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Abstract

A procedure to analyze a propositional formula in clause form by unit resolution is described and
illustrated with a Prolog implementation. It runs in worst-case time that is linear in the length of
the formula. The main idea has been independently rediscovered by several implementers. Apparently,
its first journal appearance was a sketch by Dalal and Etherington in 1992. However, there also had
arisen a folkloric belief that unit resolution requires quadratic time.

This report shows that the implementation sketched for imperative languages, such as C, consumes
quadratic time if translated to Prolog. This degradation occurs even if clause indexing permits the
retrieval of an asserted clause in constant time. It is rather due to the way Prolog handles assertions
involving data structures, such as lists. A modified Prolog implementation that restores linear time is
described.

The time remains linear even if the procedure is run “on-line”, meaning that new clauses appear in
the input as processing proceeds. This property is useful in applications that have several mechanisms
for deriving new clauses. The technique may have application in other problems that can be described
as inductive closures on finite domains. Ad hoc solutions to such problems are error-prone and often
inefficient.

Keywords: Propositional logic, satisfiability, validity, boolean formula, unit resolution, Prolog internals,
algorithms, inductive closure.



1 Introduction

The decision problem of Boolean, or propositional, satisfiability i1s the “original” N P-hard problem. We
assume the reader is generally familiar with it, and give definitions only when needed for clarity. We
shall consider exclusively propositional formulas in conjunctive normal form (CNF), also called clause form.
Each clause is a disjunction of literals, and clauses are joined conjunctively. A closely related problem is to
determine validity of a formula in disjunctive normal form. As language recognition problems, satisfiability
is in N P, while validity is in co-N P. However, as decision problems, they are essentially equivalent.

In the search for efficiency, certain special classes have been found to be decidable in polynomial time.
The best known of these are:

e 2-CNF, in which each clause has at most two literals, also called Krom formulas,
e Horn clause formulas, in which each clause has at most one positive literal.

On the other hand, certain procedures are guaranteed to terminate in polynomial time on all propositional
formulas, but may do so without reaching a decision; such procedures are called incomplete. Unit resolution
fits into both worlds, in a way, because it is known to terminate in polynomial time on all formulas, and is
guaranteed to reach a decision on Horn clause formulas.

Recently, incomplete procedures have found application as subroutines within complete procedures. By
drawing what inferences they can quickly, they assist the main procedure to avoid some unnecessary guessing
and backtracking. In this application:

e It is important that such repeatedly used subroutines be as fast as possible; more than linear time is
rarely practical.

e It is essential that the procedures deliver whatever information is derivable, even when a firm decision
is not reached.

o Efficient on-line operation is desirable, as other parts of the overall program will discover or hypothesize
new clauses as the processing proceeds.

As early examples, Gallo and Urbani embedded Horn SAT as a subroutine in a full-blown satisfiability
checker [GUR9], and Larrabee embedded 2-SAT [Lar92].

There has been a steady trickle of papers over the years that address how efficiently two problems
concerning propositional Horn formulas can be solved:

e Horn SAT: Is a given Horn formula satisfiable?

e Horn Renameability: Can a given formula be “renamed” into a Horn formula by inverting the sense
of some of its variables?

A brief historical perspective follows.

Horn SAT is easily seen to be equivalent to several problems in formal language theory and database
theory for which linear time algorithms were known in the 1970s. A partial list is: identification of nullable (or
eraseable) symbols of a context free grammar [Har78], emptiness of a context free grammar, and implication
of functional dependencies [BB79]. This correspondence was observed by Dowling and Gallier [DG84], who
adopted a bottom-up algorithm from Harrison [Har78], who in turn credited A. Yehudai. Dowling and
Gallier also introduced a top-down linear-time algorithm. A correction to the latter was offered by Scutella

[Scu90].



Horn Renameability has been resolved since 1980 by Aspvall, in a much overlooked (but accessible) paper
[Asp80]. However, he overlooked (and rediscovered) Lewis’ elegant original solution [Lew78], which required
quadratic time in the presence of long clauses.! Aspvall’s extension was to convert the formula to 3-CNT first,
then apply Lewis’ transformation (which is linear-time on 3-CNF), and finally apply the recently discovered
linear-time 2-SAT algorithm [APT79].

I hope the numerous later researchers who have published on Horn Renameability will forgive me for not
citing them, and will forgive Aspvall for not giving his paper a better title.

More recently, Ausiello and Italiano showed how to make Dowling and Gallier’s bottom-up algorithm
run on-line without a loss of performance [ATI91]. They also described another version, which also delivers
additional information, and requires time kn, for k propositional variables and n atoms in the formula. The
paper assumes k is known in advance for both versions; this assumption can be relaxed, as shown in this
paper. The on-line property is useful in applications that have several mechanisms for deriving new clauses.

Dalal and Etherington sketched a linear-time algorithm for unit resolution [DE92, Sect. 4], which appears
to have been independently rediscovered by several implementers. This paper describes that algorithm in
detail for an imperative language, such as C, and then shows what modifications are needed to achieve linear
time performance in Prolog.

The basic algorithm may be regarded as a generalization of widely known bottom-up algorithm men-
tioned [Har78, BB79, DG84, AI91]. Nevertheless, there are some aspects of it that might make a detailed
presentation worthwhile:

1. Tt dispels the folkloric belief that unit resolution requires quadratic time. Dowling and Gallier mention
that unit resolution takes quadratic time, and Gallo and Urbani make quite a point of it, including em-
pirical evidence [GU8Y]. These remarks were not incorrect, being based on a particular implementation
of unit resolution, but they gave the impression that improvement was not possible.

2. Unit resolution is a complete decision method for Horn clauses. Although a linear method for Horn
clauses is already known, the present technique may be applicable to other special cases.

3. It has been implemented in Prolog to run in linear time, using commonly available Prolog features,
such as dynamic clause indexing and local cut. The code is available electronically. This contrasts
with most of the cited papers, which reported no implementation and used pseudo-code.

4. The implementation is straightforward; the inference engine worked correctly on the third try, after
correcting a few “typos”. (The I/O interface, actually about 70% of the code, took a few more passes.)

5. Tt serves as a model for re-implementation in a more efficient language, like C. In my experience it
1s usually much faster to develop a working high-level prototype, and re-implement into C if results
warrant it, than to start from scratch in C. Of course, this is only successful if you avoid “clever” uses
of the high level language that would be difficult to convert.

6. Unit resolution inference is an example of a class of problems that can be characterized as inductive
closure with respect to a set of operators on a finite domain. Such problems arise in many applications,
such as building parsing tables, determining deadlock, mode inference, etc. These problems are
notoriously treacherous in Prolog (or any language) when approached by ad hoc methods. The idea of
this algorithm may offer a systematic approach to such problems.

1Lewis showed that the problem could be transformed into a 2-SAT question in quadratic time; since the linear-time 2-SAT
algorithm was not known when he published, he was not motivated to improve the transformation time.



7. Besides a decision (or lack thereof) on satisfiability, the data structures can deliver efficiently all
inferences drawn during the procedure, in the form of inferred literals, identification of clauses subsumed
by inferred literals, and strengthened clauses (whose original version contained complements of inferred
literals).

8. The time remains linear even if the procedure 1s run “on-line”.

9. Testing for Horn renameability becomes less important. The motivation is usually to see if the formula
could be converted to a form on which a specialized Horn SAT algorithm could run. But unit resolution
now can be run in linear time on the original formula. (We know of no implementations that perform
Horn renaming.) Also, unit resolution may find a refutation when the formulais not Horn renameable,

as shown by (a), (—a), (b, ¢), (b,—¢), (mb,¢), (b, —e).

10. The Prolog tmplementation can be extended easily to permit backtracking, i.e., retracting added clauses
in a LIFO manner. The reason is that asserta is used, and there is no retract in the basic on-line
algorithm. Backtracking in an imperative language is a more difficult task, but the task can be guided
by the Prolog method.

The famous satisfiability algorithm of Davis; Putnam, Logemann and Loveland [DP60, DLL62] relies heavily
on a combination of unit resolution and backtracking. This algorithm should speed up the unit-resolution
component.

2 The Algorithm

The main idea of the linear-time unit resolution algorithm is not to keep track exactly of the derived
clauses, but just count the number of literals in them. When the count is reduced to one, a unit clause has
been derived. Which literal remains, from those in the original clause, is then determined, and placed on the
“agenda”. When a literal is taken out of the agenda, if that literal is “new information” it is processed as
described below, otherwise it is discarded. As seen in Figure 1, there is no essential difference between “batch”
mode (unitRes()) and “on-line” mode (unitRes() followed by an arbitrary number of updateClauses()
calls). In the discussion, we shall say the algorithm is in “on-line” mode if updateClauses() was the most
recent top-level goal.

Excerpts of the code give details of the algorithm; the high level of Prolog makes pseudo-code unnecessary.
For expressions involving local cut, (C' => A ; B) is usually readable as “if (', then A else B”.

One key data structure is occs(z, Lp, L, ). Associated with each propositional variable z is a pair of
lists: One list, L,, contains the clause numbers in which x occurs positively; the other list L,, contains the
clauses in which z occurs negatively. If either x or —x is derived, it is placed on a list called the Agenda.
(Agenda is not global.) When this literal is removed from the Agenda, if it turns out to be a new unit clause,
occs(x, Ly, Ly,) is processed and a new minModel fact for x is asserted.? (If  was already known, it is just
discarded.) If positive « was derived, each clause in L, (which contains =) has its literal count reduced by
one. If the negative -z was derived, each clause in L, has its literal count reduced by one. Literal counts
are maintained in clauseStatus, discussed next. The total length of all lists in occs is proportional to the
length of the formula, and each list is processed at most once, so all the processing requires only linear time.
These time bounds hold whether the clauses appear “on-line”, or in one batch, or in several batches. The
time required to construct the occs structure involves Prolog internals, and is discussed later.

?The name minModel is imprecise: although these literals must be true in any model, their bindings are not necessarily
sufficient to satisfy every clause.



unitRes(InFile, Result) :-
initDB,
asserta(minModel (true,true)),
asserta(minModel (false,false)),
see(InFile), getClauses(ClauseList), seen,
buildClauses(ClauselList, Agendaln).
unitReason(Agendaln, _AgendaOut, Result).

updateClauses (UpdateFile, Result) :-
see(UpdateFile), getClauses(Clauselist), seen,
buildClauses(ClauselList, Agendaln).
unitReason(Agendaln, _AgendaOut, Result).

buildClauses([]1, [1).

buildClauses([Lits | Clauses], AgendaOut) :-
genClauseNum(ClauseNum) ,
processLits(Lits, ClauseNum, O, Len, 0, LenOrig),
asserta(clauseStatus(ClauseNum, Len, LenOrig)),
asserta(clauselits(ClauseNum, Lits)),

( Len == ->
AgendaOut = [false | AgendaRem]
; Len == ->

findLastLit(Lits, LastLit),
AgendaOut = [LastLit | AgendaRem]

AgendaOut = AgendaRem
)’
buildClauses(Clauses, AgendaRem).

Figure 1: The main line of the algorithm: unitRes() begins a formula and processes it, while
updateClauses () adds to a formula and processes it.

The second key data structure is clauseStatus(k, Len, LenOrig). As each clause is read in the input,
it 1s assigned an integer index k, and its literal count LenOrig is determined. The field Len is the count of
literals that are “live” in the sense that they are not contradicted by a known unit clause. Initially, this can
be different from LenOrig only in on-line mode. Also in on-line mode, if some literal in the clause agrees
with a known unit clause, then the clause is “subsumed”, which is denoted by a negative Len.

Each input clause is converted into a list of literals, Lits, from whatever input format the program uses.
(In an imperative language, external propositional variable names are mapped to integers via a symbol table
during this step.®) A list of literal lists is the input to buildClauses, which among other things, asserts
each clause as clauseLits(k, Lits).

As mentioned before, if Lits contains the complement of a literal that has just been removed from the
Agenda, then the associated value of Len is reduced by one. Whenever Len = 1, the procedure findLastLit

3Dowling and Gallier unnecessarily shied away from claiming that the symbol table could be built and accessed in linear
time. Assuming a fixed input alphabet, when there are many variable names, some names will require multiple letters, and the
symbol table can indeed be built in time proportional to the number of letters in the input. This can be guaranteed with a
TRIFE structure, which is found in many algorithms texts. However, most implementors use a hash table and take their chances.



unitReason(Agenda0, AgendaOut, Result) :-
( Agenda0 = [1 ->
AgendaOut = Agenda0,
Result = dontknow

Agenda0 = [false | AgendaRem] ->
asserta(minModel (false, true)),
AgendaOut = AgendaRem,

Result = unsat

Agenda0 = [+(PropVar) | AgendaRem] ->
processUnit (PropVar, true, AgendaRem, Agendallew),
unitReason(Agendallew, AgendaOut, Result)

Agenda0 = [“(PropVar) | AgendaRem] ->
processUnit (PropVar, false, AgendaRem, AgendalNew),
unitReason(Agendallew, AgendaOut, Result)

write(’% should never get here’), nl, fail

processUnit (PropVar, Tval, AgendaRem, AgendaNew) :-
( minModel (PropVar, V) ->
(V="Tval ->
AgendaNew = AgendaRem

asserta(minModel (PropVar, Tval)),

AgendalNlew = [false | AgendaRem]

asserta(minModel (PropVar, Tval)),
getOccs (PropVar, ClauselListP, ClauseListN),
( Tval = true ->
reduceClauses (ClauseListN, AgendaRem, AgendaNew)

reduceClauses(ClauseListP, AgendaRem, AgendaNew)

Figure 2: The unit resolution engine. Other figures show reduceClauses() and two versions of getOccs().

determines the one remaining “live” literal, which is placed on the Agenda. Procedure findLastLit is
executed at most once per clause and can be done in time proportional to the clause’s original length.

2.1 Prolog Implementation Issues

The code to maintain the occs data structure appears in Figure 4 in a form suitable for translation into an
imperative language, such as C. Procedure processLits (), not shown, simply calls processLit C() for each



reduceClauses([], AgendaRem, AgendaRem).
reduceClauses ([C1Num | ClNums], AgendaRem, AgendalNew) :-
getClauseStatus(ClNum, Len, LenOrig),
Lenl is Len - 1,
pushClauseStatus (C1Num, Lenl, LenOrig),
(Lenl =1 ->
getClauseLits (ClNum, Lits),
findLastLit(Lits, LastLit),
Agendal = [LastLit | AgendaRem]

Agendal = AgendaRem
)’
reduceClauses (ClNums, Agendal, AgendaNew).

Figure 3: Processing of clauses containing the complement of a newly derived unit clause. Clauses lengths
are reduced, and any new unit clauses are placed on the agenda.

literal in a new clause, and combines the results to determine Len and LenOrig. The procedures getOccs_C()
and pushOccs_C() simulate array access; however, retract () i1s avoided. Clearly, processLit_C() can run
in constant time in an imperative language, as it simply inserts one element at the front of a linked list.

What may be surprising is that processLit C() will not run in constant time in Prolog, even though
both asserta() and getOccs_C() use constant-time clause indexing. The reason involves Prolog internals.
The asserta predicate must rename, or “standardize apart”, any free variables that may occur in the term
being asserted. Therefore, it copies the entire structure. (Even if the implementation were optimized to use
structure sharing on variable-free terms, it would still have to inspect the entire structure.) Tt follows that
the time to build the occs lists of any one variable is quadratic in their final length. Indeed, if one variable
occurs in some constant fraction, say 10%, of the clauses, then running time becomes quadratic.

The title promised linear time in Prolog. The solution is to recognize that occs is just a convenient
representation of two binary relations occP and occl. Tuple occP(x,p) denotes that variable z occurs
positively in clause number p. Tuple occlN(z,n) means that z occurs negatively in n. In Prolog, these
relations can simply be asserted directly. Clause indexing permits constant time per insertion. FEach tuple
needs to be retrieved at most once, when & or -z becomes a new unit clause. Again, through clause indexing,
findall() can retrieve all tuples matching a specified z on their first argument in time proportional to the
number of such tuples. Thus linear time is achieved. The code just described appears in Figure 5.

Is this implementation issue a theoretical nicety that makes no difference on “practical problems”? To
answer this question, we tested both implementations on a formula from a real application, which had 7652
atoms in 3296 clauses, 1355 variables; an average clause length of 2.32) and a maximum clause length of 6.
The average size of both lists combined in occs is 5.6 items. The formula had 4 unit clauses initially and 48
more were derived. The Prolog-oriented implementation was about 14% faster. It required about 10 CPU
seconds on a Sun sparc2. In a formula in which variables occur more frequently on average, the difference
would be greater.

To verify linear time performance in online-mode, we divided the formula mentioned above into four
approximately equal batches of clauses, and checked the CPU times spent in each batch. Each batch of
clauses after the first was added on top of the previous ones. The program was run under Quintus Prolog
and SICStus Prolog, both of which support dynamic clause indexing. Figure 6 shows the results. We report



processLit_C(+(PropVar), ClauseNum, Incr) :-
( minModel (PropVar, true) ->
Incr = -1
; minModel (PropVar, false) ->
Incr = 0

getOccs_C(PropVar, 01d0ccsP, 01dOccsl),
pushOccs_C(PropVar, [ClauseNum | 01dOccsP], 01dOccsN),
Incr =1

).

processLit_C(~ (PropVar), ClauseNum, Incr) :-

( minModel (PropVar, false) ->
Incr = -1

; minModel (PropVar, true) ->
Incr = 0

getOccs_C(PropVar, 01d0ccsP, 01dOccsl),
pushOccs_C(PropVar, 01d0ccsP, [ClauseNum | 01dOccsl]),

Incr = 1
getOccs (PropVar, 01dOccsP, 01dOccsN) :-
getOccs_C(PropVar, 01dOccsP, 01d0ccsl).

getOccs_C(PropVar, OccsP, OccsN) :-
occs(PropVar, OccsP, OcesN) -> true.

pushOccs_C(PropVar, NewOccsP, NewOccsN) :-
asserta(occs(PropVar, NewOccsP, NewOccsll)).

Figure 4: Updating the occs data structure, with code appropriate for translation to an imperative language,
in which getOccs C() and pushOccs_C() would be array accesses to occs.

relative, rather than absolute, times, because different machines were used. Most inferences occurred in the

second batch, explaining why unitReason() took longer there.

3 Conclusion and Future Work

An old algorithmic paradigm has been applied to perform propositional unit resolution in time linear in
the length of the formula. The algorithm can run on-line without modification, and without noticable
degradation. Prolog implementation issues had to be addressed to achieve linear time in that language. The
use of Prolog also simplified the implementation by providing built-in symbol table services, data structure
operations, and dynamic storage allocation. The implementation is quite flexible in that it is not necessary
to know in advance how many variables or clauses will be presented, nor what the variable names will be.
The implementation described here has been used as a basis for other algorithms, which incorporate



processLit_PL(+(PropVar), ClauseNum, Incr) :-
( minModel (PropVar, true) ->
Incr = -1
; minModel (PropVar, false) ->
Incr = 0

asserta(occP(PropVar, Clausellum)),
Incr =1

).

processLit_PL("(PropVar), ClauseNum, Incr) :-

( minModel (PropVar, false) ->
Incr = -1

; minModel (PropVar, true) ->
Incr = 0

asserta(occN(PropVar, Clausellum)),

Incr = 1

getOccs (PropVar, 01dOccsP, 01dOccsN) :-
findall(C1NumP, occP(PropVar, ClNumP), 01d0ccsP),
findall (C1Numl, occN(PropVar, ClNumN), 01d0ccsN).

Figure 5: Building the data structures with code that runs in linear time in Prolog. Relations occP and

occll replace occs.

Pct. of Formula 25 | 25| 25 | 25
Pct. Inferences 6|79 3112
SICStus CPU % 24 | 25 | 26 | 25
— buildClauses | 24 | 23 | 26 | 24
— unitReason 0 2 0 1
Quintus CPU % 23 | 27| 24 | 26
— buildClauses | 22 | 22 | 23 | 25
— unitReason 1 5 1 1

Figure 6: Processing time for four equal batches of clauses, as percent of total, under two Prolog systems.

backtracking, and as a basis for re-implementation into C. The groundwork for simple and efficient back-
tracking in the Prolog implementation has been laid by the consistent use of asserta() and the avoidance
of retract(). The idea has yielded faster implementations of model searching algorithms, such as that of
Davis, Putnam, Logemann and Loveland [DP60, DLL62].
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