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MizéMatch : A Construction Kit for Scientific Visualization

Naim Alper

ABSTRACT

A new, modular and extensible scientific visualization environment is presented. It
provides the ability for a user to define a visualization technique from basic components
through visual programming. Unlike data-flow based modular visualization environments,
where the network defines a program and the end result is the visualization, the compo-
sition in MizéIMatch defines the overall behavior of a tool. Different tools can be used to
visualize the same data in different ways. High level mode-settings allow different modes of
interaction without necessarily requiring changes in composition. This greatly enhances the
level of interactivity and emphasizes the exploratory nature of scientific visualization. An-
other distinguishing feature of the environment is the finer granularity of the components.
Finer granularity allows greater flexibility in composition and results in a rich collection of
techniques. The components are simple and small, permitting new ones to be readily added
to the system, thereby encouraging the exploration of new visualization techniques. This is
facilitated by an easy to use configuration manager. The tool behaviors are based on the
same simple, particle based, template which acts as a unifying representation for visualiza-
tion techniques. In addition to the development of the environment, traditional techniques

are decomposed to fit this template and new visualization techniques are developed.

Keywords: scientific visualization, spray rendering, toolkit, visual programming
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1. Introduction

Scientists are producing ever increasing amounts of data through measurement or sim-
ulation. Since it is difficult to extract information from raw numeric data, visualization
has become the normal procedure for the analysis and interpretation of data. Visualization
takes advantage of the wide bandwidth of the human visual system: a simple graph or
a color coded graphical image provides more immediate information than can be gained
by perusing numbers. The field of computer science that has grown with the advent of
computer graphics techniques and the wider availability of color workstations has come to
be known as Scientific Visualization. 1t has grown in importance in recent years, particu-
larly after the impetus provided by the NSFE panel report which identified areas in need of
research and funding[McC87].

Up until the late 1980’s, there existed no general software package to meet the di-
verse needs of scientists from many disciplines. Scientists used many different programs
to achieve specific visualization goals. Some domain-specific modular and extensible soft-
ware packages evolved that included all the usual techniques encountered in a particular
discipline[BMPT90]. However, in the last few years a data flow paradigm has become very
popular for general purpose, modular and extensible visualization software. Products such
as AVS[Ups89], Iris Explorer[Slo92], apE[Dye90], and IBM Data Explorer[LACT92], which
have also come to be known as Modular Visualization Environments (MVE), all use this
approach.

The data flow paradigm offers a good mapping to the problem domain: acquired data
is perhaps filtered, then mapped to some visual parameters and the result rendered. These
packages provide many modules that perform such filtering, mapping and rendering tasks
that can be combined to achieve a desired visualization goal. However, it is their modular
and extensible design and relative ease of use that has made them attractive. Flexibility
and extensibility are particularly important to meet the diverse needs of scientists since no

monolithic package can be expected to satisfy every need. On the other hand, flexibility



and extensibility in these environments are limited by the coarse granularity of the modules,
and very little direct user interaction is supported.

Recently, Pang and Smith have proposed a new paradigm for scientific visualiza-
tion[PS93a, PS93b]. The name Spray Rendering reflects the metaphor used to describe
the way the scientist interacts with the data. The user has “spray cans” available which
can be filled with different “paints”. As the user directs and delivers a dose of “spray”, the
paint interacts with the data and makes them visible. By choosing different paints from a
palette and orienting the spray can to specific areas, the scientist is able to explore the data
set visually. The paint particles in this paradigm are “smart” in their behaviors. That is,
they can search for target features in the data set, manifest themselves visually in various
ways, and interact with each other as well as the data.

The motivation for this dissertation is to develop a software system and framework
for user interaction that overcomes the three shortcomings of the MVEs. A scientific
visualization environment called Mixé&Match is developed that maintains the modularity
and graphical interface of MVEs but enhances their interactivity, flexibility and extensibility
by allowing visualization tools to be composed from basic building blocks through visual
programming. The behaviors of these tools are modeled on spray rendering.

Interactivity, flexibility and extensibility are important and desirable since they help
scientists in their goal of gaining insight into their data sets. Visualization is an exploratory
process and direct interactivity emphasizes and facilitates that aspect. There is a direct
cause and effect between the actions of the scientist and the visualization. Greater flexibility
in connecting components permits scientists to experiment with new compositions, and
easier extensibility encourages experimentation with new techniques.

Direct interaction is achieved by using the tool (the spray can) to interact with the
data, and benefits novice users who merely use existing tools. Users can manipulate the
spray can within the data set and see the effects immediately. High level mode-settings
allow the same composition to result in different interactions. In one mode, for example,

the spray can becomes a probe that can be used to interactively explore the data set. In



another mode, the spray can plays a passive role and is not instrumental in the visualization.
Hence, although it is modeled on spray rendering, the idea of components of fine granularity
operating locally is independent of spray rendering.

Other modes allow simple animations. These modes, in effect, behave as control compo-
nents but do not appear in the composition where they would increase the complexity and
would be harder to use. Complex visualizations can be obtained by using multiple tools
multiple times. Yet, the networks defining each technique are simple and separate from
each other. This is in contrast to the data-flow environments where, as the complexity of
the visualization increases, the complexity of the network that generates it increases.

The components are fine-grained in that they are simple and act on a local neighborhood
of the data set. The fine granularity permits greater flexibility in composition, thereby
producing a richer set of visualization techniques. Instead of a visualization technique being
encapsulated in a single module, as happens in coarse-grained MVEs, the technique can be
decomposed into smaller components which can be used in other compositions. Greater
flexibility benefits users who experiment with tool construction.

The simplicity of the components allows new components to be readily added to the
system so that extensibility is enhanced as well. Many visualization techniques differ in
minor details and the addition of a simple component enriches the repertoire of the system.
Users are thus encouraged to experiment with new visualization techniques. Component
writers are the immediate beneficiaries of easier extensibility.

As well as providing the software environment, many of the popular visualization tech-
niques have been decomposed into components and adapted to work in MizéIMatch as part
of this thesis research. The techniques are made to fit the same particle based template and
thus the environment provides a unifying representation for visualization techniques. For
an end user, all the tools essentially behave in the same way, which makes them easier to
understand. The template facilitates tool composition which consists of the filling in of the
template. It also makes it more likely that a component needed for a particular technique

will already exist.



Finally, MizéMatch has been used successfully to investigate and experiment with new
visualization techniques. As an example, the computer graphics technique of bump mapping
was used in various ways to visualize vector fields[PA95].

In summary, the contributions of this dissertation are:

e the design and implementation of a new scientific visualization environment, based
on fine-grained components, that is modular and extensible which offers direct inter-
activity, greater flexibility and easier extensibility

e the provision of a unifying representation for many visualization techniques

e the development of new visualization techniques using the environment

The rest of the dissertation is organized as follows. In chapter 2, the different categories
and examples of scientific visualization environments are discussed. An overview of scientific
visualization techniques is given in chapter 3. In chapter 4, the design and architecture of
MizéMatch is presented, and implementation details are covered in chapter 5. Chapter 6
lists the components that have been implemented and provides example compositions and

visualizations. Finally, conclusions and future work are presented in chapter 7.



2. Scientific Visualization: Environments

MizéMatch is a scientific visualization environment and needs to be discussed in the
context of other environments. In this chapter, a brief survey of current examples of scientific
visualization environments is presented with more emphasis on the ones that are related to
Miz&Match. Spray Rendering, as originally envisaged by Pang and Smith[PS93a, PS93b]
is also presented, since it was used to model the components. How Mixé&Match relates to
other visualization environments and spray rendering is then discussed at the end of this

chapter.

2.1 Some Scientific Visualization Environments

Many commercial and public domain packages have been developed since they were first
proposed by the NSF Panel on Graphics, Image Processing and Workstations[McC87]. The
panel’s report pointed to the need for general purpose scientific visualization environments
as opposed to domain specific, in-house developed, and monolithic systems.

There are basically three categories of visualization software:

1. Graphics Libraries. At the lowest level, one can regard graphics libraries, such as
Iris GL, Dore, and PHIGS, as visualization software since they provide the means for
writing programs to view and analyze data. Although the use of graphics libraries
offers the greatest flexibility, it suffers from the disadvantage that a great amount
of time needs to be invested in writing and supporting code. From a scientist’s

perspective, this is uneconomical and unattractive.

2. Turnkey Visualization Systems. In this category, most of the work has been done
for the end user such that no programming is required to obtain results. However,
as the name suggests, the systems cannot be modified and extended and they do not

satisfy every need.

3. Extensible Visualization Systems. These systems can be used to extend and

customize an application. They are application builders that recognize the fact that



there will always be needs that are not foreseen. This category can further be refined
into two subcategories:
o Programming Library Systems. These systems provide a programming library

and a high level command language to construct customized applications.

o Modular Visualization Fnvironments. These are modular environments that offer
a data-flow visual programming interface for achieving a visualization goal. This
category has become very popular because it is flexible and caters to users of

different levels of expertise.

2.1.1 Turnkey Visualization Systems

e The Data Visualizer, Wavefront Technologies Inc. The Data Visualizer of-
fers a traditional, menu-driven application interface and primarily deals with 3D
data[BAWW90, Mer91, Bel93]. Version 2.1 also supports a command language inter-
face. The architecture is tool-oriented where each tool is an instance of a visualization
method. A Visualization Tool Manager accepts input from the user and manages the
creation and manipulation of various tools. Some of the tools provided are probes,
cutting planes, isosurface tools, particle emission and point volume tools. Interaction
consists of selecting tools from a menu which can be turned on and off. The Data
Visualizer handles various kinds of grids. Its native file format is an ASCII format
called wave and it supports custom file format readers written by users. The user

interface is also customizable. Keyframe and flip-book animations are possible.

e Fieldview, Intelligent Light. Fieldview is primarily for fluid dynamics data[Leg91].
Its native data format is the same as that of PLOT3D, five dimensionless quantities
on a 3D grid. Calculator tools are provided that can compute compound functions
(scalar and vector) on the data and display the results as cutting-planes, iso-surfaces,
streamlines, particles and other techniques. It has scripting and animation for video

production and can run on low-cost platforms using the IVIEW-DORE graphics



library. The most recent version provides a direct interface to commercial CFD solvers
and has an open programming interface.

e Spyglass Dicer, Spyglass Inc. This is a 3D manipulation program that permits the
examination of large data sets through the viewing of slices and sections. Images can
be stacked together to simulate volume rendering. Isosurfaces can be combined with
cutting planes and the motion of cutting planes and blocks can be animated.

e VoxelView, Vital Images. VoxelView is an interactive volume rendering software
system that has a high speed opacity blending algorithm implemented in microcode
on Silicon Graphics machines. Only rectilinear grids are supported. The Ultra product
can mix geometry with volume data.

e VolVis, SUNY Stony Brook. This is a framework for volume visualization algo-
rithms[ASK92, AHHT94]. It is supported by a generalized abstract model which
provides for both geometric and volumetric constructs. The techniques supported in-
clude a fast volume rendering algorithm as well as costly, realistic ray-tracing. Tools

include 3D manipulation, key-frame animation and quantitative analysis.

e Vis-5D, University of Wisconsin. This is a public domain package for the visualiza-
tion of 5-dimensional data sets|[HS90]. The dimensions refer to three spatial dimen-
sions, one time dimension and a dimension for multiple parameters to be visualized.
It is popular among meteorological scientists. It offers animated isosurfaces, 2D slices
and streamline traces.

Some other turnkey systems include SeiAn from Florida State University that is mainly for
environmental visualization, BOB from the Army High Performance Computing Research

Center and VoxelBox from Jaguar Software for MS Windows.

2.1.2 Extensible Visualization Systems

Programming Library Systems

e PV-Wave, Visual Numerics. This is a two and three dimensional visualization

package that uses a command language interface (although the newer Point & Click



version has a menu-driven interactive graphical interface[Kri91]). PV-Wave provides
an intelligent data previewer for importing ASCII data files. It offers a macro tool for
automating repetitive tasks. True ray-cast volumetric rendering that can be combined
with geometric objects is provided as well as iso-surfaces. PV-Wave Advantage
extends the programming library with the IMSL libraries, making it the most extensive

scientific programming interface available. Another version connects to a user interface

builder.

o IDL, Research Systems Inc. IDL or Interactive Data Language is an array-oriented
language for the analysis and visualization of scientific data. It can be used interac-

tively or it can be used to create functions, procedures and applications.

o FAST, NASA Ames. FAST is a public domain program developed at NASA Ames
for the visualization of fluid dynamics data[BMP190]. It is a collection of programs
communicating through Unix sockets. A central hub process manages a pool of shared
memory. A collection of libraries and utilities are provided for building application
modules. FAST offers the usual isosurface and stream line modules as well as a

calculator module that operates on field data to produce new data.

e SuperGlue, NASA Ames. SuperGlue[HR92] aims to emphasize extensibility (more
than ease of use) for the rapid prototyping of new visualization methods by providing a
programming environment based on the interpreted language Scheme. It is especially

tailored for computational fluid dynamics needs.

Modular Visualization Environments

e Advanced Visualization System (AVS), AVS Inc. This is the earliest, general
purpose, data flow based visualization system that has a wide user community[Ups89,
Wet90b, AVS92, Bel93]. The architecture consists of five layers. At the bottom is
the system interface layer that supports native graphics libraries of the platforms
AVS runs on. On top of this is a system independent layer that uses a 3D rendering

abstraction to make the system easier to port. The renderer layer includes renderers



such as the image renderer and the geometry renderer. The ezecutive layer includes a
command language interpreter, the flow executive and the modules. At the top is the
user layer that includes the network editor and various viewers such as the geometry

and image viewers.

From a user’s point of view, AVS consists of interactive applications that are made up
of viewers and the network editor. These can run as standalone turnkey applications.
The user can drive AVS either through graphical user interfaces or the command
language. Graphically, the user builds applications by connecting modules in the

network editor. The editor ensures data compatibility through strong typing.

Modules are the fundamental computation units that process inputs and generate
outputs. There are four categories of modules: data sources, data filters, data
mappers and renderers. Data sources perform the data import function, converting
input formats to the internal AVS data types. Data filters operate on a data type
and change it. Example filters are ones that crop, transpose or do a histogram
equalization on an image. Data mappers produce renderable output from an input
field. Examples include isosurface extractors and alpha-blending volume visualizers.
Renderers manipulate renderable objects and make them visible. In addition to
subroutine modules which execute whenever inputs or parameters change, there are
coroutine modules that execute independently, obtaining inputs from AVS and sending
outputs to AVS whenever it wants. The latter can be used for such things as
integration of AVS with a simulation and the control of the flow executive for keyframe

animation.

The flow executive of AVS is the component that schedules the execution of the
modules. It also supervises data flow between modules, keeping track of where data is
to be sent and by what method to send data. It is based on the data flow architecture
such that the operations (modules) are enabled if and only if the required input
values have been computed. The modules “consume” input values and “produce”

output values. Hence, the only sequencing constraints are those imposed by data
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dependencies.

Some significant features of AVS are the following:
— Multiple modules can exist in a single process so the number of processes launched

by an AVS network can be lowered to as few as one.

— As long as a module has no input dependency upon other modules that would

be executing at the same time, modules will execute in parallel.

— Modules can execute on remote machines. AVS uses XDR for remote module

communication.
— Shared memory is used for data passing between modules in different executables.
— AVS allows upstream data flow suitable for loops and conditionals in the network.
— AVS can be used to build customized applications.

o apE, TaraVisual Inc. Another early package, apE was originally developed by Ohio
State University and was public domain until it was licensed to TaraVisual for mar-
keting[Dye90, Wet90a]. It is a general purpose, data flow visualization system. The
work area where the visual program is constructed is known as the wrench. The
connections of modules in apE are not strongly typed and the process of connecting
is less smooth than AVS, requiring the user to occasionally type in text. Modules
are separate processes as in AVS, however, the processes are not forked when they
are dragged into wrench. Execution of the program begins by a specific start button
when all the processes are created. apE uses a data format called fluzx which not
only describes the data but also the program pipelines, images and object properties.
While it supports different grid types, the modules provided do not support all types.
A module called rezone maps variables from one grid type to another. Distributed
applications are possible in apE. There is a post-processor for image processing.

e Iris Explorer, Silicon Graphics Inc. Iris Explorer[Slo92, Edw93, Bel93] is another
general purpose, data flow visualization system that has been bundled with Silicon
Graphics machines. At the present time, it only runs on SGI machines but version

3.0 will be unbundled and ported to other machines. The architecture consists of five
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layers. At the bottom is the system layer that includes the standards the system is
based on, e.g. X, Motif, Unix, GL. The programmatic support layer is a collection of
libraries that constitute the API for module writers. The module layer is the collection
of modules that handle the standard visualization tasks. The map layer contains the
visual programs that have been constructed from the modules and the final application

layer contains standalone application networks for standard disciplines.

Explorer consists of three programs.

— The Map Fditoris the visual tool for constructing a visual program from modules.
Each module’s control widgets can appear in a separate window, can be hidden or
can be seen live but minimized with the module’s icon. Modules can be grouped
together to save screen space and selected widgets can appear on its single control
panel. Hence, at the extreme, a map can be grouped into a single module. Such
a module can also be wrapped into a standalone application that does not require
the map editor to run. A parameter function editor allows expression evaluation
so that the input parameter of a downstream module can be controlled by the

parameters of a combination of upstream modules.

— The Module Builder is an interactive, visual tool that lets expert users integrate
modules to the system by transforming C, C++ and F77 code to Explorer
modules. It includes visual tools to define the input and output ports of the
module, to connect the ports to the functions arguments and to create and

design the control panel.

— The Data Secribe is another visual tool that allows the import and export of data
formats. The user can create an Explorer module that reads a data file and
extracts relevant fields to construct a native data type that can be used in a
map.

The execution of a map in Iris Explorer is based upon a distributed, decentralized
data flow execution model. There is a single global server (GC) that manages the

communication between modules on different hosts. There are also local communi-



12

cation servers (LC) on each machine. User interaction is conveyed to the GC which
delivers it to the LC which forwards it to the module. Modules, which are processes,
communicate directly with each other. Those on shared memory machines use named
pipes while those on different machines transfer data through sockets. A module fires
when the required inputs are present at its ports. To avoid multiple firings in a map,
data tagging is used and the network topology is broadcast to all the modules by the
GC.

Explorer offers a module prototyping facility through an interpretive language called
shape. A scripting language called Skm allows scripting as well as a command language

interface to the user.

IBM Visualization Data Explorer, IBM Corp. Data Explorer[LACt92, Bel93]
has a client-server open system architecture that uses standard protocols and systems
for portability. It consists of two components, the user interface (the client) and the
executive (server) running as two separate processes communicating via Unix sockets.
The user interface includes the visual program editor, the control panel and the image
and help windows. The server includes the executive, the modules and the data

management API.

The user interface provides a visual programming interface similar to Iris Explorer and
AVS. The visual program is translated into a script language and sent to the executive
for interpretation. The executive is the component of the system that manages the
execution of the modules. The scripting language is also available to the user for
writing scripts. The design differs from AVS and Explorer in that the modules are
invoked not as separate processes but as function calls. The data management layer
is the portion of the programming interface that provide modules with access to the
data model. The data model is unique among the packages in that it is based on the

mathematics of fiber bundles.

The data flow execution model of Data Explorer imposes the constraint that modules

possess pure function semantics in that outputs are based on the inputs and not
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on some state that is the result of a previous execution. Also, modules treat their
data as read-only. A side benefit of pure function semantics is that caching of
intermediate results is possible. Distributed processing is possible allowing modules or
groups of modules to be executed on different machines permitting enhanced resource

utilization.

Support for coarse-grained shared memory parallelism is provided but makes module
writing more difficult. Data Explorer uses explicit data partitioning and a simple

fork-join model to make this task easier.

2.2 Spray Rendering

Spray rendering was proposed by Pang and Smith[PS93a, PS93b] as a new framework
for doing scientific visualization. In this framework it was proposed to have a shelf of
metaphorical spray cans containing smart particles (sparts) designed to look for features
in the data set and manifest themselves as renderable objects. Users would select one of
these cans and spray the data set, select another to obtain a different effect and through an
iterative process, achieve a certain visualization. The original ideas were high level concepts
of what could be accomplished with sparts.

The main idea of spray rendering was to combine particle systems and behavioral
animation. Particle systems are an area of computer graphics that have been used to
model natural phenomena such as fire, water and grass which are difficult to model by
traditional methods. In this technique, objects are represented by a collection of particles
as opposed to surface elements. These dynamic entities change form with time as new
ones are born and old ones die. Stochastic processes are used to affect the shape and form
resulting in non-deterministic objects. The particles have attributes such as size, color and
shape, and the system as a whole has parameters governing its form. Reeves used this
technique to model fire, explosions, fireworks and grass[Ree83]. Behavioral animation was
developed to capture group behavior in animations. Rather than account for each body in

a group individually, the individuals in the group are required to behave according to some
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rule based constraints set for the whole group. The constraints, such as collision avoidance
and maintained average speed, endow the group as a whole with a behavior. This mimics
the behavior of a school of fish or a flock of birds rather well[Rey87, Amk89].

In the light of the above techniques and an object oriented preliminary design, sparts
were to have a state consisting of certain attributes such as age and appearance, and certain
methods to affect that state such as: target function, direction function, death function etc.
They would have a local neighborhood that they would process, and this neighborhood
would be updated as the spart traveled. Sparts were envisaged to work individually or
cooperatively. Spart to spart interactions were to take place through the deposition of
markers. These were distinct from visualization objects in that they could not be rendered
but would contain communication information. Sparts would also be organized into groups

and hierarchies.

2.3 How Miz&/Match relates to other environments and spray rendering

The extensible, general purpose scientific visualization packages have become the de
Jacto standard. These recognize the diversity of visualization needs and provide room for
growth whereas the turnkey systems are constrained by the number of tools they come with.
The extensible systems have also reached a consensus on providing a data-flow oriented
visual programming interface for composition. The popularity of these systems can be
attributed to their promotion of software sharing and their extensibility and relative ease of
use. Scientists or visualization programmers can develop modules for their own needs and
share them with other scientists.

There are similarities as well as differences between MizéMatch and the MVEs. The

similarities are:

o Fxtensibility. This is a major shared characteristic and is a determining factor in

allowing users to meet their own needs.

o Modularity. Users extend the system by adding modules. These modules can be

combined to accomplish a visualization task at runtime.



15

o Fase of Use. Users are presented with a graphical interface to build the networks
(visual programming).

At the same time, there are very important differences.

e Modules. The granularity of the modules in MVEs are coarse, whereas in Mizé Match
they are fine. Coarse modules operate on the whole data set, while components in
MizéMatch act upon data at a current locality. The components of MizéMatch are,
in general, simple and small and accomplish a very specific task. Finer granularity
allows greater flexibility in composition and their simplicity facilitates easier system
extension. This, in turn, results in a richer repertoire of techniques and encourages

experimentation and exploration.

e Networks. The networks in MVEs define a program the result of which is the visual-
ization. Those in MizéMatch define a program that determines the overall behavior

of a spart.

o Frecution Model. MVE networks use a data flow execution model. Modules execute
when new data arrive at their ports. The composition in Miz&Match constitutes a
program that gets executed at each location the spart occupies during its lifetime. In
effect, rather than data flowing through modules, it is the modules that flow through

the data.

o Visualization Process. In MV Es, the visualization is the result of the network program.
If a parameter of a module changes, the program re-executes and a new result is
obtained. In Mixzé&Match, the composition defines a spart and the spray can containing
the spart becomes a tool. Visualization is an iterative, interactive process of applying
this tool. Complex visualizations can be obtained by multiple uses of multiple spray

cans.

o Network complexity. Related to the previous item, network complexity increases
in MVEs if more complex visualizations are desired. The networks in Mixé&Match
are, in general, simple and, since multiple networks can be used multiple times, the

complexity of the end visualization does not affect the complexity of the network.
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e Direct Interaction. Very little user interaction is supported in MVEs. The use of
the spray can metaphor in Mizé&Match permits direct interaction with the data set,
emphasizing the exploratory aspect of the visualization process. System level mode
settings allow the same composition to be used in different interactions.

MizéMatch can also be compared to tool-based turnkey systems. It is tool-based since each
spray can containing a visualization technique is essentially a tool, and multiple instances
can be used on the data multiple times. Unlike turnkey systems, however, new tools can
be defined and tool definitions can be changed at runtime. New components can also be
added which makes it an extensible system.

Although this thesis uses the metaphors of spray cans and sparts, the design and imple-
mentation of spray rendering in this work is less ambitious than originally envisaged[PS93a,
PS93b]. As will be elaborated in later chapters, the emphasis in Mizé Match is on the ability
to interactively define the overall behavior of a spart and different interaction techniques.

In MizéMatch, sparts are independent and do not communicate.
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3. Scientific Visualization: Techniques

In designing and developing the Mizé&Match scientific visualization environment, some of
the popular techniques were implemented by adapting them to work in the spray rendering
model and decomposing them into basic components. In this chapter, a context for these
techniques is provided by giving a brief survey of scientific visualization techniques in
general. The chapter starts with a definition of scientific data and a classification of the
more important volume visualization techniques. This classification leads to a discussion of

which techniques are more amenable to be adapted to the spray rendering model.

3.1 Scientific Data

In the most general case, a simple definition[A192] treats scientific data abstractly as a
mapping between an n-dimensional space of independent variables x and an m-dimensional

space of dependent variables y. This mapping can be represented by the following matrix:

1 f1($17$27$37"'7$n)
Y2 f2($17$27$37"'7$n)
Ys f3($17$27$37"'7$n)

L Ym ] L fm($17$27$37"'7$n) ]

This high level abstract definition hides the diversity of scientific data generated. Some
attributes that can be used to categorize data are the following[Tre93]:
e Physical Data Type Primitives: The data can be stored on a medium in many
ways, (e.g. byte, int, float, ...).
e Dimensionality: (e.g. spatial, temporal, spectral, ...). Scientific data may be

spatially coherent, i.e. the independent variables are spatial dimensions as in CT scan
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data or they may be spatially non-coherent as in census data. The size, shape and

organization of the independent variables are also important.

e Rank: This refers to the number of values per element (e.g. scalar, vector, tensor,
e Mesh description: Often, the elements have a mapping to some physical domain or
coordinate system and the mesh description identifies the size, shape and organization

of this mapping (e.g. regular, irregular, curvilinear, ...).

e Aggregation: This refers to a collection or organization of a set of functional values
(e.g. hierarchies, groups, series, ...).

Up until a few years ago, scientific visualization programs and packages were domain
specific, often developed in-house. Each discipline’s needs were different and little data
sharing was taking place. For this reason, a multitude of data formats evolved. To remedy
this problem and encourage the sharing of data, attempts at standardization took place in
the late eighties. CDF ([Gou88]), netCDF ([RD90]) and HDF ([Nat89]) have found wide
usage among certain disciplines, but many of the visualization packages still use their own
formats.

Another motivating force for an abstract data model, not just a standard format, is
the need to manage enormous amounts of data generated through simulation and obser-
vation by the scientific community. The goal is to link scientific visualization and DBMS
technologies[SCNT93, KASS93]. An interesting data model is one proposed by Butler and
Pendley[BP89], a model based on the mathematics of fiber bundles which was extended by
Haber et al. [HLC91] to incorporate localized, piecewise field description. Their model is
especially suitable for representing continuum fields although it can also represent random

sample points and ball-and-stick molecular models.

3.2 A Classification

A classification of the main volume visualization techniques (ignoring the many varia-

tions) can be helpful to put things into perspective. It also provides insight as to which
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techniques are more suitable to the proposed framework.

Treinish lists general visualization techniques based on the dimensionality and the rank
(see section 3.1) of the data[Tre93]. The table includes example data types and the
techniques are classified as either discrete or continuous. Upson provides a two dimensional
array where one axis represents the dimensionality of the computational domain, the other
the dimensionality of the visual representation and the techniques appear as elements in
the array[Ups91]. Another classification by Hesselink et al. also adds a third attribute, the
information level, which indicates whether the information shown at a certain point refers
only to the elementary data at that point, whether it refers to some local neighborhood or
whether it is global to the whole data set[HPvW94].

Table 3.1 lists some 3D techniques in a manner that is a combination of the above
classifications. The Geometry column of the table refers to the dimensionality of the
geometric primitive used to represent the data. These could be points (0), lines (1), polygons
(2) or volumes (3). Also included are glyphs (G) and pixels (P) in this column, because
such techniques do not fit the other descriptions. For instance, the cuberilles technique
places opaque cubes at places satisfying a given threshold (see section 3.4.2). This is really
a glyph representation rather than a volumetric one. Ray casting direct volume rendering
algorithms work in image space and accumulate pixel values and hence do not have a
geometric representation, although the principle behind their operation is volumetric.

The Rank column represents the dimensionality of the data. Scalar fields (rank 0) are
single-valued functions, vectors (rank 0) of dimension n are n-valued functions and tensors
(rank 2) in an n-dimensional space are n x n valued. The Information column refers to the
information level shown at a point as discussed above (E=elementary, L=local, G=global).
The Discrete column classifies the technique as being either a discrete (D) or a continuous
approach (C). In 3D, one could say that any geometric representation that is not volumetric
would be discrete. For instance, an iso-surface at a certain threshold is only showing a
portion of the data set. On the other hand, it can be regarded as a continuous technique

since the polygons generated in cells have continuity as opposed to simple glyphs placed at
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Table 3.1: A classification of some visualization techniques. Geometry and Rank
refer to the dimensionality of the geometric primitives and the order of data,
Information refers to the locality of information represented by a point, Discrete
refers to whether the technique is discrete or continuous and the Objects column
refers to whether visualization objects can be produced locally.

sample locations. Such techniques are classified here as continuous to capture this nuance.

The final column indicates whether visualization objects can be generated locally and
sent to a renderer. Since the components in MizéMatch operate locally, those that produce
visualization objects have to have this property. For instance, a coarse grained streamline
algorithm would accumulate the vertices corresponding to each new location during the
vector integration phase and output a line-segment set based on these vertices. A fine-
grained approach would need to output a line segment at each new location.

MizéMatch uses spray rendering to model the components. The smart particles deliv-
ered from the spray can travel in the data set and produce renderable visualization objects.
Because of the discrete nature of this process, discrete techniques that can generate geo-
metric objects map most naturally to MizéMatch. However, continuous techniques that
can be decomposed into components that can generate portions locally can also be imple-

mented. For instance, the marching cubes iso-surface extraction technique is a continuous
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technique, but the polygons making up the surface are generated in each cell. A smart
particle traveling in the data set can generate the polygons of the particular cell it is in.

The volume rendering techniques are more difficult to handle since they do not produce
geometry, but result in accumulated values for pixels. If volume rendering is to be combined
with geometry, the task is even harder. A volume rendering technique that may be more
amenable for implementation in MizéMatch is the splatting technique that relies on geom-
etry (see section 3.4.3). A hybrid software renderer that mixes geometry and volumetric
data may be required to handle this.

The following sections gives a brief survey of two and three dimensional visualization

techniques.

3.3 Two Dimensional Visualization

A very common scientific data type is a scalar value, such as temperature, that varies
over a two dimensional region, i.e. a bivariate function F'(z,y). The techniques to visualize
such data are very familiar to even the non-scientist because of their omnipresence. Weather
maps in forecasts on TV or in newspapers provide a daily dose of these.

The most common technique is contouring. Contour lines are drawn over the 2D region
that represent the locus of points that have the same given value. There are two main
algorithms: producing all the contour lines within each cell so that contours are produced
in a piecemeal fashion, or following each contour to its conclusion. Sabin gives a survey of
contouring methods that also deal with scattered data[Sab86]. Instead of drawing curves,
one can map the values to color and use color blended regions, so called pseudo-color contour
maps.

Another popular method, sometimes referred to as rubber-sheeting, is to render a surface
of the bivariate function by projecting the value of the function as a distance from the point
(x,y) in the planar domain. This is especially suitable for terrain data where the value of

the function is actually in the third dimension.
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3.4 Volume Visualization

The term volume visualization refers to the process of obtaining a visual representation
of a collection of sample values located in three dimensional space. In this case, the
underlying function F(z,y,z) is trivariate. If connected by a grid, sub-volumes formed
by neighboring sample points are called cells in which the underlying function is assumed
to vary continuously. Some algorithms refer to the sample values as vozels where it is
assumed that the sub-volume surrounding the sample point is constant-valued.

A taxonomy of the connectivity appears in [SK90] (although this is by no means stan-
dard):

e regular: Cells are identical parallelepipeds (bricks). They may have equal distances

along each axis in which case they are cubical cells.

e rectilinear: Cells are no longer identical but they are still bricks and axis-aligned.

e structured: Also known as curvilinear, cells are no longer bricks but have been

warped by a transformation. They are still made up of eight points; however, faces
may not even be planar any more.

e block structured: Several structured grids may together make up a block structured

grid.

e unstructured: Cells in this type of grid may be of a variety of shapes. The

connectivity is supplied.

e hybrid: Any combination of the above may make a hybrid grid.

3.4.1 Slicing, Probing and Carving

A common technique of volume visualization is to slice the volume orthogonally or
at an arbitrary orientation and use a 2D technique such as contouring or pseudo-colored
slices. When these slices are animated across the volume, the motion provides extra visual
cues[Smi87]. A related technique uses geometric objects as probes to interactively examine

the data values on the surface of the probes[SK90]. One can also carve out sections of the
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data set to either remove uninteresting portions or to reveal hidden areas[FZY84, FGRS85].
These can be done by boolean set operations as in constructive solid geometry. Any of the

volume visualization techniques can then be used to view the remaining volume of interest.

3.4.2 Geometry-based Volumetric Techniques

Geometry-based volumetric techniques produce geometric primitives that are rendered.
Some algorithms use a binary voxel classification. Herman and Liu[HL79] first described the
cuberille technique, which thresholded volume data to yield a binary array of ones and zeros.
The resulting volume was displayed by treating ones as opaque cubes. Frieder et al. [FGR85]
and Gordon and Reynolds|GR85] improved upon the algorithm by processing the voxels in a
single pass. Meagher proposed the use of octrees for speeding up the process[Mea&2]. If local
gradient shading is applied instead of a binary representation substantial improvements to
image quality can be obtained[HB86, Gol86, SSW86, TS87].

Three dimensional representations can be extracted from two dimensional contours
which can be obtained through edge tracking[FKU77]. These techniques evolved into ex-
tracting surfaces directly from the volume data by specifying a threshold value. Particularly
popular techniques for extracting so-called iso-surfaces is the marching cubes[LC87] and the
dividing cubes|CLL*88] algorithms.

In the marching cubes algorithm, one walks the cells in a volume and marks the vertices
of a cell as either ones or zeros depending on whether the value at that vertex is above or
below a given threshold. These bits encode a tag for the cell which is used as an index
into a case table (figure 3.1). The case table enumerates all possible cases and is used as
a look-up table to define the polygons that exist for a given case. Edge intersections are
computed by interpolation and a central differences formula estimates the gradients used
for shading. In the dividing cubes algorithm, the cells are subdivided until their projection
is a single pixel. The geometric primitives used in this case are points.

The original marching cubes algorithm suffers from ambiguous cases and can lead to

holes in surfaces where none should be present. Solutions to this problem have been
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Figure 3.1: The figure illustrates a marching cubes case where vertices vl and v7
are above while the others are below a given threshold causing edge intersections
el,ed,e9 and e6,e7,e12. The index and the triangles produced are also shown.

proposed by [WVG90b, NH91, Mat94]. The marching cubes algorithm also produces
a large number of geometric primitives. To increase the efficiency, Wilhelms and Van
Gelder[ WVG90a] proposed a hierarchical approach while [Tur92, SZ1.92, MSS94] have pro-
posed approaches to reduce the number of the primitives. Other related techniques for

extracting and rendering surfaces use implicit surface methods[Bli82a, WMW&6, Blo88].

3.4.3 Direct Volume Rendering

The term ”direct” in Direct Volume Rendering emphasizes the distinguishing charac-
teristic of the technique: no intermediate geometric primitives are produced, as is the case
in isosurface extraction. The technique has increasingly become popular, despite its com-
putational cost, because each and every sample value in the data set contributes to the
image. The mappings from data to visual parameters are extremely flexible, resulting in a

variety of images emphasizing different aspects of the data set. It is also more appropriate
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for certain volumes where the sample values represent amorphous, cloud-like phenomena
where surfaces do not really mean much.

The essence of the technique is that for each pixel, a color value is accumulated based
on the contributions of color and opacity from the sample values. The algorithms differ in
the order that they proceed and in the way that they map and accumulate the color and
opacity values. The algorithms can basically be classified into object order and image order
algorithms. In the former, one starts from object space and calculates the contributions
of the sub-volumes to the affected pixels. In the latter, for each pixel in image space, one

accumulates the contributions of the sub-volumes affecting it.

Image Order Algorithms

Image order algorithms are ray-casting techniques[Lev88, Sab88, UK&8]. This is distinct
from ray-tracing since rays are not reflected from objects. Instead, rays are cast from each
pixel into the data set in object space which they enter and exit in a straight line (figure 3.2).
Samples are then taken along the ray either by taking equal steps or by going from cell face
to cell face. In the former case, values of samples that fall in a cell are normally obtained

by trilinear interpolation which can be defined as:
f(z,y,2) =a+be+cy+dz+exy+ foz + gyz + hayz

The coeflicients a...h can be calculated by evaluating the above equation at the eight
corners of the cell. Higher order interpolations are also possible but are not normally
used due to their cost. With ray/cell face intersections, bilinear interpolation is used to
calculate the sample value. For each of the sample values, a color and opacity value is
calculated. These are then composited in front-to-back or back-to-front order to give the
final pixel color[PD84]. For instance, the front-to-back color and opacity compositions are

done according to the formulas:

Ccomposite = Cfront X O front + Cback X Qpgcek X (1 - afront)

Qeomposite =  Ofront + (1 — Qfront X aback)
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Figure 3.2: Rays are cast from pixels in image space into the volume in object
space and samples are taken along the ray in image order volume rendering
algorithms.

where (' is the color and « is the opacity.

The ray-casting algorithms differ in the details of the model used for mapping to visual
parameters. Sabella[Sab88] uses a simplified light scattering model that had been used
for the image synthesis of natural phenomena such as clouds[Bli82b, KH84, Max86]. In
his density emitter model, the volume is assumed to consist of light-emitting particles but
instead of modeling the particles individually, he considers their density and derives a ray
integral involving an exponential for the attenuated intensity along a ray. This integral
equation is then approximated by a discrete sum of products equation.

Upson and Keeler|[UK88] use independent color and opacity transfer functions for map-
ping the scalar values. They use finite differences at the nodes to calculate the normals
used in shading. The integral is approximated as a discrete summation.

Levoy[Lev88] calculates colors and opacities from the scalar values through shading
and classification formulae respectively and uses trilinear interpolation on these volumes

for samples that fall in cells. The shading model used is the standard Phong model. For
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classification, opacity is made to be a function of the local gradient. These functions depend
on whether one is trying to extract value contours or region boundary surfaces.

Other ray-casting approaches that have appeared in the literature are as follows:
Tuy[TT84] used ray-casting to render binary voxels, Montani{MS90] rendered constant val-
ued voxels using the sticks representation, Novins[NSG90] used a slab based method to
achieve perspective projection, Krueger[Kru90] developed an elaborate and flexible trans-
port theory model, Garity[Gar90], Challinger[Cha90], Wilhelms[WCA190] raytraced irreg-
ular volume data and Yagel[YK92] used a template-based ray-casting method for rendering
constant valued voxels. More recently, Stander and Hart have used a Lipschitz method for

accelerating a ray-casting volume renderer[SH94].

Object Order Algorithms

Object-order algorithms are projection techniques where the main loop of the algorithm
proceeds in object space. Researchers have taken two approaches in this case. Most break
down the volume into sub-volumes and scan convert the front and back faces of the sub-
volumes in front-to-back or back-to-front order[UK88, MHC90, ST90, WVG91]. A different
approach called splatting composites the footprints of each node in the volume[Wes89,
Wes90].

Upson and Keeler’sflUK88] V-buffer algorithm determines a bounding box for each cell
in front-to-back order. The bounding box is clipped to scanlines to produce pixel runs.
Each scanline can be broken up into five spans depending on the polygon produced by the
cutting plane of the scanline. The calculations in the spans are vectorizable.

Max et al. [MHC90] and Shirley and Tuchman[ST90] handle not just regular grids but
curvilinear ones as well. They break down the cells into convex polyhedra (tetrahedra
in the case of[ST90]), sort them in depth order and scan convert them. Max et al. use
an assumption to provide an analytical solution to the ray integral equation. Wilhelms

and Van Gelder[WVG91, GW93] employ a similar projection technique for rectilinear and
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curvilinear volumes. All of them provide options for using hardware interpolation of color
and opacity values across polygons to achieve greater speed at the cost of some accuracy.
A different approach was taken by Westover[Wes89, Wes90]. He used a reconstruction
kernel (a Gaussian) and proceeded from each node in the grid to calculate the contribution
its footprint made on the affected pixels, a process he termed splatting. All the algorithms
use the same compositing scheme for accumulation of the contributions to affected pix-

els[PD84].

3.5 Multiparameter and Vector Visualization

Multiparameter visualization, as used in this document, will mean more than one
dependent variable associated with the independent variables, and is restricted to spatially
coherent techniques (the independent variables are spatial). Vector visualization is defined
as having a vector quantity, such as velocity, at each data position in 2D or 3D space.

Spatially coherent multiple parameter data is quite common in science. For instance,
over a 2D region, one might measure multiple physical quantities such as temperature and
pressure. Scientists are then interested not only in a single parameter’s variation over this
region but also in the relationships among the multiple parameters. One way to visualize
these is to use a visualization technique on each of the parameters separately and display
them in multiple windows. The scientist is then left with the task of visually comparing
the images in an effort to determine relationships between the different parameters. This
does not support the determination of more subtle relationships among the parameters.
As discussed next, some researchers have attempted to alleviate this problem by using
visualization techniques that use a single, integrated display.

In 2D, iconographic displays have been used to visualize multiparameter data. The
icons consist of a number of pixels and are coded both in terms of color and geometry.
Different parameters of the data set govern different colors and features of the geometry
of the icon[Lev9l]. Crawfis and Allison use an interpreted programming environment

to synthesize textures and raster images which can be composited together[CA91]. The
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textures and images can be obtained by operating on different parameters and integrated
to reveal relationships.

Foley and Lane describe various techniques that can be incorporated into a single image
to visualize 3D multiparameter data sets[FL.91]. The techniques involve defining a surface
or a geometric object in the volume and operating on that volume. By combining the
operations in a single image, different parameters can be related to one another.

Two dimensional vector visualization is also quite common. The most widespread
method is to draw arrows at the data points where the length of an arrow is proportional
to the magnitude of the vector and its direction indicates the direction of the vector. Often,
drawing one vector glyph at each point creates a crowded image so vector glyphs are drawn
at positions which have been subsampled from the original data set. Alternatively, contour
maps or streamlines can be used. Color can provide additional cues. Texture has also been
used in visualizing 2D vector fields[vW91].

Three dimensional vector visualization has been extensively studied under the name flow
visualization, and many techniques exist. One approach is to reduce the dimensionality by
visualizing the field on a cutting plane or an arbitrary object’s surface. Any of the two
dimensional methods discussed above can now be applied to this surface. Another technique
is to calculate a scalar value from the vector field, such as helicity density, and visualize the
scalar value using any of the volume visualization methods.

Techniques have also been developed to visualize the vector field directly. The simplest
approach, sometimes called the hedgehog method, is to display 3D arrow glyphs at the data
points, again subsampling to reduce image clutter. This does not work as well as in 2D since
the arrows are projected onto the screen and it is more difficult to get the magnitude and
direction information from the projection. Particle-based techniques offer better insight.
These techniques have their parallels in the laboratory setting. Fluid dynamics scientists
release dyes into liquids and smoke into air flows in order to study fluid flow.

The simplest method of flow visualization is to follow the motion of massless particles

released into the flow field. The particle is drawn at the release point (e.g as a sphere), and
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its next position is calculated using the vector field. The calculation is a simple integration
where one assumes that the vector is tangent to the path. If r(¢) is the position vector of a
point on the path where ¢ is time, the velocity vector v(r) is given by

d
= =v(r)

and the integral of this gives

r(t) = r(0) —|—/Otv(r(t))dt

The particle can be redrawn at each new position so that one can see its motion through
the field (particle advection). Instead of drawing the moving particles themselves, one might
merely draw its continuous path. If this path consists of line segments, one gets so-called
streamlines. The line segments can be colored according to the magnitude of the vector
to give extra information. Issues such as the integration method, vector interpolation and
step size adapting have appeared in the literature [MP88, Bun88, YP88, EORR9]. More
recently, Kenright and Mallinson have proposed a new approach for tracking streamlines
where streamlines are considered to be the intersection of two stream surfaces|KM92].

In 3D, one can get an improved perception if, instead of drawing lines, one draws 3D
shapes such as cylinders. This results in stream tubes which can be shaded using lighting
models[Dic89, HD91]. Stream tubes can also have the advantage of showing local expansion
of the flow field if their circular cross-sectional areas are based upon the local crossflow
divergence.

Stream lines or tubes only give the path. One cannot obtain rotation information from
these techniques. To alleviate this problem, stream ribbons have been used. In this case,
the path of two particles are traced and polygons are generated from their joint path[Bel87,
Vol89]. Since flow fields diverge, ribbons may need to be adaptively split to get better
polygonal representations. Hultquist has proposed an advancing front method that achieves
this more efficiently[Hul92]. Another method that has been used to capture not only the
rotation but also the strain and shear (or angular deformation) is the stream polygon method

proposed by Schroeder et al. [SVLI1]. In this method, local deformations affect the shape
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of a polygon that moves along a stream line such that its orientation is normal to the local
vector. When the vertices of these polygons are joined, one gets a non-cylindrical tube with
local deformations.

Van Wijk creates textures by spot noise to visualize scalar and vector fields on sur-
faces[vW91]. By varying the parameters of the spots, such as shape and size, different
textures are obtained that best fit the problem. Van Wijk also uses surface particles to
visualize flow fields[vW92]. Particles from a source are periodically released into the flow
field and form a textured surface when rendered. By varying the shape of the source of
the particles, he obtains different visualization techniques such as streamlines, tubes and
ribbons. He provides a detailed method for rendering shaded particles.

Crawfis and Max[CM92] employ a splatting technique for the direct volume visualization
of 3D vector fields. They have developed a filter which is used to sweep through a volume
in back-to-front order. The filter deposits anti-aliased lines as it passes through the volume.
The technique is used to volume render both a vector and a scalar field in the same image.

More recently, Max et al. used a volumetric equivalent of stream lines to volume ren-
der vector fieldsfMBC93]. Leeuw and van Wijk map scalar, vector and tensor values to
a 3-D probe for interactive local flow field visualization[dLvW93]. Van Wijk also used
implicit surface representation to construct implicit stream surfaces of flow fields[vW93].
Crawfis and Max extended the splatting technique to include textures for vector field visu-
alization[CM93]. Cabral and Leedom introduced a novel technique which uses linear and
curvilinear filters to locally blur textures along a vector field[CL93] which was extended by

Forsell to visualize flow over curvilinear grid surfaces[For94].



32

4. Mix&Match: A Construction Kit

The environment presented in this dissertation blends the ideas of spray rendering with
those of modular visualization environments. The metaphors of spray cans and smart
particles (sparts) of spray rendering are used to model the visualization techniques and
define various interactions with data sets. At the same time, the visual programming
interface to program composition that characterizes modular visualization environments
supports interactive composition of sparts. The result is Mizé&SMatch, a flexible, modular and
extensible environment which allows incremental visualizations through direct interactions.
In this chapter, a high level view of the environment is presented, starting with the design

goals.

4.1 Design Goals

For any software system there are basic software engineering properties that are desir-
able. Some of these properties are in conflict with one another and priorities and judicious
tradeoffs are necessary. The design goals for MizéMatch were to achieve the following
properties as much as possible.

e Extensibility. Extensibility relates to the ease of adding functionality to the system
in existence. Although the system may have many features, it should allow easy
growth to cater for needs not foreseen. The Mizé Match system has been designed
so that the interface to the system of a component is generated automatically. The
component writer implements the computational function using C code and the API
provided, and specifies its inputs, outputs and other attributes graphically to integrate
it into the system. The system has been designed to be modular to facilitate this
extensibility.

e Functionality. The features provided initially as well as all the non-extensible
parts of the system should be functional. Many visualization techniques have been

implemented by redesigning and localizing them, resulting in many components to
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construct sparts. Some predefined and composed sparts (see section 4.3) are also
provided. The renderer allows a variety of renderings of the visualization objects (e.g.
flat/Gouraud shading, point/wireframe/polygon drawing of primitives, lighting and
viewing options).

Flexibility. One of the advantages of having components of fine granularity is that
the flexibility of component composition is enhanced. For instance, instead of a single
iso-surface component, one can break it into two components: one that seeks to satisfy
the target iso-value, and one that generates the surface if the condition is satisfied.
This target function can also be used in another composition where some other visual
behavior component is used. However, flexibility can be in conflict with efficiency. The
finer the granularity, the more components to execute, and the larger the overhead.
To compromise, the MizéMatch design limits the components to have granularity at

the spart position level.

Efficiency. The particle nature of spray rendering and the fine granularity of the
components can be costly. Object compaction (see section 5.5) was designed to save
memory and rendering time. A simple memory scheme for data transfer between
components was designed so that components merely dereference pointers to read

their inputs instead of communicating through files or pipes.

Ease of Use. Since the target users are scientists more eager to do their science
than to learn a software package, the environment has been designed to be as user
friendly as possible. Graphical user interfaces and direct manipulation have been used
throughout to aid in this process. The system aims to support three different levels of
users: Novices merely load sparts “off the shelf”. Intermediate users go a step further
and use the components available to compose new sparts. A graphical spart editor
allows intuitive visual programming for spart composition. Finally, the expert user can
write C functions to add a new component to the system. A configuration manager
presents a graphical user interface for this task as well and generates wrapper code to

make the integration easier.
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Figure 4.1: The organization of the system components.

4.2 MixéMatch Overview

Figure 4.1 shows how the components that make up the Mizé&Match environment!
are organized. At the bottom level is the data model used to define the data sets. An
application programmer’s interface (API) provides functions that operate on the data for
the convenience of spart component writers. Next, there is an extensible collection of
sparts and spart components. These form the heart of the visualization process since they
implement the visualization techniques. Spart components can be composed to define an
overall behavior for the spart. Predefined sparts already have their behavior defined and

cannot be composed. Both spart components and predefined sparts are functions and

! The Mixé&Match environment was developed as part of the REINAS project on meteorological and
oceanographic data acquisition and visualization. What is described here is the analysis mode of the
visualization program Spray in which users can visualize model simulation data.
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are integrated into the system by linking. They are described to the system through a
separate program called the Configuration Manager. This program presents a graphical
user interface for component description and control panel design, and generates “wrapper
code” for system integration so that the component writer can concentrate on writing the
computational function. The spart executive handles the execution of the sparts while the
renderer renders the scene (made up of the visual objects that have been generated by the
sparts).

At the top of the system architecture is the user interface. The main interaction window
presents the rendered scene and has a top-level menu bar. Users can interact directly with
the window for view control and spray can selection and manipulation. The spray can
control panel presents choices for can parameters and interaction modes. A textual and a
graphical spart editor are both provided for the composition of sparts. Finally, most spart
components will have a control panel to set certain parameters. When a can is created,
these are collected into a single window.

Users of Mizé&Match load in data sets called streams, create spray cans that contain
particular sparts, and spray the data set with them to produce visualizations interactively.
The process of visualization is summarized in figure 4.2. It is an iterative process and at
any stage the result could be the desired visualization.

Users first load streams. They can then create a can containing a particular spart.
The spart may be an existing spart composition or the user may edit an existing spart
or may compose one from scratch. The various parameters of the can and the spart may
then be selected and the can used on the data set interactively. This results in certain
visualization objects which can be accumulated, hidden or deleted at any stage. By iterating
on these various actions, the user obtains a visualization. The iterative process emphasizes
the exploratory nature of this framework. Note that to facilitate a faster beginning to a
visualization session, some of these operations can be specified from a startup file.

Figure 4.3 shows the top-level interface. On the left are three browsers that list the cans

that have been created, the currently available sparts and the currently loaded streams. The
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Figure 4.2: This figure illustrates the iterative process of obtaining a visualization

in Miz&Match. Users operate on streams, sparts, spray cans and the rendering

in the main event loop. It emphasizes the exploratory nature of visualization. At

any stage, the user has a current visualization which could be saved as an image.
main graphics window shows the current state of the visualization and the smaller graphics
window shows the world from the point of view of the current can. The various actions such
as the loading of streams and the creation of cans take effect in response to selections from

the menu bar. Users are able to interact with both the main window and the can window

for such operations as the changing of view, can manipulation and spraying.

4.3 Smart Particles

A defining characteristic of spray rendering is the use of smart particles (sparts). These
are launched from a metaphorical “spray can” and the particles actively look for features
in the data set. Once these target conditions are satisfied, abstract visualization objects
(AVOs) may be deposited which are subsequently rendered. A typical spart, then, has a
life-time as depicted in figure 4.4. The target and visual behaviors take place at the current
location of the spart. The spart then updates its position and determines if it is to continue
or die.

Mizé&Match allows sparts to be defined at run time by connecting together basic com-

ponents. These sparts are called Composed sparts, and the components are organized into
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Figure 4.3:  This image shows the top-level user interface of Mizé&Match. The

main window shows the current state of the visualization. Here, the bounding box

of a stream is shown as well as a spray can with a conical nozzle. The smaller

window in the lower left corner is the view from the view-point of the can.
four categories that reflect the stages in the life-cycle of a typical spart. Target functions
look for target features and output booleans, Visual functions deposit AVOs if certain
conditions are satisfied, Position functions update the current position of the spart and
Death functions determine when the spart should die. Each of the components making
up a composed spart is a function that gets executed at the current location by the spart
executive until the spart dies.

Sparts are visualization methods or tools. The ability to define new sparts from basic

components allows experimentation with different techniques. However, since this flexibility

comes at the expense of efficiency, the system also allows for more efficient but non-



38

Birth

Target
g False

Function

True

Behavior
Function

Position
Update

False Death

Function

Figure 4.4: Flow diagram illustrating the life-time of a typical spart.

modifiable sparts called Predefined sparts. These are monolithic sparts that embody all
stages of the life-cycle in a single function. Once launched, they return control to the spart

executive only when they die.

4.4 Spart Composition

The user can compose sparts either using a textual editor or a graphical editor. A com-
position is the specification of the components that make up the spart and the connections
between them. Since this is basically the specification of a program, the two options reflect

the textual and visual programming paradigms.
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4.4.1 The Textual Interface

The primary goal in the design of the textual interface was ease of use. Rather than
presenting a full text editor and a complicated language for program specification, the
simplicity of the visual programming style of data-flow visualization environments was
employed. Since the “language” for program specification is quite simple, the interface
retains the “pick and drop” nature of the graphical interface. Users can, of course, use their
favorite editor off-line to compose a spart since the spart definition format is ASCII and
quite simple.

In the textual mode, the user is presented with the collection of components arranged
in four browsers (figure 4.5), one for each category. There is also a main editing browser
where the composition takes place that consists of an input field where a line can be edited
and a main browser that displays the composition. Figure 4.6 shows the main browser with

the completed composition of the iso-surface spart.

Figure 4.5: The components listed in four browsers, one for each category.

When a user selects a component from the components browser, the name of the

component selected appears in the main browser together with its number of inputs and
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Figure 4.6: The text based spart editor showing the iso-spart composition.

outputs and their types. For example, if the user chose the IsoThresh component from the

targets category, the line that would appear in the browser would be

IsoThresh [ STREAM ] ( BOOLEAN ) ( INT ) ( FLOAT )

The inputs are enclosed in square brackets and the outputs in regular parenthesis. The
types appear in this enclosure in capital letters. The currently selected line from the main
browser also appears in the input field below where it can be edited. The user can thus select
the components that will appear in the composition and then specify the connections by
editing the lines one by one. The connections are specified by naming the input and output
fields of the component. These names are actually names of connections. For instance, the
connections between the IsoThresh and the IsoSurf components can be specified by the

following:

IsoThresh [ S1 ] ( SurfFound ) ( Tag ) ( IsoVal )
IsoSurf [ S1 ] [ SurfFound ] [ Tag ] [ IsoVal ] ( OBJECT )
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The output fields of the IsoThresh component have been given the same names as some

of the input components of the IsoSurf component. Thus the name SurfFound specifies

a connection between the first output field of IsoThresh and the second input field of

the IsoSurf component. Input fields can also be specified to be constant valued. This is

identified by having the =" sign precede the value. For instance a boolean field may be tied

to a constant true value by [ =TRUE .

When a composition is completed, it can be parsed for correctness. The main rules for

a correct composition are as follows:

All the inputs must have either a constant value specified for them, or they need to
be tied to the output of a component. In other words, there are no optional inputs.
Output fields may be left unspecified, however.

The output and input fields that are connected must have the same type. There is
thus strong typing but no type coercion.

Since the parser is one-pass, the components that provide input to other components
must precede them. In other words, if a directed graph were to be constructed from
the components where the edges denoted dependency, the components in the main
browser must be in the topological order of this graph.

Fan-out is allowed, while fan-in is not. In other words, there cannot be input fields

that take input from more than one output field.

The dependency graph between components must be acyclic.

An example of a spart composition is the IsoSurface spart below which extracts iso-

valued surfaces from volumes.

IsoThresh [ S1 ] ( SurfFound ) ( Tag ) ( IsoVal )
IsoSurf [ S1 ] [ SurfFound ] [ Tag ] [ IsoVal ] ( OBJECT )
StepAlongRay [ S1 ]

The IsoThresh is the target behavior function, IsoSurf is the visual behavior function

and StepAlongRay is the position update function. There is a default death function that

kills the spart when it exits the bounding box of the stream.
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4.4.2 The Graphical Interface

The graphical interface provides a more intuitive way of specifying the spart composition
than is provided by the textual interface. Typing is limited to specifying constant input
values. Everything else is mouse driven.

The user has the same components browser available as with the textual interface.
Instead of the text based editor, there is a canvas for graphically editing the composition
(figure 4.7). A user can select a component from the components browser and position
and drop it onto the canvas. The module appears as a colored box in the canvas with
two parts. The top half displays the name of the module and an expansion button, while
the bottom half displays two boxes that display menus when selected by the mouse. The
graphical editor possesses all the editing capabilities of object based drawing programs such

as multiple selection, moving, copying, cutting and pasting.

StepAlongRay L

I=soSurf -

Figure 4.7: The graphical spart editor showing the iso-surface spart composition.

The process of specifying the connection between two components is to select the outputs

menu from one component and choose the particular output field from it. At this stage all
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the components on the canvas which have an untied input that is type compatible with the
selected output field will have their input menu highlighted. If the automatic expansion flag
is set, these components are expanded to show the compatible input fields so as to assist
the user in the selection of a matching input field (figure 4.8). If an input field is chosen
that is not type compatible, an appropriate error message is displayed immediately. Thus,

the user gets an earlier warning than the textual editor in this regard.

IsoThresh L

—

IsoSurf L

Ll

¥ ¥Y
L 2L ]

Figure 4.8: Detail showing how a box has expanded to reveal its compatibly typed
input highlighted (green circle) for a potential connection. The left menu box has
also been highlighted. The expansion also shows which fields have connections
(black circles) and which ones don’t (white circles). The color coded triangles
represent the types of the fields.

If the connection is valid, then submenu items at both ends of the connection will be
added to the input/output menus and a ”"wire” will connect the boxes. The submenu item
will indicate the other end of the connection. For instance, the same connections between
the IsoThresh and IsoSurf components as was presented in the previous section will result

in the following menu items:
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IsoThresh
Inputs menu:
Stream: Tie
<- Streams(1).S1

Outputs menu:
SurfFound: Tie
-> IsoSurf (1) .Execute
Tag: Tie
-> IsoSurf(1l).Tag
Threshold: Tie
-> IsoSurf(1).Threshold

IsoSurf
Inputs menu:

Stream: Tie

<- Streams(1).S1
Execute: Tie

<- IsoThresh(1).SurfFound
Tag: Tie

<- IsoThresh(1) .Tag
Threshold: Tie
<- IsoThresh(1).Threshold

Outputs menu:
Surface

The first item in each submenu is the Tie which, when selected, adds a new item to
the submenu. An already established connection can be disconnected by re-choosing the
connection item in the submenu. Note that since there can only be a single input to a
module, the Tie entry of an input submenu that has a connection is unselectable. The
Stream inputs of the components are tied to a stand-in component called Streams that has
streams as output. This way, the stream inputs of components are given variable names

that can later be bound to loaded streams.

4.4.3 Component Hierarchy

It is possible that a user will often use a particular set of components in combination

and wishes to use this set as a single component in spart compositions. The system allows
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the user to create such components called macros both in the textual and the graphical
composition interfaces.

In the textual interface, when the user defines a macro, the set of components is replaced
by the macro in the main browser, and the macro is added to the components browser.
Which particular category the macro is added to is specified by the user. The inputs and
outputs of the macro are those that were not tied. A separate macro browser allows the
displaying, editing and saving of macros.

In the graphical interface, the user is able to make a subset of the components on
the canvas into a macro. The components are then replaced and the connections to the
remaining components preserved. A separate macro canvas allows the displaying, editing
and saving of macros.

Internally, the macros are expanded into their constituent components at the time the
spart is loaded into the can. Hence, the restriction on component dependency between
components of different categories still applies. A macro behaves just like a component and
can be used in compositions. Macros can also include other macros as long as the inclusions

do not result in a cycle.

4.5 Interaction Modes

In Mizé Match, visualization is an interactive and incremental process. The user selects
spray cans and delivers doses of sparts into the data set, leaving visual objects behind. The
sparts conform to a basic mode of operation: they seek targets, deposit visual objects, and
update their position. This is repeated until the spart dies. This general behavior allows
the control of some parameters that results in different and interesting modes of interaction.
These interactions emphasize the exploratory nature of the visualization process. Table 4.1
summarizes the options that can be set to achieve these interactions.

There are three main categories for the options:

1. Spart Delivery. This category determines how the sparts are to be delivered or

launched. In spray rendering the instrument of delivery is the spray can. For discrete
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Spart Delivery Rate of Delivery AVO Persistence
Spray On Mouse Down Accumulate
Grid While Mouse Down Keep #0fAVOs

Continuous Update #of Sparts
While View Change Update #of Deliveries

While Parameter Change Update #of Positions
While View Change
While Parameter Change

Table 4.1: This table summarizes the options available for achieving different
interactions. A choice is made from each of three orthogonal categories. Spart
Delivery determines whether the sparts are to be delivered from the can or they
should traverse the grid. The Rate of Delivery determines how often new doses are
delivered while the AVO Persistence category determines how long visual objects
should remain in the scene.

visualization techniques, this is suitable and an intuitive metaphor. For continuous
techniques, grid traversal offers a more robust delivery method. For instance, with
iso-surface sparts, if surfaces were generated discretely, i.e., wherever the sparts passed
and satisfied the iso-value criterion, the absence of a surface could not definitely be
attributed to the criterion not being satisfied. It may be that the spart missed the
region and could not generate the surface in that region. Grid traversal ensures the
visiting of all cells in a specified region. There are, then, two options for spart delivery:
e Spray. In this case, the sparts are launched from the can. For this reason, the
user can choose a nozzle shape and size and also specify the number of sparts

per delivery. The basic nozzle shapes available are point, line, circle, and square.

By default, these shapes correspond to a line, a triangular plane, a circular cone

(see figure 4.3) and a square pyramid in 3D respectively. If another option is

set, the 3D nozzle shapes become a line, a rectangular plane, a cylinder and a

parallelepiped. Sparts are constrained to be delivered from within the nozzle.

e (rid. In this mode, only a single spart is delivered and it traverses the grid.
Any position update components and death functions in the composition are
ignored. There are options that can be set in grid mode: we can traverse All

of the grid, a SubVolume or a BallRegion. When a subvolume is to be chosen,
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the user specifies the bounding region in computational space. Similarly, a single
number defines the extent of the region around the ball tethered to the can?.
In all cases, the user can specify subsampling factors for each axis. This means
that only every nth sample will be taken during traversal along that dimension.
Users can also choose one axis along which to animate. Grid traversal occurs
with the 7 dimension varying fastest and the k the slowest. This means that, if
the animate button for the ¢ dimension is chosen, the view will be updated at
every position visited during traversal. If the j or the k£ buttons are chosen, the
view will be updated every time those indexes change.

2. Rate of Delivery. These options define how often the sparts should be delivered.

The options are as follows:

e On Mouse Down. In this mode, one dose will be delivered when the mouse is
first pressed. No more doses are delivered until the mouse is released. This mode
is useful when the spart delivery mode is grid. It ensures that only one spart will
be delivered when the mouse is pressed.

e While Mouse Down. New doses are delivered every time (through the main event
loop) as long as the mouse is pressed. This is the “drag and keep” spraying mode.

e (Continuous. In this mode, the user does not need to keep pressing the mouse.
New sparts will be delivered every time through the main event loop. This is
useful when in an animation mode.

o While View Change. Another way to launch sparts is to do so when the user is
changing the view. Interesting results can be obtained if the can is optionally
fixed at the center of the view. This may prove useful for a direct volume
rendering spart. Another use for this mode is that the view can be changed
as a position-based animation is taking place.

o While Parameter Change. Most components making up a spart have parameter

widgets associated with them. It is very informative to launch sparts as the

2 The spray can is drawn graphically in 3D and can be interactively positioned. It has a sphere at the
end of its directional axis for an alternative means of manipulation (see figure 4.3).
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parameter is being changed and the visual objects are updated at the same time.
For instance, if the redrawing is fast enough, the scale factor parameter of a
vector glyph widget can interactively be changed to find just the right relative
sizes for a particular view. As another example, the iso-surfaces at different

iso-values can be generated as the iso-value widget is varied interactively.

3. AVO Persistence. Another category of options determines how long the visualiza-
tion objects are to be kept in the scene. The options are:

o Accumulate. Any new objects produced are saved and accumulate in the scene.

o Keep #of AVOs. Alternatively, only a specified number of objects can be kept.
This operates as a FIFO, and as new objects are added, others are taken off the
doubly linked list. The result is a flashlight-like effect. Note that this operation
does not affect what has already been accumulated. Only a working buffer is
affected. If, later, the user switches to the accumulate option, the working buffer

is added to the accumulated objects.

o Update #of Sparts. In this mode the working buffer is deleted every nth spart

delivered. There is no spart FIFO.

o Update #of Deliveries. In this mode the working buffer is deleted every nth
delivery. For instance, delivering a single spart and updating every delivery

results in a probe like interaction.

o Update #of Positions. This is a unique mode. Not only is the working buffer
updated every nth position (a position being the spart location during the
iterations of its life-cycle) but the scene is also redrawn. This mode is therefore
used for simple position-based animations. For instance, an ¢j slice can be
produced at every (0,0, k) node. When in this mode, the slices will be animated
from (0,0,0) to (0,0, kyqs). The speed of the animations can be controlled by

specifying a sleep parameter.

o While View Change. This can be used with its corresponding rate of delivery

option to update the working buffer as the view is changed.
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o While Parameter Change. Similarly, this can be used with its corresponding rate

of delivery option to update the working buffer as a parameter widget is changed.

4.6 Extending the System

If there are many components that can be composed to cover the common visualization
techniques, intermediate users will merely be concerned with the compositional aspects.
Novice users do not even have to deal with that complexity, since they can just load
compositions or predefined sparts into the cans. Expert users, on the other hand, will want
to extend the system by writing their own components. Extensibility is very important
since there will almost certainly be a need for a component that is not provided initially.

Component writers write some functions (in C) as a separate module and compile and
link it with the application. A number of application programmer interfaces (APIs) are
provided for accessing and manipulating system internals. The task of describing the new
component to the system is made easier by a separate program called the Configuration
Manager (CM). It presents an easy-to-use graphical interface to the process of defining what
the particulars of a component are, and then generates code for this component. Using the
CM, definitions can be recalled and modified graphically rather than by manually editing
files.

When CM is first run the user is presented with the top-level window in figure 4.9. The
user specifies the name of the component, what category the component will belong to, and
whether wrapper code for the top-level user function is required. Next, the user can proceed
to specify the inputs, outputs, state variables, the user functions and the parameter widgets
the component needs.

For the inputs, outputs and state variables, the user enters the names of these variables
and their types. The names are used during graphical spart composition. Also, there
exist convenience functions that return the index into the corresponding arrays based on
the names. The component writer is thus able to reference these with names rather than

indexes which may change as the component is modified (figure 4.10).
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Figure 4.9: The top-level window of the configuration manager. The round button
indicates that wrapper code is desired.

Figure 4.10: The window to enter and indicate the number, names and types of
the input variables of the component.
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The user specifies the function names such as the top-level user function and the
initialization function. The top-level user function is required while the others are optional.
Finally, the user interactively designs the control panel where the parameter widgets are to
reside. The task of creating a panel and placing the control widgets can be time consuming
and error prone if done through procedure calls, especially when one considers that the
panels may evolve over time and go through changes. For this reason, the design of the
control panel is graphical and interactive.

When the user is satisfied with the specifications, the component definition can be saved.
There exists one ASCII definition file for each component. When the program is compiled
to incorporate the module into the system, these component definition files are gathered

into an array so that component particulars can be accessed at runtime.
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5. Implementation

The previous chapter presented a high level view of the MizéMatch environment. In

this chapter, some of the more important implementation details are discussed.

5.1 Data Streams

All scientific visualization environments operate on native data types based on a data
model of scientific data. In this section, the structure of the main data type of Miz&Match

called a stream is described.

Figure 5.1 shows the data structure of a stream. There are two types of streams, as

typedef struct _streamList {

Str title; /* name of stream */
StreamType strType; /* type of stream */
union {
Structured lat;
Unstructured fem;
¥t
CoordSysPtr coordSys; /* coord system */
Bool needToConvert; /* need conversion 7 */
int inUse; /* stream in use by a spart */
struct _streamlList *next;

} StreamList;

Figure 5.1: Data structure of a stream.

suggested by the union in this structure. Structured streams are basically multidimensional
arrays of single scalar or vector values. The Unstructured streams would contain explicit
connectivity information, but are not supported by the stream API routines currently
implemented.

Since Mizé/Match was designed primarily for meteorological visualization there is the
concept of a coordinate system (a map projection) for the data (coordSys member).
Meteorological simulation data assumes that a specific projection has been used during
the simulation. This projection becomes the native coordinate system of the data. The

user can visualize the data either in its native projection or in another projection in which
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case transformations take place on the fly as the spart is traveling in the current coordinate
system.

The structured stream’s data structure is shown in figure 5.2. Redundant information
is kept in the structure so that frequently required quantities need not be computed by the
spart components. This is important because the components are fine grained and will be
called many times during the life-time of a spart (e.g. the xysize is derivable from the dims
array). Index arrays assist in the grid traversal mode of spart execution. The coordinate

type of structured streams define whether they are regular, rectilinear or curvilinear.

typedef struct _lattice {

int nDim; /* number of dimensions */

int *dims; /* dimensions in each dir */
long xysize; /* the prod of x and y dims */
int curIndexes[3]; /* current comp space indexes */
int lows[3]; /* Min indexes of sub-volume */
int highs[3]; /* Max indexes of sub-volume */
int subs[3]; /* subsamples */

Data data; /* the data array */

Coords coords; /* the coordinates array */

} Structured;

Figure 5.2: Data structure of a structured stream.

The spart components only operate on single scalar values or on a vector of two or three
values. Having only these types to operate on keeps the component code simpler. In many
cases, users are only interested in a few of the parameters of a multiparameter data set at
any one time. This way, the whole data set does not need to be loaded. For instance, the
NORAPS model that has been used during this study generates 12 two dimensional and 6
three dimensional parameters for a single simulation time. Loading all of the parameters
is not usually necessary and would be wasteful of precious RAM. Further, separation of
parameters allows different position update functions and death functions based on different
parameters of the same data set.

Another tradeoff between memory and execution time is the saving of scaled data. Many

visualization behaviors use a color map to map the data values to color. The data values
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are scaled to the range 0-255 and the value used as an index into a 256 bucket color table.

To save execution time, data are prescaled and stored as part of the stream.

5.2 The Spray Can

One of the main ingredients of spray rendering is the virtual spray can which is used to
focus and deliver the sparts into the data set. It forms the tool that is used for interaction.
Depending on what attribute and mode settings have been specified, different interactions
can be achieved. The spart contents of the can determine the visualization result of these
interactions and essentially define the nature of what the tool is. In this section, the

important aspects of the can structure are described in detail. The complete structure is

shown in figure 5.3.

typedef struct _can {

FourVector pos; /* position */

FourVector dir; /% direction */

float CanCenterPointDist; /* distance to the ball %/

float NozzleTwist; /* nozzle twist */

int SpartDist; /* spart distribution */

Bool OrthoSpray; /* spart directions parallel 7 */
ObjList AVOS; /* head of the AVOs */
ObjPointers *UndoStack; /* the for undo operations */
GeoObject *AVOSLastKept; /* pointer to the accummulated avos */
Bool DrawAV0s; /% draw AVOs 7 %/

Bool DrawCan; /* draw can 7 */

Color *colMap; /* color map for this can */

int colMaplName; /* name of color map */

SprayMode sprayMode; /* spray mode */

Str spartName; /* spart name loaded */
ProgramList *¥programs; /* the programs */

Bool lock[4]; /* position locks on can */
strcut _can *next;

} Can;

Figure 5.3: Structure of a can.

When a can is created, the currently selected spart from the spart browser becomes its
content and is identified by spartName. The can has a position in world space and can be
moved and oriented. It is placed at the center of the current view when first created. The

dir element forms the axis of the cone associated with the can, and indicates the general
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direction in which the sparts will be delivered. The CanCenterPointDist element specifies
the distance to a ball that is tethered to the can for an alternative means of orienting the
can. There are several types of nozzles that can be chosen and their sizes can be set. The
user can thus aim and focus the can into a particular area of interest and release sparts
selectively. The number and the pattern of distribution of sparts can also be set. The
display of the can and its cone may be switched on and off.

The sparts will manifest themselves in the form of abstract visualization objects (AVOs)
and get added to the can’s AVOS. This is a doubly linked list of objects that can be optionally
rendered. The DrawAV0S flag is used to temporarily hide the AVOs so as to prevent image
clutter, or to turn it on and off to compare different spart manifestations. Considering that
the user may have created several cans which may have hidden or visible AVOs, at a certain
stage of the visualization the renderer renders the visible cans and the visible AVOs. The
scene that is rendered is summarized in figure 5.4 where the solid boxes are visible cans or
AVOs and are rendered, and the dashed boxes stand for cans and AVOS that have been

temporarily hidden.

can1 | Avos  =——cana

,,,,,,

Can 2

Can3

Figure 5.4: This figure illustrates the scene that is rendered. Solid boxes are
visible cans and AVOS and dashed boxes are those that have been temporarily

hidden.

Another way of uncluttering an image is to undo some of the spraying. Each dose of



56

spray is pushed on to the UndoStack. Users can undo a dose of spray by popping this
stack. The AVOSLastKept member is used as the pointer to the accumulated AVOs. Any
probe-like behavior (as discussed in section 4.5) does not affect the accumulated AVOs.

A non-editable color map from a list of color maps is associated with each can. The
spart components that use one for mapping data values to color use the can’s color map.
This limits all the components making up the spart to a single color map. Alternative
schemes could be to:

e associate one color map with each stream. This would require the binding of a color

map to a stream when the latter gets loaded. More than one color map would then
have to be displayed as feedback if a particular spart is using multiple streams with

different color maps.

e make the color map an editable widget associated with each component that needs
one. The setting of each component’s color maps would be time consuming and the

component code would be more complex.

e define a color map type and write a component that produces an editable color map.
The output of this component can then be sent as input to components that require
it. The composition would be more complex and the spart execution slower.

The sprayMode element is used to obtain different interactions with the can. Controls es-
tablish choices for whether the sparts should be sprayed from the can or traverse the grid,
the type of delivery rate and also the persistence of the visualization objects. Combina-
tions of these choices result in very different interaction techniques using the same tool as
discussed in section 4.5.

Perhaps the most important element in this structure is the programs element. This
is what characterizes the contents of the can, namely the particular spart it contains. The
spart may be a predefined spart or a composed spart consisting of components. As the
name suggests, the spart’s overall behavior from birth to death is in effect a program that
is executed when the spart is launched from the can. Sparts are discussed in greater detail

in the next section.
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5.3 The Sparts

Aside from the spray can, the other main ingredient of spray rendering is its contents,
the smart particles or sparts. These determine the visualization. How the spart behaves is
determined by a program that is associated with the can, so that different cans loaded with
different sparts will produce different effects. The sparts, then, define the kind of tool each
spray can is.

There are two kinds of sparts. Predefined sparts are ones that are unmodifiable at
runtime. They are monolithic and self contained in the sense that once control is given to
the spart (it is born), it will return to the spart executive only when it dies. Composed
sparts, on the other hand, are made up of components which do not know anything about
each other. The program consists of the repeated execution of these components in a certain
order until the spart dies. Before going into more detail about the two types of sparts, an
analysis of the ProgramList data structure that appears as an element in the can structure
will be given.

The ProgramList data structure is shown in figure 5.5 The dichotomy between a
predefined and a composed spart is immediately obvious from the union that appears in this
structure. The reason for having a list of programs in the can’s data structure rather than a
single program is that sparts may spawn new sparts of a different kind during their lifetime.
In the case of a composed spart, this may be achieved by having the Spawn component
appear in the composition (see section 6.1.4).

The spartPool element is the queue of sparts that are to execute the particular program.
The SpartList structure is simply a list of position and direction pairs that indicate the
initial state of the spart at the time of its release. In a predefined spart, the top-level
function uses this information and decides what to do with it. In a composed spart, the

state of the current spart is updated by a position update function.
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Str name; /* name of spart */
SpartList *spartPool; /* queue of sparts to execute */
Bool predef; /* is it predefined 7 */
FormsWindow formsWindow; /* widget container */
union {

Predefined predefSpart; /* predefined spart */

Composed compSpart; /* composed spart */

}ps
struct _programList *next;

} ProgramList;

Figure 5.5: Structure of ProgramList.

5.3.1 Predefined Sparts

Predefined sparts are self-contained, monolithic sparts. When one is launched from the
can by the spart executive, what it will do and when it will die are all determined internally.
All the different categories of components that appear in a composed spart are embodied
in it.

The structure of a predefined spart is shown in figure 5.6. A predefined spart is registered

with the system by providing the values for the members of this structure.

typedef struct _predefSpart {

Str name; /* name of spart */

int noStreams; /* number of streams */

Str inNames [MAX_MOD_INPUTS]; /* input names */

InOut inTypes [MAX_MOD_INPUTS] ; /* input types */

StreamList **kstreams; /* pointers to the streams */
int nolnterVars; /* number of internal vars */
Str interVarNames [MAX_MOD_INOUTS]; /* inter var names */

InOuts interVarTypes [MAX_MOD_INOUTS]; /* inter var types */

void *xinterVars; /* pointer to inter vars */
void (* behav) (PredefinedPtr predef);/* the behavior function */
void (* init) (PredefinedPtr predef);/* initialization function */
void (* createForm) (PredefinedPtr predef);/* creates the form */
void (* setForm) (PredefinedPtr predef);/* sets the form */

void (* getParameters) (void) ; /* gets the parameters */
Widget *paranidgt ; /* parameter widgets */

} Predefined;

Figure 5.6: Structure of a predefined spart.

The noStreams element specifies the number of streams that the predefined spart
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operates on. These will be bound by the user to currently loaded streams at the time
the spart is loaded into the can. The names and types of streams are provided so that
streams can be identified and accessed through convenience functions. The types ensure
type compatibility when streams are bound.

Internal state variables are provided so that the execution of the predefined spart can
depend on its state. This is necessary since there may be multiple instances of a predefined
spart.

The most important element of the structure is the behav element, which is the top-
level call to the spart. This function will be called once, and it will return when the spart
dies (having generated its AVOs). The function init does internal state initialization. The
createForm function creates the control panel holding the parameter widgets that the spart
may require. The function setForm sets the initial state and values of the widgets contained
in the control panel and the parameters are obtained by the getParameters function.

It is helpful to look at the execution model for a predefined spart at this stage. The
sparts are delivered in doses determined by the spray mode settings (see section 4.5). These
settings determine the number of sparts and their initial positions and directions. The
sparts to be delivered are added to the can’s program’s spart pool. The spart executive
processes this pool as described in the pseudocode in figure 5.7.

There are several things of note in this pseudocode. The widget parameters are obtained
once for all the sparts in the dose of delivery. This is more efficient than having the top-
level functions obtain their parameters at each call when there are many sparts in a single
delivery.

The “while” loop is necessary because the can’s program list may grow due to spawning.
If the predefined spart is to spawn sparts that are of the same type, these are merely added
to the spart pool of the current program. Otherwise, a program is added to the can together
with its spart pool.

The initial position and direction of the spart is used to intersect it with the bounding

boxes of the streams it depends on. These entry and exit point pairs need to be processed by
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void sendPredefSparts(void) {
/* get the widget parameters */
for (each program in the can’s program list)
call getParameters function;

/* handle the programs */
while (not done) {
get a program from the can that has a non-empty spart pool;
if (no such program exists)
we are done;
else {
for (each spart in the spart pool) {
if (AVO persistence mode is number of sparts type)
delete the AVOs in the working buffer;
if (spart delivery mode is grid type) {
call initialization function;
call behav function;
}
else {
get the initial position of the spart in all its streams
if (spart alive) {
call initialization function;
call behav function;
}
}

remove the spart from the spart pool;

}

Figure 5.7: Pseudocode for the execution of predefined sparts.

the spart if it depends on more than one stream. If the ray does not intersect the bounding
box of any of the streams the spart is dead and can be removed from the spart pool.
The sparts are handled sequentially until their death. This assumes that their behavior

does not depend on the states of other sparts, i.e. there is no communication between them.

5.3.2 Composed Sparts

Composed sparts are constructed from independent basic building blocks. The user
composes a spart by connecting the inputs and outputs of these components. The overall
behavior of the spart is determined by the combination of these components. The compo-

nents are executed at each location the spart occupies during its life-time, exchanging data
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in the process. Since they operate locally, their granularity are fine.

These components have been based on ideas from spray rendering. A typical spart has a
life-time as depicted in figure 4.4. Once a spart is born, it may search for target features in
the data set. It may then produce AVOs that can be rendered. These behaviors take place
at the current location of the spart. The spart may then update its position and decide
whether to die or not. Note that the figure has been simplified. For instance, there may
be sparts that do not have a target function and whose visual behavior function executes
unconditionally, or there may be death functions that depend on multiple conditions. In
the light of this flow diagram, the components have been organized into four categories.

1. Target behavior functions are feature detection components. They usually test to see
if a condition is satisfied at the current location of the spart. A boolean output is set
accordingly.

2. Visual behavior functions are the key visualization components. They are responsible
for the output of the AVOs. Because they should take effect conditionally, each has a
boolean input. They can then be executed only if a target function is satisfied. They
usually make the AVOs they produce available as output so that other components

can operate on them.

3. Position functions update the current position of the spart. These can be absolute or

dependent on the data as in vector fields. They can also be nondeterministic.

4. Death functions determine when the spart should die. There is also a birth function

in this category that spawns new sparts.

typedef struct _program {

ModList *mods [NO_MOD_CATEGORIES]; /* modules in the composition */
Map *map ; /* address mappings */

int noStreams; /* number of streams it needs */
Str names; /* their names */

StreamlList  **streams; /* the streams */

} Composed;

Figure 5.8: Structure of a composed spart.
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The composed spart program structure (figure 5.8) is built when a composed spart is
loaded into the can. The array mods holds pointers to the list of components (or modules) in
the composition each in its own category. The ModList is simply a list of Module structures.
The map element is used to do the mapping between the inputs and outputs of the modules.
The streams that the composed spart will operate on also appear in this structure.

As mentioned in section 5.3.1, it is the spart executive that processes the spart pool and
executes the program. In the case of a composed spart, the pseudocode is as in figure 5.9.

There are several things that distinguishes this pseudocode from that of predefined
sparts. Since a composed spart is made up of components, each of these components
execute. The target components are executed first followed by the visual, position and
death components. Within each of these categories, the modules execute in the order of
their data dependencies.

While the predefined sparts handle the grid traversal mode internally, the components
must rely on the spart executive. In this mode, the position update and death functions of
the composition are ignored. Instead, the spart executive updates the current position of
the spart based on the walk through of the computational grid. When the grid region of
interest has been traversed, the spart dies.

In grid traversal mode, the user can choose to turn on animations based on the grid
traversal. The scene can be updated at every change of value of the i, j, k indices of
computational space. For this to take effect, the AVO persistence mode has to be such
that the AVOs are deleted depending on the number of positions. In spray mode, the
animation again takes place if the AVO persistence is in this mode. In other words, every
so often along a spart’s path, the scene is updated and the AVOs generated so far are
cleared.

The structure of a component is called a Module and is very similar to the predefined
spart structure (figure 5.10). The differences reflect the fact that modules are used in
compositions. They therefore have outputs as well as inputs and internal state variables.

The module also has a category and instance number.
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void sendMixMatchSparts(void) {
/* get the widget parameters */
for (each program in the can’s program list)
for (each module in each category)
call getParameters function;
/* handle the programs */
while (not done) {
get a program from the can that has a non-empty spart pool;
if (no such program exists)
we are done;
else {
for (each spart in the spart pool) {
if (AVO persistence mode is number of sparts type)
delete the AVOs in the working buffer;
if (grid mode) {
set region of interest;
for (each module except posupdate and death cats)
call init function;
while (all the incarnations of the spart are not dead) {
for (each module except posupdate and death cats) {
call behav function;
update stream indexes;
if (animate and AVO persistence mode is number of positions) {
draw the scene;
delete the AVOs in the working buffer;

}

}

else {
get the initial position of the spart in all its streams;

if (spart is alive) {
for (each module in each category)
call init function;
}
while (spart is alive) {
for (each module in each category)
call behav function;
if (AVO persistence mode is number of positions) {
draw the scene;
delete the AVOs in the working buffer;
}
}
}
remove the spart from the spart pool;

}

Figure 5.9: Pseudocode for the execution of composed sparts.
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typedef struct _moduleType {

Str name; /* name of component */
ModuleCat cat; /* its category */

int instance; /* instance number */
int nolnputs; /* number of inputs */
InOut inNames [MAX_MOD_INPUTS]; /* names of inputs */
InOut inputs [MAX_MOD_INPUTS]; /* types of inputs */
int noOutputs; /* number of outputs */
Str outNames [MAX_MOD_INPUTS]; /* names of outputs */
InOut outputs [MAX_MOD_OUTPUTS] ; /* types of outputs */
void **inOuts; /* addresses */

int nolnterVars; /* number of variables */
InOut interVarNames[MAX_MOD_INTERVARS]; /% their names */

InOut interVarTypes[MAX_MOD_INTERVARS]; /* their types */

void s*kinterVars; /* their addresses */
void (* behav) (Module *mod) ; /* behavior function */
void (* init) (Module *mod); /% initialize */

void (* createForm) (Module *mod) ; /* create the forms */
void (* setForm) (Module *mod) ; /* set the forms */
void (* getParameters) (Module *mod); /* get the parameters */
Widget *paranidgt ; /* parameter widgets */
} Module;

Figure 5.10: Structure of a component.

A spart composition consists of specifying what modules to use and how these modules
depend on each other. The dependency is specified by tying outputs to inputs. During
the execution of the composed sparts the modules need to know where to read the inputs
and where to write the outputs. This is achieved by the Map structure that appears as an
element in the Composed structure. Figure 5.11 illustrates abstractly the simple memory
scheme used for inter-component data transfer.

Each module allocates as many pointers as it has inputs and outputs in the buffer pointed
to by the inOuts element. These pointers are then assigned values during the parsing of the
composition. When an output field is encountered during parsing, if the connection name is
not already on the map, space is allocated for that output data type. The address element
of the map as well as the particular output element of the inOut buffer is made to point to
the allocated space. When an input field is encountered, the connection name is looked up
in the map, and the address field is assigned to the relevant field in the inOut buffer. In
this way, during its execution, the module obtains the input value by merely dereferencing

the relevant inOut buffer element.
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Module

inOuts

address

A data element

Figure 5.11: Diagram illustrating how a module looks up the address of an input
field from the map structure

5.4 Component Writing

In Mizé Match, the user has to provide a top-level function called the user function that
is the heart of the component. This function can be written as a normal C function whose
arguments will hold the inputs, outputs, state variables and an array of parameters. In this
case wrapper code is generated automatically by the configuration manager to provide the
arguments to this function. If users would rather do away with this extra level of function
call and work directly with some of the internals for efficiency, they can write a top-level
function with one argument which is a pointer to either a Module or a Predefined structure.

Some components may provide a function that is to be executed once for each spart in
the delivery as an initialization. Usually this would be the case if the component would like
to keep an internal state and wishes to initialize that state variable.

Many components will require parameters that can be controlled through control wid-
gets. If that is the case, there must be a function that creates the forms when the spart is
loaded into a can. Users do not need to concern themselves with the body of this function

as it is generated by the configuration manager. The control widgets may need a function
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that is user dependent to set some default values for the widgets. Users will need to provide
a function for this purpose.

One final function that needs to be specified if the user function will depend on some
parameters is a function that will be called at the beginning of a delivery once, for all the
sparts. This function will call appropriate widget functions so as to stufl the parameters
array that the top-level user function needs. This way of accessing parameters was chosen
over the alternative of the user function accessing the control widgets each time since some
of these calls can be expensive and components will likely execute many times during the
delivery. In the chosen way, parameters are obtained once at the beginning and the user
function accesses them by merely indexing into an array of parameters.

The data types that MizéMatch allows as inputs and outputs are as follows:

e Byte. This is equivalent to unsigned char.

e Short.

o Int.

o Long.

o Float.

e Double.

e Boolean. This is equivalent to an integer.

e Stream. The stream data type.

e Vector. A vector of three floats.

e String. An array of chars.

o Object. The geometry data type.

Inputs are passed by value to the user function except those that are structures such as

stream,vector,string and object which are passed by reference.
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5.4.1 Configuration Manager

The component writer uses the Configuration Manager (CM) to make the specifics of a
component known to the system (see section 4.6). The CM uses this information to generate
a component definition file. There may be up to two more files that are created. If the
component writer has requested wrapper code or if the function has a control panel, then
a file contains generated code. One function acts as a wrapper function for the top-level
user function and supplies the arguments to it (figure 5.12). This hides some of the internal
structure from the user. A second function is for the creation of the control panel holding

the parameter widgets (figure 5.13).

/% koo ok ok sk ok sk ok ok Kok Kok KKK KKKk ok ok kokokokokokskok ok ok Kok kKR KKK kK ok /
/* */
/* The top-level function called by spray */
/x x/
/% koo ok ok sk ok sk ok ok Kok Kok KKK KKKk ok ok kokokokokokskok ok ok Kok kKR KKK kK ok /
void
uf_IsoSurf (Module *mod)

{

StreamList *Stream;

Bool Doit;

int Index;

float Threshold;

GeoObject *Surface;

/* get inputs */

Stream = (StreamlList *) (* (mod->in0Outs)) ;
Doit = *((Bool *) (*(mod->inOuts+1)));

Index = *((int *) (* (mod->inOuts+2)));
Threshold = *((float *) (* (mod->inOuts+3)));

/* get outputs */
Surface = (GeoObject *) (¥ (mod->inOuts+4));

/* call to the user function */
IsoSurf (Stream, Doit, Index, Threshold, Surface, mod->paramWdgt->params) ;

Figure 5.12: Example wrapper code generated by the configuration manager.
The details of the internal structure are thus hidden from the user who merely
writes the function IsoSurf with the arguments based on the inputs, outputs and
state variables.
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/********************************************************/

/* */
/* The create forms function. */
/* */
/A ook okok ko sk ko o kR skok ok ok ok ook ok ok ok ok ok o ook ok Kok sk ok sk ok o ok Kok ok ok ok ok ok K Kok ok /
void

cf_IsoSurf (Module *mod)

{

FL_OBJECT *obj;

mod->paramildgt->form = £f1_bgn_form(FL_NO_B0X,300.0,240.0);
obj = f1l_add_box (FL_UP_B0X,0.0,0.0,300.0,240.0,"");
strcpy (mod->paramiidgt->paramNames [0], "Name") ;
mod->paramildgt->paramObjs[0] = obj =
f£1_add_box (FL_FRAME_B0X,50.0,170.0,200.0, 40.0,"");
strcpy (mod->paramiidgt->paramNames [1], "TranspS1") ;
mod->paramildgt->paramObjs[1] = obj =
f1_add_slider (FL_HOR_SLIDER,20.0,100.0,26 0.0,30.0,"Transparency");
fl_set_object_align(obj,FL_ALIGN_TOP) ;
f1_set_call_back (obj,isoSurfSliderVal, (long)mod);
strcpy (mod->paramiidgt->paramNames [2], "TranspV");
mod->paramildgt->paramObjs[2] = obj =
f1_add_input (FL_NORMAL_INPUT,110.0,80.0,8 0.0,20.0,"");
fl_set_object_boxtype (obj,FL_FRAME_BOX) ;
fl_set_object_color(obj,9,9);
obj f1_add_text (FL_NORMAL_TEXT,20.0,80.0,30.0,20.0,"0");
obj f1_add_text (FL_NORMAL_TEXT,250.0,80.0,30.0,20.0,"1");
strcpy (mod->paramiidgt->paramliames [3], "ColCh") ;
mod->paramildgt->paramObjs[3] = obj =
f1_add_choice (FL_NORMAL_CHOICE,70.0,20.0, 160.0,30.0,"Color");
fl_set_object_boxtype (obj,FL_SHADOW_BOX) ;
fl_set_object_align(obj,FL_ALIGN_TOP) ;
f1_set_call_back (obj,isoSurfColChoiceCB, (long)mod);
fl_end_form();

Figure 5.13: Example control panel creation code generated by the configuration
manager. Objects have been given names dependent on the component generating
it so that multiple instances can exist.

5.4.2 Application Programmer Interface (API)

There are a number of APIs for the use of the component writer. These are libraries that
provide the means for a new component to access the system-specific data structures. Some
are merely convenience functions to hide some of the structural detail from the user, others
facilitate AVO creation and data interpolation. These functions are listed in appendix A.

Here, the different APIs and their purposes are summarized:
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e Stream API. This API provides the means to access the stream data structure.
Perhaps the most often needed operation by a component is the data value at a
certain spatial location. There are functions that return the scalar or the vector
value at a given location. These use bilinear and trilinear interpolation in the case of
regular and rectilinear 2D and 3D structured grids respectively. Since the the current
implementation of Mixé&Match is focused on meteorological data, transformations
take place on the fly, if necessary, to locate the point in its native coordinate system.
Other convenience functions provide a means to access members of the stream data

structure.

e Geometry API. The Visual behavior components will normally output visualization
objects that the renderer can render. There are a set of these objects that are available
for use by the component writer including point sets, line sets, triangular meshes, and
polygon sets. The geometry API consists of functions that define the objects and
functions that set their attributes such as color and transparency. The component
writer calls one of the geometry definition functions to create a set of geometric
primitives. These get attached to the AVO list of the spray can from which the
sparts containing the component have been delivered. Any attribute setting functions
called apply to the most recent object defined. Attributes can be set for the whole
object or for portions of the object. For instance, the color of a polygon object can
be set such that a single color applies to the whole object. Alternatively, a different
color can be supplied for each face or for each vertex.

e Module API. These are mostly convenience functions that enable the component
writer to access input and output variables and parameter objects of components
(modules).

e Predefined Spart API. Similarly, these are mostly convenience functions that
enable the component writer to access input and output variables and parameter

objects of predefined sparts.

e Can API. This API provides functions to obtain or set spray can properties.
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e Miscellaneous API. There are other utility functions that are available such as safe

memory allocation functions and error message reporting functions.

5.5 Performance

The particle nature of spray rendering and the fine granularity of the components make
efficiency a concern. Essentially, the components making up the program must be executed
at each location during the life-cycle of a spart. Although each of these components is usually
quite simple, the overhead of calling these functions repeatedly can cause inefficiencies.

Another source of inefficiency is that the components producing visualization objects
must operate locally. Consider the vector visualization technique of streamlines. A prede-
fined spart could collect each point along the path of the spart and request a line-set object
consisting of those points. An a priori estimate and allocation of storage could save on the
number of system calls made for memory allocation. A MizéMatch spart that accomplishes
the same task, on the other hand, would consist of a component that outputs a line seg-
ment at the current location and a component that updates the current location. Hence,
the streamline is produced in piecemeal fashion as many small line-set objects rather than
a single line-set object. There are three problems with this:

1. The rendering time of the scene suffers as the number of objects increases because of

the overhead of traversing the list. The memory requirement for this representation

is also higher.

2. The internal points making up the streamline are repeated, causing a doubling of

storage required.

3. The visual component works independently and requires a system call to memory
allocation each time it outputs a line segment.

A solution for the first problem is to gather objects with similar attributes into a single

object. This is called object compaction, and the scheme is illustrated in figure 5.14. The

compaction takes place after each delivery. Only the objects generated during a delivery

are compacted automatically. The user may also request the compaction of the objects in
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the scene from a menu. The time required to do the compaction is more than offset by the

time saved for rendering the uncompacted scene. Memory savings can also be enormous.

Object
—= point
Object
Object —>
—= points
—= point
O
O
O

Figure 5.14: To improve rendering speed, objects with similar attributes are
gathered into a single object. The compaction shortens the list of objects to be
rendered.

Table 5.1, shows the results of an experiment on object compaction on some AVOs.
The first and second columns of the table list the type and number of primitives in a scene
while the third column shows the time to compact the scene in seconds. The Before and
After columns list the number of AVOs, the total memory occupied by the list of AVOs
in megabytes and the time to draw the scene in seconds before and after compaction has
taken place!. The primitives are points, lines and polygons. The distinction between colored
and monochromatic primitives is that in the former, there is a color associated with each
primitive, whereas in the latter, a single color applies to all primitives within the object.

Table 5.2 summarizes the results of the experiment by showing the ratio of pre-
compaction to post-compaction values for memory usage and rendering time for the cases
with the highest number of primitives in table 5.1. It can be seen that the memory and time

savings are considerable. For instance, non-compacted colored points are about 4 times as

! The experiment was carried out on an Onyx Reality Engine running on a single CPU.
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Primitive Time To Before After
Type | Num(K) | Comp(s) | AVOs(K) | Mem(M) | Draw(s) | AVOs | Mem(M) | Draw(s)
Colored points 8.00 0.09 8.00 0.768 0.10 & 0.193 0.01

40.00 0.49 40.00 3.840 0.50 40 0.963 0.03
80.00 1.00 80.00 7.680 1.00 80 1.926 0.06
Mono points 8.00 0.10 8.00 0.768 0.10 8 0.097 0.01
40.00 0.45 40.00 3.840 0.50 40 0.483 0.02
80.00 0.92 80.00 7.680 1.00 80 0.967 0.03
Colored lines 8.00 0.16 8.00 1.006 0.13 24 0.482 0.02
40.00 0.78 40.00 5.279 0.63 120 2.408 0.10
79.99 1.60 79.99 | 10.559 1.26 | 240 4.817 0.19
Mono lines 8.00 0.15 8.00 0.960 0.12 24 0.290 0.01
40.00 0.70 40.00 4.799 0.61 120 1.450 0.06
79.99 1.42 79.99 9.599 1.18 | 240 2.900 0.13
Colored polys 0.89 0.02 0.89 0.227 0.03 6 0.163 0.01
4.45 0.14 4.45 1.133 0.13 26 0.814 0.05
8.90 0.26 8.90 2.265 0.27 51 1.628 0.10
Mono polys 0.89 0.02 0.89 0.190 0.02 6 0.116 0.01
4.45 0.13 4.45 0.949 0.11 26 0.577 0.02
8.90 0.25 8.90 1.898 0.22 51 1.154 0.04

Table 5.1: This table shows the results of an experiment on object compaction.
The number of AVOs, memory and the time to draw the AVOs are compared
before and after object compaction. Object compaction saves memory and results
in faster rendering times after an initial cost.

‘ Primitive ‘ Memory ‘ Time to draw ‘
Colored points 3.99 16.7
Mono points 7.94 33.3
Colored lines 2.19 6.6
Mono lines 3.31 9.0
Colored polys 1.39 2.7
Mono polys 1.64 5.5

Table 5.2: This table summarizes the results of the experiment on object com-
paction. The ratio of pre-compaction to post-compaction values of memory and
rendering time are give. Object compaction saves memory and results in faster
rendering times.

big and may require about 17 times as long to render. The memory and rendering time

savings for monochromatic points are even better. The time to compact a list of AVOs is

about the same as the time to render them as uncompacted.
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| Dataset | Spart Primitives | AVOs | Memory(M) | Execution(s) |
Sphere ColMapPoint 8000 8000 0.768 0.18
Dust 8000 1 0.192 0.04

Temperature | ColMapPoint 143008 143008 13.729 3.43
Dust 143008 1 3.432 0.85

Sphere IsoSurf 1090 890 0.190 0.17
PrelsoSurf 1090 1 0.115 0.06

Temperature IsoSurf 9184 8854 1.791 2.84
PrelsoSurf 9184 1 1.047 0.65

Table 5.3: This table compares predefined sparts to composed sparts. ColMap-
Point and IsoSurf are composed sparts while Dust and PrelsoSurf are their
predefined counterparts. Predefined sparts are faster to execute and produce com-
pact AVOs requiring less memory.

The compaction routines could be altered to also solve the second problem mentioned
above ( the repeating of internal streamline points and corresponding storage expansion).
As the objects are gathered, repeated points could be ignored. However, this would require
a search to see whether a new point already exists each time a new object is integrated.
This is too costly to justify the saving of memory.

Another experiment was conducted to compare composed sparts to predefined sparts
that basically accomplished the same task. The composed sparts ColMapPoint and Iso-
Surf were compared to the predefined sparts Dust and PrelsoSurf respectively. The
ColMapPoint spart consists of two components while the IsoSurf spart contained three
components (see section 6.2). The sparts were tried on two data sets: the sphere data set
was of dimensions 20 x 20 x 20 while the NORAPS temperature data was 109 x 82 x 16.
The times are given in seconds for the generation of the scene by grid traversal and does
not include compaction and rendering times. The predefined sparts are faster in execution

and produce already compact scenes that require less memory (table 5.3).
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6. Components, Compositions and Visualizations

One of the design goals for this environment was functionality. For this purpose,
many standard visualization techniques have been implemented in MizéMatch. Some
techniques, such as streamlines, are inherently particle based and naturally map to the spray
rendering paradigm. Others, such as the marching cubes iso-surface generation algorithm,
are not particle based but can be adapted to also work in the spray rendering framework.
This chapter lists the components that have been implemented and presents some sample

compositions and visualizations that use them.

6.1 Sample Components

In designing components, it is important to bear in mind that there is a tradeoff
between flexibility and efficiency. Usually, the finer in granularity and the more general
the component is, the more flexibly it can be used in compositions. However, this implies
that there are more components that make up a construction and hence more functions to
be executed at each location. Another efficiency concern is to avoid repetition of compute
intensive tasks in components. If a component calculates some value at some expense
which might be useful for another component, it is desirable to output such values so that
a component receiving them as input does not repeat the calculation. However, this makes
the receiving component more dependent on others and restricts its flexibility.

In the following, the components that have been implemented are listed by category.
These were implemented by breaking down a visualization technique into relevant compo-
nents that fit the spray rendering paradigm. This decomposition allows the components to

be used in other compositions.

6.1.1 Target Components

Target components are feature detection components, and output a boolean if a certain

condition is satisfied. Only a few target components have been implemented so far. These
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are as follows:

IsoThresh. This component takes a stream as input and returns true if the current
spart position is in a cell that would produce an iso-value surface as in the marching
cubes algorithm. The component also outputs the index to the case table as well as
the iso-value being sought. Parameters that can be set are the iso-value and an option
that performs automatic iso-value selection.

Counter. This component is useful as a counter. The number of times the component
has been executed is used in a relation to determine whether the target condition has
been satisfied. The count and the relational operators are parameters that can be

specified.

GetMagnitude. This component is an example of a derived stream. The input is a

vector stream and the output is a scalar stream that is the magnitude of the input.

Or. Some logical operators have been implemented as target components so that
the latter can be logically combined. This component outputs the logical OR of two
boolean inputs.

And. Outputs the logical AND of two boolean inputs.

Not. Qutputs the logical inverse of a boolean input.

6.1.2 Visual Components

Visual components are at the heart of the visualization technique. They usually accept

a boolean as input and output some visualization objects if the condition is satisfied. The

following visual components have been implemented.

OrthoSlice. This component outputs a slice that is orthogonal to an axis. The slice is
output as a grid object and is invisible. The inputs are a stream and a boolean and
the output is a geometry type. Parameters specify the resolution of the grid, the axis
for the slice and whether the slice should be along the axis of the current projection

or the original projection.
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RubberSheet. This component takes a surface, and performs a displacement along
the normal direction to the surface. It takes as input a stream, a boolean and a
geometry and outputs the geometry. Parameters specify the range and scale of the
displacement.

ColMapPoint. This component places color mapped points at the current spart
location.

ColMapSeq. This component places a line segment from the current location to the
previous location. The first time it is called, no geometry is defined and the current

location is saved to be used later.

ColMapSph. This component outputs a colored sphere at the current location. Pa-
rameters specify whether the color is a chosen color or whether it is data dependent.
The size and transparencies of the spheres can also be specified.

IsoSurf. This component works in conjunction with IsoThresh to generate portions
of an iso-surface in the cell the current location is in. The transparency and the color
can be specified as parameters. Normals can be inverted if desired.

AddColSurf. This component takes geometry as input and maps a constant or stream

dependent color to it.

ValText. This component outputs the value at the current location as text. The text

has 3D coordinates.

VecGlyph. This component outputs 3D vector glyphs in the form of a cylinder capped
with a cone. The color of the glyphs can be constant or dependent on the vector
magnitude or some other scalar stream. The size can also be scaled depending on the
vector magnitude. Another parameter acts as a filter so that only every nth call to
the function outputs a glyph.

SpartView. This component updates the camera position and direction. The current
location of the spart becomes the camera position and the vector from the previous
location to the current location specifies the camera direction. Field of view can be

specified as a parameter. It is used for fly-by effects.
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o Contour. This component takes as input a surface and outputs contour lines on the
surface. Parameters specify the spacing between the contour lines, the line thickness

and whether the lines should be a single color or data dependent.

o Annotate. This component can be used to drop annotations at locations. The
annotation consists of a 3D arrow and text and various parameters specify the length
and color of the text and the arrow. In a certain mode of operation, the text scrolls

allowing cans to talk to each other in a collaborative setting.

e BumpMap. This component implements various techniques for vector visualization

using bump-mapping[PA95].

6.1.3 Position Components

These components update the current location of the spart. Some are deterministic while
others use a pseudo random number generator to achieve some nondeterministic behavior.
Still others are data dependent.

e BallPos. This component places the current spart at the position of the ball that is

tethered to the can. The ball is used for can manipulation and this component can
be used to probe what is at the end of it. The component does not take any inputs

or outputs.

o StepAlongRay. This component steps a certain distance along the initial direction of

the spart. The distance can be factored and randomized by parameters.

e RandBiDir. This component places the spart randomly in either direction along the
line segment that forms the intersection of the initial direction of the spart with the
bounding box of the input stream. The spart will never leave the bounding box.
Therefore, an appropriate death function needs to be included in the composition to

make sure that the spart dies.

o RandWalk. This component, while traveling generally in the initial direction of the

spart, jitters the position randomly.
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e VecInteg. This is a data dependent position update function. Given a location in
a vector stream, it will do an integration step to determine the new location. The

integration step, type and direction can be specified through parameters.

6.1.4 Death Components

These components determine whether a spart should die or whether new ones should
be spawned. There is a default death function that kills the spart once it gets out of the
bounding box of the volume.

o Conditional. This component takes a boolean as input and kills the spart if it happens

to be true.

e [teration. This component has a counter that keeps track of the number of times the

component has been executed. Once the target count is reached, the spart is killed.

e Spawn. This component spawns new sparts. The component takes as input a boolean
condition that needs to be satisfied before the spawning can take place. Another input
specifies the name of the spart that will be spawned. Thus, a spart can clone itself or
mutate into other sparts. Parameters specify how many new sparts will be spawned

and the range of directions they have initially.

6.2 Sample Compositions

In this section, some example compositions are given that use the components described
in the previous section. These composed sparts are simple constructions. Yet, since it
is possible to use multiple cans containing sparts multiple times, complex visualizations
can be obtained. The sample compositions are illustrative. They can be easily changed
and combined by including other components. The compositions are listed by name, the
composition as it might appear in the textual editor and a short description of the spart.

The images show their use in isolation.
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Figure 6.1: | ColMapPoint

ColMapPoint [ S1 1 [ =11
RandWalk [ S1 ]

This spart simply maps the data value of the input stream to a colored point.
The position update component allows some jittering to avoid regularity. The
boolean input to the visual function is constant indicating that it does not depend
on a target function.

Figure 6.2:

ColMapSeg [ S1 ] [ =1 ]
StepAlongRay [ S1 ]

This spart outputs colored straight lines. In effect, lines dissect the data and
map the values to color. Changing the position function to RandWalk would create
crooked lines.
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Figure 6.3:

ColMapSeg [ S1 ] [ =1 ]
VecInteg [ S1 ]

Replacing the position function with the data dependent VecInteg results in a
streamline spart, a classic vector visualization technique.

Figure 6.4: ‘StrForwAndBack‘

Counter ( Count )

ColMapSeg [ S1 ] [ =1 ]
VecInteg [ S1 ]

Spawn [ =StreamlLine ] [ Count ]

The StreamLine spart only does forward integration. This spart uses the Spawn
component to also do backward integration. The Counter component is used to
launch the StreamLine spart while the ColMapSeg and VecInteg together form an-
other streamline spart. Setting the parameter on the VecInteg to do the backward
integration achieves the goal.
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Figure 6.5: | StrLineAndSph

Counter ( Doit )
ColMapSeg [ S1 ] [ =1 ]
ColMapSph [ S2 ] [ Doit ]
VecInteg [ S1 ]

By including an extra visual component and a target component, one can obtain
streamlines with spheres placed along them. The spheres can act on a separate
stream so that two streams can be correlated.

Figure 6.6:

VecGlyph [ s1 ] [s2]1 [ =11
StepAlongRay [ S1 ]

This spart outputs vector glyphs based on a vector field. The glyphs are cylinders
capped with cones and their lengths depend on the vector magnitude. They can
be colored based on another stream.
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Figure 6.7: | ColMapSlice

OrthoSlice [ S1 ]
AddColSurf [ S1 ]
Conditional [ =1 ]

( Slice )
[ Slice ] ( OBJECT )

[ =1]
[ =1]

This spart creates a color mapped slice orthogonal to one of the axes. The slice is
placed at the current spart location and the spart dies in the first iteration since
the Conditional death function is set to true.

Figure 6.8:

OrthoSlice [ S1 1 [ =1 ] ( Slice )
Contour [ S1 ] [ =11 [ Slice ] ( OBJECT )
Conditional [ =1 ]

Instead of pseudo colored slices, changing the visual component results in con-
tour lines instead.
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OrthoSlice [ S

1 Slicel )
AddColSurf [ Si
S

(
[ Slicel ] ( Slice2 )
1] [ Slice2 1 ( OBJECT )

Adding an extra visual to ColMapSlice allows rubber sheeting. In other words,
the grid nodes are displaced by an amount scaled by the value of a second stream.
Correlation of the two streams is thus possible.

Figure 6.10:

IsoThresh [ S1 ] ( Found ) ( Index ) ( IsoVal )
IsoSurf [ S1 ] [ Found ] [ Index ] [ IsoVal ] ( OBJECT )
StepAlongRay [ S1 ]

The iso-surface spart has a target function that detects the existence of a sur-
face. The visual component generates a polygonal surface.
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Figure 6.11: | ColMapSurf

IsoThresh [ S1 ] ( Found ) ( Index ) ( IsoVal )

IsoSurf [ S1 ] [ Found ] [ Index ] [ IsoVal ] ( Surface )
AddColSurf [ S2 1 [ Found 1 [ Surface ] ( OBJECT )
StepAlongRay [ S1 ]

Adding the AddColSurf component that depends on a second stream adds color
to the surface based on the second stream.

Figure 6.12:

Annotate [ S1 ] [ =1 ]
Conditional [ =1 ]

The Annotate spart has been defined so that it outputs the text at the can’s
ball position and immediately dies.
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Figure 6.13:

SpartView [ S1 ] [ =11
StepAlongRay [ S1 ]

This spart achieves a fly-through effect. The SpartView component updates the
camera position based on the current and previous locations of the spart. If the
position update component is replaced with the VecInteg component, we could
achieve the effect of flying along a streamline.

Figure 6.14: | ColMapPointSpawn

Counter ( Count )

ColMapPoint [ S1 1 [ =11
StepAlongRay [ S1 ]

Conditional [ Count ]

Spawn [ =ColMapPoint ] [ Count ]

This spart gives another example of the use of the Spawn component. The parent
spart is killed and other ColMapPoint sparts are launched instead.
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Figure 6.15: | Slice BumpMap

OrthoSlice [ S1 ] [ =1 ] ( Slicel )
AddColSurf [ S1 ] [ =11 ( Slicel ) ( Slice2 )
BumpMap [ S1 ] [ =1 ] ( Slice2 ) ( OBJECT )
Conditional [ =1 ]

This spart applies various bump-mapping techniques for vector field visualiza-
tion. In the example above, the magnitude of the vector field has been used as the
perturbation function while the direction is mapped to an HSV color wheel.

6.3 Sample Visualizations

In the previous section, some sample compositions were presented and images of their
application in isolation were shown. The user can create a spray can containing these sparts
and use it as a tool to apply the visualization technique multiple times. Multiple instances
of a tool can also exist and may operate on different data. More complex visualizations can
thus be obtained by using multiple spray cans multiple times. The images in this section

provide a few examples of such visualizations.
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Figure 6.16: In this visualization, the ContourSlice spart has been applied to a
slice of a 3D temperature field of the NORAPS climate model data. On the same
slice, the VecGlyph spart has been applied to the wind field with subsamplings
along the 2 and y axes. The colors of the vector glyphs have been mapped to the
relative humidity field. Hence, three different fields are being correlated.
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Stream Lines

Figure 6.17: Here, the ColMapSlice spart has been used to get a vertical pseu-
docolor slice of the temperature field. The ColMapSurf spart has been applied to
get the distribution of relative humidity over the iso-valued temperature surface.
Some streamlines applied to the wind field by StreamlLine spart are also shown.
The text is the result of multiple applications of the Annotate spart.
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Figure 6.18: This is an example of a single application of a more complicated
spart. An isosurface is generated on the geopotential field and the relative humidity
is colormapped over it. Vector glyphs of the wind field are placed at positions where
the temperature field would have produced an iso-valued surface.
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7. Conclusions and Future Work

A new, tool-oriented scientific visualization environment has been presented. Mizé&Match
is a modular and extensible system that borrows from both data-flow-based MV Es and spray
rendering. The spray can and smart particle metaphors of spray rendering are used to model
fine grained components that can be used to compose the overall behavior of a spart. The
visual programming approach of MVEs is used for the composition of sparts.

The MizéMatch environment offers three advantages over data flow based MVEs: direct
interactivity, greater flexibility and easier extensibility. Direct interaction helps the scientist
in exploring the data set that is being analyzed. Flexibility permits more tools to be
constructed from a given number of components and benefits the tool constructor who
wishes to experiment with new tools. Easier extensibility encourages component writers to
add to the system and try out new visualization techniques.

Direct interaction is achieved by using the spray can metaphor of spray rendering. The
use of the spray can as a tool for all techniques allows high level mode settings to be used
that result in a variety of interactions without changing compositions. Scientists can use
the same tool in different ways and gain insight into their data sets.

Although the particle nature of the paradigm and the repeated execution of small
components can lead to memory and processor time inefficiencies, interactivity is still
achieved by using the spray can as a probe. An object compaction scheme aids in this
process by saving memory and rendering time.

The fine granularity of the components allows greater flexibility in affecting what hap-
pens at the local level. This, in turn, allows more varied compositions from a set of com-
ponents and results in a richer collection of techniques. Many visualization techniques only
differ in detail and share many common features. Instead of a module encapsulating the
whole visualization technique, the technique can be broken down into simpler components
which can be used in other constructions. In the design and implementation of Mizé&Match,

many of the popular visualization techniques were decomposed to work in this fashion. A
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simple, particle based template was used for this purpose which provides a unifying repre-
sentation for the visualization techniques.

The fine granularity of components and the simple template also result in easier extensi-
bility. The conceptual simplicity of small components that perform local and specific tasks
permits new ones to be readily added to the system encouraging the exploration of new
visualization techniques. This task is further facilitated by a configuration manager that
presents a graphical interface for component integration.

MizéMatch was also successfully used to experiment with new visualization techniques.
Of note, is the use of bump mapping to visualize vector data[PA95].

There is much room for the extension of Mizé/Match features. Scripting would allow
batch processing at the expense of interactivity. This would help users who want to just see
an end product at the press of a button. The performance could be improved with a new
design of the geometry API and a memory management mechanism. The support of time-
varying and scattered data sets would be very valuable. Allowing sparts to communicate
may allow novel visualization techniques to be realized. The addition of virtual reality
capabilities would make the 3D spray can manipulations more intuitive. What is more
intriguing and worth exploring is whether the concepts of sparts composed of components

of fine granularity are more amenable to parallelization and simulation steering.
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Appendix A. Application Programmer Interface(API)

A.1 Stream API

A.1.1 Macros

#define spStrGetTitle(s) ((8)->title)

#define spStrGetCoordSys(s) ((8)->coordSys)

#define spStrNeedToConvert(s) ((8)->needToConcert)

#define spStrGetType(s) ((8)->strType)

#define spStrInUse(s) ((8)->inUse)

#define spStrSpartIsDead(s) ((s8)->spartIsDead)

#define spStrStructGetNumDims(s) ((8)->t.lat.nDim)

#define spStrStructGetDims(s) ((8)->t.lat.dims)

#define spStrStructGetXYSize(s) ((8)->t.lat.xysize)

#define spStrStructGetCurlndexes(s) ((8)->t.lat.curIndexes)
#define spStrStructGetLowIndexes(s) ((8)->t.lat.lows)

#define spStrStructGetHighIndexes(s) ((s)->t.lat.highs)

#define spStrStructGetSubs(s) ((8)->t.lat.subs)

#define spStrStructGetData(s) ((8)->t.lat.data)

#define spStrStructGetCoords(s) ((8)->t.lat.coords)

#define spStrStructGetNumData(s) ((8)->t.lat.data.nDataVar)
#define spStrStructGetMin(s) ((8)->t.lat.data.min)
#define spStrStructGetMax(s) ((8)->t.lat.data.max)
#define spStrStructGetRaw(s) ((8)->t.lat.data.raw)
#define spStrStructGetScaled(s) ((8)->t.lat.data.scaled)
#define spStrStructGetCoordType(s) ((8)->t.lat.coords.type)
#define spStrStructGetCurMinCellSides(s) ((s)->t.lat.coords.minCSides)
#define spStrStructGetCurMinCellSide(s) ((s)->t.lat.coords.minCSide)
#define spStrStructGetOrMinCellSides(s) ((s)->t.lat.coords.orMinCSides)
#define spStrStructGetOrMinCellSide(s)  ((s)->t.lat.coords.orMinCSide)
#define spStrStructGetEpsilon(s) ((8)->t.lat.coords.epsilon)
#define spStrStructGetCurSides(s) ((8)->t.lat.coords.sides)
#define spStrStructGetCurBBLow(s) ((8)->t.lat.coords.BBl)
#define spStrStructGetCurBBHigh(s) ((s)->t.lat.coords.BBh)
#define spStrStructGetOrSides(s) ((8)->t.lat.coords.orSides)
#define spStrStructGetOrBBLow(s) ((8)->t.lat.coords.orBBl)
#define spStrStructGetOrBBHigh(s) ((s)->t.lat.coords.orBBh)

#define spStrGetScalarValAtNode(d, i) () [(D)]
#define spStrGetScaledVectorValAtNode(d, i) (d)[(i)]

#define INDEX(s, x, y, z) \

((x) + (y)*s->t.lat.dims[X] + (2)*s->t.lat.xysize)

#define INDEX_2D(s, x, y)
#define spStrKillSpart(s) \

((x) + (y)*s->t.lat.dims[X])
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((8)->spartIsDead = CurSpart.isDead = TRUE)

A.1.2 Functions

Bool
Bool
Bool

Bool
void
Bool
Bool
void
void
void
Bool
Bool

Bool
Bool

Bool
Bool

Bool

A.2

spStrGetPosInOriginal (StreamList *stream, Vertex pos, Vertex npos);
spStrGetPosInCurrent (StreamList *stream, Vertex pos, Vertex npos);
spStrGetScalarValAtCurPos(Streamlist *stream, float *data, Vertex pos,
float *value);
spStrGetVectorValAtCurPos(StreamlList *stream, float *data,

Vertex pos, Vertex npos, Vertex value);
spStrGetVectorValAtNode (StreamList *stream, long index, Vertex value);
spStrPosInOriginal (StreamList *stream, Vertex pt);
spStrPosInCurrent (Streamlist *stream, Vertex pt);
spStrSetBallRegion(StreamList *stream, CanPtr c, Vertex ballPos,

int size);
spStrSetRegionOfInterest(StreamList *stream, CanPtr c);
spStrSetWholeOfVolume(Streamlist *stream, CanPtr c);
spStrGetScalarValAtOrPos(Streamlist *stream, float *data, Vertex pos,

float *value);
spStrGetVectorValAtOrPos(Streamlist *stream, float *data, Vertex pos,

Vertex vec);
spStrGetIndexFromOrPos(StreamlList *stream, Vertex loc, int indices[]);
spStrGetIndexFromCurPos (StreamlList *stream, Vertex loc,

int indices[]);
spStrGetOrPosFromIndex(StreamlList *stream, int indices[], Vertex loc);
spStrGetCurPosFromIndex (StreamList *stream, int indices[],

Vertex loc);
spStrGetPOModelCell (StreamList *stream, Vertex pos, int *i,

int *j, int *k);

Geometry API

A.2.1 Functions

void
void
void
void

void
void
void
void

void

spGeoBeginDefine(ObjList *1ist)}

spGeoEndDefine(0bjlist *1ist)

spGeoGeoPointsDefine(int n, Vertex #point)

spGeoGeoLinesDefine(int np, Vertex *point, int ni, long #*index,
short lineWidth)

spGeoGeoPolysDefine(int np, Vertex *point, int ni, long *index)

spGeoGeoTrisDefine(int np, Vertex *point, int ni, long *index)

spGeoGeoSpheresDefine(int n, Vertex *point, float *radius)

spGeoGeoCylindersDefine(int n, Vertex *pntO, Vertex *pntl,
float *radius)

spGeoGeoConesDefine(int n, Vertex *pntO, Vertex *pntl, float *radius)
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void spGeoGeoDisksUpDefine(int n, Vertex #*pointO, Vertex *pointi,
float *radius)

void spGeoGeoDisksDownDefine(int n, Vertex *point0O, Vertex #*pointl,
float *radius)

void spGeoGeoGridDefine(int nu, int nv, Vertex *point)

void spGeoGeoTextDefine(int n, Vertex *point, char *text)

void spGeoGeoNormalAdd(int n, Vertex *normal, GeoPer per)

void spGeoGeoColorAdd(int n, Color *color, GeoPer per)

void spGeoGeoTransparencyAdd(int n, float *transp, GeoPer per)

A.3 Module API

A.3.1 Macros

#define spModSetInterVar(i, t, v) \

(x((t *)(*x(mod->interVars+(i)))) = (v))
#define spModGetRefInput(i, t) ((t *) (*(mod->in0Outs+(i))))
#define spModGetInput(i, t) (*((t *) (*(mod->inDuts+(i)))))
#define spModGetParamObj(i) mod->paramWdgt->paramObjs [(i)]

#define spModGetParamObjFromArg(a, i) \
((Module *)a)->paramWdgt->paramObjs[(i)]
#define spModGetIntVal(i) mod->paramWdgt->intVals [(i)]
#define spModSetIntVal(i, v) (mod->paramWdgt->intVals[(i)] = (v))
#define spModGetIntValFromArg(a, i) \
((Module *)a)->paramWdgt->intVals[(i)]
#define spModSetIntValFromArg(a, i, v) \
(((Module *)a)->paramWdgt->intVals[(i)] = (v))

A.3.2 Functions

int spModGetInputIndex(Module *mod, char *name);

int spModGetInputIndexArg(long a, char *name);

int spModGetOutputIndex(Module #mod, char *name);
int spModGetOutputIndexArg(long a, char *name);

int spModGetInterVarsIndex(Module *mod, char *name);
int spModGetInterVarsIndexArg(long a, char *name);
int spModGetParamIndex(Module *mod, char *name);

int spModGetParamIndexArg(long a, char *name);

A.4 Predefined API

A.4.1 Macros

#define spPrelnterVarExists(i) (*(predef->interVars+(i)) !'= NULL)
#define spPreCreatelnterVar(i, t) (*(predef->interVars+(i)) = NEW(t))
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#define spPreGetInterVars(i) (*(predef->interVars+(i)))
#define spPreSetInterVar(i, t, v) \
(*((t *)(*(predef->interVars+(i)))) = (v))
#define spPreGetParam(i) predef->paramWdgt->params [(i)]
#define spPreSetParam(i, v) \
(predef->paramWdgt->params[(i)] = (v))
#define spPreGetInput(i) predef->streams[i]
#define spPreGetParamObj(i) predef->paramWdgt->paramObjs[i]

#define spPreGetParamObjFromArg(a, i) \
((Predefined *)a)->paramWdgt->paramObjs[i]

#define spPreGetIntVal(i) predef->paramWdgt->intVals[i]

#define spPreSetIntVal(i, v) \
(predef->paramWdgt->intVals[(i)] = (v))

#define spPreGetIntValFromArg(a, i) \
((Predefined *)a)->paramWdgt->intVals[i]

#define spPreSetIntValFromArg(a, i, v) \
(((Predefined *)a)->paramWdgt->intVals[i] = (v))

A.4.2 Functions

int spPreGetInputIndex(Predefined *predef, char *name);
int spPreGetInputIndexArg(long a, char *name);

int spPreGetInterVarsndex(Predefined *predef, char *name);
int spPreGetInterVarsndexArg(long a, char *name);

int spPreGetParamIndex(Predefined *predef, char *name);
int spPreGetParamIndexArg(long a, char *name);

A.5 Can API

A.5.1 Macros

#define spCanGetPosition() (CurrentCan->pos)
#define spCanGetDirection() (CurrentCan->dir)
#define spCanGetDistToBall() (CurrentCan->CanCenterPointDist)
#define spCanGetBallPos(b) FIND_POS((b), CurrentCan->pos, \

CurrentCan->dir, \
CurrentCan->CanCenterPointDist)
#define spCanGetPrograms() (CurrentCan->programs)
#define spCanGetColMap() (CurrentCan->colMap)
#define spCanGetModeSpartDel() (CurrentCan->sprayMode.spartDel)

#define spCanGetModeDensity()  (CurrentCan->sprayMode.spray.density)

#define spCanGetModeNozSize()  (CurrentCan->spraylMode.spray.nozzleSize)
#define spCanGetModeNozShape() (CurrentCan->sprayMode.spray.nozzleShape)
#define spCanGetModeRegType()  (CurrentCan->sprayMode.grid.regionType)
#define spCanGetModeMins() (CurrentCan->sprayMode.grid.mins)
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#define spCanGetModeMaxs() (CurrentCan->sprayMode.grid.maxs)
#define spCanGetModeSubs() (CurrentCan->spraylMode.grid.subs)
#define spCanGetModeAnims() (CurrentCan->spraylMode.grid.anims)
#define spCanGetModeRegSize()  (CurrentCan->sprayMode.grid.regionsize)
#define spCanGetAVOPers() (CurrentCan->sprayMode.AVOPersist)
A.6 Miscellaneous API
A.6.1 Macros
#define MAXM(x, y) (x) > (y) 7 x) = (M)
#define MINM(x, y) ((x) < G 7 x) : y)»
#define IS_0ODD( a ) ((a) & 0x1)
#define IS_EVEN( a ) ('((a) & 0x1))
#define SQR(a) ((a)*(a))
#define NEW(t) (t *)memAlloc(1l, sizeof(t))
#define VEC_CP(a, b) \
(@) [X] = (W X]; (LYl = (b)LY]; (a)[z] = (b)[Z]
#define VEC_CP_2D(a, b) (a)[X] = (b)[X]; (a)[Y] = (b)[Y]
#define VEC_MUL_2D(a, b) (b) [XI*=(a); (b)[Y]*=(a)
#define VEC_LEN_2D(a) (sqrtf(SQR((a) [X]) + SQR((a)[Y]1)))
#define VEC_SET(v, x, y, 2z) (W) [X]=x; (v)[Y]l=y; (v)[Z]=z
#define VEC_SUB(a, b, c) () [X] = (a) [X1-(b) [X];\
() LY] = (a) [Y1-(b) [Y];\
(c)[Z] = (a)[Z]1-(b) [Z]
#define VEC_SUM(a, b, c) () [X] = (a) [X1+(0) [X];\
() LY] = (a) [Y1+(b) [Y];\
(c)[Z] = (a)[Z]1+(b) [Z]
#define VEC_CROSS(a, b, c) () [X] = (a)[YI*(b)[Z] - (a) [Z]*(b) [YI;\
(Y] = () [Z]*(b) [X] - (a) [X1*(b) [Z];\
(c)[Z] = (a) [XI*(b) [Y] - (a) [Y]*(b)[X]
#define VEC_DOT(a, b) \
(@) [XI* (o) [X] + (a) [YI*(b) [Y] + (a)[Z]*(b)[Z])
#define VEC_LEN(a) \
(sqrtf(SQR((a) [X]) + SQR((a)[Y]) + SQR((a)[Z])))
#define VEC_MUL(a, b) (b) [XI*=(a); (b)[YI*=(a); (b)[Z]*=(a)
#define VEC_DIV(a, b) (0) [X1/=(a); (®)[Y1/=(a); (b)[z]/=(a)
#define VEC_SAME(a, b) ((()[X] == (B)[X]) && \
(@) [Y] == (L) [Y]) && \
(@ [z] == () [Z]))
#define GET_DIST(a, b) (sqrtf (SQR((b) [X]-(a) [X]) + \
SQR((b) [Y]-Ca) [Y]) + \
SQR((b) [Z]1-(a) [Z])))
#define FIND_POS(pos, b, u, t)  (pos)[X] = (b)[X] + ((£)*((u)[X1));\

(pos) [Y]
(pos) [Z]

() [Y] + ((£)*((w [Y1));\
(o) [2]1 + (()*((w[Z1))



97

A.6.2 Functions

char *memAlloc(size_t nelem, size_t elsize);
char *memRealloc(char *place, size_t size);
void showMessage(char *strl, char *str2, char *str3);

A.7 Other Material

A user guide for the novice and intermediate users of Mizé&Match exists. A separate guide
for the component writer is also available. An mpeg movie showing example interactions is
available under /projects/onr/mixmatch /video.
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