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iAbstractAn implementation model for a retrieval and inference system based on the theory ofconceptual graphs is presented. Several hard issues related to the full implementation of thetheory are taken up and solutions presented. The solutions attempt to exploit existing butnot fully recognized symmetries in CG theory. These symmetries include those betweenformation and inference rules, AND and OR, positive and negative, copy and restrict,general and speci�c, etc. Topics taken up include the implementation of Sowa's formationrules, the storage of a conceptual graph hierarchy involving contexts and negation as aconjunctive normal form (CNF) lattice, the extension of existing retrieval algorithms, suchas Levinson's Method III and UDS, to handle complex referents and nested contexts, thechecking of consistency, and the de�nition of Peirce's inference rules in terms of formationrules. A distinction is made between syntactic implication and semantic implication. Theissues tackled in the paper lay the foundation for a full scale graph-based �rst-order logictheorem prover.
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1. Introduction 11 IntroductionAt a given level of a hierarchy, a particular system can be seen as an outsideto systems below it, and as an inside to systems above it; thus, the status (i.e.,the mark of distinction) of a given system changes as one passes through itslevel, in either the upward or downward direction. The choice of consideringthe level above or below corresponds to a choice of treating the given system asautonomous or controlled (constrained) [11].Is your conceptual graphs database consistent? Does it store and process nested contextgraphs? How is negation handled? Are complex referents too complex to use? Does itproperly map the mathematical relationship of Peirce's rules to Sowa's [21, 22, 23] formationrules? Although conceptual graph (CG) theory has been discussed in depth for the pastten years, and several implementations have been developed [5], these full implementationquestions have largely been neglected.In this paper we address some of these omissions. In particular, we give implementationmethods for handling negation, arbitrarily nested contexts, the canonical formation rules,and lambda abstraction. Although, we don't give a full scale inference system, we do showhow Peirce's inference rules can be incorporated within the same scheme, and how inferencemight proceed. Along these lines we give a mechanism for ensuring consistency (no logicalcontradictions) in a CG database. Some of the major contributing notions include:1. The storing of the CG generalization hierarchy as a CNF lattice that exploits theduality between Boolean AND and OR for storage and retrieval e�ciency.2. The extension of previous implementation models [3, 18] that exploit containmentlinks to avoid repeated storage of structures, to store nested contexts.3. The association of labels (codes) with nodes and links that indicate whether thepositive or negated version is being asserted or inferred.4. The representation of a CG hierarchy as a hierarchy over equivalence classes of CGsrather than over individual structures as is discussed in [24].5. A more elegant statement of the canonical formation rules that more clearly distin-guishes restriction and join.6. The treatment of contexts and complex referents in the same unifying manner.7. The extension of existing retrieval algorithms for exploring the generalization hierar-chy to cover the full variety of CGs [16, 3, 4].8. A formalization of Peirce's inference rules in terms of formation rules.In Section 2, Formation Rules, we restate the basic rules for transforming one CG toanother. These are foundational because the generalization hierarchy/lattice is based onthe partial ordering relation induced by the projection operator. For one graph to projectinto another, it must be possible to derive the second by applying a sequence of formationrules to the �rst.Section 3, Lattice Terminology, explains the basic terminology needed to understand anduse lattices to store the CG database. Section 4, Adding Contexts, adds complex referentswhich include contexts. Previous work de�ning a Universal Data Structure (UDS) to storethe CG database [18] did not include complex referents with icons, indexes, and symbols.This section shows how various forms of them, e.g. names, variables, literals, and graphsfor contexts, can be added to the generalization lattice. Section 5 is on Adding Negation.It describes how to extend the generalization hierarchy/lattice to cover the negative graphs



2. Formation Rules 2that were not included in previous work either. In Section 6, Extended Algorithms, thebasic structure of the previous Method III algorithm [4, 15] is extended, without increasingthe complexity, to cover complex referents, such as names, variables, contexts, and negativegraphs. Section 7 covers Peirce Inference Rules. With conjunction and negation it is possibleto represent all logical expressions. Peirce de�ned a compact system of logic that John Sowaapplied to CGs. This section restates Peirce's rules and shows how they are handled withthe extended generalization hierarchy/lattice. And Section 8 concludes by giving futuredirections.2 Formation RulesThe formation rules are a foundational part of CG theory because they de�ne the partialordering relation used to build the syntactic generalization hierarchy. They were originallyde�ned by Sowa in 1984 [21] and re�ned in his latest book [23]. We have streamlinedand clari�ed those de�nitions by de�ning three kinds of operations on conceptual graphs,equivalence preserving, specialization, and generalization. Each of the formation rules has amutual inverse: Simplify with Copy, Restrict with Join, and Unrestrict with Detach. Somework in the same spirit is taken up in [2].In the following, each of the formation rules is de�ned in terms of more primitiveindividual concept and relation operations. The notation type(r1) � type(r2) is used. Itmeans that r1 is a subtype of r2 and hence more specialized. We also assume that a relationsubtype has the the same corresponding arcs as the relation type.2.1 Equivalence Formation RulesThe � function maps a CG to an equivalent predicate logic expression. So two CGs,mapped by � to logically equivalent expressions, have the same meaning; i.e., they are inthe same equivalence class. Consequently, transformation rules, where the initial and �nalCGs are in the same equivalence class, are called equivalence rules.We de�ne Relation Simplify, its inverse Relation Copy, Concept Simplify, its inverseConcept Copy, and use them to de�ne Simplify & Copy equivalence rules.De�nition: Relation Simplify. If r1 and r2 are relations, type(r1) � type(r2), andeach pair of corresponding arcs connects to the same concept or coreferent concepts in thesame context, then r2 and its arcs may be deleted.It can be shown that the initial and �nal CGs are in the same equivalence class asfollows. First, � maps relations to a predicate corresponding to the relation's type. Second,� maps the predicate's arguments to the referents of the concepts to which the relation isconnected. Third, since each corresponding pair of arcs connect to the same or coreferentconcepts, the corresponding pair of arguments will be the same. Thus, the predicates havethe same arguments. Fourth, the predicate for r1 implies that for r2. And �fth, sincetype(r1) � type(r2) and predicate(r1) => predicate(r2), we can delete r2.De�nition: Relation Copy. If relation r1 has arcs connected to concepts c1, c2,... , cn, then relation r2 may be added where both type(r1) � type(r2) and correspondingarcs also connected to c1, c2, ..., cn or concepts coreferent with them in the same context.Note that r2 doesn't have to be connected to the identical concepts, only correspondingcoreferent ones in the same context.



2. Formation Rules 3De�nition: Concept Simplify. If both c1 and c2 are coreferent concepts in the samecontext1 and type(c1) � type(c2), then concept c2 may be deleted and all relation arcs andcoreferent links that were connected to c2 are connected to c1.This works for the same reasons it works in relation simplify. The function � mapsconcepts c1 and c2 to monadic predicates corresponding to their type labels. Since they arecoreferent, these predicates will have the same argument and, since type(c1) � type(c2),the more general predicate is implied and can be deleted.De�nition: Concept Copy. If type(c1) � type(c2), any concept c1 may be splitinto c1 and a coreferent concept c2 in the same context with relation arcs and coreferentlinks that were connected to c1 connected to either c1 or c2. This is allowed because theconformance operator :: is transitive; that is, if referent x conforms to type c1, writtenc1::x, then x conforms to any supertype of c1, i.e. c2::x.Next we combine these primitive operations to de�ne the simplify and copy formationrules as a sequence of the corresponding primitive operations.De�nition: Simplify. The composition of a sequence of relation simplify and/orconcept simplify operations on the same graph.De�nition: Copy. The composition of a sequence of relation copy and/or conceptcopy operations on the same graph.Simplify and Copy are inverses; the composition sequence is just reversed. They areequivalence rules because they are really only syntactic changes to the graph. They donot change the meaning of the beginning graph, the �nal graph, or any graph in betweenbecause � maps all to equivalent logical expressions.2.2 Specialization RulesThere are two kinds of specialization, restricting the type or referent, or making sets ofconcepts coreferent. Restriction makes the type or referent of concepts more specialized.Again, the full restrict rule is de�ned in terms of a more primitive one.De�nition: Concept Restrict. In general, a concept may be restricted by 1)replacing its type with a subtype, 2) replacing a blank or generic referent with a name,variable, or individual referent, 3) replacing a name with a variable or individual referent,4) replacing a variable with an individual referent, or 5) adding another name, variable, orindividual referent.2De�nition: Restrict. A sequence of one or more concept restrict operations on thesame graph.Where restrict operates on the referents of a graph, join operates on the lines of identitystructure of the graph. To join two concept nodes is to make them coreferent. They do nothave to be physically merged, that's a syntactic operation, a concept simplify. The inverse ofjoin (detach) is not to split two concepts leaving them coreferent (that's a concept copy), itis to sever the coreferent link. Consequently, the real e�ect of the join and detach operationsare to make or unmake coreference links. The join formation rule is de�ned in terms of themore primitive concept join operation.1They could be coreferent either because they have the same referent or because they have a coreferentlink.2The section on Adding Contexts goes into more detail.



2. Formation Rules 4De�nition: Concept Join. If two concepts in the same context are not coreferent,make them coreferent. If either of the two concepts were part of a larger line of identity,then all concepts in the two lines of identity become part of the same line of identity.3 4De�nition: Join. A sequence of one or more concept joins creating, extending, ormerging one or more lines of identity in the same context.2.3 Generalization RulesThe inverse of specialization is generalization. Consequently, the inverse of each of thespecialization rules gives a generalization rule. The inverse of restrict is unrestrict, and theinverse of join is detach. The Opposite of restricting is to broaden, to make the type orreferent of concepts more general.5 Again, the full unrestrict rule is de�ned in terms of amore primitive one.De�nition: Concept Unrestrict. A concept may be unrestricted (broadened) by1) replacing its type with a supertype, 2) replacing an individual referent with a variable,name, or blank (generic referent), 3) replacing a variable referent with a name or blank, or4) replacing a name referent with a blank.De�nition: Unrestrict. A sequence of one or more concept unrestrict (broaden)operations on the same graph. Since join makes concepts coreferent, to be the inverse ofjoin, detach must make them not be coreferent.De�nition: Concept Detach. Making a subset of a line of identity's concepts partof a new, distinct line of identity. The simplest case is to make two concepts in the samecontext, that are not coreferent with any other concepts, to be not coreferent.The full detach rule, de�ned next, is the operation of severing possibly multiple coreferentlinks either by unlinking or by changing referent variables to be distinct. It's like copyingwhatever relations one wants, grabbing a handful of relations, pulling them to anotherpart of the page, concept copying all concepts connected to those relations, and conceptdetaching all the copied concepts.De�nition: Detach. A sequence of one or more concept detach operations whichpartitions the corresponding lines of identity of one graph into distinct lines.2.4 Summary of Formation RulesDetach and Join are inverses of each other. Simplifying two already coreferent conceptsdoes not change the semantics, the mapping to logic is the same. For a specialization tooccur, the two concepts couldn't have been coreferent before the join. The old de�nitionemphasized the physical aspect of merging the two concept nodes. However, the real act ofjoining was to make them concepts of the same referent.3This de�nition speci�cally does not required the types and referents to be the same. If the referentswere the same, they would already be coreferent, and the join would really be a concept simplify. The realact of joining is to make them coreferent.4As for types, consider the de�nition of a pet-cat, TY PE pet � cat(pc) IS [PET : �pc]:::[CAT : �pc]:This is the normal way to specify multiple supertypes. To do it, one has to make concepts with di�erenttype labels coreferent. All that doing so implies is that the referent of the two concepts conforms to twotypes. At the implementation level, all types are converted to bitcodes for fast comparison. [4].5\Unrestrict" is the currently used term; however, in the future, the use of the term \broaden" might bemore appropriate.



3. Lattice Terminology 5The CG formation rules can be simpli�ed and clari�ed by considering simplify and copyto be forming syntactic variants, or equivalence rules. Join and detach are inverses thatmake and break coreference links, a form of specialization and generalization, respectively.And restrict and unrestrict (broaden) are inverses that specialize and generalize the typesand referents of concepts.3 Lattice TerminologyThe CG hierarchy is stored in the form of a lattice based on the formation rulesdescribed above. The basic algorithms depend on the mathematical properties of lattices.Techniques for improving algorithm e�ciency embed this lattice in a bit encoded latticewhere operations are much more e�cient [4]. In this section we give a few de�nitions andapply them to the CG lattice. The sections following this one, on adding contexts andnegation, extend the use of the lattice structure.A partially ordered set or poset hP,�i is a set P and a partial ordering relation � over P.The least upper bound, LUB, of elements x and y 2 P is written as LUB(x,y). The greatestlower bound, GLB, of elements x and y 2 P is written as GLB(x,y). The LUB and GLB ofsubset S�P is written as LUB(S) and GLB(S).Note that the LUB (GLB) may not exist for two reasons: there are no common bounds,or there is not a unique least (greatest) bound. However, when they both exist we havea lattice, i.e. a non-empty poset hP,�i where LUB(x,y) and GLB(x,y) exist 8x,y2P. Acomplete lattice LhP,�i is a lattice where LUB(S) and GLB(S) exist 8S�P. In particular,for LhP,�i to be complete it must have both a unique top element > d= LUB(P) and uniquebottom element ? d= GLB(P).The complete CG generalization lattice is based on the subsumption relation � over theset of all graphs; that is LhCG,�i. Graph g12CG subsumes graph g22CG, g1�g2, if thereis a mapping �: g1!g2, where �g1 is a subgraph of g2.6If g1�g2, g1 is said to be more general that g2 and, conversely, g2 is said to be morespeci�c than g1. The top, >, is the most general graph, i.e. >�g 8g2CG. Similarly, thebottom, ?, is the most speci�c graph, i.e. 8g2CG g�?.An ancestor of graph g is any graph that is more general than g. Thus, > is an ancestorof all graphs. A descendent of graph g is any graph that is more speci�c than g. Thus, ?is a descendent of all graphs.A parent of g22CG is any ancestor g12CG which is an immediate predecessor of g2,i.e. if g1 = parent(g2), then there doesn't exist a g2CG where g6=g1 and g6=g2 such thatg1�g�g2. The set of immediate predecessors, IP, of g2 is the set of all parents of g2, i.e.IP(g2) = parents(g2), and g1�g2 8g12IP. A child is de�ned similarly. The set of immediatesuccessors, IS, of g2 is the set of all children of g2, i.e. IS(g2) = children(g2), and g2�g38g32IS.6As used here \subgraph" includes types being subtypes and the possibility of folding, i.e. two or moreconcepts in the more general graph mapping to the same concept in the specialization graph and relationsbeing simpli�ed. Also, � is not necessarily unique, [>]�g could map to any of g's concepts. Note that forany graph g2CG, g � g.



4. Adding Contexts and Complex Referents 64 Adding Contexts and Complex ReferentsIn the black box view of a context [7] it is thought of as a special kind of concept, able toparticipate in CGs in the same way that any concept can. In the white box view of a context,it is thought of as a special kind of referent. This duality leads to thinking of contexts andconcepts as abstraction duals [8, 9]. The idea of substitutability of the de�ning graph foran individual marker leads to the observation that a concept with a graph or graphs as itsreferent, called a context, is nothing more than a concept for which an individual has notyet been resolved, else the substitution could be made to simplify the context to a concept.In any case, it is necessary for the CG database to be able to represent contexts; that is,concepts where the referent contains graphs. More generally, it is necessary to representconcepts whose referents contain any of the many other possible combinations of names,variables, literals, graphs, contexts, and nested contexts.The projection operator � implicitly de�nes the partial ordering relation � that estab-lishes the complete CG lattice. To add contexts to the CG lattice it is necessary to extend� to cover contexts. Extending � starts by adding concepts with various forms of referents.Possible referents are icon, index and symbol. The Concept Restrict Formation Rule mapsa generic concept to one with some form of referent. For g1�g2 the projection operator� currently has the property that, for each concept c in g1, �c is a concept in g2 whereTYPE(c)�TYPE(�c) and, if c is an individual, then REFERENT(c)=REFERENT(�c).The last part of this needs to be extended for all the di�erent kinds of referents. Theextension must be general enough to handle all referent variations. The new de�nition is:REFERENT(c)�REFERENT(�c).The question becomes, which referents are more general that others. A generic conceptof some type T is more general than one of the same type with a referent, so: [T]�[T:name],[T]�[T:*x], [T]�[T:#1], [T]�[T:graph], and [T]�[T:graph].A key idea is that combinations of icons, indexes, or graphs, are more speci�c thatany of them individually, so: [T:name]�[T:name*x], [T:*x]�[T:name*x], [T:*x]�[T:*x#1],[T:#1]�[T:*x#1], [T:name1]�[T:name1 name2], [T:name2]� [T:name1 name2], [T:graph1]�[T:graph1 graph2], [T:graph2]�[T: graph1 graph2], [graph1]�[graph1 graph2], and [graph2]�[graph1graph2].To summarize, every generic concept/context has, potentially, under it in the generaliza-tion lattice a sublattice consisting of all possible combinations in any order of icons, indexes,and graphs with the bottom being, implicitly, all of them together.7 Similarly, every graphhas, potentially, under it something like the cross product [6] of these individual sublatticeswith a common bottom where each concept of the graph has all possible referent values.A context is a concept that has one or more graphs as its referent. Each of them is animmediate predecessor of the context. Thus, IP([T: g1 g2]) = f[T] g1 g2g. To show howcontexts �t into and extend the CG lattice, we add to an example commonly used [4, 14].It involves the 7 graphs given below. The lattice that results from inserting these 7 graphsinto a CG database utilizing the original Method III algorithm is shown in Figure 4.1 (left).G1: [PERSON] (AGNT) [EAT]G2: [GIRL] (AGNT) [EAT] !(MANR)![QUICKLY]G3: [:Sue] (AGNT) [EAT] !(OBJ)![PIE] !(CONT)![APPLES]G4: [:Sue] (AGNT) [EAT]-7These concept bottoms are also context bottoms and can be use, in a bit encoded lattice, to limit thesearch to the context.
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Figure 4.1: Lattice Of Initial Graphs. Lattice With Graph Inserted.!(OBJ)![PIE]!(MANR)![QUICKLY]G5: [:Sue] (AGNT) [EAT]G6: [:Dan] (AGNT) [EAT]!(OBJ)![PIE]-!(CONT)![APPLES]!(POSS)![SUE]G7: [EAT]!(MANR)![QUICKLY]We add to this set a graph containing a context. G8: [:Daniel]!(BELIEVE)![[:Sue] (AGNT) [EAT]!(OBJ)![PIE] !(CONT)![APPLES][:Dan] (AGNT) [EAT]!(OBJ)![PIE] !(CONT)![APPLES] ]When G8 is added to the previous CG database with the new algorithm, it results in thecreation of G9, for Dan eating apple pie, and the lattice shown in Figure 4.1 (right).Another key idea is how to handle coreference. John Sowa [21] handled the problem ofcoreference by propagating aliases down each line of identity from all dominant concepts.For example, [T1:*x]...[T2:*y] becomes [T1:*x *y] [T2:*y *x].8This causes all dominated concepts to acquire multiple indexes, which places them lowerin the generalization lattice than the corresponding concept without the coreferent link.That is, T1:*x]�[T1:*x]...[T2:*y] and [T2:*y]�[T:*x]...[T:*y].The impact on the query/insert algorithm, of handling complex referents, is minimalbecause all these complex referent checks are part of the isomorphism test. In Method V,once bindings are found, they are propagated. [18]8The original syntax used = signs as in [T:*x=*y].



5. Adding Negation 85 Adding NegationThe best way to think about how CGs are stored, when negative contexts are included, isas a lattice over the syntactic structure of graphs, not as all possible semantic implications.The immediate predecessor, IP, and immediate successor, IS, links remain as described inthe Lattice Terminology section. Since a node's IS links are part of its children's IP links, itis only necessary to consider either the IP or IS links. Below we concentrate on extendingthe IP links to cover negative contexts.5.1 Representing Negative AssertionsTo implement negation two bits, PA and NA, are added to each node to indicate whetherthe graph represented by the node has been asserted positively, negatively, both, or not atall. The interpretation of PA and NA is 00 - No Assertion, 10 - Positive Assertion, 01 -Negative Assertion, and 11 - Both Asserted (a logical inconsistency).9 Graphically, theseare shown as nothing, +, -, & +- in Figure 5.1.It is natural in this system to represent arcs from A to NOT B. To extend the IP linksto cover negative contexts, an IP arc from a node to a parent is labeled + when the positiveversion of the parent projects into the node, and labeled - when the negative version of theparent projects into the node. To represent the assertion :A, where A is some graph, graphA is added to the hierarchy and its negative assertion bit set. To represent a term :A, thatis part of some other graph B, the IP link from B to A is labeled negatively. In Figure 5.1,nodes G10, G13 & G14 are negative assertions and nodes G3, G4, G11 & G12 have linksas negative terms.The full Boolean logic lattice has nodes for all possible disjunctions and conjunctions.Since the lattice is symmetric, each negative conjunct has a corresponding complementarydisjunct. Thus, if each conjunctive node can be optionally negated, only half of the latticeis needed to represent all possible logical expressions.Our proposal is to represent each graph in conjunctive normal form (CNF); that is,as conjuncts of the graph's IPs which may or may not be negated in the conjunction.Disjunctions are represented by allowing negative graphs.Since one graph's IP link is another graph's IS link, we can think of labeled, bi-directionallinks between a parent and child; that is, between a graph (the child) and a part of itsconjunct (the parent).If a link is labeled +, the positive version of the parent is an IP of the child. This impliesthat the child has, as part of its conjunction, the positive version of the parent into whichthe parent projects to satisfy the subsumption relation.If a link is labeled - , the negative version of the parent is an IP of the child. This impliesthat the child has, as part of its conjunction, the negative version of the parent into whichthe negative version of the parent projects to satisfy the subsumption relation.9In some logics a contradiction does not undermine the integrity of the entire database and there areother more \avante gard" solutions, such as not letting the contradiction be used in proofs in which it is notrelevant. [10]
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������+PPPPiFigure 5.1: Lattice With Negative Graphs Inserted.5.2 Negation ExamplesThe following example of disjunction involves negated contexts containing graphs. Weuse DeMorgan's Law to convert AvB to :(:A&:B). For example, the disjunction G10:[:DISJfSue,Dang] (AGNT) [EAT]!(OBJ)![PIE] becomes:[ :[G11] :[G12] ] where G11: [:Sue] (AGNT) [EAT]!(OBJ)![PIE] andG12: [:Dan] (AGNT) [EAT]!(OBJ)![PIE].When G10 is added, it requires the insertion of G11 and G12 before G10 can be insertedas shown in the Figure 5.1. Note the - signs beside the links from G10 to G11 & G12 andthe assertion indicators before each graph's label.Implication also involves negation because the graph A)B is represented as :[A :[ B ]]. For example, the graphs G13: :[G11 :[ G4 ] ], for \If Sue eats pie, Sue eats pie quickly.",and G14: :[G5 :[ G3 ] ], for \If Sue eats, Sue eats apple pie." are also shown in Figure 5.1.5.3 Distinguishing Syntactic and Semantic LatticesAt this point we would like to make a distinction between \syntactic" and \semantic"lattices over a set of CGs. The syntactic lattice is the structure implied due to the graphs,formation rules, and Peirce inference rules alone. It is formed from those links that can beinferred directly from two graphs, the formation rules, and Peirce's inference rules withoutregard to any other graphs in the lattice.



6. Augmented Algorithms 10The syntactic lattice is true (and may be assumed such) in all domains because thelinks do not actually depend on domain knowledge. Which portion of the lattice is actuallystored will depend on e�ciency considerations.10The semantic lattice adds inferences that require three or more graphs to establish andare not implied by the transitivity of the syntactic lattice. For example, given A, B andA)B as graphs, the relationship between A and B is only known given the third graph,A)B. In other words, suppose neither A nor B have been asserted but A)B has beenasserted. Then both A and B will have assertion bits 00, neither positive or negativeassertion. On asserting A later, one can think of B as a rami�cation and mark it as beinginferred without adding any new links.The syntactic lattice identi�es links based on structure, formation, and Peirce rules.11These links are true regardless of the domain. They depend only on graph structures andnot on what has been asserted and not asserted.12 In the syntactic lattice a link means\this link holds in all databases".Where the formation rules are foundational for the syntactic lattice, the inference rulesare foundational for the semantic lattice because they de�ne the relationship that establishesthe semantic lattice. The semantic lattice models implications among graphs stored inthe database. These implications are identi�ed by using the truth values that have beenasserted for the graphs, the implications directly stated (e.g. in the graph for A)B), andPeirce's inference rules. Here an inference means \given what has been asserted (axioms),this graph holds (is a theorem)". The most e�cient computation of the semantic lattice isan important research question to be addressed in the future.The two lattices may be stored together by adding two inference bits, PI & NI, to eachnode indicating whether the graph represented by the node has been inferred positively,negatively, both, or not at all. The interpretation of PI and NI is 00 - Not Inferred, 10 -Positive Inference, 01 - Negative Inference, and 11 - Both Inferred (a logical inconsistency).13146 Augmented AlgorithmsIn this section we describe how existing algorithms for operating on the generalizationhierarchy may be augmented to handle contexts, negation, and assertion.The algorithms described here search the CG lattice for where a new graph Q, called thequery graph, �ts into the lattice. The algorithm is divided into �ve phases. Phase 0 dealswith Q's negation and assertion. Phase I �nds the immediate predecessors of Q, IP(Q).Phase II �nds the immediate successor of Q, IS(Q). Phase III inserts Q in the CG lattice.And Phase IV propagates implications. The consequence of �nding IP(Q) and IS(Q) is thateach IS(Q) ) Q ) each IP(Q).10An assumption is that :> = ?, but this is not shown. Also, by representing both nodes, one can havedi�erent encodings for them to improve computational e�ciency.11A subsequent section de�nes Peirce's inference rules in terms of the formation rules which de�ne theprojection operator and, consequently, the partial ordering relation. Thus, Peirce's inference rules arecontained within the de�nition of projection and �t into the syntactic lattice.12They also depend on the equivalence classes since only one representative from each equivalence classneed be stored.13It is now possible to have other inconsistencies, like Positive Assertion/Negative Inference14A coding scheme that combines the Assertion and Inference bits is possible.



6. Augmented Algorithms 11The algorithm considers graphs in topological sort order [4] by using a combination ofa FIFO queue called C and the addition of a depth to each graph node. The depth is onegreater than the largest depth of its immediate predecessors, IPs. The function pop(C)returns the next graph from C. If IS(X) is the set of immediate successors of graph X, thenIS'(X) returns the members of IS(X) which have depth one greater than X. The procedurepush(C, SET) pushes set SET onto the FIFO queue C. The augmentation is to the originalMethod III algorithm [4, 14] to add Phase 0, the greatest lower bound (GLB) test, negationchecking, and Phase IV.Phase 0: Handle negation and assertions.1. Set Q = Q minus pairs of leading :'s.2. IF Q is being asserted AND Q = :Q' THEN Q = Q' AND complement the assertion.3. IF Q asserted THEN PA = 1 OR IF :Q asserted THEN NA = 1.Phase I: Find IP(Q), the immediate predecessors of Q.4. IF Q = ?, THEN RETURN IP(?).5. INITIALIZE C := > AND S := fg.6. WHILE not empty(C) DO X := pop(C) ANDIF All parents of X are predecessors of Q ANDGLB(S [ fXg) 6= ? AND X is a predecessor of Q (isomorphism test)THEN mark X as a predecessor of Q;15 S := S [ fXg - IP(X);16 push(C,IS'(X)).7. RETURN S with negative links marked.Phase II: Find IS(Q).8. INITIALIZE S := fg AND C := fg AND Y := some element of IP(Q).9. I := intersection of the successor sets of each element of IP(Q) except Y.10. FOR each successor X of Y in topological order DOIF X is in I and X is a successor of Q (isomorphism test) THEN S := S [ fXg.Eliminate successors of X from the rest of the FOR loop.11. RETURN S with negative links marked.Phase III: Update IP & IS Nodes (possibly inferring Q).1712. For each x in IP(Q) DO IS(x) := IS(x) [ fQg - IS(Q) ANDIF x negatively asserted or inferred, THEN negatively infer Q.13. For each x in IS(Q) DO IP(x) := IP(x) [ fQg - IP(Q) ANDIF x asserted or inferred, THEN infer Q.Phase IV: Semantic Update.14. IF Q asserted THEN infer all the IPs of Q18 ANDIFQ is A)B19 AND A is true OR Q)B is true THEN infer B.15. IF :Q asserted THEN negatively infer all the ISs of Q ANDIFB)Q is true THEN negatively infer B.16. FOR EACH newly inferred node DO Phase IV as if the node had just been asserted.15Based on the isomorphism test, this may be a negative link mark.16Notationally, - stands for set subtraction.17A graph to be inserted, that is not known to be true, will be true if it is more general than a graphthat is known to be true or, if it can be derived from a sequence of inferences based on one or more assertedgraphs.18Because we are storing CGs in CNF, if a CG is true, then all of its IPs must be true.19By \Q is A)B" we mean Q is an implication and, if true, can be used to do inferences.



7. Peirce Inference Rules 12The algorithm above uses only the syntactic links stored in the lattice. After insertionis completed and the links �xed, semantic update, Phase IV, ensues. It is based on boththe new syntactic links formed and the implications of the graph inserted. Phase IV willchange inferred bits to be on for graphs that can now be inferred which were not known tobe inferred previously. It should be pointed out that Phase IV does not absolutely completethe semantic lattice, but represents the transitive closure of the implications that have beenidenti�ed. Many inferences remain due to Peirce's inference rules.The algorithm also needs to be modi�ed slightly for nested contexts. For them thegraphs are inserted \inside out" with the deepest nested graphs inserted �rst, and conceptvariables obtained, with outer levels referring to inner levels via these variables. Whencomparing two contexts to each other, the concept variables are compared identically to theway type labels are compared in the type hierarchy.Just as bitcodes may be given to members of the type hierarchy to allow comparison totake place in constant time, bitcodes may be assigned to members of the graph hierarchyitself. If a graph structure is repeated multiple times in a nested context graph, and thiscorrespondence is known (possibly due to the interface), the query should be organized toask this graph only once.7 Peirce Inference RulesSo far we have extended the CG generalization hierarchy/lattice and algorithms toinclude contexts, other complex referents, and negation. It is now possible to use the CGlattice to perform inference. Peirce de�ned a graphical system of logic and inference rulesupon which CG theory is based. Peirce's inference rules provide a basis for de�ning acorresponding simple set of inference rules for the CG lattice.The formation rules de�ned in Section 2 applied to graphs in the same context. Theseare augmented by cross context formation rules which consist of join and detach acrosscontext domination boundaries.20Whether these cross context formation rules are generalizations or not depends on theeven or oddness of the dominant concept(s). For example, it's not enough to detach fromeven context to even context. That's because it's the even or oddness of the contextcontaining the dominant concept of that line of identity that counts. The basic ideaof the Peirce rules is to allow equivalence changes in any context, generalization of evencontexts, and specialization of odd contexts. The problem is that, depending on the evenor oddness of the contexts involved, the generalization formation rules are not alwaysgeneralizations. In other words, it is not possible for each formation rule to always fallinto only one category, equivalence, generalization, or specialization, when multiply nested,possibly negated contexts are involved.Every structure in the lattice is of even or odd parity, with its negation taken as theopposite parity. As one traverses to deeper levels of nesting, the parity (and hence whichinferences are possible) changes with each negation step. Higher level nested structuresmay be able to exploit inference links previously formed between lower structures withouthaving to rediscover these inferences.20\Domination" is a key word here since contexts are strictly nested and lines of identity must follow thesame nesting.



8. Conclusions and Summary 13With the above in mind, here's a restatement/merge of the Peirce rules in John Sowa's1984 book [21] and in the draft of his new book [23] using our formation rules.De�nition: Erasure. An evenly enclosed context may be generalized by applying thefollowing formation rules to one or more of the graphs contained in the context: erasure,unrestrict, or detach from evenly enclosed dominant concepts.De�nition: Insertion. An oddly enclosed context may be specialized by applying thefollowing formation rules to one or more of the graphs contained in the context: insertion,restrict, or join to oddly enclosed dominant concepts.De�nition: Iteration. A copy of all or part of any graph may be inserted into thesame or a dominated context. Note that this is a coreferent copy.21De�nition: Deiteration. Any graph or part of a graph which could have been theresult of an iteration, may be simpli�ed.De�nition: Double Negation. Two nested negated contexts with nothing betweenthem may be drawn around or removed from around any graph, set of graphs, or context.8 Conclusions and SummaryThe methods and implementation model described in this paper provide the groundwork for a full �rst-order logic theorem prover based on conceptual graphs. The groundwork laid includes the handling of negation, nested contexts, complex referents, and consis-tency checking. While we have clearly de�ned a distinction between syntactic and semanticimplication, with the former corresponding to Sowa's conception of a generalization hierar-chy, the most e�cient algorithm for discovery of the semantic links remains an importanttopic for future work. Along similar lines, while we have a mechanism for discovering whensyntactically-derived contradictions have occurred, we are not yet guaranteed of �nding anyinconsistencies that also may require semantic links other then a brute force generation ofall implied graphs of a given size. A de�nition of Peirce's inference rules based directly onthe implemented data structure also remains to be completed.The syntactic lattice provides a mechanism for compilation of powerful macros and proofstructures for use in all domains so that a theorem prover can improve with experience. InLisp-based EG theorem provers developed for a class project, we negate queries and attemptto validate them by deriving an empty context on the sheet. This process is acceleratedover time by storing (remembering) graphs from which we have already derived the emptycontext.In future work, we also hope to improve (as discussed above) the ability to updatethe semantic links and, along similar lines, to exploit better the abstractions imposed bythe semantic equivalence of two graphs. The ability of the retrieval algorithms to �nd allsyntactic implications of graphs at any contextual level provides exactly the informationneeded to employ higher-order inference rules. Our other work on heuristic search andmachine learning [12] may also be able to improve the e�ciency of the inference system.It is our hope that the implementation model in this paper will extend the scope ofdiscussion in the CG community to include the hard issues that we have ignored up untilpresent. It is also hoped that the beauty and elegance of logical inference based on graphs,21The following is a di�erent wording that does not have quite the same meaning and, consequently, needsto be evaluated: \The result of a copy formation rule may go into the same or a dominated context." (Notethat this may not be true since the copy formation rule is not strictly a copy.
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