
How to Use Expert AdviceNicol�o Cesa-Bianchi�Yoav FreundyDavid P. HelmboldzDavid HausslerxRobert E. Schapire{Manfred K. WarmuthkUCSC-CRL-95-19June 1995Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractWe analyze algorithms that predict a binary value by combining the predictionsof several prediction strategies, called experts. Our analysis is for worst-case sit-uations, i.e., we make no assumptions about the way the sequence of bits to bepredicted is generated. We measure the performance of the algorithm by the di�er-ence between the expected number of mistakes it makes on the bit sequence and theexpected number of mistakes made by the best expert on this sequence, where theexpectation is taken with respect to the randomization in the predictions. We showthat the minimum achievable di�erence is on the order of the square root of thenumber of mistakes of the best expert, and we give e�cient algorithms that achievethis. Our upper and lower bounds have matching leading constants in most cases.We then show how this leads to certain kinds of pattern recognition/learning algo-rithms with performance bounds that improve on the best results currently knownin this context. We also extend our analysis to the case in which log loss is usedinstead of the expected number of mistakes.
�Universit�a diMilano (Italy), cesabian@dsi.unimi.it, http://www.dsi.unimi.it/Users/DocRic/cesabian/home.html. Thisresearch was done while this author was visiting UC Santa Cruz, partially supported by the \Progetto�nalizzato sistemi informatici e calcolo parallelo" of CNR under grant 91.00884.69.115.09672.yAT&T Bell Labs, yoav@research.att.comzUC Santa Cruz, dph@cse.ucsc.eduxUC Santa Cruz, haussler@cse.ucsc.edu.{AT&T Bell Labs, schapire@research.att.comkUC Santa Cruz, manfred@cse.ucsc.edu. Haussler, Warmuth and Freund were supported by ONR grantN00014-91-J-1162 and NSF grant IRI-9123692.



1. Introduction 11 IntroductionA central problem in statistics and machine learning is the problem of predicting futureevents based on past observations. In computer science literature in particular, specialattention has been given to the case in which the events are simple binary outcomes (e.g.[HLW90]). For example, in predicting today's weather, we may choose to consider only thepossible outcomes 0 and 1, where 1 indicates that it rains today, and 0 indicates that itdoes not. In this paper we show that some simple prediction algorithms are optimal for thistask in a sense that is closely related to the de�nitions of universal forecasting, prediction,and data compression which have been explored in the information theory literature. Wethen give applications of these results to the theory of pattern recognition [Vap82] and PAClearning [Val84].We take the extreme position, as advocated by Dawid and Vovk in the theory of Pre-quential Probability [Daw84, Dawarb, Dawara, Vov90a], Rissanen in his theory of stochasticcomplexity [Ris78, RL81, Ris86, Yam91] and Cover, Lempel and Ziv, Feder and others inthe theory of universal prediction and data compression of individual sequences [FMG92,MF92, Cov65, CS77, Han57, Vov92], that no assumptions whatsoever can be made aboutthe actual sequence y = y1; : : : ; y` of outcomes that is observed; the analysis is done in theworst case over all possible binary outcome sequences. Of course no method of predictioncan do better than random guessing in the worst case, so a naive worst-case analysis isfruitless. To illustrate an alternative approach in the vein of universal prediction, considerthe following scenario.Let us suppose that on each morning t you must predict whether or not it will rainthat day (i.e., the value of yt), but before making your prediction you are allowed to hearthe predictions of a (�xed) �nite set E = fE1; : : : ; ENg of experts. On the morning of dayt, each expert has access to the weather outcomes y1; : : : ; yt�1 of the previous t � 1 days,and possibly to the values of other weather measurements x1; : : : ; xt�1 made on those days,as well as today's measurements xt. The measurements x1; : : : ; x` will be called instances.Based on this data, each expert returns a real number p between 0 and 1 that can beinterpreted as his/her estimate of the probability that it will rain that day. After hearingthe predictions of the experts, you also choose a number p 2 [0; 1] as your estimate of theprobability of rain. Later in the day, nature sets the value of yt to either 1 or 0 by eitherraining or not raining. In the evening, you and the experts are scored. A person receivesthe loss jp � yj for making prediction p 2 [0; 1] when the actual outcome is y 2 f0; 1g. Tosee why this is a reasonable measure of loss,1 imagine that instead of returning p 2 [0; 1]you tossed a biased coin and predicted outcome 1 with probability p and outcome 0 withprobability 1� p. Then jp� yj is the probability that your prediction is incorrect when theactual outcome is y.Let us �x the instance sequence x1; : : : ; x`, since it plays only a minor role here, andvary only the outcome sequence y = y1; : : : ; y`. Imagine that the above prediction gameis played for ` days, during which time you accumulate a total loss L(y) = Pt̀=1 jŷt � ytj,where ŷt 2 [0; 1] is your prediction at time t. Each of the experts also accumulates a totalloss based on his/her predictions. Your goal is to try to predict as well as the best expert,1An alternate logarithmic loss function, often considered in the literature, is discussed briey in Section8.



2 1. Introductionno matter what outcome sequence y is produced by nature.2 Speci�cally, if we let LE(y)denote the minimum total loss of any expert on the particular sequence y, then your goal isto minimize the maximum of the di�erence L(y)�LE(y) over all possible binary sequencesy of length `. Since most outcome sequences will look totally random to you, you stillwon't be able to do better than random guessing on most sequences. However, since mostsequences will also look totally random to all the experts (as long as there aren't too manyexperts), you may still hope to do almost as well as the best expert in most cases. Thedi�cult sequences are the ones that have some structure that is exploited by one of theexperts. To do well on these sequences you must quickly zero in on the fact that one ofthe experts is doing well, and match his/her performance, perhaps by mimicking his/herpredictions.Through a game-theoretic analysis, we �nd that for any �nite set of experts, there is astrategy that minimizes the maximum of the di�erence L(y)�LE(y) over all possible binaryoutcome sequences y. While this min/max strategy can be implemented in some cases, itis not practical in general. However, we de�ne an algorithm, called P for \Predict", that issimple and e�cient, and performs essentially as well as the min/max strategy. Actually Pis a family of algorithms that is related to the algorithm studied by Vovk [Vov90b] and theBayesian, Gibbs and \weighted majority" methods studied by a number of authors [LW94,LLW91, HKS94, STS90, SST92, HBar, HW94], as well as the method developed by Feder,Merhav and Gutman [FMG92]. We show that P performs quite well in the sense de�nedabove so that, for example, given any �nite set E of weather forecasting experts, P isguaranteed not to perform much worse than the best expert in E , no matter what theactual weather turns out to be. The algorithm P is completely generic in that it makesno use of the side information provided by the instances x1; : : : ; x`. Thus, it would also doalmost as well as the Wall Street expert with the best inside information when predictingwhether the stock market will rise or fall.In particular, letting LP (y) denote the total loss of algorithm P on the sequence y andLE(y) the loss of the best expert on y as above, we show (Theorem 16) that for all binary3outcome sequences y of length ` , LP (y) � LE(y) � q ` ln(jEj+1)2 + log2(jEj+1)2 , and that noalgorithm can improve the multiplicative constant of the square-root term for N; `!1.Previous work has shown how to construct an algorithm A such that the ratioLA(y)=LE(y) approaches 1 in the limit [Vov90b, LW94, FMG92]. In fact, Vovk [Vov90b]described an algorithm with the same bound as the one we give in Theorem 10 for thealgorithm P. This theorem leaves a parameter to be tuned. Vovk gives an implicit formof the optimum choice of the parameter. We arrive at an explicit form that allows us toprove nearly optimal bounds on LA(y)�LE(y). To our knowledge, our results give the �rstprecise bounds on this di�erence.It turns out that these bounds also give a tight lower bound on the expectation of theminimal distance between a random binary string uniformly chosen from f0; 1g` and a setof N points in [0; 1]`. This answer to a basic combinatorial question may be of independentinterest.2This approach is also related to that taken in recent work on the competitive ratio of on-line algorithms,and in particular to work on combining on-line algorithms to obtain the best competitive ratio [FKL+91,FFK+91, FRR90], except that we look at the di�erence in performance rather than the ratio.3The algorithm has recently been extended to the case when the outcomes are in the interval [0; 1] withthe performance bounds as in the binary case [HKW].



2. An overview of the prediction problem 3The remainder of this paper is organized as follows. In Section 3, we characterize exactlythe performance of the best possible prediction strategy using a min/max analysis. Section 4describes the algorithm P and shows that it achieves the optimal bound given above. InSection 4.4 we show that if the loss LE(y) of the best expert is given to the algorithm apriori, then P can be tuned so that LP (y)�LE(y) � pLE(y) ln jEj+ log2 jEj2 . In Section 4.6we show that even when no knowledge of LE(y) is available, one can use a doubling trickto obtain a bound on LP (y) � LE(y) that is only a small constant factor larger than theabove bound. This algorithm can nearly match the performance of the best expert on allpre�xes of an in�nite sequence y.Finally, in Section 5 we show how the results we have obtained can be applied inanother machine learning context. We describe a pattern recognition problem in whichexamples (x1; y1); : : : ; (xt�1; yt�1) are drawn independently at random from some arbitrarydistribution on the set of all possible labeled instances and the goal is to �nd a function thatwill predict the binary label yt of the next random example (xt; yt) correctly with as high aprobability as can be obtained. General solutions to this problem have been developed byVapnik [Vap82], Birge and Massart [BM93], and others. This problem can also be describedas a special variant of the probabably approximately correct (PAC) learning model [Val84]in which nothing is assumed about the \target concept" that generates the examples otherthan independence between examples (sometimes referred to as agnostic learning [KSS92]),and in which the learning algorithm is not required to return a hypothesis in any speci�cform. Using the prediction strategy P, we develop an algorithm that solves this patternrecognition problem and derive distribution-independent bounds for the performance of thisalgorithm. These bounds improve by constant factors some of the (more general) boundsobtained by Vapnik [Vap82] and Talagrand [Tal94] on the performance of an empirical lossminimization algorithm.The results presented in this paper contribute to an ongoing program in informationtheory and statistics to minimize the number of assumptions placed on the actual mechanismgenerating the observations through the development of robust procedures and strengthenedworst-case analysis. In investigating this area, we have been struck by the fact that manyof the standard-style statistical results that we have found most useful, such as the boundsgiven by Vapnik, have worst-case counterparts which are much stronger than we hadexpected would be possible. We believe that if these results can be extended to more generalloss functions and learning/prediction scenarios, with corresponding optimal estimation ofconstants and rates, this worst-case viewpoint may ultimately provide a fruitful alternativefoundation for the statistical theory of learning and prediction.2 An overview of the prediction problemIn this section, we de�ne the problem of predicting binary sequences and give an overviewof our results on this problem.We refer to the binary sequence to be predicted as the outcome sequence, and we denoteit by y = y1; : : : ; yt; : : : ; y`, where t is the index of a typical time step or trial, yt 2 f0; 1g,and ` is the length of the sequence. We denote by yt the pre�x of length t of y, i.e.yt = y1; : : : ; yt.We denote the set of experts by E = fE1; : : : ; ENg, where N is the number of experts.The prediction of expert Ei at time t is denoted by �i;t 2 [0; 1] and the prediction of thealgorithm at time t is denoted by ŷt 2 [0; 1].



4 2. An overview of the prediction problemA prediction algorithm is an algorithm that at time t = 1; : : : ; `, receives as input a vectorof expert predictions h�1;t; : : : ; �N;ti, as well as the predictions made by the experts in thepast (i.e., h�1;1; : : : ; �N;1i; : : : ; h�1;t�1; : : : ; �N;t�1i), the sequence of past outcomes (i.e., yt�1),and the predictions made by the algorithm in the past (i.e., ŷ1 : : : ŷt�1). The predictionalgorithm maps these inputs into its current prediction ŷt.The loss of prediction algorithm A on a sequence of trials with respect to a sequence ofoutcomes y (and set of experts) is de�ned to be the sum Pt̀=1 jŷt � ytj which is denotedLA(y). Note that the set of experts will always be understood from context so we cansuppress the dependence of LA(y) on E . Similarly, the loss of expert Ei with respect to yis de�ned to be Pt̀=1 j�i;t� ytj and is denoted LEi(y). Finally, the loss of the best expert isdenoted by LE(y); thus, LE(y) = mini=1;:::;N LEi(y).Our goal is to �nd algorithms whose loss LA(y) is not much larger than LE(y). Moreover,our ultimate goal is to prove bounds that hold uniformly for all outcome sequences andexpert predictions, and that assume little or no prior knowledge on the part of the predictionalgorithm.This problem can be viewed as a game in which the predictor plays against an adversarywho generates both the experts' predictions and the outcomes. We assume that both playerscan observe all of the actions made by the other player up to the current point of time,as well as its own past actions. The game consists of ` time steps, and both sides know` before the game begins. We now describe the binary sequence prediction game. At eachtime step, t = 1 : : : `, the game proceeds as follows:� The adversary chooses the experts' predictions, �i;t 2 [0; 1], for 1 � i � N .� The predictor generates its prediction ŷt 2 [0; 1].� The adversary chooses the outcome yt 2 f0; 1g.The goal of the predictor in this game is to minimize its net loss: LA(y)�LE(y). The goalof the adversary is to maximize this value.4 The min/max value for this game, which existsby Von Neumann's min/max theorem, is the worst case net loss of the optimal predictionstrategy. We will denote this min/max value by VN;`.In the following section we give the optimal min/max strategy for the predictor andfor the adversary in this game. This analysis gives a simple recursive equation for VN;`.Unfortunately, we don't have a closed form expression that solves this equation. However,using results obtained in Sections 3 and 4, we can show thatVN;` = (1 + o(1))s` lnN2 ;where o(1) ! 0 as N; `!1.In Section 3.1 we analyze the optimal prediction algorithm for a case in which theadversary is somewhat restricted. Using this restriction of the game we �nd an explicitclosed form expression that lower bounds VN;`. The adversary is restricted in that thepredictions of the experts are functions only of the trial number. In other words, eachexpert is a �xed sequence of ` numbers in [0; 1]. We call these static experts. We also4Formally, an expert in this context is a function of the form Ei : ([0; 1] � f0; 1g)� ! [0; 1]. Theinterpretation here is that Ei maps a �nite sequence ((ŷ1; y1); : : : ; (ŷt�1; yt�1)) of prediction/outcome pairsto a new expert prediction �i;t. (Note that each Ei function can compute the value of the other Ej functions,and thus the experts' predictions can depend on the predictions made by experts in the past, as well as thecurrent time t.)



3. An optimal prediction strategy 5assume that these sequences are known to the predictor in advance. We derive the exactmin/max solution for this restricted game for any choice of the sequences. We obtain ourexplicit lower bound by analyzing the case in which the N expert sequences are chosenusing independent coin ips.In Section 4 we present a family of prediction algorithms for the general predictiongame. The basic algorithm, which we call P has a real-valued parameter, �, which controlsits behavior. This parameter plays a similar role to the \learning rate" parameter usedin gradient based learning algorithms [Hay94]. Di�erent choices of � guarantee di�erentperformance bounds for the algorithm. The optimal choice of � is of critical importanceand occupies much of the discussion in Sections 4.4{4.6 and also later in Section 5.4.We analyze three variants of the algorithm, each of which chooses � in a di�erent way,according to the type of knowledge available to the predictor. The �rst variant chooses �when the predictor knows only an upper bound on the loss of the best expert. The secondvariant chooses � in a situation where the predictor knows only the length ` of the game.The third variant handles the case where the predictor knows nothing at all in advance.Using the analysis of the second case, we get an upper bound for VN;` that asymptoticallymatches the lower bound from Section 3.1.3 An optimal prediction strategyWe now give the optimal prediction algorithm for the binary sequence prediction prob-lem. This algorithm is based on the optimal min/max solution of the binary sequenceprediction game described in the previous section, guaranteeing that it has the best possi-ble worst-case performance. However, the algorithm is computationally expensive.The following function plays a major role in the construction and analysis of the optimalprediction strategy. Let R+ denote the nonnegative reals, and N denote the nonnegativeintegers. We de�ne the function v : (R+)N � N! R+ inductively as follows:v(M; 0) = min1�i�N(Mi) (1)v(M; r) = minZ2[0;1]N v(M + Z; r� 1) + v(M + 1� Z; r� 1)2 (2)where the 1 in the expression M + 1 � Z denotes the vector of N 1's, and Mi is the ithcomponent of vector M . Clearly, this function is well de�ned and can, in principle, becalculated for any given M and r. We will discuss the complexity of this computation afterthe proof of Theorem 2.The parameters of the function v are interpreted as follows. The integer r denotes thenumber of remaining trials, i.e., the number of sequence bits that remain to be predicted.The past loss incured by the expert Ei when there are r remaining trials will be denotedM ri , and M r will denote the vector hM r1 ; : : : ;M rNi. It is the quantity v(M r; r) that will beimportant in our analysis. In some sense, v(M r; r) is measuring the anticipated loss of thebest expert on the entire sequence of trials.In order to show that our prediction strategy generates predictions that are in the range[0; 1] we will need the following lemma, which shows that the function v(M; r) obeys aLipschitz condition.



6 3. An optimal prediction strategyLemma 1: For any r 2 N and any X; Y 2 (R+)Njv(X; r)� v(Y; r)j � jjX � Y jj1 ;where jjX � Y jj1 = maxi jXi � Yij.Proof: The proof is by induction on r:If r = 0, let i0 be an index that minimizes fXig and j0 be an index that minimizes fYig.Then v(X; 0)� v(Y; 0) = Xi0 � Yj0 � Xj0 � Yj0 � jjX � Y jj1:Now suppose r > 0 and let us assume that the lemma holds for r � 1. Let Z0 2 [0; 1]Nbe a vector that minimizesv(Y; r) = minZ2[0;1]N v(Y + Z; r� 1) + v(Y + 1� Z; r� 1)2 :We get:v(X; r)� v(Y; r)= minZ2[0;1]N v(X + Z; r� 1) + v(X + 1� Z; r� 1)2� minZ2[0;1]N v(Y + Z; r� 1) + v(Y + 1� Z; r� 1)2� v(X + Z0; r� 1) + v(X + 1� Z0; r� 1)2 � v(Y + Z0; r� 1) + v(Y + 1� Z0; r� 1)2= v(X + Z0; r� 1)� v(Y + Z0; r� 1)2 + v(X + 1 � Z0; r� 1)� v(Y + 1� Z0; r� 1)2� jj(X + Z0)� (Y + Z0)jj12 + jj(X + 1� Z0)� (Y + 1 � Z0)jj12 = jjX � Y jj1where the last inequality follows from our inductive hypothesis.We now de�ne the prediction strategy MM and then prove a theorem showing that thisis the optimal prediction strategy. The prediction strategy (see Figure 1) works as follows:On trial t, let r = ` � t + 1 be the number of bits that remain to be predicted, M r be thevector representing the loss of each of the experts on the sequence seen so far, and Zr bethe vector of current expert predictions, i.e., Zr = h�1;t; : : : ; �N;ti. The prediction strategysets its prediction to beŷt = v(M r + Zr; r� 1)� v(M r + 1� Zr ; r� 1) + 12 : (3)As jj(M r + Zr)� (M r + 1 � Zr)jj1 � 1, we get from Lemma 1 that 0 � ŷt � 1; thus thisprediction formula always generates legitimate predictions.The following theorem, the main result of this section, characterizes the loss of thisstrategy exactly in terms of the function v, and shows moreover that this strategy is thebest possible.Theorem 2: Let MM be the prediction strategy described above and in Figure 1. Then forany set of experts E and for any outcome sequence y, the loss of MM is bounded byLMM(y)� LE(y) � 2̀ � v(0; `) ;



3. An optimal prediction strategy 7Algorithm MM1. Initialize:� t := 1 f current trial number g� r := ` f number of remaining trials g� M ` := 0 f current cumulative loss vector g2. While t � `, repeat:� Receive the predictions of the N experts, Zr = h�1;t; : : : ; �N;ti.� Compute and output predictionŷt = v(M r + Zr; r� 1)� v(M r + 1� Zr; r� 1) + 12where v is de�ned by equations (1) and (2).� Receive the correct outcome yt.� M r�1i := M ri + jyt � �i;tj for i = 1; : : : ; N .� t := t + 1� r := r � 1 Figure 1: Description of algorithm MM.where ` is the number of prediction trials, N is the number of experts, and 0 is a vector ofN zeros.Moreover, MM is optimal in the sense that for every prediction strategy A there existsa set of experts E and an outcome sequence y for whichLA(y)� LE(y) � 2̀ � v(0; `) :Hence VN;` = 2̀ � v(0; `).Proof: The �rst part of the theorem is proved using induction on the number r of remainingtrials. As above, let M r be an N dimensional vector that describes the losses of each of theN experts on the �rst `� r trials (so r trials remain) and let �r denote the loss incurred byMM on these �rst `� r trials. Then our inductive hypothesis is a bound on the net loss ofMM at the end of the game, namely,LMM(y)� LE(y) � �r + r2 � v(M r; r) : (4)It is clear that if we choose r = ` we get the statement of the theorem, since M ` = 0. Wenow present the inductive proof of the claim.For r = 0, the claim follows directly from the de�nitions since v(M0; 0) is equal to theloss of the best expert at the end of the game, r=2 = 0, and �0 is the loss of MM.For r > 0, let Zr = h�1;t; : : : ; �N;ti denote the predictions given by the experts at trialt = ` � r + 1 (i.e., when there are r future outcomes to predict). Using the inductiveassumption for r � 1 and Equation (3) we can calculate the loss of MM at the end of thegame; for the two possible values of the next outcome yt we get that the net loss is boundedby the same quantity which agrees with the claim for r remaining trials.



8 3. An optimal prediction strategyIf yt = 0 then the loss of MM up to the next step is �r�1 = �r + ŷ, and the loss of theexperts is M r�1 = M r + Zr. Using the inductive assumption we get that the net loss atthe end of the game will be at most�r�1 + r � 12 � v(M r�1; r� 1)= �r + v(M r + Zr; r� 1)� v(M r + 1� Zr ; r� 1) + 12 + r � 12 � v(M r + Zr; r� 1)= �r + r2 � v(M r + Zr ; r� 1) + v(M r + 1� Zr; r� 1)2 :Similarly, if yt = 1, then the loss of MM at the next step is �r�1 = �r + 1� ŷ, and the lossof the experts is M r�1 = M r + 1�Zr, and we get that the net loss at the end of the gamewill be at most�r�1 + r � 12 � v(M r�1; r� 1)= �r + 1� v(M r + Zr; r� 1)� v(M r + 1� Zr; r� 1) + 12 + r � 12 � v(M r + 1 � Zr; r� 1)= �r + r2 � v(M r + Zr ; r� 1) + v(M r + 1� Zr; r� 1)2 :Thus, for either value of yt 2 f0; 1g, we have thatLMM(y)� LE(y) � ��r + r2 � v(M r + Zr; r� 1) + v(M r + 1� Zr ; r� 1)2 �� maxZ2[0;1]N ��r + r2 � v(M r + Z; r� 1) + v(M r + 1� Z; r� 1)2 �= �r + r2 � minZ2[0;1]N v(M r + Z; r� 1) + v(M r + 1� Z; r� 1)2= �r + r2 � v(M r; r): (5)This completes the induction, and the proof of the �rst part of the theorem.The proof of the lower bound proceeds similarly. Let A be any prediction strategy, let rbe the number of trials remaining, let M r be the vector describing the loss of each expertup to the current trial when r trials remain, and let �r be the loss incurred by A up to thiscurrent trial. The natural adversarial choice for the experts' predictions on the current trialt is any vector Zr = h�1;t; : : : ; �N;ti which minimizes the right hand side of Equation (2)(the de�nition of v(M r; r)). If ŷt is A's prediction then the adversary chooses the outcomeyt that maximizes A's loss on the trial, jŷt � ytj.We prove by induction on r that this adversary forces the net loss of any algorithm tobe at least LA(y)� LE(y) � �r + r2 � v(M r; r) :As above, equality holds when r = 0.For the inductive step, let t be the trial number when r trials remain. Recall that �r�1is either �r + ŷt or �r + 1� ŷt and that M r�1 is either M r +Zr or M r + 1�Zr dependingon the value of yt. Thus, by the inductive hypothesis and the de�nition of the adversary



3. An optimal prediction strategy 9LA(y)� LE(y)� max��r + ŷt + r � 12 � v(M r + Zr; r � 1); �r + 1� ŷt + r� 12 � v(M r + 1� Zr; r� 1)�� 12 ��r + ŷt + r � 12 � v(M r + Zr; r� 1) + �r + 1� ŷt + r � 12 � v(M r + 1� Zr; r� 1)�= �r + r2 � v(M r + Zr; r� 1) + v(M r + 1� Zr ; r� 1)2= �r + r2 � v(M r; r) :This completes the induction. Choosing r = ` gives the stated lower bound.We have thus proven that the prediction strategy MM, described above, achieves theoptimal bounds on the net-loss of any prediction strategy. However, in order to use thisstrategy as a prediction algorithm we need to descibe how to calculate the values v(M; r). At�rst, this calculation might seem forbidingly complex, as it involves minimizing a recursivelyde�ned function over all choices of Z in the continuous domain [0; 1]N. Fortunately, as wenow show, the minimal value is always achieved at one of the corner points of the cubeZ 2 f0; 1gN , so that the minimization search space is �nite, albeit exponential. We provethis claim using the following lemma.Lemma 3: For any �xed 0 � r � `, the function v(M; r) is concave, i.e. for any 0 � � � 1,and for any X; Y 2 (R+)N :v(�X + (1� �)Y; r) � � v(X; r) + (1� �)v(Y; r):Proof: As usual, we prove the lemma by induction on r.For r = 0, suppose i0 is the index that minimizesv(�X + (1� �)Y; 0) = min1�i�N(�xi + (1� �)yi) :Then the convex combination of v(X; 0) and v(Y; 0) can be bounded as follows:� min1�i�N(xi) + (1� �) min1�i�N(yi) � �xi0 + (1� �)yi0 = v(�X + (1� �)Y; 0):For r > 0, let Z0 2 [0; 1]N be a choice of the argument that minimizesv(�X+(1��)Y; r) = minZ2[0;1]N v(�X + (1� �)Y + Z; r� 1) + v(�X + (1� �)Y + 1� Z; r� 1)2Then we getv(�X + (1� �)Y; r)= v(�X + (1� �)Y + Z0; r� 1) + v(�X + (1� �)Y + 1� Z0; r� 1)2= v(�(X + Z0) + (1� �)(Y + Z0); r� 1) + v(�(X + 1� Z0) + (1� �)(Y + 1� Z0); r� 1)2 :Using the induction assumption we can bound each of the two terms and get that



10 3. An optimal prediction strategyv(�X + (1� �)Y; r) � �v(X + Z0; r� 1) + (1� �)v(Y + Z0; r� 1)2+�v(X + 1� Z0; r� 1) + (1� �)v(Y + 1 � Z0; r� 1)2= �v(X + Z0; r� 1) + v(X + 1� Z0; r� 1)2+(1� �)v(Y + Z0; r� 1) + v(Y + 1� Z0; r� 1)2� � minZ2[0;1]N v(X + Z; r� 1) + v(X + 1� Z; r� 1)2+(1� �) minZ2[0;1]N v(Y + Z; r� 1) + v(Y + 1� Z; r� 1)2= � v(X; r) + (1� �)v(Y; r):If we �x M and view the function (v(M +Z; r�1)+v(M+1�Z; r�1))=2 as a functionof Z, we see that it is simply a positive constant times the sum of two concave functionsand thus it also is concave. Therefore the minimal value of this function over the closedcube Z 2 [0; 1]N is achieved in one of the corners of the cube.This means that the function v(M; r) can be computed recursively by minimizing overthe 2N (boolean) choices of the experts' predictions. Each of these choices involves tworecursive calls and the recursion has to be done to depth r. Therefore a total of 2r(N+1)recursive calls are made, requiring time O(N2r(N+1)).Dynamic programming leads to a better algorithm for calculating v(M; r). However,it is still exponential in N . An interesting question is whether v(M; r) can be computede�ciently.To summarize this section, we have described an optimal prediction algorithm and givena recursive formula which de�nes its worst case loss, and thereby obtained a recursiveformula for VN;`. We do not have a closed form equation for VN;`. However, we can alwayscalculate it exactly in �nite time (see Figure 5 for the values of VN;` for some small rangesof N and `). Moreover, the following section provides a simple adversarial strategy whichgenerates a lower bound on the optimal net loss VN;` and Section 4 provides a simpleprediction algorithm which generates an upper bound on VN;`. As we will see, these twobounds are quite tight.3.1 Prediction using static expertsThe strategy described above can be re�ned to handle certain special cases. As anexample of this technique, we show in this section how to handle the case that all theexperts are static in the sense that their predictions do not depend either on the observedoutcomes or on the learner's predictions. That is, each expert can be viewed formallyas a function Ei : f1; : : :`g ! [0; 1] with the interpretation that the prediction at timet is �i;t = Ei(t). We assume further that the learner knows this function and thus cancompute the future predictions of all the experts. Thus the adversary must choose thestatic experts at the beginning of the game and reveal this choice to the learning algorithm.The adversary still chooses each outcome yt on-line as before. The resulting game is calledthe binary sequence prediction game with static experts and its min/max value is denoted



3. An optimal prediction strategy 11V (static)N;` . Since this game is easier for the minimizing player (the predictor) than the generalgame, it is clear that V (static)N;` � VN;`. When N = 2, the values of the two games are thesame for all `. However, a calculation shows that V (static)3;4 < V3;4 with strict inequality, sothe general sequence prediction game is actually harder in the worst case than the samegame with static experts. The actual values are V (static)3;4 = 1 and V3;4 = 1716 .We give below a characterization of the optimal prediction and adversarial strategiesfor the binary sequences prediction game with static experts. In fact we go further andanalyze the game explicitly for every possible choice of the static experts. The resultingmin/max values have a simple geometric interpretation. For real vectors x and y of length`, let jjx � yjj1 = Pt̀=1 jxt � ytj. Let E = fE1; : : : ; ENg be a set of N static experts. Forany expert Ei, its loss on the bit sequence y is Pt̀=1 jEi(t)� ytj = jjEi � yjj1, viewing Ei asa vector in [0; 1]`. Thus LE(y) = mini jjEi � yjj1. We de�ne the average covering radius ofE , denoted R(E), as the average l1 distance >from a bit sequence y to the nearest expert inE , that is R(E) = EyLE(y) = Eymini jjEi � yjj1;where Ey denotes expectation over a uniformly random choice of y 2 f0; 1g`.We will use the following convexity result, an analog of Lemma 3.Lemma 4: Let E = fEig and F = fFig be two sets of N vectors in [0; 1]` and let 0 � � � 1.Then R(�E + (1� �)F) � �R(E) + (1� �)R(F);where �E + (1� �)F is the set of N vectors f�Ei + (1� �)Fig.Proof:R(�E + (1� �)F) = Eymini Xt j�Ei;t + (1� �)Fi;t � ytj= Eymini Xt (j�Ei;t � �ytj+ j(1� �)Fi;t � (1� �)ytj)= Eymini (�jjEi � yjj1 + (1� �)jjFi � yjj1)� Ey(�mini jjEi � yjj1 + (1� �) mini jjFi � yjj1)= �R(E) + (1� �)R(F);where the second equality follows from a case analysis of yt = 0 and yt = 1, combined withthe fact that Ei;t;Fi;t 2 [0; 1].Theorem 5: Let E be a set of static experts whose current and future predictions areaccessible to the prediction algorithm. Then there exists a prediction strategy MS suchthat for every sequence y, we haveLMS(y)� LE(y) = 2̀ � R(E)Moreover, MS is optimal in the sense that for every prediction strategy A, there exists asequence y such that LA(y)� LE(y) � 2̀ �R(E):Hence V (static)N;` = 2̀ � minE R(E);where the minimum is over all sets E of N vectors in f0; 1g`.



12 3. An optimal prediction strategyProof: For any prediction strategy A, the expected value of LA � LE with respect to auniformly random choice of y 2 f0; 1g` is simply `=2�R(E) since we expect any algorithmto have loss `=2 on an entirely random sequence, and R(E) is the expected loss of the bestexpert in E . Thus, there must be some sequence y for which LA(y)� LE(y) is at least asgreat as this expectation; this proves the second part of the theorem.The �rst part of the theorem can be proved using the technique in Section 3 with onlyminor modi�cations, which we sketch briey. First, the function v is rede�ned to takeaccount of the fact that the experts' predictions are pre-speci�ed. That is, we de�ne thenew function ~v as follows: ~v(M; 0) = mini Mi~v(M; r) = ~v(M + Zr ; r� 1) + ~v(M + 1� Zr; r� 1)2where Zr = h�1;t; : : : ; �N;ti is the experts' predictions at trial t = `� r + 1.The (re)proof of Lemma 1 for ~v is similar, except that we no longer minimize overZ 2 [0; 1]N, and in the case that r > 0, Z0 is replaced by Zr.The new prediction strategy MS computes its prediction at time t = `� r+ 1 as beforewith the obvious changes:ŷt = ~v(M r + Zr; r� 1)� ~v(M r + 1� Zr ; r� 1) + 12 :The induction argument given in the �rst part of the proof of Theorem 2 holds with littlemodi�cation. Variable v is obviously replaced by ~v, and the inductive hypothesis given byEquation (4) is modi�ed so that equality holds for every outcome sequence:LMS(y)� LE(y) = �r + r2 � ~v(M r; r) :Also, Equation (5) becomes the equality:LMS(y)� LE(y) = ��r + r2 � ~v(M r + Zr; r� 1) + ~v(M r + 1� Zr ; r� 1)2 �= �r + r2 � ~v(M r; r):In addition, unwrapping ~v's inductive de�nition, it can be seen that ~v(0; `) = R(E).Finally, it follows directly from the �rst two statements of the theorem thatV (static)N;` = 2̀ � infE R(E);where the in�mum is over all sets E of N vectors in [0; 1]`. However, in light of Lemma 4,R(E) must be minimized by some extremal E , i.e. by E � f0; 1g`. The last statement ofthe theorem follows.Theorem 5 tells us how to compute the worst-case performance of the best possiblealgorithm for any set of static experts. As an example of its usefulness, suppose that Econsists of only two experts, one that always predicts 0, and the other always predicting 1.In this case Theorem 5 implies that the loss of the optimal algorithm MS is worse than theloss of the best expert by the following amount :2̀ � 2�` X̀i=0 ì!minfi; `� ig � s 2̀� :



3. An optimal prediction strategy 13This result was previously proved by Cover [Cov65]; we obtain it as a special case.Strategy MS makes each prediction in terms of the expected loss of the best expert onthe remaining trials (where the expectation is taken over the uniformly random choice ofoutcomes for these trials). This is why we need the experts to be static. In general, wedo not know how to e�ciently compute this expectation exactly. However, the expectationcan be estimated by sampling a polynomial number of randomly chosen future outcomesequences. Thus, there exists an e�cient randomized variation of MS that is arbitrarilyclose to optimal.3.2 An asymptotic lower bound on VN;`We now use Theorem 5 to give an asymptotic lower bound on the performance of anyprediction algorithm. To do this we need to show that there are sets E of N vectors in f0; 1g`with small R(E). We do this with a random construction, using the following lemma.Lemma 6: For each `; N � 1 let S`;1; : : : ; S`;N be N independent random variables, whereS`;i is the number of heads in ` independent tosses of a fair coin.Let A`;N = min1�i�N fS`;ig. Thenlim infN!1 lim inf`!1 2̀ � E(A`;N)p(`=2) lnN � 1Proof: See Appendix A.From this we getCorollary 7: For all N; `, let RN;` = minE R(E), where the minimum is over all E � f0; 1g`of cardinality N . Then lim infN!1 lim inf`!1 2̀ �RN;`p(`=2) lnN � 1Proof: Clearly minE R(E) � E(R(E)) = E(A`;N);where the expectation is over the independent random choice of N binary vectors in E , andA`;N is as de�ned in Lemma 6. Hence the result follows directly from that lemma.Finally, we obtainTheorem 8: lim infN!1 lim inf`!1 VN;`p(`=2) lnN � lim infN!1 lim inf`!1 V (static)N;`p(`=2) lnN � 1:



14 4. Some simple prediction algorithmsAlgorithm P(�)1. All initial weights fw1;1; : : : ; wN;1g are set to 1.2. At each time t, for t = 1 to 1, the algorithm receives the predictions of the Nexperts, �1;t; : : : ; �N;t, and computes its prediction ŷt as follows:� Compute rt := PNi=1 wi;t�i;tPNi=1 wi;t� Output prediction ŷt = F�(rt).3. After the correct outcome yt is observed, the weight vector is updated in the followingway.� For each i = 1 to N , wi;t+1 = wi;tU�(j�i;t � ytj):De�nition of F�(r) and U�(q).There is some exibility in de�ning the functions F�(r) and U�(q) used in the algorithm.Any functions F�(r) and U�(q) such that1 + ln((1� r)� + r)2 ln( 21+� ) � F�(r) � � ln(1� r + r�)2 ln( 21+� ) ; (6)for all 0 � r � 1, and �q � U�(q) � 1� (1� �)q; (7)for all 0 � q � 1, will achieve the performance bounds established below.Figure 2: Description of Algorithm P(�), with parameter 0 � � < 1.Proof: Follows Corollary 7, Theorem 5, and the fact that VN;` � V (static)N;` .Hence for any � > 0 there exist su�ciently large N and ` such that VN;` � (1� �)p(`=2) lnN .4 Some simple prediction algorithmsIn this section, we present a parameterized prediction algorithm P for combining thepredictions of a set of experts. Unlike the optimal strategy outlined in Section 3, algorithmP can be implemented e�ciently. The analysis of P will give an upper bound for themin/max value VN;` that asymptotically matches the lower bound derived in the previoussection.4.1 The algorithm P.The prediction algorithm P is given in Figure 2. It works by maintaining a (nonnegative)weight for each expert. The weight of expert i at time t is denoted wi;t. At each time t,the algorithm receives the experts' predictions, �1;t; :::; �N;t, and computes their weightedaverage, rt. Algorithm P then makes a prediction that is some function of this weightedaverage. Then P receives the correct value yt and slashes the weight of each expert i by a



4. Some simple prediction algorithms 15multiplicative factor depending on how well that expert predicts, as measured by j�i;t� ytj.The worse the prediction of the expert, the more that expert's weight is reduced.Algorithm P takes one parameter, a real number � 2 [0; 1) which controls how quicklythe weights of poorly predicting experts drop. For small �, the algorithm quickly slashesthe weights of poorly predicting experts and starts paying attention only to the betterpredictors. For � closer to 1, the weights will drop slowly, and the algorithm will payattention to a wider range of predictors for a longer time. The best value for � depends onthe circumstances. Later, we derive good choices of � for di�erent types of prior knowledgethe algorithm may have.There are two places where the algorithm can choose to use any real value within anallowed range. We have represented these choices by the functions F� and U� , with rangesgiven by (6) and (7), respectively, in Figure 2. These are called the prediction and updatefunctions, respectively. In terms of our analysis, the exact choice for these functions is notimportant, as long as they lie in the allowed range. In fact, di�erent choices could be madeat di�erent times. The following lemma shows that these ranges are nonempty.Lemma 9: For any 0 � � < 1 and 0 � a � 1,1. 1 + ln((1�a)�+a)2 ln 21+� � � ln(1�a+a�)2 ln 21+�2. �a � 1� a(1� �).Proof: We begin by proving part 1. The inequality can be rewritten as1 + ln[(� � a� + a)(1� a + a�)]2 ln 21+� � 0:Since 0 � � < 1, this is in turn equivalent toln[(� � a� + a)(1� a + a�)] � 2 ln 1 + �2 :Exponentiating both sides yields(� � a� + a)(1� a + a�) � �1 + �2 �2which holds since xy � ((x + y)=2)2 for all real x and y (here we take x = � � a� + a andy = 1� a + a�).To prove part 2, notice that f(a) = �a is convex downward since it has nonnegativesecond derivative for all � > 0. Thus, by de�nition of convex function,f(�x0 + (1� �)x1) � �f(x0) + (1� �)f(x1)for all x0; x1 and all 0 � � � 1. The proof is then concluded by choosing x0 = 0, x1 = 1,and � = 1� a.4.2 The performance of algorithm P(�)Algorithm P's performance is summarized by the following theorem, which generalizesa similar result of Vovk [Vov90b].



16 4. Some simple prediction algorithmsTheorem 10: For any 0 � � < 1, for any set E of N experts, and for any binary sequencey of length `, the loss of P(�) satis�esLP (�)(y) � lnN � LE(y) ln �2 ln 21+� :The proof of the theorem is based on the following lemma.Lemma 11: LP (�)(y) � ln� PNi=1 wi;1PNi=1 wi;`+1�2 ln 21+� :Proof: We will show that for 1 � t � `,jŷt � ytj � ln� PNi=1 wi;tPNi=1 wi;t+1�2 ln 21+� : (8)The lemma then follows from summing the above inequality for t = 1; : : : ; `. We �rst lowerbound the numerator of the right-hand-side of the above inequality:ln PNi=1 wi;tPNi=1 wi;t+1! = � ln PNi=1wi;tU�(j�i;t � ytj)PNi=1 wi;t !� � ln PNi=1wi;t(1� (1� �)j�i;t � ytj)PNi=1 wi;t != � ln(1� (1� �)jrt � ytj);where the inequality follows from Equation (7), and the last equality is veri�ed by a caseanalysis using the fact that yt 2 f0; 1g. Thus Equation (8) is implied byjŷt � ytj � � ln(1� (1� �)jrt � ytj)2 ln 21+� :The above splits into two inequalities since yt is either 0 or 1. These two inequalities arethe same as the two inequalities of (6) which we assumed for the prediction function.Proof of Theorem 10: All initial weights equal 1 and thus PNi=1wi;1 = N . Let j be anexpert with minimum total loss on y, that is, Pt̀=1 j�j;t�ytj = LE(y): Since, by Equation (7),U�(q) � �q , we have thatNXi=1wi;`+1 � wj;`+1 = wj;1 Ỳt=1U�(j�j;t � ytj)� Ỳt=1�j�j;t�ytj = �LE(y):The theorem now follows from Lemma 11.



4. Some simple prediction algorithms 174.3 Discussion of the algorithmAlthough our algorithm allows any update function U�(q) between the exponential �q(used by Vovk in his related work [Vov90b]) and the linear function 1� (1��)q that upperbounds it, it turns out that the linear update has a nice Bayesian interpretation, and thusin some sense may be preferable.To get this Bayesian interpretation, we view each expert as a probability distribution onbit sequences of length `, and pretend that the actual sequence y = y1; : : : ; y` is generatedby picking an expert uniformly at random and then generating a bit sequence of length ` atrandom according to the distribution de�ned by that expert. The probability distributionfor the ith expert is de�ned as follows: For any y1; : : : ; yt�1, if the expert's estimate of theprobability that yt = 1 given y1; : : : ; yt�1 is �i;t, then the actual probability that yt is 1given y1; : : : ; yt�1 is de�ned to be pi;t = � + (1� 2�)�i;t; (9)where � = �=(1+�). It is easy to see that pi;t is just the probability that yt is 1 if originallyyt is set to 1 with probability �i;t and 0 with probability 1 � �i;t, and then the value ofyt is ipped with independent probability �. Hence the value � can be interpreted as a\subjective" noise rate between 0 and 1=2. Under this interpretation, we easily obtain thefollowing result:Theorem 12: When the update function U� of the algorithm P(�) has the formU�(q) = 1� (1� �)q;then the (normalized) weight wi;t=(PNj=1 wj;t) is the posterior probability that the outcomesequence is being generated from the distribution de�ned above for the ith expert given theprevious outcomes y1; : : : ; yt�1, assuming that all N expert distributions are a priori equallylikely to be generating the sequence.Proof: Initially wi;1 = 1 for all i, hence the normalized initial weights are the uniformprior distribution, as required. It su�ces to show that for each time t � 1, the ratio ofsuccessive weights wi;t+1=wi;t is proportional to the ratio P (ijy1; : : : ; yt)=P (ijy1; : : : ; yt�1)of successive posterior probabilities (with the same constant of proportionality for all i),where P (ijy1; : : : ; yt) denotes the posterior probability that the sequence is being generatedfrom the distribution of the ith expert given y1; : : : ; yt. However, using Bayes ruleP (ijy1; : : : ; yt)P (ijy1; : : : ; yt�1) / P (y1; : : : ; ytji)P (y1; : : : ; yt�1ji)= ( pi;t if yt = 11� pi;t if yt = 0 ;where pi;t is as de�ned in (9) above, and P (y1; : : : ; ytji) denotes the probability of y1; : : : ; ytunder the distribution de�ned above for the ith expert. Using equation (9) with thesubstitution � = �=(1 + �), this implies thatP (ijy1; : : : ; yt)P (ijy1; : : : ; yt�1) / ( � + (1� �)�i;t if yt = 11� (1� �)�i;t if yt = 0= 1� (1� �)j�i;t � ytj:
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Figure 3: This �gure shows the upper (high) and lower (low) bounds on the possiblevalues of the prediction function F� for � = 0 (Inequality (6)). Also shown aretwo possible choices for F� , a piecewise linear function (lin) given in (10), and thefunction that has been suggested by Vovk's work (vovk) given in (11).As this is precisely the factor by which the weights are updated after seeing yt, this is theratio of successive weights wi;t+1=wi;t.Since the weights are posterior probabilities on the experts, the weighted average rt ofthe expert's predictions, computed by the algorithm P, also has a Bayesian interpretation:it is simply the posterior probability that yt = 1 given y1; : : : ; yt�1. The only aspect of thealgorithm that does not have a Bayesian interpretation is the prediction function F�(r).A Bayes method would predict 1 whenever the posterior probability rt is greater than 1=2and predict 0 otherwise, in order to minimize the posterior expectation of the loss jŷt� ytj.Thus a Bayes method would use a step function at 1=2 for the prediction function F�(r).However, as is clear from Figure 3, this function lies outside the allowable range for F�(r),and this is no accident. The Bayes method does not perform well in the worst case forthis prediction problem, as was shown in [HW94, FMG92]. Hence we must deviate fromthe Bayes method at this step. This leads to the requirements we have speci�ed for theprediction function F�(r).One function that satis�es the requirements for F� is the piecewise linear function55A similar piecewise linear function was suggested by Feder et al. [FMG92], in a related context.



4. Some simple prediction algorithms 19F�(r) = 8><>: 0 if r � 12 � c12 � 1�2r4c if 12 � c � r � 12 + c1 if r � 12 + c (10)where c = (1 + �) ln( 21+� )2(1� �) :Another possible choice for F� is suggested by Vovk's work6 [Vov90b]F�(r) = ln(1� r + r�)ln(1� r + r�) + ln((1� r)� + r) : (11)Figure 3 contains a plot of these functions when � = 0, along with the upper and lowerbounds on F� given in Inequality (6). Recall that � = 0 corresponds to the case whenthere is no noise. In that case � ln(1� r) is the information gain when the outcome is zeroand � ln(r) is the information gain when the outcome is one. Furthermore, the predictionfunction (11) is the normalized information gain when the outcome is zero. See [HW94] fora more detailed discussion. As the noise increases, � ! 1 and all four curves converge tothe identity function.Finally, we note that the parameterized bound given in Theorem 10 on the performanceof algorithm P was �rst proved by Vovk [Vov90b] for his version of F� and the exponentialupdate. Also, Littlestone and Warmuth [LW94] prove a bound for their algorithm WMCwhich has the same form as the bound of Theorem 10, except the denominator 2 ln 21+�is replaced by the smaller function 1 � �. Their algorithm uses the prediction functionF�(rt) = rt and works for the more general setting when the outcome yt can be in theinterval [0; 1] as opposed to being binary. For the noise-free case (� = 0), their algorithmbecomes the Gibbs algorithm (see discussion in [HW94]). The bound of Theorem 10 (withdenominator 2 ln 21+� ) was recently also obtained by Kivinen and Warmuth [KW93] forthe case when the outcomes are in [0,1]. Curiously enough, the denominator of ln 21+� isobtained by the Weighted Majority algorithm of Littlestone and Warmuth [LW94] whichassumes that the outcomes are binary and predicts binary as well (See [CBFHW93] for adetailed treatment of the case when the outcomes are binary).4.4 Performance for bounded LESo far we have ignored the issue of how � is chosen. In this section we show how � canbe chosen when there is a known bound K on the loss of the best expert. When LE(y) isreplaced by K, the upper bound from Theorem 10 can be writtenL(�) = lnN �K ln �2 ln 21+� :6Vovk's algorithm generates its prediction according to the prediction functionŷt = lnPNi=1 wi;t��i;tlnPNi=1 wi;t��i;t + lnPNi=1 wi;t�1��i;t ;where the weights are normalized so that they sum to one. Note that this function depends on the experts'predictions in a more complicated way than just through the weighted average rt. Hence it need not satisfyour Inequality (6). However, when the experts' predictions are all in f0; 1g, then Vovk's prediction functionis equivalent to the one described in Equation (11).
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4. Some simple prediction algorithms 21We will use the following function in our choice of �.g(z) = 11 + 2z + z2ln 2 (12)We give g(1) its natural value of 0. The key property of this function is the followinginequalityLemma 13: Pick any positive integer N and nonnegative real K. If z = q lnNK and� = g(z) then lnN �K ln �2 ln 21+� � K +pK lnN + log2N2 :Proof: See Appendix B.Another simple inequality that we need in the proof is given in the following lemmaLemma 14: For all 0 < � � 1 � ln(�) � 2 ln 21 + �Proof: We de�ne x = 1� � and rewrite the inequality of the lemma as� ln(1� x) � �2 ln(1� x2) :This inequality clearly holds since1� x � 1� x + x24 = �1� x2�2 :Using the function g to make our choice of � we can obtain the following bound.Theorem 15: Let N be a positive integer, and let K be a nonnegative real. If � = g(q lnNK )for the g de�ned in Equation (12) then for any set E of N experts and for any sequence ysuch that LE(y) � K we haveLP (�)(y)� LE(y) � pK lnN + log2N2 :Proof: From Theorem 10 we know that for any choice of � 2 [0; 1)LP (�)(y) � lnN � LE(y) ln �2 ln 21+� : (13)We de�ne A = LE(y)= ln(N) and B = K= ln(N). We rewrite (13) asLP (�)(y) � ln(N) A + 1� A ln(�)2 ln 21+� �A!



22 4. Some simple prediction algorithmsFrom Lemma 14 we know that � ln(�)2 ln(2=(1+�)) � 1, and from the conditions of the theoremwe know that A � B. Based on these we get thatLP (�)(y) � ln(N) A + 1� B ln(�)2 ln 21+� � B!= LE(y) + lnN �K ln �2 ln 21+� �K :Since � was chosen to be g(q lnNK ), we use the inequality of Lemma 13 to obtainLP (�)(y) � LE(y) +pK lnN + log2N2 ;completing the proof.To get a feel for the bound given in Theorem 15, it may be helpful to consider theaverage per-trial loss guaranteed by the bound. Letting � = K=`, we get:LP (�)(y)` � LE(y)` +s� lnN` + log2N2` :Thus, for large `, the average loss of P approaches that of the best expert. The rate ofconvergence of the average loss depends on �: for \small" �, the rate of convergence isroughly O(1=`) (for large ` and N �xed); for fairly large � (say �(1)), the middle termdominates giving a slower convergence rate of O(1=p`).4.5 Performance for known sequence lengthAs a corollary of Theorem 15, we can devise a choice for � that will guarantee a bound onthe di�erence between the loss of the algorithm and the loss of the best expert for the casewhere `, the length of the sequence to be predicted, is given to the algorithm in advance.Theorem 8 shows that this guarenteed di�erence is very close to optimal.Theorem 16: Let � = g(p2 ln(N + 1)=`). Then for any set E of N experts, and for anysequence y of length L̀P (�)(y)� LE(y) � s` ln(N + 1)2 + log2(N + 1)2 :Proof: As the length of the sequence is `, the largest possible loss is `; however, this boundcan be easily decreased to `=2. To do so, the prediction algorithm simulates an additionalexpert that makes the inverse prediction of the �rst expert, i.e., �N+1;t = 1� �1;t. It is easyto see that for any y, either LE1 � `=2 or LEN+1 � `=2. Thus, for the increased pool ofexperts we have LE � `=2 and from Theorem 15 we get the statement of the theorem.We remark that while the bound stated in Theorem 16 holds for all `, there is a slightlybetter bound on P(�) for the given choice of � when `!1 (and N remains �xed):LP (�)(E)� LE(y) � s` ln(N + 1)2 + (12 + o(1)) lnN:



4. Some simple prediction algorithms 23This can be proved by a Taylor expansion of the bound given in Theorem 10.Combining Theorem 8 and Theorem 16, we see that P(�)'s performance is very closeto optimal for su�ciently large N and `, and we thereby obtain an upper bound on themin/max value VN;` of the general binary sequence prediction game de�ned in Section 3.Theorem 17: For all N; `,VN;` � s` ln(N + 1)2 + log2(N + 1)2and limN!1 lim`!1 VN;`p(`=2) lnN = limN!1 lim`!1 V (static)N;`p(`=2) lnN = 1:Proof: The �rst statement follows from Theorem 16, and the second follows from this andTheorem 8.We have thus shown that the ratio between VN;` and LP (�)(y) � LE(y) converges to1 as ` and N grow. While this is a rather strict notion of optimality, there is still a gapbetween the upper and lower bounds and it is interesting to consider the actual numbers tosee where improvement might be possible. We give such comparisons in Figures 6 and 7.These comparisons seem to indicate that the lower bound is very close to the min/maxvalue and that space for improvement is mostly in improving the prediction algorithm orits analysis.As a �nal note, we also get from Theorem 16 an interesting geometric corollary con-cerning the average covering radius of a set of binary vectors. Recall that we de�ned theaverage covering radius of E � f0; 1g` by R(E) = Eymini jjEi � yjj1; where Ey denotesexpectation over a uniformly random choice of y 2 f0; 1g`, and for all N; `, we de�nedRN;` = minE R(E), where the minimum is over all E � f0; 1g` of cardinality N .Corollary 18: For all N; `,RN;` � 2̀ �s` ln(N + 1)2 � log2(N + 1)2and limN!1 lim`!1 2̀ �RN;`p(`=2) lnN = 1Proof: Follows from Theorems 16 and 5, since V (static)N;` � VN;`.4.6 Prediction without prior knowledgeIn the previous sections we showed how to tune � so that P(�) performs well wheneither a bound on the loss of the best expert or the length ` of the sequence is known tothe algorithm. Here we present a version of the algorithm, Algorithm P�, that uses neitherthe length of the sequence nor the loss of the best expert. Algorithm P� repeatedly guessesdi�erent loss bounds until it guesses a bound greater than the remaining loss of the bestexpert. The gap between this algorithm's loss and the loss of the best expert is only a factorof (roughly) 4 greater than the gap when the loss of the best expert is known.
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sequence lengthFigure 5: This �gure describes the relationship between the upper bounds guar-anteed by P(�) when the length of the sequence is given to the algorithm as inputand the corresponding min/max values. The min/max values are scaled so thatthey can all be compared to the same upper bound. The horizontal axis corre-sponds to the length of the sequence divided by ln(N), where N is the numberof experts, and the vertical axis corresponds to (LP (�) � `=2)= ln(N). The twothick-line curves correpond to the upper bounds given by the algorithm as in Fig-ure 4. The four piece-wise linear graphs correspond to the min/max values forN = 2; 3; 4; 5 and ` = 1; : : : ; 15.Algorithm P� (see Figure 8) takes two parameters, a and c, which control how it guessesloss bounds. We show later that one reasonable choice for these parameters is a = 2 andc = (1+p52 )2. At the start of each iteration z of the outer loop, a bound kz on the bestexpert's remaining loss is guessed. Algorithm P� resets the experts' weights to 1 anduses Algorithm P(g(p(lnN)=kz)) (for the function g de�ned in Equation (12)) to generatepredictions. If the bound kz is correct then the remaining loss will be no greater than avalue bz calculated using Theorem 15. If the total loss incurred by Algorithm P duringthe iteration exceeds bz, then the guessed bound on the loss of the best expert is incorrect77The bounds of this section also hold if instead we use the following stopping criterion: \Until the loss
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sequence lengthFigure 6: This �gure describes the relationship between the min/max value forN = 4 (the piece-wise linear graph) and the lower bound achieved by randomlyselected static experts (the cross marks). Three di�erent random choices are givenfor each selected sequence length in order to provide an estimate of the spread ofthis statistical lower bound.and Algorithm P� increases the guessed bound by a factor of c and proceeds to the nextiteration of the outer loop. Note that the �rst iteration is iteration number zero (z = 0).Before analyzing Algorithm P�, we state a few simple facts that will be needed. First,from the description of the algorithm,bz = kz +pkz lnN + log2N2 = kz +acz=2 lnN + 12 log2N = kz + (acz=2 + 12 ln 2) lnN: (14)Also, since at most one unit of loss is incurred by any prediction, the loss incurred byAlgorithm P� during any iteration number z of the outer loop is at most bz + 1.Lemma 19: If Algorithm P� exits iteration number z of the outer loop then, for all Ei 2 E,the loss incurred by Ei while Algorithm P� is executing iteration number z of the outer loopis greater than kz.of the best expert in this loop exceeds kz."
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sequence lengthFigure 7: This �gure describes the relationship between randomly generated lowerbounds and the upper bounds for longer sequences. The cross, square, circle anddiamond marks correspond to the lower bounds for N = 2; 4; 8; 16, respectively.Proof: If some expert incurs loss at most kz during loop iteration number z, then Algo-rithm P has loss at most bz during this iteration (by Theorem 15), and iteration number zis not exited.Let yz be the subsequence of outcomes seen during iteration number z of the outer loop.The loss of an expert Ei while Algorithm P� is executing iteration number z may not bethe same as LEi(yz). This is because the experts can be algorithms whose state changesbased on the outcomes seen. Expert Ei may make di�erent predictions on yz after havingseen the outcomes in previous loop iterations than it would make on yz without having seenthe other outcomes. It is important that we reset only the weights of the experts that aremaintained by P and not the internal states of the experts before calling Algorithm P aswe want to compare the loss of P� with LE(y).Lemma 20: Pick any a > 1 and c > 1. If \last" is the number of the last loop iterationentered by P�(a; c) on some sequence y thenlast � logc �1 + LE(y)(c� 1)a2 lnN � :



4. Some simple prediction algorithms 27Algorithm P�(a; c):Parameters a > 0 and c > 1 are constants. fgood choices are a = 2 and c = (1+p52 )2gfor z := 0 to 1 do f z is the loop iteration counter gkz := a2cz lnN ; f guess a bound on best expert's loss gbz := kz +pkz lnN + log2 N2 f loss bound if guess correct gReset the weight of each expert to 1.repeatrun P(g(pln(N)=kz)) to generate a predictionuntil the total loss in this loop exceeds bz.Figure 8: Description of Algorithm P�.Proof: If last = 0 then the lemma trivially holds, so we continue under the assumptionthat last � 1. If iteration number z of the outer loop is exited when Algorithm P� runs onsequence y then LE(y) > zXj=0 kj = zXj=0 a2cj lnN = a2 lnN cz+1 � 1c� 1 :Since last � 1 and iteration number last is entered, iteration number last � 1 is exited.Thus, LE(y) � a2 lnN clast � 1c� 1 :Solving for last yields the desired result.The above lemma shows that Algorithm P� executes the outer loop a �nite number oftimes whenever the loss of the best expert is bounded. Thus our bounds on Algorithm P�hold even for in�nite sequences, as long as the loss of the best expert is �nite over thein�nite sequence.We now return to bounding the total loss of Algorithm P�.Theorem 21: Let E be a set of N experts, y be any sequence, and � be the golden ratio(1 +p5)=2. If LE(y) is �nite then for all a � 2(��1)(2�p�) lnN , the di�erence LP �(y)�LE(y) isat most  �3=2(�� 1) + 0:805p�4a ln 2 ln� + 0:805p�2a lnN ln�!qLE(y) lnN + (a+ 12 ln 2) lnNwhen Algorithm P� uses parameters c = �2 and a.Proof: In Appendix C.Corollary 22: If N � 7 and Algorithm P� uses parameters c = �2 and a = 2 then for anysequence y, LP �(y)� LE(y) � 4qLE(y) lnN + 2:8 lnN:



28 5. Applications to the pattern recognition problemNote that the parameter a allows one to trade o� (in a limited way) between the constantin front of the lnN term and the constant in front of the pLE(y) lnN term. Furthermore,the constant multiplying the (more important) pLE(y) lnN term can be made arbitrarilyclose to �3=2=(�� 1) � 10=3 by choosing the constant a su�ciently large.Since the Algorithm P� is not given the length of the sequence y, the bound of The-orem 21 holds for all pre�xes y of any in�nite sequence y0: Di�erent experts might haveminimum loss for di�erent pre�xes of y0, but the loss of P� is always close to the best experton each pre�x.5 Applications to the pattern recognition problemUp until this point we discussed the problem of predicting binary sequences, where thepredictions made by the experts are functions of past predictions and outcomes. We turnnow to an application of these results to the general pattern recognition problem as wasdescribed in the introduction.Our goal is to approximate a stochastic mapping from an instance space X to labelsf0; 1g. The algorithm observes a set of examples of the stochastic mapping and producesa hypothesis, a rule for predicting the labels of new instances. The goal of the learningalgorithm is to produce a hypothesis whose error is not much worse than the error of thebest function in some known class of functions called the touchstone class [KSS92].It is this latter class of functions that de�nes the \inductive bias" of the learningalgorithm in the sense that we believe a priori that one of the functions in the touchstoneclass is a good approximation of the stochastic mapping.More formally, let D be a probability distribution on X�f0; 1g.8 We assume a sequences = (x1; y1); : : : ; (x`; y`) of training examples is drawn from the product distribution D`, i.e.,each example is drawn independently according to D. A learning algorithm A takes thesetraining examples as input and outputs a hypothesis h = A(s) that maps from X into [0; 1].The error of the hypothesis h is de�ned by erD(h) = E(x;y)�Djh(x) � yj, where E(x;y)�Ddenotes the expectation over (x; y) drawn randomly according to D. The goal is to minimizethis error under the worst-case distribution D.The learning algorithm is given a priori a touchstone class H consisting of a set ofmappings from X into f0; 1g. The functions in the touchstone class play a role similarto that played by the experts above. However, while the experts de�ned in Section 4 arearbitrary prediction strategies, the touchstone class contains only �xed functions which donot depend on past predictions and outcomes. Also, we restrict these functions to outputeither 0 or 1 and not real numbers in the range [0; 1]. On the other hand, the touchstoneclass may be in�nite, while the set of experts in Section 4 is assumed to be �nite.Let erD(H) = infh2H erD(h)be the error of the best function in H for the particular distribution D. In the learningproblem we examine here9, we attempt to �nd bounds on the error of the hypothesis8When X is uncountable, appropriate assumptions are made to insure measurability.9This type of problem might be called by many names, such as L1 regression with a regret formulation ofthe loss function (in typical statistics literature), or minimum contrast estimation [BM93], or, as mentionedin the introduction, the agnostic version of PAC learning [KSS92]. The terminology we use here is that fromthe PAC learning literature.



5. Applications to the pattern recognition problem 29generated by the learning algorithm that are expressed in terms of the error of the bestfunction in the touchstone class. That is, we attempt to �nd a bound on the di�erenceEs�D`(erD(A(s)))� erD(H) (15)which holds uniformly for all distributions D.10Bounds of this type have also been obtained by Vapnik [Vap82] and Birge and Massart[BM93]. The basic idea of their learning algorithms is to predict according to the singlehypothesis that su�ers the minimal loss over the sample of instances presented to the learner.In this paper we obtain better performance bounds by using an algorithm that combinesthe predictions of all the experts, weighted according to their performance on the sample.We now sketch how the techniques developed in Section 4 for the sequence predic-tion problem can be applied to the pattern recognition problem. Suppose that s =(x1; y1); : : : ; (x`; y`) is the sequence of random labeled examples presented to the learn-ing algorithm, and let x be an instance whose label is to be predicted. The natural wayof using a sequence prediction algorithm, such as the algorithm P, in this context is tosimulate it on the sequence s, and then obtain it's prediction on the new instance x. Herewe regard as experts the set of all possible labelings of the instances x1; : : : ; x`; x that agreewith some function in the touchstone class H. Although the cardinality of H may be in�-nite, the number of possible binary labelings of the sequence that agree with some functionin H is always �nite, and in fact, is polynomial in ` if the VC dimension of H is �nite (see[BEHW89] or [Vap82] for a de�nition of the VC dimension and its relation to this kind oflearning problem).Unfortunately, we do not know how to analyze an algorithm of this type, since thebounds that we have for our sequence prediction algorithms hold only for the cumulativeloss over the entire sequence, and not the loss at any particular time step. To handle thisdi�culty, we de�ne a more complicated scheme that uses the sequence prediction algorithmin a more elaborate way. Instead of placing the unlabeled example at the end of thesequence, we insert it in all possible positions in the sequence s and take the averageof the predictions so obtained. More precisely, for every choice of index i = 0; : : : ; `,we insert the unlabeled example between examples i and i + 1, producing the sequence(x1; y1); : : : ; (xi; yi); (x; ?); (xi+1; yi+1); : : : ; (x`; y`). We simulate our prediction algorithm Pon each of these sequences to obtain `+ 1 predictions of x's label and output their average.A simple argument, which will be given in Section 5.2, bounds the expected error of thislearning algorithm. Similar methods were previously used by Helmbold and Warmuth[HW94].Before using algorithm P as the sequence prediction algorithm, we need to choose theparameter �. We analyze two methods for tuning � in this context. The �rst method is totune � according to the length of the sample, using the results of Section 4.5. These resultsare described in Section 5.2. The drawback of this method is that the dependence of theexpected error of the learning algorithm on the sample size ` is of order O(1=p`) even ifthe loss of the best function in H is very small. By using a much more sophisticated choiceof � we can improve the upper bound on the expected loss of the algorithm to O(1=`) whenerD(H) is small. These results are described in Section 5.3.10Typically, tail bounds are also given that bound the probability that the hypothesis returned is sig-ni�cantly worse than the best hypothesis in H. Our current methods do not provide these, but standard\con�dence boosting" methods can be applied on top of them to achieve good tail bounds [HKLW91, Lit89].More direct methods are given by Littlestone and Warmuth [LW94].



30 5. Applications to the pattern recognition problem5.1 Further de�nitionsBefore stating our results, we need to make a few further de�nitions. Our �rst de�nitiondeals with the issue of optimizing the error on the training examples (called empirical error)versus optimizing erD, the error with respect to the underlying distribution D. This is oftenreferred to as the problem of over�tting. Letcer`;D(H) = Es�D` infh2H 1̀ X̀t=1 jh(xt)� ytj:Thus cer`;D(H) is the expected empirical error of the hypothesis in H that does best on arandom set s = (x1; y1); : : : ; (x`; y`) of ` training examples drawn independently accordingto the distribution D. The quantityer�̀;D(H) = erD(H)�cer`;D(H)will be called the expected over�t for ` training examples. It is clear that this quantity isnonnegative for any `, D and H, sinceerD(H) = infh2H erD(h)= infh2HEs�D` 1̀ X̀t=1 jh(xt)� ytj� Es�D` infh2H 1̀ X̀t=1 jh(xt)� ytj= cer`;D(H):In other words, the expected empirical error of the best hypothesis on the training examplesis always smaller than the expected error of the asymptotically best hypothesis on a set ofrandom \test" examples.We also will need a formal notation for the set of all label sequences that agree withsome function in H. For any touchstone class H and sequence x = x1; : : : ; x`, let us de�neHjx = f(h(x1); : : : ; h(x`)) : h 2 Hg:We will call Hjx the restriction of H to x.5.2 The basic boundTheorem 23: For any instance space X and any touchstone class H on X, there exists alearning algorithm A such that for all ` and all distributions D on X � f0; 1gEs�D`(erD(A(s)))� erD(H) � Exqln(jHjxj+ 1)p2(`+ 1) + Ex(log2(jHjx j+ 1))2(` + 1) � er�̀+1;D(H);where Ex denotes expectation over x = x1; : : :x`+1, each xt drawn independently at randomaccording to the marginal of D on X.



5. Applications to the pattern recognition problem 31Proof: We de�ne the learning algorithm A by describing its hypothesis, h. Given thesequence of examples s = (x1; y1); : : : ; (x`; y`), and instance x, we de�ne h(x) as follows.First, for each 1 � t � `+ 1, let x(t) = x1; : : : ; xt�1; x; xt; : : : ; x` and let E(t) = Hjx(t) . Thusthere is an expert in E(t) for each possible labeling of x(t) that agrees with some function inthe touchstone class H. Note that the experts in E(t) are the same as the experts in E(t+1)except that the predictions on trials t and t+ 1 are swapped due to the di�erent placementof x. Let N = jE(t)j and � = g(p2 ln(N + 1)=`). For each 1 � t � ` + 1 let ŷt denotethe prediction of the sequence prediction algorithm P� de�ned in Section 4 after seeingoutcomes y1; : : : ; yt�1, and the �rst t predictions of the experts in E(t). The value of thefunction h = A(s) on input x is de�ned by the average of the ŷt's, i.e. h(x) = 1`+1 P`+1t=1 ŷt.To show that this strategy A has the desired performance, �rst note thatEs�D`(erD(A(s))) = Es�D`;(x;y)�DjA(s)(x)� yj= Es�D`;(x;y)�D ����� 1` + 1 `+1Xt=1 ŷt!� y����� ;where ŷt is as de�ned in the previous paragraph, and s = (x1; y1); : : : ; (x`; y`).Because j( 1nPnt=1 pt)� cj = 1nPnt=1 jpt � cj for c 2 f0; 1g and 0 � pt � 1, it follows thatEs�D`(erD(A(s))) = Es�D` ;(x;y)�D 1` + 1 `+1Xt=1 jŷt � yj= 1` + 1 `+1Xt=1Es�D`;(x;y)�Djŷt � yj= 1` + 1 `+1Xt=1E(x;y)�D`+1 jŷ0t � ytj;where, in analogy with the de�nition of ŷt, we de�ne ŷ0t as the prediction of P� afterobserving the outcomes y1; : : : ; yt�1 and the �rst t predictions of the experts in Hjx , wherex = x1; : : : ; x`+1, and � = g(q2 ln(jHjx j+ 1)=`).Let LP (�)(x;y) = P`+1t=1 jŷ0t�ytj, the total loss of the prediction strategy P� for instancesx and outcomes y = y1; : : : ; y`+1, assuming the set of experts is Hjx . It follows from theabove that Es�D`(erD(A(s))) = 1` + 1E(x;y)�D`+1LP (�)(x;y): (16)Furthermore, it is clear thatcer`;D(H) = E(x;y)�D` 1̀ infh2HX̀t=1 jh(xt)� ytj= E(x;y)�D` 1̀LHjx (x;y); (17)where LHjx (x;y) is the total loss of the best expert in Hjx on the outcome sequence y.



32 5. Applications to the pattern recognition problemIt follows from (16), (17) and the de�nition of expected over�t thatEs�D`(erD(A(s)))� erD(H)= Es�D`(erD(A(s)))�cer`+1;D(H) � (erD(H)�cer`+1;D(H))= 1` + 1E(x;y)�D`+1LP (�)(x;y)� 1` + 1E(x;y)�D`+1LHjx (x;y)� er�̀+1;D(H)= 1` + 1E(x;y)�D`+1 �LP (�)(x;y)� LHjx (x;y)�� er�̀+1;D(H)By Theorem 16, for any x and y of length ` + 1,LP (�)(x;y)� LHjx (x;y) � s(` + 1) ln(jHjx + 1)2 + log2(Hjx + 1)2 :The result follows.It is easy to see that the constant in the leading term of the bound in Theorem 23 is thebest possible. The argument is similar to the lower bound argument we used for predictionstrategies. We assume that the distribution D is such that for a random example (x; y),the value y is 1 with probability 1=2 and 0 with probability 1=2, independent of x. Hence,every hypothesis h has erD(h) = 1=2. This implies that Es�D`(erD(A(s)))� erD(H) = 0for any touchstone class H and algorithm A. On the other hand, suppose that the Nhypotheses in H are chosen randomly such that they predict 1 with probability 1=2 and 0with probability 1=2 on a random instance x (this is not hard to arrange). Then Lemma 6implies that the expected over�t er�̀+1;D(H) is (1+o(1))plnNp2` . The expected over�t appearswith a minus sign on the right hand side of the bound in Theorem 23. Hence for this boundto be nonnegative, as required in this case, the constant in the �rst term on the right handside must be at least (1 + o(1))=p2. This shows that this constant cannot be improved ingeneral.5.3 Re�ned resultThe result of the previous theorem can be improved by a more sophisticated choice of�.Theorem 24: For any instance space X and any touchstone class H on X, there exists alearning algorithm A such that for all ` and all distributions D on X � f0; 1gEs�D`(erD(A(s)))� erD(H) � qcer`+1;D(H)(pV + 1)p` + 1 + V= ln 2 + 3pV + 1` + 1 � er�̀+1;D(H)(18)� perD(H)(pV + 1)p` + 1 + V= ln 2 + 3pV + 1` + 1 � er�̀+1;D(H);(19)where V = Ex ln jHjxj.The proof of this theorem is given the next section. The idea is to follow the proof ofthe previous theorem, but instead choose � = g(p(lnN)=K), where K is the best upperbound that can be obtained on the total loss of the best expert in E(t). Then in the laststep, Theorem 15 is used instead of Theorem 16. Since we know all the predictions of theexperts and all the outcomes but the one for the instance x, we can estimate the total lossof the best expert to within 1.



5. Applications to the pattern recognition problem 33The glitch in this simple idea comes in Equation 16. Here ŷ0t is the prediction of P� forthe tth outcome yt when this outcome is held out, � is de�ned using the upper bound on thetotal loss of the best expert based on all the other outcomes and all the predictions of theexperts in Hjx , and P� is given only y1; : : : ; yt�1 and the �rst t predictions of the experts.The glitch is that for di�erent t, we may get di�erent values of �, since the estimate K canvary (although it never varies by more than one). Thus we may actually be running di�erentprediction algorithms for di�erent values of t. This means that the sum on the right handside of Equation 16 no longer represents the total loss of a single run of the algorithm P� ,but rather a mixture of instantaneous losses of di�erent versions of the algorithm that usedi�erent values of �.We have not found a simple way to work around this problem. In dealing with it, wehave been led to a set of general results about prediction in this setting where all but oneoutcome is available, a setting that is reminiscent of that obtained when using the \hold-one-out" method of cross validation, commonly used in statistics. These results are alsogiven in the next section.The bounds given in Theorem 24 are better than those obtained for this kind of pat-tern recognition problem by the only other methods that we are aware of [Vap92, Tal94,BM93]. Bounds given by Vapnik ([Vap92], Equation (11)) imply a bound in the same formas the second bound in Theorem 24, but with an additional factor of 2 in the leading term.However, Vapnik's bounds hold in more general cases than the one we consider here. Tala-grand [Tal94] gives similar general bounds without the factor of 2, but with an unspeci�edconstant in the lower order term. It is not clear that this unspeci�ed constant can be madesmall enough to get practical bounds for small sample size `. Bounds obtained by Birgeand Massart also contain constants that are di�cult to bound [BM93]. Thus our approachto the pattern recognition problem through worst case analysis of the sequence predictionproblem appears to be a fruitful one.5.4 The hold-one-out model of prediction and proof of Theorem 24In this subsection we discuss a slightly di�erent prediction problem. After developing atheory of this prediction problem, we will be in a position to prove Theorem 24.Let x = x1; : : : ; x` be a sequence of instances chosen from an arbitrary set X , y =y1; : : : ; y` be a sequence of binary outcomes, and E = fE1; : : : ; ENg be a set of experts. Inthis section we will assume that each expert Ei is a function from X into [0; 1], i.e., theith expert's prediction at time t, denoted �i;t, depends only on the instance xt, and not onprevious outcomes or instances. As in Section 3.1, we call such experts static.11 For a �xedsequence x of instances, they are equivalent to the static experts de�ned there. As in theprevious sections, the total loss of the ith expert is LEi(x;y) = Pt̀=1 j�i;t� ytj, and the totalloss of the best expert is LE(x;y) = min1�i�N LEi(x;y).In hold-one-out prediction, the goal is still to predict almost as well as the best expert,but the prediction algorithm is allowed more information to help it make its predictions. Inparticular, when asked to predict the outcome yt, the prediction algorithm is provided withall the instances x = x1; : : : ; x`, the entire matrix �i;t, 1 � i � N , 1 � t � `, giving the adviceof each expert on each instance, and the outcomes y1; : : : ; yt�1; yt+1; : : : ; y`, i.e., all outcomesexcept yt. Given this input, a hold-one-out prediction algorithm produces a prediction11Thus a static expert is simply a regression function (or \p-concept" [KS90]) from the instance space Xinto [0; 1], the value of which represents a conditional probability of the label 1 given the input instance xt.



34 5. Applications to the pattern recognition problemŷt 2 [0; 1]. The total hold-one-out loss of the prediction algorithm A on outcome sequencey is de�ned in analogy with the on-line prediction loss as HLA(x;y) = Pt̀=1 jŷt� ytj. Thistotal loss can be viewed as the sum of the losses of ` separate runs of the algorithm, wherein each run the algorithm is asked to predict a di�erent outcome yt. The motivation for thename \hold-one-out" loss comes from the similarity to the cross-validation procedure of thesame name used in statistics [Sto77].The following example illustrates the use of the total hold-one-out loss. Consider aclassroom setting in which an instructor is trying to teach students to perform a classi�cationtask of some type, say to distinguish earthquakes from underground nuclear explosions,based on seismographic data. Suppose that the teacher has collected a sequence of labeledexamples (x1; y1); : : : ; (x`; y`), where for each t, 1 � t � `, the instance xt is a vector ofseismic measurements and the label yt is a binary value, with 1 representing earthquake and0 representing underground explosion. Let x = x1; : : : ; x` and y = y1; : : : ; y`. The teachershows each of the examples to the students (the experts in this example), in random order,�rst showing them the measurement vector xt, then asking each student to predict theclassi�cation yt, and �nally providing actual label yt as feedback. A prediction is a numberp 2 [0; 1] and the loss is jp � ytj as above. However, instead of considering total loss, herethe teacher only counts the loss on the last example shown, considering the other examplesto be merely training cases. The choice of which example is shown last (called the \test"example) is random. Now imagine that you are auditing the class because of your extremelylimited knowledge of seismology. Nevertheless, you still want to impress the teacher in hopesof eventually being admitted to the program. Can you or any algorithm A, after seeingall the instances x1; : : : ; x`, hearing all the students predictions for each of these instances,including the test instance, and seeing all the labels except that of the test instance, predictthe label of the test instance in such a way that your expected loss, averaged over possiblechoices of the test instance, is not much more than that of the best student in the class?Instead of averaging over all choices of the last instance, we can equivalently considerthe experiment in which the examples stay in the �xed order (x1; y1); : : : ; (x`; y`), but fort from 1 to ` we perform a series of experiments with the algorithm A, each time coveringonly the label yt and forcing the algorithm to predict this label, based on the ` instances,the prediction of each expert on each instance, and the label of all the instances exceptxt. Clearly the total hold-one-out loss HLA(x;y) is the total loss obtained by all theseexperiments. Thus the average loss of the algorithm in predicting a randomly chosen testinstance is just HLA(x;y)=`.Note that we have restricted our analysis of the hold-one-out loss to the case of staticexperts. For this type of loss, we must be careful about how much power we give the experts.Consider the case in which there are just two experts E0 and E1, and E0 always predicts thatthe sequence of binary values y = y1; : : : ; y` will have even parity, while E1 always predictsthat y will have odd parity. Clearly the predictions of each of these experts for yt can easilybe expressed as a function of the values y1; : : : ; yt�1; yt+1; : : : ; y`, ignoring the instances.Moreover, any sequence y either has even or odd parity. Thus for any sequence y one of thetwo experts predicts each held out label correctly! Yet for any prediction algorithm A thereis always a sequence that forces total loss `=2, since this is the average loss obtained on arandom sequence. It is thus clear that to get a useful worst-case model in the hold-one-outsetting, one needs to restrict the experts. Restricting to static experts is one natural choice.It should be clear that any on-line prediction strategy can also be used as a hold-one-out prediction strategy: the hold-one-out version of the strategy simply ignores the



5. Applications to the pattern recognition problem 35additional information available to it and makes its prediction of yt based solely on theinstances x1; : : : ; xt, the predictions of the experts on these instances, and the outcomesy1; : : : ; yt�1. In this case the total hold-one-out loss is the same as the total on-line loss.One might suppose, however, that signi�cantly smaller hold-one-out losses could be obtainedby employing more sophisticated strategies that take into account all the information thatis available. Curiously, this is not true, at least in the worst case, as we show below.Let us de�ne the hold-one-out prediction game for a given N and ` by assuming that theadversary chooses a set E of N static experts, a sequence x of ` instances and a sequencey of ` outcomes, and then the predictor is given ` separate prediction problems based onthese choices, where in each problem a di�erent outcome is held out and must be predictedon the basis of the other information as described above. Let V (H)N;` denote the min/maxvalue of this game, i.e. the minimum over all hold-one-out prediction strategies A of themaximum over all choices of the adversary of the di�erence HLA(x;y)� LE(x;y). It turnsout that this min/max value is the same as that of the on-line prediction game with staticexperts given in Theorem 5.Before we state the analog Theorem 5 for the hold-one-out prediction game, recall thatwe de�ned the average covering radius of S � f0; 1g` as R(S) = Eymins2S jjs�yjj1; whereEy denotes expectation over a uniformly random choice of y 2 f0; 1g`, and that for any setof functions E >from X into [0; 1] and any sequence x = x1; : : : ; x` of instances in X , wede�ned Ejx = f(f(x1); : : : ; f(x`)) : f 2 Eg.Theorem 25: Let E be a set of static experts and x be a sequence of ` instances. Thenthere exists a hold-one-out prediction strategy A such that for every sequence y, we haveHLA(x;y)� LE(x;y) = 2̀ �R(Ejx):Moreover, A is optimal in the sense that for every hold-one-out prediction strategy B, thereexists a sequence y such thatHLB(x;y)� LE(x;y) � 2̀ �R(Ejx):Hence V (H)N;` = V (static)N;` = 2̀ � minS R(S);where the minimum is over all sets S of N vectors in f0; 1g`.Proof: We simply let A be the optimal on-line prediction strategy MS from the proof ofTheorem 5, used as a hold-one-out prediction strategy, ignoring the outcomes yt+1; : : : ; y`when predicting the outcome yt. Since the net loss HLA(x;y) � LE(x;y) is the same forthe hold-one-out game as it is for on-line prediction, this gives the �rst statement of thetheorem. The second statement follows from the fact that if y is chosen at random, thenthe expectation of HLB(x;y)�LE(x;y) is equal to the right-hand-side for any hold-one-outprediction strategy B. Finally, the last statement follows by the same argument used in theproof of Theorem 5 to prove the analogous statement.The optimal algorithm MS is not very e�cient. We get a simple, e�cient, and nearlyoptimal hold-one-out prediction strategy by using the on-line prediction algorithm P. Fromthe above theorem and theorems 16 and 8 we have:



36 5. Applications to the pattern recognition problemTheorem 26: Let P be the on-line prediction algorithm de�ned in Section 4. For all ` andN , if � is chosen to be g(p2 ln(N + 1)=`), where g is as de�ned in (12), then for any set Eof N static experts, and any sequences x and y of length `, the total hold-one-out loss of Pis bounded by HLP(x;y)� LE(x;y) � s` ln(N + 1)2 + log2(N + 1)2 ;and the constant in the leading term on the right-hand-side cannot be improved.When the value LE(x;y) is given, we can use Algorithm P with an appropriately tuned� (as in Theorem 15) to get a better hold-one-out prediction algorithm. In this case we getan algorithm that has hold-one-out loss at most LE(x;y) +pLE(x;y) lnN + log2N2 . Whenneither this value nor the length of the sequence is available, Algorithm P�, which iterativelyguesses the loss of the best expert, can be used. However, Algorithm P� ignores the extrainformation provided and its bound has a factor greater than one multiplying the pLE lnNterm. It is better to use the observed losses of the experts on the `� 1 outcomes providedto estimate LE(x;y). Unfortunately, we are unable to show that when these estimates areplugged directly into Algorithm P, a small total loss results. As mentioned in Section 5, theproblem is that di�erent runs of the algorithm could use di�erent values of � resulting indi�erent predictions. Conceivably, the worst prediction in each run could be the one usedto predict the held out label.Our solution is to discretize the estimated total loss and let � be a function of theestimate. A little randomization is used to ensure that the estimate is likely to be the sameregardless of which label is held out. The resulting algorithm is Algorithm B, described inFigure 9. The estimated loss is determined in Step 3. We show that for this choice of theestimate, the probability that all of the estimates are the same increases with the loss ofthe best expert.Note that the hypothesis of Algorithm B is probabilistic since it depends on a value rchosen uniformly at random in the interval [0; 1]. It is easy to get a deterministic versionof Algorithm B: Run Algorithm B q times in parallel, where the ith copy uses the �xed iqas its choice for r (0 � i � q � 1): The new deterministic Algorithm DB simply predictswith the average of the q predictions. We still need to specify the choice of q. As qgrows the worst case loss of Algorithm DB converges to the expected worst case loss ofAlgorithm B, where the latter expectation is over the uniform choice of r 2 [0; 1]. Wechoose q = ` + �p` + 1 + 1�plnN + lnN2 ln2 , where ` is the number of trials. For this choicewe prove in the theorem below that the worst case loss of Algorithm DB is at most by onelarger than the bound we prove on the worst case expected loss of Algorithm B.Theorem 27: The hold-one-out prediction algorithms B and DB have the property thatfor any x, any set of static experts E, and any sequence yEr�[0;1](HLB(x;y)) � LE(x;y) +qLE(x;y)(plnN + 1) + 3plnN + ln(N)ln 2 andHLDB(x;y) � LE(x;y) +qLE(x;y)(plnN + 1) + 3plnN + ln(N)ln 2 + 1 :Recall that in the case when LE(x;y) is given to the algorithm, the Algorithm P withits parameter � properly tuned as a function of LE(x;y) has hold-one-out loss at mostLE(x;y) +pLE(x;y) lnN + log2N2 (see Theorem 15). Note that the bounds of the abovetheorem for algorithms that do not have LE(x;y) available are not too much larger. Wedevelop the proof of this theorem in a sequence of lemmas.



5. Applications to the pattern recognition problem 37Algorithm B(t):f The algorithm receives a sequence of instances, x = x1; : : : ; x`, a sequence of binaryoutcomes, y = y1; � � � ; yt�1; ?; yt+1; � � � ; y`, where the tth position is marked with a \?",and the predictions Ei;j of each expert Ei for 1 � i � N on each instance xj for 1 � j � `.The algorithm produces a prediction ŷt for the held out outcome yt. g1. Pick r 2 [0; 1] uniformly at random;2. Compute Lobs(t) = miniPj 6=t jEi;j � yj j;3. Compute Lest(t) = (dqLobs(t) + 1� re+ r)2;4. Compute � = g(qlnN=Lest(t)), where g is the function de�ned in Section 4.4. RunAlgorithm P(�) on the sequence of instances x1; : : : ; xt and observations y1; : : : ; yt�1,and predict with the ŷt (for yt) generated by P.Figure 9: Description of Algorithm B for hold-one-out prediction.Lemma 28: Choose any set of experts E, and sequences x and y of length `. For eachr 2 [0; 1] we have that for all 1 � t � `,Lest(t) 2 fL�r ;L+r g; whereL�r = (dqLE(x;y)� re+ r)2 and L+r = d(qLE(x;y) + 1� re+ r)2:Proof: Since the loss in any trial lies in [0; 1], we haveLobs(t) � LE(x;y) � Lobs(t) + 1;LE(x;y) � Lobs(t) + 1 � LE(x;y) + 1 andqLobs(t) + 1 2 �qLE(x;y);qLE(x;y) + 1� :This interval is of length at most 1. Thus the ceiling function in the computation of Lest(t)can take at most two values and the lemma follows.Note that the set fL�r ;L+r g depends on r but not on t. Thus for each r 2 [0; 1] the twopossible values for Lest(t) are the same for all choices of t. We will show that for most rthe two values for Lest(t) are actually the same for all t.Let Lr(t) be the loss ofB(t) when predicting the single value yt after seeing all ` examplesexcept the label yt and picking the value r. When r is drawn uniformly at random from[0; 1] then the expected total loss of B(t), summed over choices of t, isEr�[0;1](HLB(x;y)) = X̀t=1 Z 10 Lr(t)dr = Z 10  X̀t=1Lr(t)!dr: (20)We now consider the expectation over r 2 [0; 1] of Pt̀=1 Lr(t).Lemma 29: Choose any set of experts E, and sequences x and y of length `, and let L�rand L+r be de�ned as in Lemma 28.



38 5. Applications to the pattern recognition problemThen for any r 2 [0; 1] such that for all 1 � t � ` we have Lest(t) = L�r ,X̀t=1Lr(t) � LE(x;y) + �qLE(x;y) + 1�plnN + lnN2 ln 2 = low:Similarly, for any r 2 [0; 1] such that for all 1 � t � ` we have Lest(t) = L+r ,X̀t=1Lr(t) � LE(x;y) + �qLE(x;y) + 1 + 1�plnN + lnN2 ln 2 = high:Proof: We only proof the �rst bound. The proof of the second bound is identical. SinceLE(x;y) � Lobs(t) + 1 � Lest(t) = L�r , we can apply Theorem 15:X̀t=1Lr(t) � LE(x;y) +qL�r lnN + lnN2 ln 2 : (21)Because dx � re + r � x � r + 1 + r = x + 1; we have L�r � (pLE(x;y) + 1)2. Thus theRHS of inequality (21) is upper bounded by \low".In the proof of following most important lemma of this section we show that most ofthe time we get a total loss of \low" and only rarely a total loss of at most \low + high".The resulting upper bound is only slightly larger than \low".Lemma 30: For any set of experts E and sequence y of length `,Er�[0;1](HLB(x;y)) � low + �qLE(x;y) + 1�qLE(x;y)�high;where low and high are de�ned as in Lemma 29.Proof: Let us �rst consider the case when r is such that L�r = L+r : Then each B(t) choosesLest(t) = L�r and by Lemma 29 X̀t=1Lr(t) � low: (22)In the remaining case r is such that L�r 6= L+r : Now the B(t) might use either Lest(t) =L�r or Lest(t) = L+r for each t. In that case the sum of the Lr(t) is at most the sum of Lr(t)when all Lest(t) = L�r plus the sum of the Lr(t) when all Lest(t) = L+r :X̀t=1Lr(t) � low + high: (23)Let Z + r = fk + r : k 2 Zg be the set of integers shifted by r 2 [0; 1]. We will �rstshow that L�r 6= L+r i� a point from Z + r lies in interval [pLE(x;y);pLE(x;y) + 1) whichis of length at most one. (Note that L�r and L+r are the values obtained when applying themapping dr(x) = (dx � re + r)2 to the left and right boundary of the interval.) If a pointk + r lies in the interval, then it and the left boundary of the interval map to (k + r)2.Also, any point in the interval that is larger than k + r (including the right boundary ofthe interval) maps to (k + 1 + r)2. On the other hand if L�r 6= L+r then let p be the largestpoint in the interval that maps to L�r . Clearly p must be in Z + r.



5. Applications to the pattern recognition problem 39The probability that L�r 6= L+r equals the probability that the interval [pLE(x;y);pLE(x;y) + 1)contains a point of Z + r. Since r is drawn uniformly in [0; 1] and since the inter-val has length at most one, this probability equals the length of the interval, that ispLE(x;y) + 1�pLE(x;y). This allows us to average inequalities (22) and (23) to getX̀t=1LB(t) = Z 10 (X̀t=1Lr(t))dr� �1� �qLE(x;y) + 1�qLE(x;y)�� low + �qLE(x;y) + 1�qLE(x;y)� (low + high)= low + �qLE(x;y) + 1�qLE(x;y)�high:Proof of Theorem 27: For the �rst part of the theorem, which is a bound onEr�[0;1](HLB(x;y)), what remains to be done is to simplify the upper bound of Lemma 30.First observe that�qLE(x;y) + 1�qLE(x;y)� high � 1pLE(x;y) + 1high� qLE(x;y) +  1 + 1pLE(x;y) + 1!plnN+ 1pLE(x;y) + 1! lnN2 ln 2Plugging this into the bound of the lemma we getHLB(x;y) � LE(x;y) +qLE(x;y)(plnN + 1) +  2 + 1pLE(x;y) + 1!plnN+ 1pLE(x;y) + 1 + 1! lnN2 ln 2� LE(x;y) +qLE(x;y)(plnN + 1) + 3plnN + lnNln 2 :For the second part, view Algorithm DB as a version of Algorithm B where r is chosenuniformly from the �nite set f iq : 0 � i � q � 1g instead of uniformly from the continuousinterval [0; 1]. (Recall that q = ` + (p` + 1 + 1)plnN + lnN=(2 ln 2) and this choice of qis at least as large as the value high.) In Lemma 30 we showed that the expected hold-one-out loss is at most low + p high, where p is the probability of the event that the setfk + r : k 2 Zg has a point in the interval [pLE(x;y);pLE(x;y) + 1). If r 2 [0; 1], thenp equals the length of the interval and in the case r 2 f iq : 0 � i � q � 1g the probabilityp equals the length plus or minus 1q . Since q � high, we get the following upper bound onthe total hold-one-out loss of Algorithm DB:HLB(x;y) � low + �qLE(x;y) + 1�qLE(x;y) + 1q� high� low + �qLE(x;y) + 1�qLE(x;y) + 1high�high:



40 5. Applications to the pattern recognition problemThus the bound in the second part is at most one larger than the bound proven in the �rstpart.We are �nally now in a position to return to the pattern recognition problem consideredin Section 5. The next lemma generalizes the argument given in the proof of Theorem 23to give a general method for converting hold-one-out prediction strategies to learningalgorithms that solve the pattern recognition problem.Lemma 31: Let A be a hold-one-out prediction strategy. Then A can be converted into alearning strategy B such that for any touchstone class H, any `, and any distribution D onX � f0; 1g,Es�D`(erD(B(s)))� erD(H) = 1` + 1E(x;y)�D`+1 �HLA(x;y)� LHjx (x;y)�� er�̀+1;D(H);where E(x;y)�D`+1 denotes expectation over x = x1; : : :x`+1 and y = y1; : : : ; y`+1, each(xt; yt) drawn independently at random according to D, 1 � t � ` + 1.Proof of Lemma 31:The learning strategy B works as follows. For any sequence of examples s =(x1; y1); : : : ; (x`; y`) and any instance x, let ŷt denote the output of A when A is givenas input the sequence of instances x = x1; : : : ; xt�1; x; xt; : : : ; x`, the set Hjx of experts,and the observed outcomes y = y1; : : : ; yt�1; ?; yt; : : : ; y`, where `?' denotes the location ofthe missing tth outcome to be predicted. Now the value of the function h = B(s) on inputx is de�ned by the average of the ŷt's, i.e. h(x) = 1`+1 P`+1t=1 ŷt.To show that this strategy B has the desired performance, �rst note the followingEs�D`(erD(B(s))) = Es�D`;(x;y)�DjB(s)(x)� yj= Es�D`;(x;y)�D ����� 1` + 1 `+1Xt=1 ŷt!� y����� ; (24)where ŷt is as de�ned in the previous paragraph, and s = (x1; y1); : : : ; (x`; y`).Because j( 1nPnt=1 pt)� cj = 1nPnt=1 jpt � cj for c 2 f0; 1g and 0 � pt � 1, it follows thatEs�D`(erD(B(s))) = Es�D` ;(x;y)�D 1` + 1 `+1Xt=1 jŷt � yj= 1` + 1 `+1Xt=1Es�D`;(x;y)�Djŷt � yj= 1` + 1 `+1Xt=1E(x;y)�D`+1 jŷ0t � ytj; (25)where ŷ0t is the output of A when A is given as input the sequence of instances x =x1; : : : ; x`+1, the setHjx of experts, and the observed outcomes y = y1; : : : ; yt�1; ?; yt+1; : : : ; y`+1,where '?' denotes the location of the missing outcome to be predicted. Thus, by the de�-nition of the hold-one-out prediction loss



5. Applications to the pattern recognition problem 41Es�D`(erD(B(s))) = 1` + 1E(x;y)�D`+1 `+1Xt=1 jŷ0t � ytj= 1` + 1E(x;y)�D`+1HLA(x;y); (26)where HLA(x;y) denotes the total hold-one-out prediction loss of the strategy A on in-stances x and outcomes y, assuming the set of experts used is Hjx .Furthermore, it is clear thatcer`;D(H) = E(x;y)�D` 1̀ infh2HX̀t=1 jh(xt)� ytj= E(x;y)�D` 1̀LHjx (x;y): (27)It follows from (26), (27) and the de�nition of expected over�t thatEs�D`(erD(B(s)))� erD(H)= Es�D`(erD(B(s)))�cer`+1;D(H) � (erD(H)�cer`+1;D(H))= 1` + 1E(x;y)�D`+1HLA(x;y)� 1` + 1E(x;y)�D`+1LHjx (x;y)� er�̀+1;D(H)= 1` + 1E(x;y)�D`+1 �HLA(x;y)� LHjx (x;y)�� er�̀+1;D(H)Finally, we can now complete theProof of Theorem 24:From Theorem 27 and the above lemma, with A being the algorithm DB, it follows thatEs�D`(erD(A(s)))� erD(H) � E(x;y)�D`+1 [qLHjx (x;y)(qln jHjx j+ 1)]` + 1+Ex ln jHjx j(` + 1) ln 2 + 3Exqln jHjxj+ 1` + 1 � er�̀+1;D(H):(28)Hence by the Cauchy-Schwarz inequality,Es�D`(erD(A(s)))� erD(H) � qE(x;y)�D`+1LHjx (x;y)(qEx ln jHjx j+ 1)` + 1+Ex ln jHjx j(`+ 1) ln 2 + 3qEx ln jHjx j+ 1` + 1 � er�̀+1;D(H):Since V = Ex ln jHjxj and equation (27) implies thatE(x;y)�D`+1(LHjx (x;y)) = (` + 1)cer`+1;D(H);(18) follows. From this, (19) follows by simply noting that cer`+1;D(H) � erD(H).



42 6. Worst-case Loss Bounds for the Log LossNote that for sake of simplicity the bounds stated the Theorem 24 are actually weakerthan what we prove in inequality (28). The latter bound is surprisingly good in view of thefollowing reasoning. If for some �xed x algorithm P uses the hypotheses Hjx as experts,then the bound of Theorem 10 becomesLP (�)(y) � lnHjx � LHjx (y) ln �2 ln 21+� :By taking expectations of both sides we getE(x;y)�D`+1LP (�)(y) � E(x;y)�D`+1 lnHjx �E(x;y)�D`+1 [LHjx (y)] ln�2 ln 21+� :Assume now that Ex ln jHjx j and E(x;y)�D`+1LHjx (x;y) are given to the learning algo-rithm. Then by setting � to g0@sE(x;y)�D`+1LHjx (x;y)Ex ln jHjx j 1A as done in Theorem 15, and byusing the conversion used in the proof of Lemma 31 it is easy to get an algorithm C withthe following boundEs�D`(erD(C(s)))�erD(H) � qE(x;y)�D`+1 [LHjx (x;y)] lnEx[ln jHjxj]` + 1 + log2Ex ln jHjx j2(`+ 1) :It is surprising that Algorithm A used for proving Theorem 24 (which in turn uses algorithmDB of this section) has the usually better bound of inequality (28). The key di�erence isthat Algorithm C uses one smart but �xed choice of � whereas Algorithm DB has noknowledge of the expectations but varies its choice of � with the current sample. In doingso Algorithm DB takes advantage of large variances.6 Worst-case Loss Bounds for the Log LossSeveral extensions of these results may be considered. One issue is the use of otherloss functions. Since a prediction strategy de�nes a conditional probability distribution onthe next bit given the values of the previous bits, a natural choice of loss function is theinformation gained by seeing the next bit, with respect to this conditional distribution.Hence if the strategy predicts yt = 1 with probability ŷt and yt = 0 with probability 1� ŷt,then the loss at time t will be � log ŷt if yt = 1 and � log(1 � ŷt) if yt = 0. We call thislog loss. The nice thing about the log loss is that for any prediction strategy A, the totallog loss on y1; : : :y`, denoted LA(y), is the total information gained from the sequence y,under the conditional distributions represented by A. Moreover, any distribution on f0; 1g`induces a conditional distribution on the tth bit given any values for the previous t � 1bits for all 1 � t � `, and hence de�nes a prediction strategy. Conversely, any predictionstrategy A on f0; 1g` de�nes a probability distribution PA on f0; 1g`. It is easy to see thatfor the log loss, LA(y) = � logPA(y).It is well known that for the log loss, for any set E of N experts (i.e., distributions) thereis a prediction strategy A such that for any sequence y, LA(y) � LE(y) � logN; whereLE(y) is the total log loss of the best expert for y [Ris86, DMW88, Vov92, HBar, Yam91,KW93]. The strategy is just the Bayes algorithm with uniform prior on the distributionsrepresented by the experts. An exact min/max analysis of this case is quite simple.



7. Conclusions 43Theorem 32: For each y 2 f0; 1g` and each expert Ei 2 E, let Pi(y) denote the probabilityof y under expert Ei. De�ne the probability of y for the algorithm A byPA(y) = max1�i�N Pi(y)Py02f0;1g` max1�i�N Pi(y0) :Then A minimizes the maximum of the di�erence LA(y) � LE(y) over all sequences y.Furthermore, this di�erence is the same for all sequences y:LA(y)� LE(y) = log Xy02f0;1g` max1�i�N Pi(y0) � logN:Proof: Since LA(y) = � logPA(y) and LE(y) = � log max1�i�N Pi(y), it follows fromthe de�nition of PA thatLA(y)� LE(y) = log Xy02f0;1g` max1�i�N Pi(y0)for all y. Clearly this value is at most logN . Furthermore, A can be interpreted as a Bayesalgorithm for predicting the bits of y under the log loss, where the prior probability of y isgiven by P (y) = max1�i�N Pi(y)Py02f0;1g` max1�i�N Pi(y0) :Since A is Bayes and has the same regret LA(y) � LE(y) for each y, it follows that A ismin/max. Otherwise there would exist another algorithm A0 with average regret w.r.t. thisprior that is less than the Bayes optimal algorithm, which would yield a contradiction.7 ConclusionsIn this paper we prove worst-case loss bounds for on-line learning for the absolute loss,and give applications in pattern recognition. We bound the additional loss of the algorithmover the loss of the best expert. Apart from the game-theoretic analysis, our main upperbound is obtained essentially by tuning an algorithm that was �rst introduced by Vovk(Theorem 15). Other loss functions for the expert framework are considered in [Vov90b,HKW].The paper leaves many open problems. Our lower bounds only address the case whena bound on the length of the sequence of examples is known. We would like to have lowerbounds for the case when the sequence is of unbounded length but the loss of the bestexpert lies below a bound that is known to the algorithm. In other words, are there lowerbounds that match the upper bounds of Theorem 15?For the case when the algorithm has no prior knowledge of the loss of the best expert(Theorem 21), can the constant in front of the square root be lowered and the algorithm besimpli�ed? We would also like to generalize our upper bounds of Theorem 15 to the casewhen the set of experts is in�nite. Assume the expert Ei has initial weight wi and the totalweight P1i=1 wi of all experts is one. We would like to get bounds of the following form thathold for arbitrary outcome sequence y:LA(y) � inf1�i�1� LEi(y) + cq LEi ln(1=wi) + c0 ln(1=wi);�
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A. Proof of Lemma 613 47and let B`;N be B`;N = min1�i�NfY`;igp2 lnN = A`;N � `=2p(`=2) lnN : (30)It su�ces to show that 8� > 0 9N0 8N > N0 9`0 8` � `0E(B`;N) � �1 + � : (31)In order to prove this claim, we upper bound the expectation by a sum as follows:E(B`;N ) � P (B`;N � �1+�=3)(�1+�=3)+P (�1+�=3 < B`;N � 0)0+Z 10 P (B`;N � c)dc :(32)We start by bounding the third term in 32. In general, we have thatP (B`;N � c) = NYi=1P  S`;i � `=2p` lnN=2 � c! ; (33)and as the expected value of S`;i is `=2, we can bound the RHS using Hoe�ding's bound:P  S`;i � `=2p` lnN=2 � c! = P  S`;i � `=2 + ` cplnN=2p` !! � exp0@�2` cplnN=2p` !21A = exp(�c2 lnN) :(34)Plugging this back into the integral, we getZ 10 P (B`;N � c)dc � Z 10 exp(�c2N lnN)dc = 12r �N lnN � �=3 (35)for su�ciently large N .It remains to bound the �rst term in Equation 32. Let c be an arbitrary real number.From the central limit theorem it follows thatP (Y`;i � c) `!1�! P (�i � c) ; (36)where �i are independent random variables from the normal distribution N (0; 1). Fromthis we get thatP �p2 lnNB`;N � c� = P � min1�i�N Y`;i � c� = 1� NYi=1P (Y`;i > c) `!1�! 1� NYi=1P (�i > c) = P (�N � c) ;(37)where �N = min1�i�Nf�ig. On the other hand, asymptotic analysis of the extreme orderstatistics of the normal distribution (see Galambos [Gal87] Section 2.3.2, equations (59,60))shows that P ��N � aNbN � c� N!1�! 1� exp(�ec) ; (38)where aN = �p2 lnN + ln lnN + ln 4�2p2 lnN and bN = 1p2 lnN : (39)Combining Equations 37 and 38, we get thatlimN!1 lim`!1P �B`;N > cbN + aNp2 lnN � = exp(�ec) : (40)



48 B. Proof of Lemma 1321We now �x c su�ciently large so that exp(�ec) < �=3. For N and ` su�ciently large wehave that P �B`;N > cbN + aNp2 lnN � < �=3 : (41)Plugging in the de�nitions of aN and bN , we get thatP �B`;N > c2 lnN � 1 + 1=2(ln lnN + ln 4�)2 lnN � < �=3 : (42)Choosing N large enough we �nally get thatP (B`;N > �1 + �=3) < �=3 ; (43)which upper bounds the �rst term in Equation 32 by (1� �=3)(�1 + �=3) < �1 + (2=3)�.This, combined with the above bound for the third term, completes the proof.B Proof of Lemma 13Recall that z = q lnNK 2 [0;1), g(z) = 11+2z+z2= ln 2 2 [0; 1), and � = g(z). The followinginequalities are equivalent to the lemma. lnNK + ln 1�2 ln 21+� � 1 +s lnNK + lnN2K ln 2z2 � ln(g(z))2 ln 21+g(z) � 1 + z + z22 ln 212 + 12g(z) � z2 � ln(g(z))2 ln 21+g(z) � 0(1 + 1g(z)) ln� 21 + g(z)�� z2 + ln(g(z)) � 0Since g(0) = 1, the last inequality holds for z = 0. Thus it su�ces to show that thederivative of the LHS is nonnegative for all z � 0. Taking this derivative we get�g0(z) ln � 21+g(z)�g(z)2 � �1 + 1g(z)� g0(z)1 + g(z) � 2z + g0(z)g(z)which simpli�es to �g0(z) ln � 21+g(z)�g(z)2 � 2z:Note that g0(z) = �(2 + 2z= ln 2)g(z)2, so the derivative is nonnegative whenever�2 + 2zln 2� ln� 21 + g(z)�� 2z � 0 (44)We now consider two cases depending on the value of z. In the �rst case, 0 < z �3 ln 2�4 ln2 22 ln 2�1 � :4 and we use the approximation ln(1 + x) � x=(1 + x). With this approxi-mation, ln� 21 + g(z)� = ln�1 + 1� g(z)1 + g(z)� � 1� g(z)2 :



C. Proof of Theorem 2127 49Plugging back into Inequality (44), we see that the derivative is nonnegative whenever�2 + 2zln 2� 1� g(z)2 � 2z � 0:By multiplying the above with 1g(z) we get the following equivalent inequalities:�1 + zln 2� 2z + z2ln 2!� 2z 1 + 2z + z2ln 2! � 03z2ln 2 + z3ln2 2 � 4z2 � 2 z3ln 2 � 03 ln 2� 4 ln2 2 + z � 2z ln 2 � 0which holds due to the assumption that z � 3 ln 2�4 ln22 ln2�1 . Now we assume that z �3 ln2�4 ln2 22 ln2�1 . Note that 1�g(z)1+g(z) is an increasing function which approaches 1 as z ! 1.Furthermore, under the assumptions of this case, g(z) � (2 ln 2 � 1)2=(1 � ln 2) < 12 and1�g(z)1+g(z) > 1=3. Thus we can underestimate ln(1 + x) by interpolating between x = 1=3 andx = 1 (with 1�g(z)1+g(z) = x).ln�1 + 1� g(z)1 + g(z)� � 32 �1� 1� g(z)1 + g(z)� ln(4=3) + 32 �1� g(z)1 + g(z) � 13� ln 2Thus for the values of z considered in this case, the following equivalent form of (44)ln�1 + 1� g(z)1 + g(z)�� z1 + zln 2 � 0holds whenever32 �1� 1� g(z)1 + g(z)� ln(4=3) + 32 �1� g(z)1 + g(z) � 13� ln 2� z1 + zln 2 � 03g(z)1 + g(z) ln(4=3) + 1� 2g(z)1 + g(z) ln 2� z1 + zln 2 � 0(3g(z) ln(4=3) + 1� 2g(z) ln 2)(1 + zln 2)� z(1 + g(z)) � 0(3 ln(4=3)� ln 2 + 2z ln 2 + z2)(1 + zln 2)� z(2 + 2z + z2ln 2) � 03 ln(4=3)� ln 2 + 2z ln 2 + z2 + 3z ln(4=3)ln 2 � z � 2z � 03 ln(4=3)� ln 2 + z(2 ln 2 + 3 ln(4=3)ln 2 � 3) + z2 � 0:Finally, we observe that this polynomial is always positive, obtaining its minimum of about0.13 when z � 0:18:.C Proof of Theorem 21First, if LE(y) � a2 lnN then the algorithms �rst guess k0 is an upper bound on theloss of the best expert, and by Theorem 15 the loss of P� is bounded by at mostLlast;E +qa2(lnN)2 + 12 log2N = Llast;E + (a+ 12 ln 2) lnN;



50 C. Proof of Theorem 2127satisfying the theorem. We proceed with the assumption that LE(y) > a2 lnN .Let last be the largest iteration number in which a prediction was made by Algorithm P�.Let Llast;Ei be the loss incurred by the expert Ei while Algorithm P� is executing iterationnumber last, and let Llast;E be the minimum Llast;Ei over Ei 2 E . If Llast;E � klast then byTheorem 15 the loss of Algorithm P� during iteration number last is at mostLlast;E +qklast lnN + 12 log2N = Llast;E + (aclast=2 + 12 ln 2) lnN:If Llast;E > klast then the loss of Algorithm P� during iteration number last is at mostblast + 1 � Llast;E + (aclast=2 + 12 ln 2) lnN + 1:Using the above and the fact that the loss incurred by P� during any iteration z is atmost bz + 1, we can bound LP �(y),LP �(y) � Llast;E + (aclast=2 + 12 ln 2) lnN + 1 + last�1Xz=0 (bz + 1):Using Equation (14),LP �(y) � Llast;E + (aclast=2 + 12 ln 2) lnN + 1 + last�1Xz=0 (kz + (acz=2 + 12 ln 2) lnN + 1)� Llast;E + last�1Xz=0 kz + lastXz=0((acz=2 + 12 ln 2) lnN + 1):Lemma 19 implies that LE(y), the loss of the best expert, is at least Llast;E+Plast�1z=1 kz.Using this fact, LP �(y) � LE(y) + (last + 1)(1 + lnN2 ln 2) + lastXz=0 acz=2 lnN: (45)We now work on the second and third terms separately. We will use the following lemmato help simplify the second term.Lemma 33: For all x � 0, ln(1 + x) � 0:805px.Proof: (of lemma) It is slightly easier to show that for all z � 0, ln(1 + z2)� 0:805z � 0.The inequality clearly holds at z = 0 and z = 1. By di�erentiating, we see that theextrema are at z = 1�p1�(0:805)20:805 . Plugging these values in show that both of these (local)extrema are negative, so ln(1 + z2)� 0:805z � 0 for all z � 0.We return to the proof of the theorem by applying Lemma 20 followed by Lemma 33 tothe second term.(last + 1)(1 + lnN2 ln 2) � 1 + lnN2 ln 2 + (1 + lnN2 ln 2) logc �1 + LE(y)(c� 1)a2 lnN �� 1 + lnN2 ln 2 + (1 + lnN2 ln 2)0:805ln c sLE(y)(c� 1)a2 lnN= 1 + lnN2 ln 2 + (1 + lnN2 ln 2)0:805p(c� 1)a lnN ln c qLE(y) lnN= 1 + lnN2 ln 2 + (0:805p(c� 1)a lnN ln c + 0:805p(c� 1)a(2 ln 2) ln c )qLE(y) lnN:



C. Proof of Theorem 2127 51For the third term of Equation (45) we sum the geometric series and then apply Lemma 20.lastXz=0 acz=2 lnN = a lnNpclast+1 � 1pc� 1� a lnNqc(1 + LE(y)(c�1)a2 lnN )pc� 1 � a lnNpc� 1 :We continue with the approximation p1 + x � px + 1=p4x and then use the assumptionthat LE(y) � a2 lnN .lastXz=0 acz=2 lnN � apc lnNpc� 1 0@sLE(y)(c� 1)a2 lnN +s a2 lnN4LE(y)(c� 1)1A � a lnNpc� 1� pc(c� 1)pc� 1 qLE(y) lnN + apc lnN2(pc� 1)pc� 1 � a lnNpc� 1= pc(c� 1)pc� 1 qLE(y) lnN � a lnN 2pc� 1� pcpc� 1 :Plugging these results back into (45) yieldsLP �(y) � LE(y) + 1 + lnN2 ln 2 � a lnN(2pc� 1�pc)2(pc� 1)pc� 1+ 0:805pc� 1a lnN ln c + 0:805pc� 1a(2 ln 2) ln c + pc(c� 1)pc� 1 !qLE(y) lnN:We use � to denote the golden ratio, 1+p52 , and recall that �2�1 = �. The pc(c� 1)=(pc�1) term is minimized at c = �2, where it is �3=2=(�� 1), or about 3.33 (less than 3.3302).With c set to �2, the factor in front of the pLE(y) lnN term is less than �3=2(�� 1) + 0:805p�4a ln 2 ln� + 0:805p�2a lnN ln�! :We now turn our attention to the coe�cient of the lnN term together with the \+1". Forc = �2, this factor is 1lnN + 12 ln 2 � a(2�p�)2(�� 1)and is less than 12 ln 2 + a for all a � 2(�� 1)=((2�p�) lnN), completing the proof of thetheorem.


