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ABSTRACT

This paper look at the problem of assigning pins and generating a planar topological
routing for a pin grid array package. There is a freedom of assigning any pin to any pad
but the routing resource is more limited. We showed that a monotonic pin assignment
has no detours and has one and only one monotonic topological routing. We proposed
an algorithm (EVENPGA) that generates this type of topological routing. In addition,
EVENPGA creates the optimal uniform distribution of wires and shortest wire length
possible for all wires under the taxicab wiring metric. If the topological routing is routable,
the maximum density of critical cuts along a ring is the minimum theoretically possible.
Once the topological routing is done, physical layout can easily be obtained using Surf, a
rubberband-based routing system.
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Figure 1: A Conceptual Single-layer PGA Package

1 Introduction

A single-layer pin grid array (PGA) package contains a chip cavity with a single row of wire-
bond pads and a rectangular array of pins (Figure 1). At present, most PGA routing is done
manually. As the I/O pin count increases, routing a PGA becomes a non-trivial task. In this paper
we consider the relationship of pin assignment and routing of a single-layer PGA package. This

routing problem is different from general area routing problem in several ways:

e There is no netlist. Each bond pad needs to be routed to one and only one pin. All pins are

equivalent.

e The routing pattern is highly symmetric. The pins are on a grid with uniform pitch. The

whole package is symmetrical.

e The wires may be routed in all angles.

This paper is the first to consider pin assignment in a package routing. The algorithms proposed
in this paper guarantee a planar routing with the most uniform distribution of wires and shortest
wire length in the taxicab wiring metric[l]. Previous work by Ying and Gu[2] and Tsai and
Chen[3] require an input netlist. Both approaches uses the technique of iterative improvement.
Our algorithm creates a topological routing directly and with optimal wire distribution. The only

previous work on package routing that considers pin assignment is by Darnauer and Dai[4].
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We start with the proof of an important theorem that relates a monotonic pin assignment to
a monotonic topological routing. This theorem is the cornerstone of the routing algorithm. Next
we present the routing algorithm which generates a monotonic topological routing. The rest of the
paper analyzed the properties of the topological routing created by the routing algorithm. The
two important results are uniform distribution of wiring and shortest wire length. Since a lot of
work has been done on transforming a topological routing into geometric routing. The focus of this
paper is on creating a topological routing with desired characteristics.

The Surf routing system[5] is built on the theory developed by Maley[l]. The algorithms
presented in this paper is implemented as a topological router within Surf. The transformation
of topological routing to detailed routing is done by algorithms proposed by Dai, Dayan and
Staepelaere[6]. The design rule enforcement and routability check is done by the algorithms

proposed by Dai, Kong and Sato[7].

2 Monotonic Pin Assignment

In this section we present a proof of a theorem that relates a monotonic pin assignment with a
monotonic topological routing. We show that a monotonic topological routing is unique for each
monotonic pin assignment.

Assume a PGA package has T pads X = {1,2,...,T} arranged in a clockwise manner starting
at the center of an arbitrary side of the chip cavity (see Figure 1). The package also has R pin
rings Il = UFL 11", where each ring r consists of P, pins II” = {x], 75, .. ., Tp }. Since the pins are
arranged in rings, all arithmetic involving the subscript of a pin should be modulo P,. To simplify
the mathematics, we assume that the number of pins of innermost ring, ring 1, is divisible by 8. If

the number of pins in ring 1 is 8 N, we have
T=4R2N + R-1),

and

P, =8(N +R-1).

The problem of routing a single-layer PGA (1LPGA) can be defined as follows:
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Problem 1 (ILPGA): The single-layer pin grid array routing (1LPGA) problem is to create
detailed routing given the set of pins Il and the set of pads X in such a way that

1. no routing is allowed within the bounding box (chip cavity) of the pads,

2. each pad is to be connected to one and only one pin.

1LPGA assumes that the number of pads and pins are the same so that connections has to be
made for all pins, i.e. |II| = | X|. To solve 1LPGA, we divide the process into three steps.

1. Pin assignment.

2. Topological Routing.

3. Detail Routing.

First we start with a formal definition of a pin assignment.
Definition 1: A pin assignment is a one-to-one and onto mapping ® : 11 — X.

Definition 2: A monotonic topological routing (MTR) is a topological routing such that all wires
w = (77,p) satisfy the following conditions:
1. Detour Condition intersect at most one cut (7, WZ_H) for some k in all the rings s, and
2. Chip Cavity Condition does not intersect cuts (q,q+ 1) for all ¢ € X, and

3. Shortest Path Condition is shortest between pad p and the cut on ring 1 that intersects
w, i.e. the cut (x}, 7}, ) where ®(1}) < p < ®(mp,,). If w is a connection between p and a

pin in ring 1, then w is the shortest path between the pad and the pin.

The detour condition means that all wires originate from the bond pads fan out towards the
periphery without taking any detours. Once a wire is outside a ring, it does not reenter it. The
chip cavity condition ensures that there is no wiring in the chip cavity. The shortest path condition
prevents the wire from routing around the whole chip cavity before intersecting ring 1 or connecting
to a pin in ring 1.

MTR is usually the desired routing because the wire length is the shortest possible. We would
like to find out the relationship between an MTR and a pin assignment. Specifically, we want to
know what kind of pin assignment can guarantee an MTR. We discovered that an MTR will exist
and is unique if the pad number assigned to the pins in the same ring strictly increase. We call

this specific class of pin assignment monotonic pin assignment (MPA).
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Definition 3: A monotonic pin assignment (MPA) is a pin assignment such that for all v, ®(x7) >
®(77) if and only if i > j.

Lemma 1: Gliven a monotonic pin assignment, a monotonic topological routing exists.

Proof: We construct the routing as follows: Starting with ring 1, we fanout the wires from the
pad frame to the ring using the shortest path possible. The wires are not allowed to enter the chip
cavity. If a pad is assigned to a pin in ring 1, then make the connection. Otherwise, place the wire
(say from pad p) between the cut of adjacent pins 7} and n},; where ®(7}) < p < ®(x} ;) or, if
p > ®(x}) for all i, choose the cut (7], 7p ). Arrange the wire order in each cut between pairs of pins
in ring 1 such that, if the ordering is (7}, w1, wo, ..., wy, 7} ), then ®(pinof (w;)) < ®(pinof(wit1)).
Repeat the operation on ring 2, 3, ..., R.

Now we will prove that the topological routing constructed is an MTR. Since the construction
is done from inside out ring by ring, a wire w = (77, p) will make the connection to 7! in the rth
iteration. Fach wire only pass through one cut on each ring and does not intersect with the rings

above its connecting pin. Hence the detour condition is satisfied.

Consider the whole ring r as a cut. The order of pins and wires is

= (ﬂ'%,wl,wz,...,wn,ﬂ%,wn+1,...,ﬂ'%,...,ﬂ']ljl)
To simplify discussion, we define ®(w) = ®(pinof(w)) where w is a wire. Due to the way we

construct the wires, for any two objects py and p,, and p; precedes py in the cut €', we have
®(p1) < ®(p2). This is the same order as the ordering of the pads. Therefore all the wires starting
at the pad frame fan to ring 1 with no crossing. This means that the shortest-path algorithm used

will not create wires that enter the chip cavity.

Finally, the shortest path from pad to ring 1 for all wires guarantees the shortest path condition.

In fact, for each MPA, there is only one MTR. This is very useful because now all we need to

do is to create an MPA.
Lemma 2: Gliven a monotonic pin assignment, there is a unique monotonic topological routing.

Proof: By contradiction. Suppose there are two MTRs for a given MPA. Then there exists
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Figure 2: Assignment Directions in Each Sector of a Package

a pin 7} such that there are two possible topological routing w; and w; for the same assignment
(77, p). Since they are topologically different and the routing is an MTR, there exist two pins T
and 7} where s,t < 7, such that exactly one of the wires crosses the cut ¢ = (71';,71‘};). Assume
without lost of generality that wy crosses the cut and ®(7?) < ®(7}). Since w; crosses ¢, we have
P(7?) < p < ®(7},). Also, since wy does not cross ¢, we have either p < ®(7?) or p > ®(7},). This

is a contradiction. Hence it is impossible to have two topological routing for an MPA. O

Combining Lemma 1 and Lemma 2, we have:

Theorem 1 (Existence and Uniqueness): There exists a unique monotonic topological routing

for any given monotonic pin assignment.

The above theorem implies that the problem of generating an MPA is equivalent to the problem
of creating an MTR. This immensely simplifies our task because now we can predict the routability

of the design without creating the topological routing.

3 Creating an MTR

In this section we present an algorithm that generates a “good” monotonic pin assignment so
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Algorithm 1 (EVENPGA):
Algorithm EVENPGA(Set of Pins 1I, Ordered set of pads X)

For rings r — 1 to R

Stepsize k — || X |/ P:]

Remainder ¢ — |X|— kP,

Pin number j «— 1

For pads i — 1 to | X|/8
ASSIGN8(X[¢],7,7)
Je=J+1
If e <(q/8)(k+1)
Then 72— 14+ k+1
Flse i — 1+ k

Endfor

Remove all assigned pads from X

Endfor

Subroutine ASSIGNS(3, j, )

Assign pad 1 to pin 7}
Assign pad |X|/4 — ¢+ 1 to pin Tp, f4—jt1
Assign pad |X|/4+ ¢ —1 to pin TP, i1
Assign pad |X|/2 -7+ 1 to pin F;T/Z—j-l-l
Assign pad |X|/2+ ¢ —1 to pin TP 21
Assign pad 3| X|/4— 14+ 1 to pin 7}

3P, [4—j+1
Assign pad 3|X|/4 41— 1topin 755 4.
Assign pad [X|—i+ 1 topin 7p .4y

Figure 3: Algorithm EVENPGA
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3. Creating an MTR

that the wires are distributed as uniformly as possible. Evenly distributed wiring is highly desired

in a package design due to routability, performance and technology concerns. A evenly distributed

routing is the least congested and the average wire-to-wire distance is also the highest, which means

that crosstalk level and yield are both optimized.

The algorithm (Figure 3) takes advantage of the symmetric geometry of the package and divides

lines.

it into eight sectors. Figure 2 shows the direction of assignment in each sector and the dividing

Since each pad is visited once, EVENPGA runs in order O(|.X|). The storage complexity is the
size of the output, i.e. O(|®|) = O(|X]).
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Algorithm 2 (MAKEMTR):
Algorithm MAKEMTR(®, X, IT)
Forr—1to R
Fori«+ 1to P,
Route 7} to ®(x})

Figure 4: Algorithm MAKEMTR

Also note that all arithmetics are integer. All divisions have no remainders except the line
marked (*). We can observe the following invariants:

e |U| = P, at the end of i-loop.

e | X|is divisible by 8.

e ¢ is divisible by 8.

It is straightforward to verify that EVENPGA creates an MPA. On every ring, the pins are
assigned in increasing or decreasing order. The pads are assigned in the same ordering as the pins.
The eight assignments in ASSIGN do not cross each other except at the corners where they give

identical assignments.

After the assignment, we can generate the topological routing using the simple algorithm

MAKEMTR (Figure 4).

The routing from =] to ®(77) is created by the shortest-path algorithm described by Dai,
Dayan and Staepelaere[6]. After the topological routing is created, design rules can be enforced as
proposed by Dai, Kong and Sato[7]. This is based on the rubber-band representation of topological

routing as presented by Dai, Kong, Jue and Satol8].
Since MAKEMTR is correct because the wire length is the shortest possible for all wires.

Section 5 analyzed the wire lengths of the routing created by EVENPGA. The time complexity of
MAKEMTR is O(| X ).

4 Uniform Wiring Distribution

An important property of EVENPGA is that it distributes the wires as uniformly as possible
around the rings. The pin assignment ordered the wiring in such a way that no crossing is necessary.

This is a major advancement over previously proposed algorithms|3, 2].
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Figure 5: Top Right Quadrant of a PGA Package

To simplify the mathematics, we assume that the pin pitch is 1 unit distance. Let the expression
next(w)) denote the pin on ring r 41 that is closest to 7. Note that next() is undefined for a corner
pin. Similarly, prev(z]) denote the pin on ring r — 1 that is closest to @7. At a corner, three pins
have the same prev()—the corner pin and its two neighbors on the same ring. We define a grid cell

r

g/ to be the area bounded by the pins 7}, 77 ,, prev(rw;

T T
) and prev(r/,,). 7/ cannot be a corner

pin. If 7/, is a corner pin, then the cell is defined by the area bounded by [, 7/, ,, 7/, and
prev(w!). Intuitively, 7] is at the upper left corner of g7. We define the bottom cut of a cell ¢7 to
be the cut (prev(x), prev(wl, ,)), the top cut to be (77,77, ), the left side cut to be (7}, prev(w}))
and the right side cut to be (7/,,,prev(w’,,)). Figure 1 shows a pin 7}, next(x/), prev(n}) and
the grid cell g¢.

Now we proceed to prove that EVENPGA produces a uniformly distributed topological routing.

The following lemma states that the wires are uniformly distributed among the cuts in all the rings.

More precisely, it says that the number of wires between two adjacent pins in the same ring differs
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at most by one.

Lemma 3: Forallr=1,..., R,

IHVZLX(F(FZ, 77;+1)) - H\;in(F(ﬂf, 7Tz7'ﬂ-|-1)) <1

F(r},7?) is the flow of the cut (7, 7?), i.e. the number of wires intersecting the cut.

Proof: By induction on r. For ring 1, in each iteration of ¢, it is incremented by either k or

k 4+ 1. Hence the number of wires between any two adjacent pin in ring 1 is either & — 1 or k.

Therefore
max(F(x! w41) — min( P w030)) < b= (k= 1) = 1
Now assume that it is true for rings 1,2,...,r. Consider ring r + 1. Since the pads assigned to

the first r rings are removed from the set X, this is exactly the problem instance (II', X') where
I = Uf%:T_HHi and X’ = X — all assigned pads. By a similar argument as ring 1, it is true for ring

r+1. O

Lemma 3 is not strong enough for a uniform wire distribution because the wires may not be
even between the rings. We are going to show that this is not the case. Figure 5 shows the top
right quadrant with the flows of the cuts in the first ring. At the center of the top side and the
right side, the wires intersect the ring at right angles. At the corner, the wires intersect the ring at
45 degrees. Consider the two side cuts of a grid cell at the center, i.e., the cuts (7], prev(w)) and
(mi 1, prev(ml,,)) for a grid cell g7. All the wires enter at the bottom and leave at the top. There
are no wires going through the two side cuts. For a grid cell near the corner, most wires enter at
the bottom and leave at one of the sides. There is a transition from zero to many wires as we move
from the top center to the top right corner. The inverse transition takes place when we move from
the corner to the right center. We want to know how smooth the transition is and the bound of

the maximum side flow.
We start with a lemma that relates the step sizes of adjacent rings.

Lemma 4: Let k, and k.1 are the values of k in iteration r and r 4+ 1 respectively. If R < o then

0<k,—kry1 <3 wherec =1/2— N +/3N2+3N + 1/4.

Proof: Let X, be the set X at iteration r. At iteration r, |[X| =T —-4(r—1)(N+(r—1)—1) =
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T—4(r—1)(N +r—2). From EVENPGA,

ky = [1Xc|/Pr], ke = [ X/ Prga ]

We have

T-Ar-1D@2N+r—-2) T-4r2N+r-1)

ky — k, 1
o2 SN +r—1) S(N 1 7)
_ AR@N4AR-D-4r@N4r-1)
B 8N +r—1)(N+r)
since R > r.
T—4r-1D@2N+r-2) T—-4r2N+r—-1)
ky — k, - 1
o< SN +r—1) RN+ T
< R(2N+R—1)—2N+2
2N(N +1)

It can be shown that the right hand side is less than 3 if R < ¢. Thus 0 < k, — k49 < 3 if

R<o. O

Since ¢ > N/2 and in most packages R is far less than N, this requirement is not a strong
constraint. From now on we will assume that R always satisfy this requirement.

We will now derive a relationship between the step sizes of adjacent rings. Since in each iteration
of 7, ¢ increments either k or k+ 1, it appears that the difference of step sizes between two adjacent
rings may be as large as 3. The following lemma states that in fact the maximum difference is at

most 2. This is because of the relative magnitudes of the remainder ¢.

Lemma 5: Let T be the flow of the top cut of a cell g] and B} be the flow of the bottom cut of
the same cell. Then 1 < B —T! <2 if R< 0.

Proof: Since k, — 1 < T/ <k, and k,_y —1 < B! < k,_y, wehave B =T < Fk,_y — k. + 1.
By Lemmad, either k,_y —k, =1lor k,_y —k, =2. If k,_y — kK, =1, B — T < 2. Otherwise we

have the following equations.

|X7’| =k, P+ qr, |X7’—1| =k, 1P+ Gr—1-
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Figure 6: The flows of a grid cell

Solving them, with k, — k,_y = 2, we have ¢, — ¢,_1 = P,_1 — 8k,_1 + 16. It can be shown that

this is greater than 0 if R < o.

On each ring, EVENPGA first make steps of k 4+ 1 for ¢ pins and then switch to steps of k. If

¢r > ¢-—1, we can divide the i-loop into three regions.

Region I j < ¢,_;. In this region T) = k, and B} = k,_y,s0 B — 1] = 2.

Region IT ¢._1 < j < ¢,. In this region 7] = k, and B} = k,_; —1,s0 B — T = 1.
Region III j > ¢,. In this region 77 = k, — 1 and B! =k, 41 —1,s0 Bl =1} = 2.

Itk,_y—k, =2,B =T/ > 1. Otherwise, solving the same set of equations with &, — k,_; =1,
we have ¢, — ¢,—1 = 8(1 — k,_1) < —1. Hence ¢,_1 > ¢, if k.1 — k. = 1. We can also divide the
t-loop into three regions.

Region I j < g,. In this region T = k, and B} = k,_q,s0 Bl =T = 1.
Region IT ¢, < j < ¢,—1. In this region 7/ = k, — 1 and B} = k,_q1,s0 B =T} = 2.
Region III j > ¢,_;. In this region 7] =k, — 1 and B = k,_1 — 1,50 B — T/ = 1.

Therefore in any case, 1 < Bl — 17 <2. O

From Lemma 5, we can bound the difference of neighboring side cuts. Let the flow through the
left and right side cut of the grid cell g/ be L! and R} respectively. If the number of pins connected

with a wire in the cell is a, we have the following equation.

Li+B =T/ +R +a= R — L +a=B — T/ (4.1)

Figure 6 illustrates three types of cells based on the possible flows within the cell. We only
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need to investigate the change of cell type along the top center edge towards the top right corner
because the package is symmetrical.
We start with the first cell in ring 7. Cell ¢g] can be any type. Note that L] = 0. Since B} — 17
is at most 2, R] = 0. a=11if B] =717 =1 and a = 2 otherwise.
Now consider the cell g7 and g7, ,. There are four cases.
Case I g/ is Type 3 and B, — T/, = 1. Rl | — L{,; = 0 because a = 1 for a Type 3 cell. This
means that g7, | is also a Type 3 cell.

Case II ¢ is Type 3 and B[, — T/, = 2. Since the left neighbor of g7, is Type 3 and since
L7 = 0 and L} does not change between neighboring Type 3 cells (CaseI), L7, = 0. Since g}
is Type 3, 7/, | must be connected within g;y17. If R{,; > 0, then #7, , will not be connected
because B, ; — T/, | — Connection of 7,y = 1. It is impossible to connect this pin in the
next cell, g\ 5, because the wire leaving the right side cut will block any possible connection

in g/, ,. Therefore R}, | must be 0. g/, is a Type 2 cell.

Case III g/ is Type 2. L7, ; = 0 by Case II. Note that 7/, is connected within g/. Therefore g/, ,
can only be a Type 1 cell. R}, — LI, =1if B, —T/,; =2and R, | — L7,; = 0 otherwise.

K3
Case IV ¢! is Type 1. g/, must be a Type 1 cell because 7/, is already connected in g;.
Ri,—Li,, =1if B,y =T, =2and R,| — L7,| = 0 otherwise.

K3

We summarize the cases into the following lemma.

Lemma 6: The right neighbor of a cell can only be of certain type.

1. The right neighbor of a Type 1 cell must be a Type 1 cell.

2. The right neighbor of a Type 3 cell can be a Type 3 cell or a Type 2 cell.

3. The right neighbor of a Type 2 cell is a Type 1 cell.

Figure 5 shows the types of cells in the second ring. The chain breaks at the corner cell gis.
Note that the Type 1 cells on the right edge are mirrored with respect to the one shown in Figure 6
because the upper right edge is assigned in counterclockwise direction from the center of the right
edge (Figure 2). In general, if the first cell in the ring is Type 1, then all the cells up to top right
corner is Type 1. If the first cell is Type 2, all the cells except the first is Type 1. If the first cell
is Type 3, somewhere along the path the chain of Type 3 cells will end with a Type 2 cell (where
B? —T7 = 2) and then after the Type 2 cell everything is Type 1. The cells from the center of right
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edge to the top right corner are all Type 1. The chain ends at a corner cell because the orientation

of the cells changed.

From all four cases the maximum difference between R} and L! is 1. Therefore we have the

following lemma.
Lemma 7: The change of flow between two neighboring side cuts is at most 1.

From the four cases we can see that only Type 1 cells can have R — L7 > 0. So the maximum
flow on side cuts from the top center to the top right corner is less than or equal to the number of
Type 1 cells with B — T/ = 2. From the proof of Lemma 5, we know that B} — 1] = 2 happens
only in:

1. Region I and III if ¢, > ¢,_1 and

2. Region ITif ¢,_1 > ¢..

If ¢ > g.—1, the number of cells where B — T/ = 2 is equal to ¢.—1 + (k-1 — ¢-) < ky—1.
If ¢._1 > ¢,, the number of cells is equal to ¢,_1 — g, < k,_1. Therefore we have the following

conclusion.
Lemma 8: The mazimum flow of a side cut between rings r and v + 1 is less than k,.

Now we have rather tight bounds on the cuts in the rings and on all the side cuts. To show
that EVENPGA generates a even wiring distribution, we measure the densest cuts within the grid
cells along a ring. We will show that the difference of the densest cuts will not differ by more than
1. Since the cuts within a ring has a uniform density (Lemma 3), the critical cut within a grid
cell and its density is determined by the amount of side flow. There are only two competing cuts
within the cell that can be the critical cut of the cell—the bottom cut and the diagonal cut which
have the larger flow. At the center of an edge, the side flow is 0. All wires enter the cell from the
bottom cut and leave from the top cut. The critical cut is between two adjacent pins in the same
ring, i.e. (7], 75). This cut is critical because at least k, — 1 and at most k, wires intersect it. At a
corner cell, wires enter the cell from both the bottom and a side and leaves from the top and the
other side. Any one side cut is not as critical because there is only at most k, wires intersect it.
However, the diagonal cut, either (7, prev(wl,)) or (77, prev(n[)), become more critical because
up to 2(k, — 1) wires may intersect it. These wires include the k, — 1 wires from the bottom cut

and up to k, — 1 wires from a side cut (Lemma 8). The densities of the critical cuts of cells from
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the top center to the top right corner is bounded by the density of the critical cut of the cell at

the center and that at the corner because the amount of side flow increase monotonically from

center to corner. Therefore the maximum difference of densities of critical cuts across the ring is

the difference of densities of critical cuts between a center cell and a corner cell. The following

lemma summarizes the arguments.

Lemma 9: The critical cuts of ring r is either the bottom cut (71, 75) or the diagonals (71';;'_/18, prev(ﬂ;j'/lg_l_l))
and (ﬂ;j'/lg_l_l, prev(ﬂ;j'/lg)).

EVENPGA tries to decrease the density of the diagonal cut at the corners because a diagonal
cut does not have twice the capacity of a side cut but may have up to 2(k, — 1) wires intersecting
it. It put all the extra wires (there are ¢ of them) at the center.

The optimal wire distribution is such that the maximum difference of densities of the critical

cuts in all the cells among a ring is less than 1. Mathematically,
A" = max(D(erit(g]))) — min(D(erit(g))) < 1

D(c) is the density of a cut ¢ and crit(g) is the critical cut of the grid cell g which is one of the

cuts listed in Lemma 9.
We will show that the maximum difference in a routing generated by EVENPGA is optimal if
ky < 3+ 2v2=5.83.

Theorem 2 (Even Wiring): EVENPGA generates a topological routing such that
A = max(D(erit(g]))) — min( Derit(g])) < 1

if kr < 342V2.

Proof: By Lemma 9, A = |D(bottom cut) — D(diagonal)|. The density of the bottom cut
of the cell in the center of the top edge is k.. The density of the diagonal cut at the top right
corner cell is less than or equal to 2(k, — 1). Hence A = |2(k, — 1)/v/2 — k,|. This is less than 1 if
1<k, <3+2V2. 0

Since k, > k.41, Lemma 9 implies that the critical cuts of the whole package is on ring 1.
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Finally, we consider whether EVENPGA produces an optimal routing in the sense that the
maximum density of any critical cut in any cell in a ring is the minimum. Consider the cuts around
ring 1. If we want to minimize the maximum density of the cuts in the ring, i.e. the density of cuts
(7}, 7}4,) for all 4, we must spread out the wires evenly among all cuts. Thus the minimum flow
for these cuts must be |77/8N |. With this strategy, the maximum density is [1/8N]/1 = [T/8N].
Lemma 3 showed that the maximum difference of flow of an MTR created by EVENPGA is less
than or equal to 1. Since k; = |T/8N |, the MTR of EVENPGA exactly equals the minimum and

maximum flow requirements. Therefore we have following conclusion.

Theorem 3: If the MTR created by FVENPGA is routable, the mazimum density of the critical

cut is the minimum possible.

5 Wire Length Analysis

Intuitively, the wire length generated by EVENPGA is short. MPA guarantees an MTR which

means no detours for any net. In this section, we will derive a bound for the wire length of all nets.

First we find the bound on the number of side, bottom and top cuts of the grid cells a wire may
intersect. Let I'(w) be the total number of side, bottom and top cuts of cells w intersected. Since
no detouring is allowed by the definition of MTR, a connection w = (77, p) must pass through

exactly one cut on ring 1,2, ..., 7 — 1. So I'(w) > r — 1 for all w.

Next we will show that a wire intersects at most one side cut between any pair of adjacent rings.

To show that this is true, we need the following lemma:
Lemma 10: A grid cell g7 is always one of the three types as shown in Figure 6.

Proof: From the four cases discussed before Lemma 6, the side flows of Type 2 and Type 3 cells
are always 0. For Type 1 cells, the difference of side flows may be 1. In Figure 6, the connection wire
is between the flows F} and F3 in a Type 1 cell. Fora Type 1 cell g/ where B -1/ =2, L7 - R =1
so Iy — I3 = 1. Consider the right neighbor of this cell g, ;. It must be Type 1 (Lemma 6). If
B,y =T/ | =2in this cell too, R{,, —Li+1"=1. 5o iy =R{,y =1+ L], =1+ R =2+ L.
Therefore F; monotonically increase down the chain of Type 1 cells. The question is: since the

flow of the bottom cut, B! is either k, or k, — 1, will F} be greater than or equal to B} so that

at the end of a long chain of Type 1 cells the connecting wire comes from the left side cut instead
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r v
1L/

Figure 7: A Wire Intersecting Two Cells Between a Pair of Rings

from the bottom cutl’ This will not happen because side flow is bounded by k, — 1 according to

Lemma 8. Therefore there is no other flow pattern except the three types shown in Figure 6. O

By Lemma 10, the wire that makes the connection in a cell g/ always partitions the cell vertically
into two disjoint parts. No wire can intersect both left and right side cuts across the cell. This
means that a wire cannot enter a cell from one side and leave the cell from the other. Hence any
wire can only intersect at most one side cut between two bottom/top cuts. Therefore a wire may
intersect two cells between a pair of adjacent rings by intersecting a side cut (Type I Intersection)
or it may intersect only one cell between a pair of adjacent rings by not intersecting any side cut
(Type II Intersection). I'(w) < 2(r — 1) where r = ringof(w). We define I'1(w) to be the number
of Type I intersections, i.e. the number of cells w intersect orthogonally. We define I';(w) to be
the number of Type II intersections, i.e. the number of cells w intersect diagonally. We have
I'y(w) + 2I2(w) = I'(w) and I'y(w) + I'y(w) = r — 1 where r = ringof(w). From this result we can

state the following:

Lemma 11: The wire length of a wire w within the pin grid is less than or equal to I'y(w) +

Proof: If a wire leaves a cell from the top cut, the length of the wire is equal to the height of

the cell which is 1. If a wire w leaves a cell from one of the side cuts, it intersects two cells between
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a pair of rings. Figure 7 shows the wire in the cells. Since the ordering of the two cuts B! and
T, is the same, the maximum wire length of w is bounded by the diagonal length which is V2 in
Fuclidean metric. Therefore if the wire intersects I';(w) cells diagonally, the bound of wire length
is V215 (w)/2.

Therefore if the wire w intersects I'y(w) cells orthogonally and I'y(w) cells diagonally, the wire

length of w is bounded by Gamma;(w) + /20y (w)/2. O

Since the total number of cells a wire intersect does not exceed the number of rings beneath
the pin of the wire, 0 < I'y(w) < r — 1. From the relation length(w) = T'y(w) + v2I'y(w)
(Lemma 11) and the relation I'y(w) 4 I';(w) = 7 — 1, the bounds of a wire can be derived to
be r — 1 < length(w) < v/2(r — 1).

We can do a better analysis by using the ‘Taxicab’ wiring metric as discussed by Maley[1]. It is
similar to Manhattan wiring metric but the equidistance square is rotated 45 degrees. The distance
of a point (x,y) to origin is (|y + |+ |y — z|)/2. According to the taxicab wiring metric, the length
of a diagonal of a square is the same as the length of a side. Therefore the wire length in diagonally
intersected cells is equal to the wire length in orthogonally intersected cells and is equal to 1. Hence
all wires connected to a given ring has length length(w) =1-T1(w)+ 1 - I'y(w), which is equal to
r — 1. This is minimum because the minimum number of cells a wire intersects is also r — 1. Hence

we have the following theorem.

Theorem 4 (Minimum Wire Length): FVENPGA produces a topological routing where each

wire s of minimum length in tazicab wiring metric.

6 Implementation and Results

Figure 8 is a 600 pin PGA routed with EVENPGA in the Surf environment. EVENPGA was
implemented as a router module of Surf[5]. Surf provides a powerful framework on which the
router can be easily built. Specifically, Surf has all the facilities to manipulate rubber-bands as a
representation of topological routing. The design-rule enforcement algorithm[7, 9] and geometric
transformation algorithm[10, 6] automatically enforces design rules and transforms the topological

routing into a detail routing. The run-time of EVENPGA is negligible compared to the generation
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Figure 8: 600 Pin Single-Layer PGA and a Corner

of topological routing (MAKEMTR), and enforcing design rules.

7 Conclusion

This paper studies the pin assignment and routability of a single-layer pin grid array. We have
shown that the key to good topological routing is a good pin assignment. This paper is the first to
consider both pin assignment and routing and investigated the relationship between the two. We
proposed an algorithm that created a good pin assignment that results in a uniformly distributed

wires and bounded wire length.
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