
Hierarchically Accelerated Ray Castingfor Volume Rendering with Controlled ErrorAllen Van Gelder Kwansik Kim Jane WilhelmsBaskin Center for Computer Engineering and Information SciencesUniversity of California, Santa Cruz 95064UCSC-CRL-95-31avg@cs.ucsc.edu ksk@cs.ucsc.edu wilhelms@cs.ucsc.eduMarch 31, 1995AbstractRay casting for volume rendering can be accelerated by taking large steps over regions where dataneed not be processed at a �ne resolution. A new implementation is described that utilizes both a user-speci�ed data importance and a high-level data model in appropriate regions to achieve acceleration.Previously reported work exploited high accumulated opacity, transparency, and nearly constant valuedregions. This work generalizes homogeneity from nearly constant values to least-squares �ts with a setof basis functions. The implemented set supports trilinear functions, and the framework supports otherfunctions.Experience is reported with sequential and small-scale parallel runs. Comparisons are made withother methods on the bases of time, image quality, and sensitivity to error tolerance. Ray casting withzero error provides a reference image with which others are compared quantitatively. The implementationlives within a general system for multi-dimensional trees. For a given error tolerance, this ensures that thesame resolution is used in all regions, by all hierarchical rendering methods, whether based on projectionor ray-casting. Data-importnace functions were found to be a signi�cant source of acceleration.Image comparisons led to identi�cation of the main source of image degradation in projection methodsas being color interpolation rather than data interpolation. An improvement to projection methods issuggested, based on hardware texture maps.Keywords: computer graphics, scienti�c visualization, ray casting, direct volume rendering.
1

1 IntroductionThis paper further explores visualization using an error-controlled hierarchy, as initially described earlier[WVG94]. The particular emphasis here is the addition of a ray-caster to the direct volume renderingmethods already available in the program (coherent projection [WVG91] and hardware 3D texture maps[WVGW94]), and the comparison of the three methods.The higher speeds of modern graphics workstations make ray-casting in 3D volumes practical formoderately sized volumes, although still not interactive in most cases. Various acceleration techniquescan usually improve the speed substantially, as reviewed in Section 3. The implementation reported hereprovides several such accelerations.The primary acceleration tool is a generalization of data homogeneity to regions that are adequatelymodeled by a set of \basis functions". Previous work (see Section 3) exploited nearly constant-valuedregions; essentially the only basis function was the constant function. Other recent work uses wavelets asbasis functions. Our ray-cast methodology is described in Section 4.The crux of these approximationmethods is the decision on whether the data is adequately approximatedin the current region, or needs to be evaluated at �ner resolution. Simple error metrics, such as unweightedRMS error, are not necessarily good indicators. Our implementation permits the user to supply a dataimportance weighting function. This allows small errors to be considered serious in the critical range of thedata, while substantial errors are acceptable in uninteresting ranges.The primary motivation of our work was not to build the world's fastest ray tracer, but rather to providea reference image for quantitative image comparisons with faster methods. The program interface gives theuser many degrees of control of the image parameters, and permits switching between rendering methods,and saving framebu�ers, without introducing extraneous variations among images. Framebu�ers can becompared quantitatively, pixel by pixel, by several metrics, including RMS error and maximum error. Thehierarchical design is reviewed briey in Section 2. Experimental results are reported in Section 7.2 The HierarchyOur hierarchical visualization software mdh creates an n-dimensional hierarchy over an n-dimensionalrectilinear volume. (In practice, n is usually three for spatial volumes or four for spatio-temporal volumes.)The hierarchy uses a space-saving strategy known as a BON tree [WVG92]. Each node in the tree containsa model of the data in the region covered by the node as well as evaluation information useful for traversingthe tree for imaging.The standard data model is a trilinear cell model (voxel and voxel trilinear models are also available). Asample data set of resolution (x; y; z) is assumed to represent corner points of (x� 1) � (y� 1) � (z � 1) cells.A trilinear function models the behavior of the sampled function, providing C0 continuity at shared facesin the original data. At interior nodes of the tree, the trilinear function represents a best �t to the trilinearfunctions of the cells covered by the node.Evaluation information includes nodal error and importance. Nodal error is the average deviation ofthe data model stored with the node from the data within the region covered. Importance is a user-de�nedtransfer function describing the importance of data values within the volume. Regions, such as the air aroundmedical data, that do not provide useful information can be given small importance.For rendering, the tree is traversed selectively based on the amount of error the user will allow in theimage. For a quick image, large amounts of error may be tolerated. For a careful rendering, no error may bedesirable. Even if no error is allowed, volumes with homogeneous regions can be rendered without descendingthrough the entire tree to the cells. Therefore, the hierarchy and its selective traversal provide a fast andexible method of imaging large volumes. 2

Figure 1: Raycasting through an mdh tree at varying levels.This section is only a very brief summary of the methods developed in mdh. Previous publicationsdescribe the algorithms in more detail [WVG91, WVG92, WVG94, WVGW94].3 Background and Related WorkMuch work has been done on accelerating raycasting algorithms by exploiting empty or homogeneoussubregions of volume data. Many other ray tracing and ray casting approaches have been reported, butthis section reviews mainly those that rely on hierarchical representation.Levoy [Lev90] introduced basic acceleration techniques based on the presence information and �-termination, in which the ray is no longer integrated when accumulated opacity is near 1.0. The volumedata is preprocessed into an octree of bits, so an empty region can be traversed in one step. By casting aray front to back, computing color integration can be terminated if it reaches the maximum opacity.Laur and Hanrahan [LH91] extend this idea to take advantage of relatively constant-valued subregionsto apply the hierarchical approach with back-to-front splatting. Depending on the error tolerance given, alarge block of relatively constant subregions can be projected at the higher level of octree. Each node in theoctree stores its average values and standard deviations (used as error estimates). The procedure performsprogressive re�nement until the given error level is satis�ed.Daskin and Hanrahan [DH92] extended the above work, using additional acceleration techniques forraycasting. They added �-acceleration, in which fewer samples are taken as the opacity along the rayaccumulates.Westermann [Wes94] provides a general multiresolution framework for volume rendering using a waveletrepresentation to sample data along the ray. Homogeneity and �-acceleration techniques are implementedon raycasting and wavelet coe�cients are directly used to hierarchically sample data along the ray.Wilhelms and Van Gelder extended the work of Laur and Hanrahan by incorporating additional basisfunctions, permitting the data to be �t by a trilinear function [WVG94]. Rendering was accomplished withprojection of each region, giving more accurate images than splatting.3

rayCastRegion(ray, region, entryPt, exitPt){if (bottomLevel or withinTolerance)renderRay(ray, entryPt, exitPt)elsesubEntry = entryPtwhile (subEntry not = exitPt and not interrupted){subRegion = findRegion(region, subEntry)subExit = findExit(ray, subRegion, subEntry)rayCastRegion(ray, subRegion, subEntry, subExit)subEntry = subExit}}Figure 2: Overview of ray-casting within tree traversal. Tree node \region" is either bottom-level, or haschildren (typically 8) as found by findRegion.This paper describes a method by which the ray is computed adaptively at di�erent levels of the tree(see Figure 1), in the same vein as Danskin and Hanrahan, and also Westermann. However, the criteria forchoosing the appropriate level di�er substantially among the methods.4 Ray-Casting AlgorithmThe ray-casting method reported here was integrated into the multi-dimensional hierarchical system reportedpreviously [WVG94]. This modular approach gave us numerous capabilities, essentially free of charge, such asdepth selection based on error metrics and data importance, interrupt checking, choice of display dimensionson higher dimensional data. In particular, for a given error tolerance, the ray-caster will visit exactly thesame cells as the previously implemented projection methods, permitting time comparisons and quantitativeimage comparisons without extraneous di�erences.A logical overview of the ray-casting method appears in Figure 2. Observe that rayCastRegion isrecursive. Its job is to compute the contribution of one ray through the speci�ed region, which it either doesdirectly or by calling itself on the necessary subregions.For orthographic projection (parallel rays), a single permutation gives a front-to-back topological orderfor all subregions, making findRegion simple and e�cient. For perspective, rays may require varyingpermutations, but the permutation is �xed within an individual ray.The function findExit can use a generalization of the Snyder and Barr method for regularly tesselatedgrids [SB87], which can be thought of as merging three ordered lists of intersection points. Three rayparameter values tx, ty, and tz, are maintained, representing the most imminent intersections of the ray withx, y, and z grid planes. The minimum is selected as the next intersection parameter. In the uniform case,the selected parameter can be immediately updated by a �xed amount. For example, if tx is selected, it isupdated by a �tx that jumps to the next x plane of the grid.In our extension to the adaptive case, \updates" of the same value (subEntry) may occur at several treelevels, so they are done nondestructively by findExit. Moreover the update amount is wx ��tx (if tx wasselected), where wx is the x width (measured in grid points) of the subregion being \jumped over".4

Most previous works on ray-casting acceleration techniques [Lev90, DH92, Wes94] use variations of regularsampling. Upson and Keeler in their seminal work intersect a cell face but then step along the ray through thecell to integrate [UK88]. Levoy skips transparent regions (based on an octree), then steps at equal intervalsthrough regions to be colored, evaluating the function by interpolation at the full resolution of the data[Lev90]. Danskin and Hanrahan adaptively vary the step size while integrating color and opacity along theray, and approximate the data by an average [DH92]. Westermann varies step size with the multiresolutionscale, and interpolate the data with wavelets [Wes94].Instead of using a regular sampling technique, we integrate directly from the entry point to the exit point,approximately solving the underlying di�erential equation. The approximation is the same as used by thecoherent projection method [WVG91], to �nd the color at the thickest point of a cell's projection. This givesthe \emission" contribution of the region for this ray.We have also experimented with reective shading and depth attenuation to convey a sense of shapein the image (Section 5). These e�ects are subjective and ad hoc, and are optionally invoked by the user.However, lack of shape cues is often an obstacle in understanding volume rendering, and deserves furtherinvestigation. Sobierajski and Kaufman [SK94] have described methods for shape cues based on introductionof familiar geometric objects.As mentioned at the beginning of the section, we already have a exible data structure and algorithm fortraversing the hierarchy selectively. The selective traversal examines only the part of the tree that the ray willpass through. The selective traversal algorithm takes care of all the restrictions de�ned by user parameters,including data importance, error tolerance, being within clipping planes, etc. The hierarchical raycastingalgorithm determines through which subregions of the current region the ray will pass, as outlined above,and selectively traverses over those subregions. The mdh tree stores the trilinear coe�cients of the node thatembraces a region in the volume data. These coe�cients are the least-squares trilinear approximation of thedata region. If the algorithm decides stops the re�nement at the node that is higher than bottom level whichis original data, it evaluates the data, color and opacity at the intersection points of the bounding box ofthe region using these trilinear coe�cients. If the algorithm goes down to the data level, which means theray is passing through a relatively less homogeneous region, it looks up the eight corner data values of thecell or voxel, and computes colors and opacity at the intersection points of the cell boundary.Raycasting is easily parallelized, because each ray's computations are nearly independent. Ourimplementation has adopted the simple m fork facilities for multiprocessing on SGI workstations.5 ShadingWe implemented di�use and specular shading within the ray casting volume renderer. Parameters for shadinginclude amount of di�use shading, amount of specular shading, specular shininess, and opacity of the shadingcontribution. Di�use and specular shading are calculated according to the usual model. Di�use reectionis assumed to be the color of the transfer function at the location being shaded, while specular reectionis white. Parameters limiting the use of shading include the range of data that is to be shaded and theminimum gradient magnitude for shading contributions. Data outside the shading range or with a gradientless than a speci�ed threshold isn't shaded.Shading occurs along a given ray through a region if either the entry data value or exit data value arewithin the shading range, and if the entry gradient or exit gradient magnitudes are above the threshold. Inthat case, the data value used for shading (which provides the di�use reectivity) is taken to be the averagedata value of the front and back ray-region intersections. The gradient is the average of the front and backgradients, unless one gradient magnitude is out of range. In that case, the gradient that is within range isused. 5

We use the derivative of the trilinear function as the gradient of the data. There are advantages anddisadvantages to this. The advantage is that the function is already being used to model data at interiornode of the tree, so is readily available. It is also used to calculate interpolated data values within the dataitself. The disadvantage is that the gradient at a shared cell face may not be continuous. We are presentlyexploring the amount of error this may introduce. An alternative is to use �nite di�erences for the gradientwithin the data.6 Comparison of Rendering MethodsOur hierarchical visualization software provides three methods of direct volume rendering: coherentprojection [WVG91, WVG94], hardware 3D textures [WVGW94], and ray-casting.Coherent projection uses hardware-assisted Gouraud shading to provide a fast and reasonably goodquality image [WVG91, LH91, ST90]. Assuming parallel projection, a projection of one region (the template)is always a uniformly scaled version of the projection of any other. Color and opacity contributions arecalculated only at the projected region's vertices, and hardware Gouraud shading is used to �nd valuesacross it. Because perspective projection makes each region's projection di�erent, coherent projection ismuch slower if it is used. Because there is limited control over color and opacity across the region, shading isusable, but not of the best quality. The method does �t well into a hierarchical visualization system becauseeach region is rendered independently and in visibility ordering. It runs on standard graphics hardware.While parallelization is not as straight-forward as with a ray-caster, images could be created in parallel fromdi�erent regions of the tree and composited.Hardware 3D texture mapping is a very fast method available on machines that have this feature [CCF94,GL94, WVGW94, CN93]. (An example of such a machine is the SGI Reality Engine.) In this case, a versionof the data taking into account distance between data points is stored as a 3D texture map. The volumeis created by drawing polygonal texture-mapped slices through the texture map. The specialized texture-mapping hardware does most of the work of creating the image. Because the size of a 3D texture map isusually small, several texture maps may be required to create the entire volume. The image quality can bequite good (as least as good as coherent projection) if su�cient planar slices are used. The relative speed wesuggest is assuming trilinear interpolation, 12-bit textures, and about twice the number of planar slices asthere are data points along the long diagonal of the volume. However, shading is only possible if the lightinge�ects are precalculated (thus the light must move with the volume and specular e�ects are inaccurate).Because specialized hardware is used, it cannot be parallelized. Flexible error-controlled traversal would bedi�cult because the method uses precalculated rectilinear chunks of the volume for imaging.We have only recently added ray-casting to our hierarchical system. As is well known, ray-casting providesthe best quality images and most control. Even without shading, the images appear more crisp and lessblurry than with coherent projection or texture mapping. It is relatively easy to add shading and to insertgeometric objects into the volume. Perspective does not incur any signi�cant extra penalty. Ray casting canbe used with an error-controlled hierarchy, though it is noticeably slower than ray casting a non-hierarchicalrectilinear volume. The method runs on standard hardware and is easily parallelizable. However, it is slow,compared to the above approaches.It is certainly desirable to have a range of methods available, to provide for the whole range from excellentimage quality to interactive speeds. The comparative abilities of the various methods are summarized inTable 1. 6

Coherent Projection Ray Casting Hardware 3D TexturesShading - + 0Perspective 0 + +Image Quality - + -Error Control + + -Standard Hardware + + 0Parallelizable - + 0Relative Speed (1-proc) 100 2500 3Table 1: Comparison of Three Basic Methods: Coherent Projection, Ray Casting, and Hardware 3DTextures. This table summarizes the abilities of the three methods for di�erent characteristics relatedto image quality (above) and speed (below). (The relative speed of 3D textures is very approximate,depending on the type of map and size of volume.) A \+" in the table indicates the method is relatedto this characteristic; a \-" means it is adequate; a \0" means it is poor. See text for discussion.7 Experimental ResultsWe compared the hierarchical volume rendering using our three methods and allowing di�erent amounts oferror, examining in particular speed and image quality.Table 2 shows timing results on two data sets.1 It is clear that for fast rendering hardware 3D texturemapping is the best method, but machines with this capability are still rare. We observe a rather shockingspeed degradation in ray casting with the hierarchy rather than on the original data, and are pursuingimproved traversal methods. However, on volumes where importance can be used to limit traversal,hierarchical ray casting usually is faster than regular grid ray casting.Error tolerance is measured as a fraction of the standard deviation of the data, but also scaled to thesize of the region. For example, a region comprising 1/64-th of the volume is expected to have 1/8 as largea standard deviation as the entire volume, by the square-root rule, so a threshold of .10 means that sucha region is adequately approximated if its own RMS error is 1/10-th of that expected quantity. While thisis a bit complicated to explain, it makes the tolerance a non-dimensional quantity that has about the samesigni�cance across a variety of datasets.The slides demonstrating these methods are described below. The hipip volume is imaged without anyimportance function. Red denotes positive high potential, blue denotes negative high potential, and whitedenotes very low potential. No visual di�erences could be observed using an importance function thatreduced weight on very low potential data. Quantitative comparisons are discussed later. The CT headimages used an importance function that reduced weight in regions containing soft tissue, and gave zeroweight to air.1. Slide 1 compares ray casting and coherent projection on the hipip data set. The lower left image showscoherent projection with no error and the lower right image shows coherent projection with 10% error.The upper left image shows ray casting with no error and the upper right image shows ray castingwith 10% error. Notice the sharper outline of the red and blue features in the ray cast image, and thesmaller amount of image degradation that occurs using ray casting with error.2. Slide 2 compares ray casting with and without shading on the hipip data set. The lower left image1Hipip (High Potential Iron Protein) is from L. Noodleman and D. Case, Scripps Clinic, La Jolla, Ca. The CTHead and itsdown-sample (the same data set) was from UNC. 7

Data Impor- Coherent Regular Hierarchical Parallel VolumeSet error -tance Projection Grid Raycasting Hierarchical TextureRaycasting RaycastingHipip 0 no 18.9 121.00 337.0 97.0 0.010 % no 0.89 - 103.0 27.0 -30 % no 0.23 - 52.0 13.0 -70 % no 0.07 - 44.0 11.0 -0 yes 5.66 - 183.0 49.0 -CT Head 0 no 54.15 181.0 409.0 126.0 1.5128 1.0 % no 44.48 - 360.0 103.0 -15 % no 15.65 - 199.0 58.0 -0 yes 29.32 - 255.0 83.0 -1.0 % yes 21.79 - 216.0 67.0 -15 % yes 3.25 - 174.0 50.0 -CTHead 0 no 247.58 380.0 704.00 200.0 2.06256 1.0 % no 214.0 - 608.0 170.0 -15 % no 43.5 - 269.0 74.0 -0 yes 55.84 - 205.0 60.0 -1.0 % yes 51.84 - 201.05 59.0 -15 % yes 27.98 - 175.0 56.0 -Table 2: CPU time comparisons (in seconds) on SGI Reality Engine II with four 150 MHz processors, 64MBmemory. The parallel time denotes the maximum CPU time of the four processors. Error tolerances areexplained in the beginning of Section 7. Volume sizes are: Hipip 643; CT head, 256� 256� 113; down-smapled version, 128� 128� 113.shows ray casting with no error and the lower right image ray casting with 10% error. The upper leftimage shows ray casting with di�use and specular shading and no error, and the upper right imageshows ray casting with shading and 10% error. Shading helps considerably in bringing out features inthe data and establishing orientations.3. Slide 3 compares ray casting (right) with no error and 3D texture mapping (left). Again, the maindi�erence is the crispness of edges around features. 3D texture mapping generally produces a picturevery close to that seen with coherent projection. However, it does not easily accommodate shading.4. Slide 4 compares ray casting and coherent projection on a down-sampled version of the CT head(128x128x56) and restricted to the front of the skull. The transfer function is selecting for bone only.The lower images, left to right, show coherent projection, ray casting, and ray casting with shadingand no error. The upper images show the same methods with 15% error. The shading uses a coloredlight in this case. Again ray cast images are crisper and more tolerant of error, and shading helps bringout features.5. Slide 5 shows a ray cast image of the whole CT head data set (256x256x113) without error or shading.6. Slide 6 shows a ray cast image of the whole CT head with shading and no error. We �nd that shadingon this volume is not very smooth, as the data is not �ltered and small variations in gradient across8

error importance rms max0 yes 0.0028 0.01510 % no 0.0085 0.07810 % yes 0.0161 0.12230 % no 0.0284 0.34130 % yes 0.0291 0.341Table 3: Image comparisons with raycast refer-ence image of Hipip. Subject images are alsoraycast. error importance rms max0 yes 0.007 0.2161 % no 0.137 0.0781 % yes 0.133 0.12215 % no 0.137 0.34115 % yes 0.133 0.341Table 4: Image comparisons with raycast referenceimage of CTHead-128. Subject images are alsoraycast.the volume cause shading variations. This phenomenon may also be due to our use of the trilinearfunction to calculate gradients; we are exploring these issues.7.1 Degradation with Error ToleranceWe observed that image quality degraded less with error tolerance when using raycasting, as opposed toprojection with hardware interpolation. This occurred even though both methods used exactly the sameapproximations to the �eld function while traversing the volume.The explanation for this observation lies in the nonlinearity of the transfer function that maps data tocolor and opacity. Figure 3 demonstrates on a simpli�ed example. Intuitively, both methods interpolate the�eld function in all three dimensions, and map those values to color exactly, and �nally perform approximatecolor integrations in \screen z" (along the sight line). However, raycasting computes a new color mappingand approximate integral at each pixel, while the projection method does so only at polygonal vertices.Consequently, the projection method e�ectively approximates color in \screen x" and \screen y", as well as\screen z".In the one-dimensional example, cell boundaries are at the integral values of x and we assume the �eldfunction f is piecewise linear as shown at the upper left. Solid dots denote sample data values at cellboundaries.The color rises sharply just below x = 2, even though f(x) is linear across the cell. Raycasting producesan accurate picture, as it maps f to color repeatedly and detects the nonlinearity. The projection methodmaps f to color on boundaries only, and therefore must interpolate color across the interior, introducinginaccuracy, as shown in the lower left diagram. In all image diagrams the dotted line represents the \true"image.For this example, an unweighted error tolerance might permit the right half of the line to be approximatedat height 1, while the left half is re�ned, as the right half has lower RMS error at height 1. This happensto introduce no additional error for either method, as shown in the middle diagrams of the third and fourthrows.An importance-weighted error causes the left half to have lower error than the right. For certainthresholds, the left half will be approximated at height 1 and the right half will be re�ned to height 0.Since the nonlinearity of the transfer function occurs in the left half, the error is even more exacerbated inthe projection image, as shown in the lower right diagram. Error is introduced into the raycast image also,as shown in the third row, right, but it is less pronounced.9

481216 f(x)0 1 2 3 4x !
uuuuu ����������... :25:50:751:0 red(f)0 4 8 12 16f !..

......................... :25:50:751:0 imp(f)0 4 8 12 16f !
������������Example �eld function f , color function red(f), and importance function imp(f)

481216 f0(x)0 1 2 3 4x !
uuuuu ����������... 481216 f1(x)0 1 2 3 4x !

uuuuu ������

 481216 f2(x)0 1 2 3 4x !
uuuuu

������������Approximations of f at heights 0 (full resolution), 1 and 20:51:0 noerror0 1 2 3 4x !... 0:51:0 unwgterror0 1 2 3 4x !... 0:51:0 wgtederror0 1 2 3 4x !...Raycast of f at full resolution, with unweighted error, and with importance-weighted error0:51:0 noerror0 1 2 3 4x !������ 0:51:0 unwgterror0 1 2 3 4x !������ 0:51:0 wgtederror0 1 2 3 4x !������Projection of f at full resolution, with unweighted error, and importance-weighted errorFigure 3: Nonlinearities in transfer function (red(f)) cause larger errors with projection methods, relative toraycasting, even though both use the same approximation to the �eld function f as discussed in Section 7.1.10

7.2 Quantitative Image ComparisonsRaycast images made with various acceleration methods were compared with reference images.2 Tables 3and 4 show the results. The framebu�ers of the reference image and the subject image were compared pixel bypixel. Each di�erence lies in the range �1:0 to 1.0. The maximum absolute error and the root-mean-square(RMS) error are reported for each subject image.The main observation about these data is that the user-supplied importance functions have much lesse�ect on the image quality than the choice of error threshold, yet they still achieve substantial accelerations,as shown in Table 2. This is not very surprising for the CT head, because the zero-importance rangecorresponds to air, which is transparent in the transfer function. However, the Hipip importance functionassigns varying importance to di�erent potentials (the �eld function) that are not transparent in the transferfunction. It achieves accelerations by factors of two and more with imperceptible degradation of the image.8 ConclusionsWe have presented a method of ray casting error-controlled hierarchical volumes using cell face intersectionrather than sampling along the ray. We have integrated a shading model into the ray caster. We havecompared ray casting to coherent projection and hardware 3D texture maps.We conclude that ray casting is a considerable improvement to faster projection-based volume renderingmethods in terms of image quality, though it incurs a major speed penality. A range of rendering methodswithin a single visualization system is desirable, and that shading makes images more comprehensible.User-supplied data-importance functions were found to be a simple and highly e�ective way to cutrendering times by half and more with little e�ect on image quality in most cases. These can be added tothe toolkit of acceleration methods for both ray-casting and projection methods.The analysis of projection errors relative to ray-casting showed that they are attributable to thenonlinearity of the color transfer function. That is, color interpolation errors are more serious than datainterpolation errors. This suggests an avenue for improvement of projection methods on workstations withhardware texture maps. Max et al. have made a step in this direction for cells of uniform color and varyingthickness [MBC93]. We plan to investigate an extension to handle nonuniformly colored cells, by employingtexture lookup tables in conjunction with texture maps.References[CCF94] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and tomographicreconstruction using texture mapping hardware. In 1994 Symposium on Volume Visualization,pages 91{98, Washington, D.C., October 1994.[CN93] T. J. Cullip and U. Newman. Accelerating volume reconstruction with 3d texture hardware.Technical Report TR93-027, University of North Carolina, Chapel Hill, N. C., 1993.[DH92] John Danskin and Pat Hanrahan. Fast algorithms for volume ray tracing. In 1992 Workshopon Volume Visualization, pages 91{98, Boston, Mass., October 1992. ACM.[GL94] S. Guan and R. G. Lipes. Innovative volume rendering using 3d texture mapping. In SPIE:Medical Imaging 1994: Images Captures, Formatting and Display. SPIE 2164, 1994.[Lev90] Marc Levoy. E�cient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245{261, July 1990.2Due to an alignment bug, we were unable to compare raycast and projection framebu�ers, or raycast and 3D-textureframebu�ers. 11

[LH91] David Laur and Pat Hanrahan. Hierarchical splatting: A progressive re�nement algorithm forvolume rendering. Computer Graphics (ACM Siggraph Proceedings), 25(4):285{288, July 1991.[MBC93] Nelson Max, Barry Becker, and Roger Craw�s. Flow volumes for interactive vector �eldvisualization. In Nielson and Bergeron, editors, Visualization '93, pages 19{24, San Jose, Ca,October 1993. IEEE.[SB87] J. Snyder and A. Barr. Ray tracing complex models containing surface tessellations. ComputerGraphics (ACM Siggraph Proceedings), 21(4):119{128, July 1987.[SK94] L. M. Sobierajski and A. E. Kaufman. Volumetric ray tracing. In ACM Workshop on VolumeVisualization 1994, pages 11{18, Washington, D.C., October 1994.[ST90] Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar volume rendering.Computer Graphics, 24(5):63{70, December 1990.[UK88] Craig Upson and Michael Keeler. The v-bu�er: Visible volume rendering. Computer Graphics(ACM Siggraph Proceedings), 22(4):59{64, July 1988.[Wes94] Ruediger Westermann. A multiresolution framework for volume rendering. In Arie Kaufmannand Wolfgang Krueger, editors, 1994 Symposium on Volume Visualization, Washington, D.C.,October 1994. ACM.[WVG91] Jane Wilhelms and Allen Van Gelder. A coherent projection approach for direct volumerendering. Computer Graphics (ACM Siggraph Proceedings), 25(4):275{284, 1991.[WVG92] Jane Wilhelms and Allen Van Gelder. Octrees for faster isosurface generation. ACMTransactions on Graphics, 11(3):201{227, July 1992. Extended abstract in ACM ComputerGraphics 24(5) 57{62; also UCSC technical report UCSC-CRL-90-28.[WVG94] Jane Wilhelms and Allen Van Gelder. Multi-dimensional trees for controlled volume renderingand compression. InACM Workshop on Volume Visualization 1994, Washington, D.C., October1994. See also technical report UCSC-CRL-94-02.[WVGW94] Orion Wilson, Allen Van Gelder, and Jane Wilhelms. Direct volume rendering via 3d textures.Technical Report UCSC-CRL-94-19, CIS Board, University of California, Santa Cruz, 1994.
12

