
A New Data Structure forCumulative Probability Tables :an Improved Frequency-to-SymbolAlgorithm.Peter M. FenwickUCSC-CRL-95-17March 20, 1995Department of Computer Science, The University of Auckland,Private Bag 92019, Auckland, New Zealand.peter-f@cs.auckland.ac.nzabstractA recent paper presented a new e�cient data structure, the \Binary IndexedTree", for maintaining the cumulative frequencies for arithmetic data compression.While algorithms were presented for all of the necessary operations, signi�cantproblems remained with the method for determining the symbol corresponding to aknown frequency. This report corrects that de�ciency.This report is being �led also with the Department of Computer Science, TheUniversity of Auckland, as Technical Report 110, ISSN 1173-3500Keywords: Binary Indexed Tree, arithmetic coding, cumulative frequencies



11. IntroductionIn a recent paper the author presented the \Binary Indexed Tree", a new data structurefor maintaining the cumulative frequency tables which are an essential part of arithmeticdata compression. 1 The new structure is compact and fast, requiring no more space than isrequired for a simple table of integer frequencies, and with access times proportional to thelogarithm of the alphabet size (with a small constant of proportionality.) The frequenciesare held in a table with each entry containing the sum of 1, 2, 4, 8, : : : frequencies, dependingon the bit pattern of the index. Accessing the structure requires operations based on theleast-signi�cant 1-bit of the index, which are easily achieved by combinations of logical andarithmetic operations. The description here assumes a knowledge of the original paper, towhich readers are referred.The paper gave methods for incrementing the frequency of a given symbol, reading thecumulative frequency of a symbol and reading the individual frequency of an element. Italso presented an algorithm for determining the symbol corresponding to a given frequency,but one which required all symbols to have non-zero frequencies. This serious limitationwas recognised at the time and indeed the comment was made that \There seems to be noe�cient programming solution to this problem, but a simple detour is to assume a constantbase frequency for all values, adjusting the cumulative or real frequencies as they are read."

1P.M. Fenwick, \A new data structure for cumulative frequency tables", Software { Practice and Expe-rience, Vol 24, No 3, pp 327{336, Mar 1994



2 2. The improved algorithm2. The improved algorithmExperience with the new structure has shown that it works very well for coding, butthat the problems in determining the symbol for a given frequency had to be overcomefor satisfactory decoding. In particular, high-order coding models require sparse tableswith many zero frequencies, which is precisely the case which the original algorithm didnot handle. The suggested detour is also quite unsatisfactory. These problems forced thedevelopment of the improved frequency to symbol algorithm which follows.It is possible to use a simple search through the table, using the code in Figure 1 asa direct implementation of the speci�cation of the frequency relationships, but the serialsearch is clearly ine�cient. However this program does serve as a reference against which anybetter algorithm may be tested, and also emphasises the relationships between the variousfrequencies, relationships which must be respected in any satisfactory implementation.int referenceGetSymbol(int F){int k;for (k = 0; k <= TblSize; k++)if (F >= getCumFreq(k-1) &&F < getCumFreq(k-1) + getIndFreq(k))return k;} Figure 1. A reference version of a \getSymbol" routineLike the original, the new algorithm uses a form of binary search, exploiting the recursivenature of the data structure. If, for example, we are working with an interval covering arange of 16 elements, we are concerned only with the frequencies within that range. Element8 contains the sum of the elements 1{8 and testing the probe frequency against it allows us toselect the upper half-range or the lower half-range. If in the upper half we adjust its \base"frequency (using the value in element 8) and then move the range to cover the old elements8{16. If in the lower half we just adjust the range to cover 0{8. The recursive structureallows us to repeat the operation on successively smaller intervals until we converge to asingle element.The code presented later basically follows the above description but with two other com-plications, both arising because we dealing not with simple values, but with frequencies andranges of frequencies, with speci�c interpretations in the context of arithmetic compression.1. If an element in the table has a cumulative frequency of 5 and an individual frequencyof 2, then it represents a range of frequencies f , such that 3 � f < 5. However,a probe frequency f = 5 represents a frequency in the range 5 � f < 6, when itsfollowing \fractional" bits are allowed for. Thus a probe frequency f corresponds tothe interval for a cumulative frequency f +1, and must be incremented by 1 before westart the search. (Remember that arithmetic coding produces a number of arbitrarilyhigh precision and that this number is successively doubled throughout the decodingoperation. A few of the more-signi�cant bits appear as the integer value which usedhere as the probe frequency, but the less signi�cant bits are still there, though hidden,and can represent any value 0 � v < 1.)



32. The second point follows on from the preceding discussion. While we appear to besearching for a value, we are actually searching for an interval and the value we �ndreally belongs to the interval just below the one we want. We must therefore incrementthe �nal index as determined by the search. (Referring back to the program of Figure1, note that when testing for element k, we examine cumFreq[k-1].)The �nal code, given in Figure 2, assumes that the structure is held in an integer arrayT[Size]. It is a direct implementation of the algorithm as described, including the specialadjustments to the probe frequency and the �nal symbol index.int getSymbol(int Freq){int baseIx, testIx, half;if (Freq < T[0]) /* test for within first element */return 0;baseIx = 0; /* initial base of search range */Freq -= T[0]; /* subtract root value from freq */Freq++; /* must probe with (Freq+1) */half = Size >> 1; /* get mid point of valid range */while (half > 0) /* repeat until range disappears */{testIx = baseIx+half; /* probe midpoint of range */if (Freq > T[testIx]) /* if above mid-point */{baseIx = testIx; /* move base to probe index */Freq -= T[baseIx]; /* subtract base frequency */}half >>= 1; /* halve the gap */}return baseIx+1; /* interval above the found value */} Figure 2. The revised frequency-to-symbol routine



4 3. Acknowledgements3. AcknowledgementsThis work was supported by grant A18/XXXXX/62090/F3414032 from the University ofAuckland and completed while the author was on Study Leave at the University of California{ Santa Cruz. The author acknowledges the contributions of both of these institutions.


