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Transient Analysis of Coupled Transmission Lines Characterized withFrequency-Dependent Losses or Measured Scattering-Parameter Dataand Optimal Design of Self-Damped InterconnectsJimmy Shinn-Hwa WangabstractAs the packaging density and the clock speed of the multichip modules (MCMs) in-crease, crosstalk induced noise can become one of the major sources of noise which willlimit the performance of the high-speed digital systems. In addition, as the magnitudes ofthe harmonics of the transmitted signals above 1 GHz become more signi�cant, the inter-connects exhibit more frequency-dependent conductor losses (skin e�ect) and the dielectriclosses (dispersion). In order to design the interconnects more accurately and more e�-ciently, the S-parameters macromodels of the coupled lossless and lossy transmission lineswith frequency-dependent losses are constructed in this thesis. Since the discontinuities ininterconnects are hard to describe with close form equations, they are better characterizedwith measured S-parameter data. Thus, it is equally important to include the measuredS-parameter macromodel in the transient analysis.The task of designing interconnections does not stop at viewing simulation waveforms,it requires the design optimization as well. For today's Computer-Aided Design tools, itusually takes several iterations between the layout and the simulation tools to �nd theoptimal design of the interconnects. A simple and robust method of designing the lossy-transmission-line interconnects in a network for multichip modules has been developed.It uses wire-sizing to solve the problems encountered in propagating high-speed signalsthrough unterminated lossy transmission lines on the substrates of multichip modules. Theoptimal self-damped design concept is used to relate the layout parameter (line width) andthe transfer function (damping ratio, and natural undamped frequency) to the signal prop-agation delay. This method can produce a fast and a more stable signal propagation for



single-source multi-receiver networks on multichip modules, without using termination re-sistors. There are further improvements that can be gained by incorporating an incrementalsimulation and a sensitivity analysis into the optimal design to improve the e�ciency.Building these scattering parameter macromodels greatly improves the accuracy and thee�ciency of the transient analysis. Together with the optimal design, they provides a fasterturn around time in producing high-performance MCM designs.Keywords: Coupled Transmission Lines, Transient Analysis, Congruence Transformation,Scattering Parameter, Macromodel, S-Parameter Based Macromodel Simulator, MeasuredData, Frequency-Dependent Losses, S-Parameter, Measured S-Parameter Data, Frequency-Dependent Parasitic, Optimization, Min-Max, Least-Square Estimation, Linear Bound,Root-Mean-Square
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1CHAPTER 1. Introduction
Multichip modules (MCMs) are one of the most recent advances in the high-performancepackaging technology. They are usually constructed with multiple bare dice mounted andinterconnected on a thin-�lm substrate. As the packaging density and the clock speed of theMCMs increases, crosstalk-induced noise, as well as some of the frequency-dependent losses,have become some of the major issues in the designing of the interconnect networks. As aresult, more accurate and more e�cient circuit simulators are necessary for the building ofadvanced MCMs.The scattering-parameter (S-parameter) macromodel based simulator has been proposedas a novel circuit simulator [40] [38]. Given the scattering parameter description of thelumped elements, interconnect junctions, and single transmission lines, and using twoe�cient reduction rules on the original distributed and lumped network can be reducedto a network containing one multi-port component together with the sources and the loadsof interest [40]. In addition, the trade-o� between accuracy and e�ciency of the simulationcan be controlled by choosing the order of approximation. The utility of the Scattering-Parameter Macromodel Based Simulator, however, is very limited due to the small numberof macromodels that are available, thus far, due primarrily to the relatively short course ofits existence. It is therefore important for us to pursue other macromodels that can dealwith the crosstalk noise and the frequency-dependent issues. This thesis o�ers some newlydeveloped macromodels that add extensions and enhancements to the existing macromodelbased simulator. More speci�cally, this thesis includes four additional macromodels thatwill provide solutions to the previously mentioned problems: namely the crosstalk amongmulti-conductors and the frequency dependence of the parasitics.



2As the system clock speed increases, the crosstalk becomes one of the major sourceof noise, in addition to the delay and ringing which can limit the performance of high-speed digital systems [7] [9] [12] [14] [19] [46] [26] [48] [57]. The crosstalk can often leadto excessive overshoots, undershoots and glitches. It can also cause false switchings on thenon-active lines as well as undetected switchings on the active lines, not to mention thatit can also increase power dissipation of the output drivers. The coupled noise (crosstalk)is inversely proportional to the inter-line spacing and is directly proportional to severalparameters including those of the thickness of the dielectric material, the distance whichthe coupled lines are in parallel, the rate of change of the input waveforms, as well as theline impedances.Due to the high switching speed of today's digital systems, the magnitudes of the har-monics of the transmitted signals above 1 GHz can often become the signi�cant componentsin the power spectrum [29] [48] [2] [14] [28] [44]. At these high frequencies, the interconnectsexhibit more frequency-dependent behaviour resulting from conductor losses (skin e�ect)and dielectric losses (dispersion) [44]. The electro-static �eld solution can no longer predictthe correct parasitics for the interconnects that carry the high-speed digital signals. Themacromodel of the transmission lines is required to accurately model both the frequency-dependent conductor (skin e�ect) and the dielectric losses.The correct modeling of the transmission lines requires accurate modeling of boththe frequency-dependent conductor (skin e�ect) and the dielectric losses. The measuredS-parameter data can easily capture the behavior of these losses. The discontinuitiesin interconnects are di�cult to describe with closed form equations. They are bettercharacterized with the measured S-parameter data [21] [45] [29] [47] [34]. This calls fora more accurate and e�cient circuit simulator which can accept devices characterized withmeasured S-parameter data.Typical approaches for the transient analysis of the coupled lossy transmission linesare adapted in the new scattering-parameter macromodel based simulator. This thesisextends the scattering-parameter macromodel to include the congruence transformation to



3analyze the crosstalk in coupled transmission-line systems. It also extends the scattering-parameter macromodel to include the frequency-dependent losses (such as skin e�ect) andcoupling in the transient analysis of the coupled transmission-line systems. Scattering-parameter macromodel for interconnects characterized with measured data is also included.An indirect method is developed to �nd the moments from the measured S-parameterdata of interconnects. The novel indirect method of computing the moments calls for aconversion of the S-parameter data into the parasitic functions before �nding the Taylorseries expansions. The exact moments of the S-parameter functions are subsequentlycomputed from the moments of these four parasitic functions. Based on the exact momentsfound using the indirect approach, the macromodel of transmission lines characterized withfrequency-dependent losses is constructed and the transient simulation is performed.The task of designing the high-performance system does not stop with viewing thesimulation waveforms; this research takes one step further to optimally design the inter-connects based on the simulation waveforms. Based on the Integral of Time and Errorcriterion (ITAE), wire-sizing method, and Least-Square Estimation Optimization, the lossyinterconnects on the multichip modules can be designed to meet all the user's electricalrequirements. A simple and robust optimal design method is developed for the design ofthe lossy-transmission-line interconnects for multichip modules [52] [53] [54]. This methoduses wire-sizing to meet the electrical damping criteria, to solve the problems encounteredin propagating high-speed signals through unterminated lossy transmission lines on thesubstrates of MCMs. The optimal design method is based on a new improved scattering-parameter macromodel of transmission lines that keeps track of the time-of-
ight term inthe transfer functions. The optimal self-damped design concept is to relate the layout pa-rameter (line width and line spacing) and the transfer function (damping ratio, and naturalundamped frequency) to the signal propagation delay. This method produces a faster and amore stable signal propagation for single-source multi-receiver networks on MCMs withoutusing termination resistors.The optimal wire-sizing problem is a general nonlinear programming problem. Prin-



4cipal Least Square Algorithms include the Durbin method, the Levinson/Wiener method,the Cholesky Decomposition method, the Burg method, the Lattice method, the Kalmanmethod, and the Square Root Kalman method [27]. The nonlinear programming problem isnot only hard to solve but also takes signi�cant computation time. One alternative to solvethe Min-Max optimization problem, which obtains a good solution in a relative short periodof time, is to transform the original Min-Max optimization problem into a Least-Square Es-timation (LSE) problem, which has a number of well de�ned methods for �nding its optimalsolution. It can be shown that the target function of the original Min-Max optimizationproblem and that of the transformed LSE problem linearly bound each other. Althoughthese two problems have di�erent objective functions, optimizing the transformed problemcan produces a solution to the original Min-Max problem. Thus for non-linear Least SquareEstimation problems, the Levenberg-Marquardt method is recommended [15] [36] [16].The Levenberg-Marquardt Method is used in single variable optimization by transform-ing the original Min-Max problem into the Least-Square Estimation (LSE) problem. Touse it in the nonlinear programming problem such that multiple objectives must be simul-taneously minimized together, one must change the transformation. An new approach hasbeen developed in this thesis. By transforming the original Min-Max problem into twoLeast-Square Estimation problems, we prove that a tighter bound exists which guaran-tee the optimization of the transformed multi-objective LSE problems is equivalent to theoptimization of the original Min-Max problem.This thesis is divided largely into two parts: The Part I deals with the discussion ofthe proposed macromodels. Part II is dedicated exclusively to the optimal design method.Including in Part I are macromodels for:� The coupled transmission lines (Chapter 2)� The single and coupled transmission lines characterized with frequency-dependentlosses (Chapter 3)� The elements characterized with measured S-parameter data (Chapter 4)



5Including in Part II are the optimal design method and the proof of the tighter bound forthe optimization transformation. The optimal design method is shown in Chapter 5 andthe proof of the tighter bound is shown in Chapter 6. The theoretical work for all themacromodels, the optimal design method, and the proof of the tighter bound have beencompleted and are presented in the thesis.



6CHAPTER 2. Transient Analysis of CoupledTransmission Lines
Previous research work which uses scattering parameter for the analysis of the coupledtransmission lines include those of the general convolution by Winklestein et al. [57], thefull-wave analysis by Cooke et al. [14] and time domain simulation by Schutt-Aine et al.[48]. While Schutt-Aine et al. demonstrated a great accuracy improvements in simulatingcircuits that includes non-linear drivers and terminations, Cooke et al. illustrated an abilityto simulate frequency dependent model propagation. Recently, a novel frequency domainsimulator using scattering-parameter macromodels has been presented by Liao et al [39] [40].Based on the scattering-parameter macromodel, Pade techniques or Exponentially DecayedPolynomial Function (EDPF) can be used to approximate transfer functions of the coupledinterconnects. This approach avoids the costly matrix computation for converting thefrequency domain scattering-parameter matrix representation into the one of time domaintransfer/re
ection matrix as in [48], and the time consuming full-wave analysis as in [14].It has been shown that the congruence transformation can be used to decouple themodal wave propagation in a coupled transmission-line system [7] [9] [30] [46]. Afterdecoupling the n coupled transmission lines using the congruence transformation, the task ofcomputing the scattering matrix of the coupled transmission lines then becomes the task ofcomputing the scattering matrix of the congruence transformers and that of the n decoupledsingle transmission lines. This congruence transformation has been extended to buildthe novel macromodel for the coupled lossy transmission lines. A very simple scattering-parameter description of the congruence transformer for coupled lossless transmission linesis subsequently derived. Incorporating the novel macromodel of the coupled transmission



7lines in the scattering parameter based simulator provides a more e�cient way of analyzingcrosstalk for the transient simulation.The contribution of this portion of the thesis is to build the S-parameter macromodel forthe congruence transformer. In Section 2.1, the congruence transformation of the losslessand lossy coupled transmission lines is derived based on frequency-independent per-unit-length L and C matrices. The scattering-parameter macromodel of the coupled losslesstransmission lines is derived from the congruence transformation. An added simpli�cationof the scattering-parameter macromodel is derived through the similarity transformationproperty. The derivation will be further extended to the coupled lossy transmission lines. InSection 2.4, an example of one of the MCMC-94 Benchmarks will be presented. The resultswill be compared with the previously published results and the state-of-the-art simulatorssuch as those of SWEC [41] and Co�ee [11].2.1 Congruence Transformation of the Coupled Transmission LinesWave propagation in multiconductors has been extensively studied by the microwave,electronic magnetic compatibility (EMC), and electrical engineers. Due to the couplingbetween transmission lines, di�erent modes which have di�erent propagation velocities existsimultaneously in the system. For an n conductor system shown in Figure 2.1 (a), thereexists n fundamental modes of propagation.With the assumption of quasi-TEM wave propagation, the distributions of voltages andcurrents in an n coupled lossy transmission-line system can be described by the generalizedTelegraphist's equations [9]:@v(x; t)@x = �L@i(x; t)@t �Ri(x; t) (2.1)@i(x; t)@x = �C@v(x; t)@t ; (2.2)where 0 � x � l, and v(x; t) and i(x; t) are column vectors de�ning the voltages vk(x; t)and currents ik(x; t) distributed on the conductors k = 1; 2; 3; :::; n. The L and C arethe n by n symmetric matrices of the per-unit-length inductance and capacitance of the n
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(b) (c)Figure 2.1: Coupled Transmission Lines: The n coupled transmission lineswith total coupled length l are shown here. The lines can be either lossless (b) orlossy (c). The coupled system is decoupled into two congruence transformers Xand n decoupled single transmission lines.conductor system. The R = diag(Rkk), k = 1:::n is the diagonal matrix of the per-unit-length resistance of the n conductors.Taking derivatives with respect to x for both sides of Equation (2.1) and (2.2) withproper substitution of terms, one obtains the following equations:@2v(x; t)@x2 = LC@2v(x; t)@t2 +RC@v(x; t)@t (2.3)@2i(x; t)@x2 = CL@2i(x; t)@t2 +CR@i(x; t)@t ; (2.4)In order to decouple the coupled system, all seven matrices R, L, C, LC, CL, RC, andCR must be simultaneously diagonalized.It can be shown that for the coupled lossless transmission line systems, the right eigen-matrix X of the L matrix is the congruence transformation matrix. Likewise for the coupledlossy transmission line systems, the congruence transformation matrix is [9]:X � diag(pRkk)Wdiag(q�k=Lk); (2.5)



9where Rkk is the k� th diagonal element of the R matrix, W is the right eigenvector matrixof the time constant matrix T � R�1=2LR�1=2 = Wdiag(�k)W�1, �ks are the eigenvaluesof time constant matrix T, and Lks are some arbitrary constants.Bayard �rst outlines the transformation, AtZA, and calls it \translator" [3]. Hazonyis the �rst one to name the transformation \congruence transformer" in his book [30].Chang uses the congruence transformer to decouple both the lossless [7] and lossy coupledtransmission lines [9]. Chang's method for the analysis of coupled transmission lines relieson simultaneously diagonalizing all the matrices using a special conditioned matrix. Romeoand Santomauro present a di�erent method of �nding the right eigenvector matrices forcoupled lossless transmission lines with tridiagonal L andCmatrices [46]. In this part of thethesis, we �nd the right eigenvector matrices of a full L matrix. The method proposed herefor the lossless case is preferred to Chang's method [7] because it leads to simpler equationsfor scattering parameter based macromodel representation of congruence transformer. InChang's method [7], where the similarity transformation property X�1 = X t may not hold,the scattering parameter matrix representation in Equation (2.39) for the coupled losslesscase cannot therefore be simpli�ed to Equation (2.40).After the coupled transmission-line system is decoupled into the congruence transformersand the decoupled single transmission lines, the macromodels can be built for all of themfrom their individual parameters.2.2 Scattering Parameter Macromodel of a Congruence TransformerBy applying the congruence transformation, we can change the variable basis from v tou and from i to j. The terminal voltages and currents at opposite sides of the transformerare related by (see Figure 2.1 (b)) [7]:vk(x; t) = nXm=1Xkmum(x; t) (2.6)jk(x; t) = � nXm=1Xmkim(x; t); (2.7)



10The negative sign is used to indicate the direction of current jk is 
owing into the trans-former. Rewriting Equation (2.6) and (2.7) in a matrix notation, one obtains:V (x; t) = XU(x; t) (2.8)I(x; t) = � �X t��1 J(x; t); (2.9)where V , U , I and J are column vectors, V = [v1(x; t); :::; vn(x; t)]t, U = [u1(x; t); :::; un(x; t)]t,I = [i1(x; t); :::; in(x; t)]t, and J = [j1(x; t); :::; jn(x; t)]t.Substituting Equation (2.8) and (2.9) into Equation (2.1), (2.2), (2.3) and (2.4), afterrearrangements, one obtains the following Equations (2.10) to (2.13):@u(x; t)@x = �X�1L �X t��1 ��@j(x; t)@t ��X�1R �X t��1 [�j(x; t)] (2.10)�@j(x; t)@x = �X tCX@u(x; t)@t (2.11)@2u(x; t)@x2 = X�1LCX@2u(x; t)@t2 +X�1RCX@u(x; t)@t (2.12)@2j(x; t)@x2 = X tCL�X t��1 @2j(x; t)@t2 +X tCR�X t��1 @j(x; t)@t : (2.13)It can be shown that the coe�cient matrices are all diagonal matrices as represented byEquations (2.14) to (2.20):~R = X�1R(X t)�1 = diag(Rk) = diag(Lk=�k) (2.14)~L = X�1L(X t)�1 = diag(Lk) (2.15)~C = X tCX = diag(Ck) = diag(1=�2Lk) (2.16)~L~C = X�1LCX = X�1L �X t��1X tCX = diag(LCk) = diag(1=�2) (2.17)~C~L = X tCL�X t��1 = X tCXX�1L �X t��1 = diag(CLk) = diag(1=�2) (2.18)~R~C = X�1RCX = X�1R �X t��1X tCX = diag(RCk) (2.19)~C~R = X tCR�X t��1 = X tCXX�1R �X t��1 = diag(CRk): (2.20)where k = 1:::n and diag(Lk) represents an n by n diagonal matrix L with all o�-diagonalelements equal to zero. The Rk, Lk, Ck, (LC)k , (CL)k, (RC)k , and (CR)k are the k � theigenvalue of the matrices R, L, C, LC, CL, RC, and CR.



11Rede�ned the Telegraphist Equations using Equations as shown in (2.21) to (2.24) are:@u(x; t)@x � �~L ��@j(x; t)@t �� ~R [�j(x; t)] (2.21)�@j(x; t)@x � �~C@u(x; t)@t (2.22)@2u(x; t)@x2 � ~L~C@2u(x; t)@t2 + ~R~C@u(x; t)@t (2.23)@2j(x; t)@x2 � ~C~L@2j(x; t)@t2 + ~C~R@j(x; t)@t : (2.24)The n coupled transmission lines shown in Figure 2.1 (a) can be decoupled using thecongruence transformation method as shown in either Figure 2.1 (b) or (c) depending onwhether they are lossless or lossy. Each decoupled single transmission line carrys one modeof propagation. The incident waves are decoupled into di�erent modes, and propagatethrough each decoupled transmission line in di�erent mode velocity, then all the modes arecombined at the other end to form the output and the re
ected waves.The task of �nding the scattering parameter matrix of n coupled lossless transmis-sion lines becomes one of �nding the scattering parameter matrices of the two identicalcongruence transformers and the scattering parameter matrices of the n decoupled singletransmission lines. The scattering parameter matrices are not combined because this is thetask of the scattering parameter based macromodel simulator. The scattering parameterbased macromodel simulator takes full advantage of being a frequency domain simulatorand lumps the multiport components together using the Pade or EDPF approximation [39][40].Due to the choice of identical reference impedance Z0 at any port for the scatteringparameter based macromodel simulator, the scattering parameter matrix S of any multi-port component is equivalent to its voltage scattering parameter matrix SV . Since onlythe terminal voltages and currents are of an interest, the following representations areintroduced (see Figure 2.1):v1k(t) � vk(x = 0; t) v2k(t) � vk(x = l; t) i1k(t) � ik(x = 0; t) i2k(t) � ik(x = l; t);



12where k = 1:::n. The u1k, u2k, j1k, and j2k are the terminal voltages and currents after thetransformation, they represent:u1k(t) � uk(x = 0; t) u2k(t) � uk(x = l; t) j1k(t) � jk(x = 0; t) j2k(t) � jk(x = l; t);To �nd the voltage scattering parameter matrix of a congruence transformer, �rst thetime-domain voltage and current are transformed into frequency-domain variables, usingLaplace transforms. For example, jpk(s) = L(jpk(t)), where p = 1; 2 and k = 1; :::; n. Thenthe terminal voltages and currents of the both sides of the transformer are separated intothe incident and re
ectd wave components as shown in Figure 2.2: Writing the voltage and
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Figure 2.2: The Separation of Wave Components: The voltage and currentwaveforms at both sides of the transformer are separated into incident and re
ectdwave components.current wave components in vector notation, one obtains:Vp = V +p + V �p (2.25)Up = U+p + U�p (2.26)Ip = I+p � I�p (2.27)Jp = J+p � J�p ; (2.28)where p = 1; 2 and V +p , V �p , U+p , U�p , I+p , I�p , J+p , and J�p , are column vectors of theincident and re
ected waves, for example J+p = hj+p1(s); :::; j+pn(s)it.It may be necessary to �nd only one scattering parameter matrix for the congruencetransformers because if the n coupled conductor are uniform, the system is reciprocal. FromEquation (2.8), (2.9), and (2.25) to (2.28), one obtains:



13V +p + V �p = X(U+p + U�p ) (2.29)I+p � I�p = �(X t)�1(J+p � J�p ) (2.30)Based on the de�nition of the incident voltage and current waves, the re
ectd voltage andcurrent waves, and the reference impedance Z0, one can write:V +p = Z0I+p (2.31)V �p = Z0I�p (2.32)U+p = Z0J+p (2.33)U�p = Z0J�p : (2.34)The de�nitions of voltage scattering parameters matrix SV and its submatrices SV11, SV12,SV21, and SV22 are: SV = 264 SV11 SV12SV21 SV22 375SV11 = V �pV +p �����U+p =0SV12 = V �pU+p �����V +p =0SV21 = U�pV +p �����U+p =0SV22 = U�pU+p �����V +p =0By arithmetic manipulation of Equations (2.25), (2.26), (2.27), (2.28), (2.29), (2.30), (2.31),(2.32), (2.33), and (2.34), and by setting U+p to be an all-zero column vector, one can �ndSV11 as: SV11 = �[X�1 +X t]�1[X�1 �X t]: (2.35)Similarly one can �nd other submatrices of SV :SV12 = 2[X�1 +X t]�1 (2.36)SV21 = 2[X + (X t)�1]�1 (2.37)SV22 = �[X + (X t)�1]�1[X � (X t)�1]: (2.38)



14The voltage scattering parameter matrix SV is:S = 264 �[X�1 +X t]�1[X�1 �X t] 2[X�1 +X t]�12[X + (X t)�1]�1 �[X + (X t)�1]�1[X � (X t)�1] 375 ; (2.39)where the submatrix X is de�ned in Equation (2.5).Since the similarity transformation property X�1 = X t holds for all X , so it cansimultaneously diagonalize the L, C, LC, and CL matrices. For the coupled losslesstransmission line systems, the scattering parameter matrix S can be simpli�ed to [55]:S = 264 0 XX t 0 375 : (2.40)2.3 Scattering Parameter Macromodel of a Decoupled TransmissionLineFor each of the decoupled transmission lines shown in Figure 2.1 (b) and (c), itsscattering parameter matrix is [20]:S(s) = 12Z0Zc(s) cosh(
(s)) + (Z2c (s) + Z20) sinh(
(s))264 (Z2c (s)� Z20) sinh(
(s)) 2Z0Zc(s)2Z0Zc(s) (Z2c (s)� Z20) sinh(
(s)) 375 ; (2.41)where Z0 is the reference impedance. For the lossy case, both Zc(s) and 
(s) are computedfrom the eigenvalues Rk, Lk, and Ck obtained from the diagonalization of the R, L, and Cmatrices respectively. The Zc(s) = qRk+sLksCk is the characteristic impedance of the k � thline where k = 1:::n, and 
(s) = p(Rk + sLk)(sCk) � l is the propagation constant of thek � th line where l is the coupling length. For the lossless case, one can simply set Rk tozero and compute both Zc and 
 from the eigenvalues Lk and Ck of the L and C matricesrespectively. The Zc(s) = qLkCk is the characteristic impedance of the k � th line andk = 1:::n, and 
(s) = spLkCk � l is the propagation constant of the k � th line.



152.4 Experimental Result of the Transient Analysis of CoupledTransmission LinesThe example presented here is one of the MCMC-94 Benchmarks (1994 IEEE Multi-ChipModule Conference Interconnect Simulation Benchmarks). All of the far-end waveforms aresimulated with time-of-
ight captured explicitly [37]. The circuit and geometry parametersof this example as shown in Figure 2.3 are taken from Cooke's paper [14]. The drivingsignal is 100-MHz, 50% duty-cycle pulse with 0:1ns rise/fall time. The L and C of thecon�guration are:L = 2666664 5:033 nH=cm 1:734 nH=cm 0:818 nH=cm1:734 nH=cm 4:972 nH=cm 1:734 nH=cm0:818 nH=cm 1:734 nH=cm 5:033 nH=cm 3777775C = 2666664 0:667 pF=cm �0:163 pF=cm �0:0145 pF=cm�0:163 pF=cm 0:722 pF=cm �0:163 pF=cm�0:0145 pF=cm �0:163 pF=cm 0:667 pF=cm 3777775Two enlarged portions of the simulation waveforms are shown in Figure 2.4 (a) and (b).The simulation waveforms of this example are shown in Figure 2.5 (a), (b), (c), and (d).The ASTAP (IBM circuit simulator) and Cooke's simulation waveforms are digitized fromthe results published in Cooke's paper [14] while the SWEC results are taken from MCMC-94 benchmark results. The SWEC uses an analytic method to �nd the derivatives of theadmittance in order to compute the moments and because of its complexity, it can only�nd very low order moments [41]. In all of the plots, the results obtained from SWEC andour macromodel simulators agree very well with the published ASTAP results. However, itappears that the macromodel simulation waveforms match those of the ASTAP simulatorbetter than those derived from the SWEC. In all of the waveform plots, Cooke's resultsdeviate from the ASTAP results the most. The total running time for this example is7:24 seconds on a SUN SPARC station 1+. The running times of other simulators are notlisted because they are executed on di�erent machines. For small examples such as the



16one presented here, the S-parameter macormodel simulator could not have a substantialspeed advantage over other time-domain simulators such as SWEC. The speed up of theS-parameter macromodel based simulator comes from reducing large linear networks so thatit can avoid the computations of the waveforms on the internal nodes.
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(a) (b)Figure 2.4: Enlarged Simulation Waveforms of the Two Groups of ThreeCoupled Lossless Transmission Lines: The enlarged output waveforms of thenear end of the active line are shown in (a) together with its corresponding Cooke's,ASTAP and SWEC simulation results. The enlarged output waveforms of the farend of all three lines are shown in (b) together with their corresponding Cooke'sASTAP and SWEC simulation results.
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18CHAPTER 3. Transient Analysis of CoupledTransmission Lines Characterized with theFrequency-Dependent Losses
The objectives of this part of the thesis is to provide a method of �nding the Taylorseries expansions of the S-parameter functions from the measured parasitic data, R(f),L(f), C(f) and G(f). A curve-�tting is �rst applied to �nd the moments of these fourparasitic functions, which are subsequently used to compute the exact moments of the S-parameter functions. Based on the exact moments found by this approach, the macromodelof transmission lines characterized with the frequency-dependent losses is constructed andthe transient simulation is performed.Comparing to other accurate time domain simulators, the S-parameter macromodelbased simulator is signi�cantly more e�cient, at the least thirty times faster in handlinglarge circuits. However, it can only provide moderate accuracy because it utilizes lowerorder Pade approximations. This trade-o� between accuracy and e�ciency has to be madein order to play \what-if" scenarios for a performance-driven layout synthesis in whichthousands of simulations must be executed to obtain timing and amplitude information.Classical approaches which use empirical equations might not work in this case becausethe over-simpli�cation assumptions. Only a simulator with su�cient accuracy, and thatdoes not require excessive time for simulate can �t this requirement. The S-parametermacromodel simulator is well suited for this kind of application.



193.1 Representing the Frequency-Dependent Coupled TransmissionLines Using the S-Parameter MacromodelPrevious research which took frequency-dependent losses into consideration include thework of Gruodis et al. [29], Schutt-Aine et al. [48], Chang et al. [8], Beyene [4], Baumgartner[2], Cooke et al. [14], Gordon et al. [28], and Nguyen [44]. Gruodis et al. measured theadmittance matrix Y2n and impedance matrix Z2n of the transmission lines, computed theY0 matrix and propagation constant �, and then simulated the circuit's transient behaviorusing the state variable transfer function method [29]. Schutt-Aine et al. utilized thescattering parameter matrix method [48]. Chang et al. chose the \method of characteristic"with a network synthesis [8]. Beyene combined the bi-level waveform relaxation withscattering parameters [4]. Baumgartner used a state variable transfer function with anexponential approximation [2]. Cooke et al. chose the scattering parameter frequencydomain simulation with the Fast Fourier Transformation (FFT) method [14]. Gordon etal. used the impulse response convolution method [28], and Nguyen used the state variabletransfer function with the rational function approximation improvement [44]. In some ofthese previous researches including those by Schutt-Aine et al. [48], Beyene [4], and Cooke etal. [14], they chose to use the scattering parameter for the analysis of the transmission lineswith the frequency-dependent losses. The scattering parameter matrix method adopted bySchutt-Aine et al. [48] used those of S11(s) and S21(s) to �nd the transmission T (t) andre
ection �(t) matrix for the time domain convolution. The drawback of this Schutt-Ainemethod is the large number of matrix operations that were required. The bi-level waveformrelaxation method adopted by Beyene [4] utilized the FFT and the inverse FFT (IFFT)to iterate between the frequency domain simulation and the time domain simulation. Thede�ciency of Beyene's method is the need for more than one thousand data points in orderto do the evaluation of the FFT (IFFT) operation with the same degree of accuracy as otherapproaches. The scattering parameter frequency domain simulation with the FFT methodby Cooke et al. [14] uses all the scattering parameters without reduction. The drawbacksof Cooke et al. method are its poor e�ciency and its lack of accuracy when compared



20to the published ASTAP results. In summary, all of the above methods lack the requirede�ciency because they do not employ lower order approximations and the macromodelreductions that were found in the scattering parameter macromodel based simulator.Building the novel macromodels for both the frequency-dependent single and coupledtransmission lines facilitates an accurate and a more e�cient transient simulation of theinterconnections that are characterized by lossy transmission lines with skin e�ects. Thecontribution of this part of the thesis is to determine the moments of the S-parametersof the decoupling congruence transformer and the decoupled transmission lines character-ized with frequency-dependent losses from the curve-�tting coe�cients of the R(f), L(f),C(f) and G(f) data sets. Section 3.2 will derive the representations of the S-parametersmacromodel for the frequency-dependent single transmission line and Section 3.3 will derivethe representations of the S-parameters macromodel for the frequency-dependent coupledtransmission line.3.2 S-Parameter Macromodel of the Frequency-Dependent SingleTransmission LineWith the assumption of quasi-TEM wave propagation, the distributions of voltagesand currents in a single lossy transmission line can be described by the generalized Tele-graphist's equations [9] shown in Equation (2.1) and (2.2). The frequency-dependent par-asitic functions: R(f), L(f), C(f) and G(f) are used to characterize transmission linewith frequency-dependent losses. The scattering parameter matrix for a transmission lineis shown in Equation (3.1).S(s) = 12Z0Zc(s) cosh(
(s)) + (Z2c (s) + Z20) sinh(
(s))264 (Z2c (s)� Z20) sinh(
(s)) 2Z0Zc(s)2Z0Zc(s) (Z2c (s)� Z20) sinh(
(s)) 375 ; (3.1)The Zc(s) is the characteristic impedance and 
(s) is the propagation constant. Both Zc(s)and 
(s) are computed from the frequency-dependent values of R(f), L(f), C(f) and G(f)



21based on the following equations:
(s) = q(R(s) + sL(s))(G(s) + sC(s)) � lZc(s) = sR(s) + sL(s)G(s) + sC(s) :For an uniform conductor, the S-parameter matrix is symmetrical [21]. Rearranging therepresentations of S11(s) and S21(s) in Equation (2.41), one has:S11(s) = �Z2c (s)� Z20� � sinh(
(s))2Z0Zc(s) cosh(
(s)) + (Z2c (s) + Z20) sinh(
(s)); (3.2)S21(s) = 2Z02Z0Zc(s) cosh(
(s)) + (Z2c (s) + Z20) sinh(
(s)): (3.3)In order to �nd the lower order approximations of S11(s) and S21(s), the representationsof the R(f), L(f), C(f) and G(f) must �rst be found. A curve-�tting method is thenadapted to �nd the coe�cients of the polynomials which model the parasitics. At �rst,the linear �t is run on each data set to obtain two coe�cients as the initial assignmentfor the successive curve-�tting steps. Then the problem of �nding the coe�cients of thepolynomials are transformed into one of the least-square error estimation. The Levenberg-Marquardt method [42] [16] is used to solve this least-square error estimation problem. Thismethod is chosen because it combines the best features of both the Taylor series expansionand the gradient methods. It can �nd the best solution as well as gradient methods evenif the solution is outside the circle of convergence; and the rate of convergence is as fast asTaylor series methods.The two coe�cients found in the linear �t are passed on to the Levenberg-Marquardtmethod as an initial guess. The Levenberg-Marquardt method then iterates to �nd thebest �t coe�cients for the curves of R(f), L(f), C(f) and G(f). This method stopswhen the results converges or the number of iteration exceeds a preset limit. For all of theexperiments, this curve-�tting method shows better results than the one-pass least-square�t or the singular-value decomposition �t methods.If one de�nes:



22T (s) � 
2(s) � qXi=0 ti � si + o(sq) (3.4)A(s) � Zc(s)
(s)� Z20 � 
(s)Zc(s)� qXi=0 ai � si + o(sq) (3.5)B(s) � Zc(s)
(s) + Z20 � 
(s)Zc(s)� qXi=0 bi � si + o(sq); (3.6)whereas 
2(s) = (R(s) + sL(s))(G(s) + sC(s)), 
(s)Zc(s) = G(s) + sC(s), and Zc(s)
(s) =R(s) + sL(s), there is no square root involved in the evaluation of the approximations ofthe T (s), A(s), and B(s) complex functions. The approximation of the R(s), L(s), G(s),and C(s) real functions are known through curve-�tting. The coe�cients of the T (s), A(s),and B(s) complex functions can be found through simple polynomial operations.If one further de�nes: T (s) � t0 + qXi=1 ti � si + o(sq)� t0 + Tq(s) + o(sq): (3.7)where the constant term is separated from the rest of function. The separation will makethe �nding of the coe�cients in Equation (3.12) and (3.13) much easier. The expansions of2Z0 cosh(
(s)) and sinh(
(s))
(s) are shown in Equation (3.8) and (3.9):U(s) � 2Z0 cosh(
(s))� 2Z0 1Xi=0 
2i(s)2i! � 2Z0 1Xi=0 T i(s)2i!� 2Z0 qXi=0 ui � si + o(sq) (3.8)V (s) � sinh(
(s))
(s) � 1Xi=0 
2i(s)(2i+ 1)! � 1Xi=0 T i(s)(2i+ 1)!� qXi=0 vi � si + o(sq): (3.9)Based on Equations (3.5), (3.6), (3.8), and (3.9), Equations (3.2) and (3.3) can be rewrittenas:



23S11(s) = A(s) � V (s)U(s) + B(s) � V (s) (3.10)S21(s) = 2Z0U(s) + B(s) � V (s) : (3.11)It can be shown that: U(s) = 2Z0 qXk=0 �k � T kq (s) + o(sq) (3.12)V (s) = qXk=0�k � T kq (s) + o(sq); (3.13)where �k = 1Xk=0 Cki2i! � ti�k0 (3.14)�k = 1Xk=0 Cki(2i+ 1)! � ti�k0 ; (3.15)and t0 is the separated constant term in Equation (3.7). Although the summation of both�k and �k are an in�nite series, in reality, the inverse of the factorial is a fast convergingseries and can be truncated at a certain point without introducing appreciable error. Thecoe�cients of U(s) and V (s) are:ui = iXk=1 �k Xj1+j2+���+jk=i tj1 � tj2 � � � tjk (3.16)vi = iXk=1�k Xj1+j2+���+jk=i tj1 � tj2 � � � tjk : (3.17)Since the coe�cients of the polynomial T (s) are known from Equation (3.4), the coe�cientsof U(s) and V (s) can then be computed.If one de�nes: S11(s) = C(s)D(s) (3.18)S21(s) = C 0(s)D(s) : (3.19)Comparing Equations (3.10), (3.11), (3.18), and (3.19), one �nds:C(s) � qXi=0 ci � si + o(sq) = A(s) � V (s) (3.20)



24D(s) � qXi=0 di � si + o(sq)= U(s) + B(s) � V (s) (3.21)C0(s) = 2Z0: (3.22)It can be shown that the coe�cients of C(s) and D(s) are:ck = Xi+j=k aivj (3.23)dk = uk + Xi+j=k bivj : (3.24)If the moments of S11(s) and S21(s) are mi and ni, one can write:S11(s) = qXi=0mi � si + o(sq) (3.25)S21(s) = qXi=0 ni � si + o(sq): (3.26)From Equation (3.18) and (3.26), one can derive:Xi+j=kmidj = ck: (3.27)If one denotes: Dq = 26666666666664 d0 0 0 : : : 0d1 d0 0 : : : 0d2 d1 d0 : : : 0: : :dq dq�1 dq�2 : : : d0 37777777777775 (3.28)Mq = � m0 m1 m2 � � � mq �T (3.29)Cq = � c0 c1 c2 � � � cq �T ; (3.30)where T represents the transpose of the vector, one can rewrite DqMq = Cq, i.e. Mq =D�1q Cq. Thus the momentsmi of the S11(s) function can be found through simple backwardsubstitutions. Similarly, if one denotes:



25Nq = � n0 n1 n2 � � � nq �T (3.31)C0q = � 2Z0 0 0 � � � 0 �T ; (3.32)where T again represents the transpose of the vector, one can rewrite DqNq = C 0q, i.e.Nq = D�1q C0q, and the moments ni of the S21(s) function can again be found throughsimple backward substitutions.3.3 S-Parameter Macromodel of the Frequency-Dependent CoupledTransmission LinePrevious research which used scattering parameter for the analysis of the coupled trans-mission lines include those of the general convolution byWinklestein et al. [57], the full-waveanalysis by Cooke et al. [14] and the time domain transient simulation by Schutt-Aine etal. [48]. While Schutt-Aine et al. demonstrated a greater accuracy improvement in simu-lating the circuits that included non-linear drivers and terminations, their method involvedcostly matrix computation for converting the frequency domain scattering parameter ma-trix representation into the time domain transmission/re
ection matrix representation [48].Cooke et al. illustrated an ability to simulate frequency dependent modal propagation, buta time consuming full-wave analysis was often required [14]. Recently, a novel frequencydomain simulator using scattering parameter based macromodels has been presented byLiao et al [39] [40]. Based on the scattering parameter based macromodel, Pade techniquesor Exponentially Decayed Polynomial Function (EDPF) can be used to approximate trans-fer functions of the coupled interconnects. In the following section, we overcome some ofthese shortcomings by deriving the S-parameter macromodel for the frequency-dependentcoupled transmission lines.Based upon the assumption of quasi-TEM wave propagation, the distributions of volt-ages and currents in a n coupled lossy transmission-line system can be described by thegeneralized Telegraphist's equations [9]:@v(x; t)@x = �L(f)@i(x; t)@t �R(f)i(x; t) (3.33)



26@i(x; t)@x = �C(f)@v(x; t)@t �G(f)v(x; t); (3.34)where 0 � x � l. v(x; t) and i(x; t) are column vectors de�ning the voltages distributionsvk(x; t) and currents distributions ik(x; t) on the conductors k = 1; 2; 3; :::; n. The L(f)and C(f) are the n by n symmetric matrices of the frequency-dependent per-unit-lengthinductance and capacitance of the n conductor system. The R(f) and G(f) is the n by nsymmetric matrices of the frequency-dependent per-unit-length resistance and conductanceof the n conductor system [48].It is very important to accurately model the frequency dependence of the parasitics forthe case of the coupled transmission lines. There are o�-diagonal elements in the R(f),L(f), C(f) and G(f) matrices describing the mutual coupling e�ects which do not existin the case of the single transmission line. The mutual inductance Lij(f), where i 6= j,increases as frequency increases due to more coupling between lines at higher frequency.The mutual capacitance Cij(f), where i 6= j, stays constant as the Cii(f). Both the Rii(f)and Rij(f), where i 6= j, increase as the frequency rises.There are two major methods to �nd the time domain transient response waveformsof a coupled transmission line system. One method is to �nd the impulse response of thelinear coupled transmission line system and then use either the convolution or the waveformrelaxation to �nd the time domain waveforms. However, this method su�ers from both thelarge memory requirement and the long computation time that are required. The othermethod is a modal wave propagation decoupling method which is preferred over the �rstmethod because it models the physical phenomenon of n fundamental mode of the wavepropagation that exists in the n multi-conductor transmission line system. By decouplingthe modal waves, the simulator is only required to memorize a period of the waveformsequal to the time-of-
ight of each decoupled transmission line, which is much shorter whencompared to the duration of the impulse response. Furthermore, with the help of the S-parameter macromodel, the recursive convolution can be applied with a signi�cantly shortercomputation time. After successfully decoupling of the coupled transmission lines system,the computation of the scattering parameter macromodel of the entire system becomes



27the computation of the decoupling networks and those of the decoupled transmission lineswith frequency-dependent losses. The macromodel of the latter is already available and ispresented in Section 3.2. Because the coupled transmission lines are also characterized withfrequency-dependent losses, the decoupling of the modal wave propagation of the coupledtransmission lines has to take these losses into consideration.To incorporate the macromodel of the frequency-dependent decoupling networks intothe S-parameter macromodel simulator presents a very di�cult challenge. The decouplingnetworks are known to be represented by a matrix with frequency-dependent elements [4].This process requires the �nding of a frequency-dependent transformation matrix in order todecouple the system. It is a complex process and requires the eigenvalues at each frequencypoint prior to diagonalization. The resulting matrix elements are characterized by tabulatedscattering parameter data which present the same di�culty in �nding the moments as inthe case of the measured data macromodel.Taking the Laplace transform of the Equation (3.33) and (3.34), they can be rewrittenas: @V(x; s)@x = �ZI(x; s) (3.35)@I(x; s)@x = �YV(x; s); (3.36)where Z = R+jwL, and Y = G+jwC. Throughout this thesis, the following assumptionsreported by Blazeck et al. are used [5]. The assumptions are: the modes of propagationmust be TEM or quasi-TEM, and the lines are of uniform cross-section throughout theirlength; that is, R, L, C, and G are assumed to be constant with respect to the spatialvariable x.Solving Equation (3.35) and (3.36), one has:@2V(x; s)@x2 = ZYV(x; s) = �2V(x; s) (3.37)@2I(x; s)@x2 = YZI(x; s) = (�2)T I(x; s); (3.38)where T indicates transpose and � is de�ned as �2 = ZY [5]. De�ne



28� = X�X�1; (3.39)where X is the eigenvectors of �; therefore, they are also the eigenvectors of �2, and � isthe diagonal matrix of the eigenvalues of �. It can be shown that [56] [18]@Vm(x; s)@x = ��ZmIm(x; s) (3.40)@Im(x; s)@x = ��YmVm(x; s); (3.41)where V(x; s) = XVm(x; s), I(x; s) = (XT)�1Im(x; s). The modal impedance matrixZm and modal admittance matrix Ym are related to the eigenvector matrix X and theimpedance matrix Z by Zm = (Ym)�1 = ��1XZ(XT)�1: (3.42)With the eigenvector matrix X, the original coupled transmission lines can be decoupledinto two congruence transformers and a set of n decoupled transmission lines [9]. Thetask of �nding the macromodel of the frequency-dependent coupled transmission linesbecomes that of �nding the macromodel representations of the congruence transformersand the frequency-dependent single transmission lines [56]. The macromodel of the singletransmission line that is characterized with frequency-dependent losses has already beendeveloped in Section 3.2. The remaining task is to �nd the macromodel representation of afrequency-dependent congruence transformer.Bayard �rst outlined the transformation, AtZA, and called it \translator" [3]. Hazonyis the �rst one to name the transformation \congruence transformer" in his book [30].Chang used the congruence transformer to decouple both the lossless [7] and lossy coupledtransmission lines [9]. Chang's method for the analysis of coupled transmission lines relieson simultaneously diagonalizing all the matrices using a special conditioned matrix.It is known that the modal eigenvectors of two symmetrical coupled transmission linesare frequency independent constant vectors even if the lines are characterized by frequency-dependent parasitics [28]. It can be shown that the decoupling networks can be constructedfrom the constant eigenvectors:



29X = 264 1p2 � 1p21p2 1p2 375 : (3.43)These two vectors correspond to the odd and even mode of propagation that exists in thesymmetrical coupled transmission lines.For asymmetrical coupled dual transmission lines and for coupled transmission lines withmore than two conductors which are characterized with frequency-dependent parasitics, themodel structure of the lines becomes frequency-dependent [28], and �nding the moments ofthe model structure poses an even greater challenge.It can be shown that for the coupled lossy transmission line systems, the congruencetransformer matrix is the eigenvector matrix of the complex matrix � [5]. The existenceof such eigenvector matrix X, that simultaneously diagonalize the complex matrices �,�2, ZY, and YZ, is assumed throughout this thesis. This assumption is also adopted byGordon et al. [28], Blazeck et al. [5] and Schutt-Aine et al. [48].Gordon et al. suggested that the frequency-dependent congruence transformer can befound by performing the congruence decoupling at each frequency point, and by checkingthe orthogonality of all the eigenvectors for all the frequency points [28]. If the eigenvectorswere not orthogonal to each other, column swapping must be performed so that for all thecongruence transformation matrices at all the frequency points are orthogonal to any otherone. During this process, the R(f), L(f), C(f) and G(f) matrices have been diagonalizedto be: diag(R(f)), diag(L(f)), diag(C(f)) and diag(G(f)) eigenvalue matrices. Thei� th diagonal eigenvalues of each frequency points constitute the parasitic of the decouplefrequency-dependent single transmission line. Thus these diagonal eigenvalue matrices canbe used to form the macromodels using a method outlined in the Section 3.2.Once the tabulated S-parameter data for the congruence transformation have beenfound, a curve-�tting using Levenberg-Marquardt method [42] [16] is used to �nd thecoe�cients for the construction of the congruence transformer: X(f).Having de�ned the scattering parameter matrix S of the congruence transformer X inEquation 2.39 [56], one can extend the representation of the congruence transformer to



30include frequency-dependent e�ects, namely X(f), and rewrite:S(s) = 264 �[X�1(f) +X t(f)]�1[X�1(f)�X t(f)]2[X�1(f) +X t(f)]�12[X(f) + (X t(f))�1]�1�[X(f) + (X t(f))�1]�1[X(f)� (X t(f))�1] 375 ; (3.44)where the sub-matrix X(f) is found using curve-�tting of the tabulated congruence trans-formation data.The macromodels of the two congruence transformers and the n decoupled transmissionlines are passed onto the S-parameter macromodel based simulator to perform the transientanalysis.3.4 Experimental Results for Frequency-Dependent Transmission LinesThe data in the �rst two examples as well as the fourth example presented here areobtained from Dr. J. C. Liao of Intel Corporation. The data in the third example isobtained from the user manual of Mittra's \mtltda" simulator. Figure 3.1 (b) only showsthe simulation result which takes frequency-dependent losses into consideration. Figure3.2 shows the di�erent simulation results between taking and not taking the frequency-dependent losses into consideration. The discrepancy in simulation waveforms con�rmsthat one needs to include frequency-dependent losses in circuit simulation. Figure 3.4 andFigure 3.5 show the comparison between the S-parameter macromodel based simulatorand a time-domain circuit simulator. For all of the simulation results of the S-parametermacromodels, all of the far-end waveforms are simulated with the time-of-
ight capturedexplicitly with the method stated in Section 5.5. Although the S-parameter macromodelbased simulator does not have the accuracy demonstrated by the time-domain simulator, itprovides more than thirty times speedup in Example 4. This kind of e�ciency lands it inthe application of performance-driven layout synthesis.



313.4.1 Example 1: A Single Transmission LineThis example is a single transmission line characterized with frequency-dependent losses.The frequency dependence of the per-unit-length inductance and resistance are given inTable 3.1. The per-unit-length capacitance is 1:460pF=cm and the per-unit-length conduc-tance is assumed to be zero. The driving signal is 100-MHz, 50% duty-cycle pulse with0:5ns rise/fall time. The circuit schematic is shown in 3.1 (a) with the component values.The simulation waveforms of this example are shown in Figure 3.1 (b).Frequency L (nH/cm) R (ohm/cm)10 kHz 4:070 5:000100 MHz 4:069 5:000250 MHz 4:064 5:000500 MHz 4:050 5:150750 MHz 4:032 5:3101 GHz 4:012 5:5202 GHz 3:904 6:7504 GHz 3:789 8:9606 GHz 3:724 10:858 GHz 3:645 12:35Table 3.1: The Frequency-Dependent Per-Unit-Length Inductance andResistance3.4.2 Example 2: Two Coupled Transmission LinesThis is an example with two coupled transmission lines characterized with frequency-dependent losses. The frequency-dependent per-unit-length inductance and resistance aregiven in Table 3.2. The per-unit-length capacitance matrix is a constant matrix which doesnot vary with frequency: 264 1:637pF=cm �0:177pF=cm�0:177pF=cm 1:637pF=cm 375 (3.45)
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length = 25.4 mm
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50 ohm 39 ohm

300 ohm

Near End Far End

(a) (b)Figure 3.1: Simulation Waveforms of the Single Transmission LineCharacterized with Frequency-Dependent Losses: The topology is shownin (a). The output waveforms of the far end is shown in (b).Frequency L11 L22 (nH/cm) L12 L21 (nH/cm) R11 R22 (ohm/cm) R12 R21 (ohm/cm)10 kHz 4:070 0:975 5:000 0:000100 MHz 4:069 0:975 5:000 0:000250 MHz 4:064 0:974 5:000 0:000500 MHz 4:050 0:973 5:150 0:0564750 MHz 4:032 0:972 5:310 0:1001 GHz 4:012 0:971 5:520 0:1402 GHz 3:904 0:969 6:750 0:2724 GHz 3:789 0:966 8:960 0:4536 GHz 3:724 0:965 10:85 0:5638 GHz 3:645 0:964 12:35 0:666Table 3.2: The Frequency-Dependent Per-Unit-Length Inductance, Mu-tual Inductance, and Resistance



33The per-unit-length conductance is assumed to be zero. The driving signal is 100-MHz,50% duty-cycle pulse with 0:5ns rise/fall time. The circuit schematic is shown in 3.2 (a)with the component values. The simulation waveforms of this example are shown in Figure3.2 (b), (c), (d) and (e).For all of the �gures, there are three output waveforms of the same coupled transmissionlines. These are modeled:� using the lossy macromodel.� using the frequency-independent macromodel.� using the frequency-dependent macromodel.The per-unit-length parasitics of the lossy macromodel are taken from the DC values of thefrequency-dependent model. The frequency-independent macromodel is created using theDC values of the frequency-dependent model at all of the frequency points. The results showthat the output waveforms of the frequency-independent macromodel match that of the lossymacromodel exactly as expected. The results also indicate that the output waveforms of thefrequency-dependent macromodel di�er from that of the lossy and frequency-independentmodel because of the frequency-dependent nature of the per-unit-length parasitic. Thisdemonstrates the importance of taking frequency-dependent losses into consideration whendoing circuit simulation.3.4.3 Example 3: Two Cascade Sections of Coupled Transmission LinesThis is an example of two cascade sections of two coupled transmission lines, one sectionis characterized with frequency-dependent losses, and the other is characterized only withlossless model. The frequency-dependent per-unit-length inductance and resistance of the�rst section are given in Table 3.3. The frequency-dependent per-unit-length capacitancematrix of the �rst section is given in Table 3.4. The per-unit-length conductance is assumedto be zero.
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(a)Active Line Near End Waveforms

(b) (c)
(d) (e)Figure 3.2: Simulation Waveforms of the Coupled Transmission LineCharacterized with and without Frequency-Dependent Losses: Thetopology is shown in (a). There are three waveforms in each plot, two of them aresuperimposed, and are obtained from the usual frequency-independent models, thethird one is obtained from the frequency-dependent model. The output waveformsof the near end of the active line is shown in (b), waveforms of the far end of theactive line is shown in (c), waveforms of the near end of the sense line is shown in(d). waveforms of the far end of the sense line is shown in (e).



35Frequency L11 L22 (nH/cm) L12 L21 (nH/cm) R11 R22 (ohm/cm) R12 R21 (ohm/cm)DC 5:150 0:995 0:6406 0:128320 MHz 4:777 0:943 0:6829 0:132550 MHz 4:511 0:818 0:7793 0:1736100 MHz 4:354 0:818 1:0147 0:2359200 MHz 4:022 0:688 1:2572 0:2609500 MHz 3:601 0:588 2:1743 0:42841 GHz 3:409 0:580 3:6886 0:6957Table 3.3: The Frequency-Dependent Per-Unit-Length Inductance, Mu-tual Inductance, and ResistanceFrequency C11 C22 (pF/cm) C12 C21 (pF/cm)DC 0:862 �0:14020 MHz 0:752 �0:15950 MHz 0:756 �0:140100 MHz 0:754 �0:153200 MHz 0:786 �0:147500 MHz 0:768 �0:1421 GHz 0:766 �0:146Table 3.4: The Frequency-Dependent Per-Unit-Length Capacitance Ma-trixThe second section is characterized as a lossless coupled transmission lines. The per-unit-length inductance and capacitance matrices are as follows:L = 264 5:105nH=cm �0:995nH=cm�0:995nH=cm 5:105nH=cm 375C = 264 0:862pF=cm �0:140pF=cm�0:140pF=cm 0:862pF=cm 375 (3.46)The driving signal is 100-MHz, 50% duty-cycle pulse with 0:5ns rise/fall time. The circuitschematic is shown in 3.3 with the component values. The simulation waveforms of thisexample are shown in Figure 3.4 (a) (b), (c), (d), (e) and (f).
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Figure 3.3: Schematic of the Coupled Transmission Line Characterizedwith Frequency-Dependent LossesFor all of the �gures, there are two output waveforms, they are:� the output waveform of the frequency-dependent macromodel.� the output waveform obtained from Mittra's \mtltda" simulator.The results show that the output waveforms of the frequency-dependent macromodel matchthose produced by Mittra's \mtltda" simulator as predicted. The small di�erences that wereshown on the sense line waveforms are due to the lower order of approximation chosen andthe Pade approximation error. However, it is important to note that the amplitude ofthe waveforms on the sense line are only one to two hundred millivolts. These waveforms,although di�erent, have the same amplitude magnitude and they track each other veryclosely. Both simulators use 12 seconds on a SUN Sparc1+ workstation. The second datapoint for R(f) and L(f) are taken at 20MHz to simplify the simulation task. As is shownin the data which includes the skin e�ects, information is missing in this simpli�cation. Ifone includes this other information, the time-domain simulator will need at least one orderlonger simulation time. This will be proven in the running time of the next example.3.4.4 Example 4: Three Coupled Transmission LinesThis is an example with three coupled transmission lines characterized with frequency-dependent losses. The per-unit-length inductance, resistance, and capacitance are not given
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0.00 2.00 4.00 6.00(e) (f)Figure 3.4: Simulation Waveforms of the Coupled Transmission LineCharacterized with Frequency-Dependent Losses: The waveforms are ob-tained from the S-parameter macromodel based simulator and Mittra's \mtltda"simulator. The output waveforms of the near end of the active line is shown in(a), waveforms of the junction of the active line is shown in (b), waveforms of thefar end of the active line is shown in (c), waveforms of the near end of the senseline is shown in (d), waveforms of the junction of the sense line is shown in (e),waveforms of the far end of the sense line is shown in (f).



38in order to conserve space. The per-unit-length conductance is assumed to be zero. Thedriving signal is 200-MHz, 50% duty-cycle pulse with 0:5ns rise/fall time. The circuitschematic is shown in 3.5 (a) with the component values. The simulation waveforms of thisexample are shown in Figure 3.5 (b), (c), (d) and (e).Similar to Example 3, for all of the �gures, there are two output waveforms, they are:� the output waveform of the frequency-dependent macromodel.� the output waveform obtained from Mittra's \mtltda" simulator.In this particular example, increasing the order of Pade approximation does not imply anincrease in accuracy; one must adopt other method such as Complex-Frequency-Hopping(CFH) or Pade-via-Lancsoz (PVL) to solve this accuracy problem.The S-parameter macromodel based simulator takes 9:23 seconds on the SUN Sparc1+workstation, whereas the time-domain simulators takes 288 seconds on the same machine.This di�erence in simulation time is due to the fact that the second data point is taken at1MHz instead at 20MHz. In order to use the time-domain simulator, the actual data takenat 10KHz and 100KHz are intentionally removed. Mittra's \mtltda" simulator generatesbetter results, however, it su�ers from the common drawback of long simulation time likeother time-domain simulators.



39

Active Line

Sense Line

Line 3

length = 50.8 mm

V
in

50 ohm 39 ohm

39 ohm

300 ohm

4500 ohm

Near End Far End

4.3pF

4.3pF

45k ohm
0.5 0.5

pFpF

(a)Active Line Near End Waveforms

(b) (c)
(d) (e)Figure 3.5: Simulation Waveforms of the Coupled Transmission LineCharacterized with Frequency-Dependent Losses: The topology is shownin (a). The waveforms are obtained from the S-parameter macromodel basedsimulator and Mittra's \mtltda" simulator. The output waveforms of the near endof the active line is shown in (b), waveforms of the far end of the active line isshown in (c), waveforms of the near end of the sense line is shown in (d). waveformsof the far end of the sense line is shown in (e).



40CHAPTER 4. Transient Analysis ofInterconnects Characterized with MeasuredS-Parameter Data
Integrating the measured models into a moment-matching simulator is a problem becausederivatives of the frequency dependent measured data which are required to generate themoments are not available explicitly. Generating the required moments using numericaldi�erentiation can often lead to large computation errors [47]. Since the informationnecessary for the construction of the scattering parameter macromodel does not existexplicitly, a new method for retrieving the information needed must be developed withspecial attention paid to avoid numerical instabilities.Gruodis et al. has previously reported the measurements of the admittance matrixY2n and the impedance matrix Z2n of the transmission lines, the computation of theY0 matrix propagation constant �, and the simulation using the state variable transferfunction method [29]. The de�ciency associated with Gruodis' method was the fact thatthe admittance matrix Y2n and the impedance matrix Z2n were di�cult to measure at afrequency above several MHz (as is speci�cally stated in Gruodis et al. paper [29].) Unlikethe impedance matrix Z2n and the admittance matrixY2n which may not exist for the casesof the serial circuits or shunt circuits respectively. The S-parameter matrix always existsfor any physical circuits [47] [50]. So the choice is to measure the S-parameter data for thetransient simulation. Sanaie et al. used the balance-reduction method [47] and Silveria etal. utilized the curve-�tting of the transfer function section-by-section [50]. Kuznetsov etal. used the direct rational function curve-�tting of the wave propagation function [34]. All



41of them try to extract information from the curve-�tting of the S-parameter data directly.Thus Silveria et al. suggested performing curve-�tting section-by-section with each sectionno larger than a decade [50]. Although accurate, this section-by-section method generatesmore information than necessary. This leads to Silveria's proposal to use a balance-reductionmethod to reduce the order. Chang et al. has implemented a direct convolution method intoHP Spice [51]. This method requires the impulse response found from inverse Fast FourierTransform (IFFT) of the measured S-parameter data. Chang et al. further improves theirmethod using direct �tting of the measured data with a rational function [10]. Hu et al.has incorporated the recursive convolution method into SWEC [32]. This method also callsfor the impulse response found through IFFT. The drawback of convoluting the impulseresponse is the assumption made about the relationship between the real part and theimaginary part of all the S-parameters. The implementation usually requires the data ofthe imaginary part to be thrown away, whereas the Gruodis method of converting themeasured S-parameter data into the parasitic functions makes use of all the data on hand.Although the direct curve-�tting methods could be very accurate interpolation tools, to�nd the moments of the measured S-parameter data still requires an extrapolation methodwhich at least extrapolate to s = 0. Extrapolation methods must preserve the periodicnature of the measured S-parameter data not only within the spectrum of the measurementsbut also in the spectra above and below.By the de�nition of the Taylor series expansion, the moments of a Taylor series expansionare the coe�cients of the polynomial of s. These coe�cients are computed from thederivatives of di�erent orders at a given expansion point. The number of terms in a Taylorseries is called the expansion order. Another major drawback of the direct curve-�ttingmethods is the moments that are produced by these methods are often expansion orderdependent. This is in violation of the de�nition given by the Taylor series expansion whichstates that the moments should be expansion order independent.The purpose of this part of the thesis is to propose an indirect method of �nding themoments from the measured S-parameter data. This novel indirect method of computing



42the moments calls for a conversion of the S-parameter data into the parasitic functionsbefore �nding the Taylor series expansions. After the S-parameters have been convertedinto the parasitic functions, R(f), L(f), C(f) and G(f), one can compute the S-parameterfrom these four data sets. A least-square curve-�tting of the computed S-parameter withrespect to the measured S-parameter data, is used in order to �nd the moments of thesefour parasitic functions. The exact moments of the S-parameter functions are subsequentlycomputed from the moments of these four parasitic functions. Based on the exact momentsfound using the indirect approach, the macromodel of transmission lines characterized withfrequency-dependent losses is constructed and the transient simulation is performed. Cur-rently, this indirect approach handles the measured S-Parameter data of the interconnectsonly. It cannot handle the general black box characterized by the measured S-parameterdata.The motivation of taking this indirect approach is shown in Section 4.1. The generalsteps of this novel indirect approach will be presented in Section 4.2, whereas in Section4.3, two methods to convert the measured S-parameter data into the parasitic functionswill be shown. Section 4.4 will present the algorithm for the �nding of the moments of theparasitic functions through the indirect curve-�tting method.4.1 MotivationsThe most compelling reasons to use this indirect approach to �nd the moments of themeasured S-parameters data are:� �nding the moments of the measured S-Parameter data requires extrapolation.� the moments in a Taylor series expansion should be order independent.The measured S-parameter data curves demonstrate the periodic nature of the S-parameter data. This periodic nature should be preserved not only within the samplingspectrum but also in the spectra above and below. This characteristic can only be obtainedby a well behavior extrapolation method.
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Figure 4.2: AWEsim and Rational function Curve-Fitting Comparison:AWEsim is proven inadequate to be used in curve-�tting and interpolation. Direct�tting to rational function is good only for use as interpolation tool.



44
Indirect Curve-Fitting Results
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-20.00 0.00 20.00 40.00 60.00Figure 4.3: Indirect Curve-Fitting Example: The indirect method producesbounded and periodical computed S-parameter data both inside and outside of thesampling spectrum which spans from 0:5 GHz to 40:5 GHz. It is good both as aninterpolation and extrapolation tool.The direct curve-�tting methods are good interpolation tools which could outperformthe indirect approach presented here in the interpolation task. However, these direct curve-�tting methods fail poorly in the extrapolation task and thus cannot be used to �nd theaccurate moments of the measured S-parameter data.For example, the Root-Mean-Square (RMS) error for the Least-Square curve-�ttingwithin the sampling spectrum could be very small, but can be unbounded outside of thesampling spectrum. Figure 4.1 (a) shows a particular example where the RMS error of theLeast-Square curve-�tting equals to 0:0245 and the resulting function is unbounded outsideof the sampled spectrum. Figure 4.1 (b) shows how well the least-square curve-�ttingperforms over the sampled spectrum. The least-square curve-�tting method is known forits inability to handle the measured data with many periods of oscillations. Miguel Silveria'ssection-by-section method is an improved least-square curve-�tting method which can beused to solve the above problem [50]. However, his method is still an interpolation tooland hence cannot be used to perform extrapolation to �nd the moments of the measuredS-parameter data. Figure 4.2 shows the AWEsim curve-�tting characteristic and the directrational function curve-�tting results [35]. AWEsim is not suitable for the curve-�tting



45to functions with many periods of oscillations. The direct rational function curve-�ttingproposed by Kuznetsov et al. is good for use as an interpolation tool, but cannot be used inextrapolating. Clearly, its accuracy cannot be relied on beyond the interpolation interval.A state-of-the-art direct rational function curve-�tting method which could outperform theindirect approach which is presented in here both in the interpolation and extrapolation[10]. Dr. Lee Barford of HP uses this direct curve-�tting method to �nd the poles and theresidues of the measured S-parameter data for their recursive convolution simulation. Thisdirect rational function curve-�tting method is a commercial product as part of the Matlabsoftware package published by The MathWorks, Inc. However, this direct rational functioncurve-�tting method still produces moments that are expansion order dependent. Figure4.3 shows that the indirect method produces the computed the S-parameters data whichare not only bounded but also preserve the periodic nature above and below the spectrumof the measured frequencies.The lower order moment terms in a Taylor series expansion around a given point shouldbe expansion order independent. It does not hold true for all of the direct curve-�ttingmethods. Computing the S-parameter moments from parasitic functions does guaranteesthat the moments found are independent of the order of the approximation.The \jitters" in the measured S-parameter data usually comes from the instrumentlimitations and human errors, and requires many measurements to average them out. Dueto the smooth nature of the S-parameter computed from the analytic equations, there isno jitter shown in the computed S-parameter. Fitting the computed S-parameter data tothe measured S-parameter data will not be a�ected by the small measurement error jitterabundant in the examples tested.Sometimes the measured S-parameter data can rise above 1:0 for a passive system.Dr. Lee Barford of Hewlett-Packard Laboratories states:\ It is quite common to collectmeasured S-parameters that are non-passive. It occurs at any frequency where the devicebeing measured has very low loss. This is the case for any transmission line or interconnectbelow its cuto� frequency. Measurement noise may make the device appear to be very



46slightly active instead of very slightly passive." [1] With the computed S-parameters whichare evaluated from the parasitic functions, they never violate the power conservation ruleand hence are always stable for a passive system.
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(a) (b)Figure 4.4: The Introduced Conversion Error: The original measured S-parameter data and the converted S-parameter are plotted in (a). The di�erencebetween them are plotted in (b).The conversion processes for both the two-port measured data and 2N -port measureddata shown in Section 4.3 are almost lossless. The regenerated S-parameters based on theconverted RLCG compared with the original S-parameter data show that this conversionprocess introduces very little error. Figure 4.4 demonstrates the conversion error is lessthan 10�14.As a by-product, this indirect method can also be used to predict measurement errors.One can use the converted parasitic to compute the S-parameters. When compared tothe measured S-parameters, one can immediately identify those sampling points with largemeasurement errors (Situations such as the S-parameter value is greater than 1:0). Thegeneral practice is to discard the S-parameter data of those points to avoid their in
uencein the �nal �tting results. However, if there are a large number of points with error, it isadvisable that the measurement be repeated.



474.2 Proposed MethodThe steps required for the transient analysis of the interconnect characterized with themeasured S-parameter data macromodel include:� Converting measured S-parameter data into parasitic functions: R(f), L(f), C(f)and G(f).� Finding moments of the four parasitic functions through least-square curve-�tting ofthe computed S-parameter w.r.t. the measured S-parameter data.� Computing moments of the S-parameters from the moments of the R(f), L(f), C(f)and G(f) data sets.� Constructing macromodels for the congruence transformers for the 2N -port coupledinterconnects.� Incorporating the computed S-parameter macromodels into the S-parameter macro-model based simulator to perform the transient analysis.4.3 Converting Measured S-Parameter Data into Parasitic FunctionsFor the completeness of this thesis, the methods for converting two-port and 2N -portS-parameter data into the Parasitic functions are presented here.Previous research that converted the measured two-port S-parameter data into theRLCG data sets include those of Eisenstadt et al. [21] and Owazr [45]. Their primaryfocus was on the interconnect characterization and not on the transient simulation. Also,only a two-port device, and not the 2N -port device, was described in their papers.The following Equations are taken from the Eisenstadt et al. paper to demonstrate thesteps taken to convert the S-parameters into R(f), L(f), C(f) and G(f) [21]. Startingwith the S-parameter matrix of a lossy transmission line which is presented in Equation(4.1). S(s) = 12Z0Zc(s) cosh(
(s)) + (Z2c (s) + Z20) sinh(
(s))



48264 (Z2c (s)� Z20) sinh(
(s)) 2Z0Zc(s)2Z0Zc(s) (Z2c (s)� Z20) sinh(
(s)) 375 ; (4.1)The Zc(s) is the characteristic impedance and 
(s) is the propagation constant. Both Zc(s)and 
(s) are computed from the frequency-dependent values of R(f), L(f), C(f) and G(f)based on the following Equations:
(s) = q(R(s) + sL(s))(G(s) + sC(s)) � lZc(s) = sR(s) + sL(s)G(s) + sC(s) :It can be shown that: e�
l = (1� S211 + S2212S21 �K)�1 ; (4.2)where K = ((1� S211 + S221)2 � (2S11)2(2S21)2 ) 12 (4.3)Z2c = Z20 (1 + S11)2 � S221(1� S11)2 � S221 : (4.4)During the extraction of 
, one must choose the root with the positive attenuation factor� and correct the negative propagation � into a positive value. After extracting the 
 andZ from e�
l and Z2c , the R(f), L(f), C(f) and G(f) can be found from the followingEquations: R(f) = Ref
Zcg (4.5)L(f) = Imf
Zcg=! (4.6)G(f) = Ref
=Zcg (4.7)C(f) = Imf
=Zcg=!: (4.8)The conversion for 2N -port measured S-parameter data requires a di�erent approachwhich must handle RLCG matrices. Gruodis et al. has previously reported the conversionof the measured admittance and the measured impedance data into RLCG data sets



49[29]. Applying the standard equations found in microwave textbooks [20], one can �ndthe admittance matrix Y2n and impedance matrix Z2n from the measured S-parameterdata matrix S2n, and then apply Gruodis et al. method to �nd the parasitic functionmatrices: R(f), L(f), C(f) and G(f).Assume there only exists the TEM or Quasi-TEM mode of wave propagation, for the(n+1) conductor coupled transmission lines, there are 2N ports. The di�erential equationsin the frequency domain are [29]:@@x 264 VSVR 375 = �Z264 ISIR 375 (4.9)@@x 264 ISIR 375 = �Y264 VSVR 375 ; (4.10)where VS and VR are the n by 1 column vector for line voltage w.r.t. the referenceconductor on the sending and the receiving side, IS and IR are the n by 1 column vectorfor line current on both sides, Z = R + jwL, and Y = G + jwC. R(f), L(f), C(f) andG(f) are n by n symmetric matrices in which all elements are functions of frequency butindependent of x.Following the same assumptions as proposed in Gruodis et al.'s paper, that there existsa complex square root matrix (ZY)1=2, the solutions of the above di�erential equationsbecome [29]: 264 ISIR 375 = 264 Y0coth�d �Y0csch�d�Y0csch�d Y0coth�d 375264 VSVR 375 : (4.11)where � = (ZY)1=2 = P
P�1; (4.12)Y0 = Z�1� = Y��1: (4.13)P is the eigenvector matrix of � as well as the eigenvector matrix of the ZY product, and
 is the diagonal eigenvalue matrix of �.



50Given the measured 2N port S-parameter data S2nmeasd, the symmetry of the S-parameter matrix can be assured by taking the arithmetic average as follows:S2n = 12 h(S2nmeasd) + (S2nmeasd)T i : (4.14)From standard microwave textbooks [20], one can �nd:Y2n = Z0�1([I]� S2n)([I] + S2n)�1 (4.15)Z2n = Z0([I] + S2n)([I]� S2n)�1; (4.16)where Z0 is the reference impedance.After securing the Y2n and Z2n matrices, one can use the data analysis method 2 inGruodis et al. paper to give [29]:�Y21�1Y11 = cosh�d�d = P[cosh�1��Y21�1Y11 ]P�1; (4.17)where P is the eigenvector matrix of �Y21�1Y11 as well as the eigenvector matrix of �d.From Equations (4.17) and Y21 = �Y0csch�d, one has:Y0 = �Y21sinh�d= �Y21P[sinh(cosh�1��Y21�1Y11)]P�1: (4.18)Having derived �d and Y0, one can use Equation (4.13) for the following:Z = R+ jwL = �d �Y0�1 (4.19)Y = G+ jwC = Y0 � �d: (4.20)The Rij, Lij, Cij and Gij can be found from the following Equations:Rij(f) = RefZijg (4.21)Lij(f) = ImfZijg=! (4.22)Gij(f) = RefYijg (4.23)Cij(f) = ImfYijg=!: (4.24)



514.4 Finding the Moments of the Four Parasitic FunctionsThe key contribution of this part of the thesis is to �nd the moments of the parasiticfunctions indirectly. The indirect approach proposed here is to �nd the moments of themeasured S-parameter data indirectly through converting the strongly frequency-dependentS-parameter data into parasitic functions: R(f), L(f), C(f) and G(f) data sets. Whentaking advantage of the fact that the L(f), C(f) and G(f) are weak functions of frequencyand the R(f) is a strong function of frequency [2], the moments of these four parasiticfunctions are much simpler to �nd.The input is the measured S-parameter data tabulated w.r.t. the sampling frequencies.The output is the moments of the parasitic functions. R(f), L(f), C(f) and G(f). Thesemoments are the coe�cients of the Taylor series expansion around s = 0 for the parasiticfunctions: First, one converts the measured S-parameter data into frequency-dependentparasitic data sets. Then a least-square curve-�tting is performed to �nd the coe�cientsof the polynomials which represent the parasitic data sets. These coe�cients are used asthe initial values for the following optimization procedure. The S-parameter data sets arecomputed from the moments of the parasitic functions based upon analytic equations. TheLevenberg-Marquardt optimization method is used to �nd the moments of the parasiticfunctions through comparing the computed S-parameter and the original measured S-parameter data [16]. The partial derivatives of the least-square error between these twoS-parameter data sets w.r.t. each of the moments of the parasitic functions are obtainedusing a perturbation method [43]. Assume the initial coe�cients are C(0), and there are totalm coe�cients. The next coe�cients C(k+1) can be computed from the previous coe�cientsC(k), which according to Levenberg-Marquardt, is optimized according to the followingformula [42] [16]: C(k+1) = C(k) � (JTJ + ��)�1JT "@ LSE@cj # ; (4.25)where k is the number of iteration, C(k) the column vector of the k� th iteration, and LSEthe least-square error. J is the sensitivity matrix, JT is the transposition vector of J where



52the j� th element JT (j) = J(j), � is a value which are equal to the product of JTJ , and �is the Lagrange Multiplier properly selected to speed up the convergence of the optimizationprocess [42] [16]. JT h@ LSE@cj i represents the gradient around the current coe�cients C(k).To obtain the sensitivity matrix J , the j � th element is de�ned as:J(j) = @ LSE@cj ; 1 � j � m: (4.26)The partial derivatives are computed using a central di�erence method. The optimizationcontinues until the least-square error can no longer be improved, or the iteration numberexceeds a preset limit. The convergence to the optimal values of Levenberg-Marquardtmethod is proved in [42].4.5 Creation of the S-Parameter MacromodelGiven the moments of the four parasitic functions R(f), L(f), C(f) and G(f), onecan compute the moments of the S-parameters using the methods outlined in Section 3.1.Once found, the same macromodels are integrated into the S-parameter macromodel basedsimulator to perform the transient analysis.4.6 Experimental Results for Measured Scattering Parameter DataThe measured S-parameter data �les are courtesy of HP Santa Rosa division, HewlettPackard Company. The measured S-parameter data in all of the examples are not givenin order to conserve space. The driving signal is 1-GHz, 50% duty-cycle pulse with 0:1nsrise/fall time. All of the drivers are modeled with a piecewise-linear input voltage source inseries with the parallel combination of a 25
 resistor and a 4:3pF capacitor. The receiversin all of the examples are modeled using the parallel combination of a 100
 resistor anda 1:0pF capacitor. For all of the simulation results of the S-parameter macromodels, allof the far-end waveforms are simulated with the time-of-
ight captured explicitly with themethod stated in Section 5.5. The testing circuits are the same for all of the examples.The circuit schematic is shown in Figure 4.5. For all of the �gures of the simulation results,
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Figure 4.5: Test Circuit Schematicthere are two output waveforms of the same transmission lines, they are simulated using:� the HP Spice simulator from Hewlett Packard Company.� the S-parameter Macromodel based simulator.Throughout all of the examples, the simulation waveforms of the HP Spice serve as thereference (e.g. correct) solutions, because their underlying implementation is the directconvolution. The direct convolution with the impulse response obtained through IFFTmethod is considered to be the most accurate method for the transient analysis of thefrequency-dependent transmission lines because there is no approximation involved [51][26]. The only drawback is the long simulation time which is exponentially proportional tothe transient analysis time [28].4.6.1 Example 1: A Step StructureThis is an example with two uniform transmission line sections, each with di�erent width,are joined together, and the whole structure is characterized with measured S-parameterdata. It is simulated using the same test circuit and input driving signal. The near end andfar end simulation waveforms of the HP Spice simulator and the S-parameter macromodelbased simulator are shown in Figure 4.6 (a) and Figure 4.6 (b) respectively. Figure 4.7shows the enlarged waveforms.
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0.00 1.00 2.00 3.00(a) (b)Figure 4.6: Simulation Waveforms of the Step Structure Characterizedwith Measured S-Parameter Data: The output waveforms of the near end ofthe two-port is shown in (a), waveforms of the far end of the two-port is shown in(b).
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554.6.2 Example 2: An Uniform Microstrip StructureThis is an example with an uniform transmission line characterized with measured S-parameter data. It is simulated using the same test circuit and input driving signal. Thenear end and far end simulation waveforms of the HP Spice simulator and the S-parametermacromodel based simulator are shown in Figure 4.8 (a) and Figure 4.8 (b) respectively.
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0.00 1.00 2.00 3.00(a) (b)Figure 4.8: Simulation Waveforms of the UniformMicrostrip Character-ized with Measured S-Parameter Data: The output waveforms of the nearend of the two-port is shown in (a), waveforms of the far end of the two-port isshown in (b).4.6.3 Example 3: A Bend StructureThis is an example with two uniform transmission line sections joined by a 900 bend,and the whole structure is characterized with measured S-parameter data. It is simulatedusing the same test circuit and input driving signal. The near end and far end simulationwaveforms of the HP Spice simulator and the S-parameter macromodel based simulator areshown in Figure 4.9 (a) and Figure 4.9 (b) respectively.All of the results show that the output waveforms of the measured S-parameter macro-model match well with those produced by HP Spice simulator as was expected. The small
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Near End Simulation Waveforms
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0.00 1.00 2.00(a) (b)Figure 4.9: Simulation Waveforms of the Bend Structure Characterizedwith Measured S-Parameter Data: The output waveforms of the near end ofthe two-port is shown in (a), waveforms of the far end of the two-port is shown in(b).di�erences that were shown on both the near end and far end waveforms are due to thelower number of order chosen and the Pade approximation error. In all of the examples,increasing the order of Pade approximation does not imply an improvement in accuracy.One must turn to other methods such as the Pade-via-Lancsoz (PVL) to solve this accuracyproblem.



57CHAPTER 5. Optimal Design of Self-DampedInterconnects for Multichip Modules
The metal line width on MCM are much wider than those of modern VLSI chip. Asa result, the line can exhibit a non-negligible inductance. When compared with the metallines on PCB, these metal lines on MCM exhibit a much larger resistance per-unit-lengthdue to a smaller cross-section. Thus, the metal lines on MCM must be treated as lossytransmission lines.
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0.00 1.00 2.00 3.00 4.00 5.00Figure 5.1: Simulation Waveforms of Di�erent Line Widths: The di�erentdamping conditions are achieved through sizing the width of the interconnect to:50�m, 34�m, and 25�m respectively.The interconnection lines on multichip modules exhibit re
ections and resonances due toits transmission line characteristics and are therefore usually terminated by two methods:one is to terminate the lines with clamping diodes and the other is to terminate withresistors. In the former method, when a line on a multichip module is terminated by apair of voltage-clamping diodes to limit the positive and negative signal swings, the diodewhen turned on by signal voltage overshoot can drive a large current, which can often



58cause an increase in power consumption and an increase in power-distribution disturbance.On the other hand, when a line on a multichip module is terminated with a resistor ofappropriate value to minimize signal re
ections and resonances, the voltage divider formedby the termination resistance and the line characteristic impedance can cause a substantialand unacceptable attenuation of the propagated signals. In addition, each resistor candissipate a quiescent power when the line is at non-zero voltage. In modules containingthousands of such lines, this power dissipation can become excessive. The problem canbe further compounded by the small packaging size of MCM with a limited heat removalcapability.In order to propagate high speed signals, the lines on thin-�lm substrates are often un-terminated. Since voltage doubling occurs at the end of an open line due to re
ection, acontrolled amount of attenuation can be tolerated. Instead of terminating with diodes orresistors, the long lines on the thin-�lm multichip modules can be constructed to criticallydamp the signal in order to avoid resonances. Doing without the termination eliminatesthe heat generated by the terminator and solves the heat removal problem. Unterminated,the long lines in the substrate are structured to exhibit a total resistance that is related tothe source resistance of the active devices which drives the lines [31] [6]. For performancereasons, slightly under-damped designs give shorter signal propagation delays with a toler-able amount of overshoot [6] [23] [31]. These lines are thus called optimal self-damped lossytransmission lines [25].5.1 Wire-SizingIn order to have a MCM design that meets all the electrical performance requirements,one needs to control the delay, the noise, and the impedance through geometry parameters.It is easiest to fabricate interconnection lines with �xed metal and dielectric thicknessesand vary only the line width. This results in a speci�c dependency of line width on lengthfor self-damped lines. The wire-sizing method is often used to vary the width of eachbranch of the network to meet certain electrical criteria. This method is used to design the



59self-damped transmission lines on MCMs.Di�erent line widths result in di�erent output waveforms. Figure 5.1 shows the under-damped, critically damped, and over-damped output waveforms of a ramp-step input wave-form achieved through wire-sizing. The contribution of this part of the thesis is to provideoptimal performance totally through a wire-sizing method.5.2 Performance CriteriaThe performance criteria for the optimal design of interconnects are much like criteria offeedback control systems design. The performance of the interconnects and feedback controlsystems are designed for a faster response time with a minimum amount of steady stateRoot-Mean-Square error. A signi�cant collection of literature deals with the performancecriteria subject in the feedback control systems design [22] [49] [17]. The Integrate of Timeand Error (ITAE) criterion has the optimal transient response and no steady state error[49]. It is chosen as the target for the approximated transfer function.5.3 Levenberg-Marquardt MethodMost algorithms for solving the Least-Square Estimation problems involving nonlinearparameters have been centered around either the Taylor series method or the Gradientmethod [16]. Both of these methods have advantages depending on the applications.In the Taylor series method, the objective function is expanded as a Taylor series andthe corrections to the nonlinear parameters are calculated at each iteration based uponthe assumption of local linearity. This method converges very fast within the circle ofconvergence of the Taylor series. The drawback of the algorithms based on the Taylorseries method is that they cannot �nd the global minimum if it is outside of the circle ofconvergence of the expanded Taylor series, and they su�er from the possible divergence ofthe successive iterations. The Gradient method, on the other hand, can �nd the globalminimum even it is far away from the initial guess. However, this method su�ers from slow



60convergence to the optimal solution after the �rst several rapid advance in the �rst fewiterations.The Levenberg-Marquardt Method tries to perform an optimum interpolation betweenthe Taylor series method and the Gradient method so that the size and the direction ofthe steps can be determined simultaneously [36] [16]. The properties proved in Levenberg-Marquardt's paper show that their method combines the best features of the previous twomethods and generally avoids their limitations [42]. The Levenberg-Marquardt Methodbene�ts from the maximum neighborhood in which the truncated Taylor series gives anadequate linearized representation of the nonlinear objective function. It can �nd globalminimum outside of this maximum neighborhood. It also converges to the �nal solutionquickly with the help of the Lagrange Multiplier. The Lagrange Multiplier is dynamicallyadjusted at each iteration. The key feature of Levenberg-Marquardt's method is to searchthe feasible values of the Lagrange Multiplier such that the objective function is alwaysdecreased at each iteration until the convergency to the global minimum is reached. Thechoice of the Lagrange Multiplier also has some hill-climbing property similar to simulatedannealing so as to avoid a local minimum. The Levenberg-Marquardt Method is chosen asthe optimization method throughout this thesis.5.4 Previous WorkPapers published by Brews [6] and Frye [25] show design methods for the design of criti-cally damped point-to-point interconnections on VLSI and MCM. Another paper publishedby Cong et al. [13] uses wire-sizing to achieve optimal design for the tree network basedupon the distributed-RC model [13]. Wang et al. also published a report which re�nesFrye's approach to handle the design of critically damped interconnect tree networks onMCM [52].Later Zhou et al. presented a distributed-RLC model and a second order approximationin their performance-driven-layout paper [58], which extends the wire-sizing algorithmto cover transmission lines on MCM. It is reasonable to assume that the second order



61approximation as adopted by Zhou et al. was to keep the optimization manageable. Inthe same paper, Zhou also reports the use of a second order approximation without theextraction of the time-of-
ight to formulate the performance-driven-layout. However, thereare three problems arise with the performance-driven-layout as described in Zhou et al.paper.� The formulation of the optimization problem with critical damping constraints ischanged to an optimization without any constraint in implementation.� The distributed-RLC model is used in the formulation but a distributed-RC model isactually used in the optimization.� The approach used by Zhou et al. is a two-step approach; the �rst step is to performthe wire-sizing to achieve shorest delay, and the second step is to critically damp theoutput signals.The Zhou's critical damping design method consists of adding resistors in series at thereceiving terminals. The addition of a serial resistor at the receiver is like adding thematching serial termination resistor at the driver, both take extra space to accommodatethe resistors.5.5 S-Parameter Macromodel and the Time-of-Flight ExtractionIn order to precisely analyze the lossy transmission lines on MCM substrates, the scatter-ing parameter (S-parameter) based macromodel [39] [40] is used to �nd the approximatedtransfer function H(s). The S-parameter based macromodel simulator can handle bothlumped circuit elements and lossy/lossless transmission lines including loops. However, thedelay associated with transmission line networks consists of the exponentially charging timeand a pure propagation delay representing the �nite propagating speed of electromagneticsignals in the dielectric medium. This propagation delay, so called \time-of-
ight delay"and denoted by � , is impossible to model perfectly by a �nite order of approximation. So,the time-of-
ight � , more precisely the factor e�s� , must be extracted from the transferfunction of the circuit. The new and important improvement in the S-parameter based



62macromodel simulator is the extraction of the exact time-of-
ight term in transfer func-tions [37]. By extracting the time-of-
ight of scattering parameters for basic components,an e�ective network reduction is developed to compute the lower order macromodel of aninterconnect system. The output responses, due to the extraction of the time-of-
ight, canbe greatly improved.5.6 Transfer Function ApproximationThe transfer function is de�ned as:H(s) = Voutput(s)Vinput(s) = e�s� � Ĥ(s)where s is the complex variable of the Laplace transformation, Voutput(s) and Vinput(s) arethe output and input waveforms, � is the time-of-
ight term, and Ĥ(s) is the remainingpart of the transfer function after the time-of-
ight is extracted. If the h(t) and ĥ(t) are theinverse transformation of H(s) and Ĥ(s) respectively, then the relationship between h(t)and ĥ(t) is: h(t) = ĥ(t� �):The above equation describes a plain shift of the output waveforms ĥ(t) in the time domainfor the amount of the time-of-�ght � .The performance criteria of the optimal design must be determined quantitatively. Inaddition, attentionmust be paid speci�cally to some of the qualitative issues such as stabilityand static accuracy. Signi�cant collection of literature exists that treats the subject ofperformance criteria in the feedback control systems design [22] [49] [17]. From a thoroughinvestigation, the Integral of Time and Error (ITAE) seems to be the best performancecriterion for optimizing the transient response and the steady state Root-Mean-Square error[49]. Transfer functions that meet ITAE criterion have a minimum overshoot and yet fasterthan critical damping response delay. These are the two key performance issues in designingthe optimal self-damped lossy transmission lines on multichip modules. Based on the ITAEcriterion, a set of equations for the di�erent orders of the closed-loop transfer functions givesthe optimal performance. These transfer functions listed in Equations (5.1) to (5.6) can be



63used to design the optimal self-damped interconnects with increasing accuracy proportionalto increasing approximation order.C(s)R(s) = !ns + !n (5.1)C(s)R(s) = !n2s2 + 1:414!ns + !n2 (5.2)C(s)R(s) = !n3s3 + 1:75!ns2 + 2:15!n2s + !n3 (5.3)C(s)R(s) = !n4s4 + 2:1!ns3 + 3:4!n2s2 + 2:7!n3s + !n4 (5.4)C(s)R(s) = !n5s5 + 2:8!ns4 + 5:0!n2s3 + 5:5!n3s2 + 3:4!n4s + !n5 (5.5)C(s)R(s) = !n6s6 + 3:25!ns5 + 6:60!n2s4 + 8:60!n3s3 + 7:45!n4s2 + 3:95!n5s + !n6 (5.6)The root locus of a general second-order system is shown in Figure 5.2. The roots are
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Figure 5.2: Root Locus of a Second-Order System: The roots movementsare corresponding to the change of the line widths.moving from � = �1 toward � = 1 [33]. The right half plan represents unstable system,which will never occure for a passive system such as interconnect network. One can focus,therefore, only on the left half plan. Changing the width of the interconnect changes thebehavior of the second-order system transfer function. These behaviors are listed as follows:



64� the undamped case where the roots reside on the imaginary axis.� the optimal damped case based on ITAE criterion where the roots reside on the circlewith 45 degree elevation.� the critically damped case where both roots overlapped on the point where the circleintersects the negative real axis.� the overdamped case where both roots reside on the negative real axis but moving inopposite directions.When a second order approximation is applied to the charging part of the transferfunction Ĥ(s), it can be rewritten as:Ĥ(s) � !n2s2 + 2�!ns+ !n2 ; (5.7)where !n is the natural undamped frequency and � the damping ratio of the transfer functionĤ(s) [33]. Some representations of the pole-pair on the left-half plane are given by [33]:8>>>>><>>>>>: Case 1 : s1;2 = ��!n � j!np1� �2 for 0 < � < 1;Case 2 : s1;2 = �!n for � = 1;Case 3 : s1;2 = ��!n � !np�2 � 1 for 1 < �;The damping ratio � and the natural undamped frequency !n can be expressed in terms oftwo poles s1 and s2: 8><>: !n = ps1 � s2� = s1+s2�2ps1�s2 :For a given input waveform in the time domain, the three quantities of the second orderapproximated transfer function: the time-of-
ight � , the natural undamped frequency !nand the damping ratio � uniquely determine the time domain response waveform at thereceiver. Similarly, the propagation delay for a signal to reach 50% of its �nal value at thereceiver is also uniquely determined by these three quantities: � , !n, and �. The dampingratio � and the propagation delay will be used together in the optimal wire sizing process.According to the ITAE criterion, the best transient performance happens when � = 1p2 for



65a second order system [49] [22] [33] [6]. This value will be used as the target of optimizationmethod in all the experiments.For higher order systems, the coe�cients of the approximated transfer functions areused. For a given input waveform in the time domain, these coe�cients uniquely determinethe time domain response waveform at the receiver. So instead of using the damping ratio�, the coe�cients of the approximated transfer functions and the propagation delay will beused together in the optimal wire sizing process. To simplify the presentation in this thesis,the second order approximation of the transfer function is used throughout the subsequentsections.5.7 Formulation of the Optimal Self-Damped DesignThe optimal design problem can be formulated as follows: Given a network (N) consistsof a set of edge E with �xed lengths, the width of each edge belongs to a set of feasiblewidths C = fc1; c2; :::; cmaxg where (ci < ci+1; 1 � i � (max � 1)). The optimal designis to �nd an optimal width assignment: W � � C and a mapping M : B ! W � suchthat every path from root to leaves has the shortest delay and the same damping criteria ifpossible. The objective is to optimize the performance which includes minimizing the signalpropagation delay for each path from the source to a receiver with either no overshoot or acontrolled amount of overshoot. The width of edge i, wi, is bounded by the minimum andmaximum feasible width, min(wi) � wi � max(wi), where min(wi); max(wi) 2 C. Theincremental di�erence, 4c, where 4c = (ci+1 � ci); 1 � i � (max � 1), between feasiblewidths is depicted by the process technology.The following notations are de�ned for the formulation of the optimal self-dampeddesign.n : the number of the edges in the network.m : the number of the receivers (the output nodes).wi : the width of edge i.li : the given length of edge i.



66�j : the propagation delay for a signal to reach 50% of its �nal output value transmittedalong path from the source to a receiver j.�j : the damping ratio of the lowest conditional frequency of the transfer function from thesource to a receiver j.�target : the electric damping criteria set forth by the user.The optimal self-damping design for a general network can be formulated as a generalnonlinear programming problem as follows, LetF (w1; w2; : : : ; wn) =Maximum(�j); 1 � j � m: (5.8)G(w1; w2; : : : ; wn) =Maximum(j�j � �targetj); 1� j � m: (5.9)Objective Minimize F (w1; w2; : : : ; wn) (5.10)ConstraintsG(w1; w2; : : : ; wn) � �; wi 2 C; 1 � i � n; 1 � j � m; and � is a preset constant: (5.11)�j(w1; w2; : : : ; wn) � 1p2 ; wi 2 C; 1 � i � n; 1 � j � m: (5.12)gi(w1; w2; : : : ; wn) = fwi �min(wi)g � 0; wi 2 C; 1 � i � n: (5.13)hi(w1; w2; : : : ; wn) = fmax(wi)� wig � 0; wi 2 C; 1 � i � n: (5.14)The objective of an optimal self-damped design is to size the wire width of each edge inorder to minimize both the maximum delay stated in Equation (5.8) and the maximumdamping ratio error stated in Equation (5.9), while maintaining that all output dampingratios satisfy the constraint in Equation (5.11) and (5.12), and all edge widths satisfy theconstraints in Equation (5.13) and (5.14).The way to �nd the optimal answer is to use the perturbation method [43], which worksby perturbing each of the design parameters �i a small amount in each direction, and �ndsthe right direction and distance to change �i. In this thesis, the width of each edge wi is thechosen design parameter to be changed and a simulation is run at each perturbation to �nd



67the propagation delay and the damping ratio. The perturbation results of the propagationdelays and the damping ratios are then used to compute the gradient matrix. Details ofthe optimization method is described in Section 5.9.5.8 Proof of the Correctness of the Least-Squares EstimationTransformationThe optimal wire-sizing problem formulated in Equation (5.8) is a general nonlinearprogramming problem. Both the damping ratio error minimization and delay minimizationproblem can be transformed into one of a Least-Square Estimation. There are two parts inthe problem of the original optimization. The �rst part is the minimization of the maximumdelay and the second part is the minimization of the maximum damping ratio error.The following is the proof of the correctness of the transformation for the �rst part. Let�j be the 50% signal propagation delay from the source to the receiver j (1 � j � m), wherem is the number of receivers. Let column vector � = f�1; �2; : : : ; �mgT represents the delayvector, where T denotes matrix transposition. The summation of all squares of delay errorsis: �(w1; w2; : : : ; wn) = �T� = mXj=1 �2j (5.15)De�ne the root-mean-square (rms) error of the delay as:' =s�m =vuut mXj=1 �2jm (5.16)From Equation (5.8), the maximum delay is F (w1; w2; : : : ; wn) =Maximum(�j).Theorem 1: Given a single-source multi-receiver network, the root-mean-square error de-�ned in Equation (5.16) and maximum delay de�ned in Equation (5.8) are linearly boundto each other.Proof: Assume the largest delay is �max. For all �j , �j � �max, (1 � j � m), wherem is the number of receivers and it is a constant for a given network. From Equation



68(5.16), we have ' = qPmj=1 �2j =m � qPmj=1 �2max=m = �max = F (w1; w2; : : : ; wn). On theother hand, we have F (w1; w2; : : : ; wn) =Maximum(�j) = �max = p�max2 � qPmj=1 �2j =qm �Pmj=1 �2j =m = pm � '. So ' and F (w1; w2; : : : ; wn) are linearly bound to each other.The following is the proof of the correctness of the transformation for the second part.Let column vector 
 = fj�1��targetj; j�2��targetj; : : : ; j�m��targetjgT represents the dampingratio error vector. The summation of all squares of damping ratio errors is:	(w1; w2; : : : ; wn) = 
T
 = mXj=1(�j � �target)2 (5.17)De�ne the root-mean-square (rms) error of the damping ratio as: =s	m =vuut mXj=1 (�j � �target)2m (5.18)From Equation (5.9), the maximum damping ratio error is:G(w1; w2; : : : ; wn) =Maximum(j�j � �targetj):Theorem 2: Given a single-source multi-receiver network, the root-mean-square dampingratio error de�ned in Equation (5.18) and maximum damping ratio error de�ned in Equation(5.9) are linearly bound to each other.Proof: Assume the largest damping ratio is �max and it deviates from �target the most, themaximum damping ratio error is j�max��targetj. (The proof can be applied to the case wherethe smallest damping ratio �min deviates from �target the most. We only have to replace all�max with �min in the proof.) For all �j , j�j � �targetj � j�max � �targetj, (1 � j � m),where m is the number of receivers and it is a constant for a given network. FromEquation (5.18), we have  = qPmj=1 (�j � �target)2=m � qPmj=1 (�max � �target)2=m =j�max � �targetj = Maximum(j�j � �targetj) = G(w1; w2; : : : ; wn). On the other hand, wehave G(w1; w2; : : : ; wn) =Maximum(j�j��targetj) = j�max��targetj = q(�max � �target)2 �qPmj=1 (�j � �target)2= qm �Pmj=1 (�j � �target)2=m = pm �  . So  and G(w1; w2; : : : ; wn) are linearly boundto each other.



69From the above two theorems, minimizing the two Least-Square Estimation problemin Equations 5.16 and 5.18 bounds the maximum path delay F (w1; w2; : : : ; wn) de�ned inEquation (5.8) and maximum damping ratio error G(w1; w2; : : : ; wn) de�ned in Equation(5.9) of the original nonlinear programming problem.5.9 Implementation of the Least-Square Estimation OptimizationThe Levenberg-Marquardt method is used to solve the least-square estimation prob-lem [42] [16]. Theorems 1 and 2 show the consistency between the minimizing ofthe original problem and the minimizing of the transformed root-mean-square estima-tion problem. Starting with an arbitrary initial solution of width assignment W (0) =fw1(0); w2(0); : : : ; wn(0)gT , according to Levenberg-Marquardt, the width assignment W isoptimized according to the following formula:W (k+1) = W (k) � (JTJ + ��)�1JT 264 �jW (k)
jW (k) 375 (5.19)where k is the number of iteration, �jW (k) the column vector of delays from the source toall the receivers at the k � th iteration, and 
jW (k) the column vector of damping ratioerrors from the source to all the receivers at the k� th iteration. J is the 2m�n sensitivitymatrix, JT is the transposition matrix of J where the (i; j)th element JT (i; j) = J(j; i),� is a diagonal matrix in which the values of its diagonal elements are the same as thediagonal elements of JTJ , and � is the Lagrange Multiplier properly selected to speed upthe convergence of the optimization process [42]. Round-o� occurs when computing w(k)i sothat Equation (5.13) and (5.14) are always satis�ed. JT 264 �jW (k)
jW (k) 375 represents the gradientaround the current width assignment W (k). To obtain the sensitivity matrix J , the (i; j)thelement is de�ned as:J(i; j) = 8><>: @�[i]@wj ; if 1 � i � m@
[i�m]@wj ; if m+ 1 � i � 2m : (5.20)



70The partial derivatives are computed using a central di�erence method. The optimizationcontinues until the maximum damping ratio error is less than a prescribed value, themaximum damping ratio error cannot be further improved, the maximum delay cannotbe further improved, or the iteration number exceeds a preset limit. The convergence tothe optimal values of Levenberg-Marquardt method is proved in [42].5.10 Experimental Results for the Optimal Self-Damped DesignThe examples tested are constructed with High Performance MCM process technologiespublished by Frye [24]. The important parameters of the MCM process are listed in Table5.1. In the case of the uniform width, all of the widths are equal to 25�m for all of theexamples tested. All of the drivers are modeled with a step input voltage source in serieswith the parallel combination of a 12
 resistor and a 4:3pF capacitor. All of the receiversare modeled using a 2:5pF capacitor. The damping ratio target is chosen to be 1p2 forshorter propagation delay with a controlled amount of overshoot [6] [33] [22] [49] [17]. Forall of the simulation results of the S-parameter macromodels, all of the far-end waveformsare simulated with the time-of-
ight captured explicitly with the method stated in Section5.5.5.10.1 Example 1 A Tree NetworkExample 5.10.1 is the tree network shown in Zhou's MCMC paper [58]. Figure 5.3 (a)shows the topology, lengths, and widths of the optimal design for all of the edges. Theoptimal design performance is compared with the uniform width case. The per-unit-lengthR, C, and L of the uniform width design are listed in Table 5.1. The simulation waveformsof the optimal design and uniform width design are shown in Figure 5.3 (b). The maximumpath delays, and the percentage of improvement are listed in Table 5.2.



71HIGH PERFORMANCE MCM-DThickness of Dielectric (�m) 5"rel 3:2Thickness of Metal (�m) 2:5R (
=�m) for typical edge width 2:4L (nH=�m) for typical edge width 2:9C (pF=�m) for typical edge width 1:39lower bound metal line width (�m) 10typical metal line width (�m) 25upper bound metal line width (�m) 50Table 5.1: The High Performance MCM Technologies Process Parame-ters Maximum Maximum PercentPath Delay Path Delay Improvement(Uniform) (Optimal)(nS) (nS) (%)Example 5.10.1 0.9874 0.7182 27.26Example 5.10.2 0.9354 0.8245 11.85Example 5.10.3 1.2308 0.8533 30.67Table 5.2: Comparison between the Uniform Width Design and theOptimal Design5.10.2 Example 2 A Network with a LoopExample 5.10.2 is a network with a loop. Figure 5.4 shows the topology, lengths, andwidths of the optimal design for all of the edges. The simulation waveforms of the receiver4 in the loop network for the optimal design and uniform width design are shown in Figure5.4 (b). The maximum path delays and the percentage of improvement are listed in Table5.2.
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(a) (b)Figure 5.3: A Tree Network and the Simulation Waveforms of theReceiver 3: The topology is shown in (a). The output waveforms for the optimaland uniform cases of the receiver 3 with the maximum path delay are shown in (b).The optimal design is better than the uniform width design because its maximumpath delay is 27% smaller.
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735.10.3 Example 3 A Clock Tree NetworkExample 5.10.3 is a clock tree network shown in Zhu's ICCAD paper [59]. Figure 5.5(a) shows the topology, lengths, and widths of the optimal design for all of the edges. Thesimulation waveforms of the optimal design and uniform width design are shown in Figure5.5 (b). The maximum path delays and the percentage of improvement are listed in Table5.2.The experimental results show that this optimization method reduces the maximum of allof the signal propagation delays considerably when compared to the uniform width designs.This proves that the generally adopted practice of the uniform width design method is overlyconstrained. The optimal width assignment produces a fast and stable signal propagation.There is as much as 30% improvement that has been found by this optimal design method.
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75CHAPTER 6. Transformation of Min-MaxOptimization to Least-Square Estimation andIts Application to Interconnect DesignOptimization
For most of the Computer-Aided Design software, optimization is required as partof the heuristic algorithm. The most common optimization problem encountered is theminimization of the maximum of all the observable outputs, which is often referred to as theMin-Max optimization problem. Because the Min-Max optimization is generally a nonlinearprogramming problem, it is not only hard to solve but also takes a long computation time.An alternative method to solve the Min-Max optimization problem and to obtain a goodsolution in a relative short period of time is to transform the original Min-Max optimizationproblem into one of a Least-Square Estimation (LSE), which has a number of well de�nedmethods for solving it. It can also be shown that the target function of the original Min-Max optimization problem and that of the transformed LSE problem are linearly boundto each other. Although these two problems have di�erent objective functions, optimizingthe transformed problem can produces a solution to the original Min-Max problem. Tooptimize the solution to the LSE problem, one tries to minimize a target function which isthe Root-Mean-Square (RMS) value of a given function. In this method, one can obtaina solution function which is a set of values of a given function. By the de�nition of theLSE problem, when evaluating the Root-Mean-Square value of a solution function, thisRMS value should be at its minimum. The solution to the original Min-Max problem is



76found from the maximum value of the solution function of the LSE problem. However,this does not mean that solving the LSE problem can lead to the exact solution to theoriginal Min-Max problem, it merely states that solving the LSE problem gives one possiblesolution to the original Min-Max problem. The term: \linearly bound each other" meansthat obtaining the solution function of the LSE problem, one can translate the maximumvalue of the solution function at hand to a solution of the original Min-Max problem; itdoes not say anything about the quality of this solution compared with those obtained fromother methods which are used to solve the same original Min-Max problem.As illustrated in Section 6.1, for any single observable output Min-Max problem, themaximum value of the solution function of the LSE problem is the same as the solution ofthe original Min-Max problem. However, for multiple observable outputs Min-Max problem,the Root-Mean-Square value of the solution function of the LSE problem linearly boundsthe solution of the original Min-Max problem with a wide range. Although the solutionto the original Min-Max problem can still be found, however, one cannot be certain aboutthe quality of the solution of the original Min-Max problem because of this wide range.Worst of all, for Min-Max problems with large number of observable outputs, the solutionof the original Min-Max problem is bounded by a huge range, between one and several tensmultiplying the solution of the LSE problem. For example, if a Min-Max problem has 1000observable output variables, then the solution of the Min-Max problem can lie between oneand 31:62 multiples of the Root-Mean-Square value of the transformed LSE problem, sincethe square root of 1000 is 31:62. The drawback of this huge range is that it gives rise tosuch a huge uncertainty in transferring the maximum value of the solution function of theLSE problem back to the Min-Max solution. This renders the idea of the transformationand solving it through LSE optimization much less useful.Previous research that utilizes the transformation include those of Zhu et al. [59] andWang et al. [54]. Both of these results lack the ability to precisely translate the maximumvalue of the solution function of the LSE problem back to the original Min-Max problem.In this part of thesis, a novel transformation is formulated, followed immediately by a



77proof that this transformation indeed gives the tightest bound for the ideal case. Becauseof this tightest bound, the maximum value of the solution function of the LSE problem canbe transformed back as the solution of the original Min-Max problem even for the case ofthe multiple observable output variables.As demonstrated in Example 6.4.3 in Section 6.4, the best case happens when thedi�erence between all the values of a given function can be minimized. It makes this novelapproach especially e�ective in solving the problem of minimizing the delay of the equal-path-length clock tree.Section 6.1 presents the original Min-Max optimization problem, the transformationinto one LSE problem, and the proof of their target functions linearly bound each other.The drawback of this type of transformation for the case of the multiple observable outputvariables is also discussed in detail. Section 6.2 presents the novel transformation into twoLSE problems and the proof of the tighter linear bound between their target functions. Theadvantage of this novel transformation and an ideal case of the solution translation is alsodiscussed in detail in Section 6.2. The details about the implementation of the optimizationof the LSE problems is shown in Section 6.3, whereas Section 6.4 demonstrates the usefulnessof this novel transformation with three examples.6.1 Transform the Min-Max Problem to One Least-Square EstimationProblemComputer-Aided Design software usually requires the optimization to be a part of theheuristic algorithm. One of the optimization calls for the minimization of the maximum ofall the observable outputs. The transformation de�ned in this section closely followed thatof Wang et al. [54]. However, the notation used here is much more general, which can beapply to the Min-Max optimization problem of any positive function.6.1.1 Physical Example
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Figure 6.1: A Physical Design Example: This is a single-source multiple-receiver interconnect graph. The branch widths are the variables which one cancontrol. The time delays for signal traveling from the source to each receiver arethe variables which one observes.One physical design example is the minimization of the maximum delay of a interconnectgraph as shown in Figure 6.1. The topology of this interconnect graph is �xed, and there aren branches in the interconnect graph. The widths of all the branches can be varied and arecalled the controllable input variables. There are a total of m outputs in this interconnectgraph and are called the observable outputs. The delay is a function controlled by thewidths of all the branches and are observed at the m outputs. The optimization problem isto minimize the maximum of all the delays observed at them outputs through manipulatingthe n widths.6.1.2 Problem De�nitionGiven a positive function G(W; J) where W = fwiji = 1 : : :ng and J = fjjj = 1 : : :mg,the Min-Max problem is to minimize the maximum of all its values. The set of W iscalled the controllable input variables, and the set of J is called the observable outputs.There are n controllable input variables, wi, and m observable output variables, j, for thisoptimization problem. Denote G(W; j) to be the discrete value of G(W; J) at j. The Min-Max optimization problem is to control the w1 through wn input variables so that maximumvalue of the G(W; J) is minimized.



79If one de�nes the target function of the Min-Max problem to be F (W; J), one can write:minW [F (W; J)] 4= minW �maxJ [G(W; J)]� : (6.1)From a general optimization textbook [36], an easier alternative of solving this Min-Maxproblem is to transform it into a Least-Square Estimation (LSE) problem. In order to solvethis LSE problem, one has to minimize the RMS of the given function G(W; J). Solving theLSE problem gives a solution function whose maximum can be translated into a solution ofthe original Min-Max problem.6.1.3 Transformation FormulationThe detailed formulation of the transformation is as follows: let G(W; j) be the observedj � th output, and let the column vector�(W; J) 4= fG(W; 1); G(W; 2); : : : ; G(W; j); : : : ; G(W;m)gT; (6.2)represents the estimation vector, where T denotes the transposition operation, j 2 J and1 � j � m, and m is the number of the outputs. The summation of all squares of theestimations �(W; J) is:�(w1; w2; : : : ; wn; 1; : : : ; m) 4= �(W; J)T�(W; J) = mXj=1[G(W; j)]2 (6.3)If one de�nes the Root-Mean-Square (RMS) of the estimation as:'(w1; w2; : : : ; wn; 1; : : : ; m) 4= s�(W; J)m =vuut mXj=1 [G(W; j)]2m ; (6.4)then new optimization problem becomes the minimization of the RMS of the given functionG(W; J). One can write the new target function of the optimization as:minW ['(W; J)] 4= minW 24vuut mXj=1 [G(W; j)]2m 35 : (6.5)The new target function (Equation (6.5)) does not correspond to the original targetfunction (Equation (6.1)). However, it can be shown that the minimization result of the



80new target function linearly bounds the original optimization solution. As can be seenlater, if the linear bound is tight, the maximum value of the optimization result of the newsolution function can be translated to be the solution of the original Min-Max problem.The following is the proof of the target functions of the transformation linearly boundeach other.Theorem 3: Given a function G(W; J), the minimum of the Root-Mean-Square (RMS) asde�ned in Equation (6.5) and the minimum of the maximum as de�ned in Equation (6.1)linearly bound each other.Proof:Given that the largest of all the G(W; J) is equal to F (W; J), F (W; J) 4= maxJ G(W; J).For all G(W; j), G(W; j) � F (W; J), (1 � j � m), one can obtain Equation (6.6 fromEquation (6.5)'(W; J) 4=vuut mXj=1 [G(W; j)]2m �vuut mXj=1 [maxJ G(W; J)]2m = maxJ G(W; J) = F (W; J): (6.6)On the other hand, we haveF (W; J) 4= maxJ [G(W; J)] = rmaxj [G(W; J)]2 �vuut mXj=1 [G(W; j)]2=vuutm � mXj=1 [G(W; j)]2m = pm � '(W; J): (6.7)From Equation (6.6) and (6.7), one has'(W; J) � F (W; J) � pm � '(W; J): (6.8)This concludes the proof that '(W; J) and F (W; j) linearly bound each other.6.1.4 Physical MeaningGiven a positive function G(W; J) which one wants to optimize, whereW = fwiji = 1 : : :ngand J = fjjj = 1 : : :mg, one can de�ne a mapping M from J = fjjj = 1 : : :mg toJ 0 = nj 0jj 0 = 1m : : :1o, and plot the function G(W; J) as in Figure 6.2, where each G(W; j)
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Figure 6.2: A Positive Function: This is a positive function G(W; J) with jmapped between 1m and 1.assumes a discrete value between j�1m and jm . The area under G(W; J) is:AreaG(W;J) = Z 10 G(W; J)dj: (6.9)De�ne the maximum, minimum, average, and RMS value of the function G(W; J) to bemaxJ [G(W; J)]], minJ [G(W; J)]], avgj [G(W; J)]], and qPmj=1 [G(W;j)]2m respectively. Plot
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Figure 6.3: Relationship between the Maximum, Minimum, Averageand RMS Values: The four lower dashed lines represent these four values. Thetopmost dashed line represents the value of the square root of m times RMS.



82the four values w.r.t. the function G(W; J) in Figure 6.3, one can see the relation betweenthese four values. The areas under the rectangles of these four values are:Areamax = Z 10 �maxJ [G(W; J)]� dj = maxJ [G(W; J)] ; (6.10)Areamin = Z 10 �minJ [G(W; J)]� dj = minJ [G(W; J)] ; (6.11)Areaavg = Z 10 [avgJ [G(W; J)]]dj = avgJ [G(W; J)] ; (6.12)AreaRMS = Z 10 vuut mXj=1 [G(W; j)]2m dj = RMSJ [G(W; J)] : (6.13)From Figure 6.3, one can tell that AreaRMS � Areamax. From the linear bound, onehas Areamax � pm � AreaRMS which is represented by the biggest rectangle in Figure6.3. It is important to note that Figure 6.3 is not drawn to the scale, so the actual sizeof the area which equals to pm � AreaRMS could be much larger. The term \linearlybound each other" means that the Areamax = F lies in between the AreaRMS = ' andthe pm �AreaRMS = pm � '. By minimizing the area of AreaRMS , one also brings downthe area of pm � AreaRMS , since the area of Areamax lies in between them, so it is alsominimized. However, for the case of multiple observable output variable case as shown inthe same �gure, the range between the AreaRMS and pm � AreaRMS can be quite large.This gives rise to the uncertainty about the minimization of the original target functionwhen one attempts to optimize the LSE problem.6.1.5 Practical ConsiderationsWhen applied to a case of the single observable output, m = 1, Equation (6.8) becomes' � F � p1', which means that the two target functions are equal, that is, minimizingone is to minimizing the other. Thus, the solution to the LSE problem, ', can be takenas the solution of the Min-Max Problem. However, for a case of the multiple observableoutput variable, Equation (6.8) is ' � F � pm', which means that the target function ofthe LSE problem, ', linearly bounds the solution of the original Min-Max problem, F , witha range. This means that the two target functions are not the same, so minimizing one



83does not guarantee the minimization of the other. This range is de�ned as from ' to pm'.For example, if a Min-Max problem has 1000 observable outputs which is common for aglobal clock distribution net, then the solution of the original Min-Max problem is boundedbetween one and p1000 = 31:62 multiplies the target function of the LSE problem. Thishuge range give rise to one's hesitation about the quality of the solution to the Min-Maxproblem . This is the drawback when one tries to use the transformation to solve the Min-Max problem in the case of the multiple observable output. The huge linear bound rangeand the uncertainty in the solution translation renders the idea of the transformation andsolving through LSE optimization much less useful.In Section 6.2, a novel transformation approach is presented. This novel transformationcan be shown to have a tighter linear bound than that of Equation (6.8) and, in the best case,can make the solution translation of the case of the multiple observable output identical tothat of the single observable output.6.2 Novel Transformation of the Min-Max Problem into TwoLeast-Square Estimation ProblemsThe transformation presented in Section 6.1 changes the target function of the Min-Maxproblem to the RMS of a di�erent LSE problem. This transformation works only becauseminimization of the RMS of the di�erent LSE problem is identical to the minimization ofthe original problem for a single observable output. In the case of the multiple observableoutput variable, the minimization of the LSE problem cannot be proved to be identical tothe optimization of the Min-Max problem. This prevents the use of the transformation asa method of solving the original Min-Max problem.In this Section, a novel transformation which gives even a tighter linear bound ispresented. The reason for the development of this tighter bound is that it will work evenin the case of the multiple observable output. This novel transformation transforms theoriginal Min-Max problem into two LSE problem; one of them is the minimization of theRMS of a given function; and the other is the minimization of the RMS of the di�erence



84between an arbitrary constant and a given function G(W; J). The �rst LSE problem is thesame as the one presented to in Section 6.1.3. Solving these two LSE problems togethergives two target function values and one solution function. The maximum value of thesolution function of the two LSE problem can be translated into a solution of the originalMin-Max problem. The solution to the second LSE problem only serves as an assurancethat when optimizing the �rst LSE problem, one is indeed minimizing the original Min-Maxproblem.6.2.1 Problem De�nitionThe problem de�nition is identical to the one that presented in Section 6.1.2. Givena positive function G(W; J) where W = fwiji = 1 : : :ng and J = fjjj = 1 : : :mg, one cande�ne the target function of the Min-Max problem to be F (W; J), and write:minW [F (W; J)] 4= minW �maxJ [G(W; J)]� : (6.14)6.2.2 Transformation FormulationThe transformed optimization problem consists of two LSE problems. The �rst one isthe minimization of the RMS of the given function G(W; J). The second LSE problem isthe minimization of the RMS of the di�erence between an arbitrary constant c and thegiven function G(W; J). For the second LSE problem, one has to create a new Min-Maxproblem. De�ne a new function �(W; J) 4= [maxJ [c�G(W; J)]], where c is an arbitraryconstant which remains the same during the entire LSE optimization process. The choiceof c a�ects the outcome of the the solution translation a great deal and will be discussedin detail in Section 6.2.4. De�ne the target function of the new Min-Max problem to be�(W; J), one can write:minW [�(W; J)] 4= minW �maxJ [c�G(W; J)]� : (6.15)Denote G(W; j) to be the discrete value of G(W; J) at j. De�ne the estimation vectorfor the �rst LSE problem to be �(W; J) 4= fG(W; 1); G(W; 2); : : : ; G(W; j); : : : ; G(W;m)gT ,



85where T denotes the transposition operation, j 2 J and 1 � j � m, and m is the numberof the observable outputs. De�ne the summation of all squares of the �rst estimations,�(W; J), to be:�(w1; w2; : : : ; wn; 1; : : : ; m) 4= �(W; J)T�(W; J) = mXj=1[G(W; j)]2 (6.16)De�ne the Root-Mean-Square (RMS) of the �rst estimation as:'(w1; w2; : : : ; wn; 1; : : : ; m) 4= s�(W; J)m =vuut mXj=1 [G(W; j)]2m (6.17)Similarly, denote �(W; j) to be the discrete value of �(W; J) at j. De�ne the estimationvector for the second LSE problem to be:
(W; J) 4= fc� G(W; 1); c� G(W; 2); : : : ; c� G(W; j); : : : ; c�G(W;m)gT ; (6.18)where T denotes the transposition operation. De�ne the summation of all squares of thesecond estimations, 	(W; J; c), to be:	(w1; w2; : : : ; wn; 1; : : : ; m; c) 4= 
(W; J)T
(W; J) = mXj=1[c�G(W; j)]2 (6.19)De�ne the Root-Mean-Square (RMS) of the second estimation as: (w1; w2; : : : ; wn; 1; : : : ; m; c) 4= s	(W; J; c)m =vuut mXj=1 [c� G(W; j)]2m (6.20)The transformed optimization problem consists of two LSE problems. The �rst one isthe minimization of the RMS of the given function G(W; J). The second LSE problem isthe minimization of the RMS of the di�erence between an arbitrary constant c and thegiven function G(W; J). One can write the new target function of the �rst optimization as:minW ['(W; J)] 4= minW 24vuut mXj=1 [G(W; j)]2m 35 : (6.21)Likewise, one can write the new target function of the second optimization as:minW [ (W; J; c)] 4= minW 24vuut mXj=1 [c� G(W; j)]2m 35 : (6.22)



86The two new target functions (Equation (6.21)) and (Equation (6.22)) do not correspondto the original target function (Equation (6.14)). However, it can be shown that the linearcombination of the minimization results of the two new target functions linearly bound theoriginal optimization solution. As can be seen in Section 6.2.4, if the linear bound is thetightest for the idea case, the optimization result of the maximum value of the solutionfunction of the two LSE optimization can be translated to be the solution of the originalMin-Max problem.The following is the proof of the target functions of the transformation linearly boundeach other. From Theorem 3, one has:'(W; J) � F (W; J) � pm � '(W; J): (6.23)Similarly, for the new Min-Max problem and the new transformed LSE problem, one canprove their target functions linearly bound each other.Theorem 4: Given a function �(W; J), the minimum of the Root-Mean-Square (RMS)de�ned in Equation (6.20) and the minimum of the maximum de�ned in Equation (6.15)linearly bound each other.Proof:Given that the largest of all the �(W; J) is H(W; J). H(W; J) 4= maxJ �(W; J). For all�(W; j), �(W; j)� H(W; J), (1 � j � m). From Equation (6.20), one has: (W; J; c) 4=vuut mXj=1 [c�G(W; j)]2m �vuut mXj=1 maxJ [c� G(W; J)]2m= maxJ �(W; J) = H(W; J): (6.24)On the other hand, H(W; J) is de�ned asH(W; J) 4= maxJ [c�G(W; J)] = rmaxj [c�G(W; J)]2 �vuut mXj=1 [c�G(W; j)]2=vuutm � mXj=1 [c� G(W; j)]2m = pm � (W; J; c): (6.25)



87From Equation (6.24) and (6.25), one has (W; J; c)� H(W; J) � pm �  (W; J; c): (6.26)This concludes the proof that  (W; J; c) and H(W; j) linearly bound each other.From the solution of the two LSE problem, one can transform them back to a solutionof the original Min-Max problem.Theorem 5: Given a function G(W; J), the minimum of the Root-Mean-Square (RMS) asde�ned in Equation (6.17), and the sum of the minimum of the RMS and pm times theminimum of the RMS as de�ned in Equation (6.20) linearly bound the target function ofthe Min-Max problem de�ned in Equation (6.14). i. e.'(W; J) � F (W; J) � '(W; J) +pm �  (W; J; c): (6.27)Proof:From the Theorem 3, one has: '(W; J) � F (W; J): (6.28)It is shown in Appendix A that:F (W; J) � '(W; J) +pm �  (W; J; c): (6.29)From Equations (6.28) and (6.29), one has:'(W; J) � F (W; J) � '(W; J) +pm �  (W; J; c):6.2.3 Physical MeaningGiven the same positive function G(W; J) where W = fwiji = 1 : : :ng and J =fjjj = 1 : : :mg, the objective of the Min-Max problem is to minimize the maximum ofall its values. The physical meaning of the novel transformation is not only to minimize theRMS of the given function G(W; J) but also to minimize the di�erence between the given
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Figure 6.4: A Positive Function: This is a positive function G(W; J) after theoptimization with j mapped between 1m and 1.function G(W; J) and an arbitrary constant c. Preferably, the constant c is equal to theaverage of the �nal results of the function G(W; J). Plotting the function G(W; J) afteroptimization in Figure 6.4, one can see the di�erences have also been minimized between allG(W; j) and the constant c. Plotting the constant c, the maximum, minimum, average, and
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Figure 6.5: Relationship between the Maximum, Minimum, Averageand RMS Values: The four lower dashed lines represent these four values. Thetopmost dashed line represents the value of square root ofm multiplies RMS. Theconstant c is arbitrary chosen and can assume other value as well, here it is drawnonly for reference. The upper bound is not drawn to the scale.



89RMS value of the function G(W; J) as in Figure 6.5, one can see the relative relationshipsamong them. Because the upper bound is now AreaRMS +pm � , it is much tighter thanthe range shown in Figure 6.3. This �gure gives the insight into why one chooses this newlinear bound over the old one. Looking at Figure 6.5, one can see that Areamax = F liesbetween the AreaRMS = ' and the AreaRMS = ' plus the area of another function to bechosen later. It is desirable to choose this function so that the \add-on" area of it is assmall as possible. It turns out that by adding the area of H(W; J) = maxJ [c � G(W; J)],one can cover the area Areamax = F . This is plotted in Figure 6.6, which shows that by
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Figure 6.6: Relationship between the Values of the New Linear Bound:The upper dashed line represents the area that is the summation of the RMS of thefunction and the square root of m multiplies the RMS of the di�erences betweenthe function and an arbitrary constant c.minimizing the area H(W; J) = maxJ [c�G(W; J)], the new linear bound becomes tighter.6.2.4 Practical ConsiderationsThe constant c that is chosen must stay the same throughout the LSE optimizationprocess. The �rst choice of c may not always be the best. One way of improving thesituation is to iteratively re�ne the constant c. First pick a constant c which approximates



90the solution value of the original Min-Max problem, then after the LSE optimization isdone, compute a new constant c = avgj [G(W; J)] and repeat the LSE optimization again.Several iterations of the LSE optimization process are required until the value of the function (W; J; c) is su�ciently small and then the maximum value of the solution function of thetwo LSE optimization is taken as the solution to the Min-Max problem.Generally speaking, the function  (W; J; c) is two to three orders of magnitudes smallerthan '(W; J). This makes the linear bound '(W; J) � F (W; J) � '(W; J)+pm � (W; J; c)much tighter than the linear bound '(W; J) � F (W; J) � pm � '(W; J) as presented inSection 6.1. This tighter bound assures the equivalence in minimization of the two di�erentkinds of optimization in the case of the multiple observable output variable. For the bestcase, when the constant c chosen is avgj [G(W; J)], the function  (W; J; c) = 0. Then'(W; J) � F (W; J) � '(W; J)+pm� (W; J; c) = '(W; J)+pm�0 = '(W; J), which means'(W; J) is equal to F (W; J). Because this ideal case makes the two target functions equalto one another, minimization of the LSE problem is indeed identical to the minimization ofthe original Min-Max problem. This is the tightest linear bound possible which makes thetranslation of the solution in the case of the multiple observable output variable exactly thesame as that of the single observable output variable.6.3 Implementation of the Least-Square Estimation OptimizationThe Levenberg-Marquardt method is used to solve the two Least-Square Estimationproblem similar to the implementation in Section 5.9. The only di�erence is the computationof �jW (k) and 
jW (k) . The �jW (k) is de�ned in Equation (6.2) and the 
jW (k) is de�ned inEquation (6.18).6.4 Experimental Results for Better Optimal Self-Damped DesignThe examples that were tested were constructed with High Performance MCM processtechnologies published by Frye [24]. The important parameters of the MCM process arelisted in Table 6.1. In the case of the uniform width, all of the widths are equal to 25�m



91for all of the examples tested. All of the drivers are modeled with a step input voltagesource in series with the parallel combination of a 12
 resistor and a 4:3pF capacitor. Allof the receivers in Examples 6.4.1 and 6.4.3 are modeled using a 2:5pF capacitor. All of thereceivers in Example 6.4.2 are modeled using a 4:5pF capacitor. For all of the simulationresults of the S-parameter macromodels, all of the far-end waveforms are simulated withthe time-of-
ight captured explicitly with the method stated in Section 5.5.HIGH PERFORMANCE MCM-DThickness of Dielectric (�m) 5"rel 3:2Thickness of Metal (�m) 2:5R (
=�m) for typical edge width 2:4L (nH=�m) for typical edge width 2:9C (pF=�m) for typical edge width 1:39lower bound metal line width (�m) 10typical metal line width (�m) 25upper bound metal line width (�m) 50Table 6.1: The High Performance MCM Technologies Process Parame-ters Maximum Lower Maximum Upper PercentPath Delay Bound Path Delay Bound Improvement(Uniform) ' (Optimal) pm'(nS) (nS) (nS) (nS) (%)Example 6.4.1 0:9874 0:5833 0:7182 1:4288 27:26Example 6.4.2 0:9354 0:6266 0:8245 1:2532 11:85Example 6.4.3 1:2308 0:8510 0:8533 2:0841 30:67Table 6.2: Comparison between the Uniform Width Design and theOptimal Design



92Maximum Lower Maximum Upper PercentPath Delay Bound Path Delay Bound Improvement(Uniform) ' (Optimal) '+pm (nS) (nS) (nS) (nS) (%)Example 6.4.1 0:9874 0:5777 0:7135 0:7777 27:74Example 6.4.2 0:9354 0:6287 0:7826 0:9812 19:44Example 6.4.3 1:2308 0:8320 0:8339 0:8418 32:25Table 6.3: Comparison between the Uniform Width Design and theNovel Optimal Design: It is evident from the comparison of these two tablesthat not only the upper bounds of the linear bound are improved but also thequality of the solutions to the original Min-Max problem.
Driver

Receiver 1

Receiver 2

Receiver 3

Receiver 4

Receiver 5

Receiver 6

l=0.5cm

l=1.0cm

l=0.5cm l=1.0cm

l=1.0cm

l=2.0cm

l=1.0cm

l=0.5cm

l=1.0cm

w=50um

w=50um

w=45um w=50um

w=34um

w=50um w=37um

w=42um

w=32um

(a) (b)Figure 6.7: A Tree Network and the Simulation Waveforms of theReceiver 3: The topology is shown in (a). The output waveforms for the optimal,the old optimal and uniform cases of the receiver 3 with the maximum path delayare shown in (b). The optimal design is better than both the old optimal designand the uniform width design because its maximum path delay is the smallestamong the three designs.



936.4.1 Example 1 A Tree NetworkExample 6.4.1 is a tree network shown in Zhou's MCMC paper [58]. Figure 6.7 (a)shows the topology, lengths, and widths of the optimal design for all of the edges. Theoptimal design performance is used to compare with the case of the uniform width andthe case of the old optimal design [54]. The per-unit-length R, C, and L of the uniformwidth design are listed in Table 6.1. The simulation waveforms of the receiver 3 with themaximum path delay for three di�erent designs, namely the optimal design, old optimaldesign, and uniform width design are shown in Figure 6.7 (b). The maximum path delays,their respective bounds, and their percentage of improvements are listed in Tables 6.2 and6.3.6.4.2 Example 2 A Network with a Loop
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(a) (b)Figure 6.8: A Network with a Loop and the Simulation Waveformsof the Receiver 4: The topology is shown in (a). The output waveforms forthe optimal, the old optimal and the uniform cases of the receiver 4 with themaximum path delays are shown in (b). The optimal design is better than boththe old optimal design and the uniform width design because its maximum pathdelay is the smallest among the three designs.



94Example 6.4.2 is a network with a loop. Figure 6.8 shows the topology, lengths, andwidths of the optimal design for all of the edges. The simulation waveforms of the receiver4 with the maximum path delay for three di�erent designs, namely the optimal design, oldoptimal design, and uniform width design are shown in Figure 6.8 (b). The maximum pathdelays, their respective bounds, and their percentage of improvements are listed in Tables6.2 and 6.3. This novel optimal design has also been shown to have less overshoot than theold optimal design which tries to minimize overshoot by minimizing the maximum of allof the damping ratio errors together with the minimization of the maximum of all of thedelays.6.4.3 Example 3 A Clock Tree NetworkExample 6.4.3 is a clock tree network shown in Zhu's ICCAD paper [59]. Figure 6.9 (a)shows the topology, lengths, and widths of the optimal design for all of the edges. All ofthe the simulation waveforms of the optimal design are shown in 6.9 (b), those of the oldoptimal design are shown in 6.9 (c), and those of the uniform width design are shown inFigure 6.9 (d). The maximum path delays, their respective bounds, and their percentageof improvements are listed in Tables 6.2 and 6.3.The old optimization method presented in Chapter 5 demonstrated an improvementin the performance of this clock tree by reducing the maximum path delay and skewthrough minimization of the delays and the damping ratio errors. Although the skew wasinitially reduced to 96pS, a further reduction to 4:4pS can be achieved by using the noveloptimization method which has the ability to minimize the RMS of all of the delays as wellas the RMS of all of the di�erences between the delays and an arbitrary constant. Thismethod not only guarantees the quality of the solution to the Min-Max delay problem butit also implies that the minimization of the skew has occured.The experimental results show that this optimization method reduces the maximumof the signal propagation delays considerably when compared to both the uniform widthdesigns and the previous optimization designs presented in Chapter 5.
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96The results gathered here clearly demonstrate that this novel optimization methodis most useful when the di�erences between all of the observable output variables areminimized. An excellent application of this optimization method, especially with this specialcharacteristics, is in the minimization of the maximum path delay of the equal-path-lengthH clock tree.



97CHAPTER 7. Conclusions
The task of designing interconnect networks for today's high performance digital systemsrequires an accurate and a more e�cient transient analysis of the coupled lossy transmissionlines with frequency-dependent losses. Four novel macromodels of transmission lines anddiscontinuities have been developed for the purpose of a more e�cient transient analysis.A novel method for the optimal self-damped design of interconnect networks on multichipmodules (MCM) has also been presented.We have presented here four new macromodels which extend and enhance the existingS-parameter based macromodels. The contributions in this thesis are:� The construction of the macromodel for the congruence transformer.� The computation of the moments of the S-parameters from the curve-�tted coe�cientsof the R(f), L(f), C(f) and G(f) data sets.� The construction of the macromodel for the congruence transformer for the coupledtransmission lines characterized with frequency-dependent parasitics.� The indirect computation of the moments of the S-parameters from the measureddata through �rst converting the measured S-parameter data into R(f), L(f), C(f)and G(f) data sets, and later �nding the curve-�tted coe�cients from the converteddata sets.These results are used in the transient analysis of:� The coupled transmission lines (Chapter 2)� The single and coupled transmission lines characterized with frequency-dependentlosses (Chapter 3)



98� The elements characterized with measured and tabulated S-parameter data (Chapter4)The experimental results show an excellent good agreement with other state-of-the-artsimulators in addition to the clear e�ciency advantages.An optimal design technique for the design of the interconnects on MCMs has beenpresented. The self-damped design can be applied to any general network which may containloops. The contributions in this thesis are the formulation of the self-damped design, theproofs of the tighter bounds between the original nonlinear programming problems and theLeast-Square Estimation problems. The experimental results show signi�cant improvementsover the over-constrained uniform width design practice.



99CHAPTER 8. Future Work
In this research, only uniform transmission lines which support quasi-TEM wave prop-agation are investigated. The S-parameter macromodels of non-uniform transmission lineswhich support non-TEM wave propagation should be created in the future research.For the creation of S-parameter macromodel of the measured data, only interconnectionswhich have either two-port or 2N -port con�gurations are considered. These result can beextended to handle general two-port elements such as open or gap. They should also includegeneral N -port \black boxes" in future research.Since the current S-parameter macromodel of the measured data can be used to ex-trapolate or interpolate the S-parameter value at any frequency point, it can be integratedseamlessly into the new frequency domain simulation method which evaluates S-parametersat every frequency of interest and then performs approximation at the very end.The perturbation method used in �nding the gradient matrix of the Least-Square Es-timation optimization is a very time consuming one. There are two other methods, theincremental simulation and the sensitivity analysis which can be employed to further speedup the optimal design process. The use of S-parameter sensitivity analysis presents a greatchallenge because it only produces a voltage-time relationship for each parameter whichdoes not bear a direct implication on the value of the partial directives. It requires a newway of thinking about the transformation and implementation of the Least-Square Esti-mation problem to solve the original Min-Max optimization problem. It also requires anew proof to show that the target function of the new LSE problem linearly bounds thetarget function of the original Min-Max problem. This topic is the most interesting andchallenging among all of the topics in the future extensions of this thesis.



100Appendix A. Proof of the Tighter Bound
Given a positive function G(W; J) where W = fwiji = 1 : : :ng and J = fjjj = 1 : : :mg,one can de�ne the target function of the Min-Max problem to be F (W; J), and write:minW [F (W; J)] 4= minW �maxJ [G(W; J)]� : (A.1)Denote G(W; j) to be the discrete value of G(W; J) at j. De�ne the estimation vectorfor the �rst LSE problem to be �(W; J) 4= fG(W; 1); G(W; 2); : : : ; G(W; j); : : : ; G(W;m)gT ,where T denotes the transposition operation, j 2 J and 1 � j � m, and m is the numberof the observable outputs. De�ne the summation of all squares of the �rst estimations,�(W; J), to be:�(w1; w2; : : : ; wn; 1; : : : ; m) 4= �(W; J)T�(W; J) = mXj=1[G(W; j)]2 (A.2)De�ne the Root-Mean-Square (RMS) of the �rst estimation as:'(w1; w2; : : : ; wn; 1; : : : ; m) 4= s�(W; J)m =vuut mXj=1 [G(W; j)]2m (A.3)Similarly, denote �(W; j) to be the discrete value of �(W; J) at j. De�ne the estimationvector for the second LSE problem to be:
(W; J) 4= fc� G(W; 1); c� G(W; 2); : : : ; c� G(W; j); : : : ; c�G(W;m)gT ; (A.4)where T denotes the transposition operation. De�ne The summation of all squares of thesecond estimations, 	(W; J; c), to be:	(w1; w2; : : : ; wn; 1; : : : ; m; c) 4= 
(W; J)T
(W; J) = mXj=1[c�G(W; j)]2 (A.5)



101De�ne the Root-Mean-Square (RMS) of the second estimation as: (w1; w2; : : : ; wn; 1; : : : ; m; c) 4= s	(W; J; c)m =vuut mXj=1 [c� G(W; j)]2m (A.6)One wants to prove that given a positive function G(W; J), the minimum of the Root-Mean-Square (RMS) as de�ned in Equation (A.3), and the sum of the minimum of theRMS as de�ned in Equation (A.3) and pm multiplies the minimum of the RMS as de�nedin Equation (A.6) linearly bound the target function of the Min-Max problem de�ned inEquation (A.1). i. e.'(W; J) � F (W; J) � '(W; J) +pm �  (W; J; c): (A.7)From the Theorem 3, one has: '(W; J) � F (W; J): (A.8)The second half of the equation is:F (W; J) � '(W; J) +pm �  (W; J; c): (A.9)Substituting the de�nitions of ' and  into the above equation, one has:maxj [G(W; J)]�vuut mXj=1 [G(W; j)]2m +pm �vuut mXj=1 [c� G(W; j)]2m ; (A.10)or maxj [G(W; J)] �vuut mXj=1 [G(W; j)]2m +vuut mXj=1[c�G(W; j)]2; (A.11)The remainder of the proof of the theorem is to �rst establish the extreme value is in factthe global minimum, and later prove that this extreme value is equal to the left hand sideof the Equation (A.11). If the global minimum is indeed equal to the left hand side of theEquation (A.11), then this Equation (A.11) holds for all value of c. Throughout the proof,because the case of the multiple outputs is analyzed here, it is assumed that there are atleast two observable output variables.



102It is apparent from Equation (A.7) that the choice of c determines how tight the bound willbe. It can be shown that the c which makes  (W; J; c) assume the smallest value gives thetightest bound. In order to �nd such a constant c, one takes the partial derivative of theupper bound function w.r.t. c, one has:@@c �'(W; J) +pm � (W; J; c)�= @@c'(W; J) +pm � @@c (W; J; c)= 0 +pm � @@c (W; J; c): (A.12)Setting the partial derivative equal to zero and solve, one can �nd the minimum of the righthand side of Equation (A.11). From the de�nition, (W; J; c) 4=vuut mXj=1 [c�G(W; j)]2m : (A.13)In order to �nd the extreme value of  (W; J; c) w.r.t. c, one has to set the �rst partialderivative of  (W; J; c) w.r.t. c equal to zero and solve. To �nd out whether it is a globalminimum or global maximum, one needs to �nd out the sign of the second partial derivativeof  (W; J; c) w.r.t. c. Take the �rst and second partial derivative of  (W; J; c) w.r.t. c, onehas: @ @c = Pmj=1 2�[c�G(W;J)]mqPmj=1 [c�G(W;j)]2m = 0; (A.14)@2 @c2 = Pmj=1 2m�qPmj=1 [c�G(W;j)]2m �3 : (A.15)Solving for @ @c = 0, one has: mXj=1 2 � [c� G(W; J)]m = 0: (A.16)In order for the above equation to be true, the value of c must bec = avgj [G(W; J)] : (A.17)To �nd out whether this extreme value of  (W; J; c) is a minimum or a maximum, one looksat the sign of @2 @c2 . Simplify @2 @c2 , one has:



103@2 @c2 = Pmj=1 2m�qPmj=1 [c�G(W;j)]2m �3 = 2�qPmj=1 [c�G(W;j)]2m �3 (A.18)Because [c � G(W; j)]2 is always greater than or equal to zero, so @2 @c2 > 0, which means (W; J; c) is a concave upward function, and its value at c = avgj [G(W; J)] is therefore aglobal minimum.The following three cases list all the possible values of the choice of constant c:� Case I: c � avgj [G(W; J)]� Case II: c � maxj [G(W; J)] � avgj [G(W; J)]� Case III: maxj [G(W; J)] � c > avgj [G(W; J)]Because c = avgj [G(W; J)] is a global minimum, one only need to �nd out the extremevalue of the right hand side of Equation (A.11) in Case I.Let avgj [G(W; J)] 4= Pmj=1G(W; j)m : (A.19)Assume c � avgj [G(W; J)]. It is known that Root-Mean-Square of a function is greaterthan or equal to the Mean of the function, that is:vuut mXj=1 [c�G(W; j)]2m � Pmj=1G(W; j)m = avgj [G(W; J)] : (A.20)Sovuut mXj=1 [c� G(W; j)]2m +vuut mXj=1[c� G(W; j)]2 � Pmj=1G(W; j)m +vuut mXj=1[c� G(W; j)]2: (A.21)Since c � avgj [G(W; J)], thusmaxj [G(W; J)]� c � maxj [G(W; J)]� avgj [G(W; J)] ;vuut mXj=1[c�G(W; j)]2 � maxj [G(W; J)]� c;vuut mXj=1[c�G(W; j)]2 � maxj [G(W; J)]� avgj [G(W; J)] :



104Rearranging, one has:vuut mXj=1[c�G(W; j)]2+ avgj [G(W; J)] � maxj [G(W; J)] : (A.22)From Equation (A.21) and (A.22), if c � avgj [G(W; J)], one has:vuut mXj=1 [c�G(W; j)]2m +vuut mXj=1[c�G(W; j)]2 � maxj [G(W; J)] : (A.23)From Equations (A.23), one can write:'(W; J) +pm �  (W; J; c) =vuut mXj=1 [G(W; j)]2m +pm �vuut mXj=1 [c�G(W; j)]2m� maxj [G(W; J)] = F (W; J) (A.24)For a choice of c with c � avgj [G(W; J)], the minimum of '(W; J)+pm � (W; J; c) is equalto maxj [G(W; J)] = F (W; J), soF (W; J) � '(W; J) +pm �  (W; J; c): (A.25)From Equations (A.8) and (A.25), one has:'(W; J) � F (W; J) � '(W; J) +pm �  (W; J; c):
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