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Transient Analysis of Coupled Transmission Lines Characterized with
Frequency-Dependent Losses or Measured Scattering-Parameter Data
and Optimal Design of Self-Damped Interconnects
Jimmy Shinn-Hwa Wang

ABSTRACT

As the packaging density and the clock speed of the multichip modules (MCMs) in-
crease, crosstalk induced noise can become one of the major sources of noise which will
limit the performance of the high-speed digital systems. In addition, as the magnitudes of
the harmonics of the transmitted signals above 1 GHz become more significant, the inter-
connects exhibit more frequency-dependent conductor losses (skin effect) and the dielectric
losses (dispersion). In order to design the interconnects more accurately and more effi-
ciently, the S-parameters macromodels of the coupled lossless and lossy transmission lines
with frequency-dependent losses are constructed in this thesis. Since the discontinuities in
interconnects are hard to describe with close form equations, they are better characterized
with measured S-parameter data. Thus, it is equally important to include the measured
S-parameter macromodel in the transient analysis.

The task of designing interconnections does not stop at viewing simulation waveforms,
it requires the design optimization as well. For today’s Computer-Aided Design tools, it
usually takes several iterations between the layout and the simulation tools to find the
optimal design of the interconnects. A simple and robust method of designing the lossy-
transmission-line interconnects in a network for multichip modules has been developed.
It uses wire-sizing to solve the problems encountered in propagating high-speed signals
through unterminated lossy transmission lines on the substrates of multichip modules. The
optimal self-damped design concept is used to relate the layout parameter (line width) and
the transfer function (damping ratio, and natural undamped frequency) to the signal prop-

agation delay. This method can produce a fast and a more stable signal propagation for



single-source multi-receiver networks on multichip modules, without using termination re-
sistors. There are further improvements that can be gained by incorporating an incremental
simulation and a sensitivity analysis into the optimal design to improve the efficiency.
Building these scattering parameter macromodels greatly improves the accuracy and the
efficiency of the transient analysis. Together with the optimal design, they provides a faster

turn around time in producing high-performance MCM designs.

Keywords: Coupled Transmission Lines, Transient Analysis, Congruence Transformation,
Scattering Parameter, Macromodel, S-Parameter Based Macromodel Simulator, Measured
Data, Frequency-Dependent Losses, S-Parameter, Measured S-Parameter Data, Frequency-
Dependent Parasitic, Optimization, Min-Max, Least-Square Estimation, Linear Bound,

Root-Mean-Square
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CHAPTER 1. Introduction

Multichip modules (MCMs) are one of the most recent advances in the high-performance
packaging technology. They are usually constructed with multiple bare dice mounted and
interconnected on a thin-film substrate. As the packaging density and the clock speed of the
MCMs increases, crosstalk-induced noise, as well as some of the frequency-dependent losses,
have become some of the major issues in the designing of the interconnect networks. As a
result, more accurate and more efficient circuit simulators are necessary for the building of
advanced MCMs.

The scattering-parameter (S-parameter) macromodel based simulator has been proposed
as a novel circuit simulator [40] [38]. Given the scattering parameter description of the
lumped elements, interconnect junctions, and single transmission lines, and using two
efficient reduction rules on the original distributed and lumped network can be reduced
to a network containing one multi-port component together with the sources and the loads
of interest [40]. In addition, the trade-off between accuracy and efficiency of the simulation
can be controlled by choosing the order of approximation. The utility of the Scattering-
Parameter Macromodel Based Simulator, however, is very limited due to the small number
of macromodels that are available, thus far, due primarrily to the relatively short course of
its existence. It is therefore important for us to pursue other macromodels that can deal
with the crosstalk noise and the frequency-dependent issues. This thesis offers some newly
developed macromodels that add extensions and enhancements to the existing macromodel
based simulator. More specifically, this thesis includes four additional macromodels that
will provide solutions to the previously mentioned problems: namely the crosstalk among

multi-conductors and the frequency dependence of the parasitics.



As the system clock speed increases, the crosstalk becomes one of the major source
of noise, in addition to the delay and ringing which can limit the performance of high-
speed digital systems [7] [9] [12] [14] [19] [46] [26] [48] [57]. The crosstalk can often lead
to excessive overshoots, undershoots and glitches. It can also cause false switchings on the
non-active lines as well as undetected switchings on the active lines, not to mention that
it can also increase power dissipation of the output drivers. The coupled noise (crosstalk)
is inversely proportional to the inter-line spacing and is directly proportional to several
parameters including those of the thickness of the dielectric material, the distance which
the coupled lines are in parallel, the rate of change of the input waveforms, as well as the
line impedances.

Due to the high switching speed of today’s digital systems, the magnitudes of the har-
monics of the transmitted signals above 1 GHz can often become the significant components
in the power spectrum [29] [48] [2] [14] [28] [44]. At these high frequencies, the interconnects
exhibit more frequency-dependent behaviour resulting from conductor losses (skin effect)
and dielectric losses (dispersion) [44]. The electro-static field solution can no longer predict
the correct parasitics for the interconnects that carry the high-speed digital signals. The
macromodel of the transmission lines is required to accurately model both the frequency-
dependent conductor (skin effect) and the dielectric losses.

The correct modeling of the transmission lines requires accurate modeling of both
the frequency-dependent conductor (skin effect) and the dielectric losses. The measured
S-parameter data can easily capture the behavior of these losses. The discontinuities
in interconnects are difficult to describe with closed form equations. They are better
characterized with the measured S-parameter data [21] [45] [29] [47] [34]. This calls for
a more accurate and efficient circuit simulator which can accept devices characterized with
measured S-parameter data.

Typical approaches for the transient analysis of the coupled lossy transmission lines
are adapted in the new scattering-parameter macromodel based simulator. This thesis

extends the scattering-parameter macromodel to include the congruence transformation to



analyze the crosstalk in coupled transmission-line systems. It also extends the scattering-
parameter macromodel to include the frequency-dependent losses (such as skin effect) and
coupling in the transient analysis of the coupled transmission-line systems. Scattering-
parameter macromodel for interconnects characterized with measured data is also included.
An indirect method is developed to find the moments from the measured S-parameter
data of interconnects. The novel indirect method of computing the moments calls for a
conversion of the S-parameter data into the parasitic functions before finding the Taylor
series expansions. The exact moments of the S-parameter functions are subsequently
computed from the moments of these four parasitic functions. Based on the exact moments
found using the indirect approach, the macromodel of transmission lines characterized with
frequency-dependent losses is constructed and the transient simulation is performed.

The task of designing the high-performance system does not stop with viewing the
simulation waveforms; this research takes one step further to optimally design the inter-
connects based on the simulation waveforms. Based on the Integral of Time and Error
criterion (ITAE), wire-sizing method, and Least-Square Estimation Optimization, the lossy
interconnects on the multichip modules can be designed to meet all the user’s electrical
requirements. A simple and robust optimal design method is developed for the design of
the lossy-transmission-line interconnects for multichip modules [52] [53] [54]. This method
uses wire-sizing to meet the electrical damping criteria, to solve the problems encountered
in propagating high-speed signals through unterminated lossy transmission lines on the
substrates of MCMs. The optimal design method is based on a new improved scattering-
parameter macromodel of transmission lines that keeps track of the time-of-flight term in
the transfer functions. The optimal self-damped design concept is to relate the layout pa-
rameter (line width and line spacing) and the transfer function (damping ratio, and natural
undamped frequency) to the signal propagation delay. This method produces a faster and a
more stable signal propagation for single-source multi-receiver networks on MCMs without
using termination resistors.

The optimal wire-sizing problem is a general nonlinear programming problem. Prin-



cipal Least Square Algorithms include the Durbin method, the Levinson/Wiener method,
the Cholesky Decomposition method, the Burg method, the Lattice method, the Kalman
method, and the Square Root Kalman method [27]. The nonlinear programming problem is
not only hard to solve but also takes significant computation time. One alternative to solve
the Min-Max optimization problem, which obtains a good solution in a relative short period
of time, is to transform the original Min-Max optimization problem into a Least-Square Es-
timation (LSE) problem, which has a number of well defined methods for finding its optimal
solution. It can be shown that the target function of the original Min-Max optimization
problem and that of the transformed LSE problem linearly bound each other. Although
these two problems have different objective functions, optimizing the transformed problem
can produces a solution to the original Min-Max problem. Thus for non-linear Least Square
Estimation problems, the Levenberg-Marquardt method is recommended [15] [36] [16].

The Levenberg-Marquardt Method is used in single variable optimization by transform-
ing the original Min-Max problem into the Least-Square Estimation (LSE) problem. To
use it in the nonlinear programming problem such that multiple objectives must be simul-
taneously minimized together, one must change the transformation. An new approach has
been developed in this thesis. By transforming the original Min-Max problem into two
Least-Square Estimation problems, we prove that a tighter bound exists which guaran-
tee the optimization of the transformed multi-objective LSE problems is equivalent to the
optimization of the original Min-Max problem.

This thesis is divided largely into two parts: The Part I deals with the discussion of
the proposed macromodels. Part II is dedicated exclusively to the optimal design method.
Including in Part I are macromodels for:

e The coupled transmission lines (Chapter 2)

e The single and coupled transmission lines characterized with frequency-dependent

losses (Chapter 3)

e The elements characterized with measured S-parameter data (Chapter 4)



Including in Part II are the optimal design method and the proof of the tighter bound for
the optimization transformation. The optimal design method is shown in Chapter 5 and
the proof of the tighter bound is shown in Chapter 6. The theoretical work for all the
macromodels, the optimal design method, and the proof of the tighter bound have been

completed and are presented in the thesis.



CHAPTER 2. Transient Analysis of Coupled

Transmission Lines

Previous research work which uses scattering parameter for the analysis of the coupled
transmission lines include those of the general convolution by Winklestein et al. [57], the
full-wave analysis by Cooke et al. [14] and time domain simulation by Schutt-Aine et al.
[48]. While Schutt-Aine et al. demonstrated a great accuracy improvements in simulating
circuits that includes non-linear drivers and terminations, Cooke et al. illustrated an ability
to simulate frequency dependent model propagation. Recently, a novel frequency domain
simulator using scattering-parameter macromodels has been presented by Liao et al [39] [40].
Based on the scattering-parameter macromodel, Pade techniques or Exponentially Decayed
Polynomial Function (EDPF) can be used to approximate transfer functions of the coupled
interconnects. This approach avoids the costly matrix computation for converting the
frequency domain scattering-parameter matrix representation into the one of time domain
transfer/reflection matrix as in [48], and the time consuming full-wave analysis as in [14].

It has been shown that the congruence transformation can be used to decouple the
modal wave propagation in a coupled transmission-line system [7] [9] [30] [46]. After
decoupling the n coupled transmission lines using the congruence transformation, the task of
computing the scattering matrix of the coupled transmission lines then becomes the task of
computing the scattering matrix of the congruence transformers and that of the n decoupled
single transmission lines. This congruence transformation has been extended to build
the novel macromodel for the coupled lossy transmission lines. A very simple scattering-
parameter description of the congruence transformer for coupled lossless transmission lines

is subsequently derived. Incorporating the novel macromodel of the coupled transmission



lines in the scattering parameter based simulator provides a more efficient way of analyzing
crosstalk for the transient simulation.

The contribution of this portion of the thesis is to build the S-parameter macromodel for
the congruence transformer. In Section 2.1, the congruence transformation of the lossless
and lossy coupled transmission lines is derived based on frequency-independent per-unit-
length L and C matrices. The scattering-parameter macromodel of the coupled lossless
transmission lines is derived from the congruence transformation. An added simplification
of the scattering-parameter macromodel is derived through the similarity transformation
property. The derivation will be further extended to the coupled lossy transmission lines. In
Section 2.4, an example of one of the MCMC-94 Benchmarks will be presented. The results
will be compared with the previously published results and the state-of-the-art simulators

such as those of SWEC [41] and Coffee [11].

2.1 Congruence Transformation of the Coupled Transmission Lines

Wave propagation in multiconductors has been extensively studied by the microwave,
electronic magnetic compatibility (EMC), and electrical engineers. Due to the coupling
between transmission lines, different modes which have different propagation velocities exist
simultaneously in the system. For an n conductor system shown in Figure 2.1 (a), there
exists n fundamental modes of propagation.

With the assumption of quasi-TEM wave propagation, the distributions of voltages and
currents in an n coupled lossy transmission-line system can be described by the generalized

Telegraphist’s equations [9]:

ov(z,t) di(x, 1) )
i(z,t) v(a,t
0n = S (22)

where 0 < 2 < [, and v(z,t) and i(z,t) are column vectors defining the voltages vy(z,1)
and currents ig(z,t) distributed on the conductors k& = 1,2,3,....,n. The L and C are

the n by n symmetric matrices of the per-unit-length inductance and capacitance of the n






where Ry is the k —th diagonal element of the R matrix, W is the right eigenvector matrix
of the time constant matrix T = R™V2LR ™2 = Wdiag(r)W ™", 73s are the eigenvalues
of time constant matrix T, and Lzs are some arbitrary constants.

Bayard first outlines the transformation, A*ZA, and calls it “translator” [3]. Hazony
is the first one to name the transformation “congruence transformer” in his book [30].
Chang uses the congruence transformer to decouple both the lossless [7] and lossy coupled
transmission lines [9]. Chang’s method for the analysis of coupled transmission lines relies
on simultaneously diagonalizing all the matrices using a special conditioned matrix. Romeo
and Santomauro present a different method of finding the right eigenvector matrices for
coupled lossless transmission lines with tridiagonal L and C matrices [46]. In this part of the
thesis, we find the right eigenvector matrices of a full L matrix. The method proposed here
for the lossless case is preferred to Chang’s method [7] because it leads to simpler equations
for scattering parameter based macromodel representation of congruence transformer. In
Chang’s method [7], where the similarity transformation property X ~! = X! may not hold,
the scattering parameter matrix representation in Equation (2.39) for the coupled lossless
case cannot therefore be simplified to Equation (2.40).

After the coupled transmission-line system is decoupled into the congruence transformers
and the decoupled single transmission lines, the macromodels can be built for all of them

from their individual parameters.

2.2 Scattering Parameter Macromodel of a Congruence Transformer

By applying the congruence transformation, we can change the variable basis from v to
w and from ¢ to j. The terminal voltages and currents at opposite sides of the transformer
are related by (see Figure 2.1 (b)) [7]:

vp(z,t) = Zn:kaum(x,t) (2.6)

m=1

Je(z,t) = —Zn:kaim(x,t), (2.7)

m=1
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The negative sign is used to indicate the direction of current ji is flowing into the trans-

former. Rewriting Equation (2.6) and (2.7) in a matrix notation, one obtains:

Viz,t) = XU(x,1) (2.8)

i) = —(x9)7 Ja0), (2.9)

where V, U, I and J are column vectors, V = [v(2,1), ..., v.(2, )", U = [ug (@, ), ooy un(z, )],
I =[ir(z,t),in(z, )], and J = [f1(2,1), ..., julz, 1))
Substituting Equation (2.8) and (2.9) into Equation (2.1), (2.2), (2.3) and (2.4), after

rearrangements, one obtains the following Equations (2.10) to (2.13):

auéz,t) - xon(x)” [_W] xR (X)) ] (210
_% - —XTX% (2.11)
% = X‘ECX%JFX*RCX% (2.12)
% = XtCL(Xt)_I%—I-XtCR(Xt)_I aj(ai’t). (2.13)

It can be shown that the coefficient matrices are all diagonal matrices as represented by

Equations (2.14) to (2.20):

R = X 'R(XY)7!=diag(Ry) = diag(Ly/ ) (2.14)
L = X 'L(XYH™! = diag(Ly) (2.15)
C = X'CX = diag(Cy) = diag(1/vLy,) (2.16)
L& = X'LcX=Xx"'L (Xt)_l X!CX = diag(LCy) = diag(1/v*)  (2.17)
¢l = X'cL (Xt)_l = XICXX 'L (Xt)_l = diag(C'Ly) = diag(1/v?) (2.18)
RC = X 'RCX =X"'R (Xt)_l X'CX = diag(RCY) (2.19)
CR = X'CR (Xt)_l = X'CXX'R (Xt)_l = diag(C'Ry). (2.20)

where k£ = 1...n and diag(Ly) represents an n by n diagonal matrix L with all off-diagonal
elements equal to zero. The Ry, Lg, Ck, (LC),, (CL),, (RC),, and (C'R), are the k —th
eigenvalue of the matrices R, L, C, LC, CL, RC, and CR.
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Redefined the Telegraphist Equations using Equations as shown in (2.21) to (2.24) are:

_aj(az,t) _ _éw (2.22)
Punt) _ Ul gefnind (2.23)
Bih gDy el (2.24)

The n coupled transmission lines shown in Figure 2.1 (a) can be decoupled using the
congruence transformation method as shown in either Figure 2.1 (b) or (c¢) depending on
whether they are lossless or lossy. Each decoupled single transmission line carrys one mode
of propagation. The incident waves are decoupled into different modes, and propagate
through each decoupled transmission line in different mode velocity, then all the modes are
combined at the other end to form the output and the reflected waves.

The task of finding the scattering parameter matrix of n coupled lossless transmis-
sion lines becomes one of finding the scattering parameter matrices of the two identical
congruence transformers and the scattering parameter matrices of the n decoupled single
transmission lines. The scattering parameter matrices are not combined because this is the
task of the scattering parameter based macromodel simulator. The scattering parameter
based macromodel simulator takes full advantage of being a frequency domain simulator
and lumps the multiport components together using the Pade or EDPF approximation [39]
[40].

Due to the choice of identical reference impedance Zp at any port for the scattering
parameter based macromodel simulator, the scattering parameter matrix S of any multi-
port component is equivalent to its voltage scattering parameter matrix SV. Since only
the terminal voltages and currents are of an interest, the following representations are

introduced (see Figure 2.1):

vlk(t) = vk(ac = O,t) vgk(t) = vk(ac = l,t) ilk(t) = zk(ac = O,t) igk(t) = zk(ac = l,t),
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V,i+V, = X(WUS+U) (2.29)
— —1 —
If =1 = —(XH'JfF-J)) (2.30)

Based on the definition of the incident voltage and current waves, the reflectd voltage and

current waves, and the reference impedance Zy, one can write:

Vb= Zolf (2.31)
Vo= Zol (2.32)
ur = ZoJf (2.33)
Uy = ZoJ;. (2.34)

The definitions of voltage scattering parameters matrix S and its submatrices 57}, 515,

5Y., and SY, are:

sy sy
11 12
sV =
vV vV
‘921 ‘922
SV _ Vp
no= yF
P lut=0
SV _ Vp
2 = F
p Vp+:0
SV _ Up_
21 — V_|_
Plur=0
SV _ Up
2 = T
p Vp+:0

By arithmetic manipulation of Equations (2.25), (2.26), (2.27), (2.28), (2.29), (2.30), (2.31),
(2.32), (2.33), and (2.34), and by setting U to be an all-zero column vector, one can find

51 as:
So= S[XTPHEXTTHX T - X (2.35)
Similarly one can find other submatrices of 5V:

Sty = 2[X '+ X! (2.36)

53 2[X + (XH)717t (2.37)

52 —[X (X)X (xO)7 (2.38)
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The voltage scattering parameter matrix SV is:

_[X—l _I_Xt]—l[X—l _ Xt] Q[X_l _I_Xt]—l
5 = , (2.39)
20X + (X7 —[X+ ()T - (X7

where the submatrix X is defined in Equation (2.5).
Since the similarity transformation property X! = X' holds for all X, so it can

simultaneously diagonalize the L, C, LC, and CL matrices. For the coupled lossless

transmission line systems, the scattering parameter matrix S can be simplified to [55]:

0 X
S = . (2.40)
Xt 0
2.3 Scattering Parameter Macromodel of a Decoupled Transmission

Line

For each of the decoupled transmission lines shown in Figure 2.1 (b) and (c), its

scattering parameter matrix is [20]:

S(s) = !
= 2707.(5) cosh(3(3)) + (Z2(s) 1 Z2) sinb(+(5))
(Z2(5) - 72) sinh(+(s)) 2707.(5) o)
2707.(5) (Z2(s) - 72) sinh(+(s))

where Zj is the reference impedance. For the lossy case, both Z.(s) and 7y(s) are computed
from the eigenvalues Ry, Ly, and (' obtained from the diagonalization of the R, L, and C
matrices respectively. The Z.(s) = ,/Rk%ffk is the characteristic impedance of the k — th

line where k = 1..n, and v(s) = \/(Rg + sLi)(sCk) - | is the propagation constant of the

k — th line where [ is the coupling length. For the lossless case, one can simply set Ry to

zero and compute both Z. and « from the eigenvalues Ly and C} of the L and C matrices
Ly

respectively. The Z.(s) = o is the characteristic impedance of the £ — th line and
k= 1..n,and y(s) = s\/LyC} - | is the propagation constant of the k — th line.
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2.4 Experimental Result of the Transient Analysis of Coupled

Transmission Lines

The example presented here is one of the MCMC-94 Benchmarks (1994 IEEE Multi-Chip
Module Conference Interconnect Simulation Benchmarks). All of the far-end waveforms are
simulated with time-of-flight captured explicitly [37]. The circuit and geometry parameters
of this example as shown in Figure 2.3 are taken from Cooke’s paper [14]. The driving
signal is 100-MHz, 50% duty-cycle pulse with 0.1ns rise/fall time. The L and C of the

configuration are:

5.033 nH/em 1.734 nH/em 0818 nH/em
L = 1.734 nH/em  4.972nH/em 1.734 nH/em
0.818 nH/em 1.734 nH/em  5.033 nH/em

0.667 pF/em  —0.163 pF/em  —0.0145 pF/em
¢ = —0.163 pF/em  0.722 pF/em  —0.163 pF/em

—0.0145 pF/em  —0.163 pF/em  0.667 pF/em

Two enlarged portions of the simulation waveforms are shown in Figure 2.4 (a) and (b).
The simulation waveforms of this example are shown in Figure 2.5 (a), (b), (¢), and (d).
The ASTAP (IBM circuit simulator) and Cooke’s simulation waveforms are digitized from
the results published in Cooke’s paper [14] while the SWEC results are taken from MCMC-
94 benchmark results. The SWEC uses an analytic method to find the derivatives of the
admittance in order to compute the moments and because of its complexity, it can only
find very low order moments [41]. In all of the plots, the results obtained from SWEC and
our macromodel simulators agree very well with the published ASTAP results. However, it
appears that the macromodel simulation waveforms match those of the ASTAP simulator
better than those derived from the SWEC. In all of the waveform plots, Cooke’s results
deviate from the ASTAP results the most. The total running time for this example is
7.24 seconds on a SUN SPARC station 14. The running times of other simulators are not

listed because they are executed on different machines. For small examples such as the
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Waveforms of the Near-End of the Active Line

Waveforms of the Far-End of the Active Line
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Figure 2.5: Simulation Waveforms of the Two Groups of Three Coupled
Lossless Transmission Lines: The topology is shown in Figure 2.3. The output
waveforms of the near end of the active line are shown in (a) together with

its corresponding Cooke’s, ASTAP and SWEC simulation results.

The output

waveforms of the far end of all three lines are shown in (b), (c), and (d) together
with their corresponding Cooke’s ASTAP and SWEC simulation results.
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CHAPTER 3. Transient Analysis of Coupled
Transmission Lines Characterized with the

Frequency-Dependent Losses

The objectives of this part of the thesis is to provide a method of finding the Taylor
series expansions of the S-parameter functions from the measured parasitic data, R(f),
L(f), C(f) and G(f). A curve-fitting is first applied to find the moments of these four
parasitic functions, which are subsequently used to compute the exact moments of the S-
parameter functions. Based on the exact moments found by this approach, the macromodel
of transmission lines characterized with the frequency-dependent losses is constructed and
the transient simulation is performed.

Comparing to other accurate time domain simulators, the S-parameter macromodel
based simulator is significantly more efficient, at the least thirty times faster in handling
large circuits. However, it can only provide moderate accuracy because it utilizes lower
order Pade approximations. This trade-off between accuracy and efficiency has to be made
in order to play “what-if” scenarios for a performance-driven layout synthesis in which
thousands of simulations must be executed to obtain timing and amplitude information.
Classical approaches which use empirical equations might not work in this case because
the over-simplification assumptions. Only a simulator with sufficient accuracy, and that
does not require excessive time for simulate can fit this requirement. The S-parameter

macromodel simulator is well suited for this kind of application.
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3.1 Representing the Frequency-Dependent Coupled Transmission

Lines Using the S-Parameter Macromodel

Previous research which took frequency-dependent losses into consideration include the
work of Gruodis et al. [29], Schutt-Aine et al. [48], Chang et al. [8], Beyene [4], Baumgartner
[2], Cooke et al. [14], Gordon et al. [28], and Nguyen [44]. Gruodis et al. measured the
admittance matrix Yo, and impedance matrix Zs,, of the transmission lines, computed the
Y matrix and propagation constant I', and then simulated the circuit’s transient behavior
using the state variable transfer function method [29]. Schutt-Aine et al. utilized the
scattering parameter matrix method [48]. Chang et al. chose the “method of characteristic”
with a network synthesis [8]. Beyene combined the bi-level waveform relaxation with
scattering parameters [4]. Baumgartner used a state variable transfer function with an
exponential approximation [2]. Cooke et al. chose the scattering parameter frequency
domain simulation with the Fast Fourier Transformation (FFT) method [14]. Gordon et
al. used the impulse response convolution method [28], and Nguyen used the state variable
transfer function with the rational function approximation improvement [44]. In some of
these previous researches including those by Schutt-Aine et al. [48], Beyene [4], and Cooke et
al. [14], they chose to use the scattering parameter for the analysis of the transmission lines
with the frequency-dependent losses. The scattering parameter matrix method adopted by
Schutt-Aine et al. [48] used those of S11(s) and 521(s) to find the transmission 7'(¢) and
reflection I'(#) matrix for the time domain convolution. The drawback of this Schutt-Aine
method is the large number of matrix operations that were required. The bi-level waveform
relaxation method adopted by Beyene [4] utilized the FFT and the inverse FFT (IFFT)
to iterate between the frequency domain simulation and the time domain simulation. The
deficiency of Beyene’s method is the need for more than one thousand data points in order
to do the evaluation of the FF'T (IFFT) operation with the same degree of accuracy as other
approaches. The scattering parameter frequency domain simulation with the FF'T method
by Cooke et al. [14] uses all the scattering parameters without reduction. The drawbacks

of Cooke et al. method are its poor efficiency and its lack of accuracy when compared
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to the published ASTAP results. In summary, all of the above methods lack the required
efficiency because they do not employ lower order approximations and the macromodel
reductions that were found in the scattering parameter macromodel based simulator.
Building the novel macromodels for both the frequency-dependent single and coupled
transmission lines facilitates an accurate and a more efficient transient simulation of the
interconnections that are characterized by lossy transmission lines with skin effects. The
contribution of this part of the thesis is to determine the moments of the S-parameters
of the decoupling congruence transformer and the decoupled transmission lines character-
ized with frequency-dependent losses from the curve-fitting coefficients of the R(f), L(f),
C(f) and G(f) data sets. Section 3.2 will derive the representations of the S-parameters
macromodel for the frequency-dependent single transmission line and Section 3.3 will derive
the representations of the S-parameters macromodel for the frequency-dependent coupled

transmission line.

3.2 S-Parameter Macromodel of the Frequency-Dependent Single

Transmission Line

With the assumption of quasi-TEM wave propagation, the distributions of voltages
and currents in a single lossy transmission line can be described by the generalized Tele-
graphist’s equations [9] shown in Equation (2.1) and (2.2). The frequency-dependent par-
asitic functions: R(f), L(f), C(f) and G(f) are used to characterize transmission line
with frequency-dependent losses. The scattering parameter matrix for a transmission line

is shown in Equation (3.1).

S(s) = !
= 2707.(5) cosh(3(3)) + (Z2(s) 1 Z2) sinb(+(5))
(22(s) - Z2) sinh(5(5)) 2707.(5) -
2707 (s) (Z2(s) - 73) sinh(+(s))

The Z.(s) is the characteristic impedance and 7(s) is the propagation constant. Both Z.(s)
and y(s) are computed from the frequency-dependent values of R(f), L(f), C(f) and G(f)
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based on the following equations:

v(s) = \/(R(S) +5L(s))(G(s) +sC(s)) -
_ R(s)+ sL(s)
Zels) = N Ge) T sC0s)

For an uniform conductor, the S-parameter matrix is symmetrical [21]. Rearranging the

representations of S11(s) and S51(s) in Equation (2.41), one has:

. [72(s) = 73] - sinh(3(s)
) = 77  cosh(3(5)) + (Z2(s) + Z2) sinh(3(5))" (32)
270

270 Z(s) cosh(7(s)) + (Z2(s) + Z5) sinh(7(s))’

S91(s) (3.3)

In order to find the lower order approximations of S11(s) and S91(s), the representations
of the R(f), L(f), C(f) and G(f) must first be found. A curve-fitting method is then
adapted to find the coefficients of the polynomials which model the parasitics. At first,
the linear fit is Tun on each data set to obtain two coeflicients as the initial assignment
for the successive curve-fitting steps. Then the problem of finding the coeflicients of the
polynomials are transformed into one of the least-square error estimation. The Levenberg-
Marquardt method [42] [16] is used to solve this least-square error estimation problem. This
method is chosen because it combines the best features of both the Taylor series expansion
and the gradient methods. It can find the best solution as well as gradient methods even
if the solution is outside the circle of convergence; and the rate of convergence is as fast as
Taylor series methods.

The two coeflicients found in the linear fit are passed on to the Levenberg-Marquardt
method as an initial guess. The Levenberg-Marquardt method then iterates to find the
best fit coefficients for the curves of R(f), L(f), C(f) and G(f). This method stops
when the results converges or the number of iteration exceeds a preset limit. For all of the
experiments, this curve-fitting method shows better results than the one-pass least-square
fit or the singular-value decomposition fit methods.

If one defines:



T(s) = ~%s) = Eti - 5"+ o(s?) (3.4)
As) = Zionts) - 7 12

Z a; - st + o(s?) (3.5)

7(s)
Z:(s)

= Z: bi - s' + o(s7), (3.6)

B(s) = Z(s)y(s)+ Z5 -

whereas 72(s) = (R(s) + sL(s))(G(s) + sC(s)), %% = G(s)+ sC(s), and Z.(s)y(s) =
R(s) 4 sL(s), there is no square root involved in the evaluation of the approximations of
the T'(s), A(s), and B(s) complex functions. The approximation of the R(s), L(s), G(s),
and C'(s) real functions are known through curve-fitting. The coefficients of the T'(s), A(s),
and B(s) complex functions can be found through simple polynomial operations.
If one further defines:
q
to + Zti - 5"+ o(s%)

=1

= to+ Ty(s)+ o(s?). (3.7)

I(s)

where the constant term is separated from the rest of function. The separation will make
the finding of the coefficients in Equation (3.12) and (3.13) much easier. The expansions of
27 cosh(y(s)) and %ﬁﬁ are shown in Equation (3.8) and (3.9):

U(s) = 2Zgcosh(v(s)) =27 i 7222('8) =27 i T;(;)
= 27, Zq: u; - s' + o(s?) (3.8)
_ sinh(y(s) _ s 9F(s) _ s TU(s)

Ve = T i = i

Il
&
R
_'_
=)
—~
V)
ey
~—

(3.9)

Based on Equations (3.5), (3.6), (3.8), and (3.9), Equations (3.2) and (3.3) can be rewritten

as:
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_ A(s) - V(s)
Suls) = T Bls) Vs (3.10)
Sa1(s) dy (3.11)

U(s)+ B(s)-V(s)

It can be shown that:

U(s) = 2% kzq: Br - qu(s) + o(s?) (3.12)
=0
Vis) = Zq: Qg - qu(s) + o(s?), (3.13)
k=
where 0
Oy = i g—j 15" (3.14)
kO:OO
ap = k; (2%:)' R, (3.15)

and o is the separated constant term in Equation (3.7). Although the summation of both
ap and ff are an infinite series, in reality, the inverse of the factorial is a fast converging
series and can be truncated at a certain point without introducing appreciable error. The

coefficients of U(s) and V(s) are:

> Bk > byt ot (3.16)

k=1 Jitse+Hie=t

Zak Z ti <ty oty (3.17)

k=1 p+ip+-+ir=t

Us;

&

Since the coefficients of the polynomial 7'(s) are known from Equation (3.4), the coefficients

of U(s) and V(s) can then be computed.

If one defines:

Si(s) = gg (3.18)
Sa(s) = %/((58)) (3.19)

Comparing Equations (3.10), (3.11), (3.18), and (3.19), one finds:

C(s) = Z_: ci-s' 4 o(s?) = A(s) - V(s) (3.20)
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It can be shown that the coefficients of C'(s) and D(s) are:

cp = Z a;v;

iti=k

dp = wup+ Z bﬂ]j.
=k

If the moments of S11(s) and S31(s) are m; and n;, one can write:
q .
S1i(s) = ZmZ s+ o(s?)
=0
q .
So1(s) = an -8 4 o(s?).
=0
From Equation (3.18) and (3.26), one can derive:

Z m;d; = cj.

iti=k
If one denotes:
do 0 0 0
dy do 0 0
Dq = d2 d1 do 0
I dy dy—1 dy_g do |
T
Mq = mo mq mo . . . mq :|
- T
Cq = Co (] () . . . Cq 9

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

where T represents the transpose of the vector, one can rewrite D, M, = Cy, i.e. M, =

Dq_qu. Thus the moments m; of the S11(s) function can be found through simple backward

substitutions. Similarly, if one denotes:
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T
Nq = |: no nl n2 . . . nq (331)
T
C;: [QZOOO---O ; (3.32)
where T' again represents the transpose of the vector, one can rewrite D, N, = C}, i.e.
N, = Dq_lCé, and the moments n; of the S3;(s) function can again be found through

simple backward substitutions.

3.3 S-Parameter Macromodel of the Frequency-Dependent Coupled

Transmission Line

Previous research which used scattering parameter for the analysis of the coupled trans-
mission lines include those of the general convolution by Winklestein et al. [57], the full-wave
analysis by Cooke et al. [14] and the time domain transient simulation by Schutt-Aine et
al. [48]. While Schutt-Aine et al. demonstrated a greater accuracy improvement in simu-
lating the circuits that included non-linear drivers and terminations, their method involved
costly matrix computation for converting the frequency domain scattering parameter ma-
trix representation into the time domain transmission/reflection matrix representation [48].
Cooke et al. illustrated an ability to simulate frequency dependent modal propagation, but
a time consuming full-wave analysis was often required [14]. Recently, a novel frequency
domain simulator using scattering parameter based macromodels has been presented by
Liao et al [39] [40]. Based on the scattering parameter based macromodel, Pade techniques
or Exponentially Decayed Polynomial Function (EDPF) can be used to approximate trans-
fer functions of the coupled interconnects. In the following section, we overcome some of
these shortcomings by deriving the S-parameter macromodel for the frequency-dependent
coupled transmission lines.

Based upon the assumption of quasi-TEM wave propagation, the distributions of volt-
ages and currents in a n coupled lossy transmission-line system can be described by the

generalized Telegraphist’s equations [9]:

ov(z,t) di(x, 1)
dx

— R(Fi(z,1) (3.33)
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av(z,t)
ot

= —-C(f) - G(f)v(z,1), (3.34)

where 0 < z < [. v(2,t) and i(z,¢) are column vectors defining the voltages distributions
vi(2,t) and currents distributions ix(z,t) on the conductors k = 1,2,3,...,n. The L(f)
and C(f) are the n by n symmetric matrices of the frequency-dependent per-unit-length
inductance and capacitance of the n conductor system. The R(f) and G(f) is the n by n
symmetric matrices of the frequency-dependent per-unit-length resistance and conductance
of the n conductor system [48].

It is very important to accurately model the frequency dependence of the parasitics for
the case of the coupled transmission lines. There are off-diagonal elements in the R(f),
L(f), C(f) and G(f) matrices describing the mutual coupling effects which do not exist
in the case of the single transmission line. The mutual inductance L;;(f), where ¢ # j,
increases as frequency increases due to more coupling between lines at higher frequency.
The mutual capacitance C;;( f), where ¢ # j, stays constant as the C;;(f). Both the Ry (f)
and R;;(f), where i # j, increase as the frequency rises.

There are two major methods to find the time domain transient response waveforms
of a coupled transmission line system. One method is to find the impulse response of the
linear coupled transmission line system and then use either the convolution or the waveform
relaxation to find the time domain waveforms. However, this method suffers from both the
large memory requirement and the long computation time that are required. The other
method is a modal wave propagation decoupling method which is preferred over the first
method because it models the physical phenomenon of n fundamental mode of the wave
propagation that exists in the n multi-conductor transmission line system. By decoupling
the modal waves, the simulator is only required to memorize a period of the waveforms
equal to the time-of-flight of each decoupled transmission line, which is much shorter when
compared to the duration of the impulse response. Furthermore, with the help of the S-
parameter macromodel, the recursive convolution can be applied with a significantly shorter
computation time. After successfully decoupling of the coupled transmission lines system,

the computation of the scattering parameter macromodel of the entire system becomes
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the computation of the decoupling networks and those of the decoupled transmission lines
with frequency-dependent losses. The macromodel of the latter is already available and is
presented in Section 3.2. Because the coupled transmission lines are also characterized with
frequency-dependent losses, the decoupling of the modal wave propagation of the coupled
transmission lines has to take these losses into consideration.

To incorporate the macromodel of the frequency-dependent decoupling networks into
the S-parameter macromodel simulator presents a very difficult challenge. The decoupling
networks are known to be represented by a matrix with frequency-dependent elements [4].
This process requires the finding of a frequency-dependent transformation matrix in order to
decouple the system. It is a complex process and requires the eigenvalues at each frequency
point prior to diagonalization. The resulting matrix elements are characterized by tabulated
scattering parameter data which present the same difficulty in finding the moments as in

the case of the measured data macromodel.

Taking the Laplace transform of the Equation (3.33) and (3.34), they can be rewritten

L/é()i’s) = —ZI(z,s) (3.35)
81(82’8) = —YV(z,s), (3.36)

where Z = R+ jwL, and Y = G+ jwC. Throughout this thesis, the following assumptions
reported by Blazeck et al. are used [5]. The assumptions are: the modes of propagation
must be TEM or quasi-TEM, and the lines are of uniform cross-section throughout their
length; that is, R, L, C, and G are assumed to be constant with respect to the spatial

variable z.

Solving Equation (3.35) and (3.36), one has:

O*V(z,s)

22 = ZYV(z,s)=T?V(z,s) (3.37)
% = YZI(z,s) = (T 1(z,s), (3.38)

where T indicates transpose and T is defined as I'? = ZY [5]. Define
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I'=XAX™, (3.39)

where X is the eigenvectors of I'; therefore, they are also the eigenvectors of I'?, and A is

the diagonal matrix of the eigenvalues of I'. It can be shown that [56] [18]

OVm(z,s)

5 = —AZpyln(z,s) (3.40)
w = CAYmVi(a,s), (3.41)
z

where V(z,s) = XVp(z,s), I(z,s) = (XT) ' y(z,s). The modal impedance matrix
Zy, and modal admittance matrix Yp, are related to the eigenvector matrix X and the

impedance matrix Z by
Zpm = (Ym) ' = AIXZ(XT)7L (3.42)

With the eigenvector matrix X, the original coupled transmission lines can be decoupled
into two congruence transformers and a set of n decoupled transmission lines [9]. The
task of finding the macromodel of the frequency-dependent coupled transmission lines
becomes that of finding the macromodel representations of the congruence transformers
and the frequency-dependent single transmission lines [56]. The macromodel of the single
transmission line that is characterized with frequency-dependent losses has already been
developed in Section 3.2. The remaining task is to find the macromodel representation of a
frequency-dependent congruence transformer.

Bayard first outlined the transformation, A'ZA, and called it “translator” [3]. Hazony
is the first one to name the transformation “congruence transformer” in his book [30].
Chang used the congruence transformer to decouple both the lossless [7] and lossy coupled
transmission lines [9]. Chang’s method for the analysis of coupled transmission lines relies
on simultaneously diagonalizing all the matrices using a special conditioned matrix.

It is known that the modal eigenvectors of two symmetrical coupled transmission lines
are frequency independent constant vectors even if the lines are characterized by frequency-
dependent parasitics [28]. It can be shown that the decoupling networks can be constructed

from the constant eigenvectors:
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Vo (3.43)
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These two vectors correspond to the odd and even mode of propagation that exists in the
symmetrical coupled transmission lines.

For asymmetrical coupled dual transmission lines and for coupled transmission lines with
more than two conductors which are characterized with frequency-dependent parasitics, the
model structure of the lines becomes frequency-dependent [28], and finding the moments of
the model structure poses an even greater challenge.

It can be shown that for the coupled lossy transmission line systems, the congruence
transformer matrix is the eigenvector matrix of the complex matrix I' [5]. The existence
of such eigenvector matrix X, that simultaneously diagonalize the complex matrices T,
I'?, ZY, and YZ, is assumed throughout this thesis. This assumption is also adopted by
Gordon et al. [28], Blazeck et al. [5] and Schutt-Aine et al. [48].

Gordon et al. suggested that the frequency-dependent congruence transformer can be
found by performing the congruence decoupling at each frequency point, and by checking
the orthogonality of all the eigenvectors for all the frequency points [28]. If the eigenvectors
were not orthogonal to each other, column swapping must be performed so that for all the
congruence transformation matrices at all the frequency points are orthogonal to any other
one. During this process, the R(f), L(f), C(f) and G(f) matrices have been diagonalized
to be: diag(R(f)), diag(L(f)), diag(C(f)) and diag(G(f)) eigenvalue matrices. The
1 — th diagonal eigenvalues of each frequency points constitute the parasitic of the decouple
frequency-dependent single transmission line. Thus these diagonal eigenvalue matrices can
be used to form the macromodels using a method outlined in the Section 3.2.

Once the tabulated S-parameter data for the congruence transformation have been
found, a curve-fitting using Levenberg-Marquardt method [42] [16] is used to find the
coefficients for the construction of the congruence transformer: X (f).

Having defined the scattering parameter matrix S of the congruence transformer X in

Equation 2.39 [56], one can extend the representation of the congruence transformer to
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include frequency-dependent effects, namely X (f), and rewrite:

: (3.44)

where the sub-matrix X (f) is found using curve-fitting of the tabulated congruence trans-
formation data.

The macromodels of the two congruence transformers and the n decoupled transmission
lines are passed onto the S-parameter macromodel based simulator to perform the transient

analysis.

3.4 Experimental Results for Frequency-Dependent Transmission Lines

The data in the first two examples as well as the fourth example presented here are
obtained from Dr. J. C. Liao of Intel Corporation. The data in the third example is
obtained from the user manual of Mittra’s “mtltda” simulator. Figure 3.1 (b) only shows
the simulation result which takes frequency-dependent losses into consideration. Figure
3.2 shows the different simulation results between taking and not taking the frequency-
dependent losses into consideration. The discrepancy in simulation waveforms confirms
that one needs to include frequency-dependent losses in circuit simulation. Figure 3.4 and
Figure 3.5 show the comparison between the S-parameter macromodel based simulator
and a time-domain circuit simulator. For all of the simulation results of the S-parameter
macromodels, all of the far-end waveforms are simulated with the time-of-flight captured
explicitly with the method stated in Section 5.5. Although the S-parameter macromodel
based simulator does not have the accuracy demonstrated by the time-domain simulator, it
provides more than thirty times speedup in Example 4. This kind of efficiency lands it in

the application of performance-driven layout synthesis.
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3.4.1 Example 1: A Single Transmission Line

This example is a single transmission line characterized with frequency-dependent losses.
The frequency dependence of the per-unit-length inductance and resistance are given in
Table 3.1. The per-unit-length capacitance is 1.460pF /e¢m and the per-unit-length conduc-
tance is assumed to be zero. The driving signal is 100-MHz, 50% duty-cycle pulse with
0.5ns rise/fall time. The circuit schematic is shown in 3.1 (a) with the component values.

The simulation waveforms of this example are shown in Figure 3.1 (b).

Frequency || L (nH/em) | R (ohm/cm)
10 kHz 4.070 5.000
100 MHz 4.069 5.000
250 MHz 4.064 5.000
500 MHz 4.050 5.150
750 MHz 4.032 5.310
1 GHz 4.012 5.520
2 GHz 3.904 6.750
4 GHz 3.789 8.960
6 GHz 3.724 10.85
8 GHz 3.645 12.35

Table 3.1: The Frequency-Dependent Per-Unit-Length Inductance and
Resistance

3.4.2 Example 2: Two Coupled Transmission Lines

This is an example with two coupled transmission lines characterized with frequency-
dependent losses. The frequency-dependent per-unit-length inductance and resistance are
given in Table 3.2. The per-unit-length capacitance matrix is a constant matrix which does

not vary with frequency:

1.637pF/em  —0.177pF/em
/ / (3.45)

—0.177pF/em  1.637pF/em
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The per-unit-length conductance is assumed to be zero. The driving signal is 100-MHz,
50% duty-cycle pulse with 0.5ns rise/fall time. The circuit schematic is shown in 3.2 (a)
with the component values. The simulation waveforms of this example are shown in Figure
3.2 (b), (¢), (d) and (e).
For all of the figures, there are three output waveforms of the same coupled transmission
lines. These are modeled:

e using the lossy macromodel.

e using the frequency-independent macromodel.

e using the frequency-dependent macromodel.

The per-unit-length parasitics of the lossy macromodel are taken from the DC values of the
frequency-dependent model. The frequency-independent macromodel is created using the
DC values of the frequency-dependent model at all of the frequency points. The results show
that the output waveforms of the frequency-independent macromodel match that of the lossy
macromodel exactly as expected. The results also indicate that the output waveforms of the
frequency-dependent macromodel differ from that of the lossy and frequency-independent
model because of the frequency-dependent nature of the per-unit-length parasitic. This
demonstrates the importance of taking frequency-dependent losses into consideration when

doing circuit simulation.

3.4.3 Example 3: Two Cascade Sections of Coupled Transmission Lines

This is an example of two cascade sections of two coupled transmission lines, one section
is characterized with frequency-dependent losses, and the other is characterized only with
lossless model. The frequency-dependent per-unit-length inductance and resistance of the
first section are given in Table 3.3. The frequency-dependent per-unit-length capacitance
matrix of the first section is given in Table 3.4. The per-unit-length conductance is assumed

to be zero.
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Frequency || Li1 Lao (nH/cm) | Lz L2y (nH/ecm) | Riy Ros (ohm/em) | Ria Roy (ohm/em)
DC 5.150 0.995 0.6406 0.1283
20 MHz 4.777 0.943 0.6829 0.1325
50 MHz 4.511 0.818 0.7793 0.1736
100 MHz 4.354 0.818 1.0147 0.2359
200 MHz 4.022 0.688 1.2572 0.2609
500 MHz 3.601 0.588 2.1743 0.4284
1 GHz 3.409 0.580 3.6886 0.6957

Table 3.3: The Frequency-Dependent Per-Unit-Length Inductance, Mu-
tual Inductance, and Resistance

Frequency C11 O (PF/CHl) Cia O (pF/cm)
DC 0.862 —0.140
20 MHz 0.752 —0.159
50 MHz 0.756 —0.140
100 MHz 0.754 —0.153
200 MHz 0.786 —0.147
500 MHz 0.768 —0.142
1 GHz 0.766 —0.146

Table 3.4: The Frequency-Dependent Per-Unit-Length Capacitance Ma-
trix

The second section is characterized as a lossless coupled transmission lines. The per-

unit-length inductance and capacitance matrices are as follows:

5.105nH /em  —0.995nH [em
—0.995nH /em  5.105nH [em
0.862pF/cm  —0.140pF/cm
c = / / (3.46)
—0.140pF/em  0.862pF/em

The driving signal is 100-MHz, 50% duty-cycle pulse with 0.5ns rise/fall time. The circuit
schematic is shown in 3.3 with the component values. The simulation waveforms of this

example are shown in Figure 3.4 (a) (b), (¢), (d), (e) and (f).
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in order to conserve space. The per-unit-length conductance is assumed to be zero. The
driving signal is 200-MHz, 50% duty-cycle pulse with 0.5ns rise/fall time. The circuit
schematic is shown in 3.5 (a) with the component values. The simulation waveforms of this
example are shown in Figure 3.5 (b), (¢), (d) and (e).

Similar to Example 3, for all of the figures, there are two output waveforms, they are:

e the output waveform of the frequency-dependent macromodel.

e the output waveform obtained from Mittra’s “mtltda” simulator.

In this particular example, increasing the order of Pade approximation does not imply an
increase in accuracy; one must adopt other method such as Complex-Frequency-Hopping
(CFH) or Pade-via-Lancsoz (PVL) to solve this accuracy problem.

The S-parameter macromodel based simulator takes 9.23 seconds on the SUN Sparcl+
workstation, whereas the time-domain simulators takes 288 seconds on the same machine.
This difference in simulation time is due to the fact that the second data point is taken at
1M H zinstead at 20M H z. In order to use the time-domain simulator, the actual data taken
at 10K Hz and 100K I z are intentionally removed. Mittra’s “mtltda” simulator generates
better results, however, it suffers from the common drawback of long simulation time like

other time-domain simulators.
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CHAPTER 4. Transient Analysis of
Interconnects Characterized with Measured

S-Parameter Data

Integrating the measured models into a moment-matching simulator is a problem because
derivatives of the frequency dependent measured data which are required to generate the
moments are not available explicitly. Generating the required moments using numerical
differentiation can often lead to large computation errors [47]. Since the information
necessary for the construction of the scattering parameter macromodel does not exist
explicitly, a new method for retrieving the information needed must be developed with
special attention paid to avoid numerical instabilities.

Gruodis et al. has previously reported the measurements of the admittance matrix
Y,, and the impedance matrix Zs, of the transmission lines, the computation of the
Yy matrix propagation constant I', and the simulation using the state variable transfer
function method [29]. The deficiency associated with Gruodis’ method was the fact that
the admittance matrix Yo, and the impedance matrix Zs, were difficult to measure at a
frequency above several MHz (as is specifically stated in Gruodis et al. paper [29].) Unlike
the impedance matrix Z,,, and the admittance matrix Y, which may not exist for the cases
of the serial circuits or shunt circuits respectively. The S-parameter matrix always exists
for any physical circuits [47] [50]. So the choice is to measure the S-parameter data for the
transient simulation. Sanaie et al. used the balance-reduction method [47] and Silveria et
al. utilized the curve-fitting of the transfer function section-by-section [50]. Kuznetsov et

al. used the direct rational function curve-fitting of the wave propagation function [34]. All
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of them try to extract information from the curve-fitting of the S-parameter data directly.
Thus Silveria et al. suggested performing curve-fitting section-by-section with each section
no larger than a decade [50]. Although accurate, this section-by-section method generates
more information than necessary. This leads to Silveria’s proposal to use a balance-reduction
method to reduce the order. Chang et al. has implemented a direct convolution method into
HP Spice [51]. This method requires the impulse response found from inverse Fast Fourier
Transform (IFFT) of the measured S-parameter data. Chang et al. further improves their
method using direct fitting of the measured data with a rational function [10]. Hu et al.
has incorporated the recursive convolution method into SWEC [32]. This method also calls
for the impulse response found through IFFT. The drawback of convoluting the impulse
response is the assumption made about the relationship between the real part and the
imaginary part of all the S-parameters. The implementation usually requires the data of
the imaginary part to be thrown away, whereas the Gruodis method of converting the
measured S-parameter data into the parasitic functions makes use of all the data on hand.

Although the direct curve-fitting methods could be very accurate interpolation tools, to
find the moments of the measured S-parameter data still requires an extrapolation method
which at least extrapolate to s = 0. Extrapolation methods must preserve the periodic
nature of the measured S-parameter data not only within the spectrum of the measurements
but also in the spectra above and below.

By the definition of the Taylor series expansion, the moments of a Taylor series expansion
are the coeflicients of the polynomial of s. These coefficients are computed from the
derivatives of different orders at a given expansion point. The number of terms in a Taylor
series is called the expansion order. Another major drawback of the direct curve-fitting
methods is the moments that are produced by these methods are often expansion order
dependent. This is in violation of the definition given by the Taylor series expansion which
states that the moments should be expansion order independent.

The purpose of this part of the thesis is to propose an indirect method of finding the

moments from the measured S-parameter data. This novel indirect method of computing
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the moments calls for a conversion of the S-parameter data into the parasitic functions
before finding the Taylor series expansions. After the S-parameters have been converted
into the parasitic functions, R(f), L(f), C(f) and G(f), one can compute the S-parameter
from these four data sets. A least-square curve-fitting of the computed S-parameter with
respect to the measured S-parameter data, is used in order to find the moments of these
four parasitic functions. The exact moments of the S-parameter functions are subsequently
computed from the moments of these four parasitic functions. Based on the exact moments
found using the indirect approach, the macromodel of transmission lines characterized with
frequency-dependent losses is constructed and the transient simulation is performed. Cur-
rently, this indirect approach handles the measured S-Parameter data of the interconnects
only. It cannot handle the general black box characterized by the measured S-parameter
data.

The motivation of taking this indirect approach is shown in Section 4.1. The general
steps of this novel indirect approach will be presented in Section 4.2, whereas in Section
4.3, two methods to convert the measured S-parameter data into the parasitic functions
will be shown. Section 4.4 will present the algorithm for the finding of the moments of the

parasitic functions through the indirect curve-fitting method.

4.1 Motivations

The most compelling reasons to use this indirect approach to find the moments of the
measured S-parameters data are:

e finding the moments of the measured S-Parameter data requires extrapolation.

e the moments in a Taylor series expansion should be order independent.

The measured S-parameter data curves demonstrate the periodic nature of the S-
parameter data. This periodic nature should be preserved not only within the sampling
spectrum but also in the spectra above and below. This characteristic can only be obtained

by a well behavior extrapolation method.
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Indirect Curve-Fitting Results
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Figure 4.3: Indirect Curve-Fitting Example: The indirect method produces
bounded and periodical computed S-parameter data both inside and outside of the
sampling spectrum which spans from 0.5 GHz to 40.5 GHz. It is good both as an
interpolation and extrapolation tool.

The direct curve-fitting methods are good interpolation tools which could outperform
the indirect approach presented here in the interpolation task. However, these direct curve-
fitting methods fail poorly in the extrapolation task and thus cannot be used to find the
accurate moments of the measured S-parameter data.

For example, the Root-Mean-Square (RMS) error for the Least-Square curve-fitting
within the sampling spectrum could be very small, but can be unbounded outside of the
sampling spectrum. Figure 4.1 (a) shows a particular example where the RMS error of the
Least-Square curve-fitting equals to 0.0245 and the resulting function is unbounded outside
of the sampled spectrum. Figure 4.1 (b) shows how well the least-square curve-fitting
performs over the sampled spectrum. The least-square curve-fitting method is known for
its inability to handle the measured data with many periods of oscillations. Miguel Silveria’s
section-by-section method is an improved least-square curve-fitting method which can be
used to solve the above problem [50]. However, his method is still an interpolation tool
and hence cannot be used to perform extrapolation to find the moments of the measured
S-parameter data. Figure 4.2 shows the AWEsim curve-fitting characteristic and the direct

rational function curve-fitting results [35]. AWEsim is not suitable for the curve-fitting
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to functions with many periods of oscillations. The direct rational function curve-fitting
proposed by Kuznetsov et al. is good for use as an interpolation tool, but cannot be used in
extrapolating. Clearly, its accuracy cannot be relied on beyond the interpolation interval.
A state-of-the-art direct rational function curve-fitting method which could outperform the
indirect approach which is presented in here both in the interpolation and extrapolation
[10]. Dr. Lee Barford of HP uses this direct curve-fitting method to find the poles and the
residues of the measured S-parameter data for their recursive convolution simulation. This
direct rational function curve-fitting method is a commercial product as part of the Matlab
software package published by The MathWorks, Inc. However, this direct rational function
curve-fitting method still produces moments that are expansion order dependent. Figure
4.3 shows that the indirect method produces the computed the S-parameters data which
are not only bounded but also preserve the periodic nature above and below the spectrum
of the measured frequencies.

The lower order moment terms in a Taylor series expansion around a given point should
be expansion order independent. It does not hold true for all of the direct curve-fitting
methods. Computing the S-parameter moments from parasitic functions does guarantees
that the moments found are independent of the order of the approximation.

The “jitters” in the measured S-parameter data usually comes from the instrument
limitations and human errors, and requires many measurements to average them out. Due
to the smooth nature of the S-parameter computed from the analytic equations, there is
no jitter shown in the computed S-parameter. Fitting the computed S-parameter data to
the measured S-parameter data will not be affected by the small measurement error jitter
abundant in the examples tested.

Sometimes the measured S-parameter data can rise above 1.0 for a passive system.
Dr. Lee Barford of Hewlett-Packard Laboratories states:“ It is quite common to collect
measured S-parameters that are non-passive. It occurs at any frequency where the device
being measured has very low loss. This is the case for any transmission line or interconnect

below its cutoff frequency. Measurement noise may make the device appear to be very
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slightly active instead of very slightly passive.” [1] With the computed S-parameters which
are evaluated from the parasitic functions, they never violate the power conservation rule

and hence are always stable for a passive system.
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Figure 4.4: The Introduced Conversion Error: The original measured S-
parameter data and the converted S-parameter are plotted in (a). The difference
between them are plotted in (b).

The conversion processes for both the two-port measured data and 2/N-port measured
data shown in Section 4.3 are almost lossless. The regenerated S-parameters based on the
converted RLCG compared with the original S-parameter data show that this conversion
process introduces very little error. Figure 4.4 demonstrates the conversion error is less
than 10714,

As a by-product, this indirect method can also be used to predict measurement errors.
One can use the converted parasitic to compute the S-parameters. When compared to
the measured S-parameters, one can immediately identify those sampling points with large
measurement errors (Situations such as the S-parameter value is greater than 1.0). The
general practice is to discard the S-parameter data of those points to avoid their influence
in the final fitting results. However, if there are a large number of points with error, it is

advisable that the measurement be repeated.
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4.2 Proposed Method

The steps required for the transient analysis of the interconnect characterized with the
measured S-parameter data macromodel include:

e Converting measured S-parameter data into parasitic functions: R(f), L(f), C(f)
and G(f).

e Iinding moments of the four parasitic functions through least-square curve-fitting of
the computed S-parameter w.r.t. the measured S-parameter data.

e Computing moments of the S-parameters from the moments of the R(f), L(f), C(f)
and G(f) data sets.

e Constructing macromodels for the congruence transformers for the 2N-port coupled
interconnects.

e Incorporating the computed S-parameter macromodels into the S-parameter macro-

model based simulator to perform the transient analysis.

4.3 Converting Measured S-Parameter Data into Parasitic Functions

For the completeness of this thesis, the methods for converting two-port and 2N-port
S-parameter data into the Parasitic functions are presented here.

Previous research that converted the measured two-port S-parameter data into the
RLCG data sets include those of Eisenstadt et al. [21] and Owazr [45]. Their primary
focus was on the interconnect characterization and not on the transient simulation. Also,
only a two-port device, and not the 2/N-port device, was described in their papers.

The following Equations are taken from the Eisenstadt et al. paper to demonstrate the
steps taken to convert the S-parameters into R(f), L(f), C(f) and G(f) [21]. Starting
with the S-parameter matrix of a lossy transmission line which is presented in Equation
(4.1).

1
 2Z0Zc(s) cosh(y(s)) + (22(s) + Z§) sinh(y(s))

5(s)
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(22(s) = Z)sinh(5(s)  24Zi(s) "
2oZi(s)  (Z(s) - Z3) sinb(3(s))

The Z.(s) is the characteristic impedance and 7(s) is the propagation constant. Both Z.(s)
and y(s) are computed from the frequency-dependent values of R(f), L(f), C(f) and G(f)

based on the following Equations:

Ws) = (R(s)+ sL()(Gls) + sC(s)) -1
R(s)+ sL(s)
G(s)+ sC(s)

It can be shown that:

1— 2 2 -1
e = {%iff} , (4.2)

where

1

o {(1 — 52 4 52,)2 - (2511)2}5 (4.3)

(2521)2

(14 511)* = 55
(1—511)% =53

7 = 7}

C

(4.4)

During the extraction of v, one must choose the root with the positive attenuation factor
o and correct the negative propagation 8 into a positive value. After extracting the v and

7 from e and Z2, the R(f), L(f), C(f) and G(f) can be found from the following

Fquations:

R(f) = Re{vZ:;} (4.5)
L(f) = Im{yZ}/w (4.6)
G(f) = Re{y/Z; (4.7)
C(f) = Im{v/Z}]w. (4.8)

The conversion for 2/N-port measured S-parameter data requires a different approach
which must handle RLCG matrices. Gruodis et al. has previously reported the conversion

of the measured admittance and the measured impedance data into RLCG data sets
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[29]. Applying the standard equations found in microwave textbooks [20], one can find
the admittance matrix Yo, and impedance matrix Zs, from the measured S-parameter
data matrix S,,, and then apply Gruodis et al. method to find the parasitic function
matrices: R(f), L(f), C(f) and G(f).

Assume there only exists the TEM or Quasi-TEM mode of wave propagation, for the
(n+1) conductor coupled transmission lines, there are 2N ports. The differential equations

in the frequency domain are [29]:

d Vv I
o = oz ” (4.9)
Y| Vg Ir
I Vv
aﬁ = vy 7, (4.10)
Y| Ig Vg

where Vg and Vg are the n by 1 column vector for line voltage w.r.t. the reference
conductor on the sending and the receiving side, Is and Ip are the n by 1 column vector
for line current on both sides, Z = R 4+ jwL, and Y = G + jwC. R(f), L(f), C(f) and
G(f) are n by n symmetric matrices in which all elements are functions of frequency but
independent of z.

Following the same assumptions as proposed in Gruodis et al.’s paper, that there exists
a complex square root matrix (ZY)I/Q, the solutions of the above differential equations

become [29]:

Ig Yocoth'd —YgeschId Vg
= . (4.11)
Ir —YgeschI'd  YgeothId Vg
where
r = (ZY)Y?=PyP, (4.12)
Yo = Z'r=vYr . (4.13)

P is the eigenvector matrix of I' as well as the eigenvector matrix of the ZY product, and

~ is the diagonal eigenvalue matrix of I'.
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Given the measured 2N port S-parameter data S,,”**¢, the symmetry of the S-

parameter matrix can be assured by taking the arithmetic average as follows:

SZn — [(SQnmean) n (Sgnmean)T] ] (414)

N | —

From standard microwave textbooks [20], one can find:

Yo, = Zo Y([1] = Sou)([I] + S2,) 7" (4.15)
Zon = Zo([T]+ S2u)([1] — S2.)7 Y, (4.16)
where Zj is the reference impedance.
After securing the Yg, and Zj, matrices, one can use the data analysis method 2 in
Gruodis et al. paper to give [29]:
—Y21_1Y11 = coshId
-1 -1
I'd = Pleosh™ A_y, -1y, P, (4.17)

where P is the eigenvector matrix of ~Y5; 'Yy, as well as the eigenvector matrix of I'd.

From Equations (4.17) and Y21 = —YgcschI'd, one has:

YO —YglsinhI‘d

—Y21P[sinh(cosh_1A_Y21_1Y11)]P_l. (4.18)

Having derived I'd and Y, one can use Equation (4.13) for the following:

V/ R+ jwL=Td Y, ! (4.19)

Y

G + jwC = Y, - I'd. (4.20)

The Rjj, Ljj, Cjj and Gijj can be found from the following Equations:

ij> Hijo

Ri;(f) = Re{Z;} (4.21)
Li;(f) = Im{Z;}/w (4.22)
Gi(f) = Re{Yy} (4.23)
Ci;(f) = Im{Yi}/w. (4.24)
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4.4 Finding the Moments of the Four Parasitic Functions

The key contribution of this part of the thesis is to find the moments of the parasitic
functions indirectly. The indirect approach proposed here is to find the moments of the
measured S-parameter data indirectly through converting the strongly frequency-dependent
S-parameter data into parasitic functions: R(f), L(f), C(f) and G(f) data sets. When
taking advantage of the fact that the L(f), C(f) and G(f) are weak functions of frequency
and the R(f) is a strong function of frequency [2], the moments of these four parasitic
functions are much simpler to find.

The input is the measured S-parameter data tabulated w.r.t. the sampling frequencies.
The output is the moments of the parasitic functions. R(f), L(f), C(f) and G(f). These
moments are the coeflicients of the Taylor series expansion around s = 0 for the parasitic
functions: First, one converts the measured S-parameter data into frequency-dependent
parasitic data sets. Then a least-square curve-fitting is performed to find the coeflicients
of the polynomials which represent the parasitic data sets. These coeflicients are used as
the initial values for the following optimization procedure. The S-parameter data sets are
computed from the moments of the parasitic functions based upon analytic equations. The
Levenberg-Marquardt optimization method is used to find the moments of the parasitic
functions through comparing the computed S-parameter and the original measured S-
parameter data [16]. The partial derivatives of the least-square error between these two
S-parameter data sets w.r.t. each of the moments of the parasitic functions are obtained
using a perturbation method [43]. Assume the initial coefficients are C'(°), and there are total
m coefficients. The next coefficients C'**1) can be computed from the previous coefficients
C®), which according to Levenberg-Marquardt, is optimized according to the following

formula [42] [16]:

(4.25)

1) — k) _ T+ AT lé? LSE] 7

€j
where k is the number of iteration, C'*) the column vector of the k — th iteration, and LSE

the least-square error. .J is the sensitivity matrix, J7 is the transposition vector of J where
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the j —th element J7(j) = J(j), A is a value which are equal to the product of J7.J, and A

is the Lagrange Multiplier properly selected to speed up the convergence of the optimization

process [42] [16]. JT [%] represents the gradient around the current coefficients €'(*),
J

To obtain the sensitivity matrix J, the j — th element is defined as:

0 LSE
J(j) = )
()= "5

1<j<m. (4.26)

The partial derivatives are computed using a central difference method. The optimization
continues until the least-square error can no longer be improved, or the iteration number
exceeds a preset limit. The convergence to the optimal values of Levenberg-Marquardt

method is proved in [42].

4.5 Creation of the S-Parameter Macromodel

Given the moments of the four parasitic functions R(f), L(f), C(f) and G(f), one
can compute the moments of the S-parameters using the methods outlined in Section 3.1.
Once found, the same macromodels are integrated into the S-parameter macromodel based

simulator to perform the transient analysis.

4.6 Experimental Results for Measured Scattering Parameter Data

The measured S-parameter data files are courtesy of HP Santa Rosa division, Hewlett
Packard Company. The measured S-parameter data in all of the examples are not given
in order to conserve space. The driving signal is 1-GHz, 50% duty-cycle pulse with 0.1ns
rise/fall time. All of the drivers are modeled with a piecewise-linear input voltage source in
series with the parallel combination of a 25 resistor and a 4.3pF capacitor. The receivers
in all of the examples are modeled using the parallel combination of a 100£2 resistor and
a 1.0pF capacitor. For all of the simulation results of the S-parameter macromodels, all
of the far-end waveforms are simulated with the time-of-flight captured explicitly with the
method stated in Section 5.5. The testing circuits are the same for all of the examples.

The circuit schematic is shown in Figure 4.5. For all of the figures of the simulation results,
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Figure 4.6: Simulation Waveforms of the Step Structure Characterized
with Measured S-Parameter Data: The output waveforms of the near end of
the two-port is shown in (a), waveforms of the far end of the two-port is shown in

(b).
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Figure 4.7: Enlarged Far End Simulation Waveforms: The two closely follow
each other are the simulation waveforms of the HP Spice and the S-parameter based
Macromodel simulator.
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4.6.2 Example 2: An Uniform Microstrip Structure

This is an example with an uniform transmission line characterized with measured S-
parameter data. It is simulated using the same test circuit and input driving signal. The
near end and far end simulation waveforms of the HP Spice simulator and the S-parameter

macromodel based simulator are shown in Figure 4.8 (a) and Figure 4.8 (b) respectively.

Near End Simulation Waveforms Far End Simulation Waveforms
Volts Volts
5.00! I —] Input V(1) Input V(1)
[_\ !_\ B S3pice Vi) 5.00 | FSSpicE Vg
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400~ kA LA n © 4.00 — ©)
\\ ;: t-,\\‘,,
300 | v v _ 3.00 _
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A
1.001— \ /“ | 0.00 i :"’n\:/ \\’n" A
PYARY Y
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Figure 4.8: Simulation Waveforms of the Uniform Microstrip Character-
ized with Measured S-Parameter Data: The output waveforms of the near
end of the two-port is shown in (a), waveforms of the far end of the two-port is

shown in (b).

4.6.3 Example 3: A Bend Structure

This is an example with two uniform transmission line sections joined by a 90° bend,
and the whole structure is characterized with measured S-parameter data. It is simulated
using the same test circuit and input driving signal. The near end and far end simulation
waveforms of the HP Spice simulator and the S-parameter macromodel based simulator are
shown in Figure 4.9 (a) and Figure 4.9 (b) respectively.

All of the results show that the output waveforms of the measured S-parameter macro-

model match well with those produced by HP Spice simulator as was expected. The small
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Figure 4.9: Simulation Waveforms of the Bend Structure Characterized
with Measured S-Parameter Data: The output waveforms of the near end of
the two-port is shown in (a), waveforms of the far end of the two-port is shown in

(b).
differences that were shown on both the near end and far end waveforms are due to the
lower number of order chosen and the Pade approximation error. In all of the examples,
increasing the order of Pade approximation does not imply an improvement in accuracy.
One must turn to other methods such as the Pade-via-Lancsoz (PVL) to solve this accuracy

problem.
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CHAPTER 5. Optimal Design of Self-Damped

Interconnects for Multichip Modules

The metal line width on MCM are much wider than those of modern VLSI chip. As
a result, the line can exhibit a non-negligible inductance. When compared with the metal
lines on PCB, these metal lines on MCM exhibit a much larger resistance per-unit-length
due to a smaller cross-section. Thus, the metal lines on MCM must be treated as lossy

transmission lines.

Under Damped, Critically Damped, and Overdamped Waveforms
Output Voltage

fnput Signal
Unider Damped ~(w=50um)

Overdamped ™~ (w=25um)

time (second) x T8
0.00 1.00 2.00 3.00 4.00 5.00

Figure 5.1: Simulation Waveforms of Different Line Widths: The different
damping conditions are achieved through sizing the width of the interconnect to:
50um, 34pm, and 25pm respectively.

The interconnection lines on multichip modules exhibit reflections and resonances due to
its transmission line characteristics and are therefore usually terminated by two methods:
one is to terminate the lines with clamping diodes and the other is to terminate with
resistors. In the former method, when a line on a multichip module is terminated by a
pair of voltage-clamping diodes to limit the positive and negative signal swings, the diode

when turned on by signal voltage overshoot can drive a large current, which can often
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cause an increase in power consumption and an increase in power-distribution disturbance.
On the other hand, when a line on a multichip module is terminated with a resistor of
appropriate value to minimize signal reflections and resonances, the voltage divider formed
by the termination resistance and the line characteristic impedance can cause a substantial
and unacceptable attenuation of the propagated signals. In addition, each resistor can
dissipate a quiescent power when the line is at non-zero voltage. In modules containing
thousands of such lines, this power dissipation can become excessive. The problem can
be further compounded by the small packaging size of MCM with a limited heat removal
capability.

In order to propagate high speed signals, the lines on thin-film substrates are often un-
terminated. Since voltage doubling occurs at the end of an open line due to reflection, a
controlled amount of attenuation can be tolerated. Instead of terminating with diodes or
resistors, the long lines on the thin-film multichip modules can be constructed to critically
damp the signal in order to avoid resonances. Doing without the termination eliminates
the heat generated by the terminator and solves the heat removal problem. Unterminated,
the long lines in the substrate are structured to exhibit a total resistance that is related to
the source resistance of the active devices which drives the lines [31] [6]. For performance
reasons, slightly under-damped designs give shorter signal propagation delays with a toler-
able amount of overshoot [6] [23] [31]. These lines are thus called optimal self-damped lossy

transmission lines [25].

5.1 Wire-Sizing

In order to have a MCM design that meets all the electrical performance requirements,
one needs to control the delay, the noise, and the impedance through geometry parameters.
It is easiest to fabricate interconnection lines with fixed metal and dielectric thicknesses
and vary only the line width. This results in a specific dependency of line width on length
for self-damped lines. The wire-sizing method is often used to vary the width of each

branch of the network to meet certain electrical criteria. This method is used to design the
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self-damped transmission lines on MCMs.

Different line widths result in different output waveforms. Figure 5.1 shows the under-
damped, critically damped, and over-damped output waveforms of a ramp-step input wave-
form achieved through wire-sizing. The contribution of this part of the thesis is to provide

optimal performance totally through a wire-sizing method.

5.2 Performance Criteria

The performance criteria for the optimal design of interconnects are much like criteria of
feedback control systems design. The performance of the interconnects and feedback control
systems are designed for a faster response time with a minimum amount of steady state
Root-Mean-Square error. A significant collection of literature deals with the performance
criteria subject in the feedback control systems design [22] [49] [17]. The Integrate of Time
and Error (ITAE) criterion has the optimal transient response and no steady state error

[49]. It is chosen as the target for the approximated transfer function.

5.3 Levenberg-Marquardt Method

Most algorithms for solving the Least-Square Estimation problems involving nonlinear
parameters have been centered around either the Taylor series method or the Gradient
method [16]. Both of these methods have advantages depending on the applications.
In the Taylor series method, the objective function is expanded as a Taylor series and
the corrections to the nonlinear parameters are calculated at each iteration based upon
the assumption of local linearity. This method converges very fast within the circle of
convergence of the Taylor series. The drawback of the algorithms based on the Taylor
series method is that they cannot find the global minimum if it is outside of the circle of
convergence of the expanded Taylor series, and they suffer from the possible divergence of
the successive iterations. The Gradient method, on the other hand, can find the global

minimum even it is far away from the initial guess. However, this method suffers from slow
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convergence to the optimal solution after the first several rapid advance in the first few
iterations.

The Levenberg-Marquardt Method tries to perform an optimum interpolation between
the Taylor series method and the Gradient method so that the size and the direction of
the steps can be determined simultaneously [36] [16]. The properties proved in Levenberg-
Marquardt’s paper show that their method combines the best features of the previous two
methods and generally avoids their limitations [42]. The Levenberg-Marquardt Method
benefits from the maximum neighborhood in which the truncated Taylor series gives an
adequate linearized representation of the nonlinear objective function. It can find global
minimum outside of this maximum neighborhood. It also converges to the final solution
quickly with the help of the Lagrange Multiplier. The Lagrange Multiplier is dynamically
adjusted at each iteration. The key feature of Levenberg-Marquardt’s method is to search
the feasible values of the Lagrange Multiplier such that the objective function is always
decreased at each iteration until the convergency to the global minimum is reached. The
choice of the Lagrange Multiplier also has some hill-climbing property similar to simulated
annealing so as to avoid a local minimum. The Levenberg-Marquardt Method is chosen as

the optimization method throughout this thesis.

5.4 Previous Work

Papers published by Brews [6] and Frye [25] show design methods for the design of criti-
cally damped point-to-point interconnections on VLSI and MCM. Another paper published
by Cong et al. [13] uses wire-sizing to achieve optimal design for the tree network based
upon the distributed-RC model [13]. Wang et al. also published a report which refines
Frye’s approach to handle the design of critically damped interconnect tree networks on
MCM [52].

Later Zhou et al. presented a distributed-RLC model and a second order approximation
in their performance-driven-layout paper [58], which extends the wire-sizing algorithm

to cover transmission lines on MCM. It is reasonable to assume that the second order
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approximation as adopted by Zhou et al. was to keep the optimization manageable. In
the same paper, Zhou also reports the use of a second order approximation without the
extraction of the time-of-flight to formulate the performance-driven-layout. However, there
are three problems arise with the performance-driven-layout as described in Zhou et al.
paper.

e The formulation of the optimization problem with critical damping constraints is

changed to an optimization without any constraint in implementation.

e The distributed-RLC model is used in the formulation but a distributed-RC model is

actually used in the optimization.

e The approach used by Zhou et al. is a two-step approach; the first step is to perform
the wire-sizing to achieve shorest delay, and the second step is to critically damp the
output signals.

The Zhou’s critical damping design method consists of adding resistors in series at the
receiving terminals. The addition of a serial resistor at the receiver is like adding the
matching serial termination resistor at the driver, both take extra space to accommodate

the resistors.

5.5 S-Parameter Macromodel and the Time-of-Flight Extraction

In order to precisely analyze the lossy transmission lines on MCM substrates, the scatter-
ing parameter (S-parameter) based macromodel [39] [40] is used to find the approximated
transfer function H(s). The S-parameter based macromodel simulator can handle both
lumped circuit elements and lossy/lossless transmission lines including loops. However, the
delay associated with transmission line networks consists of the exponentially charging time
and a pure propagation delay representing the finite propagating speed of electromagnetic
signals in the dielectric medium. This propagation delay, so called “time-of-flight delay”
and denoted by 7, is impossible to model perfectly by a finite order of approximation. So,

—S8T

the time-of-flight 7, more precisely the factor €77, must be extracted from the transfer

function of the circuit. The new and important improvement in the S-parameter based
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macromodel simulator is the extraction of the exact time-of-flight term in transfer func-
tions [37]. By extracting the time-of-flight of scattering parameters for basic components,
an effective network reduction is developed to compute the lower order macromodel of an
interconnect system. The output responses, due to the extraction of the time-of-flight, can

be greatly improved.

5.6 Transfer Function Approximation

The transfer function is defined as:

Voutput ( 5)

B = o)

=7 x H(s)

where s is the complex variable of the Laplace transformation, Vyyiput(s) and Viypue(s) are
the output and input waveforms, 7 is the time-of-flight term, and ﬁ(s) is the remaining
part of the transfer function after the time-of-flight is extracted. If the h(t) and A(t) are the
inverse transformation of H(s) and H(s) respectively, then the relationship between h(t)

and h(t) is:
h(t) = h(t — 7).

The above equation describes a plain shift of the output waveforms ﬁ(t) in the time domain

for the amount of the time-of-fight 7.

The performance criteria of the optimal design must be determined quantitatively. In
addition, attention must be paid specifically to some of the qualitative issues such as stability
and static accuracy. Significant collection of literature exists that treats the subject of
performance criteria in the feedback control systems design [22] [49] [17]. From a thorough
investigation, the Integral of Time and Error (ITAE) seems to be the best performance
criterion for optimizing the transient response and the steady state Root-Mean-Square error
[49]. Transfer functions that meet ITAE criterion have a minimum overshoot and yet faster
than critical damping response delay. These are the two key performance issues in designing
the optimal self-damped lossy transmission lines on multichip modules. Based on the ITAE
criterion, a set of equations for the different orders of the closed-loop transfer functions gives

the optimal performance. These transfer functions listed in Equations (5.1) to (5.6) can be
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e the undamped case where the roots reside on the imaginary axis.

e the optimal damped case based on ITAE criterion where the roots reside on the circle

with 45 degree elevation.

e the critically damped case where both roots overlapped on the point where the circle

intersects the negative real axis.

e the overdamped case where both roots reside on the negative real axis but moving in
opposite directions.
When a second order approximation is applied to the charging part of the transfer
function H(s), it can be rewritten as:

A wnz

H(s) ~ (5.7)

52 4+ 20wps + wy?’

where w,, is the natural undamped frequency and ¢ the damping ratio of the transfer function

ﬁ(s) [33]. Some representations of the pole-pair on the left-half plane are given by [33]:

—(w, X jw, /1= for 0< (< 1;

Case 2: 5192 =—w, for ( = 1;

—(w, Twp /2 =1 for 1 < (;

Case 1: 519

Case 3: 519

The damping ratio ¢ and the natural undamped frequency w,, can be expressed in terms of
two poles s; and ss:
Wy = /5182
(= s
For a given input waveform in the time domain, the three quantities of the second order
approximated transfer function: the time-of-flight 7, the natural undamped frequency w,
and the damping ratio { uniquely determine the time domain response waveform at the
receiver. Similarly, the propagation delay for a signal to reach 50% of its final value at the
receiver is also uniquely determined by these three quantities: 7, w,, and (. The damping
ratio ¢ and the propagation delay will be used together in the optimal wire sizing process.

According to the ITAE criterion, the best transient performance happens when { = % for
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a second order system [49] [22] [33] [6]. This value will be used as the target of optimization
method in all the experiments.

For higher order systems, the coeflicients of the approximated transfer functions are
used. For a given input waveform in the time domain, these coefficients uniquely determine
the time domain response waveform at the receiver. So instead of using the damping ratio
¢, the coefficients of the approximated transfer functions and the propagation delay will be
used together in the optimal wire sizing process. To simplify the presentation in this thesis,
the second order approximation of the transfer function is used throughout the subsequent

sections.

5.7 Formulation of the Optimal Self-Damped Design

The optimal design problem can be formulated as follows: Given a network (V) consists
of a set of edge F with fixed lengths, the width of each edge belongs to a set of feasible
widths C' = {e1, ¢, ..; Cmax} Where (¢; < ¢i41,1 < @ < (maz — 1)). The optimal design
is to find an optimal width assignment: W* C (' and a mapping M : B — W* such
that every path from root to leaves has the shortest delay and the same damping criteria if
possible. The objective is to optimize the performance which includes minimizing the signal
propagation delay for each path from the source to a receiver with either no overshoot or a
controlled amount of overshoot. The width of edge i, w;, is bounded by the minimum and
maximum feasible width, min(w;) < w; < max(w;), where min(w;), maz(w;) € C. The
incremental difference, Ac, where Ac = (¢;41 — ¢;),1 < @ < (maxz — 1), between feasible
widths is depicted by the process technology.

The following notations are defined for the formulation of the optimal self-damped
design.

n : the number of the edges in the network.
m : the number of the receivers (the output nodes).
w; : the width of edge 1.

l; : the given length of edge .
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7; : the propagation delay for a signal to reach 50% of its final output value transmitted
along path from the source to a receiver j.
¢; : the damping ratio of the lowest conditional frequency of the transfer function from the
source to a receiver j.
Ctarget : the electric damping criteria set forth by the user.

The optimal self-damping design for a general network can be formulated as a general

nonlinear programming problem as follows, Let

Fwy,wy, ..., w,) = Mazimum(r;),1 < j < m. (5.8)
G(wy, wy, ..., wy,) = Mazimum(|(; — Crarget]), 1 < 7 < m. (5.9)
Objective
Minimize F(wy, wg,...,wy) (5.10)
Constraints

G(wy,wy,...,w,) < e,w; € C,1 <7< n,1<j<m,and €is a preset constant.

&)
—
[N)

1 . .
C](w17w277wn)2 _7w26071§2§n71§] < m.

V2

gi(wlvw% .. '7wn) = {wl - mln(wz)} > vai € Ca 1< < n.

&)
—
w

hi(wlvw% .. -7wn) = {max(wz) - wz} > vai € Ca 1< < n.

The objective of an optimal self-damped design is to size the wire width of each edge in
order to minimize both the maximum delay stated in Equation (5.8) and the maximum
damping ratio error stated in Equation (5.9), while maintaining that all output damping
ratios satisfy the constraint in Equation (5.11) and (5.12), and all edge widths satisfy the
constraints in Equation (5.13) and (5.14).

The way to find the optimal answer is to use the perturbation method [43], which works
by perturbing each of the design parameters A; a small amount in each direction, and finds
the right direction and distance to change A;. In this thesis, the width of each edge w; is the

chosen design parameter to be changed and a simulation is run at each perturbation to find
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the propagation delay and the damping ratio. The perturbation results of the propagation
delays and the damping ratios are then used to compute the gradient matrix. Details of

the optimization method is described in Section 5.9.

5.8 Proof of the Correctness of the Least-Squares Estimation

Transformation

The optimal wire-sizing problem formulated in Equation (5.8) is a general nonlinear
programming problem. Both the damping ratio error minimization and delay minimization
problem can be transformed into one of a Least-Square Estimation. There are two parts in
the problem of the original optimization. The first part is the minimization of the maximum
delay and the second part is the minimization of the maximum damping ratio error.

The following is the proof of the correctness of the transformation for the first part. Let
7; be the 50% signal propagation delay from the source to the receiver j (1 < j < m), where
m is the number of receivers. Let column vector @ = {7, 7o,...,7,,}" represents the delay
vector, where T denotes matrix transposition. The summation of all squares of delay errors

is:
D(wy, wy,...,w,) =010 = > o7 (5.15)
J=1
Define the root-mean-square (rms) error of the delay as:

(5.16)

From Equation (5.8), the maximum delay is F(wy, ws, ..., w,) = Mazimum(T;).

Theorem 1: Given a single-source multi-receiver network, the root-mean-square error de-
fined in Equation (5.16) and mazimum delay defined in Fquation (5.8) are linearly bound

to each other.

Proof: Assume the largest delay is T,4,. For all 7;, 75 < Ty, (1 < j < m), where

m is the number of receivers and it is a constant for a given network. From Equation
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(5.16), we have ¢ = \/Z;ﬁ:l T /m < \/Z}”:l T2 0n] M = Tmaw = F(wi,we,...,w,). On the
other hand, we have F(wy,ws,...,w,) = Mazimum(r;) = Tpar = Vel < \/m =
\/W =+/m-¢. So ¢ and F(wy,ws,...,w,) are linearly bound to each other.

The following is the proof of the correctness of the transformation for the second part.
Let column vector Q = {|¢; —Crarget]s [C2—Crargetls - - +» |Cm—Crarget|} T Tepresents the damping

ratio error vector. The summation of all squares of damping ratio errors is:
U(wy,wy,...,w,) =0TQ = Z — Carget ) (5.17)

Define the root-mean-square (rms) error of the damping ratio as:

m

¢ _ % _ \l f: (CJ - Ctarget)z (518)
7=1

From Equation (5.9), the maximum damping ratio error is:
G(wh W2y .-y wn) = Mammum(K] - CtargetD-

Theorem 2: Given a single-source multi-receiver network, the root-mean-square damping
ratio error defined in Equation (5.18) and mazimum damping ratio error defined in Equation

(5.9) are linearly bound to each other.

Proof: Assume the largest damping ratio is (. and it deviates from (4 ge¢ the most, the
maximum damping ratio error is |(raz —Ctarget|- (The proof can be applied to the case where
the smallest damping ratio (s, deviates from (s4r4¢; the most. We only have to replace all
Cmaz With (pin in the proof.) For all (j, |(; — Garget]l < |Cmae — Garget|, (1 < J < m),
where m is the number of receivers and it is a constant for a given network. From
Equation (5.18), we have v = /3721 (¢ = Grarget)?/m < /2721 (Crmaw = Grarget)?/m =
|Cmaz — Ctarget] = Mazimum(|(; — Ciarget|) = G(w1, wg, ..., w,). On the other hand, we
have G(wy, s, ..., w,) = Mazimum(|§—Carget]) = [Cmaw = Crarget] = \/(Cmow = Crarget)? <
VT (G = Grarger)?

= \/m Ty (G = Crarger)?/m = /m - Y. So ¢ and G(wy, wy, ..., w,) are linearly bound

to each other.
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From the above two theorems, minimizing the two Least-Square Estimation problem
in Equations 5.16 and 5.18 bounds the maximum path delay F(wq,ws,...,w,) defined in
Equation (5.8) and maximum damping ratio error G(wq, ws, ..., w,) defined in Equation

(5.9) of the original nonlinear programming problem.

5.9 Implementation of the Least-Square Estimation Optimization

The Levenberg-Marquardt method is used to solve the least-square estimation prob-
lem [42] [16]. Theorems 1 and 2 show the consistency between the minimizing of
the original problem and the minimizing of the transformed root-mean-square estima-
tion problem. Starting with an arbitrary initial solution of width assignment W) =
{wl(o),wg(o), .. .,wn(o)}T, according to Levenberg-Marquardt, the width assignment W is

optimized according to the following formula:

W) Z ) (T 4 AT Olw (5.19)

o
where k is the number of iteration, O|y; ) the column vector of delays from the source to
all the receivers at the k — th iteration, and Q|4 the column vector of damping ratio
errors from the source to all the receivers at the k — th iteration. J is the 2m X n sensitivity
matrix, J7 is the transposition matrix of J where the (4,7)th element JT(i,5) = J(j,1),

A is a diagonal matrix in which the values of its diagonal elements are the same as the

diagonal elements of JT.J, and A is the Lagrange Multiplier properly selected to speed up
(k)

the convergence of the optimization process [42]. Round-off occurs when computing w;"’ so
. . r | Olwmw .
that Equation (5.13) and (5.14) are always satisfied. .J represents the gradient
Qoo

around the current width assignment W), To obtain the sensitivity matrix J, the (i,7)th
element is defined as:
- T, if1<i<m
Jijy=1 7 . (5.20)
9Qhi=m] - if gy 41 <1< 2m

’
dw;
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The partial derivatives are computed using a central difference method. The optimization
continues until the maximum damping ratio error is less than a prescribed value, the
maximum damping ratio error cannot be further improved, the maximum delay cannot
be further improved, or the iteration number exceeds a preset limit. The convergence to

the optimal values of Levenberg-Marquardt method is proved in [42].

5.10 Experimental Results for the Optimal Self-Damped Design

The examples tested are constructed with High Performance MCM process technologies
published by Frye [24]. The important parameters of the MCM process are listed in Table
5.1. In the case of the uniform width, all of the widths are equal to 25um for all of the
examples tested. All of the drivers are modeled with a step input voltage source in series
with the parallel combination of a 129 resistor and a 4.3pF capacitor. All of the receivers
are modeled using a 2.hpF’ capacitor. The damping ratio target is chosen to be % for
shorter propagation delay with a controlled amount of overshoot [6] [33] [22] [49] [17]. For
all of the simulation results of the S-parameter macromodels, all of the far-end waveforms
are simulated with the time-of-flight captured explicitly with the method stated in Section
5.5.

5.10.1 Example 1 A Tree Network

Example 5.10.1 is the tree network shown in Zhou’s MCMC paper [58]. Figure 5.3 (a)
shows the topology, lengths, and widths of the optimal design for all of the edges. The
optimal design performance is compared with the uniform width case. The per-unit-length
R, C, and L of the uniform width design are listed in Table 5.1. The simulation waveforms
of the optimal design and uniform width design are shown in Figure 5.3 (b). The maximum

path delays, and the percentage of improvement are listed in Table 5.2.
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HIGH PERFORMANCE MCM-D

Thickness of Dielectric (um) 5
Erel 3.2
Thickness of Metal (pm) 2.5

R (©/pm) for typical edge width 2.4

L (nH/pm) for typical edge width 2.9

C (pF/pum) for typical edge width | 1.39

lower bound metal line width (pm) 10

typical metal line width (um) 25

upper bound metal line width (pm) | 50

Table 5.1: The High Performance MCM Technologies Process Parame-
ters

Maximum Maximum Percent
Path Delay | Path Delay | Improvement
(Uniform) (Optimal)

(nS) (nS) (%)
Example 5.10.1 || 0.9874 0.7182 27.26
Example 5.10.2 || 0.9354 0.8245 11.85
Example 5.10.3 || 1.2308 0.8533 30.67

Table 5.2: Comparison between the Uniform Width Design and the
Optimal Design

5.10.2 Example 2 A Network with a Loop

Example 5.10.2 is a network with a loop. Figure 5.4 shows the topology, lengths, and
widths of the optimal design for all of the edges. The simulation waveforms of the receiver
4 in the loop network for the optimal design and uniform width design are shown in Figure

5.4 (b). The maximum path delays and the percentage of improvement are listed in Table

5.2.
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5.10.3 Example 3 A Clock Tree Network

Example 5.10.3 is a clock tree network shown in Zhu’s ICCAD paper [59]. Figure 5.5
(a) shows the topology, lengths, and widths of the optimal design for all of the edges. The
simulation waveforms of the optimal design and uniform width design are shown in Figure
5.5 (b). The maximum path delays and the percentage of improvement are listed in Table
5.2.

The experimental results show that this optimization method reduces the maximum of all
of the signal propagation delays considerably when compared to the uniform width designs.
This proves that the generally adopted practice of the uniform width design method is overly
constrained. The optimal width assignment produces a fast and stable signal propagation.

There is as much as 30% improvement that has been found by this optimal design method.






75

CHAPTER 6. Transformation of Min-Max
Optimization to Least-Square Estimation and
Its Application to Interconnect Design

Optimization

For most of the Computer-Aided Design software, optimization is required as part
of the heuristic algorithm. The most common optimization problem encountered is the
minimization of the maximum of all the observable outputs, which is often referred to as the
Min-Max optimization problem. Because the Min-Max optimization is generally a nonlinear
programming problem, it is not only hard to solve but also takes a long computation time.
An alternative method to solve the Min-Max optimization problem and to obtain a good
solution in a relative short period of time is to transform the original Min-Max optimization
problem into one of a Least-Square Estimation (LSE), which has a number of well defined
methods for solving it. It can also be shown that the target function of the original Min-
Max optimization problem and that of the transformed LSE problem are linearly bound
to each other. Although these two problems have different objective functions, optimizing
the transformed problem can produces a solution to the original Min-Max problem. To
optimize the solution to the LSE problem, one tries to minimize a target function which is
the Root-Mean-Square (RMS) value of a given function. In this method, one can obtain
a solution function which is a set of values of a given function. By the definition of the
LSE problem, when evaluating the Root-Mean-Square value of a solution function, this

RMS value should be at its minimum. The solution to the original Min-Max problem is
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found from the maximum value of the solution function of the LSE problem. However,
this does not mean that solving the LSE problem can lead to the exact solution to the
original Min-Max problem, it merely states that solving the LSE problem gives one possible
solution to the original Min-Max problem. The term: “linearly bound each other” means
that obtaining the solution function of the LSE problem, one can translate the maximum
value of the solution function at hand to a solution of the original Min-Max problem; it
does not say anything about the quality of this solution compared with those obtained from
other methods which are used to solve the same original Min-Max problem.

As illustrated in Section 6.1, for any single observable output Min-Max problem, the
maximum value of the solution function of the LSE problem is the same as the solution of
the original Min-Max problem. However, for multiple observable outputs Min-Max problem,
the Root-Mean-Square value of the solution function of the LSE problem linearly bounds
the solution of the original Min-Max problem with a wide range. Although the solution
to the original Min-Max problem can still be found, however, one cannot be certain about
the quality of the solution of the original Min-Max problem because of this wide range.
Worst of all, for Min-Max problems with large number of observable outputs, the solution
of the original Min-Max problem is bounded by a huge range, between one and several tens
multiplying the solution of the LSE problem. For example, if a Min-Max problem has 1000
observable output variables, then the solution of the Min-Max problem can lie between one
and 31.62 multiples of the Root-Mean-Square value of the transformed LSE problem, since
the square root of 1000 is 31.62. The drawback of this huge range is that it gives rise to
such a huge uncertainty in transferring the maximum value of the solution function of the
LSE problem back to the Min-Max solution. This renders the idea of the transformation
and solving it through LSE optimization much less useful.

Previous research that utilizes the transformation include those of Zhu et al. [59] and
Wang et al. [54]. Both of these results lack the ability to precisely translate the maximum
value of the solution function of the LSE problem back to the original Min-Max problem.

In this part of thesis, a novel transformation is formulated, followed immediately by a
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proof that this transformation indeed gives the tightest bound for the ideal case. Because
of this tightest bound, the maximum value of the solution function of the LSE problem can
be transformed back as the solution of the original Min-Max problem even for the case of
the multiple observable output variables.

As demonstrated in Example 6.4.3 in Section 6.4, the best case happens when the
difference between all the values of a given function can be minimized. It makes this novel
approach especially effective in solving the problem of minimizing the delay of the equal-
path-length clock tree.

Section 6.1 presents the original Min-Max optimization problem, the transformation
into one LSE problem, and the proof of their target functions linearly bound each other.
The drawback of this type of transformation for the case of the multiple observable output
variables is also discussed in detail. Section 6.2 presents the novel transformation into two
LSE problems and the proof of the tighter linear bound between their target functions. The
advantage of this novel transformation and an ideal case of the solution translation is also
discussed in detail in Section 6.2. The details about the implementation of the optimization
of the LSE problems is shown in Section 6.3, whereas Section 6.4 demonstrates the usefulness

of this novel transformation with three examples.

6.1 Transform the Min-Max Problem to One Least-Square Estimation
Problem

Computer-Aided Design software usually requires the optimization to be a part of the
heuristic algorithm. One of the optimization calls for the minimization of the maximum of
all the observable outputs. The transformation defined in this section closely followed that
of Wang et al. [54]. However, the notation used here is much more general, which can be

apply to the Min-Max optimization problem of any positive function.

6.1.1 Physical Example
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If one defines the target function of the Min-Max problem to be F(W,.J), one can write:
mml/n[ (W, J)] mml/n [m}X[G(W, J)]] . (6.1)

From a general optimization textbook [36], an easier alternative of solving this Min-Max
problem is to transform it into a Least-Square Estimation (LSE) problem. In order to solve
this LSE problem, one has to minimize the RMS of the given function G(W,.J). Solving the
LSE problem gives a solution function whose maximum can be translated into a solution of

the original Min-Max problem.

6.1.3 Transformation Formulation

The detailed formulation of the transformation is as follows: let G(W, j) be the observed

7 — th output, and let the column vector
O(W,J) B {G(W,1),G(W,2),...,G(W,j),...,G(W,m)}T, (6.2)

represents the estimation vector, where T denotes the transposition operation, j € J and
1 < j < m, and m is the number of the outputs. The summation of all squares of the
estimations ®(W, J) is
m
O(wy, W, ..., Wy, 1,....m) 2 OW, ) TOW, J) )= _[G( (6.3)
j=1

If one defines the Root-Mean-Square (RMS) of the estimation as:

@(wl,wg,...,wn,l,...,m)é¢w:\IiW, (6.4)

then new optimization problem becomes the minimization of the RMS of the given function

G(W,J). One can write the new target function of the optimization as:

min[(W, J)] 2 min N f: M‘ . (6.5)

, m
J=1

The new target function (Equation (6.5)) does not correspond to the original target

function (Equation (6.1)). However, it can be shown that the minimization result of the
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new target function linearly bounds the original optimization solution. As can be seen
later, if the linear bound is tight, the maximum value of the optimization result of the new
solution function can be translated to be the solution of the original Min-Max problem.
The following is the proof of the target functions of the transformation linearly bound
each other.
Theorem 3: Given a function G(W,.J), the minimum of the Root-Mean-Square (RMS) as
defined in Fquation (6.5) and the minimum of the mazimum as defined in Fquation (6.1)
linearly bound each other.
Proof:
Given that the largest of all the G(W, J) is equal to F(W,.J), F(W,J) 2 maxy G(W, J).
For all G(W,j), G(W,j) < F(W,J), (1 < j < m), one can obtain Equation (6.6 from
Equation (6.5)

PUME J f: W < J f: [maxs %W’ chl max G(W, J) = F(W, ). (6.6)
On the other han_d, we have _
FOV.9) £ mgs{ 7. = GO )P < |92 (G005
:Jm-iwzmwmn (6.7)
From Equation (6.6) and (6.7), one has _
(W, J) < F(W,J) < Vm - oW, J). (6.8)

This concludes the proof that ¢(W,J) and F(W, j) linearly bound each other.

6.1.4 Physical Meaning

Given a positive function G(W, J) which one wants to optimize, where W = {w;|i = 1...n}
and J = {jlj=1...m}, one can define a mapping M from J = {jlj=1...m} to
J' = {j’|j’ =1 . 1}, and plot the function G(W,J) as in Figure 6.2, where each G(W, j)
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the four values w.r.t. the function G(W,J) in Figure 6.3, one can see the relation between

these four values. The areas under the rectangles of these four values are:

Arcapn, = /01 [m?X[G(W,J)]] 4 = max [G(V,.J)]. (6.10)
Areamin = /01 [m}n[G(W,J)]] 4j = min [GOV, )] (6.11)
Aretoy, = lcng Ndj = avgy [GOW, 7], (6.12)
Areapys = / 3 WJ VI g = RMS, [G(W, ). (6.13)

From Figure 6.3, one can tell that Areapps < Arean... From the linear bound, one
has Area,.. < /m - Areapyrs which is represented by the biggest rectangle in Figure
6.3. It is important to note that Figure 6.3 is not drawn to the scale, so the actual size
of the area which equals to \/m - Arearys could be much larger. The term “linearly
bound each other” means that the Area,,,, = F lies in between the Areapys = ¢ and
the /m - Areapyrs = v/m - . By minimizing the area of Areagpss, one also brings down
the area of /m - Areapns, since the area of Area,, ., lies in between them, so it is also
minimized. However, for the case of multiple observable output variable case as shown in
the same figure, the range between the Areapyrs and /m - Areapyrs can be quite large.
This gives rise to the uncertainty about the minimization of the original target function

when one attempts to optimize the LSE problem.

6.1.5 Practical Considerations

When applied to a case of the single observable output, m = 1, Equation (6.8) becomes
¢ < F < V/1¢, which means that the two target functions are equal, that is, minimizing
one is to minimizing the other. Thus, the solution to the LSE problem, ¢, can be taken
as the solution of the Min-Max Problem. However, for a case of the multiple observable
output variable, Equation (6.8) is ¢ < F' < /m, which means that the target function of
the LSE problem, ¢, linearly bounds the solution of the original Min-Max problem, F', with

a range. This means that the two target functions are not the same, so minimizing one
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does not guarantee the minimization of the other. This range is defined as from ¢ to /me.
For example, if a Min-Max problem has 1000 observable outputs which is common for a
global clock distribution net, then the solution of the original Min-Max problem is bounded
between one and /1000 = 31.62 multiplies the target function of the LSE problem. This
huge range give rise to one’s hesitation about the quality of the solution to the Min-Max
problem . This is the drawback when one tries to use the transformation to solve the Min-
Max problem in the case of the multiple observable output. The huge linear bound range
and the uncertainty in the solution translation renders the idea of the transformation and
solving through LSE optimization much less useful.

In Section 6.2, a novel transformation approach is presented. This novel transformation
can be shown to have a tighter linear bound than that of Equation (6.8) and, in the best case,
can make the solution translation of the case of the multiple observable output identical to

that of the single observable output.

6.2 Novel Transformation of the Min-Max Problem into Two

Least-Square Estimation Problems

The transformation presented in Section 6.1 changes the target function of the Min-Max
problem to the RMS of a different LSE problem. This transformation works only because
minimization of the RMS of the different LSE problem is identical to the minimization of
the original problem for a single observable output. In the case of the multiple observable
output variable, the minimization of the LSE problem cannot be proved to be identical to
the optimization of the Min-Max problem. This prevents the use of the transformation as
a method of solving the original Min-Max problem.

In this Section, a novel transformation which gives even a tighter linear bound is
presented. The reason for the development of this tighter bound is that it will work even
in the case of the multiple observable output. This novel transformation transforms the
original Min-Max problem into two LSE problem; one of them is the minimization of the

RMS of a given function; and the other is the minimization of the RMS of the difference
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between an arbitrary constant and a given function G(W,J). The first LSE problem is the
same as the one presented to in Section 6.1.3. Solving these two LSIE problems together
gives two target function values and one solution function. The maximum value of the
solution function of the two LSE problem can be translated into a solution of the original
Min-Max problem. The solution to the second LSE problem only serves as an assurance
that when optimizing the first LSE problem, one is indeed minimizing the original Min-Max

problem.

6.2.1 Problem Definition

The problem definition is identical to the one that presented in Section 6.1.2. Given
a positive function G(W,J) where W = {w|i =1...n} and J = {j|j =1...m}, one can

define the target function of the Min-Max problem to be F(W, J), and write:

min[F(IV, /)] 2 min [m}X[G(W, J)]] . (6.14)

6.2.2 Transformation Formulation

The transformed optimization problem consists of two LSE problems. The first one is
the minimization of the RMS of the given function G/(W,J). The second LSE problem is
the minimization of the RMS of the difference between an arbitrary constant ¢ and the
given function G(W,J). For the second LSE problem, one has to create a new Min-Max
problem. Define a new function A(W,.J) 2 [maxj[c — G(W,J)]], where ¢ is an arbitrary
constant which remains the same during the entire LSE optimization process. The choice
of ¢ affects the outcome of the the solution translation a great deal and will be discussed
in detail in Section 6.2.4. Define the target function of the new Min-Max problem to be

A(W,J), one can write:
. A
mml/n[A(W’ J) = min mth[C - G(W, D). (6.15)

Denote G(W, j) to be the discrete value of G(W,J) at j. Define the estimation vector
for the first LSE problem to be ©(W, J) 2 {GW,1),G(W,2),....,G(W,j),...,G(W,m)}T,
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where T" denotes the transposition operation, j € J and 1 < 7 < m, and m is the number
of the observable outputs. Define the summation of all squares of the first estimations,
®(W,J), to be:

B(wy, was ... Wy, 1,....m) 2 OW, N TOW, J) = > IG( (6.16)

=1

Define the Root-Mean-Square (RMS) of the first estimation as:

@(wl,wg,...,wn,l,...,m)é¢w:\Iiw (6.17)

7=1
Similarly, denote A(W, j) to be the discrete value of A(W, J) at j. Define the estimation

vector for the second LSE problem to be:
QW,J) 2 {c—=GW,1),e—GW,2),....c— GW,j),....,c — G(W, m)}T, (6.18)

where T denotes the transposition operation. Define the summation of all squares of the

second estimations, W(W, J, ¢), to be:

T(wy, W, ..oy wn, L, m,e) 2 QW, NTQW, J) = > le— (6.19)

J=1

Define the Root-Mean-Square (RMS) of the second estimation as:

m , m
J=1

The transformed optimization problem consists of two LSE problems. The first one is
the minimization of the RMS of the given function G/(W,J). The second LSE problem is
the minimization of the RMS of the difference between an arbitrary constant ¢ and the
given function G(W,J). One can write the new target function of the first optimization as:

: o [GW, )]
mml/n[ (W, J)] = mml/n[ ;7 ] (6.21)

m

Likewise, one can write the new target function of the second optimization as:

; m
=1

min[v:(IW, J,c)] 2 min N i le= GOV J)F ] . (6.22)
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The two new target functions (Equation (6.21)) and (Equation (6.22)) do not correspond
to the original target function (Equation (6.14)). However, it can be shown that the linear
combination of the minimization results of the two new target functions linearly bound the
original optimization solution. As can be seen in Section 6.2.4, if the linear bound is the
tightest for the idea case, the optimization result of the maximum value of the solution
Sfunction of the two LSE optimization can be translated to be the solution of the original
Min-Max problem.

The following is the proof of the target functions of the transformation linearly bound

each other. From Theorem 3, one has:
(W, J) < F(W,J) < Vm - oW, J). (6.23)

Similarly, for the new Min-Max problem and the new transformed LSE problem, one can
prove their target functions linearly bound each other.

Theorem 4: Given a function A(W,.J), the minimum of the Root-Mean-Square (RMS)
defined in Fquation (6.20) and the minimum of the mazimum defined in Equation (6.15)
linearly bound each other.

Proof:

Given that the largest of all the A(W,.J)is H(W,J). H(W, J) maxy A(W, J). For all
AW, 5), A(W,5) < H(W,J), (1 <j<m). From Equation (6.20), one has:
m _ m _ 2
B, J,c) A\IZ ¢ W])] \IzmaXJ[c mG(W,J)]
7=1

= max AW, J)y=H(W,J). (6.24)

On the other hand, H (W, J) is defined as

HW,J)2 max[e = G(W, J)] =  [max[e — GOV.))] < J fj [c — G(W, )2
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From Equation (6.24) and (6.25), one has
VW, J,e) < HW,J) < V/m - (W, J, c). (6.26)

This concludes the proof that (W, J,c) and H(W,j) linearly bound each other.

From the solution of the two LSE problem, one can transform them back to a solution

of the original Min-Max problem.

Theorem 5: Given a function G(W,.J), the minimum of the Root-Mean-Square (RMS) as
defined in Equation (6.17), and the sum of the minimum of the RMS and \/m times the
minimum of the RMS as defined in Equation (6.20) linearly bound the target function of

the Min-Max problem defined in Fquation (6.14). i. e.

P(W,J) < F(W,J) < (W, J) + v/ - (W, ], ). (6.27)

Proof:

From the Theorem 3, one has:
p(W, J) < F(W,J). (6.28)
It is shown in Appendix A that:
FW,J) < oW, J) 4+ Vm - (W, J, ). (6.29)
From Equations (6.28) and (6.29), one has:

(W, J) < FW,J) < (W, J)+/m - (W, ], c).

6.2.3 Physical Meaning

Given the same positive function G(W,J) where W = {w;li=1...n} and J =
{jlj = 1...m}, the objective of the Min-Max problem is to minimize the maximum of
all its values. The physical meaning of the novel transformation is not only to minimize the

RMS of the given function G(W,.J) but also to minimize the difference between the given
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the solution value of the original Min-Max problem, then after the LSE optimization is
done, compute a new constant ¢ = avg; [G(W, J)] and repeat the LSE optimization again.
Several iterations of the LSE optimization process are required until the value of the function
(W, J, ¢) is sufficiently small and then the maximum value of the solution function of the
two LSE optimization is taken as the solution to the Min-Max problem.

Generally speaking, the function (W, J, ¢) is two to three orders of magnitudes smaller
than o(W,J). This makes the linear bound (W, J) < F(W,J) < o(W, J)+/m- (W, J, ¢)
much tighter than the linear bound (W, J) < F(W,J) < /m - (W, J) as presented in
Section 6.1. This tighter bound assures the equivalence in minimization of the two different
kinds of optimization in the case of the multiple observable output variable. For the best
case, when the constant ¢ chosen is avg; [G(W,J)], the function (W, J,¢) = 0. Then
(W, J) < F(W,J) < oW, J)+y/m- (W, J,¢) = oW, J)+/m-0 = (W, J), which means
@(W, J) is equal to F'(W,J). Because this ideal case makes the two target functions equal
to one another, minimization of the LSE problem is indeed identical to the minimization of
the original Min-Max problem. This is the tightest linear bound possible which makes the
translation of the solution in the case of the multiple observable output variable exactly the

same as that of the single observable output variable.

6.3 Implementation of the Least-Square Estimation Optimization

The Levenberg-Marquardt method is used to solve the two Least-Square Estimation
problem similar to the implementation in Section 5.9. The only difference is the computation
of Ol and Q. The Oy is defined in Equation (6.2) and the Q| is defined in

Equation (6.18).

6.4 Experimental Results for Better Optimal Self-Damped Design

The examples that were tested were constructed with High Performance MCM process
technologies published by Frye [24]. The important parameters of the MCM process are

listed in Table 6.1. In the case of the uniform width, all of the widths are equal to 25um
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for all of the examples tested. All of the drivers are modeled with a step input voltage
source in series with the parallel combination of a 12() resistor and a 4.3pF capacitor. All
of the receivers in Examples 6.4.1 and 6.4.3 are modeled using a 2.5pF capacitor. All of the
receivers in Example 6.4.2 are modeled using a 4.5pF capacitor. For all of the simulation
results of the S-parameter macromodels, all of the far-end waveforms are simulated with

the time-of-flight captured explicitly with the method stated in Section 5.5.

HIGH PERFORMANCE MCM-D

Thickness of Dielectric (um) 5
Erel 3.2
Thickness of Metal (pm) 2.5

R (©/pm) for typical edge width 2.4

L (nH/pm) for typical edge width 2.9

C (pF/pum) for typical edge width | 1.39

lower bound metal line width (pm) 10

typical metal line width (um) 25

upper bound metal line width (pm) | 50

Table 6.1: The High Performance MCM Technologies Process Parame-

ters
Maximum Lower | Maximum Upper | Percent
Path Delay | Bound | Path Delay | Bound | Improvement
(Uniform) | ¢ (Optimal) | /myp
(nS) (nS) | (S) ms) | (%)
Example 6.4.1 || 0.9874 0.5833 | 0.7182 1.4288 | 27.26
Example 6.4.2 || 0.9354 0.6266 | 0.8245 1.2532 | 11.85
Example 6.4.3 || 1.2308 0.8510 | 0.8533 2.0841 | 30.67

Table 6.2: Comparison between the Uniform Width Design and the
Optimal Design
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Example 6.4.2 is a network with a loop. Figure 6.8 shows the topology, lengths, and
widths of the optimal design for all of the edges. The simulation waveforms of the receiver
4 with the maximum path delay for three different designs, namely the optimal design, old
optimal design, and uniform width design are shown in Figure 6.8 (b). The maximum path
delays, their respective bounds, and their percentage of improvements are listed in Tables
6.2 and 6.3. This novel optimal design has also been shown to have less overshoot than the
old optimal design which tries to minimize overshoot by minimizing the maximum of all
of the damping ratio errors together with the minimization of the maximum of all of the

delays.

6.4.3 Example 3 A Clock Tree Network

Example 6.4.3 is a clock tree network shown in Zhu’s ICCAD paper [59]. Figure 6.9 (a)
shows the topology, lengths, and widths of the optimal design for all of the edges. All of
the the simulation waveforms of the optimal design are shown in 6.9 (b), those of the old
optimal design are shown in 6.9 (c¢), and those of the uniform width design are shown in
Figure 6.9 (d). The maximum path delays, their respective bounds, and their percentage
of improvements are listed in Tables 6.2 and 6.3.

The old optimization method presented in Chapter 5 demonstrated an improvement
in the performance of this clock tree by reducing the maximum path delay and skew
through minimization of the delays and the damping ratio errors. Although the skew was
initially reduced to 96p5, a further reduction to 4.4pS can be achieved by using the novel
optimization method which has the ability to minimize the RMS of all of the delays as well
as the RMS of all of the differences between the delays and an arbitrary constant. This
method not only guarantees the quality of the solution to the Min-Max delay problem but
it also implies that the minimization of the skew has occured.

The experimental results show that this optimization method reduces the maximum
of the signal propagation delays considerably when compared to both the uniform width

designs and the previous optimization designs presented in Chapter 5.
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The results gathered here clearly demonstrate that this novel optimization method
is most useful when the differences between all of the observable output variables are
minimized. An excellent application of this optimization method, especially with this special
characteristics, is in the minimization of the maximum path delay of the equal-path-length

H clock tree.
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CHAPTER 7. Conclusions

The task of designing interconnect networks for today’s high performance digital systems
requires an accurate and a more efficient transient analysis of the coupled lossy transmission
lines with frequency-dependent losses. Four novel macromodels of transmission lines and
discontinuities have been developed for the purpose of a more efficient transient analysis.
A novel method for the optimal self-damped design of interconnect networks on multichip
modules (MCM) has also been presented.

We have presented here four new macromodels which extend and enhance the existing
S-parameter based macromodels. The contributions in this thesis are:

e The construction of the macromodel for the congruence transformer.

e The computation of the moments of the S-parameters from the curve-fitted coeflicients
of the R(f), L(f), C(f) and G(f) data sets.

e The construction of the macromodel for the congruence transformer for the coupled
transmission lines characterized with frequency-dependent parasitics.

e The indirect computation of the moments of the S-parameters from the measured
data through first converting the measured S-parameter data into R(f), L(f), C(f)
and G(f) data sets, and later finding the curve-fitted coefficients from the converted
data sets.

These results are used in the transient analysis of:

e The coupled transmission lines (Chapter 2)

e The single and coupled transmission lines characterized with frequency-dependent

losses (Chapter 3)
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e The elements characterized with measured and tabulated S-parameter data (Chapter
N
The experimental results show an excellent good agreement with other state-of-the-art
simulators in addition to the clear efficiency advantages.

An optimal design technique for the design of the interconnects on MCMs has been
presented. The self-damped design can be applied to any general network which may contain
loops. The contributions in this thesis are the formulation of the self-damped design, the
proofs of the tighter bounds between the original nonlinear programming problems and the
Least-Square Estimation problems. The experimental results show significant improvements

over the over-constrained uniform width design practice.
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CHAPTER 8. Future Work

In this research, only uniform transmission lines which support quasi-TEM wave prop-
agation are investigated. The S-parameter macromodels of non-uniform transmission lines
which support non-TEM wave propagation should be created in the future research.

For the creation of S-parameter macromodel of the measured data, only interconnections
which have either two-port or 2N-port configurations are considered. These result can be
extended to handle general two-port elements such as open or gap. They should also include
general N-port “black boxes” in future research.

Since the current S-parameter macromodel of the measured data can be used to ex-
trapolate or interpolate the S-parameter value at any frequency point, it can be integrated
seamlessly into the new frequency domain simulation method which evaluates S-parameters
at every frequency of interest and then performs approximation at the very end.

The perturbation method used in finding the gradient matrix of the Least-Square Ls-
timation optimization is a very time consuming one. There are two other methods, the
incremental simulation and the sensitivity analysis which can be employed to further speed
up the optimal design process. The use of S-parameter sensitivity analysis presents a great
challenge because it only produces a voltage-time relationship for each parameter which
does not bear a direct implication on the value of the partial directives. It requires a new
way of thinking about the transformation and implementation of the Least-Square Esti-
mation problem to solve the original Min-Max optimization problem. It also requires a
new proof to show that the target function of the new LSE problem linearly bounds the
target function of the original Min-Max problem. This topic is the most interesting and

challenging among all of the topics in the future extensions of this thesis.
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Appendix A. Proof of the Tighter Bound

Given a positive function G(W,J) where W = {w;|li =1...n} and J = {j|j=1...m},

one can define the target function of the Min-Max problem to be F(W,J), and write:
mml/n[ (W, J)] mml/n [m}X[G(W, J)]] . (A1)

Denote G(W, j) to be the discrete value of G(W,J) at j. Define the estimation vector
for the first LSE problem to be ©(W, J) 2 {GW,1),G(W,2),...,G(W,5),...,G(W,m)}T,
where T" denotes the transposition operation, j € J and 1 < 7 < m, and m is the number

of the observable outputs. Define the summation of all squares of the first estimations,

®(W,J), to be:
B(wy, W, ..y Wy, 1, m) 2 O, NTOW, ) = S[GW, ) (A.2)

Define the Root-Mean-Square (RMS) of the first estimation as:

@(wl,wg,...,wn,l,...,m)é¢w:\IiW (A.3)

J=1

Similarly, denote A(W, j) to be the discrete value of A(W, J) at j. Define the estimation

vector for the second LSE problem to be:
QW,J) & {c— GW,1),c— G(W,2),....c— G(W,j),....c— GW,m)}T,  (A.4)

where T' denotes the transposition operation. Define The summation of all squares of the

second estimations, W(W, J, ¢), to be:

T(wy, W, .y, L, ymye) 2 QW, NTQ(W, J) =Y [e— (A.5)

=1
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Define the Root-Mean-Square (RMS) of the second estimation as:

m , m
J=1

One wants to prove that given a positive function G(W,.J), the minimum of the Root-
Mean-Square (RMS) as defined in Equation (A.3), and the sum of the minimum of the
RMS as defined in Equation (A.3) and v/m multiplies the minimum of the RMS as defined
in Equation (A.6) linearly bound the target function of the Min-Max problem defined in

Equation (A.1). i. e
(W, J) < F(W,J) < (W, J)+ /m - (W, J, c). (A.7)
From the Theorem 3, one has:
p(W, J) < F(W,J). (A.8)
The second half of the equation is:
FW,J) < (W, J)+Vm - (W, J, c). (A.9)

Substituting the definitions of ¢ and 1 into the above equation, one has:

J

max [G( i W] +m- \Iiﬂ (A.10)

or

max [G(W, J)] gJiL \Iic— (W, 1))? (A.11)

The remainder of the proof of the theorem is to first establish the extreme value is in fact
the global minimum, and later prove that this extreme value is equal to the left hand side
of the Equation (A.11). If the global minimum is indeed equal to the left hand side of the
Equation (A.11), then this Equation (A.11) holds for all value of ¢. Throughout the proof,
because the case of the multiple outputs is analyzed here, it is assumed that there are at

least two observable output variables.
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It is apparent from Equation (A.7) that the choice of ¢ determines how tight the bound will
be. It can be shown that the ¢ which makes (W, J, ¢) assume the smallest value gives the
tightest bound. In order to find such a constant ¢, one takes the partial derivative of the

upper bound function w.r.t. ¢, one has:
J J J
% [@(Wv J) + \/E ' ¢(W, Jv C)] = _@(Wv J) + \/E : %Qb(wv Jv C)

Jdc
=04+ +vm- %ap(w, J,c). (A.12)

Setting the partial derivative equal to zero and solve, one can find the minimum of the right

hand side of Equation (A.11). From the definition,

B(W, J,e) Ji le = GOV ) (A.13)

j=1
In order to find the extreme value of (W, J,¢) w.r.t. ¢, one has to set the first partial
derivative of ¥(W, J,¢) w.r.t. ¢ equal to zero and solve. To find out whether it is a global
minimum or global maximum, one needs to find out the sign of the second partial derivative

of (W, J,¢) w.r.t. c. Take the first and second partial derivative of (W, .J,¢) w.r.t. ¢, one

has:

oy _ sy el

- = — =0, (A.14)

de \/27:1 [c=GW,))]?

2 m o2

88@15 = 2=t . (A.15)

c— )2
(\/ZT:I [ GTZV’]] )
Solving for % = 0, one has:
2 e =GN )] _ (A.16)
m

i=1

In order for the above equation to be true, the value of ¢ must be
c = avg; [G(W,J])]. (A.17)

To find out whether this extreme value of (W, J, ¢) is a minimum or a maximum, one looks

at the sign of . Slmphfy E oy , one has:
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(A.18)

82¢_ 271% _ 2
[e=GW.))]*

c? (\/E] 1 e )3 - (\/E}”:l [c—va,m?)?’

Because [c¢ — G(W, 7)]? is always greater than or equal to zero, so 882% > 0, which means
(W, J,c) is a concave upward function, and its value at ¢ = avg; [G(W, J)] is therefore a
global minimum.
The following three cases list all the possible values of the choice of constant e:

o Case I: c < avg; [G(W, J)]

e Casell: ¢ > max;[G(W,J)] > avg; [G(W,J)]

e Case III: max; [G(W,J)] > ¢ > avg; [G(W,J])]
Because ¢ = avg; [G(W,J)] is a global minimum, one only need to find out the extreme
value of the right hand side of Equation (A.11)in Case I.

Let

>

Z;n:l G(W7 ]) )

m

avg; [G(W, J)] (A.19)

Assume ¢ < avg; [G(W,J)]. It is known that Root-Mean-Square of a function is greater

than or equal to the Mean of the function, that is:

= avyg; [G(W, J)]. (A.20)

3

m

Ji o= GOV P | T GIW.J)

i=1

J 3 W + J S je— G, » == ) J e — G(W, ) (A.21)

max [G(W, J)] - ¢ = max[G(W, )] - avg; [G(W, J)],

J J

[c—GW,5)]? > max[G(W,J)] -

J

i[c —GW, )2 > max[G(W,J)] — avy; [G(W, J)].

J
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Rearranging, one has:

J

Jfﬁ—mwum+mwmmmMmewmmm-

i=1

From Equation (A.21) and (A.22), if ¢ < avg; [G(W, J)], one has:

JZW +Ji[c—a<w? > max GV ).

i=1 i=1

From Equations (A.23), one can write:

(A.22)

(A.23)

(A.24)

For a choice of ¢ with ¢ < avg; [G(W, J)], the minimum of (W, J)+/m (W, J, ¢)is equal

to max; [G(W,J)] = F(W,J), so
F(W,7) < (W, )+ Vi - $(W, ], )
From Equations (A.8) and (A.25), one has:

(W, J) < FW,J) < (W, J)+/m - (W, ], c).

(A.25)
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