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Mix&Match : A Construction Kit for Scienti�c VisualizationNaim AlperabstractA new, modular and extensible scienti�c visualization environment is presented. Itprovides the ability for a user to de�ne a visualization technique from basic componentsthrough visual programming. Unlike data-ow based modular visualization environments,where the network de�nes a program and the end result is the visualization, the compo-sition in Mix&Match de�nes the overall behavior of a tool. Di�erent tools can be used tovisualize the same data in di�erent ways. High level mode-settings allow di�erent modes ofinteraction without necessarily requiring changes in composition. This greatly enhances thelevel of interactivity and emphasizes the exploratory nature of scienti�c visualization. An-other distinguishing feature of the environment is the �ner granularity of the components.Finer granularity allows greater exibility in composition and results in a rich collection oftechniques. The components are simple and small, permitting new ones to be readily addedto the system, thereby encouraging the exploration of new visualization techniques. This isfacilitated by an easy to use con�guration manager. The tool behaviors are based on thesame simple, particle based, template which acts as a unifying representation for visualiza-tion techniques. In addition to the development of the environment, traditional techniquesare decomposed to �t this template and new visualization techniques are developed.Keywords: scienti�c visualization, spray rendering, toolkit, visual programming
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11. IntroductionScientists are producing ever increasing amounts of data through measurement or sim-ulation. Since it is di�cult to extract information from raw numeric data, visualizationhas become the normal procedure for the analysis and interpretation of data. Visualizationtakes advantage of the wide bandwidth of the human visual system: a simple graph ora color coded graphical image provides more immediate information than can be gainedby perusing numbers. The �eld of computer science that has grown with the advent ofcomputer graphics techniques and the wider availability of color workstations has come tobe known as Scienti�c Visualization. It has grown in importance in recent years, particu-larly after the impetus provided by the NSF panel report which identi�ed areas in need ofresearch and funding[McC87].Up until the late 1980's, there existed no general software package to meet the di-verse needs of scientists from many disciplines. Scientists used many di�erent programsto achieve speci�c visualization goals. Some domain-speci�c modular and extensible soft-ware packages evolved that included all the usual techniques encountered in a particulardiscipline[BMP+90]. However, in the last few years a data ow paradigm has become verypopular for general purpose, modular and extensible visualization software. Products suchas AVS[Ups89], Iris Explorer[Slo92], apE[Dye90], and IBM Data Explorer[LAC+92], whichhave also come to be known as Modular Visualization Environments (MVE), all use thisapproach.The data ow paradigm o�ers a good mapping to the problem domain: acquired datais perhaps �ltered, then mapped to some visual parameters and the result rendered. Thesepackages provide many modules that perform such �ltering, mapping and rendering tasksthat can be combined to achieve a desired visualization goal. However, it is their modularand extensible design and relative ease of use that has made them attractive. Flexibilityand extensibility are particularly important to meet the diverse needs of scientists since nomonolithic package can be expected to satisfy every need. On the other hand, exibility



2and extensibility in these environments are limited by the coarse granularity of the modules,and very little direct user interaction is supported.Recently, Pang and Smith have proposed a new paradigm for scienti�c visualiza-tion[PS93a, PS93b]. The name Spray Rendering reects the metaphor used to describethe way the scientist interacts with the data. The user has \spray cans" available whichcan be �lled with di�erent \paints". As the user directs and delivers a dose of \spray", thepaint interacts with the data and makes them visible. By choosing di�erent paints from apalette and orienting the spray can to speci�c areas, the scientist is able to explore the dataset visually. The paint particles in this paradigm are \smart" in their behaviors. That is,they can search for target features in the data set, manifest themselves visually in variousways, and interact with each other as well as the data.The motivation for this dissertation is to develop a software system and frameworkfor user interaction that overcomes the three shortcomings of the MVEs. A scienti�cvisualization environment called Mix&Match is developed that maintains the modularityand graphical interface of MVEs but enhances their interactivity, exibility and extensibilityby allowing visualization tools to be composed from basic building blocks through visualprogramming. The behaviors of these tools are modeled on spray rendering.Interactivity, exibility and extensibility are important and desirable since they helpscientists in their goal of gaining insight into their data sets. Visualization is an exploratoryprocess and direct interactivity emphasizes and facilitates that aspect. There is a directcause and e�ect between the actions of the scientist and the visualization. Greater exibilityin connecting components permits scientists to experiment with new compositions, andeasier extensibility encourages experimentation with new techniques.Direct interaction is achieved by using the tool (the spray can) to interact with thedata, and bene�ts novice users who merely use existing tools. Users can manipulate thespray can within the data set and see the e�ects immediately. High level mode-settingsallow the same composition to result in di�erent interactions. In one mode, for example,the spray can becomes a probe that can be used to interactively explore the data set. In



3another mode, the spray can plays a passive role and is not instrumental in the visualization.Hence, although it is modeled on spray rendering, the idea of components of �ne granularityoperating locally is independent of spray rendering.Other modes allow simple animations. These modes, in e�ect, behave as control compo-nents but do not appear in the composition where they would increase the complexity andwould be harder to use. Complex visualizations can be obtained by using multiple toolsmultiple times. Yet, the networks de�ning each technique are simple and separate fromeach other. This is in contrast to the data-ow environments where, as the complexity ofthe visualization increases, the complexity of the network that generates it increases.The components are �ne-grained in that they are simple and act on a local neighborhoodof the data set. The �ne granularity permits greater exibility in composition, therebyproducing a richer set of visualization techniques. Instead of a visualization technique beingencapsulated in a single module, as happens in coarse-grained MVEs, the technique can bedecomposed into smaller components which can be used in other compositions. Greaterexibility bene�ts users who experiment with tool construction.The simplicity of the components allows new components to be readily added to thesystem so that extensibility is enhanced as well. Many visualization techniques di�er inminor details and the addition of a simple component enriches the repertoire of the system.Users are thus encouraged to experiment with new visualization techniques. Componentwriters are the immediate bene�ciaries of easier extensibility.As well as providing the software environment, many of the popular visualization tech-niques have been decomposed into components and adapted to work in Mix&Match as partof this thesis research. The techniques are made to �t the same particle based template andthus the environment provides a unifying representation for visualization techniques. Foran end user, all the tools essentially behave in the same way, which makes them easier tounderstand. The template facilitates tool composition which consists of the �lling in of thetemplate. It also makes it more likely that a component needed for a particular techniquewill already exist.



4Finally, Mix&Match has been used successfully to investigate and experiment with newvisualization techniques. As an example, the computer graphics technique of bump mappingwas used in various ways to visualize vector �elds[PA95].In summary, the contributions of this dissertation are:� the design and implementation of a new scienti�c visualization environment, basedon �ne-grained components, that is modular and extensible which o�ers direct inter-activity, greater exibility and easier extensibility� the provision of a unifying representation for many visualization techniques� the development of new visualization techniques using the environmentThe rest of the dissertation is organized as follows. In chapter 2, the di�erent categoriesand examples of scienti�c visualization environments are discussed. An overview of scienti�cvisualization techniques is given in chapter 3. In chapter 4, the design and architecture ofMix&Match is presented, and implementation details are covered in chapter 5. Chapter 6lists the components that have been implemented and provides example compositions andvisualizations. Finally, conclusions and future work are presented in chapter 7.



52. Scienti�c Visualization: EnvironmentsMix&Match is a scienti�c visualization environment and needs to be discussed in thecontext of other environments. In this chapter, a brief survey of current examples of scienti�cvisualization environments is presented with more emphasis on the ones that are related toMix&Match. Spray Rendering, as originally envisaged by Pang and Smith[PS93a, PS93b]is also presented, since it was used to model the components. How Mix&Match relates toother visualization environments and spray rendering is then discussed at the end of thischapter.2.1 Some Scienti�c Visualization EnvironmentsMany commercial and public domain packages have been developed since they were �rstproposed by the NSF Panel on Graphics, Image Processing and Workstations[McC87]. Thepanel's report pointed to the need for general purpose scienti�c visualization environmentsas opposed to domain speci�c, in-house developed, and monolithic systems.There are basically three categories of visualization software:1. Graphics Libraries. At the lowest level, one can regard graphics libraries, such asIris GL, Dore, and PHIGS, as visualization software since they provide the means forwriting programs to view and analyze data. Although the use of graphics librarieso�ers the greatest exibility, it su�ers from the disadvantage that a great amountof time needs to be invested in writing and supporting code. From a scientist'sperspective, this is uneconomical and unattractive.2. Turnkey Visualization Systems. In this category, most of the work has been donefor the end user such that no programming is required to obtain results. However,as the name suggests, the systems cannot be modi�ed and extended and they do notsatisfy every need.3. Extensible Visualization Systems. These systems can be used to extend andcustomize an application. They are application builders that recognize the fact that



6there will always be needs that are not foreseen. This category can further be re�nedinto two subcategories:� Programming Library Systems. These systems provide a programming libraryand a high level command language to construct customized applications.� Modular Visualization Environments. These are modular environments that o�era data-ow visual programming interface for achieving a visualization goal. Thiscategory has become very popular because it is exible and caters to users ofdi�erent levels of expertise.2.1.1 Turnkey Visualization Systems� The Data Visualizer, Wavefront Technologies Inc. The Data Visualizer of-fers a traditional, menu-driven application interface and primarily deals with 3Ddata[BAWW90, Mer91, Bel93]. Version 2.1 also supports a command language inter-face. The architecture is tool-oriented where each tool is an instance of a visualizationmethod. A Visualization Tool Manager accepts input from the user and manages thecreation and manipulation of various tools. Some of the tools provided are probes,cutting planes, isosurface tools, particle emission and point volume tools. Interactionconsists of selecting tools from a menu which can be turned on and o�. The DataVisualizer handles various kinds of grids. Its native �le format is an ASCII formatcalled wave and it supports custom �le format readers written by users. The userinterface is also customizable. Keyframe and ip-book animations are possible.� Fieldview, Intelligent Light. Fieldview is primarily for uid dynamics data[Leg91].Its native data format is the same as that of PLOT3D, �ve dimensionless quantitieson a 3D grid. Calculator tools are provided that can compute compound functions(scalar and vector) on the data and display the results as cutting-planes, iso-surfaces,streamlines, particles and other techniques. It has scripting and animation for videoproduction and can run on low-cost platforms using the IVIEW-DORE graphics



7library. The most recent version provides a direct interface to commercial CFD solversand has an open programming interface.� Spyglass Dicer, Spyglass Inc. This is a 3D manipulation program that permits theexamination of large data sets through the viewing of slices and sections. Images canbe stacked together to simulate volume rendering. Isosurfaces can be combined withcutting planes and the motion of cutting planes and blocks can be animated.� VoxelView, Vital Images. VoxelView is an interactive volume rendering softwaresystem that has a high speed opacity blending algorithm implemented in microcodeon Silicon Graphics machines. Only rectilinear grids are supported. The Ultra productcan mix geometry with volume data.� VolVis, SUNY Stony Brook. This is a framework for volume visualization algo-rithms[ASK92, AHH+94]. It is supported by a generalized abstract model whichprovides for both geometric and volumetric constructs. The techniques supported in-clude a fast volume rendering algorithm as well as costly, realistic ray-tracing. Toolsinclude 3D manipulation, key-frame animation and quantitative analysis.� Vis-5D, University of Wisconsin. This is a public domain package for the visualiza-tion of 5-dimensional data sets[HS90]. The dimensions refer to three spatial dimen-sions, one time dimension and a dimension for multiple parameters to be visualized.It is popular among meteorological scientists. It o�ers animated isosurfaces, 2D slicesand streamline traces.Some other turnkey systems include SciAn from Florida State University that is mainly forenvironmental visualization, BOB from the Army High Performance Computing ResearchCenter and VoxelBox from Jaguar Software for MS Windows.2.1.2 Extensible Visualization SystemsProgramming Library Systems� PV-Wave, Visual Numerics. This is a two and three dimensional visualizationpackage that uses a command language interface (although the newer Point & Click



8version has a menu-driven interactive graphical interface[Kri91]). PV-Wave providesan intelligent data previewer for importing ASCII data �les. It o�ers a macro tool forautomating repetitive tasks. True ray-cast volumetric rendering that can be combinedwith geometric objects is provided as well as iso-surfaces. PV-Wave Advantageextends the programming library with the IMSL libraries, making it the most extensivescienti�c programming interface available. Another version connects to a user interfacebuilder.� IDL, Research Systems Inc. IDL or Interactive Data Language is an array-orientedlanguage for the analysis and visualization of scienti�c data. It can be used interac-tively or it can be used to create functions, procedures and applications.� FAST, NASA Ames. FAST is a public domain program developed at NASA Amesfor the visualization of uid dynamics data[BMP+90]. It is a collection of programscommunicating through Unix sockets. A central hub process manages a pool of sharedmemory. A collection of libraries and utilities are provided for building applicationmodules. FAST o�ers the usual isosurface and stream line modules as well as acalculator module that operates on �eld data to produce new data.� SuperGlue, NASA Ames. SuperGlue[HR92] aims to emphasize extensibility (morethan ease of use) for the rapid prototyping of new visualization methods by providing aprogramming environment based on the interpreted language Scheme. It is especiallytailored for computational uid dynamics needs.Modular Visualization Environments� Advanced Visualization System (AVS), AVS Inc. This is the earliest, generalpurpose, data ow based visualization system that has a wide user community[Ups89,Wet90b, AVS92, Bel93]. The architecture consists of �ve layers. At the bottom isthe system interface layer that supports native graphics libraries of the platformsAVS runs on. On top of this is a system independent layer that uses a 3D renderingabstraction to make the system easier to port. The renderer layer includes renderers



9such as the image renderer and the geometry renderer. The executive layer includes acommand language interpreter, the ow executive and the modules. At the top is theuser layer that includes the network editor and various viewers such as the geometryand image viewers.From a user's point of view, AVS consists of interactive applications that are made upof viewers and the network editor. These can run as standalone turnkey applications.The user can drive AVS either through graphical user interfaces or the commandlanguage. Graphically, the user builds applications by connecting modules in thenetwork editor. The editor ensures data compatibility through strong typing.Modules are the fundamental computation units that process inputs and generateoutputs. There are four categories of modules: data sources, data �lters, datamappers and renderers. Data sources perform the data import function, convertinginput formats to the internal AVS data types. Data �lters operate on a data typeand change it. Example �lters are ones that crop, transpose or do a histogramequalization on an image. Data mappers produce renderable output from an input�eld. Examples include isosurface extractors and alpha-blending volume visualizers.Renderers manipulate renderable objects and make them visible. In addition tosubroutine modules which execute whenever inputs or parameters change, there arecoroutine modules that execute independently, obtaining inputs from AVS and sendingoutputs to AVS whenever it wants. The latter can be used for such things asintegration of AVS with a simulation and the control of the ow executive for keyframeanimation.The ow executive of AVS is the component that schedules the execution of themodules. It also supervises data ow between modules, keeping track of where data isto be sent and by what method to send data. It is based on the data ow architecturesuch that the operations (modules) are enabled if and only if the required inputvalues have been computed. The modules \consume" input values and \produce"output values. Hence, the only sequencing constraints are those imposed by data



10dependencies.Some signi�cant features of AVS are the following:{ Multiple modules can exist in a single process so the number of processes launchedby an AVS network can be lowered to as few as one.{ As long as a module has no input dependency upon other modules that wouldbe executing at the same time, modules will execute in parallel.{ Modules can execute on remote machines. AVS uses XDR for remote modulecommunication.{ Shared memory is used for data passing between modules in di�erent executables.{ AVS allows upstream data ow suitable for loops and conditionals in the network.{ AVS can be used to build customized applications.� apE, TaraVisual Inc. Another early package, apE was originally developed by OhioState University and was public domain until it was licensed to TaraVisual for mar-keting[Dye90, Wet90a]. It is a general purpose, data ow visualization system. Thework area where the visual program is constructed is known as the wrench. Theconnections of modules in apE are not strongly typed and the process of connectingis less smooth than AVS, requiring the user to occasionally type in text. Modulesare separate processes as in AVS, however, the processes are not forked when theyare dragged into wrench. Execution of the program begins by a speci�c start buttonwhen all the processes are created. apE uses a data format called ux which notonly describes the data but also the program pipelines, images and object properties.While it supports di�erent grid types, the modules provided do not support all types.A module called rezone maps variables from one grid type to another. Distributedapplications are possible in apE. There is a post-processor for image processing.� Iris Explorer, Silicon Graphics Inc. Iris Explorer[Slo92, Edw93, Bel93] is anothergeneral purpose, data ow visualization system that has been bundled with SiliconGraphics machines. At the present time, it only runs on SGI machines but version3.0 will be unbundled and ported to other machines. The architecture consists of �ve



11layers. At the bottom is the system layer that includes the standards the system isbased on, e.g. X, Motif, Unix, GL. The programmatic support layer is a collection oflibraries that constitute the API for module writers. The module layer is the collectionof modules that handle the standard visualization tasks. The map layer contains thevisual programs that have been constructed from the modules and the �nal applicationlayer contains standalone application networks for standard disciplines.Explorer consists of three programs.{ TheMap Editor is the visual tool for constructing a visual program frommodules.Each module's control widgets can appear in a separate window, can be hidden orcan be seen live but minimized with the module's icon. Modules can be groupedtogether to save screen space and selected widgets can appear on its single controlpanel. Hence, at the extreme, a map can be grouped into a single module. Sucha module can also be wrapped into a standalone application that does not requirethe map editor to run. A parameter function editor allows expression evaluationso that the input parameter of a downstream module can be controlled by theparameters of a combination of upstream modules.{ The Module Builder is an interactive, visual tool that lets expert users integratemodules to the system by transforming C, C++ and F77 code to Explorermodules. It includes visual tools to de�ne the input and output ports of themodule, to connect the ports to the functions arguments and to create anddesign the control panel.{ The Data Scribe is another visual tool that allows the import and export of dataformats. The user can create an Explorer module that reads a data �le andextracts relevant �elds to construct a native data type that can be used in amap.The execution of a map in Iris Explorer is based upon a distributed, decentralizeddata ow execution model. There is a single global server (GC) that manages thecommunication between modules on di�erent hosts. There are also local communi-



12cation servers (LC) on each machine. User interaction is conveyed to the GC whichdelivers it to the LC which forwards it to the module. Modules, which are processes,communicate directly with each other. Those on shared memory machines use namedpipes while those on di�erent machines transfer data through sockets. A module �reswhen the required inputs are present at its ports. To avoid multiple �rings in a map,data tagging is used and the network topology is broadcast to all the modules by theGC.Explorer o�ers a module prototyping facility through an interpretive language calledshape. A scripting language called Skm allows scripting as well as a command languageinterface to the user.� IBM Visualization Data Explorer, IBM Corp. Data Explorer[LAC+92, Bel93]has a client-server open system architecture that uses standard protocols and systemsfor portability. It consists of two components, the user interface (the client) and theexecutive (server) running as two separate processes communicating via Unix sockets.The user interface includes the visual program editor, the control panel and the imageand help windows. The server includes the executive, the modules and the datamanagement API.The user interface provides a visual programming interface similar to Iris Explorer andAVS. The visual program is translated into a script language and sent to the executivefor interpretation. The executive is the component of the system that manages theexecution of the modules. The scripting language is also available to the user forwriting scripts. The design di�ers from AVS and Explorer in that the modules areinvoked not as separate processes but as function calls. The data management layeris the portion of the programming interface that provide modules with access to thedata model. The data model is unique among the packages in that it is based on themathematics of �ber bundles.The data ow execution model of Data Explorer imposes the constraint that modulespossess pure function semantics in that outputs are based on the inputs and not



13on some state that is the result of a previous execution. Also, modules treat theirdata as read-only. A side bene�t of pure function semantics is that caching ofintermediate results is possible. Distributed processing is possible allowing modules orgroups of modules to be executed on di�erent machines permitting enhanced resourceutilization.Support for coarse-grained shared memory parallelism is provided but makes modulewriting more di�cult. Data Explorer uses explicit data partitioning and a simplefork-join model to make this task easier.2.2 Spray RenderingSpray rendering was proposed by Pang and Smith[PS93a, PS93b] as a new frameworkfor doing scienti�c visualization. In this framework it was proposed to have a shelf ofmetaphorical spray cans containing smart particles (sparts) designed to look for featuresin the data set and manifest themselves as renderable objects. Users would select one ofthese cans and spray the data set, select another to obtain a di�erent e�ect and through aniterative process, achieve a certain visualization. The original ideas were high level conceptsof what could be accomplished with sparts.The main idea of spray rendering was to combine particle systems and behavioralanimation. Particle systems are an area of computer graphics that have been used tomodel natural phenomena such as �re, water and grass which are di�cult to model bytraditional methods. In this technique, objects are represented by a collection of particlesas opposed to surface elements. These dynamic entities change form with time as newones are born and old ones die. Stochastic processes are used to a�ect the shape and formresulting in non-deterministic objects. The particles have attributes such as size, color andshape, and the system as a whole has parameters governing its form. Reeves used thistechnique to model �re, explosions, �reworks and grass[Ree83]. Behavioral animation wasdeveloped to capture group behavior in animations. Rather than account for each body ina group individually, the individuals in the group are required to behave according to some



14rule based constraints set for the whole group. The constraints, such as collision avoidanceand maintained average speed, endow the group as a whole with a behavior. This mimicsthe behavior of a school of �sh or a ock of birds rather well[Rey87, Amk89].In the light of the above techniques and an object oriented preliminary design, spartswere to have a state consisting of certain attributes such as age and appearance, and certainmethods to a�ect that state such as: target function, direction function, death function etc.They would have a local neighborhood that they would process, and this neighborhoodwould be updated as the spart traveled. Sparts were envisaged to work individually orcooperatively. Spart to spart interactions were to take place through the deposition ofmarkers. These were distinct from visualization objects in that they could not be renderedbut would contain communication information. Sparts would also be organized into groupsand hierarchies.2.3 How Mix&Match relates to other environments and spray renderingThe extensible, general purpose scienti�c visualization packages have become the defacto standard. These recognize the diversity of visualization needs and provide room forgrowth whereas the turnkey systems are constrained by the number of tools they come with.The extensible systems have also reached a consensus on providing a data-ow orientedvisual programming interface for composition. The popularity of these systems can beattributed to their promotion of software sharing and their extensibility and relative ease ofuse. Scientists or visualization programmers can develop modules for their own needs andshare them with other scientists.There are similarities as well as di�erences between Mix&Match and the MVEs. Thesimilarities are:� Extensibility. This is a major shared characteristic and is a determining factor inallowing users to meet their own needs.� Modularity. Users extend the system by adding modules. These modules can becombined to accomplish a visualization task at runtime.



15� Ease of Use. Users are presented with a graphical interface to build the networks(visual programming).At the same time, there are very important di�erences.� Modules. The granularity of the modules in MVEs are coarse, whereas in Mix&Matchthey are �ne. Coarse modules operate on the whole data set, while components inMix&Match act upon data at a current locality. The components of Mix&Match are,in general, simple and small and accomplish a very speci�c task. Finer granularityallows greater exibility in composition and their simplicity facilitates easier systemextension. This, in turn, results in a richer repertoire of techniques and encouragesexperimentation and exploration.� Networks. The networks in MVEs de�ne a program the result of which is the visual-ization. Those in Mix&Match de�ne a program that determines the overall behaviorof a spart.� Execution Model. MVE networks use a data ow execution model. Modules executewhen new data arrive at their ports. The composition in Mix&Match constitutes aprogram that gets executed at each location the spart occupies during its lifetime. Ine�ect, rather than data owing through modules, it is the modules that ow throughthe data.� Visualization Process. In MVEs, the visualization is the result of the network program.If a parameter of a module changes, the program re-executes and a new result isobtained. InMix&Match, the composition de�nes a spart and the spray can containingthe spart becomes a tool. Visualization is an iterative, interactive process of applyingthis tool. Complex visualizations can be obtained by multiple uses of multiple spraycans.� Network complexity. Related to the previous item, network complexity increasesin MVEs if more complex visualizations are desired. The networks in Mix&Matchare, in general, simple and, since multiple networks can be used multiple times, thecomplexity of the end visualization does not a�ect the complexity of the network.



16� Direct Interaction. Very little user interaction is supported in MVEs. The use ofthe spray can metaphor in Mix&Match permits direct interaction with the data set,emphasizing the exploratory aspect of the visualization process. System level modesettings allow the same composition to be used in di�erent interactions.Mix&Match can also be compared to tool-based turnkey systems. It is tool-based since eachspray can containing a visualization technique is essentially a tool, and multiple instancescan be used on the data multiple times. Unlike turnkey systems, however, new tools canbe de�ned and tool de�nitions can be changed at runtime. New components can also beadded which makes it an extensible system.Although this thesis uses the metaphors of spray cans and sparts, the design and imple-mentation of spray rendering in this work is less ambitious than originally envisaged[PS93a,PS93b]. As will be elaborated in later chapters, the emphasis inMix&Match is on the abilityto interactively de�ne the overall behavior of a spart and di�erent interaction techniques.In Mix&Match, sparts are independent and do not communicate.



173. Scienti�c Visualization: TechniquesIn designing and developing theMix&Match scienti�c visualization environment, some ofthe popular techniques were implemented by adapting them to work in the spray renderingmodel and decomposing them into basic components. In this chapter, a context for thesetechniques is provided by giving a brief survey of scienti�c visualization techniques ingeneral. The chapter starts with a de�nition of scienti�c data and a classi�cation of themore important volume visualization techniques. This classi�cation leads to a discussion ofwhich techniques are more amenable to be adapted to the spray rendering model.3.1 Scienti�c DataIn the most general case, a simple de�nition[A+92] treats scienti�c data abstractly as amapping between an n-dimensional space of independent variables x and an m-dimensionalspace of dependent variables y. This mapping can be represented by the following matrix:266666666666666666664 y1y2y3:::ym
377777777777777777775 = 266666666666666666664 f1(x1; x2; x3; : : : ; xn)f2(x1; x2; x3; : : : ; xn)f3(x1; x2; x3; : : : ; xn):::fm(x1; x2; x3; : : : ; xn)

377777777777777777775This high level abstract de�nition hides the diversity of scienti�c data generated. Someattributes that can be used to categorize data are the following[Tre93]:� Physical Data Type Primitives: The data can be stored on a medium in manyways, (e.g. byte, int, oat, : : :).� Dimensionality: (e.g. spatial, temporal, spectral, : : : ). Scienti�c data may bespatially coherent, i.e. the independent variables are spatial dimensions as in CT scan



18data or they may be spatially non-coherent as in census data. The size, shape andorganization of the independent variables are also important.� Rank: This refers to the number of values per element (e.g. scalar, vector, tensor,: : : ).� Mesh description: Often, the elements have a mapping to some physical domain orcoordinate system and the mesh description identi�es the size, shape and organizationof this mapping (e.g. regular, irregular, curvilinear, : : :).� Aggregation: This refers to a collection or organization of a set of functional values(e.g. hierarchies, groups, series, : : : ).Up until a few years ago, scienti�c visualization programs and packages were domainspeci�c, often developed in-house. Each discipline's needs were di�erent and little datasharing was taking place. For this reason, a multitude of data formats evolved. To remedythis problem and encourage the sharing of data, attempts at standardization took place inthe late eighties. CDF ([Gou88]), netCDF ([RD90]) and HDF ([Nat89]) have found wideusage among certain disciplines, but many of the visualization packages still use their ownformats.Another motivating force for an abstract data model, not just a standard format, isthe need to manage enormous amounts of data generated through simulation and obser-vation by the scienti�c community. The goal is to link scienti�c visualization and DBMStechnologies[SCN+93, KASS93]. An interesting data model is one proposed by Butler andPendley[BP89], a model based on the mathematics of �ber bundles which was extended byHaber et al. [HLC91] to incorporate localized, piecewise �eld description. Their model isespecially suitable for representing continuum �elds although it can also represent randomsample points and ball-and-stick molecular models.3.2 A Classi�cationA classi�cation of the main volume visualization techniques (ignoring the many varia-tions) can be helpful to put things into perspective. It also provides insight as to which



19techniques are more suitable to the proposed framework.Treinish lists general visualization techniques based on the dimensionality and the rank(see section 3.1) of the data[Tre93]. The table includes example data types and thetechniques are classi�ed as either discrete or continuous. Upson provides a two dimensionalarray where one axis represents the dimensionality of the computational domain, the otherthe dimensionality of the visual representation and the techniques appear as elements inthe array[Ups91]. Another classi�cation by Hesselink et al. also adds a third attribute, theinformation level, which indicates whether the information shown at a certain point refersonly to the elementary data at that point, whether it refers to some local neighborhood orwhether it is global to the whole data set[HPvW94].Table 3.1 lists some 3D techniques in a manner that is a combination of the aboveclassi�cations. The Geometry column of the table refers to the dimensionality of thegeometric primitive used to represent the data. These could be points (0), lines (1), polygons(2) or volumes (3). Also included are glyphs (G) and pixels (P) in this column, becausesuch techniques do not �t the other descriptions. For instance, the cuberilles techniqueplaces opaque cubes at places satisfying a given threshold (see section 3.4.2). This is reallya glyph representation rather than a volumetric one. Ray casting direct volume renderingalgorithms work in image space and accumulate pixel values and hence do not have ageometric representation, although the principle behind their operation is volumetric.The Rank column represents the dimensionality of the data. Scalar �elds (rank 0) aresingle-valued functions, vectors (rank 0) of dimension n are n-valued functions and tensors(rank 2) in an n-dimensional space are n x n valued. The Information column refers to theinformation level shown at a point as discussed above (E=elementary, L=local, G=global).The Discrete column classi�es the technique as being either a discrete (D) or a continuousapproach (C). In 3D, one could say that any geometric representation that is not volumetricwould be discrete. For instance, an iso-surface at a certain threshold is only showing aportion of the data set. On the other hand, it can be regarded as a continuous techniquesince the polygons generated in cells have continuity as opposed to simple glyphs placed at



20Technique Geometry Rank Information Discrete ObjectsScatter plots 0 0 E D YDot Surfaces 0 0 E D YWireframe Surface 1 0 E D YContours on slice 1 0 E D YStreamlines 1 1 E C YHyper Streamlines 1 2 E C YPseudo-colored slice 2 0 E C YIso-surfaces 2 0 E C YStream Ribbons 2 1 E C YCuberilles G 0 E D YHedgehogs G 1 E D YTensor Probe G 2 L D YProjection VR P 0 E C NRay Casting VR P 0 E C NHierarchical Splatting VR 2 0 E D,C YVector �eld topology 1,2 1 G C YTable 3.1: A classi�cation of some visualization techniques. Geometry and Rankrefer to the dimensionality of the geometric primitives and the order of data,Information refers to the locality of information represented by a point, Discreterefers to whether the technique is discrete or continuous and the Objects columnrefers to whether visualization objects can be produced locally.sample locations. Such techniques are classi�ed here as continuous to capture this nuance.The �nal column indicates whether visualization objects can be generated locally andsent to a renderer. Since the components in Mix&Match operate locally, those that producevisualization objects have to have this property. For instance, a coarse grained streamlinealgorithm would accumulate the vertices corresponding to each new location during thevector integration phase and output a line-segment set based on these vertices. A �ne-grained approach would need to output a line segment at each new location.Mix&Match uses spray rendering to model the components. The smart particles deliv-ered from the spray can travel in the data set and produce renderable visualization objects.Because of the discrete nature of this process, discrete techniques that can generate geo-metric objects map most naturally to Mix&Match. However, continuous techniques thatcan be decomposed into components that can generate portions locally can also be imple-mented. For instance, the marching cubes iso-surface extraction technique is a continuous



21technique, but the polygons making up the surface are generated in each cell. A smartparticle traveling in the data set can generate the polygons of the particular cell it is in.The volume rendering techniques are more di�cult to handle since they do not producegeometry, but result in accumulated values for pixels. If volume rendering is to be combinedwith geometry, the task is even harder. A volume rendering technique that may be moreamenable for implementation in Mix&Match is the splatting technique that relies on geom-etry (see section 3.4.3). A hybrid software renderer that mixes geometry and volumetricdata may be required to handle this.The following sections gives a brief survey of two and three dimensional visualizationtechniques.3.3 Two Dimensional VisualizationA very common scienti�c data type is a scalar value, such as temperature, that variesover a two dimensional region, i.e. a bivariate function F (x; y). The techniques to visualizesuch data are very familiar to even the non-scientist because of their omnipresence. Weathermaps in forecasts on TV or in newspapers provide a daily dose of these.The most common technique is contouring. Contour lines are drawn over the 2D regionthat represent the locus of points that have the same given value. There are two mainalgorithms: producing all the contour lines within each cell so that contours are producedin a piecemeal fashion, or following each contour to its conclusion. Sabin gives a survey ofcontouring methods that also deal with scattered data[Sab86]. Instead of drawing curves,one can map the values to color and use color blended regions, so called pseudo-color contourmaps.Another popular method, sometimes referred to as rubber-sheeting, is to render a surfaceof the bivariate function by projecting the value of the function as a distance from the point(x; y) in the planar domain. This is especially suitable for terrain data where the value ofthe function is actually in the third dimension.



223.4 Volume VisualizationThe term volume visualization refers to the process of obtaining a visual representationof a collection of sample values located in three dimensional space. In this case, theunderlying function F (x; y; z) is trivariate. If connected by a grid, sub-volumes formedby neighboring sample points are called cells in which the underlying function is assumedto vary continuously. Some algorithms refer to the sample values as voxels where it isassumed that the sub-volume surrounding the sample point is constant-valued.A taxonomy of the connectivity appears in [SK90] (although this is by no means stan-dard):� regular: Cells are identical parallelepipeds (bricks). They may have equal distancesalong each axis in which case they are cubical cells.� rectilinear: Cells are no longer identical but they are still bricks and axis-aligned.� structured: Also known as curvilinear, cells are no longer bricks but have beenwarped by a transformation. They are still made up of eight points; however, facesmay not even be planar any more.� block structured: Several structured grids may together make up a block structuredgrid.� unstructured: Cells in this type of grid may be of a variety of shapes. Theconnectivity is supplied.� hybrid: Any combination of the above may make a hybrid grid.3.4.1 Slicing, Probing and CarvingA common technique of volume visualization is to slice the volume orthogonally orat an arbitrary orientation and use a 2D technique such as contouring or pseudo-coloredslices. When these slices are animated across the volume, the motion provides extra visualcues[Smi87]. A related technique uses geometric objects as probes to interactively examinethe data values on the surface of the probes[SK90]. One can also carve out sections of the



23data set to either remove uninteresting portions or to reveal hidden areas[FZY84, FGR85].These can be done by boolean set operations as in constructive solid geometry. Any of thevolume visualization techniques can then be used to view the remaining volume of interest.3.4.2 Geometry-based Volumetric TechniquesGeometry-based volumetric techniques produce geometric primitives that are rendered.Some algorithms use a binary voxel classi�cation. Herman and Liu[HL79] �rst described thecuberille technique, which thresholded volume data to yield a binary array of ones and zeros.The resulting volume was displayed by treating ones as opaque cubes. Frieder et al. [FGR85]and Gordon and Reynolds[GR85] improved upon the algorithm by processing the voxels in asingle pass. Meagher proposed the use of octrees for speeding up the process[Mea82]. If localgradient shading is applied instead of a binary representation substantial improvements toimage quality can be obtained[HB86, Gol86, SSW86, TS87].Three dimensional representations can be extracted from two dimensional contourswhich can be obtained through edge tracking[FKU77]. These techniques evolved into ex-tracting surfaces directly from the volume data by specifying a threshold value. Particularlypopular techniques for extracting so-called iso-surfaces is the marching cubes[LC87] and thedividing cubes[CLL+88] algorithms.In the marching cubes algorithm, one walks the cells in a volume and marks the verticesof a cell as either ones or zeros depending on whether the value at that vertex is above orbelow a given threshold. These bits encode a tag for the cell which is used as an indexinto a case table (�gure 3.1). The case table enumerates all possible cases and is used asa look-up table to de�ne the polygons that exist for a given case. Edge intersections arecomputed by interpolation and a central di�erences formula estimates the gradients usedfor shading. In the dividing cubes algorithm, the cells are subdivided until their projectionis a single pixel. The geometric primitives used in this case are points.The original marching cubes algorithm su�ers from ambiguous cases and can lead toholes in surfaces where none should be present. Solutions to this problem have been
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Figure 3.1: The �gure illustrates a marching cubes case where vertices v1 and v7are above while the others are below a given threshold causing edge intersectionse1,e4,e9 and e6,e7,e12. The index and the triangles produced are also shown.proposed by [WVG90b, NH91, Mat94]. The marching cubes algorithm also producesa large number of geometric primitives. To increase the e�ciency, Wilhelms and VanGelder[WVG90a] proposed a hierarchical approach while [Tur92, SZL92, MSS94] have pro-posed approaches to reduce the number of the primitives. Other related techniques forextracting and rendering surfaces use implicit surface methods[Bli82a, WMW86, Blo88].3.4.3 Direct Volume RenderingThe term "direct" in Direct Volume Rendering emphasizes the distinguishing charac-teristic of the technique: no intermediate geometric primitives are produced, as is the casein isosurface extraction. The technique has increasingly become popular, despite its com-putational cost, because each and every sample value in the data set contributes to theimage. The mappings from data to visual parameters are extremely exible, resulting in avariety of images emphasizing di�erent aspects of the data set. It is also more appropriate



25for certain volumes where the sample values represent amorphous, cloud-like phenomenawhere surfaces do not really mean much.The essence of the technique is that for each pixel, a color value is accumulated basedon the contributions of color and opacity from the sample values. The algorithms di�er inthe order that they proceed and in the way that they map and accumulate the color andopacity values. The algorithms can basically be classi�ed into object order and image orderalgorithms. In the former, one starts from object space and calculates the contributionsof the sub-volumes to the a�ected pixels. In the latter, for each pixel in image space, oneaccumulates the contributions of the sub-volumes a�ecting it.Image Order AlgorithmsImage order algorithms are ray-casting techniques[Lev88, Sab88, UK88]. This is distinctfrom ray-tracing since rays are not reected from objects. Instead, rays are cast from eachpixel into the data set in object space which they enter and exit in a straight line (�gure 3.2).Samples are then taken along the ray either by taking equal steps or by going from cell faceto cell face. In the former case, values of samples that fall in a cell are normally obtainedby trilinear interpolation which can be de�ned as:f(x; y; z) = a+ bx+ cy + dz + exy + fxz + gyz + hxyzThe coe�cients a : : :h can be calculated by evaluating the above equation at the eightcorners of the cell. Higher order interpolations are also possible but are not normallyused due to their cost. With ray/cell face intersections, bilinear interpolation is used tocalculate the sample value. For each of the sample values, a color and opacity value iscalculated. These are then composited in front-to-back or back-to-front order to give the�nal pixel color[PD84]. For instance, the front-to-back color and opacity compositions aredone according to the formulas:Ccomposite = Cfront � �front + Cback � �back � (1� �front)�composite = �front + (1� �front � �back)
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SampleFigure 3.2: Rays are cast from pixels in image space into the volume in objectspace and samples are taken along the ray in image order volume renderingalgorithms.where C is the color and � is the opacity.The ray-casting algorithms di�er in the details of the model used for mapping to visualparameters. Sabella[Sab88] uses a simpli�ed light scattering model that had been usedfor the image synthesis of natural phenomena such as clouds[Bli82b, KH84, Max86]. Inhis density emitter model, the volume is assumed to consist of light-emitting particles butinstead of modeling the particles individually, he considers their density and derives a rayintegral involving an exponential for the attenuated intensity along a ray. This integralequation is then approximated by a discrete sum of products equation.Upson and Keeler[UK88] use independent color and opacity transfer functions for map-ping the scalar values. They use �nite di�erences at the nodes to calculate the normalsused in shading. The integral is approximated as a discrete summation.Levoy[Lev88] calculates colors and opacities from the scalar values through shadingand classi�cation formulae respectively and uses trilinear interpolation on these volumesfor samples that fall in cells. The shading model used is the standard Phong model. For



27classi�cation, opacity is made to be a function of the local gradient. These functions dependon whether one is trying to extract value contours or region boundary surfaces.Other ray-casting approaches that have appeared in the literature are as follows:Tuy[TT84] used ray-casting to render binary voxels, Montani[MS90] rendered constant val-ued voxels using the sticks representation, Novins[NSG90] used a slab based method toachieve perspective projection, Krueger[Kru90] developed an elaborate and exible trans-port theory model, Garity[Gar90], Challinger[Cha90], Wilhelms[WCA+90] raytraced irreg-ular volume data and Yagel[YK92] used a template-based ray-casting method for renderingconstant valued voxels. More recently, Stander and Hart have used a Lipschitz method foraccelerating a ray-casting volume renderer[SH94].Object Order AlgorithmsObject-order algorithms are projection techniques where the main loop of the algorithmproceeds in object space. Researchers have taken two approaches in this case. Most breakdown the volume into sub-volumes and scan convert the front and back faces of the sub-volumes in front-to-back or back-to-front order[UK88, MHC90, ST90, WVG91]. A di�erentapproach called splatting composites the footprints of each node in the volume[Wes89,Wes90].Upson and Keeler's[UK88] V-bu�er algorithm determines a bounding box for each cellin front-to-back order. The bounding box is clipped to scanlines to produce pixel runs.Each scanline can be broken up into �ve spans depending on the polygon produced by thecutting plane of the scanline. The calculations in the spans are vectorizable.Max et al. [MHC90] and Shirley and Tuchman[ST90] handle not just regular grids butcurvilinear ones as well. They break down the cells into convex polyhedra (tetrahedrain the case of[ST90]), sort them in depth order and scan convert them. Max et al. usean assumption to provide an analytical solution to the ray integral equation. Wilhelmsand Van Gelder[WVG91, GW93] employ a similar projection technique for rectilinear and



28curvilinear volumes. All of them provide options for using hardware interpolation of colorand opacity values across polygons to achieve greater speed at the cost of some accuracy.A di�erent approach was taken by Westover[Wes89, Wes90]. He used a reconstructionkernel (a Gaussian) and proceeded from each node in the grid to calculate the contributionits footprint made on the a�ected pixels, a process he termed splatting. All the algorithmsuse the same compositing scheme for accumulation of the contributions to a�ected pix-els[PD84].3.5 Multiparameter and Vector VisualizationMultiparameter visualization, as used in this document, will mean more than onedependent variable associated with the independent variables, and is restricted to spatiallycoherent techniques (the independent variables are spatial). Vector visualization is de�nedas having a vector quantity, such as velocity, at each data position in 2D or 3D space.Spatially coherent multiple parameter data is quite common in science. For instance,over a 2D region, one might measure multiple physical quantities such as temperature andpressure. Scientists are then interested not only in a single parameter's variation over thisregion but also in the relationships among the multiple parameters. One way to visualizethese is to use a visualization technique on each of the parameters separately and displaythem in multiple windows. The scientist is then left with the task of visually comparingthe images in an e�ort to determine relationships between the di�erent parameters. Thisdoes not support the determination of more subtle relationships among the parameters.As discussed next, some researchers have attempted to alleviate this problem by usingvisualization techniques that use a single, integrated display.In 2D, iconographic displays have been used to visualize multiparameter data. Theicons consist of a number of pixels and are coded both in terms of color and geometry.Di�erent parameters of the data set govern di�erent colors and features of the geometryof the icon[Lev91]. Craw�s and Allison use an interpreted programming environmentto synthesize textures and raster images which can be composited together[CA91]. The



29textures and images can be obtained by operating on di�erent parameters and integratedto reveal relationships.Foley and Lane describe various techniques that can be incorporated into a single imageto visualize 3D multiparameter data sets[FL91]. The techniques involve de�ning a surfaceor a geometric object in the volume and operating on that volume. By combining theoperations in a single image, di�erent parameters can be related to one another.Two dimensional vector visualization is also quite common. The most widespreadmethod is to draw arrows at the data points where the length of an arrow is proportionalto the magnitude of the vector and its direction indicates the direction of the vector. Often,drawing one vector glyph at each point creates a crowded image so vector glyphs are drawnat positions which have been subsampled from the original data set. Alternatively, contourmaps or streamlines can be used. Color can provide additional cues. Texture has also beenused in visualizing 2D vector �elds[vW91].Three dimensional vector visualization has been extensively studied under the name owvisualization, and many techniques exist. One approach is to reduce the dimensionality byvisualizing the �eld on a cutting plane or an arbitrary object's surface. Any of the twodimensional methods discussed above can now be applied to this surface. Another techniqueis to calculate a scalar value from the vector �eld, such as helicity density, and visualize thescalar value using any of the volume visualization methods.Techniques have also been developed to visualize the vector �eld directly. The simplestapproach, sometimes called the hedgehog method, is to display 3D arrow glyphs at the datapoints, again subsampling to reduce image clutter. This does not work as well as in 2D sincethe arrows are projected onto the screen and it is more di�cult to get the magnitude anddirection information from the projection. Particle-based techniques o�er better insight.These techniques have their parallels in the laboratory setting. Fluid dynamics scientistsrelease dyes into liquids and smoke into air ows in order to study uid ow.The simplest method of ow visualization is to follow the motion of massless particlesreleased into the ow �eld. The particle is drawn at the release point (e.g as a sphere), and



30its next position is calculated using the vector �eld. The calculation is a simple integrationwhere one assumes that the vector is tangent to the path. If r(t) is the position vector of apoint on the path where t is time, the velocity vector v(r) is given bydrdt = v(r)and the integral of this gives r(t) = r(0) + Z t0 v(r(t))dtThe particle can be redrawn at each new position so that one can see its motion throughthe �eld (particle advection). Instead of drawing the moving particles themselves, one mightmerely draw its continuous path. If this path consists of line segments, one gets so-calledstreamlines. The line segments can be colored according to the magnitude of the vectorto give extra information. Issues such as the integration method, vector interpolation andstep size adapting have appeared in the literature [MP88, Bun88, YP88, EOR89]. Morerecently, Kenright and Mallinson have proposed a new approach for tracking streamlineswhere streamlines are considered to be the intersection of two stream surfaces[KM92].In 3D, one can get an improved perception if, instead of drawing lines, one draws 3Dshapes such as cylinders. This results in stream tubes which can be shaded using lightingmodels[Dic89, HD91]. Stream tubes can also have the advantage of showing local expansionof the ow �eld if their circular cross-sectional areas are based upon the local crossowdivergence.Stream lines or tubes only give the path. One cannot obtain rotation information fromthese techniques. To alleviate this problem, stream ribbons have been used. In this case,the path of two particles are traced and polygons are generated from their joint path[Bel87,Vol89]. Since ow �elds diverge, ribbons may need to be adaptively split to get betterpolygonal representations. Hultquist has proposed an advancing front method that achievesthis more e�ciently[Hul92]. Another method that has been used to capture not only therotation but also the strain and shear (or angular deformation) is the stream polygonmethodproposed by Schroeder et al. [SVL91]. In this method, local deformations a�ect the shape



31of a polygon that moves along a stream line such that its orientation is normal to the localvector. When the vertices of these polygons are joined, one gets a non-cylindrical tube withlocal deformations.Van Wijk creates textures by spot noise to visualize scalar and vector �elds on sur-faces[vW91]. By varying the parameters of the spots, such as shape and size, di�erenttextures are obtained that best �t the problem. Van Wijk also uses surface particles tovisualize ow �elds[vW92]. Particles from a source are periodically released into the ow�eld and form a textured surface when rendered. By varying the shape of the source ofthe particles, he obtains di�erent visualization techniques such as streamlines, tubes andribbons. He provides a detailed method for rendering shaded particles.Craw�s and Max[CM92] employ a splatting technique for the direct volume visualizationof 3D vector �elds. They have developed a �lter which is used to sweep through a volumein back-to-front order. The �lter deposits anti-aliased lines as it passes through the volume.The technique is used to volume render both a vector and a scalar �eld in the same image.More recently, Max et al. used a volumetric equivalent of stream lines to volume ren-der vector �elds[MBC93]. Leeuw and van Wijk map scalar, vector and tensor values toa 3-D probe for interactive local ow �eld visualization[dLvW93]. Van Wijk also usedimplicit surface representation to construct implicit stream surfaces of ow �elds[vW93].Craw�s and Max extended the splatting technique to include textures for vector �eld visu-alization[CM93]. Cabral and Leedom introduced a novel technique which uses linear andcurvilinear �lters to locally blur textures along a vector �eld[CL93] which was extended byForsell to visualize ow over curvilinear grid surfaces[For94].



324. Mix&Match: A Construction KitThe environment presented in this dissertation blends the ideas of spray rendering withthose of modular visualization environments. The metaphors of spray cans and smartparticles (sparts) of spray rendering are used to model the visualization techniques andde�ne various interactions with data sets. At the same time, the visual programminginterface to program composition that characterizes modular visualization environmentssupports interactive composition of sparts. The result isMix&Match, a exible, modular andextensible environment which allows incremental visualizations through direct interactions.In this chapter, a high level view of the environment is presented, starting with the designgoals.4.1 Design GoalsFor any software system there are basic software engineering properties that are desir-able. Some of these properties are in conict with one another and priorities and judicioustradeo�s are necessary. The design goals for Mix&Match were to achieve the followingproperties as much as possible.� Extensibility. Extensibility relates to the ease of adding functionality to the systemin existence. Although the system may have many features, it should allow easygrowth to cater for needs not foreseen. The Mix&Match system has been designedso that the interface to the system of a component is generated automatically. Thecomponent writer implements the computational function using C code and the APIprovided, and speci�es its inputs, outputs and other attributes graphically to integrateit into the system. The system has been designed to be modular to facilitate thisextensibility.� Functionality. The features provided initially as well as all the non-extensibleparts of the system should be functional. Many visualization techniques have beenimplemented by redesigning and localizing them, resulting in many components to



33construct sparts. Some prede�ned and composed sparts (see section 4.3) are alsoprovided. The renderer allows a variety of renderings of the visualization objects (e.g.at/Gouraud shading, point/wireframe/polygon drawing of primitives, lighting andviewing options).� Flexibility. One of the advantages of having components of �ne granularity is thatthe exibility of component composition is enhanced. For instance, instead of a singleiso-surface component, one can break it into two components: one that seeks to satisfythe target iso-value, and one that generates the surface if the condition is satis�ed.This target function can also be used in another composition where some other visualbehavior component is used. However, exibility can be in conict with e�ciency. The�ner the granularity, the more components to execute, and the larger the overhead.To compromise, the Mix&Match design limits the components to have granularity atthe spart position level.� E�ciency. The particle nature of spray rendering and the �ne granularity of thecomponents can be costly. Object compaction (see section 5.5) was designed to savememory and rendering time. A simple memory scheme for data transfer betweencomponents was designed so that components merely dereference pointers to readtheir inputs instead of communicating through �les or pipes.� Ease of Use. Since the target users are scientists more eager to do their sciencethan to learn a software package, the environment has been designed to be as userfriendly as possible. Graphical user interfaces and direct manipulation have been usedthroughout to aid in this process. The system aims to support three di�erent levels ofusers: Novices merely load sparts \o� the shelf". Intermediate users go a step furtherand use the components available to compose new sparts. A graphical spart editorallows intuitive visual programming for spart composition. Finally, the expert user canwrite C functions to add a new component to the system. A con�guration managerpresents a graphical user interface for this task as well and generates wrapper code tomake the integration easier.
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Figure 4.1: The organization of the system components.4.2 Mix&Match OverviewFigure 4.1 shows how the components that make up the Mix&Match environment1are organized. At the bottom level is the data model used to de�ne the data sets. Anapplication programmer's interface (API) provides functions that operate on the data forthe convenience of spart component writers. Next, there is an extensible collection ofsparts and spart components. These form the heart of the visualization process since theyimplement the visualization techniques. Spart components can be composed to de�ne anoverall behavior for the spart. Prede�ned sparts already have their behavior de�ned andcannot be composed. Both spart components and prede�ned sparts are functions and1 The Mix&Match environment was developed as part of the REINAS project on meteorological andoceanographic data acquisition and visualization. What is described here is the analysis mode of thevisualization program Spray in which users can visualize model simulation data.



35are integrated into the system by linking. They are described to the system through aseparate program called the Con�guration Manager. This program presents a graphicaluser interface for component description and control panel design, and generates \wrappercode" for system integration so that the component writer can concentrate on writing thecomputational function. The spart executive handles the execution of the sparts while therenderer renders the scene (made up of the visual objects that have been generated by thesparts).At the top of the system architecture is the user interface. The main interaction windowpresents the rendered scene and has a top-level menu bar. Users can interact directly withthe window for view control and spray can selection and manipulation. The spray cancontrol panel presents choices for can parameters and interaction modes. A textual and agraphical spart editor are both provided for the composition of sparts. Finally, most spartcomponents will have a control panel to set certain parameters. When a can is created,these are collected into a single window.Users of Mix&Match load in data sets called streams, create spray cans that containparticular sparts, and spray the data set with them to produce visualizations interactively.The process of visualization is summarized in �gure 4.2. It is an iterative process and atany stage the result could be the desired visualization.Users �rst load streams. They can then create a can containing a particular spart.The spart may be an existing spart composition or the user may edit an existing spartor may compose one from scratch. The various parameters of the can and the spart maythen be selected and the can used on the data set interactively. This results in certainvisualization objects which can be accumulated, hidden or deleted at any stage. By iteratingon these various actions, the user obtains a visualization. The iterative process emphasizesthe exploratory nature of this framework. Note that to facilitate a faster beginning to avisualization session, some of these operations can be speci�ed from a startup �le.Figure 4.3 shows the top-level interface. On the left are three browsers that list the cansthat have been created, the currently available sparts and the currently loaded streams. The
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Figure 4.2: This �gure illustrates the iterative process of obtaining a visualizationin Mix&Match. Users operate on streams, sparts, spray cans and the renderingin the main event loop. It emphasizes the exploratory nature of visualization. Atany stage, the user has a current visualization which could be saved as an image.main graphics window shows the current state of the visualization and the smaller graphicswindow shows the world from the point of view of the current can. The various actions suchas the loading of streams and the creation of cans take e�ect in response to selections fromthe menu bar. Users are able to interact with both the main window and the can windowfor such operations as the changing of view, can manipulation and spraying.4.3 Smart ParticlesA de�ning characteristic of spray rendering is the use of smart particles (sparts). Theseare launched from a metaphorical \spray can" and the particles actively look for featuresin the data set. Once these target conditions are satis�ed, abstract visualization objects(AVOs) may be deposited which are subsequently rendered. A typical spart, then, has alife-time as depicted in �gure 4.4. The target and visual behaviors take place at the currentlocation of the spart. The spart then updates its position and determines if it is to continueor die.Mix&Match allows sparts to be de�ned at run time by connecting together basic com-ponents. These sparts are called Composed sparts, and the components are organized into
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Figure 4.3: This image shows the top-level user interface of Mix&Match. Themain window shows the current state of the visualization. Here, the bounding boxof a stream is shown as well as a spray can with a conical nozzle. The smallerwindow in the lower left corner is the view from the view-point of the can.four categories that reect the stages in the life-cycle of a typical spart. Target functionslook for target features and output booleans, Visual functions deposit AVOs if certainconditions are satis�ed, Position functions update the current position of the spart andDeath functions determine when the spart should die. Each of the components makingup a composed spart is a function that gets executed at the current location by the spartexecutive until the spart dies.Sparts are visualization methods or tools. The ability to de�ne new sparts from basiccomponents allows experimentation with di�erent techniques. However, since this exibilitycomes at the expense of e�ciency, the system also allows for more e�cient but non-



38 FalseTrueFalse
Birth
DeathFunctionUpdatePositionTrueDeath

FunctionBehaviorFunctionTarget
Figure 4.4: Flow diagram illustrating the life-time of a typical spart.modi�able sparts called Prede�ned sparts. These are monolithic sparts that embody allstages of the life-cycle in a single function. Once launched, they return control to the spartexecutive only when they die.4.4 Spart CompositionThe user can compose sparts either using a textual editor or a graphical editor. A com-position is the speci�cation of the components that make up the spart and the connectionsbetween them. Since this is basically the speci�cation of a program, the two options reectthe textual and visual programming paradigms.



394.4.1 The Textual InterfaceThe primary goal in the design of the textual interface was ease of use. Rather thanpresenting a full text editor and a complicated language for program speci�cation, thesimplicity of the visual programming style of data-ow visualization environments wasemployed. Since the \language" for program speci�cation is quite simple, the interfaceretains the \pick and drop" nature of the graphical interface. Users can, of course, use theirfavorite editor o�-line to compose a spart since the spart de�nition format is ASCII andquite simple.In the textual mode, the user is presented with the collection of components arrangedin four browsers (�gure 4.5), one for each category. There is also a main editing browserwhere the composition takes place that consists of an input �eld where a line can be editedand a main browser that displays the composition. Figure 4.6 shows the main browser withthe completed composition of the iso-surface spart.
Figure 4.5: The components listed in four browsers, one for each category.When a user selects a component from the components browser, the name of thecomponent selected appears in the main browser together with its number of inputs and
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Figure 4.6: The text based spart editor showing the iso-spart composition.outputs and their types. For example, if the user chose the IsoThresh component from thetargets category, the line that would appear in the browser would beIsoThresh [ STREAM ] ( BOOLEAN ) ( INT ) ( FLOAT )The inputs are enclosed in square brackets and the outputs in regular parenthesis. Thetypes appear in this enclosure in capital letters. The currently selected line from the mainbrowser also appears in the input �eld below where it can be edited. The user can thus selectthe components that will appear in the composition and then specify the connections byediting the lines one by one. The connections are speci�ed by naming the input and output�elds of the component. These names are actually names of connections. For instance, theconnections between the IsoThresh and the IsoSurf components can be speci�ed by thefollowing: IsoThresh [ S1 ] ( SurfFound ) ( Tag ) ( IsoVal )IsoSurf [ S1 ] [ SurfFound ] [ Tag ] [ IsoVal ] ( OBJECT )



41The output �elds of the IsoThresh component have been given the same names as someof the input components of the IsoSurf component. Thus the name SurfFound speci�esa connection between the �rst output �eld of IsoThresh and the second input �eld ofthe IsoSurf component. Input �elds can also be speci�ed to be constant valued. This isidenti�ed by having the '=' sign precede the value. For instance a boolean �eld may be tiedto a constant true value by [ =TRUE ].When a composition is completed, it can be parsed for correctness. The main rules fora correct composition are as follows:� All the inputs must have either a constant value speci�ed for them, or they need tobe tied to the output of a component. In other words, there are no optional inputs.Output �elds may be left unspeci�ed, however.� The output and input �elds that are connected must have the same type. There isthus strong typing but no type coercion.� Since the parser is one-pass, the components that provide input to other componentsmust precede them. In other words, if a directed graph were to be constructed fromthe components where the edges denoted dependency, the components in the mainbrowser must be in the topological order of this graph.� Fan-out is allowed, while fan-in is not. In other words, there cannot be input �eldsthat take input from more than one output �eld.� The dependency graph between components must be acyclic.An example of a spart composition is the IsoSurface spart below which extracts iso-valued surfaces from volumes.IsoThresh [ S1 ] ( SurfFound ) ( Tag ) ( IsoVal )IsoSurf [ S1 ] [ SurfFound ] [ Tag ] [ IsoVal ] ( OBJECT )StepAlongRay [ S1 ]The IsoThresh is the target behavior function, IsoSurf is the visual behavior functionand StepAlongRay is the position update function. There is a default death function thatkills the spart when it exits the bounding box of the stream.



424.4.2 The Graphical InterfaceThe graphical interface provides a more intuitive way of specifying the spart compositionthan is provided by the textual interface. Typing is limited to specifying constant inputvalues. Everything else is mouse driven.The user has the same components browser available as with the textual interface.Instead of the text based editor, there is a canvas for graphically editing the composition(�gure 4.7). A user can select a component from the components browser and positionand drop it onto the canvas. The module appears as a colored box in the canvas withtwo parts. The top half displays the name of the module and an expansion button, whilethe bottom half displays two boxes that display menus when selected by the mouse. Thegraphical editor possesses all the editing capabilities of object based drawing programs suchas multiple selection, moving, copying, cutting and pasting.
Figure 4.7: The graphical spart editor showing the iso-surface spart composition.The process of specifying the connection between two components is to select the outputsmenu from one component and choose the particular output �eld from it. At this stage all



43the components on the canvas which have an untied input that is type compatible with theselected output �eld will have their input menu highlighted. If the automatic expansion agis set, these components are expanded to show the compatible input �elds so as to assistthe user in the selection of a matching input �eld (�gure 4.8). If an input �eld is chosenthat is not type compatible, an appropriate error message is displayed immediately. Thus,the user gets an earlier warning than the textual editor in this regard.
Figure 4.8: Detail showing how a box has expanded to reveal its compatibly typedinput highlighted (green circle) for a potential connection. The left menu box hasalso been highlighted. The expansion also shows which �elds have connections(black circles) and which ones don't (white circles). The color coded trianglesrepresent the types of the �elds.If the connection is valid, then submenu items at both ends of the connection will beadded to the input/output menus and a "wire" will connect the boxes. The submenu itemwill indicate the other end of the connection. For instance, the same connections betweenthe IsoThresh and IsoSurf components as was presented in the previous section will resultin the following menu items:



44IsoThreshInputs menu:Stream: Tie<- Streams(1).S1Outputs menu:SurfFound: Tie-> IsoSurf(1).ExecuteTag: Tie-> IsoSurf(1).TagThreshold: Tie-> IsoSurf(1).ThresholdIsoSurfInputs menu:Stream: Tie<- Streams(1).S1Execute: Tie<- IsoThresh(1).SurfFoundTag: Tie<- IsoThresh(1).TagThreshold: Tie<- IsoThresh(1).ThresholdOutputs menu:SurfaceThe �rst item in each submenu is the Tie which, when selected, adds a new item tothe submenu. An already established connection can be disconnected by re-choosing theconnection item in the submenu. Note that since there can only be a single input to amodule, the Tie entry of an input submenu that has a connection is unselectable. TheStream inputs of the components are tied to a stand-in component called Streams that hasstreams as output. This way, the stream inputs of components are given variable namesthat can later be bound to loaded streams.4.4.3 Component HierarchyIt is possible that a user will often use a particular set of components in combinationand wishes to use this set as a single component in spart compositions. The system allows



45the user to create such components called macros both in the textual and the graphicalcomposition interfaces.In the textual interface, when the user de�nes a macro, the set of components is replacedby the macro in the main browser, and the macro is added to the components browser.Which particular category the macro is added to is speci�ed by the user. The inputs andoutputs of the macro are those that were not tied. A separate macro browser allows thedisplaying, editing and saving of macros.In the graphical interface, the user is able to make a subset of the components onthe canvas into a macro. The components are then replaced and the connections to theremaining components preserved. A separate macro canvas allows the displaying, editingand saving of macros.Internally, the macros are expanded into their constituent components at the time thespart is loaded into the can. Hence, the restriction on component dependency betweencomponents of di�erent categories still applies. A macro behaves just like a component andcan be used in compositions. Macros can also include other macros as long as the inclusionsdo not result in a cycle.4.5 Interaction ModesIn Mix&Match, visualization is an interactive and incremental process. The user selectsspray cans and delivers doses of sparts into the data set, leaving visual objects behind. Thesparts conform to a basic mode of operation: they seek targets, deposit visual objects, andupdate their position. This is repeated until the spart dies. This general behavior allowsthe control of some parameters that results in di�erent and interesting modes of interaction.These interactions emphasize the exploratory nature of the visualization process. Table 4.1summarizes the options that can be set to achieve these interactions.There are three main categories for the options:1. Spart Delivery. This category determines how the sparts are to be delivered orlaunched. In spray rendering the instrument of delivery is the spray can. For discrete



46Spart Delivery Rate of Delivery AVO PersistenceSpray On Mouse Down AccumulateGrid While Mouse Down Keep #ofAVOsContinuous Update #of SpartsWhile View Change Update #of DeliveriesWhile Parameter Change Update #of PositionsWhile View ChangeWhile Parameter ChangeTable 4.1: This table summarizes the options available for achieving di�erentinteractions. A choice is made from each of three orthogonal categories. SpartDelivery determines whether the sparts are to be delivered from the can or theyshould traverse the grid. The Rate of Delivery determines how often new doses aredelivered while the AVO Persistence category determines how long visual objectsshould remain in the scene.visualization techniques, this is suitable and an intuitive metaphor. For continuoustechniques, grid traversal o�ers a more robust delivery method. For instance, withiso-surface sparts, if surfaces were generated discretely, i.e., wherever the sparts passedand satis�ed the iso-value criterion, the absence of a surface could not de�nitely beattributed to the criterion not being satis�ed. It may be that the spart missed theregion and could not generate the surface in that region. Grid traversal ensures thevisiting of all cells in a speci�ed region. There are, then, two options for spart delivery:� Spray. In this case, the sparts are launched from the can. For this reason, theuser can choose a nozzle shape and size and also specify the number of spartsper delivery. The basic nozzle shapes available are point, line, circle, and square.By default, these shapes correspond to a line, a triangular plane, a circular cone(see �gure 4.3) and a square pyramid in 3D respectively. If another option isset, the 3D nozzle shapes become a line, a rectangular plane, a cylinder and aparallelepiped. Sparts are constrained to be delivered from within the nozzle.� Grid. In this mode, only a single spart is delivered and it traverses the grid.Any position update components and death functions in the composition areignored. There are options that can be set in grid mode: we can traverse Allof the grid, a SubVolume or a BallRegion. When a subvolume is to be chosen,



47the user speci�es the bounding region in computational space. Similarly, a singlenumber de�nes the extent of the region around the ball tethered to the can2.In all cases, the user can specify subsampling factors for each axis. This meansthat only every nth sample will be taken during traversal along that dimension.Users can also choose one axis along which to animate. Grid traversal occurswith the i dimension varying fastest and the k the slowest. This means that, ifthe animate button for the i dimension is chosen, the view will be updated atevery position visited during traversal. If the j or the k buttons are chosen, theview will be updated every time those indexes change.2. Rate of Delivery. These options de�ne how often the sparts should be delivered.The options are as follows:� On Mouse Down. In this mode, one dose will be delivered when the mouse is�rst pressed. No more doses are delivered until the mouse is released. This modeis useful when the spart delivery mode is grid. It ensures that only one spart willbe delivered when the mouse is pressed.� While Mouse Down. New doses are delivered every time (through the main eventloop) as long as the mouse is pressed. This is the \drag and keep" spraying mode.� Continuous. In this mode, the user does not need to keep pressing the mouse.New sparts will be delivered every time through the main event loop. This isuseful when in an animation mode.� While View Change. Another way to launch sparts is to do so when the user ischanging the view. Interesting results can be obtained if the can is optionally�xed at the center of the view. This may prove useful for a direct volumerendering spart. Another use for this mode is that the view can be changedas a position-based animation is taking place.� While Parameter Change. Most components making up a spart have parameterwidgets associated with them. It is very informative to launch sparts as the2 The spray can is drawn graphically in 3D and can be interactively positioned. It has a sphere at theend of its directional axis for an alternative means of manipulation (see �gure 4.3).



48parameter is being changed and the visual objects are updated at the same time.For instance, if the redrawing is fast enough, the scale factor parameter of avector glyph widget can interactively be changed to �nd just the right relativesizes for a particular view. As another example, the iso-surfaces at di�erentiso-values can be generated as the iso-value widget is varied interactively.3. AVO Persistence. Another category of options determines how long the visualiza-tion objects are to be kept in the scene. The options are:� Accumulate. Any new objects produced are saved and accumulate in the scene.� Keep #of AVOs. Alternatively, only a speci�ed number of objects can be kept.This operates as a FIFO, and as new objects are added, others are taken o� thedoubly linked list. The result is a ashlight-like e�ect. Note that this operationdoes not a�ect what has already been accumulated. Only a working bu�er isa�ected. If, later, the user switches to the accumulate option, the working bu�eris added to the accumulated objects.� Update #of Sparts. In this mode the working bu�er is deleted every nth spartdelivered. There is no spart FIFO.� Update #of Deliveries. In this mode the working bu�er is deleted every nthdelivery. For instance, delivering a single spart and updating every deliveryresults in a probe like interaction.� Update #of Positions. This is a unique mode. Not only is the working bu�erupdated every nth position (a position being the spart location during theiterations of its life-cycle) but the scene is also redrawn. This mode is thereforeused for simple position-based animations. For instance, an ij slice can beproduced at every (0; 0; k) node. When in this mode, the slices will be animatedfrom (0; 0; 0) to (0; 0; kmax). The speed of the animations can be controlled byspecifying a sleep parameter.� While View Change. This can be used with its corresponding rate of deliveryoption to update the working bu�er as the view is changed.



49� While Parameter Change. Similarly, this can be used with its corresponding rateof delivery option to update the working bu�er as a parameter widget is changed.4.6 Extending the SystemIf there are many components that can be composed to cover the common visualizationtechniques, intermediate users will merely be concerned with the compositional aspects.Novice users do not even have to deal with that complexity, since they can just loadcompositions or prede�ned sparts into the cans. Expert users, on the other hand, will wantto extend the system by writing their own components. Extensibility is very importantsince there will almost certainly be a need for a component that is not provided initially.Component writers write some functions (in C) as a separate module and compile andlink it with the application. A number of application programmer interfaces (APIs) areprovided for accessing and manipulating system internals. The task of describing the newcomponent to the system is made easier by a separate program called the Con�gurationManager (CM). It presents an easy-to-use graphical interface to the process of de�ning whatthe particulars of a component are, and then generates code for this component. Using theCM, de�nitions can be recalled and modi�ed graphically rather than by manually editing�les.When CM is �rst run the user is presented with the top-level window in �gure 4.9. Theuser speci�es the name of the component, what category the component will belong to, andwhether wrapper code for the top-level user function is required. Next, the user can proceedto specify the inputs, outputs, state variables, the user functions and the parameter widgetsthe component needs.For the inputs, outputs and state variables, the user enters the names of these variablesand their types. The names are used during graphical spart composition. Also, thereexist convenience functions that return the index into the corresponding arrays based onthe names. The component writer is thus able to reference these with names rather thanindexes which may change as the component is modi�ed (�gure 4.10).



50
Figure 4.9: The top-level window of the con�guration manager. The round buttonindicates that wrapper code is desired.

Figure 4.10: The window to enter and indicate the number, names and types ofthe input variables of the component.



51The user speci�es the function names such as the top-level user function and theinitialization function. The top-level user function is required while the others are optional.Finally, the user interactively designs the control panel where the parameter widgets are toreside. The task of creating a panel and placing the control widgets can be time consumingand error prone if done through procedure calls, especially when one considers that thepanels may evolve over time and go through changes. For this reason, the design of thecontrol panel is graphical and interactive.When the user is satis�ed with the speci�cations, the component de�nition can be saved.There exists one ASCII de�nition �le for each component. When the program is compiledto incorporate the module into the system, these component de�nition �les are gatheredinto an array so that component particulars can be accessed at runtime.



525. ImplementationThe previous chapter presented a high level view of the Mix&Match environment. Inthis chapter, some of the more important implementation details are discussed.5.1 Data StreamsAll scienti�c visualization environments operate on native data types based on a datamodel of scienti�c data. In this section, the structure of the main data type of Mix&Matchcalled a stream is described.Figure 5.1 shows the data structure of a stream. There are two types of streams, astypedef struct _streamList {Str title; /* name of stream */StreamType strType; /* type of stream */union {Structured lat;Unstructured fem;} t;CoordSysPtr coordSys; /* coord system */Bool needToConvert; /* need conversion ? */int inUse; /* stream in use by a spart */struct _streamList *next;} StreamList; Figure 5.1: Data structure of a stream.suggested by the union in this structure. Structured streams are basically multidimensionalarrays of single scalar or vector values. The Unstructured streams would contain explicitconnectivity information, but are not supported by the stream API routines currentlyimplemented.Since Mix&Match was designed primarily for meteorological visualization there is theconcept of a coordinate system (a map projection) for the data (coordSys member).Meteorological simulation data assumes that a speci�c projection has been used duringthe simulation. This projection becomes the native coordinate system of the data. Theuser can visualize the data either in its native projection or in another projection in which



53case transformations take place on the y as the spart is traveling in the current coordinatesystem.The structured stream's data structure is shown in �gure 5.2. Redundant informationis kept in the structure so that frequently required quantities need not be computed by thespart components. This is important because the components are �ne grained and will becalled many times during the life-time of a spart (e.g. the xysize is derivable from the dimsarray). Index arrays assist in the grid traversal mode of spart execution. The coordinatetype of structured streams de�ne whether they are regular, rectilinear or curvilinear.typedef struct _lattice {int nDim; /* number of dimensions */int *dims; /* dimensions in each dir */long xysize; /* the prod of x and y dims */int curIndexes[3]; /* current comp space indexes */int lows[3]; /* Min indexes of sub-volume */int highs[3]; /* Max indexes of sub-volume */int subs[3]; /* subsamples */Data data; /* the data array */Coords coords; /* the coordinates array */} Structured;Figure 5.2: Data structure of a structured stream.The spart components only operate on single scalar values or on a vector of two or threevalues. Having only these types to operate on keeps the component code simpler. In manycases, users are only interested in a few of the parameters of a multiparameter data set atany one time. This way, the whole data set does not need to be loaded. For instance, theNORAPS model that has been used during this study generates 12 two dimensional and 6three dimensional parameters for a single simulation time. Loading all of the parametersis not usually necessary and would be wasteful of precious RAM. Further, separation ofparameters allows di�erent position update functions and death functions based on di�erentparameters of the same data set.Another tradeo� between memory and execution time is the saving of scaled data. Manyvisualization behaviors use a color map to map the data values to color. The data values



54are scaled to the range 0-255 and the value used as an index into a 256 bucket color table.To save execution time, data are prescaled and stored as part of the stream.5.2 The Spray CanOne of the main ingredients of spray rendering is the virtual spray can which is used tofocus and deliver the sparts into the data set. It forms the tool that is used for interaction.Depending on what attribute and mode settings have been speci�ed, di�erent interactionscan be achieved. The spart contents of the can determine the visualization result of theseinteractions and essentially de�ne the nature of what the tool is. In this section, theimportant aspects of the can structure are described in detail. The complete structure isshown in �gure 5.3.typedef struct _can {FourVector pos; /* position */FourVector dir; /* direction */float CanCenterPointDist; /* distance to the ball */float NozzleTwist; /* nozzle twist */int SpartDist; /* spart distribution */Bool OrthoSpray; /* spart directions parallel ? */ObjList AVOS; /* head of the AVOs */ObjPointers *UndoStack; /* the for undo operations */GeoObject *AVOSLastKept; /* pointer to the accummulated avos */Bool DrawAVOs; /* draw AVOs ? */Bool DrawCan; /* draw can ? */Color *colMap; /* color map for this can */int colMapName; /* name of color map */SprayMode sprayMode; /* spray mode */Str spartName; /* spart name loaded */ProgramList *programs; /* the programs */Bool lock[4]; /* position locks on can */strcut _can *next;} Can; Figure 5.3: Structure of a can.When a can is created, the currently selected spart from the spart browser becomes itscontent and is identi�ed by spartName. The can has a position in world space and can bemoved and oriented. It is placed at the center of the current view when �rst created. Thedir element forms the axis of the cone associated with the can, and indicates the general



55direction in which the sparts will be delivered. The CanCenterPointDist element speci�esthe distance to a ball that is tethered to the can for an alternative means of orienting thecan. There are several types of nozzles that can be chosen and their sizes can be set. Theuser can thus aim and focus the can into a particular area of interest and release spartsselectively. The number and the pattern of distribution of sparts can also be set. Thedisplay of the can and its cone may be switched on and o�.The sparts will manifest themselves in the form of abstract visualization objects (AVOs)and get added to the can's AVOS. This is a doubly linked list of objects that can be optionallyrendered. The DrawAVOS ag is used to temporarily hide the AVOs so as to prevent imageclutter, or to turn it on and o� to compare di�erent spart manifestations. Considering thatthe user may have created several cans which may have hidden or visible AVOs, at a certainstage of the visualization the renderer renders the visible cans and the visible AVOs. Thescene that is rendered is summarized in �gure 5.4 where the solid boxes are visible cans orAVOs and are rendered, and the dashed boxes stand for cans and AVOS that have beentemporarily hidden.
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AVOsFigure 5.4: This �gure illustrates the scene that is rendered. Solid boxes arevisible cans and AVOS and dashed boxes are those that have been temporarilyhidden.Another way of uncluttering an image is to undo some of the spraying. Each dose of



56spray is pushed on to the UndoStack. Users can undo a dose of spray by popping thisstack. The AVOSLastKept member is used as the pointer to the accumulated AVOs. Anyprobe-like behavior (as discussed in section 4.5) does not a�ect the accumulated AVOs.A non-editable color map from a list of color maps is associated with each can. Thespart components that use one for mapping data values to color use the can's color map.This limits all the components making up the spart to a single color map. Alternativeschemes could be to:� associate one color map with each stream. This would require the binding of a colormap to a stream when the latter gets loaded. More than one color map would thenhave to be displayed as feedback if a particular spart is using multiple streams withdi�erent color maps.� make the color map an editable widget associated with each component that needsone. The setting of each component's color maps would be time consuming and thecomponent code would be more complex.� de�ne a color map type and write a component that produces an editable color map.The output of this component can then be sent as input to components that requireit. The composition would be more complex and the spart execution slower.The sprayMode element is used to obtain di�erent interactions with the can. Controls es-tablish choices for whether the sparts should be sprayed from the can or traverse the grid,the type of delivery rate and also the persistence of the visualization objects. Combina-tions of these choices result in very di�erent interaction techniques using the same tool asdiscussed in section 4.5.Perhaps the most important element in this structure is the programs element. Thisis what characterizes the contents of the can, namely the particular spart it contains. Thespart may be a prede�ned spart or a composed spart consisting of components. As thename suggests, the spart's overall behavior from birth to death is in e�ect a program thatis executed when the spart is launched from the can. Sparts are discussed in greater detailin the next section.



575.3 The SpartsAside from the spray can, the other main ingredient of spray rendering is its contents,the smart particles or sparts. These determine the visualization. How the spart behaves isdetermined by a program that is associated with the can, so that di�erent cans loaded withdi�erent sparts will produce di�erent e�ects. The sparts, then, de�ne the kind of tool eachspray can is.There are two kinds of sparts. Prede�ned sparts are ones that are unmodi�able atruntime. They are monolithic and self contained in the sense that once control is given tothe spart (it is born), it will return to the spart executive only when it dies. Composedsparts, on the other hand, are made up of components which do not know anything abouteach other. The program consists of the repeated execution of these components in a certainorder until the spart dies. Before going into more detail about the two types of sparts, ananalysis of the ProgramList data structure that appears as an element in the can structurewill be given.The ProgramList data structure is shown in �gure 5.5 The dichotomy between aprede�ned and a composed spart is immediately obvious from the union that appears in thisstructure. The reason for having a list of programs in the can's data structure rather than asingle program is that sparts may spawn new sparts of a di�erent kind during their lifetime.In the case of a composed spart, this may be achieved by having the Spawn componentappear in the composition (see section 6.1.4).The spartPool element is the queue of sparts that are to execute the particular program.The SpartList structure is simply a list of position and direction pairs that indicate theinitial state of the spart at the time of its release. In a prede�ned spart, the top-levelfunction uses this information and decides what to do with it. In a composed spart, thestate of the current spart is updated by a position update function.



58typedef struct _programList {Str name; /* name of spart */SpartList *spartPool; /* queue of sparts to execute */Bool predef; /* is it predefined ? */FormsWindow formsWindow; /* widget container */union {Predefined predefSpart; /* predefined spart */Composed compSpart; /* composed spart */} p;struct _programList *next;} ProgramList; Figure 5.5: Structure of ProgramList.5.3.1 Prede�ned SpartsPrede�ned sparts are self-contained, monolithic sparts. When one is launched from thecan by the spart executive, what it will do and when it will die are all determined internally.All the di�erent categories of components that appear in a composed spart are embodiedin it.The structure of a prede�ned spart is shown in �gure 5.6. A prede�ned spart is registeredwith the system by providing the values for the members of this structure.typedef struct _predefSpart {Str name; /* name of spart */int noStreams; /* number of streams */Str inNames[MAX_MOD_INPUTS]; /* input names */InOut inTypes[MAX_MOD_INPUTS]; /* input types */StreamList **streams; /* pointers to the streams */int noInterVars; /* number of internal vars */Str interVarNames[MAX_MOD_INOUTS]; /* inter var names */InOuts interVarTypes[MAX_MOD_INOUTS]; /* inter var types */void **interVars; /* pointer to inter vars */void (* behav)(PredefinedPtr predef);/* the behavior function */void (* init)(PredefinedPtr predef);/* initialization function */void (* createForm)(PredefinedPtr predef);/* creates the form */void (* setForm)(PredefinedPtr predef);/* sets the form */void (* getParameters)(void); /* gets the parameters */Widget *paramWdgt; /* parameter widgets */} Predefined; Figure 5.6: Structure of a prede�ned spart.The noStreams element speci�es the number of streams that the prede�ned spart



59operates on. These will be bound by the user to currently loaded streams at the timethe spart is loaded into the can. The names and types of streams are provided so thatstreams can be identi�ed and accessed through convenience functions. The types ensuretype compatibility when streams are bound.Internal state variables are provided so that the execution of the prede�ned spart candepend on its state. This is necessary since there may be multiple instances of a prede�nedspart.The most important element of the structure is the behav element, which is the top-level call to the spart. This function will be called once, and it will return when the spartdies (having generated its AVOs). The function init does internal state initialization. ThecreateForm function creates the control panel holding the parameter widgets that the spartmay require. The function setForm sets the initial state and values of the widgets containedin the control panel and the parameters are obtained by the getParameters function.It is helpful to look at the execution model for a prede�ned spart at this stage. Thesparts are delivered in doses determined by the spray mode settings (see section 4.5). Thesesettings determine the number of sparts and their initial positions and directions. Thesparts to be delivered are added to the can's program's spart pool. The spart executiveprocesses this pool as described in the pseudocode in �gure 5.7.There are several things of note in this pseudocode. The widget parameters are obtainedonce for all the sparts in the dose of delivery. This is more e�cient than having the top-level functions obtain their parameters at each call when there are many sparts in a singledelivery.The \while" loop is necessary because the can's program list may grow due to spawning.If the prede�ned spart is to spawn sparts that are of the same type, these are merely addedto the spart pool of the current program. Otherwise, a program is added to the can togetherwith its spart pool.The initial position and direction of the spart is used to intersect it with the boundingboxes of the streams it depends on. These entry and exit point pairs need to be processed by



60void sendPredefSparts(void) {/* get the widget parameters */for (each program in the can's program list)call getParameters function;/* handle the programs */while (not done) {get a program from the can that has a non-empty spart pool;if (no such program exists)we are done;else {for (each spart in the spart pool) {if (AVO persistence mode is number of sparts type)delete the AVOs in the working buffer;if (spart delivery mode is grid type) {call initialization function;call behav function;}else {get the initial position of the spart in all its streamsif (spart alive) {call initialization function;call behav function;}}remove the spart from the spart pool;}}}} Figure 5.7: Pseudocode for the execution of prede�ned sparts.the spart if it depends on more than one stream. If the ray does not intersect the boundingbox of any of the streams the spart is dead and can be removed from the spart pool.The sparts are handled sequentially until their death. This assumes that their behaviordoes not depend on the states of other sparts, i.e. there is no communication between them.5.3.2 Composed SpartsComposed sparts are constructed from independent basic building blocks. The usercomposes a spart by connecting the inputs and outputs of these components. The overallbehavior of the spart is determined by the combination of these components. The compo-nents are executed at each location the spart occupies during its life-time, exchanging data



61in the process. Since they operate locally, their granularity are �ne.These components have been based on ideas from spray rendering. A typical spart has alife-time as depicted in �gure 4.4. Once a spart is born, it may search for target features inthe data set. It may then produce AVOs that can be rendered. These behaviors take placeat the current location of the spart. The spart may then update its position and decidewhether to die or not. Note that the �gure has been simpli�ed. For instance, there maybe sparts that do not have a target function and whose visual behavior function executesunconditionally, or there may be death functions that depend on multiple conditions. Inthe light of this ow diagram, the components have been organized into four categories.1. Target behavior functions are feature detection components. They usually test to seeif a condition is satis�ed at the current location of the spart. A boolean output is setaccordingly.2. Visual behavior functions are the key visualization components. They are responsiblefor the output of the AVOs. Because they should take e�ect conditionally, each has aboolean input. They can then be executed only if a target function is satis�ed. Theyusually make the AVOs they produce available as output so that other componentscan operate on them.3. Position functions update the current position of the spart. These can be absolute ordependent on the data as in vector �elds. They can also be nondeterministic.4. Death functions determine when the spart should die. There is also a birth functionin this category that spawns new sparts.typedef struct _program {ModList *mods[NO_MOD_CATEGORIES]; /* modules in the composition */Map *map; /* address mappings */int noStreams; /* number of streams it needs */Str names; /* their names */StreamList **streams; /* the streams */} Composed; Figure 5.8: Structure of a composed spart.



62The composed spart program structure (�gure 5.8) is built when a composed spart isloaded into the can. The array mods holds pointers to the list of components (or modules) inthe composition each in its own category. The ModList is simply a list of Module structures.The map element is used to do the mapping between the inputs and outputs of the modules.The streams that the composed spart will operate on also appear in this structure.As mentioned in section 5.3.1, it is the spart executive that processes the spart pool andexecutes the program. In the case of a composed spart, the pseudocode is as in �gure 5.9.There are several things that distinguishes this pseudocode from that of prede�nedsparts. Since a composed spart is made up of components, each of these componentsexecute. The target components are executed �rst followed by the visual, position anddeath components. Within each of these categories, the modules execute in the order oftheir data dependencies.While the prede�ned sparts handle the grid traversal mode internally, the componentsmust rely on the spart executive. In this mode, the position update and death functions ofthe composition are ignored. Instead, the spart executive updates the current position ofthe spart based on the walk through of the computational grid. When the grid region ofinterest has been traversed, the spart dies.In grid traversal mode, the user can choose to turn on animations based on the gridtraversal. The scene can be updated at every change of value of the i; j; k indices ofcomputational space. For this to take e�ect, the AVO persistence mode has to be suchthat the AVOs are deleted depending on the number of positions. In spray mode, theanimation again takes place if the AVO persistence is in this mode. In other words, everyso often along a spart's path, the scene is updated and the AVOs generated so far arecleared.The structure of a component is called a Module and is very similar to the prede�nedspart structure (�gure 5.10). The di�erences reect the fact that modules are used incompositions. They therefore have outputs as well as inputs and internal state variables.The module also has a category and instance number.



63void sendMixMatchSparts(void) {/* get the widget parameters */for (each program in the can's program list)for (each module in each category)call getParameters function;/* handle the programs */while (not done) {get a program from the can that has a non-empty spart pool;if (no such program exists)we are done;else {for (each spart in the spart pool) {if (AVO persistence mode is number of sparts type)delete the AVOs in the working buffer;if (grid mode) {set region of interest;for (each module except posupdate and death cats)call init function;while (all the incarnations of the spart are not dead) {for (each module except posupdate and death cats) {call behav function;update stream indexes;if (animate and AVO persistence mode is number of positions) {draw the scene;delete the AVOs in the working buffer;}}}}else {get the initial position of the spart in all its streams;if (spart is alive) {for (each module in each category)call init function;}while (spart is alive) {for (each module in each category)call behav function;if (AVO persistence mode is number of positions) {draw the scene;delete the AVOs in the working buffer;}}}remove the spart from the spart pool;}}}} Figure 5.9: Pseudocode for the execution of composed sparts.



64typedef struct _moduleType {Str name; /* name of component */ModuleCat cat; /* its category */int instance; /* instance number */int noInputs; /* number of inputs */InOut inNames[MAX_MOD_INPUTS]; /* names of inputs */InOut inputs[MAX_MOD_INPUTS]; /* types of inputs */int noOutputs; /* number of outputs */Str outNames[MAX_MOD_INPUTS]; /* names of outputs */InOut outputs[MAX_MOD_OUTPUTS]; /* types of outputs */void **inOuts; /* addresses */int noInterVars; /* number of variables */InOut interVarNames[MAX_MOD_INTERVARS]; /* their names */InOut interVarTypes[MAX_MOD_INTERVARS]; /* their types */void **interVars; /* their addresses */void (* behav)(Module *mod); /* behavior function */void (* init)(Module *mod); /* initialize */void (* createForm)(Module *mod); /* create the forms */void (* setForm)(Module *mod); /* set the forms */void (* getParameters)(Module *mod); /* get the parameters */Widget *paramWdgt; /* parameter widgets */} Module; Figure 5.10: Structure of a component.A spart composition consists of specifying what modules to use and how these modulesdepend on each other. The dependency is speci�ed by tying outputs to inputs. Duringthe execution of the composed sparts the modules need to know where to read the inputsand where to write the outputs. This is achieved by the Map structure that appears as anelement in the Composed structure. Figure 5.11 illustrates abstractly the simple memoryscheme used for inter-component data transfer.Each module allocates as many pointers as it has inputs and outputs in the bu�er pointedto by the inOuts element. These pointers are then assigned values during the parsing of thecomposition. When an output �eld is encountered during parsing, if the connection name isnot already on the map, space is allocated for that output data type. The address elementof the map as well as the particular output element of the inOut bu�er is made to point tothe allocated space. When an input �eld is encountered, the connection name is looked upin the map, and the address �eld is assigned to the relevant �eld in the inOut bu�er. Inthis way, during its execution, the module obtains the input value by merely dereferencingthe relevant inOut bu�er element.



65Module inOutsaddress A data elementMapFigure 5.11: Diagram illustrating how a module looks up the address of an input�eld from the map structure5.4 Component WritingIn Mix&Match, the user has to provide a top-level function called the user function thatis the heart of the component. This function can be written as a normal C function whosearguments will hold the inputs, outputs, state variables and an array of parameters. In thiscase wrapper code is generated automatically by the con�guration manager to provide thearguments to this function. If users would rather do away with this extra level of functioncall and work directly with some of the internals for e�ciency, they can write a top-levelfunction with one argument which is a pointer to either a Module or a Predefined structure.Some components may provide a function that is to be executed once for each spart inthe delivery as an initialization. Usually this would be the case if the component would liketo keep an internal state and wishes to initialize that state variable.Many components will require parameters that can be controlled through control wid-gets. If that is the case, there must be a function that creates the forms when the spart isloaded into a can. Users do not need to concern themselves with the body of this functionas it is generated by the con�guration manager. The control widgets may need a function



66that is user dependent to set some default values for the widgets. Users will need to providea function for this purpose.One �nal function that needs to be speci�ed if the user function will depend on someparameters is a function that will be called at the beginning of a delivery once, for all thesparts. This function will call appropriate widget functions so as to stu� the parametersarray that the top-level user function needs. This way of accessing parameters was chosenover the alternative of the user function accessing the control widgets each time since someof these calls can be expensive and components will likely execute many times during thedelivery. In the chosen way, parameters are obtained once at the beginning and the userfunction accesses them by merely indexing into an array of parameters.The data types that Mix&Match allows as inputs and outputs are as follows:� Byte. This is equivalent to unsigned char.� Short.� Int.� Long.� Float.� Double.� Boolean. This is equivalent to an integer.� Stream. The stream data type.� Vector. A vector of three oats.� String. An array of chars.� Object. The geometry data type.Inputs are passed by value to the user function except those that are structures such asstream,vector,string and object which are passed by reference.



675.4.1 Con�guration ManagerThe component writer uses the Con�guration Manager (CM) to make the speci�cs of acomponent known to the system (see section 4.6). The CM uses this information to generatea component de�nition �le. There may be up to two more �les that are created. If thecomponent writer has requested wrapper code or if the function has a control panel, thena �le contains generated code. One function acts as a wrapper function for the top-leveluser function and supplies the arguments to it (�gure 5.12). This hides some of the internalstructure from the user. A second function is for the creation of the control panel holdingthe parameter widgets (�gure 5.13)./********************************************************//* *//* The top-level function called by spray *//* *//********************************************************/voiduf_IsoSurf(Module *mod){StreamList *Stream;Bool Doit;int Index;float Threshold;GeoObject *Surface;/* get inputs */Stream = (StreamList *)(*(mod->inOuts));Doit = *((Bool *)(*(mod->inOuts+1)));Index = *((int *)(*(mod->inOuts+2)));Threshold = *((float *)(*(mod->inOuts+3)));/* get outputs */Surface = (GeoObject *)(*(mod->inOuts+4));/* call to the user function */IsoSurf(Stream, Doit, Index, Threshold, Surface, mod->paramWdgt->params);}Figure 5.12: Example wrapper code generated by the con�guration manager.The details of the internal structure are thus hidden from the user who merelywrites the function IsoSurf with the arguments based on the inputs, outputs andstate variables.



68/********************************************************//* *//* The create forms function. *//* *//********************************************************/voidcf_IsoSurf(Module *mod){ FL_OBJECT *obj;mod->paramWdgt->form = fl_bgn_form(FL_NO_BOX,300.0,240.0);obj = fl_add_box(FL_UP_BOX,0.0,0.0,300.0,240.0,"");strcpy(mod->paramWdgt->paramNames[0], "Name");mod->paramWdgt->paramObjs[0] = obj =fl_add_box(FL_FRAME_BOX,50.0,170.0,200.0, 40.0,"");strcpy(mod->paramWdgt->paramNames[1], "TranspSl");mod->paramWdgt->paramObjs[1] = obj =fl_add_slider(FL_HOR_SLIDER,20.0,100.0,26 0.0,30.0,"Transparency");fl_set_object_align(obj,FL_ALIGN_TOP);fl_set_call_back(obj,isoSurfSliderVal, (long)mod);strcpy(mod->paramWdgt->paramNames[2], "TranspV");mod->paramWdgt->paramObjs[2] = obj =fl_add_input(FL_NORMAL_INPUT,110.0,80.0,8 0.0,20.0,"");fl_set_object_boxtype(obj,FL_FRAME_BOX);fl_set_object_color(obj,9,9);obj = fl_add_text(FL_NORMAL_TEXT,20.0,80.0,30.0,20.0,"0");obj = fl_add_text(FL_NORMAL_TEXT,250.0,80.0,30.0,20.0,"1");strcpy(mod->paramWdgt->paramNames[3], "ColCh");mod->paramWdgt->paramObjs[3] = obj =fl_add_choice(FL_NORMAL_CHOICE,70.0,20.0, 160.0,30.0,"Color");fl_set_object_boxtype(obj,FL_SHADOW_BOX);fl_set_object_align(obj,FL_ALIGN_TOP);fl_set_call_back(obj,isoSurfColChoiceCB, (long)mod);fl_end_form();}Figure 5.13: Example control panel creation code generated by the con�gurationmanager. Objects have been given names dependent on the component generatingit so that multiple instances can exist.5.4.2 Application Programmer Interface (API)There are a number of APIs for the use of the component writer. These are libraries thatprovide the means for a new component to access the system-speci�c data structures. Someare merely convenience functions to hide some of the structural detail from the user, othersfacilitate AVO creation and data interpolation. These functions are listed in appendix A.Here, the di�erent APIs and their purposes are summarized:



69� Stream API. This API provides the means to access the stream data structure.Perhaps the most often needed operation by a component is the data value at acertain spatial location. There are functions that return the scalar or the vectorvalue at a given location. These use bilinear and trilinear interpolation in the case ofregular and rectilinear 2D and 3D structured grids respectively. Since the the currentimplementation of Mix&Match is focused on meteorological data, transformationstake place on the y, if necessary, to locate the point in its native coordinate system.Other convenience functions provide a means to access members of the stream datastructure.� Geometry API. The Visual behavior components will normally output visualizationobjects that the renderer can render. There are a set of these objects that are availablefor use by the component writer including point sets, line sets, triangular meshes, andpolygon sets. The geometry API consists of functions that de�ne the objects andfunctions that set their attributes such as color and transparency. The componentwriter calls one of the geometry de�nition functions to create a set of geometricprimitives. These get attached to the AVO list of the spray can from which thesparts containing the component have been delivered. Any attribute setting functionscalled apply to the most recent object de�ned. Attributes can be set for the wholeobject or for portions of the object. For instance, the color of a polygon object canbe set such that a single color applies to the whole object. Alternatively, a di�erentcolor can be supplied for each face or for each vertex.� Module API. These are mostly convenience functions that enable the componentwriter to access input and output variables and parameter objects of components(modules).� Prede�ned Spart API. Similarly, these are mostly convenience functions thatenable the component writer to access input and output variables and parameterobjects of prede�ned sparts.� Can API. This API provides functions to obtain or set spray can properties.



70� Miscellaneous API. There are other utility functions that are available such as safememory allocation functions and error message reporting functions.5.5 PerformanceThe particle nature of spray rendering and the �ne granularity of the components makee�ciency a concern. Essentially, the components making up the program must be executedat each location during the life-cycle of a spart. Although each of these components is usuallyquite simple, the overhead of calling these functions repeatedly can cause ine�ciencies.Another source of ine�ciency is that the components producing visualization objectsmust operate locally. Consider the vector visualization technique of streamlines. A prede-�ned spart could collect each point along the path of the spart and request a line-set objectconsisting of those points. An a priori estimate and allocation of storage could save on thenumber of system calls made for memory allocation. A Mix&Match spart that accomplishesthe same task, on the other hand, would consist of a component that outputs a line seg-ment at the current location and a component that updates the current location. Hence,the streamline is produced in piecemeal fashion as many small line-set objects rather thana single line-set object. There are three problems with this:1. The rendering time of the scene su�ers as the number of objects increases because ofthe overhead of traversing the list. The memory requirement for this representationis also higher.2. The internal points making up the streamline are repeated, causing a doubling ofstorage required.3. The visual component works independently and requires a system call to memoryallocation each time it outputs a line segment.A solution for the �rst problem is to gather objects with similar attributes into a singleobject. This is called object compaction, and the scheme is illustrated in �gure 5.14. Thecompaction takes place after each delivery. Only the objects generated during a deliveryare compacted automatically. The user may also request the compaction of the objects in



71the scene from a menu. The time required to do the compaction is more than o�set by thetime saved for rendering the uncompacted scene. Memory savings can also be enormous.
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Figure 5.14: To improve rendering speed, objects with similar attributes aregathered into a single object. The compaction shortens the list of objects to berendered.Table 5.1, shows the results of an experiment on object compaction on some AVOs.The �rst and second columns of the table list the type and number of primitives in a scenewhile the third column shows the time to compact the scene in seconds. The Before andAfter columns list the number of AVOs, the total memory occupied by the list of AVOsin megabytes and the time to draw the scene in seconds before and after compaction hastaken place1. The primitives are points, lines and polygons. The distinction between coloredand monochromatic primitives is that in the former, there is a color associated with eachprimitive, whereas in the latter, a single color applies to all primitives within the object.Table 5.2 summarizes the results of the experiment by showing the ratio of pre-compaction to post-compaction values for memory usage and rendering time for the caseswith the highest number of primitives in table 5.1. It can be seen that the memory and timesavings are considerable. For instance, non-compacted colored points are about 4 times as1 The experiment was carried out on an Onyx Reality Engine running on a single CPU.



72Primitive Time To Before AfterType Num(K) Comp(s) AVOs(K) Mem(M) Draw(s) AVOs Mem(M) Draw(s)Colored points 8.00 0.09 8.00 0.768 0.10 8 0.193 0.0140.00 0.49 40.00 3.840 0.50 40 0.963 0.0380.00 1.00 80.00 7.680 1.00 80 1.926 0.06Mono points 8.00 0.10 8.00 0.768 0.10 8 0.097 0.0140.00 0.45 40.00 3.840 0.50 40 0.483 0.0280.00 0.92 80.00 7.680 1.00 80 0.967 0.03Colored lines 8.00 0.16 8.00 1.006 0.13 24 0.482 0.0240.00 0.78 40.00 5.279 0.63 120 2.408 0.1079.99 1.60 79.99 10.559 1.26 240 4.817 0.19Mono lines 8.00 0.15 8.00 0.960 0.12 24 0.290 0.0140.00 0.70 40.00 4.799 0.61 120 1.450 0.0679.99 1.42 79.99 9.599 1.18 240 2.900 0.13Colored polys 0.89 0.02 0.89 0.227 0.03 6 0.163 0.014.45 0.14 4.45 1.133 0.13 26 0.814 0.058.90 0.26 8.90 2.265 0.27 51 1.628 0.10Mono polys 0.89 0.02 0.89 0.190 0.02 6 0.116 0.014.45 0.13 4.45 0.949 0.11 26 0.577 0.028.90 0.25 8.90 1.898 0.22 51 1.154 0.04Table 5.1: This table shows the results of an experiment on object compaction.The number of AVOs, memory and the time to draw the AVOs are comparedbefore and after object compaction. Object compaction saves memory and resultsin faster rendering times after an initial cost.Primitive Memory Time to drawColored points 3.99 16.7Mono points 7.94 33.3Colored lines 2.19 6.6Mono lines 3.31 9.0Colored polys 1.39 2.7Mono polys 1.64 5.5Table 5.2: This table summarizes the results of the experiment on object com-paction. The ratio of pre-compaction to post-compaction values of memory andrendering time are give. Object compaction saves memory and results in fasterrendering times.big and may require about 17 times as long to render. The memory and rendering timesavings for monochromatic points are even better. The time to compact a list of AVOs isabout the same as the time to render them as uncompacted.



73Data set Spart Primitives AVOs Memory(M) Execution(s)Sphere ColMapPoint 8000 8000 0.768 0.18Dust 8000 1 0.192 0.04Temperature ColMapPoint 143008 143008 13.729 3.43Dust 143008 1 3.432 0.85Sphere IsoSurf 1090 890 0.190 0.17PreIsoSurf 1090 1 0.115 0.06Temperature IsoSurf 9184 8854 1.791 2.84PreIsoSurf 9184 1 1.047 0.65Table 5.3: This table compares prede�ned sparts to composed sparts. ColMap-Point and IsoSurf are composed sparts while Dust and PreIsoSurf are theirprede�ned counterparts. Prede�ned sparts are faster to execute and produce com-pact AVOs requiring less memory.The compaction routines could be altered to also solve the second problem mentionedabove ( the repeating of internal streamline points and corresponding storage expansion).As the objects are gathered, repeated points could be ignored. However, this would requirea search to see whether a new point already exists each time a new object is integrated.This is too costly to justify the saving of memory.Another experiment was conducted to compare composed sparts to prede�ned spartsthat basically accomplished the same task. The composed sparts ColMapPoint and Iso-Surf were compared to the prede�ned sparts Dust and PreIsoSurf respectively. TheColMapPoint spart consists of two components while the IsoSurf spart contained threecomponents (see section 6.2). The sparts were tried on two data sets: the sphere data setwas of dimensions 20 x 20 x 20 while the NORAPS temperature data was 109 x 82 x 16.The times are given in seconds for the generation of the scene by grid traversal and doesnot include compaction and rendering times. The prede�ned sparts are faster in executionand produce already compact scenes that require less memory (table 5.3).



746. Components, Compositions and VisualizationsOne of the design goals for this environment was functionality. For this purpose,many standard visualization techniques have been implemented in Mix&Match. Sometechniques, such as streamlines, are inherently particle based and naturally map to the sprayrendering paradigm. Others, such as the marching cubes iso-surface generation algorithm,are not particle based but can be adapted to also work in the spray rendering framework.This chapter lists the components that have been implemented and presents some samplecompositions and visualizations that use them.6.1 Sample ComponentsIn designing components, it is important to bear in mind that there is a tradeo�between exibility and e�ciency. Usually, the �ner in granularity and the more generalthe component is, the more exibly it can be used in compositions. However, this impliesthat there are more components that make up a construction and hence more functions tobe executed at each location. Another e�ciency concern is to avoid repetition of computeintensive tasks in components. If a component calculates some value at some expensewhich might be useful for another component, it is desirable to output such values so thata component receiving them as input does not repeat the calculation. However, this makesthe receiving component more dependent on others and restricts its exibility.In the following, the components that have been implemented are listed by category.These were implemented by breaking down a visualization technique into relevant compo-nents that �t the spray rendering paradigm. This decomposition allows the components tobe used in other compositions.6.1.1 Target ComponentsTarget components are feature detection components, and output a boolean if a certaincondition is satis�ed. Only a few target components have been implemented so far. These



75are as follows:� IsoThresh. This component takes a stream as input and returns true if the currentspart position is in a cell that would produce an iso-value surface as in the marchingcubes algorithm. The component also outputs the index to the case table as well asthe iso-value being sought. Parameters that can be set are the iso-value and an optionthat performs automatic iso-value selection.� Counter. This component is useful as a counter. The number of times the componenthas been executed is used in a relation to determine whether the target condition hasbeen satis�ed. The count and the relational operators are parameters that can bespeci�ed.� GetMagnitude. This component is an example of a derived stream. The input is avector stream and the output is a scalar stream that is the magnitude of the input.� Or. Some logical operators have been implemented as target components so thatthe latter can be logically combined. This component outputs the logical OR of twoboolean inputs.� And. Outputs the logical AND of two boolean inputs.� Not. Outputs the logical inverse of a boolean input.6.1.2 Visual ComponentsVisual components are at the heart of the visualization technique. They usually accepta boolean as input and output some visualization objects if the condition is satis�ed. Thefollowing visual components have been implemented.� OrthoSlice. This component outputs a slice that is orthogonal to an axis. The slice isoutput as a grid object and is invisible. The inputs are a stream and a boolean andthe output is a geometry type. Parameters specify the resolution of the grid, the axisfor the slice and whether the slice should be along the axis of the current projectionor the original projection.



76� RubberSheet. This component takes a surface, and performs a displacement alongthe normal direction to the surface. It takes as input a stream, a boolean and ageometry and outputs the geometry. Parameters specify the range and scale of thedisplacement.� ColMapPoint. This component places color mapped points at the current spartlocation.� ColMapSeg. This component places a line segment from the current location to theprevious location. The �rst time it is called, no geometry is de�ned and the currentlocation is saved to be used later.� ColMapSph. This component outputs a colored sphere at the current location. Pa-rameters specify whether the color is a chosen color or whether it is data dependent.The size and transparencies of the spheres can also be speci�ed.� IsoSurf. This component works in conjunction with IsoThresh to generate portionsof an iso-surface in the cell the current location is in. The transparency and the colorcan be speci�ed as parameters. Normals can be inverted if desired.� AddColSurf. This component takes geometry as input and maps a constant or streamdependent color to it.� ValText. This component outputs the value at the current location as text. The texthas 3D coordinates.� VecGlyph. This component outputs 3D vector glyphs in the form of a cylinder cappedwith a cone. The color of the glyphs can be constant or dependent on the vectormagnitude or some other scalar stream. The size can also be scaled depending on thevector magnitude. Another parameter acts as a �lter so that only every nth call tothe function outputs a glyph.� SpartView. This component updates the camera position and direction. The currentlocation of the spart becomes the camera position and the vector from the previouslocation to the current location speci�es the camera direction. Field of view can bespeci�ed as a parameter. It is used for y-by e�ects.



77� Contour. This component takes as input a surface and outputs contour lines on thesurface. Parameters specify the spacing between the contour lines, the line thicknessand whether the lines should be a single color or data dependent.� Annotate. This component can be used to drop annotations at locations. Theannotation consists of a 3D arrow and text and various parameters specify the lengthand color of the text and the arrow. In a certain mode of operation, the text scrollsallowing cans to talk to each other in a collaborative setting.� BumpMap. This component implements various techniques for vector visualizationusing bump-mapping[PA95].6.1.3 Position ComponentsThese components update the current location of the spart. Some are deterministic whileothers use a pseudo random number generator to achieve some nondeterministic behavior.Still others are data dependent.� BallPos. This component places the current spart at the position of the ball that istethered to the can. The ball is used for can manipulation and this component canbe used to probe what is at the end of it. The component does not take any inputsor outputs.� StepAlongRay. This component steps a certain distance along the initial direction ofthe spart. The distance can be factored and randomized by parameters.� RandBiDir. This component places the spart randomly in either direction along theline segment that forms the intersection of the initial direction of the spart with thebounding box of the input stream. The spart will never leave the bounding box.Therefore, an appropriate death function needs to be included in the composition tomake sure that the spart dies.� RandWalk. This component, while traveling generally in the initial direction of thespart, jitters the position randomly.



78� VecInteg. This is a data dependent position update function. Given a location ina vector stream, it will do an integration step to determine the new location. Theintegration step, type and direction can be speci�ed through parameters.6.1.4 Death ComponentsThese components determine whether a spart should die or whether new ones shouldbe spawned. There is a default death function that kills the spart once it gets out of thebounding box of the volume.� Conditional. This component takes a boolean as input and kills the spart if it happensto be true.� Iteration. This component has a counter that keeps track of the number of times thecomponent has been executed. Once the target count is reached, the spart is killed.� Spawn. This component spawns new sparts. The component takes as input a booleancondition that needs to be satis�ed before the spawning can take place. Another inputspeci�es the name of the spart that will be spawned. Thus, a spart can clone itself ormutate into other sparts. Parameters specify how many new sparts will be spawnedand the range of directions they have initially.6.2 Sample CompositionsIn this section, some example compositions are given that use the components describedin the previous section. These composed sparts are simple constructions. Yet, since itis possible to use multiple cans containing sparts multiple times, complex visualizationscan be obtained. The sample compositions are illustrative. They can be easily changedand combined by including other components. The compositions are listed by name, thecomposition as it might appear in the textual editor and a short description of the spart.The images show their use in isolation.
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Figure 6.1: ColMapPointColMapPoint [ S1 ] [ =1 ]RandWalk [ S1 ]This spart simply maps the data value of the input stream to a colored point.The position update component allows some jittering to avoid regularity. Theboolean input to the visual function is constant indicating that it does not dependon a target function.
Figure 6.2: ColMapSegColMapSeg [ S1 ] [ =1 ]StepAlongRay [ S1 ]This spart outputs colored straight lines. In e�ect, lines dissect the data andmap the values to color. Changing the position function to RandWalk would createcrooked lines.
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Figure 6.3: StreamLineColMapSeg [ S1 ] [ =1 ]VecInteg [ S1 ]Replacing the position function with the data dependent VecInteg results in astreamline spart, a classic vector visualization technique.
Figure 6.4: StrForwAndBackCounter ( Count )ColMapSeg [ S1 ] [ =1 ]VecInteg [ S1 ]Spawn [ =StreamLine ] [ Count ]The StreamLine spart only does forward integration. This spart uses the Spawncomponent to also do backward integration. The Counter component is used tolaunch the StreamLine spart while the ColMapSeg and VecInteg together form an-other streamline spart. Setting the parameter on the VecInteg to do the backwardintegration achieves the goal.
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Figure 6.5: StrLineAndSphCounter ( Doit )ColMapSeg [ S1 ] [ =1 ]ColMapSph [ S2 ] [ Doit ]VecInteg [ S1 ]By including an extra visual component and a target component, one can obtainstreamlines with spheres placed along them. The spheres can act on a separatestream so that two streams can be correlated.
Figure 6.6: VecGlyphVecGlyph [ S1 ] [ S2 ] [ =1 ]StepAlongRay [ S1 ]This spart outputs vector glyphs based on a vector �eld. The glyphs are cylinderscapped with cones and their lengths depend on the vector magnitude. They canbe colored based on another stream.
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Figure 6.7: ColMapSliceOrthoSlice [ S1 ] [ =1 ] ( Slice )AddColSurf [ S1 ] [ =1 ] [ Slice ] ( OBJECT )Conditional [ =1 ]This spart creates a color mapped slice orthogonal to one of the axes. The slice isplaced at the current spart location and the spart dies in the �rst iteration sincethe Conditional death function is set to true.
Figure 6.8: ContourSliceOrthoSlice [ S1 ] [ =1 ] ( Slice )Contour [ S1 ] [ =1 ] [ Slice ] ( OBJECT )Conditional [ =1 ]Instead of pseudo colored slices, changing the visual component results in con-tour lines instead.
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Figure 6.9: ColMapRubberShOrthoSlice [ S1 ] [ =1 ] ( Slice1 )AddColSurf [ S1 ] [ =1 ] [ Slice1 ] ( Slice2 )RubberSheet [ S2 ] [ =1 ] [ Slice2 ] ( OBJECT )Conditional [ =1 ]Adding an extra visual to ColMapSlice allows rubber sheeting. In other words,the grid nodes are displaced by an amount scaled by the value of a second stream.Correlation of the two streams is thus possible.
Figure 6.10: IsoSurfIsoThresh [ S1 ] ( Found ) ( Index ) ( IsoVal )IsoSurf [ S1 ] [ Found ] [ Index ] [ IsoVal ] ( OBJECT )StepAlongRay [ S1 ]The iso-surface spart has a target function that detects the existence of a sur-face. The visual component generates a polygonal surface.
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Figure 6.11: ColMapSurfIsoThresh [ S1 ] ( Found ) ( Index ) ( IsoVal )IsoSurf [ S1 ] [ Found ] [ Index ] [ IsoVal ] ( Surface )AddColSurf [ S2 ] [ Found ] [ Surface ] ( OBJECT )StepAlongRay [ S1 ]Adding the AddColSurf component that depends on a second stream adds colorto the surface based on the second stream.
Figure 6.12: AnnotateAnnotate [ S1 ] [ =1 ]Conditional [ =1 ]The Annotate spart has been de�ned so that it outputs the text at the can'sball position and immediately dies.
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Figure 6.13: SpartViewSpartView [ S1 ] [ =1 ]StepAlongRay [ S1 ]This spart achieves a y-through e�ect. The SpartView component updates thecamera position based on the current and previous locations of the spart. If theposition update component is replaced with the VecInteg component, we couldachieve the e�ect of ying along a streamline.
Figure 6.14: ColMapPointSpawnCounter ( Count )ColMapPoint [ S1 ] [ =1 ]StepAlongRay [ S1 ]Conditional [ Count ]Spawn [ =ColMapPoint ] [ Count ]This spart gives another example of the use of the Spawn component. The parentspart is killed and other ColMapPoint sparts are launched instead.
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Figure 6.15: SliceBumpMapOrthoSlice [ S1 ] [ =1 ] ( Slice1 )AddColSurf [ S1 ] [ =1 ] ( Slice1 ) ( Slice2 )BumpMap [ S1 ] [ =1 ] ( Slice2 ) ( OBJECT )Conditional [ =1 ]This spart applies various bump-mapping techniques for vector �eld visualiza-tion. In the example above, the magnitude of the vector �eld has been used as theperturbation function while the direction is mapped to an HSV color wheel.6.3 Sample VisualizationsIn the previous section, some sample compositions were presented and images of theirapplication in isolation were shown. The user can create a spray can containing these spartsand use it as a tool to apply the visualization technique multiple times. Multiple instancesof a tool can also exist and may operate on di�erent data. More complex visualizations canthus be obtained by using multiple spray cans multiple times. The images in this sectionprovide a few examples of such visualizations.
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Figure 6.16: In this visualization, the ContourSlice spart has been applied to aslice of a 3D temperature �eld of the NORAPS climate model data. On the sameslice, the VecGlyph spart has been applied to the wind �eld with subsamplingsalong the x and y axes. The colors of the vector glyphs have been mapped to therelative humidity �eld. Hence, three di�erent �elds are being correlated.
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Figure 6.17: Here, the ColMapSlice spart has been used to get a vertical pseu-docolor slice of the temperature �eld. The ColMapSurf spart has been applied toget the distribution of relative humidity over the iso-valued temperature surface.Some streamlines applied to the wind �eld by StreamLine spart are also shown.The text is the result of multiple applications of the Annotate spart.
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Figure 6.18: This is an example of a single application of a more complicatedspart. An isosurface is generated on the geopotential �eld and the relative humidityis colormapped over it. Vector glyphs of the wind �eld are placed at positions wherethe temperature �eld would have produced an iso-valued surface.



907. Conclusions and Future WorkA new, tool-oriented scienti�c visualization environment has been presented. Mix&Matchis a modular and extensible system that borrows from both data-ow-based MVEs and sprayrendering. The spray can and smart particle metaphors of spray rendering are used to model�ne grained components that can be used to compose the overall behavior of a spart. Thevisual programming approach of MVEs is used for the composition of sparts.TheMix&Match environment o�ers three advantages over data ow based MVEs: directinteractivity, greater exibility and easier extensibility. Direct interaction helps the scientistin exploring the data set that is being analyzed. Flexibility permits more tools to beconstructed from a given number of components and bene�ts the tool constructor whowishes to experiment with new tools. Easier extensibility encourages component writers toadd to the system and try out new visualization techniques.Direct interaction is achieved by using the spray can metaphor of spray rendering. Theuse of the spray can as a tool for all techniques allows high level mode settings to be usedthat result in a variety of interactions without changing compositions. Scientists can usethe same tool in di�erent ways and gain insight into their data sets.Although the particle nature of the paradigm and the repeated execution of smallcomponents can lead to memory and processor time ine�ciencies, interactivity is stillachieved by using the spray can as a probe. An object compaction scheme aids in thisprocess by saving memory and rendering time.The �ne granularity of the components allows greater exibility in a�ecting what hap-pens at the local level. This, in turn, allows more varied compositions from a set of com-ponents and results in a richer collection of techniques. Many visualization techniques onlydi�er in detail and share many common features. Instead of a module encapsulating thewhole visualization technique, the technique can be broken down into simpler componentswhich can be used in other constructions. In the design and implementation ofMix&Match,many of the popular visualization techniques were decomposed to work in this fashion. A



91simple, particle based template was used for this purpose which provides a unifying repre-sentation for the visualization techniques.The �ne granularity of components and the simple template also result in easier extensi-bility. The conceptual simplicity of small components that perform local and speci�c taskspermits new ones to be readily added to the system encouraging the exploration of newvisualization techniques. This task is further facilitated by a con�guration manager thatpresents a graphical interface for component integration.Mix&Match was also successfully used to experiment with new visualization techniques.Of note, is the use of bump mapping to visualize vector data[PA95].There is much room for the extension of Mix&Match features. Scripting would allowbatch processing at the expense of interactivity. This would help users who want to just seean end product at the press of a button. The performance could be improved with a newdesign of the geometry API and a memory management mechanism. The support of time-varying and scattered data sets would be very valuable. Allowing sparts to communicatemay allow novel visualization techniques to be realized. The addition of virtual realitycapabilities would make the 3D spray can manipulations more intuitive. What is moreintriguing and worth exploring is whether the concepts of sparts composed of componentsof �ne granularity are more amenable to parallelization and simulation steering.



92Appendix A. Application Programmer Interface(API)A.1 Stream APIA.1.1 Macros#define spStrGetTitle(s) ((s)->title)#define spStrGetCoordSys(s) ((s)->coordSys)#define spStrNeedToConvert(s) ((s)->needToConcert)#define spStrGetType(s) ((s)->strType)#define spStrInUse(s) ((s)->inUse)#define spStrSpartIsDead(s) ((s)->spartIsDead)#define spStrStructGetNumDims(s) ((s)->t.lat.nDim)#define spStrStructGetDims(s) ((s)->t.lat.dims)#define spStrStructGetXYSize(s) ((s)->t.lat.xysize)#define spStrStructGetCurIndexes(s) ((s)->t.lat.curIndexes)#define spStrStructGetLowIndexes(s) ((s)->t.lat.lows)#define spStrStructGetHighIndexes(s) ((s)->t.lat.highs)#define spStrStructGetSubs(s) ((s)->t.lat.subs)#define spStrStructGetData(s) ((s)->t.lat.data)#define spStrStructGetCoords(s) ((s)->t.lat.coords)#define spStrStructGetNumData(s) ((s)->t.lat.data.nDataVar)#define spStrStructGetMin(s) ((s)->t.lat.data.min)#define spStrStructGetMax(s) ((s)->t.lat.data.max)#define spStrStructGetRaw(s) ((s)->t.lat.data.raw)#define spStrStructGetScaled(s) ((s)->t.lat.data.scaled)#define spStrStructGetCoordType(s) ((s)->t.lat.coords.type)#define spStrStructGetCurMinCellSides(s) ((s)->t.lat.coords.minCSides)#define spStrStructGetCurMinCellSide(s) ((s)->t.lat.coords.minCSide)#define spStrStructGetOrMinCellSides(s) ((s)->t.lat.coords.orMinCSides)#define spStrStructGetOrMinCellSide(s) ((s)->t.lat.coords.orMinCSide)#define spStrStructGetEpsilon(s) ((s)->t.lat.coords.epsilon)#define spStrStructGetCurSides(s) ((s)->t.lat.coords.sides)#define spStrStructGetCurBBLow(s) ((s)->t.lat.coords.BBl)#define spStrStructGetCurBBHigh(s) ((s)->t.lat.coords.BBh)#define spStrStructGetOrSides(s) ((s)->t.lat.coords.orSides)#define spStrStructGetOrBBLow(s) ((s)->t.lat.coords.orBBl)#define spStrStructGetOrBBHigh(s) ((s)->t.lat.coords.orBBh)#define spStrGetScalarValAtNode(d, i) (d)[(i)]#define spStrGetScaledVectorValAtNode(d, i) (d)[(i)]#define INDEX(s, x, y, z) \((x) + (y)*s->t.lat.dims[X] + (z)*s->t.lat.xysize)#define INDEX_2D(s, x, y) ((x) + (y)*s->t.lat.dims[X])#define spStrKillSpart(s) \



93((s)->spartIsDead = CurSpart.isDead = TRUE)A.1.2 FunctionsBool spStrGetPosInOriginal(StreamList *stream, Vertex pos, Vertex npos);Bool spStrGetPosInCurrent(StreamList *stream, Vertex pos, Vertex npos);Bool spStrGetScalarValAtCurPos(StreamList *stream, float *data, Vertex pos,float *value);Bool spStrGetVectorValAtCurPos(StreamList *stream, float *data,Vertex pos, Vertex npos, Vertex value);void spStrGetVectorValAtNode(StreamList *stream, long index, Vertex value);Bool spStrPosInOriginal(StreamList *stream, Vertex pt);Bool spStrPosInCurrent(StreamList *stream, Vertex pt);void spStrSetBallRegion(StreamList *stream, CanPtr c, Vertex ballPos,int size);void spStrSetRegionOfInterest(StreamList *stream, CanPtr c);void spStrSetWholeOfVolume(StreamList *stream, CanPtr c);Bool spStrGetScalarValAtOrPos(StreamList *stream, float *data, Vertex pos,float *value);Bool spStrGetVectorValAtOrPos(StreamList *stream, float *data, Vertex pos,Vertex vec);Bool spStrGetIndexFromOrPos(StreamList *stream, Vertex loc, int indices[]);Bool spStrGetIndexFromCurPos(StreamList *stream, Vertex loc,int indices[]);Bool spStrGetOrPosFromIndex(StreamList *stream, int indices[], Vertex loc);Bool spStrGetCurPosFromIndex(StreamList *stream, int indices[],Vertex loc);Bool spStrGetPOModelCell(StreamList *stream, Vertex pos, int *i,int *j, int *k);A.2 Geometry APIA.2.1 Functionsvoid spGeoBeginDefine(ObjList *list)}void spGeoEndDefine(ObjList *list)void spGeoGeoPointsDefine(int n, Vertex *point)void spGeoGeoLinesDefine(int np, Vertex *point, int ni, long *index,short lineWidth)void spGeoGeoPolysDefine(int np, Vertex *point, int ni, long *index)void spGeoGeoTrisDefine(int np, Vertex *point, int ni, long *index)void spGeoGeoSpheresDefine(int n, Vertex *point, float *radius)void spGeoGeoCylindersDefine(int n, Vertex *pnt0, Vertex *pnt1,float *radius)void spGeoGeoConesDefine(int n, Vertex *pnt0, Vertex *pnt1, float *radius)



94void spGeoGeoDisksUpDefine(int n, Vertex *point0, Vertex *point1,float *radius)void spGeoGeoDisksDownDefine(int n, Vertex *point0, Vertex *point1,float *radius)void spGeoGeoGridDefine(int nu, int nv, Vertex *point)void spGeoGeoTextDefine(int n, Vertex *point, char *text)void spGeoGeoNormalAdd(int n, Vertex *normal, GeoPer per)void spGeoGeoColorAdd(int n, Color *color, GeoPer per)void spGeoGeoTransparencyAdd(int n, float *transp, GeoPer per)A.3 Module APIA.3.1 Macros#define spModSetInterVar(i, t, v) \(*((t *)(*(mod->interVars+(i)))) = (v))#define spModGetRefInput(i, t) ((t *)(*(mod->inOuts+(i))))#define spModGetInput(i, t) (*((t *)(*(mod->inOuts+(i)))))#define spModGetParamObj(i) mod->paramWdgt->paramObjs[(i)]#define spModGetParamObjFromArg(a, i) \((Module *)a)->paramWdgt->paramObjs[(i)]#define spModGetIntVal(i) mod->paramWdgt->intVals[(i)]#define spModSetIntVal(i, v) (mod->paramWdgt->intVals[(i)] = (v))#define spModGetIntValFromArg(a, i) \((Module *)a)->paramWdgt->intVals[(i)]#define spModSetIntValFromArg(a, i, v) \(((Module *)a)->paramWdgt->intVals[(i)] = (v))A.3.2 Functionsint spModGetInputIndex(Module *mod, char *name);int spModGetInputIndexArg(long a, char *name);int spModGetOutputIndex(Module *mod, char *name);int spModGetOutputIndexArg(long a, char *name);int spModGetInterVarsIndex(Module *mod, char *name);int spModGetInterVarsIndexArg(long a, char *name);int spModGetParamIndex(Module *mod, char *name);int spModGetParamIndexArg(long a, char *name);A.4 Prede�ned APIA.4.1 Macros#define spPreInterVarExists(i) (*(predef->interVars+(i)) != NULL)#define spPreCreateInterVar(i, t) (*(predef->interVars+(i)) = NEW(t))



95#define spPreGetInterVars(i) (*(predef->interVars+(i)))#define spPreSetInterVar(i, t, v) \(*((t *)(*(predef->interVars+(i)))) = (v))#define spPreGetParam(i) predef->paramWdgt->params[(i)]#define spPreSetParam(i, v) \(predef->paramWdgt->params[(i)] = (v))#define spPreGetInput(i) predef->streams[i]#define spPreGetParamObj(i) predef->paramWdgt->paramObjs[i]#define spPreGetParamObjFromArg(a, i) \((Predefined *)a)->paramWdgt->paramObjs[i]#define spPreGetIntVal(i) predef->paramWdgt->intVals[i]#define spPreSetIntVal(i, v) \(predef->paramWdgt->intVals[(i)] = (v))#define spPreGetIntValFromArg(a, i) \((Predefined *)a)->paramWdgt->intVals[i]#define spPreSetIntValFromArg(a, i, v) \(((Predefined *)a)->paramWdgt->intVals[i] = (v))A.4.2 Functionsint spPreGetInputIndex(Predefined *predef, char *name);int spPreGetInputIndexArg(long a, char *name);int spPreGetInterVarsndex(Predefined *predef, char *name);int spPreGetInterVarsndexArg(long a, char *name);int spPreGetParamIndex(Predefined *predef, char *name);int spPreGetParamIndexArg(long a, char *name);A.5 Can APIA.5.1 Macros#define spCanGetPosition() (CurrentCan->pos)#define spCanGetDirection() (CurrentCan->dir)#define spCanGetDistToBall() (CurrentCan->CanCenterPointDist)#define spCanGetBallPos(b) FIND_POS((b), CurrentCan->pos, \CurrentCan->dir, \CurrentCan->CanCenterPointDist)#define spCanGetPrograms() (CurrentCan->programs)#define spCanGetColMap() (CurrentCan->colMap)#define spCanGetModeSpartDel() (CurrentCan->sprayMode.spartDel)#define spCanGetModeDensity() (CurrentCan->sprayMode.spray.density)#define spCanGetModeNozSize() (CurrentCan->sprayMode.spray.nozzleSize)#define spCanGetModeNozShape() (CurrentCan->sprayMode.spray.nozzleShape)#define spCanGetModeRegType() (CurrentCan->sprayMode.grid.regionType)#define spCanGetModeMins() (CurrentCan->sprayMode.grid.mins)



96#define spCanGetModeMaxs() (CurrentCan->sprayMode.grid.maxs)#define spCanGetModeSubs() (CurrentCan->sprayMode.grid.subs)#define spCanGetModeAnims() (CurrentCan->sprayMode.grid.anims)#define spCanGetModeRegSize() (CurrentCan->sprayMode.grid.regionsize)#define spCanGetAVOPers() (CurrentCan->sprayMode.AVOPersist)A.6 Miscellaneous APIA.6.1 Macros#define MAXM(x, y) (((x) > (y)) ? (x) : (y))#define MINM(x, y) (((x) < (y)) ? (x) : (y))#define IS_ODD( a ) ((a) & 0x1)#define IS_EVEN( a ) (!((a) & 0x1))#define SQR(a) ((a)*(a))#define NEW(t) (t *)memAlloc(1, sizeof(t))#define VEC_CP(a, b) \(a)[X] = (b)[X]; (a)[Y] = (b)[Y]; (a)[Z] = (b)[Z]#define VEC_CP_2D(a, b) (a)[X] = (b)[X]; (a)[Y] = (b)[Y]#define VEC_MUL_2D(a, b) (b)[X]*=(a); (b)[Y]*=(a)#define VEC_LEN_2D(a) (sqrtf(SQR((a)[X]) + SQR((a)[Y])))#define VEC_SET(v, x, y, z) (v)[X]=x; (v)[Y]=y; (v)[Z]=z#define VEC_SUB(a, b, c) (c)[X] = (a)[X]-(b)[X];\(c)[Y] = (a)[Y]-(b)[Y];\(c)[Z] = (a)[Z]-(b)[Z]#define VEC_SUM(a, b, c) (c)[X] = (a)[X]+(b)[X];\(c)[Y] = (a)[Y]+(b)[Y];\(c)[Z] = (a)[Z]+(b)[Z]#define VEC_CROSS(a, b, c) (c)[X] = (a)[Y]*(b)[Z] - (a)[Z]*(b)[Y];\(c)[Y] = (a)[Z]*(b)[X] - (a)[X]*(b)[Z];\(c)[Z] = (a)[X]*(b)[Y] - (a)[Y]*(b)[X]#define VEC_DOT(a, b) \((a)[X]*(b)[X] + (a)[Y]*(b)[Y] + (a)[Z]*(b)[Z])#define VEC_LEN(a) \(sqrtf(SQR((a)[X]) + SQR((a)[Y]) + SQR((a)[Z])))#define VEC_MUL(a, b) (b)[X]*=(a); (b)[Y]*=(a); (b)[Z]*=(a)#define VEC_DIV(a, b) (b)[X]/=(a); (b)[Y]/=(a); (b)[Z]/=(a)#define VEC_SAME(a, b) (((a)[X] == (b)[X]) && \((a)[Y] == (b)[Y]) && \((a)[Z] == (b)[Z]))#define GET_DIST(a, b) (sqrtf(SQR((b)[X]-(a)[X]) + \SQR((b)[Y]-(a)[Y]) + \SQR((b)[Z]-(a)[Z])))#define FIND_POS(pos, b, u, t) (pos)[X] = (b)[X] + ((t)*((u)[X]));\(pos)[Y] = (b)[Y] + ((t)*((u)[Y]));\(pos)[Z] = (b)[Z] + ((t)*((u)[Z]))



97A.6.2 Functionschar *memAlloc(size_t nelem, size_t elsize);char *memRealloc(char *place, size_t size);void showMessage(char *str1, char *str2, char *str3);A.7 Other MaterialA user guide for the novice and intermediate users ofMix&Match exists. A separate guidefor the component writer is also available. An mpeg movie showing example interactions isavailable under /projects/onr/mixmatch/video.
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