Detection of multiple faults in
two-dimensional ILAs

Martine Schlag and F. Joel Ferguson

UCSC-CRL-95-30
June 13, 1995

Associate Professors of Computer Engineering
Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

Two-dimensional arrays are suitable for VLSI implementation because of their
regular structure and relative ease of test. We provide test sets proportional to
the sum of the two dimensions of the array for a large class of cells, which allow
us to test rows (or columns) of cells of the array independently. Previous research
has found constant length test sets for array multipliers under the single faulty cell
model if the array is modified and otherwise test sets are proportional to the number
of cells. We can verify the full adder array of a combinational n x m multiplier in
O(n 4+ m) tests under the Multiple Faulty Cell (MFC) model. We show that no
constant length test set exists for this array under the MFC model. The entire
multiplier, including the AND gates which generate the summands, can be verified
after applying the same modifications which make the multiplier C-testable under
the single faulty cell model. Finally we show an error in the proof of a commonly
accepted theorem involving testing two-dimensional arrays for multiple faults.

0

Contents

1. Introduction

CONTENTS

1.1 Testing 2-D ILAs with tests sets proportional to the sum of the dimensions

1.1.1 Reducing testing of 2-D ILAs to testing of 1-D ILAs
1.1.2 Detection of all Multiple Faults in 1-D ILAs

2. Testing an array multiplier under the MFC model
2.0.3 Testing the Summand Counter
2.1 An n/log(n+ 1) lower bound on tests for the CS multiplier
2.2 Detection of All Multiple Faults in Carry-Save Multiplier

3. Conclusion

References

O NN =

13
15
19
21

25

26

1. Introduction

An iterative logic array (ILA) is a circuit consisting of identical cells of combinational
logic arrayed with a regular interconnection pattern. An n-bit ripple-carry adder consisting
of n full adders is an example of a unidirectional one-dimensional ILA. The arrays we shall
consider are unidirectional in that signals only flow in one direction between adjacent cells.

The problem of testing one-dimensional and two-dimensional arrays for single faults has
been studied extensively [1, 2, 3, 4, 5, 6, 7, 8] with considerable attention on arithmetic
circuits. Researchers have modified the array multiplier to make it C-testable [2], that is,
testable with a constant number of tests independent of the size of the array multiplier [9, 7,
10]. Their test sets exploit the regularity in the array’s iterative structure under the single
faulty cell model in which,

1. at most one cell is faulty,

2. and the fault may alter the cell’s output function in any arbitrary way, as long as the
cell remains combinational and the fault is permanent.
Detecting these faults requires the exhaustive testing of every cell with tests which guarantee
that any error appearing at the output of a cell will appear as an error at the array’s primary
outputs. This fault model subsumes the traditional single line stuck-at fault model and
covers all multiple line stuck-at faults restricted to a single cell.

Multiple defects which often occur on an IC [11], may affect multiple cells in the array.
Multiple faulty cells may not be detected by tests based on a single faulty cell fault model.
In this paper, we consider the more general multiple faulty cell (MFC) model[12, 13] in
which,

1. any number of cells in the array can be faulty,

2. and each faulty cell may have its output function altered in any arbitrary way, as long

as each cell remains combinational and the fault is permanent.

Dias developed methods for one-dimensional arrays under this model. He called this
Truth Table Verification because some multiple faults do not change the function of the
truth table of the array. Since these are undetectable the truth table of the array is verified
for all multiple faults. For a class of one-dimensional 1LAs, he developed a procedure which
constructs a constant number of tests independent of the number of cells in the array.
Prasad and Gray provided test sets of length proportional to the number of cells (O(nm)
tests for an n X m array) for a class of two-dimensional arrays under the MFC model[14].
We provide test sets of length proportional to the sum of the dimensions of the array (m-+n
for an n x m array) which apply to cells meeting Dias’ requirements and a weaker version of
Prasad and Gray’s requirements. In his thesis, Cheng also provided sufficient conditions for
a test set to verify two-dimensional ILAs under the MFC model. He applied his result to
this same class to derive test sets of length proportional to the number of rows, independent
of the number of columns. Unfortunately, there is a fallacy in the proof. We explain the
error in the appendix. We also provide lower bounds for two of the arrays to which we
apply our results to show that they are not C-testable. Any cell can be modified to meet
our requirements, by adding at most one horizontal and one vertical connection.

As in the case of Dias, Prasad and Gray as well as Cheng, our tests do not verify that
each cell is correct under the MFC model. This is in contrast to the tests for arrays under
the single faulty cell model. If multiple faulty cells are allowed, it is possible for the array
to have a correct truth table, even though its cells do not. Adjacent cells may select any

2 1. Introduction

encoding for their shared wires as long as they agree. Of course, the cells whose inputs
and outputs are external to the array must follow the encoding expected of a correct cell
on their external wires. Prasad and Gray handle this problem by showing that subsections
of the array are correct for some encoding of their outputs. Cheng’s approach is to verify
that the outputs of each cell has a one-to-one correspondence with the correct cell’s. Our
approach is to show that each cell is correct with respect to a fixed encoding convention
defined by a set of preliminary tests. We find that this approach simplifies and clarifies the
arguments of correctness.

In Chapter 1.1 we show that for a certain class of cells (column-separable cells), we can
apply tests to the array which allow us to test each row independently. These tests exist
for a restricted class of cells whose functions allow values to propagate down the columns
independently. The n 4+ m 4+ 1 tests allow us to reduce the problem of testing an n x m
two-dimensional array to the problem of testing n one-dimensional arrays of m cells. In
Chapter 1.1.2, we review Dias’ work on testing one-dimensional arrays with multiple faulty
cells, which provides constant length test sets for a large class of arrays. Chapter 2 builds
on the results in Chapter 1.1 to develop a test set for a carry-save array multiplier linear in
the size of its operands. The test set derived from Chapter 1.1 is modified and augmented in
Chapter 2.2 to deal with the hybrid structure of the array, and then with the incorporation
of the AND gates from the summand generator into the full adder cells. An Q(n/logn)
lower bound on the FA array of a multiplier shows that this test set is within a logn factor
of optimal.

1.1 Testing 2-D ILAs with tests sets proportional to the sum of the
dimensions

In this section, a test set for a class of two-dimensional ILAs is constructed by reducing
the problem of testing a two-dimensional array to that of testing one-dimensional ILAs. The
class of two-dimensional arrays to which this method applies consists of the ILAs composed
of a cell whose function allows the vertical propagation of values while fixing a specific
horizontal input value. The exact definition is given in Section 1.1.1.

1.1.1 Reducing testing of 2-D ILAs to testing of 1-D ILAs

The cells are indexed by row 7 and column j in the direction of data flow. Each cell
(5 ; has a row input (2) and row output (h(z,y)), a column input (y) and a column output
(v(z,y)). Each connection between adjacent vertical or horizontal cell will be referred to as
a ‘wire’ although it may carry more than two values and be implemented with more than
one physical wire. The row inputs to the array are Hy,..., H, and the column inputs are
Vias ..., V1, where m is the number of columns and »n is the number of rows. The column
outputs of the array are V, ..., V/, and the row outputs are H{,..., H]. Cell C; ; is on the
Et* diagonal if i 4+ j — 1 = k. Figure 1.1 illustrates a 5 by 4 ILA. An input to the array is
denoted by (‘7, ﬁ) where V is the vector of left to right columns inputs and H is the vector
of top to bottom row inputs. The behavior of a cell is described by a pair of functions,

h(z,y) : X XY — X and v(z,y): X XY =Y,

where X and Y are the sets of all possible correct or incorrect horizontal and vertical signals,
respectively. If vertical wires are implemented by k physical wires and horizontal wires are

1.1. Testing 2-D ILAs with tests sets proportional to the sum of the dimensions 3

Vi Vs Vs Vi

| | | |

!
Hi=A Cia=1 Cia[=1 Cios Cia= H;y

{ { { |

\I/ Hi=<7 Cou= Coa=1 Cro=1 Con[= H,
Mol [| i Tl T
\L Hi=<7 C34=7 Caa=1 Caa~1 Cs1[~ Hs

v(e,y) y y | v

!
Hi=" Cya= Cas=1 Cao=1 Caa~= Hy

! ! ! !

Hl=A Cs 4= Cs3=1 Cso=7 Cs1= Hs
Vi V3 Vi vy
Figure 1.1: A 5 by 4 array.

=
—

|

v(a,y) = o(y) ?

Figure 1.2: Column-separable cells.

implemented by ¢ physical wires then |Y| = 2¥ and |X| = 29. Figure 1.1 also depicts a
typical cell.

Definition 1: A cell’s function is column-separable if there exist ¢ € X and b € Y such
that

1. v(a,y) is a permutation on Y, (o(y)),
2. hfa,y) =
3. h(z,b)is a permutatlon on X, (1(x)),

4. and v(a,b) = o(b) = b.

Since h(a,y) = a, we have 7(a) = h(a,b) = a. Figure 1.2 illustrates these conditions. Note
that any cell can be modified to be column-separable by adding at most one vertical and
one horizontal connection.

The values on the internal wires of the array cannot be observed directly. It is possible
for two arrays to differ in the values on these wires and still produce the same truth tables.
There are ways to observe that these wires have or have not changed value between two
tests, since they must encode all possible values. For the sake of brevity and clarity, we
adopt the following convention:

4 1. Introduction

b b Ta,b
b by T11(y)
Hj :01,1 T a4 «a
_______________________ +___

| a

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

l

| ¢ a a

Vi
Figure 1.3: Tests for base case: Ty, T'1;(y) and 172;(z).

Let Typ = (b™,a") to be the test with @ on all row inputs (H; = a for all
i) and b on all column inputs (V; = b for all j). The internal wires could have
any value, but we assign the name ‘b’ to the value on each internal vertical wire
when T, is applied and we assign the name ‘a’ to the value on each internal
horizontal wire in T}, .
Thus the notion of value is relative to a wire’s value when the array has input 7, ;.

The tests below check that each cell C;; (although possibly faulty) is column-separable
for a, b, and some permutations o; ;() and 7;;(). Each cell may have a different pair of
permutations, since the encodings on the internal wires can be arbitrary if the cell is faulty.
The m(|Y|—=1) +n(]X]| = 1) + 1 tests are:

Top : (b7, a"),

T1;(y) = (0™ Iybi=! a™) forall y € Y — {b} and 1 < j < m,

T2:(z) : (b™, @ 'za" %) forall 2 € X — {a} and 1 <7 < n.

Lemma 1: Suppose C' is a column-separable cell. Then the m(|Y|—1) + n(|X|—-1)+ 1

tests, T'1;(y), T2;(z), and T, 3, guarantee for each cell C;; in an n x m array composed of
C', that there are permutations o; ;() and 7; ;() such that,

1. v(a,y) is a permutation on Y, (o; ;(y)),
2. hia,y) = a,
3. h(z,b) is a permutation on X, (7 ;(x)),
4. and v(a,b) = o; ;(b) = b.
Proof: The proof is by induction on the diagonals.
Induction Hypothesis: The cells on the k" diagonal behave as required.

1.1. Testing 2-D ILAs with tests sets proportional to the sum of the dimensions 5

b b Ta,b
b b T2(x)
| | a a a
L
.
1 | |
I I
I I
I I
___________]
HZ/ :Cz,]: X
___________ :___:___________
I I
I I
I I
I I
I I
I I
I I
I I
| | a a a
V44

J
Figure 1.4: Tests for inductive step case: 1,3, T'1;(y) and T2;(x).

Base Case: & = 1. In this case, + = j = 1 and this cell’s inputs are controllable since
they are external inputs. We need only verify that the outputs of the cell behave properly.
As illustrated in Figure 1.3 the tests T'11(y) and 7,5 hold the row inputs at a, the inputs
of columns m through 2 at b, while applying all values in Y to Vj. Since |Y| different
values must appear at the V] output, the vertical output of cell C; must implement a
permutation of Y. By our convention, this cell has the value b on its vertical output wire
in T, ; and hence oy 1 fixes b (01,1(b) = b). The same argument with tests 72 (z) and Ty
shows that the horizontal output of cell C'; ; must implement a permutation of X and by
definition this permutation fixes a. It remains only to show that h(a,y) = a. If h(a,y) # a
for some y € Y, this error will propagate to Hj since T2;(z) generates all row outputs (a
permutation of X') and the column inputs to the cells of row 1 in columns 2 through m are
all held at b in the T'11(y) and 172y (z) tests. (If h(a,y) # a this value will be propagated
by these m — 1 cells in T'11(y) and appear as a “non-a” value on Hj just as in one of the
T2 (x) tests.)

Inductive Step: k > 1. Assume that all cells on diagonals numbered less than k behave
as required. Consider a cell C; ; on the k" diagonal. As illustrated in Figure 1.4, the tests
Typ and T'1;(y) hold the row inputs at a, apply all values in Y to the column j input, V;,
while holding all other column inputs at b. The cells to the right of column j have the same
inputs in 7, as in all of the 7'1;(y) tests. Hence by definition, cell C;; has a on its row
input in all of these tests. Since a permutation of ¥ must appear on Vj’, the column output
of C; ; implements a permutation of Y. Again, by definition this permutation fixes b. The
same argument with tests 7'2;(x) and 7, ; show that the horizontal output of cell C; ; must
implement a permutation of X and by definition this permutation fixes a.

It remains only to show that cell C; ;’s horizontal output remains ¢ during the 7'1;(y)
tests. Consider the rectangular region of the array formed by the cells in rows 1 through
i —1 and columns m through j+1 (the region R; in Figure 1.4). The column inputs to this

6 1. Introduction

region are all b in the 7'1;(y) tests. The row inputs to this region are the row outputs of
the first 2+ — 1 cells in column j. By induction these cells hold their row outputs at a since
their own row inputs are a in these tests. Thus this rectangular region of the array has the
same inputs in tests 7'1;(y), 172;(z), Typ, and so the cells C;,, through C; ;41 have b on
their column input in these tests. The T2;(z) tests show that these m — j cells implement
a permutation of X which fixes @ when their vertical inputs are held at b. Hence if the
row output of C; ; does not remain at ¢ during the 7'1;(y) tests, this “non-a” value will be
propagated by these m — j cells and appear as a “non-a” value on the row i output, H!. O

We can also define the counterpart of “column-separable” for rows.
Definition 2: A cell’s function is row-separable if there exist ' € X and b’ € Y such that
1. h(z,b)is a permutation on X, (7'(2)),
2. v(z,b) =
3. v(d',y) is a permutation on Y, (o/(y)),
4. and h(a',b') =7'(d") =d .
Corollary 1: Suppose C' is a row-separable cell. Then the m(|Y| - 1)+ n(|X| - 1) +1

tests, T'1;(y), 1T2;(x), and T, p, guarantee for each cell in an n X m array composed of C,
that there are permutations o/ () and 7/ () such that,

L. h(z,b') is a permutation on X, (o} ;(2)),

2. v(z, b))y =V,

3. v(d',y) is a permutation on Y, (7/:(y)),

4. and h(a', V') = o] .(a') = d'.

A cell which is column-separable for values a and b, and row-separable for values a’ and
b, is both column-separable and row-separable for the same pair of values, ¢ and o’. The

conditions imposed on cells by Prasad and Gray for their O(mn) test set are equivalent to
a cell being both column-separable and row-separable[14].

Example: Buffer Array

We consider the problem of testing a two-dimensional array of buffer cells. The behavior
of a buffer cell is given by h(z,y) = = and v(z,y) = y. This cell is both column-separable
and row-separable. Any choice of values for ¢ and b will do. If we pick, « = 0 and b = 0,
then the m + n + 1 tests are:

T070 . (Om,O”)7

T1;(1) : (0m791071,07) for all 1 < j < m,

T2,(1) + (0™,01107% %) for all 1 <i < n.

These tests verify the truth table of each cell to be:

x y|h v
0 0|0 O
0 110 1
1 01 7
1 177 7

1.1. Testing 2-D ILAs with tests sets proportional to the sum of the dimensions 7

where 7 is an unknown value and 0 is assigned to the value on a wire in test 7p . Note that
this array is also row-separable with the same choice of values @ = 0 and b = 0. Applying
Corollary 1 allows us to conclude that v(1,0) = 0. One last test, T} 1 = (1™, 1") is required
to complete the truth table of the cell. Clearly, if any wire retains its 0 value in 7' ;, then the
remaining column and/or row will transmit this 0 to an external output since the previous
tests verified the outputs of all cells for the inputs 00, 01, and 10. This gives us a test set
of size m +n + 2.

We can show that this is a lower bound on the number of tests required as follows.
Consider a one-dimensional array of m buffer cells. Let F' be any subset of the cells and
consider the faulty array in which the intercell output of each cell in F'is h(z,y) =2 Sy
instead of . Any test which applies an even number of 1’s to the cells in F, will not detect
this fault. An even number of inversions will occur and will not be detected. We shall show
that if there are more cells than tests we can always find such a subset of cells, F.

If there are m cells, there are 2™ different subsets of cells. Suppose there are k
tests T1,...,Tx. For any given subset S we can associate with it a vector ¥(S) =
(01(9),v2(S),...,v5(S)) where v;(S) represents the parity of the number of 1’s applied
to cells in S in test T;. There are 2F different vectors. If m > k, then 27 > 2% and there are
more subsets than vectors. This means we can find two distinct subsets .57 and S5 such that
7(51) = 0(S52). The non-empty subset F' = (S; — S3) U (52 — S1) has ¢(F) = (0,0,...,0).
Hence if m > k, then for any k tests we can find a subset of cells F' such that each one of
the k tests applies an even number of 1’s to the cells in F'. This test set then fails to detect
the faulty array constructed from F.

We can apply this argument to both the rows and columns of a two-dimensional array
of buffers to show that at least max{n, m} tests are required. Asymptotically, the number
of tests required for a two-dimensional array of buffer cells is no greater than for a one-
dimensional array under the MFC model.

The purpose of verifying the “column-separability” of each cell is to ensure that the
inputs to a row can be controlled from the primary inputs of the array and that any faults
in the row that modify the truth-table of the array will be observed at the primary outputs.
Having verified the column-separability of all cells, it then suffices to apply tests to verify
the rows.

Theorem 1: If a cell C'is column-separable, then under the MFC model the truth table of
an n x m array composed of C' can be verified in m(|Y| — 1) +n(|X| —1) + 1 + nR(m) tests
where R(m) is the number of tests sufficient to verify the truth table of a one-dimensional
array of m cells.

Proof: As discussed, the signals on the internal wires can be encoded in some arbitrary
manner. As long as adjacent cells agree on an encoding for their wires, the array can still
function correctly. As before to facilitate the argument, we make the convention that for
an internal horizontal wire the name a is assigned to the value on this wire in 7}, ;. For an
internal vertical wire, the name b is assigned to the value on the wire in 7}, ;. Each cell must
communicate the values in ¥ to its neighbor below in the array and the values in X to its
neighbor on the left. We make the convention that the encoding of Y on the vertical output
of cell C;; is determined by 7'1;(y) and corresponds to ¢*(y) (the result of applying a() i
times to y), where o(y) is the permutation v(a,y). That is, the value on this vertical wire
during T'1;(y) is the encoding of ¢*(y) for this wire. Similarly, the value on C; ;’s horizontal

8 1. Introduction

wires during the 72;(z) test is the encoding of 7/ (z). Thus encodings on the internal wires
are defined by the cells generating them.

Let Tr denote the R(m) tests required to verify the truth table of a row of m cells under
the MFC model. Then the tests are,

Top : (b7, a"),

T1;(y) = (0™ Iybi—t a") forall y € Y — {b} and 1 < j < m,

T2:(z) : (b™, @ 'za" %) forall 2 € X — {a} and 1 <7 < n,

T3:(r) : (o' =%(r}), @i~ trpa™ ") for all 1 < i < n, where the test r € Tg has column inputs
7y and row input r;, and Ul_i(f‘;) is the result of applying ¢'~* to each entry in Ty

By Lemma 1 we know that the tests T'1;(y), T2;(z) and T, guarantee that each cell
is correct for any input involving either a or b. Our convention about the encodings on
the internal wires ensures that each cell implements o() on its vertical output and that its
horizontal output is @ when its horizontal input is a.

We shall show that each row implements a correct one-dimensional array according to
its column input/output encoding conventions. Consider the tests 17'3;(r) for all » € Tg.
The input to cell Cj; in T'3;(r) is the encoding of o'~ (a1 7*(r})) = r} according to the
conventions since all horizontal wires except for those in row 7 are a in these tests. Hence,
the values on the column inputs of the cells in 7'3;(r) are the properly encoded values of r,,.
The row input is set directly to r,. The row output is directly observable, so we only need
show that the column outputs are correct. Suppose the column output of C; ; in T'3;(r) is
the encoding of 3’ instead of the encoding of y, the correct output. Then the cells in column
j map y' to ¢ "1 (y') which appears at the column j output, V!. Since the V/ should be

O.n—i—l (

y), an error will be detected.

Hence each row implements a correct one-dimensional array with respect to the encoding
conventions. Since the encoding conventions on the external inputs and outputs of the array
are observable, they coincide with the correct ones if no error is detected. If there is an
input which causes an erroneous output, there has to be a first row in which the row’s
output is incorrect with respect to its encodings. Since we have ensured that this cannot

be the case, the truth table of the array is verified. a

The analogous result for row-separable cells is:

Corollary 2: If a cell C' is row-separable, then under the MFC model the truth table of
an n X m array composed of C' can be verified in m(|Y|—1)+n(|X|—1)+14+mC(n) tests
where C'(n) is the number of tests required to verify a one-dimensional array of n cells.

As mentioned earlier, any cell can be made column or row-separable by adding at most
one physical wire in either connection. If there are “don’t care” inputs in the cells definition,
these may be used to obtain the required ¢ and b values without additional intercell wires.
We next focus on the problem of testing one-dimensional arrays for multiple faults in a
constant number of tests. If R(m) is independent of m, Theorem 1 provides an O(n + m)
test set.

Example: 2-D Array of Full Adders

The heart of an array multiplier is an array of full adders. This is the case for the
carry-propagate array multiplier, the carry-save array multiplier, and the Booth multiplier.
An n x m array of full adders is column separable with the values b = 1 and @ = 0 assuming
the product inputs of each full adder are held at 0.

If we pick, @ = 0 and b = 1, then the m + n + 1 tests required in Lemma 1 are:

1.1. Testing 2-D ILAs with tests sets proportional to the sum of the dimensions 9

1 Yi Yn
—_— _— - — —— - = = —_— —_— - ——— - == —_— —=
a1 T2 T Tit1 T Tn+41
21 23 Zn,

Figure 1.5: A general one-dimensional ILA.

T071 . (1m70n)7
T1;(0) + (1™=90171,07) for all 1 < j < m,

T2,(1) = (1™,07110"7%) for all 1 < i < n.
These tests verify the truth table of each full adder to be:

y p x| c s
0 0 0]0 O
1 0 00 1
1 0 1|1 7

where 7 represents an unknown value and 0 is the name assigned to the value on all horizontal
wires in the test Tj 1, while 1 is the name assigned to all values on the vertical wires in Tg ;.

Cheng and Patel obtain a minimum test set under the MFC model for the ripple-carry
adder with only 11 tests[15]. Applying the Cheng and Patel tests to each row requires only
8n + 3 tests since three of the tests are the same for all rows. The total number of tests
ism+n+1+8+3=9n+ m+ 4. Note that these tests require that we observe the
carry outputs of the full adders in the last column. In a multiplier, these final carries are
combined by an adder to obtain the product. In Chapter 2, we show how to test a multiplier
array even though its final carries are not directly observable.

1.1.2 Detection of all Multiple Faults in 1-D ILAs

We now restate and prove Dias’ Theorem 3. We do this to show how a constant size
test set for a one-dimensional array can be derived, and to provide a simpler proof for the
theorem found in [12]. Whenever possible we use the notation and definitions in [12].

Figure 1.5 shows an n-cell one-dimensional array. The inputs y,...,4, and z; are
directly controllable, and the outputs 2q,..., 2, and z,4; are directly observable. Each cell
in an ILA can be viewed as a sequential circuit in which the = is the state, y the input,
and z the output. A n-cell ILA can then be viewed as a sequential circuit with the input
sequence Yy, ya, . . ., Yn, OUtput sequence z1, zg, . . ., z,, initial state x1, and final state 1.
To continue this analogy, a flow table which specifies the output and next state based on the
input and present state can be generated for the ILA’s basic cell. We use the ILA /sequential
circuit analogy to provide a language and concepts from checking experiments in sequential
circuits. One such useful concept is a set of identifying sequences (SIS).

10 1. Introduction

<o
-
_
_
<o
_
_
—
<o

I T 2 T B
s s
Figure 1.6: A loop test of length four.

o<

Definition 3: An SIS is a set of input sequences (IS) {15y, [.S3,...,15,} such that for any
two states s; and s; there is an 1.5, which produces different output sequences for these two
states. If {151} is an SIS, then 1.5 is called a distinguishing sequence since its application
alone will determine the state of the machine when it was applied.

Definition 4: A test is denoted by (s;,.J) where J denotes a sequence of inputs of length
n for y1, ya, ...y, formed by repeating the sequence .J.

Let
alp

tis; — s
be a transition in the flow table of the basic cell with present state s;, and input «, which
produces the next state s; and the output 3.

Definition 5: A loop test for transition ¢ : s; Uy s; with 1S, is the test L,(t) = (s;,J)

where,
1. J is the concatenation of «, 1.5, and Z,,,

2. 15, is in the SIS, and

3. the input sequence Z, drives the flow table back to state s; from the state resulting
from the application of alS, to s;.

The length of L,(t) is | L,(t) |= 14+ | 1S, | + | Z, |.

Figure 1.6 shows an ILA with a loop test of length 4. The 1.5, consists of the sequence
y1,y2 and the Z, consists of the one single input sequence ys3. If the flow table of the basic
cell of an array is reduced then there is always an SIS, and if the components of the flow
table are all strongly connected then we can always find an input sequence Z, to form a
loop test for any transition and 1.5,. These are the two requirements needed to guarantee
the existence of L,(t) for every transition.

Definition 6: A cell ' is said to be Dias-testable if the flow table obtained from its
functions (h(z,y),v(z,y)) by considering its horizontal input to be its state, is reduced
and has only strongly connected components.

The modification to make a cell column-separable can at the same time ensure that the
cell meets Dias’ requirements, by making the permutation corresponding to v(z,b) cycle
through all of the states. This ensures that its flow table is strongly connected. If the
flow table is subsequently reduced, then the resulting cell will still be column-separable and
satisfy Dias’ requirements.

We now restate Procedure 1 from Dias [12].

1.1. Testing 2-D ILAs with tests sets proportional to the sum of the dimensions 11

Procedure 1: Consider an ILA whose basic cell has M states and N possible input vectors
and is Dias-testable. Let the transitions in this flow table be labeled as tq,ts,...,tpn, and
the I'Ss in the SIS chosen for testing be labeled as ISy, 1.5;,...,15,. A test set for this
array can be generated as follows.

Fori=1to MN, do
For j=1tor,do
For k=0to |L;(t;)| — 1, do
Apply k shifts of L;(¢;) to the array
End
End
End

The test set derived by Procedure 1 completely exercises each cell in the fault-free array.
It is shown in Theorem 2 that this test set is sufficient for verifying the truth table of the
array under the MFC model.

Theorem 2: For a Dias-testable cell, the test set derived by Procedure 1 detects all faults
under the MFC model that change the truth table of the array.

Proof: As discussed earlier, it cannot be shown that each cell is ‘correct’ (implements the
cell’s flow table exactly) since the array would still function correctly (have the same truth
table) if the adjacent cells were to agree on an encoding of the states other then the one
used in the flow table. Instead we shall verify the truth table of the first ¢ cells of the array
for some encoding of the values on 2;49. Since we can directly observe z,,1 we can verify
that its encoding is the same as a ‘correct’ cell’s.

Induction Hypothesis: Cells 1 through ¢ each implement the correct flow table where
the output x;41 is encoded by some permutation of the states.

Base Case: i = 1. In this case, all inputs are directly controllable. The z; output is
exhaustively tested by the 0-shifts of all of the L,(t) tests. Since the graph is strongly
connected there is a transition into every state. If the x5 signal does not implement some
encoding (permutation) of the correct states, then either there are two transitions into some
state s; which result in different values on x5 or there are transitions into two distinct states
s; and s which result in the same value on x,. Since there is a transition into each of the
M states, the former implies the latter by the pigeonhole principle. So in either case, there

is some transition ¢ : sy, %3 s; for which 23 assumes the same value as for ' : s, Wﬁ; s, with
s; # sg. In this case, the loop test L,(t) where IS, is the sequence which can distinguish
between s; and s; will produce the same output as L,(t') which will be detected as an error.

Inductive Step: ¢ > 1. Assume that the cells numbered from 1 to ¢ — 1 form an array
which behaves as required. There are two ways in which the first ¢ cells could fail to form
an array which behaves as required.

First, suppose there is an input (sp,(aq,...,0;)) which does not give the correct
0B1,...,0; output. By induction the first 7 — 1 cells form a ‘correct array’; the z; out-
put is the only one that could be wrong. Suppose s; is the state resulting in the application
of aq,...,a;_1 to s; and consider the loop test for the transition ¢ : sg ai@ s;. Since the
first ¢ — 1 cells perform some encoding of the states, any loop test for ¢ shifted so that cell ¢
receives the start of the sequence, would result in the same z; output as (s, (a1, ..., ;1))
(the encoding of si). Hence if z; is incorrect in (s, (a1, ..., q;)) it will be incorrect in the
appropriate shift of any loop test for ¢.

12 1. Introduction

The second manner in which the array could fail is if the output 2,41 does not result in
an encoding of the states from the flow table. As in the base case, this can only happen if
it produces the same value for two transitions into distinct states. Again, the loop tests for
these two transitions with an IS which can distinguish between the two resulting states,
will produce the same output when different outputs are required. a

Example: Ripple-Carry adder

A full adder is the basic cell of a ripple-carry adder. Any input for the full adder is a
distinguishing sequence forming an SIS with a single IS. However, choosing y = 01 (or 10)
provides a next state equal to s;, which makes the Z; sequence unnecessary if the transition
is to the same state. Dias makes this observation in [12], and produces a sequence of length
8 which exercises all 8 transitions. He claims that this test and its 7 shifts are sufficient.
Unfortunately, in the proof of Theorem 2 it is important that the same I.S’s be used in all
the loop tests to determine that x;’s properly encode the states. The proof hinges on the
observation that the rest of the (possible faulty) array cannot produce different outputs for
the same input. Different 1.5’s would detect an error if they were applied to correct cells,
but might fail to produce an error on faulty cells. Aboulhamid pointed out this error with
a faulty array which was not detected by Dias’ tests, and provided a test set that detects
all multiple faults in a one-dimensional array of full adder cells in 16 tests [13]. We apply
Dias’ theorem to obtain a test set of 14 vectors. Instead of creating, one sequence with all
8 looptests separated by an SIS which must be shifted 15 times, we provide 6 sequences
as described in Procedure 1 which must each be shifted once and another sequence which
must be shifted three times. This latter test combines the loop tests for the two transitions
which change the state. As a result, we have two loop tests which apply y = 10 to all
cells (one with 2 = 0 and one with = 1). The shifts of these tests are the same tests,
giving us a total of 14 tests. Table 1.1 contains the 14 tests that verify the truth table of
the ripple-carry adder under the MFC model. The pattern listed in each test should be
repeated to form an input of size n.

‘ test ‘ T ‘ pattern ‘ test ‘ T ‘ pattern ‘
% 0]00,10 T, |1 | 11,10

95 [0 | 10,00 e 1 [10,11

@9, [0 | 01,10 tt, |1 |0L10

% [0 | 10,01 s [1 | 10,01

% |0 |10,10 tl, |1 | 10,10

9100 | 0 | 11,10,00,10 | #1;00 | I | 10,00,10,11
200 | 1 100,10,11,10 | £}, 0 | 0 | 10,11,10,00

Table 1.1: Test set for ripple-carry adders.

Cheng and Patel [15] obtain a smaller test set of 11 patterns by using different 1.57s in
the looptests but with tests which verify that different IS’s applied to a cell are operating
with the same encoding convention. They show that 11 is the minimum number of tests
required to verify a row of full adders under the MFC model.

13

2. Testing an array multiplier under the MFC model

In this section we apply the techniques from the previous section to a carry save array
multiplier. The test set must be modified and augmented to handle the non-orthogonal
nature of the multiplier array and the fact that the array inputs are not independently
controllable. An r x g array multiplier has two parts: the summand generator which consists
of r¢ AND gates and generates rq one-bit products, and the summand counter which adds
these to generate an r+¢ bit product. This is shown in Figure 2.1. The summand generator
can be organized as a two-dimensional ILA of AND gates and the summand counter can
be organized as a two-dimensional ILA of adder cells.

The summand counter for a carry save array multiplier can be implemented as a two-
dimensional rectangular ILA of full adders and a ripple carry adder combined as shown
in Figure 2.2. The hybrid ILA for the carry save multiplier summand counter (CSM-SC)
of Figure 2.2 can be redrawn as shown in Figure 2.3. It consists of two subarrays, a two-
dimensional array of full adder cells and a ripple carry adder, also composed of full adder
cells. We shall refer to these two portions as the FA array and the RCA, respectively. Since
the summand counter for a r X ¢ multiplier has r z-inputs and r 4+ ¢ y-inputs, we will call
it an r x (r4¢) CSM-SC. The n rows to an n x m CSM-SC are numbered by the subscript
of the row’s xz-input, and the m columns by the subscript of the column’s y-input.

The vertical, product, and horizontal inputs to the cells of the FA array component
of the CSM-SC are called the y, p, and z inputs, respectively. The horizontal (or carry)
and the vertical (or sum) outputs of the individual cells are called the ¢ and s outputs,
respectively. The inputs are ordered from left to right on the cells in Figure 2.3 as yp 2 and
the outputs as ¢s.

The cells in the n bit RCA of the CSM-SC are numbered by row as they appear in the
CSM-SC array. Thus the cell with the most significant bit product is ;. The carry and
sum outputs of each cell in the ripple carry adder are the ¢ and s outputs, respectively, as

multiplicand multiplier
a; b;

summand generator

pi;| one-bit products

summand counter

Figure 2.1: General spredsh of Array Multiplier

14 2. Testing an array multiplier under the MFC model

3,0 2,0 1,0 0,0
V V V ¢ v
FA FA FA FA
3,1 2,1 1,1 0,1
]]]]
FA FA FA FA
3,2 2.2 1,2 0,2
v]]]
FA FA FA FA
¢ 3,3 2,3 1,3 0,3
] \ vy]
FA FA FA FA
v ¥ |
FA FA FA FA |«
v v v v

Figure 2.2: Summand counter for the 4 x 4 carry save multiplier.

Vs V- Vs Vs Vi
P33 P32 P31 P30
i] y] v
FA FA FA FA FA H,
' V-
3P2 0
P23 P22 P21 ’
v]
FA FA FA FA FA H,
C v,
P13 P12 P11 P10
i i i
FA FA FA FA FA Hs
(5 Vi

5 5 S

E

Figure 2.3: Redrawn summand counter for the 4x4 carry save multiplier.

15

with the FA cells. The vertical (or sum) inputs to the individual cells are the y inputs, the
x input to cell j is the ¢ output of cell j + 1, or the array input £ if 7 = n, and the p input
is the ¢ output of the leftmost cell of row j in the FA array.

There are two problems in applying the test set of Theorem 1 for the full adder array
to the CSM-SC. The first is that the p terms are not independently controllable, but are
functions of the multiplier and multiplicand. The second potential problem is the RCA
subarray. The cells in the RCA have a signal flow opposite in direction to the cells in
the FA array. Since the argument used in Lemma 1 requires the observation of the row
outputs, the test set derived for the full adder array may not be valid. Fortunately, the
full adder array test set from Chapter 1.1 can be augmented and modified to overcome these
difficulties as described in Chapter 2.0.3. Chapter 2.1 shows that there is no constant size
test set under the MFFC model for the array multiplier by developing an (n/logn) lower
bound on the number of tests required to verify the full adder array of an n x » multiplier.
Chapter 2.2 presents a cell modification and test set to handle the incorporation of the
summand generator (the AND gates) into the cells while still testing the array with a test
set of size proportional to its perimeter.

2.0.3 Testing the Summand Counter

As discussed there are two problems in applying the test set of Theorem 1 for the
full adder array to the CSM-SC. The first is that the p terms are not independently con-
trollable, but are functions of the multiplier and multiplicand. Although not independently
controllable, all p terms in a set of rows can be forced to 0 in the FA array by placing 0’s in
the bit positions of the multiplicand corresponding to those rows. All other rows have the
bit pattern of the n bit multiplier shifted to the right as the row number increases. This is
sufficient to test the CSM-SC.

The second potential problem is the RCA subarray. The direction of signal flow of the
c output of the RCA is in the opposite direction of the s outputs of the FA array. This
makes it difficult to prove that the ¢ output of a cell in the FA array is a 0 when its inputs
are 100; it invalidates the argument used in Lemma 1 because there are paths from the
sum output of a cell back to the RCA cell of the same row which could allow a fault to be
masked. The solution to this problem is to add additional tests to verify the truth table of
the ripple carry adder under the MFC model.

The 8n tests, TS?OO_H1 for all 1 < j <n shown in Table 2.1 when added to T'1;, verify
the truth table of the RCA in the n x m CSM-SC. In the following, T3%"" is the test which
applies ypz to the inputs of C; of the RCA, X is an n-bit vector (X1, X0, Y is an m-bit
vector [V, ..., Y]], and P is an n-bit vector, [P1, ..., Pn) Where p; denotes the value to be
applied to all p inputs of the cells in row 7. Hence the values being applied to the product
terms are consistent with a multiplier of all 1’s and 7 as the multiplicand.

Note that the RCA cell Cj is in column m —j+1 and so unlike the T'1; tests, the T'3%""
tests toggle (if any) column m — j + 1, not column j. We make the same convention about
encodings on internal wires as in Chapter 1.1.2. That is,

For each wire assign the name ‘0’ to the value on that wire when all external
inputs to the array are 0, and the name ‘1’ to the other value that the wire can

hold.

Lemma 2: If the CSM-SC passes all T'1; tests of the FA array and the T'3; tests for all
1 < j < n, then the truth tables of the cells in the RCA are verified under the MFC model.

16 2. Testing an array multiplier under the MFC model
T3] X v P
73000 0 0 0 0
T30t | 01 0 0717 1
73910 [g/—t1on 0 0/=110"=7 | 0
T3?11 Oj—lln—j—l—l 6 Oj—lln—j—l—l 1
13100 0 0’117~ 0 0
T3t o ot | o1 1
T30 1 0o/7'om7 | 07t | 0071107 | 0
T3}11 0]—11n—]+1 0]—110m—] 0]—11n—]+1 1

Table 2.1: T'3; tests for 1 < j < n,m verifying the RCA in the CSM-SC.

Proof: The first step of the proof is establishing that each cell in the CSM-SC outputs 00
and ?1 for the inputs 000 and 100 respectively. This is verified for column j by the tests
T1; and T'1;_; which toggle y; while holding all z and p inputs at 0 as well as the y inputs
to the right of column j. Each cell in column j has its 000 input in 7'1; and the only input
changing in 7'1;_; which can affect column j is y;. For the final column j output to be 1in

T1;_1, each cell in column j must have changed its sum output to 1. The rest of the proof
is by induction on the cells in the RCA part of the CSM-SC.

Induction Hypothesis: The RCA cells with indices less than j behave as full adders
based on the encodings defined on their inputs.

Base Case: j = 1. In this case, all outputs are directly observable and the y input is
directly controllable, so all that must be shown is that the tests 73" apply bec to the pz
inputs of (7.

T39% Input vector is 000 by definition.

T3%°! Due to the direction of signal flow, the only input bit that can differ from the inputs
of T3%% is z. Since s changed, must have changed.

T390 Since C’s output in this test differs from its output for T39%, its ypz inputs must
be either 001, 010, or 011. If its inputs were 001 or 011 then a y output of one of
the first row of cells of the FA array must be 1; otherwise the cells below the row
would have all 0’s and the z input to €} could not be 1. Suppose there is such an s
output, and let s be the rightmost one. The inputs to column k are all 0’s below the
first row (since s was the rightmost non-zero output of the first row). By our earlier
argument, the cells in column k starting from the second row will propagate a 1 down
the column to the external output. But since the outputs all remained at 0 (with the
exception of Cy), we know that no s output of a cell in the first row changed to 1 in
73919, Hence Cy’s inputs are 010 for this test.

T3 Since cell 1’s output for this test differs from those for tests 739%°, 73! and 73919,
its input vector must be 011.

TS%OO_H1 Since these tests differ from the above only by a single primary input which
cannot travel to any other cell in the array, they the same arguments can be used as
for their 0-counterparts.

17

Inductive Step: j > 1. Assume that all RCA cells numbered less than j are correct.
The s output of cell j is directly observable, and the ¢ output is an input to the correctly
functioning cell j — 1.

TS?OO Input vector is 000 by definition.

TS?O1 Due to the direction of signal flow, the only input of C'; that can differ from the inputs
of TS?OO is the z input. Since the s output changed, this input bit changed. Since
cell j 4+ 1 behaves correctly and its other inputs remained at 0 (due to the direction
of signal flow), cell j’s ¢ output is correct.

TS?IO The s output of cell j differs between this test and TS?OO. Due to the direction of
signal flow, the only inputs to cell C; that could have changed from TS?OO are its x
and p inputs. By the same argument as in the base case, we know that no s output
of row j is 1 since the rightmost such 1 would have been observed on an external s
output. Hence all inputs below row j are 0 and so the z input to C; must be 0. This
leaves 010 as the only possibility for its inputs. Since all inputs above row j are 0 and
(-1 is functioning correctly, the ¢ output of C; remains at 0.

TS?H The direction of signal flow guarantees that C;_;’s y and p inputs are 0, thus
sensitizing the ¢ output of C;. So both outputs of C; are observable (s directly
and c as the s output of C;_1). By the same argument as in the base case, the inputs
to C; must be 011 since its output must differ from those for its 000, 001 and 010
inputs.

TS}OO_IH These differ from the cases above by a single primary input. We would like to
use the same arguments as for the cases above, however we are no longer assured that
the inputs above row j remain at 0 for these tests. The problem is that the 1 which
is applied down the column to reach C;’s y input, could possibly travel to any cell to
the left of this column as well. However, the cells C; through C;_; are correct. If any
input to one of these cells were 1, we would observe a non-zero output on one of the
sums or the final carry output. In particular we know that C;_;’s inputs are 000 in
TS}OO. The arguments made for TS?OO_OH can then be repeated for TS}OO_IH. O

Because of the ripple carry adder, we cannot use the same argument as in Lemma 1 to
verify column separability. We can no longer directly observe the row output of the FA array
in order to verify that the carry output of a cell remains at ‘0’ when only its column output
is toggled. However, we will show that if it does toggle we will detect an error somewhere
to the left of the column. The tests derived from Lemma 1 for the full adder array are:

Toq1: (1™,07),

T1;(0) = (1™7701771,07) for all 1 < j < m,

T2;(1) = (1™,0°7110"7%) for all 1 <4 < n.

In order to incorporate a test which toggles each column while holding all inputs to the

right of the column at 0, we modify the 71;(0) tests as follows:

T1;(0) : (17707,07) for all 1 < j < m,

For brevity we will refer to these tests as:

T1; : (1m7707,0") for all 0 < j < m,

T2; : (1™,07110"%) forall 1 < i < n.

Lemma 3: Assume cells Cq,...C,, are correct and that each cell in the FA array has

outputs ¢s = 00,71 for inputs zpy = 000,001. Then the m + n + 1 tests, T'1; and T2;,

guarantee that the outputs for each cell in the n x m FA array are ¢s = 00,01, 17 for the
inputs apy = 000,001, 101 where 7 is unknown.

18 2. Testing an array multiplier under the MFC model

Proof: The proof is by induction on the diagonals. Since in all the tests, the product
inputs remain at 0, we shall omit them from our discussion as in Lemma, 1.

Induction Hypothesis: The cells on the k" diagonal behave as required.

Base Case: k£ = 1. In this case, 2 = j = 1 and this cell’s inputs are controllable since they
are external inputs. We need only verify that the outputs of the cell behave properly.

The tests T'1g and T'1; hold the row inputs at 0, the inputs of columns m through 2 at
1, while toggling input of column 1. In 71y, the inputs to F'A; ; have their 0 values and
the only input that changes in T'1p is the sum input to I'4; ;. The sum output of FF'4;;
must change in order to realize the change from 0 to 1 on the column 1 output 57 since the
inputs to the remaining cells in column 1 all remain constant in these two tests. Hence the
sum output of /’A; ; must change its value in T'1g from the ‘0 value it has in T'1¢; it is ‘1’
in Tlo

Now consider the tests T'lg and 72y. The cell C; should have outputs ¢s = 01,10
respectively in these two tests. Since its y input is held at 1 during these two tests and C
is known to be correct, its horizontal inputs must both be ‘0" in T'1g and exactly one of the
two must be ‘1" in 72;. Only the z input to F'A;; changes in these two tests, but there
are now paths from the two outputs of F'A;; to the cell Cy, so it is possible for the carry
output of C5 to be ‘1’ instead of the p input to cell ;. However, we will show that all of
the sum outputs of the full adders in row 1 are at their ‘0’ values in 72;. Suppose F'A; ;
is the first full adder in row 1 whose sum output is not ‘0’ in 72;. Since the full adders
in rows 2 through » and columns 1 through 57 — 1 have their ‘0’ inputs, the sum output of
F'A, ; is propagated down column j, and appears at the sum output for column j. Hence
the sum outputs of the full adders in row 1 are at their ‘0’ values in T2¢; otherwise the first
non-0 sum output would be detected. Rows 2 through n have all ‘0’ inputs in 72y, and so
the input to the RCA cell €'y from cell C'; must also be ‘0’ and the other non-primary input
to cell 1 is ‘1°. Hence the carry output of /’A4; ; must be ‘1" and this change is propagated
along row 1.

It remains only to show that the carry output of F'A;; remains at 0 in 7'1g. The
full adders in row 1 have the same column inputs in T1g and T2;. Hence a change on the
carry output of F"A; ; would be propagated to the p input of C;. In T'1p, the p and z inputs
to C are supposed to be ‘0’. Since we know (' is correct and can observe its carry output,
its p and y inputs must be ‘0’. Hence the carry output of F'A;; is ‘0’

Inductive Step: k > 1. Assume that all cells on diagonals numbered less than k& behave
as required. Consider a cell F'A; ; on the k' diagonal.

The tests T'1; and T'1;_; hold the row inputs at 0, the inputs of columns m through
j+ 1 at 1, the inputs of columns j — 1 through 1 at 0, while toggling the input of column j.
In both of these tests, all cells in columns j — 1 through 1 have their 0 inputs. So the row
inputs to the cells in column j are ‘0’. By induction the cells in column j above row ¢ toggle
their sum outputs to ‘1" in T'1;_; and so we know the sum input of F'A;; is ‘17 in T1;_4.
If F'A; ;’s sum output does not toggle to ‘17 as well then the cells below it in column j will
have the same inputs in 7'1; as in 7'1;_;, namely the ‘0’ value. This cannot be the case
because the S; output must toggle in these two tests and nothing to the right of column j
changes. So it must be the case that the sum output of I'A; ; toggles to ‘1" in T'1;_;.

Now consider the tests 7'1;_; and 7'2;. The row ¢ output C; must change its value in
these two tests. The sum output of I'A;; could have caused the row 7 output to have
changed by way of the input to C; from C;;. However, as in the base case, we can show

2.1. An n/log(n+ 1) lower bound on tests for the CS multiplier 19

that all of the sum outputs of the full adders in row ¢ are at their ‘0’ values in T2;. Suppose
not. Let F'A; ;, be the first cell in row ¢ whose sum output is not ‘0" in 7'2;. Since the cells
in rows ¢+ 1 through » and columns 1 through A —1 have their ‘0’ inputs, we know the sum
output of I'A j is propagated down column j, and appears at the sum output for column
j. Hence the sum outputs of the full adders in row ¢ are at their ‘0’ values in T2; since the
first non-zero output would have been observed. This means the inputs to the full adder
C; from Cj4q must be ‘0’ in 7'2; and only the row input to C; could cause its sum output
to change from ‘1’ to ‘0’ in T'1;_; and T'2;. Hence the carry output of I'A; ; must be ‘1" in
T2; and this change is propagated along row 1.

We now show that the carry output of F'A;; did not change in T'1; and T1;_;. By
induction the cells in column j above row i do not change their carry outputs in tests 7'1;,
T1;_1 and T2;; these remain at 0. The cells of the FA array (excluding the RCA cells) in
the region R; formed by the intersection of rows 1 through ¢ — 1 and columns m through
7+ 1 have the same inputs in these three tests. This means that the column inputs to the
cells in row 7 to the left of column j are the same in all three tests. Since the change to ‘1’
of the carry output of I'A; ; in T'2; was propagated to the row input of C}, it would also
be propagated there in 7T1;_;. But the cells C'; through C;_; are correct and their inputs
are the outputs of the cells in Ry and plus the carry output of ;. Thus a change on the
row ¢ input to C; would be observed either directly on its own sum output or on one of the
outputs of the cells] through C;_;. We can conclude that the inputs of C; must remain
1,0,0 in T'1; and T'1;_1, and hence the carry output of I'A; ; must remain at ‘0’ as well.

O

Asin Chapter 1.1.2, we use Dias’ methods to test each row independently. Observe that
these tests are consistent with a multiplicand of all 0’s except for a 1 corresponding to the
row being tested. The multiplier is the pattern to be applied to the p inputs of the cells in

the row.
T1 and T2 tests m4+n+1

T3 tests ™ (T32% is the same for all j and is also T'1,,)
TF tests 1In+3
Total m -+ 19n + 4

For an r x ¢ multiplier, we have n = r and m = r + ¢, resulting in ¢ + 20r + 4 tests.

Cheng and Patel presented a minimum row test for the RCA using the MFC fault
model[15]. If this row test is used instead of the one presented, there are 11n T* tests of
which all but 8n + 2 are shared with other tests. This results in ¢ 4+ 17r + 3 tests to detect
all multiple faults in an r x ¢ multiplier.

2.1 An n/log(n + 1) lower bound on tests for the CS multiplier

This bound is achieved by showing that for any set of fewer tests, an array can be
constructed which passes these tests but will produce an erroneous output for some vector
not in the test set. Note that we assume here that we can only observe the final output of
the multiplier, not the outputs of the full adder array.

The construction involves modifying some of the full adders so that they either add or
subtract one for some inputs. Table 2.2 contains the truth tables of the correct full adder as
well as the 4+1-full adder which adds one to the correct result whenever its z and p inputs
differ, and the —1-full adder which subtracts one from the correct result whenever its z and
p inputs differ.

20 2. Testing an array multiplier under the MFC model

Inputs full adder +1-full adder —1-full adder

y x p|c s c s c s
0 0 0140 0 0 0 0 0
0 0 1140 1 1 0 0 0
0 1 0140 1 1 0 0 0
0 1 141 0 1 0 1 0
1 0 00 1 0 1 0 1
1 0 1|1 0 1 1 0 1
1 1 01 0 1 1 0 1
1 1 1|1 1 1 1 1 1

Table 2.2: Truth tables of correct and faulty full adders.

Now suppose T' = 11, t9, .. .,t, is a sequence of test vectors and that thereis a column 7 in
the array with two distinct disjoint subsets of cells S, and S_ with the following property:
For each test 5 the number of cells in S; whose inputs have 2 # p is the same

as the number of cells in S_ whose inputs have & # p.

In this case, we can construct a faulty array which will behave correctly for the tests in T
by replacing each cell in S; by +1-full adders and each cell in S_ by —1-full adders. The
cells in S erroneously add one whenever an input with 2 # p is applied to them, while
those in S_ subtract one in this case. Since each test in T always applies the same number
of & # p-inputs to cells in Sy and cells in S_, the number of ones added will always exactly
offset the number of ones subtracted in column ¢ for tests in T'. Hence this multiplier will
always produce the correct result for the tests in T', but will clearly produce an erroneous
result for a vector which does not apply the same number of & # p-inputs to S and S_.

We have established that any test set which will detect faulty arrays under our fault
model cannot have such a column with its two subsets of cells, S, and S_. We now show
that if the number of tests is less than n/log(n 4+ 1) where n is the number of rows in the
array, then there is such a column with the required subsets of cells.

Fix a column ¢. Consider an arbitrary subset S of cells in column ¢. Fach test applies a
number of & # p-inputs to the cells in S ranging from 0 up to |S| < n. Associate with S a
vector, v(S), of length ¢ (the number of tests) whose k" component is the integer between
0 and n corresponding to the number & # p-inputs applied to the cells of S in ;. There
are at most (n + 1)? different vectors which could be associated with a specific S and the
number of distinct S7s is 2". Suppose ¢ < n/log(n+ 1). Then there are more subsets than
vectors and we can find two distinct subsets of cells, A and B, not necessarily disjoint,
such that v(A) = v(B). This means that in each ¢, the cells in A and B receive the same
number of @ # p-inputs. Construct S; and S_ as follows:

Sy =A-B S_=B-A.
Clearly, Sy and S_ are disjoint and distinct. It is easy to to show that v(Sy) = v(S_) since
v(A—-B)=v(A)—v(ANB)=v(B) —v(ANB)=v(B - A).

Hence if the number of tests is less than n/log(n + 1), we can construct a faulty array
which will pass the tests. It follows that any test set which detects all faulty arrays under
our fault model from the outputs of the multiplier must have at least n/log(n + 1) tests.
This bound applies to an array multiplier as well as to its full adder array, since not being
able to independently control the product terms can only make the test set larger.

2.2. Detection of All Multiple Faults in Carry-Save Multiplier 21

y a b

FA

S

Figure 2.4: The combined cell for C-MFCM for the CS-multiplier.

2.2 Detection of All Multiple Faults in Carry-Save Multiplier

In this section, we present a modification to the multiplier so that all detectable multiple
faults in the carry-save multiplier are detected by a test set whose length is proportional
to the perimeter of the array. In the previous sections we constructed test sets that detect
all multiple faults in the two-dimensional full adder array and the RCA. We can easily
detect all multiple faults in the array of AND gates of the summand generator, but it is not
guaranteed to detect multiple faults that affect both arrays.

It is common that the product generator and the summand counter be combined in the
physical design of the circuit to simplify intercell interconnections. The logic for the AND
gate may be incorporated into the implementation of the full adder cell. This makes it more
likely that a single defect or a cluster of defects affect both the product generator and the
summand counter. Clearly it is preferable to consider the basic cell of Figure 2.4 for test
pattern generation.

The combined basic cell serves as a one-bit product generator and as a summand counter
cell. It consists of inputs (y, a, b, z) and outputs (¢, s). The logic function of the cell is as
if it were a full adder and an AND gate. The inputs to the AND gate are a and b and the
inputs to the full adder are y, x, and the output of the AND gate as shown in Figure 2.4.
The a and b inputs to cell 7, j in the carry-save multiplier are the ¢th bit of the multiplicand
and the jth bit of the multiplier, respectively, as shown in Figure 2.5.

Our fault model is all multiple faults in the CS multiplier involving combined basic
cells. We call this the combined-MFC or C-MFC model for the CS multiplier. This is a
stronger fault model than treating the AND gates and the full adders separately under the
MFC model. This is because there are (224)2 — 1 = 4.3 x 10? faulty truth tables for the
combined cell and the product of the faulty truth tables for the full adder and the AND
gate considered separately is (22" — 1)2(2%° — 1) & 9.7 x 10%. The faults of the MFC model
are a subset of the faults of the C-MFC model.

The testing approach used in the previous sections cannot be applied using the C-MFCM
model because a loop test for input (y,a,b,z) = 0001 or 0011 cannot be generated due to
the impossibility of applying either of these vectors to more than one cell on the ¢th row.
The proof of this is similar to that of Theorem 1 in [9]. To make it possible to generate
a loop test for each row we modify the ¢ output truth table of each basic cell in the way
presented in [9]. The change in the carry truth table is shown in Table 2.3.

22 2. Testing an array multiplier under the MFC model

I NN
S DN IR NN
BRI

FA X4

ie‘t / ! !

E
Figure 2.5: A 4 x 4 carry-save (CS) multiplier.

y,a,b,x | standard cell | modified cell

0000 0 0
0001 0 1
0010 0 0
0011 0 1
0100 0 0
0101 0 0
0110 0 0
0111 1 1
1000 0 0
1001 1 1
1010 0 0
1011 1 1
1100 0 0
1101 1 1
1110 1 1
1111 1 1

Table 2.3: The carry-output truth tables for the standard and modified cells.

2.2. Detection of All Multiple Faults in Carry-Save Multiplier 23

The modified carry save (MCS) multiplier has exactly the same structure as the carry
save multiplier, only the function of the basic cell is changed as reflected in Table 2.3. The
function for the sum output is unchanged.

The X and Y primary inputs to the CS and the MCS multipliers are 0 in normal
operation, that is, when they are multiplying two numbers. These inputs may have non-0
values only during testing. When all the X and Y primary inputs to the multiplier are
assigned 0, the cell inputs (y,a,b,) equal to 0001 or 0101 never occur in the correctly
functioning multiplier [9]. Hence the MCS multiplier functions exactly the same as the
carry save multiplier in normal operation and does not affect the multiplication function of
the array.

We next describe tests that detect all multiple faulty cells for the MCS multiplier by
describing how the test set for the carry-save multiplier differs from the test set for the
array of full adders that form the summand counter in the standard array multiplier.

For any input to the MCS multiplier, all cells in any row will have either a 0 or a 1 on
their @ input. Hence the cells in any single row can be considered one of two state machines
determined by the A input for that row. A set of Dias-tests can detect all faults in the row
when A = 0 and another set of Dias-tests can detect all faults in the row when A = 1. We
use the SIS (yab) = (100) for the state machine in which A = 0 and the SIS (yab) = (110)
for the state machine in which A = 1.

test ‘ Xk ‘ Ypattern ‘ Ak ‘ Bpattern ‘ test ‘ Xk ‘ Ypattern ‘ Ak ‘ Bpattern ‘

1 o 0,1 0 0,0 5 1 o 1,0 0 0,0
™ | 1 0,1 0 0,0 T |1 1,0 0 0,0
T 1 0 0,1 0 1,0 110 1,0 0 0,1
™| 1 0,1 0 1,0 T 1,0 0 0,1
| o 1,1 0 0,0

TH | 1 1,1 0 0,0

T 10 1,1 0 1,0 TV 0 1,1 0 0,1
TH | 1 1,1 0 1,0 THU 11 1,1 0 0,1

Table 2.4: Row tests for A=0 for MCS multiplier.

| test | Xy | Yoar | Ak | Bpar | test | Xy | Yoar | Ak | Bpwr | test | Xi | Your | Ak | Boat |
'l olor |1t]o0 [T o] 0] 1] 00

1t Jorr| 1 joo1 | T 0o [1,10 1 (0,10 T2 0 [101] 1 [1,00
TH 1 o 0,1 1 Lo [Tt] 0 1,0 1] 0,1

1 lo1 | 1] 1,0 |[TFT] 1 1.0 | 1] 0,1

]l o] 1,1] 1] 00

TH | 1 Lt | 1] 00

o0 1 00T 1 [100] 1 (001][TF] 1 Jo1,1] 1 [01,0
Rl o [P][1] ool

Table 2.5: Row tests for A=1 for MCS multiplier.

Tables 2.4 and 2.5 show the T* tests for the kth row including the SIS and the sequence
(yab) = (010) to bring the state back to 0 for TS! and the sequence (yab) = (111) to bring

24 2. Testing an array multiplier under the MFC model

the state back to 1 for Tf'. Blank entries in the table represent tests in which the loop test
length is less than three. The test Tj“ is the shift of test T;“’ by s and 2 is either 0 or 1
depending on the value of the a input to the cell.

Recall that in testing the full adder array it was necessary to show that the array was
column-separable when the product terms and the internal Y inputs were 0. Since the B
(multiplier) inputs to the array are the b inputs to the cells in the MCS and since they are
non-0 for the tests in Tables 2.4 and 2.5, we must show that the array is column separable
for non-0 values of B.

The A values of the array may remain 0 for all rows except the row being tested with
the T*! tests. From Table 2.5 we see that “column-separability” of the MCS multiplier
array must be verified for B = 01010... and its shift, and 100100100... and its two shifts in
addition to the case for B = 000... as is required for the T*0 tests. So the T1; and the T2;
must be presented to the array six times, once for each of the six multiplicand values. The
tests for the RCA remain the same so the number of tests for a r x ¢ MCS multiplier is
6(2r + ¢ + 1) + 30g + 7¢ = 12r + 38¢ + 1.

25

3. Conclusion

We have presented a method for testing two-dimensional arrays for multiple faulty cells
(under the MFC model) which applies to any iterative logic array composed of a cell which
is column-separable. If in addition, a single row composed of this cell can be tested with
a constant number of vectors, then the entire n X m array can be tested for all multiple
faulty cells with m(]Y| —1) +n(|X|—1) 4+ 14+ nR vectors, where X and Y are the set of all
possible values that can occur on the horizontal and vertical wires, and R is the constant
number of vectors needed to test a single row.

If the basic cell in the array is not column-separable, it can be modified to be column-
separable with, at most, one connection to each of two neighboring cells. If there are
“don’t care” inputs in the cells definition, these may be used to obtain the required a and
b values without additional intercell wires. By Dias’ Theorem, if a cell has a flow table
which is reduced and has only strongly connected components, then a one-dimensional
array composed of the cell has a constant length test set under the MFC model. The
modification to make a cell column-separable can at the same time ensure that the cell meets
Dias’ requirements, by making the permutation corresponding to v(z,b) cycle through all
of the states. This ensures that its flow table is strongly connected. If the flow table is
subsequently reduced, then the resulting cell will still be column-separable and satisfy Dias’
requirements. The resulting array can be fully tested with m(|Y|—1)+n(|X|—-1)+14+nR
tests.

We show that full adders are column-separable and use the techniques developed for
two-dimensional ILAs to test full adder arrays. Two-dimensional full adder arrays form the
core of combinational multiplier and divider circuits. We show that the full adder array
embedded in the carry-save multiplier can be tested using our technique without complete
access to the inputs and outputs of the full adder array. Often the product generator, which
is an AND gate is embedded in the full adder cell in the implementation of a carry-save
multiplier. The methods described in this paper cannot be used to provide a test for this
array. However, a modification to the truth table of the cell allows us to generate a test set
whose length is proportional to the sides of the array.

Finally lower bounds are presented for testing under the MFC fault model for 1LAs
composed of full adder cells.

26 References

References

[1] W.H. Kautz. Testing for faults in combinational cellular logic arrays. In Proc. 8th Annu.
Symp. Switching and Automata Theory, pages 161-173. ACM, 1967.

[2] A.D. Friedman. Easily testable iterative systems. IEEE Transactions on Computers,
C-22(12):1061-1064, December 1973.

[3] F.G. Gray and R.A. Thompson. Fault detection in bilateral arrays of combinational
cells. IEEFE Transactions on Computers, C-27(12):1206-1213, December 1978.

[4] R. Parthasarathy and S.M. Reddy. A testable design of iterative logic arrays. IFEFE
Transactions on Clircuits and Systems, CAS-28(11):1037-1045, November 1981.

[6] W.-T. Cheng. Testing and error detection in iterative logic arrays. Technical Report
UILU-ENG-85-2234, University of Illimois at Urbana-Champaign, August 1985.

[6] W.-T. Cheng and J. H. Patel. Testing in two-dimensional iterative logic arrays. In
Proceedings of Fault Tolerant Computing Symposium, pages 76-81. IEEE, 1986.

[7] A. Chatterjee and J. Abraham. Test generation for arithmetic units by graph labelling.
In Proceedings of Fault Tolerant Computing Symposium, pages 284-289. IEEE, 1987.

[8] C.-W. Wu and P.R. Cappello. Easily testable iterative logic arrays. IFEFE Transactions
on Computers, C-39(5):640-652, May 1990.

[9] J.P. Shen and F.J. Ferguson. The design of easily testable VLSI array multipliers. IEEFE
Transactions on Computers, C-33(6):554-560, June 1984.

[10] Sung Je Hong. The design of a testable parallel multiplier. IEFEE Transactions on
Computers, 39(3):411-416, March 1990.

[11] C.H. Stapper, F.M. Armstrong, and K. Saji. Integrated circuit yield statistics. Proceed-
ings of the IFFE, 71(4):453-470, April 1983.

[12] F.J.O. Dias. Truth-table verification of an iterative logic array. IFEE Transactions on
Computers, C-25(6):605-613, June 1976.

[13] E.M. Aboulhamid. Efficient testing and truth table verification of unilateral combi-
national iterative arrays. Proceedings of International Conference on Computer-Aided
Design, pages 68-70, 1985.

[14] B.A. Prasad and F.G. Gray. Multiple fault detection in arrays of combinational cells.
IFFEFE Transactions on Computers, C-24(8):794-802, August 1975.

[15] W.-T.Cheng and J.H. Patel. A minimum test set for multiple fault detection in ripple
carry adders. IEEFE Transactions on Computers, C-36(7):891-895, July 1987.

[16] W-T. Cheng and J.H. Patel. Testing in two-dimensional iterative logic arrays. Comput.
Math. Applic., 13(5/6):443-454, 1987.

References 27

Error in Proof

Wu-Tung Cheng claims in his Ph.D.thesis[5] and in an article in Comput. Math. Appli-
cations[16] that if a two-dimensional iterative logic array has
1. only vertical and horizontal connections between cells,

2. a special horizontal cell input, a, such that h(a,z) = (a) and v(a,z) = (C(z)) for each
vertical input z, and C(z), the vertical output, is a one-to-one function, and

3. each row of the array is C-testable,
then the array can be tested under the MFC model in a test size that is proportional to the
number of rows in the array.

The journal article refers to the Ph.D. thesis for a detailed proof, so we shall refer to
the proof in the Ph.D. thesis. This proof is based on induction by row and uses Figure 2.26
of the Ph.D. thesis which is reproduced here as Figure 3.1. In the following paragraph, the
italicized words are from the thesis’ proof, paragraph one, page 46.

..assume that all the cells in rows 1, ..., i-1 ...[in Figure 3.1 function
correctly] ...and then consider cell (i,j) and the area within the solid line for
a specific distinguishing sequence. [The two cells (i,j+1) and (i,j+2) are given
vertical input values (a distinguishing sequence) to distinguish the horizontal
output of cell (i,j).] When this cell is being tested, the inputs of this area [the
area partially enclosed by the solid line] are cell test input (z,y), fived special
imput a, and special SDSs.

The last sentence in this paragraph contains the flaw in the argument. The inputs
applied to cell (i,j) are (x,y), the special input a is applied to all horizontal inputs of
the array except for the row being tested (row i), and the SDSs are the distinguishing
sequences applied to the vertical inputs of cell (i,j+1) and cell (i,j42). Since rows 1, ..., i-1
are assumed by induction to be functioning properly and have the special input a applied
to the horizontal input of each cell, the SDSs are being applied to cells (i,j4+1) and (i,j+2).
However, the cells to the left of the leftmost solid line, cells (k,I) where k > i-1 and 1 < j
are not covered by the inductive assumption and may have faults. Hence the horizontal
inputs to bounded region may not consist of all a’s. If the cells enclosed by the solid line
are given an erroneous value instead of the special value a, then the errors may collide and
cancel each other. Hence the next line of the proof is unsupported:

With Property (2),' the 2 (cell’s vertical) outputs have a one-to-one relation
with the vertical outputs of column j. ... With the special input a, the one-to-one
relation propagate to the vertical boundary outputs within this area.

This last sentence shows the necessity of having the a input applied to columns j, j4+1, and
j+2 in the rows below row i.

It is possible to construct an example in which the inductive argument fails in the first

row:

Example:
Figure 3.2 shows a two dimensional array with a multiple cell fault for which the inductive
step does not hold. The value of the vertical output of each good cell, ¢, is the exclusive-or

'Property 2 states: “For every cell, the output of every transistion is verified such that the primary
output is correct and that the output state in each direction has the one-to-one relation with the correct
output state of Ag in the same direction.”

28 References

test inputs

a —_——= =
a —_——= =
test
. — i J
inputs ’
a T —
a _— EEE———

test outputs
Figure 3.1: “Fig. 2.26. Testing of Case 4” in Cheng’s thesis

of the values of the vertical and horizontal inputs, v and h, respectively. The value of the
horizontal output of a good cell, lAz, is the same as the horizontal input, h. The truth table
of each cell is printed within the cell where the logic values are, from left to right, &, v, 71, 0.
If the cell is faulty, then the faulty entry is followed by an asterisk (*) in the cell’s truth
table.

The MFC test set that we chose for each row is a C-test consisting of the tests shown
in Table 3.1. The column labelled h is the single horizontal input to the row under test,
and the column labelled vo4q (Veyern) is the value applied to the vertical inputs to the array
with an odd (even) subscript. These six tests apply all four input combinations to each cell
in the row followed by a distinguishing sequence of length one consisting of “0”. We chose
“0” to be the special horizontal value to apply to each row input of the array.

test
output

References 29

test inputs

<
—_
<
\]
<
w
<
e

test
inputs —=1

[T Yo R P —

OO

[T Yo R P —

OO

[T Yo R P —

——,OO
—o=S
——,OO
—o=S
——,OO
—o=S
cooo
* K
——,OO
—o=S
[T Yo R P —
oo

0000 0000 0000 0000

o ——=t 01 *1 0101 0101 0101 |— =
1011 10 1 0* 10 0*1 1011
1110 111 1* 1110 1110

- RO
- RO O
_ RO O
_ OO

Figure 3.2: Faulty Array in which induction argument fails.

Test
131
2
l3
lq
ls
lg

<
ol
8
a

UB’UBTL

=N e =R =]]

o O = O = o
0 O O

Table 3.1: C-test for array of figure 13.

The application of this test set to the first row does not detect the fault in the faulty
cell; 3 for the inputs 01 and 10 because a horizontal error is generated in cell ; which masks
it. Since the test {hy, ho, vy, v9,v3,v4} = {0,0,0,0,1,0} produces an error on the output of
the array there is not the one-to-one correspondance that is necessary for the proof in the
Ph.D. thesis. Thus the tests for row 1 are passed, yet the induction hypothesis is false
— cell (1,3) clearly does not have vertical outputs which are in one-to-one correspondence
with the vertical outputs of a correct cells nor the column 3 outputs. The test in the
example failed to ensure that row 1 satisfies the induction hypothesis because of the flawed
assumption in the proof: the special input a (0 in the example) is not applied to cell (2,2)
in all tests for row 1.

We should note that in this case the tests for row 2 will indeed detect this faulty array.
However, there is no assurance that this will be the case for all arrays.

