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ABSTRACT

Fanout routing for Ball Grid Array(BGA) packages becomes non-trivial when the I/O
pin count increases. With large number of 1/Os, the number of I/Os we can put on a
package is not always limited by the available area but sometimes by the ability to fan
them out on the next level of interconnect—the PCB or MCM substrate. This paper is the
first to consider this problem and offers an efficient algorithm (EVENFANOUT) to solve it.
EVENFANQUT generates the optimal uniform distribution of wires. Another important
contribution is that we analyzed the relationship between pin pitch and the routability of
fanout so that the package designer can choose an optimal pitch for maximum routability.
Knowing this relationship, we know whether a fanout routing is routable or not before it
is routed. This is implemented in the Package Farly Analysis and Routing Tool (PEART)
for rapid development of Ball Grid Array Packages.

Keywords: package routing, ball grid array, pin grid array, planar routing, routability,
even wiring, fanout routing
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1 Introduction

Increasing demand for I/O pin-count prompts the packaging industry to look for more space-
efficient packaging methods. Ball-grid arrays (BGAs) promise more I/Os in less area. However,
some pins (or solder bumps) may not be available for signal I/O because there is not enough room
on the substrate to fan the pins out for connection. Therefore the number of pins we can put on the
package may be limited by the routability of the fanout routing on the substrate or PCB. Figure 1
shows a BGA package with its fanout routing on the substrate. The routing may be so dense that
even though there is room for more balls on the package, there may not have enough routing space

to route to them.

Since a fully populated package may not have a routable fanout routing, the package designer
has to know how many pins we can put on a package before the fanout routing becomes unroutable.
The package designer can trade off pin pitch against the number of rings. For a fixed number of

total pin count, fewer rings cause smaller pin pitches and vice versa. So it is not intuitively clear

Figure 1: A Ball Grid Array Package and Its Fanout Routing on the Substrate
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how to trade off pin pitch and the number of rings to get the most routable fanout.

In a similar case for area I/O chips, the chip size must be at least as large as the size of the 1/0
array on the chip which in turn is determined by the routability of the fanout. This is an important
limitation as chips shrink. The question is: given the number of 1/Os, what is the smallest chip

size for a routable fanout?

To answer these questions, we must be able to determine whether a package is routable or not.
A package is routable if there exists a routable topological fanout routing. There is no netlist
related to a fanout routing because the exact position where a pin is to be routed is not fixed. The

only requirement is that all pins must be routed to the periphery of the array.

In this paper we describe an algorithm that generates a topological routing for a fanout. The
algorithm has the most uniform distribution of wires to maximize routability. We also find the set
of critical cuts and a tight lower bound on the density of these cuts as a closed form. Hence we
know a package is routable (or not) before it is routed. This is implemented in the Package Early

Analysis and Routing Tool (PEART) for designing BGAs.

Darnauer and Dai[l] proposed a similar algorithm, although under a different context. They
have shown that their algorithm generates a routing whose critical density is no more than /2
times the density of the perimeter cuts. Since our algorithm creates the same topological routing,
it also has this property. However, we believe that our algorithm is simpler and can be extended to
irregular shapes more easily. More importantly, we have found the set of critical cuts and a tight
lower bound of its density. This information is more useful because it allows us to determine the

routability of a routing without actually route it.

2 Problem Definition

Since the fanout problem applies to BGAs, PGAs and area I/O chips, we have to generalize some
terms. We define pins to be connectors on the package that are arranged in a grid array. They may
be solder bumps on a BGA or a chip. Pads are via pads outside the pin array which are just a set of
destinations for the wires. Assume a BGA package has T pins. Let the set of pads X = {1,2,...,T}
be arranged in a clockwise manner starting at an arbitrary corner (see Figure 1). The package also

has R pin rings I = UR_ T, where each ring r consists of P, pins II” = {r],75},.. . Tp t. Each
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Figure 2: Monotonic vs. non-monotonic topological routing

ring starts at the same corner as the pads. Since the pins are arranged in rings, all arithmetic
involving the subscript of a pin should be modulo P,. To simplify the mathematics, we assume
that the number of pins of the outermost ring, ring 1, is divisible by 8. If the number of pins in

ring 1is 8N, we have

T =4R(2N — R+ 1),

and

P, =8(N —R+1).

The problem of creating a fanout on a single-layer for a BGA (1ILFANOUT) can be defined as

follows:

Problem 1 (1ILFANOUT): The single-layer fanout routing (ILFANOUT) problem is to create
detailed routing given the set of pins Il and the set of pads X such that each pad is connected to
one and only one pin.

1ILFANOUT assumes that the number of pads and pins are the same so that connections has to
be made for all pins, i.e. |I[| = | X|. Since all pads are equivalent, we have the freedom of choosing
which pad to route for a pin. A pin assignmentis a one-to-one and onto mapping ® : Il — X. There
are many topological routings for a given instance of ILFANOUT. We are particularly interested
in those that have no detours. Formally, we define monotonic topological routing (MTR) for fanout

routing as follows:

Definition 1: A monotonic topological routing (MTR) is a topological routing such that a w =

(7}, p) connecting =} and pad p intersect at most one cut (7}, 7} ) for some k in each ring s.
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Figure 3: Pin Assignments in Each Sector of a Package

This definition is similar to the MTR definition for PGA routing[2]. Intuitively, MTR specifies a
class of topological routing where all wires originate from the pads enter the pin array without any
detours. Once a wire enters a ring, it never leaves. Figure 2 shows a simple example of an MTR
and a non-monotonic topological routing. Note that the assignment order on ring 2 is violated
in the non-monotonic routing. Yu and Dai[2] showed that an MTR has a unique pin assignment
known as the monotonic pin assignment (MPA) where MPA is formally defined as follows:
Definition 2: A monotonic pin assignment (MPA) is a pin assignment such that for all v, ®(x7) >
®(77) if and only if i > j.

Therefore the problem of creating an MTR is reduced to creating its corresponding monotonic pin

assignment.

3 The EVENFANOUT Algorithm

In this section we present an algorithm that generates a “good” monotonic pin assignment so
that the wires are distributed as uniformly as possible. Evenly distributed wiring is highly desired
in a package design due to routability, performance and technology concerns. An evenly distributed
routing is the least congested and the average wire-to-wire distance is also the highest, which means
that crosstalk level and yield are both optimized.

The EVENFANOUT algorithm (Figure 4) creates a monotonic pin assignment on a ring-by-

ring basis starting from the outermost ring. It takes advantage of the symmetric geometry of the
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Algorithm 1 (EVENFANOUT):
Algorithm EVENFANOUT(Set of Pins II, Ordered set of pads X)

For rings r — 1 to R

k= [|X]/P] (%)
q— |X|-kP.

t— (P —q)/2

J<1

For pads i — 1 to | X|/4
ASSIGN4(X[¢],7,7)
J=it+1
If i > th and i < th + q(k + 1)
Then 72— 14+ k+1
Flse i — 1+ k

Endfor

Remove all assigned pads from X

Endfor

Subroutine ASSIGNA4(4, j, )

Assign pad 1 to pin 7} Sector 1
Sector 2
Sector 3

Sector 4

Assign pad |X|/4 — ¢+ 1 to pin Tp, jazjt1
Assign pad |X|/2 -7+ 1 to pin Tp, ja—jt1

Assign pad 3|X|/4 — i+ 1 to pin Tap, Jamit

( )
( )
( )
( )

Figure 4: Algorithm EVENFANOUT

package and divides it into four sectors. Figure 3 shows the dividing lines. The algorithm assigns
pins in the clockwise direction. For each ring, it computes a basic step size k and assign every kth
or (k+1)st pad to the next pin in the ring. After assigning one ring, the assigned pads are removed
from X and the process repeats for the next ring.

Since each pad is visited once, EVENFANOUT runs in order O(|X|). The storage complexity
is the size of the output, i.e. O(|®]) = O(|X]).

Also note that all arithmetics are integer. All divisions have no remainders except the line
marked (*). We can observe the following invariants:

e The number of pads assigned at the end of ¢-loop is P,.

e | X|is divisible by 8.

e ¢ is divisible by 8.

It is straightforward to verify that EVENFANOUT creates an MPA. On every ring, the pins
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Algorithm 2 (MAKEMTR):
Algorithm MAKEMTR(®, X, IT)
Forr—1to R
Fori«+ 1to P,
Route 7} to ®(x})

Figure 5: Algorithm MAKEMTR

are assigned in increasing order. The pads are assigned in the same ordering as the pins. The four

assignments in ASSIGN4 do not cross each other because they falls into disjoint sectors.

After the assignment, we can generate the topological routing using the simple algorithm

MAKEMTR (Figure 5).

The routing from 7} to ®(x]) is created by the shortest-path algorithm described by Dai, Dayan
and Staepelaere[3]. After the topological routing is created, design rules can be enforced as proposed
by Dai, Kong and Sato[4] which is based on Maley’s[5] routability test using the rubber-band sketch
model. The rubber-band representation of topological routing of Surf is described by Dai, Kong,
Jue and Sato[6].

The time complexity of MAKEMTR is O(]X|5) where S is the complexity of creating rubber-

band routing for a single wire, i.e. the complexity of the Route routine.

4 Uniform Wiring Distribution

An important property of EVENFANQUT is that it distributes the wires as uniformly as possible

around the rings. The pin assignment ordered the wiring in such a way that no crossing is necessary.

To simplify the mathematics, we assume that the pin pitch is unit distance. Let the expression
next(r}) denote the pin on ring 741 that is closest to «. Similarly, prev(z}) denote the pin on ring
r — 1 that is closest to /. Note that prev() is undefined for a corner pin. At a corner, three pins
have the same next()—the corner pin and its two neighbors on the same ring. We define a grid cell
g! to be the area bounded by the pins 7}, 77, ;, next(rx}) and next(x[ ;). Pin 7] cannot be a corner
pin. If 7/, is a corner pin, the cell is defined by the area bounded by =7, 77, 7l , and next(x}).
Intuitively, 7] is at the lower right corner of the cell. We define the bottom cut of a cell g} to be the

cut (7}, 7l ), the top cut to be (next(r}),next(n] ,)), the left side cut to be (next(r} ), 7l ),
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the right side cut to be (next(w}),n’). The left and right side cuts are collectively known as the

side cuts of a cell. Figure 1 shows a pin and its related grid cell.

Now we proceed to prove that EVENFANOUT produces a uniformly distributed topological
routing. The following lemma states that the wires are uniformly distributed among the cuts in all
the rings. More precisely, it says that the number of wires between two adjacent pins in the same

ring differs at most by one.
Lemma 1: Forallr=1,... R,

F(a?, 7)) — min(F(rf, 77)) < 1.
max(£(x], 7)) — min(F (7], 71 ,)) <

F(rf, 7l ) is the flow of the cut (7], 7} ), i.e., the number of wires intersecting the cut.

Proof: In ring r, 7 is incremented by either k& or k£ 4+ 1 in each iteration. Hence the number of

wires between any two adjacent pin in ring r is either £ — 1 or k. Therefore

max(F(nf, miyy)) —min(F(rf, 7)) <k —(k—1) = L

We will now use the result of Lemma 1 to derive a useful relationship between k, and k,11
where k, is the value of & in EVENFANOUT in the rth iteration. The following lemma can be
derived easily from the definition of &,.

Lemma 2: 0 < k, —kyy1 <1 forallr and k, — k0 > 1.

Proof: Let X, be the set X at iteration r. At iteration 7, |[X| =T —-4(r—1)(N—-(r—1)+1) =

T —4(r —1)(N —r). From EVENFANOUT,

kT = L|XT|/PTJ7kT+1 = L|Xr+1|/PT+1J.

P11 = P, —8=8(N —r). Substituting in all variables, we have,

|XT| _ |XT-I-1| _

by — kpyy >
o= PT PT-l—l

1
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_ STHAC DN -+ )48V -t )
= 8(N—r+1)(N-r)

since 1 < R < N.

|XT| _ |XT-I-1| _
PT PT-l—l

—|X,| = 8(N —r+1)?
8N —-r4+1)(N-71)

lp — lepyq — 2 1

< 0.

Combining the two results we have the lemma. O

In each iteration of the i-loop, EVENFANOUT choose to use either k, or k. + 1 as the step size.
Since Lemma 2 states that k, — k.41 < 1, it is possible that the difference of step sizes between
adjacent rings be -1, 0, 1 or 2. The following lemma states that this difference can only be either

0 or 1 due to the behavior of the remainders ¢, and ¢,41.
Lemma 3: Ifkr-l-l = kr; qr — qr+1 = P, -8k, > 0. Ifkr-l—l =k, — L g - r+1 = _8(kr - 1) <0.

Proof: If k1 =k, — 1,

4 = |X7’| _k’/’P’/’7

Gtr+1 = Xy =k P

= |XT|_PT_(kT_1)(PT_8)

Combining the two, we have

QT+1_QT:8kT_8ZO

since k&, > 1.

Similarly, when k,11 = k.,

qr |X7’| _k’/’P’/’7

Gtr+1 = Xy =k P

1X,| = P, — k(P — 8)

Combining,
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Different flows between adjacent rings

G — Gr41 = PT _8kr
We can show that P, — 8k, > 0 by

induction. Consider

4R(2N — 1
P1—8k1 - 8N—8L R( R—I_ )

( 8N )J
AR(2N — R+ 1

> 8N -8 o

A(2N(N = R)+ R(R—1))/N >0

since 1 < R < N. Now consider ring r + 1.

Since the pads assigned to the first r rings
are removed from X, this is exactly the problem instance (II', X') where I’

= Uf%:H_lHi and
X’ = X — all assigned pads. By a similar argument as ring 1, it is true for ring r + 1. O

With the above lemma, we can show that the difference of steps between two rings differs at
most 1 in a grid cell.
Lemma 4: If T} is the flow of the top cut of a cell g and B is the flow of the bottom cut of the
same cell, 0 < B =17 <1.

Proof: Figure 6 shows the relationship of the quotients ¢, and ¢,+1 in the two cases where

k. = k41 and k, — 1 = k,41. Now consider the case k, = k,11. We can divide the i-loop into 5
regions.

Region I j <~,. In this region T/ = k,y1 — 1 =k, = B so Bl =17 = 0.
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Type 1a Type 1b Type 2 Type 3

Figure 7: The flows inside a grid cell

Region IT v, < j < v,41. In this region 77 = k, — 1 and B} = k, so Bl =T/ = 1.
Region III 7,41 < j < é,41. In this region T/ = k41 =k, = B} so Bl =T/ = 0.
Region IV and V These regions are the same as Region I and I respectively due to symmetry.

Therefore in any case 1 > B — 17 > 0. The analysis for k£, — 1 = k,4; is similar. O

From Lemma 4, we can find the difference of neighboring side cuts. Let the flow through the
left and right side cut of the grid cell g/ be L! and R} respectively. If the number of pins connected

to a wire in the cell is a, we have the following equation.

Li—Ri4+a=B —T/ (4.1)

Figure 7 shows the three types of cells based on how the pins in the cell is connected. The first
cell (rightmost cell) in ring r is always Type 3. In this cell, L] = B] = k. — 2. Now consider its
neighboring cells. If cell g7 is Type 3, we have L, — R],, = Bl,; —T/,; — 1 since a = 1 in g!.
Since B] — T <1 by Lemma 4, R} > L > 0. Hence, g, is Type 3.

From Lemma 3, the number of cells where B — 17 = 0 is always 8k, — 8 per ring (Figure 6).
Since R} = k, — 2, there are at least k, — 2 Type 3 cells in which B! — 1] = 0 before a Type 3 cell
g! with L7 = 0 exists. Therefore the next cell g7, must be Type 2 because B{,; — T/, ; = 0 in this

cell.
The cell next to a Type 2 cell is always a Type 1b cell because L! is always less than or equal
to R and the flow of the left side cut of a Type 2 cell, L’ is 0. When L] = k, — 1, the next cell is

Type 1a.

Since the difference of side flows only change when B — T = 0 and there are only 2(k, — 1) in
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Figure 8: Cells in sector 2 and their types

a sector, the maximum side flow of any cell is at most k, — 1 which is at the left boundary of the

sector on the ring. Figure 8 shows the cells of a sector.

We summarize the result into the following theorem.

Theorem 1: The flow of any cut in a grid cell in ring v is less than or equal to k., — 1 and the

stde flow changes monotonically with the difference of at most 1 along the ring.

5 Routability Analysis

In this section we present the set of critical cuts for any package routed with EVENFANOUT.
If all of these cuts does not overflow, we know that the package is routable. We also know the

density of all the cuts in the set.

The critical cut is the densest cut of the whole design. The density of a cut is defined by
the quotient of the flow of the cut (the number of wires intersecting the cut) and the capacity of
the cut (the Fuclidean length of the cut). A design may have more than one critical cuts where
they all have the same density. Maley[5] showed that we only need to check the cut that is the
closest between two obstacles which in our case are the pins. In general we need to check O(G?)
cuts under the Fuclidean wiring metric where G is the number of obstacles. However, due to the
highly regular and symmetric configuration of the package, we can find the set of critical cuts for
topological routing generated by EVENFANOUT easily and in fact in most cases we only need to

check a few cuts.
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Figure 9: Cuts within a sector.

In the following we progressively compare classes of cuts and eliminate those of less dense.

The previous coordinate system for pins are very useful in EVENFANOUT. However, it is
cumbersome to refer pins on different rings. We will adopt the grid coordinate for further analysis.
We place the origin on the lower left corner of Sector 2 (Figure 9) and X and Y axis in the usual
direction. Since the pin pitch is normalized to unit distance, each pin has an integer coordinate.

Under this new coordinate, we denote pin p by (pz, py).

For a cut C(p, o), py, < 0, and p; > 0,, we denote head(C') be o, anchor(C') be p and base(C')
be the pin 7 = (04, py). The cut triangle of a cut is the triangle bounded by its head, anchor and

base.

5.1 Cuts within a Sector

First we consider the cuts within a sector. Figure 9 shows that there are 3 types of cuts. Since
the sector is symmetric, we only need to consider cuts with negative slopes. We will show that for
a given length and slope, the cut that ends at the right and bottom boundaries, i.e. cuts like C5
have the highest density.

We can eliminate cuts like Cy very easily. Notice that ®(base(Cy)) < ®(head(Cy)) <

®(anchor(Cy)). This means that some wires entering the triangle from the bottom leaves be-

tween head(Cy) and base(Cy). We can “shift” this cut toward the center of the sector horizontally
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and reduce this flow. Hence there exists a denser cut to the left of Cs.

Since EVENFANOUT solves a ring and reduce the problem to a subproblem with one less ring,
it is sufficient to consider cuts with its base and anchor on ring 1. For a given cut (4, we look at

the cut one grid to its left, C’. C” is usually denser than C so we can “move” a cut to the left.

Consider the case k; = ky. When p > vy, the flow By = b(ky 4 1) is the same between C’ and
(1. The flow Ly increased because the side flows of grid cells increase monotonically along the
assignment direction (Theorem 1). Therefore €’ is denser or equally dense than the original cut
C1.

If p < 71, the flow across the base of the triangle of the new cut €’ is one less than By. This
is because the move causes the flow of the bottom cut of a grid cell changes from k; to k1 — 1.
However, consider the grid cell of the base pin of C’, g. The top and bottom flow is the same for
this cell (Figure 6). Therefore by Lemma 4, the difference of the left side cut and the right differs
by 1. Therefore the flow across the left side of the cut triangle of C’, L] is at least one greater than
Ly. Therefore the density of the new cut C’ is greater than or equal to the original cut Cf.

We can repeat the above argument and move the cut horizontally towards the left corner. The
process stops when head(Cy) is at the boundary (Cs in Figure 9).

For a cut that touches the boundary, we can compute the upper bound of its density. The flow
across the cut, 7 is B+ L — V where B is the flow that cross the bottom of the triangle, L is
the flow across the left side and V' is the number of connections within the triangle. By carefully

considering the rounding effect, we can obtain the following expression:
V=(b+1)h+1)/2]-1

where b and h is the base and height of the triangle respectively. L is the sum of side flows
throughout the left side of the triangle. It is less than or equal to the sum of maximum side flow on
each ring, i.e. L < 2?21 k;. We use k; instead of k; — 1 as stated in Theorem 1 because the pins on

the side is also counted as connected within the triangle. Combining all the expressions, we have

b(ki+ 1)+ S0 ki — [0+ (A +1)/2] +1

D(Cs) N
< (1) = (b Db+ D2 = 1/2)/ VT B2
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We can maximize the above expression by substituting b = Wcosf and h = Wsin 6 with the

constraint b > 0 and h > 0. The expression is maximum when § = 7/4. We have
D(C3) < V2(ky +1/2) = W[4 4 1/2W

This is the maximum when W is the minimum at /2 which corresponds to b = h = 1, i.e. the cut

C,. Hence we conclude that
Lemma 5: If ki = ko, the densest cut is C,; with density \/5(161 -1).

Now consider the case k1 = k3 + 1. When p > 75, the difference of side flows of the grid cell of
head(C4)is 1. So Ly > Ly 4+ 1. The bottom flow B may be one less than By because the bottom
flow of a grid cell in By changes from kq to k1 — 1. Hence the density of the new cut D(C’) > D(Cy).

We can again repeat the argument and “move” the cut toward the left corner. The argument
no longer applies when p = v5. We now compute an upper bound for cuts whose head and base is
at yo.

The approach is the same as in case k1 = k9 and it turns out that the expression is exactly the
same. This is because we does not use the fact that the head of the cut is at the boundary during
our computation in case k1 = ky. Hence the most critical cut is the diagonal cut of the grid cell
g at 9 of ring 1. However, the density of this cut is the same as the cut C; because the side flow
and bottom flow are the same along the string of cells between ¢ and the corner cell. The side flow
does not change from one cell to the next because the difference between the top flow 77 and the

bottom flow B of these cells is 1 (Figure 6). Hence, again we conclude that the densest cut is C

in this case. Combining the previous case, we have the following conclusion.

Lemma 6: The densest cut in the sector is the diagonal cut C; at the lower left corner of the
sector, if k1 > 4, which has a density of \/5(161 —1). Otherwise the densest cut is the bottom cut of
the cells g} where v1 < © < 6. Their densities are k.

The k1 > 4 condition comes from the consideration of the bottom cut of the cells at the center
of the sector on ring 1. The density of these cuts can be as large as ky/1 = ky. When &y > 2+ V2,

the diagonal cut s dominates.
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Figure 10: Cuts between two sectors

5.2 Cuts between two sectors

In this subsection we investigate cuts across a sector boundary. We will show that the densest
cut is C; in Figure 10. We can immediately dismiss cuts with positive slopes like (s because
®(base(Cs)) > ®(anchor(Cg)) > ®(head(Cs)). Some wires enter the bottom of the triangle and
leave on the right side without intersecting the cut. The cut C} is both shorter and captures these
flows so it is denser than (5. Therefore we only need to consider cuts with negative slopes.

The flow across ' is the number wires across By, By and B3 minus the number of connected
pins inside the area bounded by the dotted lines, V.

When ky = ko + 1, we can show that the density of C’ is greater than or equal to C, i.e., the

cut that ends at ring 1 on both ends of the same slope is denser. For ', We have

By = bky+(b+p—y)ub+p—m1)—(b+p—56)ub+p—by)

P
B, < Z ks
=1
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Bs = (h=plhppr 4 (h=p=pg1) ulh = p—ypg1) = (h = p = bppr) u(h — p = 8p11)
Vo= [(b+D)(h+1)/2] - L.

For Cl, Bi = bkl + (b — ’yl)U(b — ’}/1) — (b — 61)U(b — (51), Bé = 0, Bé = hkl + (h — ’yl)U(h - ’}/1) —
(h— &) u(h—8)and V! = V.

Since

B, — B

v

—P
By~ By By > hky—plky—1) = (h=p)(ky — 14 1) = p,

we have F(C') — F(C)=B{+ B, —-V'— By — B, — Bs +V > 0. Hence we have the following
lemma.

Lemma 7: If by = ko + 1, a cut is less than or equal to the cut that ends on ring 1 with the same

slope.

Now,

b(ki+1)—1+h(ki4+1)—1—=[(b+1)h+1)/2]+1

ey = N
< (b+h)(k1+1)—(b+1)(h+1)/2—-1/2
= N

< (k1+1/2)(cos@ +sinf) — %sinQO —1/R.

where we substitute b = Wsin# and h = W cos#. The above maximizes at § = /4 and R = /2

under the constraint b > 0 and &~ > 0 so we have the following lemma.

Lemma 8: If ki = ko + 1, the density of any cut is less than or equal to the density of the cut at
the lower left corner between the two sectors, i.e. the cut Cy.

Now consider k; = k. In Figure 11, p/ is the ring number where ky = ko = -+ = kyyq. We
will show that a cut C' is less dense than the cut C’. Since kyyy = k1, B} = (b — p')k1 4 (b —
P =y ub—p — 1) = (b—p — &) ulb—p' — &). By =" ki = p'ky according to Theorem 1.
By = (h=pki+ (h=p —yp)ulh = p' = yp) = (h=p" = 8p)u(h —p' = by) and V/ = V.

Similar to the case ky = k2 + 1,
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Figure 11: Extreme Position of C" when ky = ko

Bi—-B, > -p

B+ By —B3—By > (h—p k1 +pki—(h—p)k1 —14+1)—p(k; —1) = p.

We have F(C') — F(C')= Bi + B —V'— By — B, — B3+ V > 0. Hence we have the following

lemma.

Lemma 9: If ki = ko, the density of any cut is less than or equal to the density of the cut that

ends on ring 1 and ring p’ with the same slope.

Since k,11 = ki, we can maximize the density of €’ with the same expression as we have done
for the case ky = ko4 1. The densest cut is (', (Figure 12) is in the grid cell of the base of C’. The
flow of C'y is 2(kypq1 — 1) = 2(ky — 1) which is the flow of s (Figure 9).

Combining the results for both cases, we have the following lemma.

Lemma 10: The densest cut across two sectors is either the diagonal cut, Cy, at the corner of the

design or Cy, the diagonal cut at the lower left corner of a sector, with density equal to \/2(ky —1).

5.3 Cuts Between Three Sectors
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Figure 12: Cuts intersecting three sectors

We can use the same approach to consider cuts across three sectors. Figure 12 shows a cut
(' across three sectors. It is suffice to consider cuts with negative slopes and anchoring on ring 1

because of the symmetry of the package and the recursive nature of EVENPGA.

Consider the ring p+ 1. The cut €’ which is two grids below C' is more dense than C'. We can
verify this by looking at the cuts By, By, Bs and By. The flow of B; increase because the side
flows increase along the ring (Theorem 1). The increase of By is at least b — p. This is because
k. — ky12 > 1 by Lemma 2. Bj is either unchanged or increased because the side flow of the new
grid cells intersected by Bs can be zero. By decrease at most kp4; + 1. Since k,44 is less than or
equal to R — p, the increase in By more than compensate the decrease in By. This is because b > R
0 b—p>R—p> ky.

We can repeat this argument until either the anchor or the head of the cut is at the boundary
of a sector. Then we can apply the argument for cuts across two sectors in the previous section to

calculate the critical cut.
A similar argument can be applied to cuts where b — p is larger than P,./4.

From the above arguments we established the set of critical cuts of a design and their densities.

We conclude this section with the following theorem.
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Theorem 2: The set of critical cuts of a design is {Cs,Cy} when ky > 4. The critical density is
V2(ky —1). When ky < 4, the critical cut set is {(x}, 7} )71 < i < 8} with density equal to k.

6 Implementation and Results

Figure 13 and 14 shows a BGA package routed with EVENFANOUT. The algorithm is im-
plemented as a router module in Surf. It only creates a topological routing. Design rule check is
done by Surf automatically using the method described by Dai et al[4]. Surf also provides the user

interface.

The time required to do the assignment is negligible compared to generating the rubber band
topological routing.

Surf serves as the routing tool to route packages designed by PEART, the Package Farly-
Analysis and Routing Tool. Given a set of parameters such as total number of pins, number of
rings and the pin and wire pitches, PEART creates the pin array and determines its routability by
checking the appropriate cuts. The next phase will be to optimize a given parameter such as the

number of rings under the constraint of routability.

7 Conclusion

In this paper we proposed an algorithm EVENFANOUT that assigns and routes the solder
bumps of a Ball Grid Array package to a set of fanout points in a single layer. The algorithm takes

O(TS) time where T' is the number of pins and 5 is the time required to generate one route.

Further, we found a set of necessary and sufficient critical cuts for any routing produced by
EVENFANQOUT. We also obtained the closed form expression of the bound of these cuts so that

we can determine a package is routable before any routing is done.
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