).Figure 3: Processing of clauses containing the complement of a newly derived unit clause. Clauses lengthsare reduced, and any new unit clauses are placed on the agenda.literal in a new clause, and combines the results to determine Len and LenOrig. The procedures getOccs C()and pushOccs C() simulate array access; however, retract() is avoided. Clearly, processLit C() can runin constant time in an imperative language, as it simply inserts one element at the front of a linked list.What may be surprising is that processLit C() will not run in constant time in Prolog, even thoughboth asserta() and getOccs C() use constant-time clause indexing. The reason involves Prolog internals.The asserta predicate must rename, or \standardize apart", any free variables that may occur in the termbeing asserted. Therefore, it copies the entire structure. (Even if the implementation were optimized to usestructure sharing on variable-free terms, it would still have to inspect the entire structure.) It follows thatthe time to build the occs lists of any one variable is quadratic in their �nal length. Indeed, if one variableoccurs in some constant fraction, say 10%, of the clauses, then running time becomes quadratic.The title promised linear time in Prolog. The solution is to recognize that occs is just a convenientrepresentation of two binary relations occP and occN. Tuple occP(x; p) denotes that variable x occurspositively in clause number p. Tuple occN(x; n) means that x occurs negatively in n. In Prolog, theserelations can simply be asserted directly. Clause indexing permits constant time per insertion. Each tupleneeds to be retrieved at most once, when x or :x becomes a new unit clause. Again, through clause indexing,findall() can retrieve all tuples matching a speci�ed x on their �rst argument in time proportional to thenumber of such tuples. Thus linear time is achieved. The code just described appears in Figure 5.Is this implementation issue a theoretical nicety that makes no di�erence on \practical problems"? Toanswer this question, we tested both implementations on a formula from a real application, which had 7652atoms in 3296 clauses, 1355 variables, an average clause length of 2.32, and a maximum clause length of 6.The average size of both lists combined in occs is 5.6 items. The formula had 4 unit clauses initially and 48more were derived. The Prolog-oriented implementation was about 14% faster. It required about 10 CPUseconds on a Sun sparc2. In a formula in which variables occur more frequently on average, the di�erencewould be greater.To verify linear time performance in online-mode, we divided the formula mentioned above into fourapproximately equal batches of clauses, and checked the CPU times spent in each batch. Each batch ofclauses after the �rst was added on top of the previous ones. The program was run under Quintus Prologand SICStus Prolog, both of which support dynamic clause indexing. Figure 6 shows the results. We report7



processLit_C(+(PropVar), ClauseNum, Incr) :-( minModel(PropVar, true) ->Incr = -1; minModel(PropVar, false) ->Incr = 0; getOccs_C(PropVar, OldOccsP, OldOccsN),pushOccs_C(PropVar, [ClauseNum | OldOccsP], OldOccsN),Incr = 1).processLit_C(~(PropVar), ClauseNum, Incr) :-( minModel(PropVar, false) ->Incr = -1; minModel(PropVar, true) ->Incr = 0; getOccs_C(PropVar, OldOccsP, OldOccsN),pushOccs_C(PropVar, OldOccsP, [ClauseNum | OldOccsN]),Incr = 1).getOccs(PropVar, OldOccsP, OldOccsN) :-getOccs_C(PropVar, OldOccsP, OldOccsN).getOccs_C(PropVar, OccsP, OccsN) :-occs(PropVar, OccsP, OccsN) -> true.pushOccs_C(PropVar, NewOccsP, NewOccsN) :-asserta(occs(PropVar, NewOccsP, NewOccsN)).Figure 4: Updating the occs data structure, with code appropriate for translation to an imperative language,in which getOccs C() and pushOccs C() would be array accesses to occs.relative, rather than absolute, times, because di�erent machines were used. Most inferences occurred in thesecond batch, explaining why unitReason() took longer there.3 Conclusion and Future WorkAn old algorithmic paradigm has been applied to perform propositional unit resolution in time linear inthe length of the formula. The algorithm can run on-line without modi�cation, and without noticabledegradation. Prolog implementation issues had to be addressed to achieve linear time in that language. Theuse of Prolog also simpli�ed the implementation by providing built-in symbol table services, data structureoperations, and dynamic storage allocation. The implementation is quite 
exible in that it is not necessaryto know in advance how many variables or clauses will be presented, nor what the variable names will be.The implementation described here has been used as a basis for other algorithms, which incorporate8



processLit_PL(+(PropVar), ClauseNum, Incr) :-( minModel(PropVar, true) ->Incr = -1; minModel(PropVar, false) ->Incr = 0; asserta(occP(PropVar, ClauseNum)),Incr = 1).processLit_PL(~(PropVar), ClauseNum, Incr) :-( minModel(PropVar, false) ->Incr = -1; minModel(PropVar, true) ->Incr = 0; asserta(occN(PropVar, ClauseNum)),Incr = 1).getOccs(PropVar, OldOccsP, OldOccsN) :-findall(ClNumP, occP(PropVar, ClNumP), OldOccsP),findall(ClNumN, occN(PropVar, ClNumN), OldOccsN).Figure 5: Building the data structures with code that runs in linear time in Prolog. Relations occP andoccN replace occs. Pct. of Formula 25 25 25 25Pct. Inferences 6 79 3 12SICStus CPU % 24 25 26 25{ buildClauses 24 23 26 24{ unitReason 0 2 0 1Quintus CPU % 23 27 24 26{ buildClauses 22 22 23 25{ unitReason 1 5 1 1Figure 6: Processing time for four equal batches of clauses, as percent of total, under two Prolog systems.backtracking, and as a basis for re-implementation into C. The groundwork for simple and e�cient back-tracking in the Prolog implementation has been laid by the consistent use of asserta() and the avoidanceof retract(). The idea has yielded faster implementations of model searching algorithms, such as that ofDavis, Putnam, Logemann and Loveland [DP60, DLL62].9
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