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1. Introduction 1
Figure 1: A Conceptual Single-layer PGA Package1 IntroductionA single-layer pin grid array (PGA) package contains a chip cavity with a single row of wire-bond pads and a rectangular array of pins (Figure 1). At present, most PGA routing is donemanually. As the I/O pin count increases, routing a PGA becomes a non-trivial task. In this paperwe consider the relationship of pin assignment and routing of a single-layer PGA package. Thisrouting problem is di�erent from general area routing problem in several ways:� There is no netlist. Each bond pad needs to be routed to one and only one pin. All pins areequivalent.� The routing pattern is highly symmetric. The pins are on a grid with uniform pitch. Thewhole package is symmetrical.� The wires may be routed in all angles.This paper is the �rst to consider pin assignment in a package routing. The algorithms proposedin this paper guarantee a planar routing with the most uniform distribution of wires and shortestwire length in the taxicab wiring metric[1]. Previous work by Ying and Gu[2] and Tsai andChen[3] require an input netlist. Both approaches uses the technique of iterative improvement.Our algorithm creates a topological routing directly and with optimal wire distribution. The onlyprevious work on package routing that considers pin assignment is by Darnauer and Dai[4].



2 2. Monotonic Pin AssignmentWe start with the proof of an important theorem that relates a monotonic pin assignment toa monotonic topological routing. This theorem is the cornerstone of the routing algorithm. Nextwe present the routing algorithm which generates a monotonic topological routing. The rest of thepaper analyzed the properties of the topological routing created by the routing algorithm. Thetwo important results are uniform distribution of wiring and shortest wire length. Since a lot ofwork has been done on transforming a topological routing into geometric routing. The focus of thispaper is on creating a topological routing with desired characteristics.The Surf routing system[5] is built on the theory developed by Maley[1]. The algorithmspresented in this paper is implemented as a topological router within Surf. The transformationof topological routing to detailed routing is done by algorithms proposed by Dai, Dayan andStaepelaere[6]. The design rule enforcement and routability check is done by the algorithmsproposed by Dai, Kong and Sato[7].2 Monotonic Pin AssignmentIn this section we present a proof of a theorem that relates a monotonic pin assignment with amonotonic topological routing. We show that a monotonic topological routing is unique for eachmonotonic pin assignment.Assume a PGA package has T pads X = f1; 2; : : : ; Tg arranged in a clockwise manner startingat the center of an arbitrary side of the chip cavity (see Figure 1). The package also has R pinrings � = [Rr=1�r, where each ring r consists of Pr pins �r = f�r1; �r2; : : : ; �rPrg. Since the pins arearranged in rings, all arithmetic involving the subscript of a pin should be modulo Pr. To simplifythe mathematics, we assume that the number of pins of innermost ring, ring 1, is divisible by 8. Ifthe number of pins in ring 1 is 8N , we haveT = 4R(2N + R� 1);and Pr = 8(N +R� 1):The problem of routing a single-layer PGA (1LPGA) can be de�ned as follows:



2. Monotonic Pin Assignment 3Problem 1 (1LPGA): The single-layer pin grid array routing (1LPGA) problem is to createdetailed routing given the set of pins � and the set of pads X in such a way that1. no routing is allowed within the bounding box (chip cavity) of the pads,2. each pad is to be connected to one and only one pin.1LPGA assumes that the number of pads and pins are the same so that connections has to bemade for all pins, i.e. j�j = jX j. To solve 1LPGA, we divide the process into three steps.1. Pin assignment.2. Topological Routing.3. Detail Routing.First we start with a formal de�nition of a pin assignment.De�nition 1: A pin assignment is a one-to-one and onto mapping � : �! X.De�nition 2: A monotonic topological routing (MTR) is a topological routing such that all wiresw = (�rj ; p) satisfy the following conditions:1. Detour Condition intersect at most one cut (�sk; �sk+1) for some k in all the rings s, and2. Chip Cavity Condition does not intersect cuts (q; q + 1) for all q 2 X, and3. Shortest Path Condition is shortest between pad p and the cut on ring 1 that intersectsw, i.e. the cut (�1k; �1k+1) where �(�1k) < p < �(�1k+1). If w is a connection between p and apin in ring 1, then w is the shortest path between the pad and the pin.The detour condition means that all wires originate from the bond pads fan out towards theperiphery without taking any detours. Once a wire is outside a ring, it does not reenter it. Thechip cavity condition ensures that there is no wiring in the chip cavity. The shortest path conditionprevents the wire from routing around the whole chip cavity before intersecting ring 1 or connectingto a pin in ring 1.MTR is usually the desired routing because the wire length is the shortest possible. We wouldlike to �nd out the relationship between an MTR and a pin assignment. Speci�cally, we want toknow what kind of pin assignment can guarantee an MTR. We discovered that an MTR will existand is unique if the pad number assigned to the pins in the same ring strictly increase. We callthis speci�c class of pin assignment monotonic pin assignment (MPA).



4 2. Monotonic Pin AssignmentDe�nition 3: A monotonic pin assignment (MPA) is a pin assignment such that for all r, �(�ri ) >�(�rj ) if and only if i > j.Lemma 1: Given a monotonic pin assignment, a monotonic topological routing exists.Proof: We construct the routing as follows: Starting with ring 1, we fanout the wires from thepad frame to the ring using the shortest path possible. The wires are not allowed to enter the chipcavity. If a pad is assigned to a pin in ring 1, then make the connection. Otherwise, place the wire(say from pad p) between the cut of adjacent pins �1i and �1i+1 where �(�1i ) < p < �(�1i+1) or, ifp > �(�1i ) for all i, choose the cut (�11; �1Pr). Arrange the wire order in each cut between pairs of pinsin ring 1 such that, if the ordering is (�1i ; w1; w2; : : : ; wn; �1i+1), then �(pinof(wi)) < �(pinof(wi+1)).Repeat the operation on ring 2, 3, : : : , R.Now we will prove that the topological routing constructed is an MTR. Since the constructionis done from inside out ring by ring, a wire w = (�ri ; p) will make the connection to �ri in the rthiteration. Each wire only pass through one cut on each ring and does not intersect with the ringsabove its connecting pin. Hence the detour condition is satis�ed.Consider the whole ring r as a cut. The order of pins and wires isC = (�11; w1; w2; : : : ; wn; �12; wn+1; : : : ; �13; : : : ; �1P1)To simplify discussion, we de�ne �(w) = �(pinof(w)) where w is a wire. Due to the way weconstruct the wires, for any two objects �1 and �2, and �1 precedes �2 in the cut C, we have�(�1) < �(�2). This is the same order as the ordering of the pads. Therefore all the wires startingat the pad frame fan to ring 1 with no crossing. This means that the shortest-path algorithm usedwill not create wires that enter the chip cavity.Finally, the shortest path from pad to ring 1 for all wires guarantees the shortest path condition.2 In fact, for each MPA, there is only one MTR. This is very useful because now all we need todo is to create an MPA.Lemma 2: Given a monotonic pin assignment, there is a unique monotonic topological routing.Proof: By contradiction. Suppose there are two MTRs for a given MPA. Then there exists



3. Creating an MTR 5
Figure 2: Assignment Directions in Each Sector of a Packagea pin �ri such that there are two possible topological routing w1 and w2 for the same assignment(�ri ; p). Since they are topologically di�erent and the routing is an MTR, there exist two pins �sjand �tk where s; t < r, such that exactly one of the wires crosses the cut c = (�sj ; �tk). Assumewithout lost of generality that w1 crosses the cut and �(�sj) < �(�tk). Since w1 crosses c, we have�(�sj) < p < �(�tk). Also, since w2 does not cross c, we have either p < �(�sj) or p > �(�tk). Thisis a contradiction. Hence it is impossible to have two topological routing for an MPA. 2Combining Lemma 1 and Lemma 2, we have:Theorem 1 (Existence and Uniqueness): There exists a unique monotonic topological routingfor any given monotonic pin assignment.The above theorem implies that the problem of generating an MPA is equivalent to the problemof creating an MTR. This immensely simpli�es our task because now we can predict the routabilityof the design without creating the topological routing.3 Creating an MTRIn this section we present an algorithm that generates a \good" monotonic pin assignment so



6 3. Creating an MTRAlgorithm 1 (EVENPGA):Algorithm EVENPGA(Set of Pins �;Ordered set of pads X)For rings r  1 to RStepsize k  bjX j=Prc : : :(*)Remainder q  jX j � kPrPin number j  1For pads i 1 to jX j=8ASSIGN8(X [i]; j; r)j  j + 1If i � (q=8)(k+ 1)Then i i+ k + 1Else i i+ kEndforRemove all assigned pads from XEndforSubroutine ASSIGN8(i; j; r)Assign pad i to pin �rj (Sector 1)Assign pad jX j=4� i+ 1 to pin �rPr=4�j+1 (Sector 2)Assign pad jX j=4+ i� 1 to pin �rPr=4+j�1 (Sector 3)Assign pad jX j=2� i+ 1 to pin �rPr=2�j+1 (Sector 4)Assign pad jX j=2+ i� 1 to pin �rPr=2+j�1 (Sector 5)Assign pad 3jX j=4� i+ 1 to pin �r3Pr=4�j+1 (Sector 6)Assign pad 3jX j=4+ i� 1 to pin �r3Pr=4+j�1 (Sector 7)Assign pad jX j � i+ 1 to pin �rPr�j+1 (Sector 8)Figure 3: Algorithm EVENPGAthat the wires are distributed as uniformly as possible. Evenly distributed wiring is highly desiredin a package design due to routability, performance and technology concerns. A evenly distributedrouting is the least congested and the average wire-to-wire distance is also the highest, which meansthat crosstalk level and yield are both optimized.The algorithm (Figure 3) takes advantage of the symmetric geometry of the package and dividesit into eight sectors. Figure 2 shows the direction of assignment in each sector and the dividinglines.Since each pad is visited once, EVENPGA runs in order O(jX j). The storage complexity is thesize of the output, i.e. O(j�j) = O(jX j).



4. Uniform Wiring Distribution 7Algorithm 2 (MAKEMTR):Algorithm MAKEMTR(�; X;�)For r 1 to RFor i 1 to PrRoute �ri to �(�ri ) Figure 4: Algorithm MAKEMTRAlso note that all arithmetics are integer. All divisions have no remainders except the linemarked (*). We can observe the following invariants:� jU j = Pr at the end of i-loop.� jX j is divisible by 8.� q is divisible by 8.It is straightforward to verify that EVENPGA creates an MPA. On every ring, the pins areassigned in increasing or decreasing order. The pads are assigned in the same ordering as the pins.The eight assignments in ASSIGN do not cross each other except at the corners where they giveidentical assignments.After the assignment, we can generate the topological routing using the simple algorithmMAKEMTR (Figure 4).The routing from �ri to �(�ri ) is created by the shortest-path algorithm described by Dai,Dayan and Staepelaere[6]. After the topological routing is created, design rules can be enforced asproposed by Dai, Kong and Sato[7]. This is based on the rubber-band representation of topologicalrouting as presented by Dai, Kong, Jue and Sato[8].Since MAKEMTR is correct because the wire length is the shortest possible for all wires.Section 5 analyzed the wire lengths of the routing created by EVENPGA. The time complexity ofMAKEMTR is O(jX j).4 Uniform Wiring DistributionAn important property of EVENPGA is that it distributes the wires as uniformly as possiblearound the rings. The pin assignment ordered the wiring in such a way that no crossing is necessary.This is a major advancement over previously proposed algorithms[3, 2].



8 4. Uniform Wiring Distribution

Figure 5: Top Right Quadrant of a PGA PackageTo simplify the mathematics, we assume that the pin pitch is 1 unit distance. Let the expressionnext(�ri ) denote the pin on ring r+1 that is closest to �ri . Note that next() is unde�ned for a cornerpin. Similarly, prev(�ri ) denote the pin on ring r � 1 that is closest to �ri . At a corner, three pinshave the same prev()|the corner pin and its two neighbors on the same ring. We de�ne a grid cellgri to be the area bounded by the pins �ri , �ri+1, prev(�ri ) and prev(�ri+1). �ri cannot be a cornerpin. If �ri+1 is a corner pin, then the cell is de�ned by the area bounded by �ri , �ri+1, �ri+2 andprev(�ri ). Intuitively, �ri is at the upper left corner of gri . We de�ne the bottom cut of a cell gri tobe the cut (prev(�ri ); prev(�ri+1)), the top cut to be (�ri ; �ri+1), the left side cut to be (�ri ; prev(�ri ))and the right side cut to be (�ri+1; prev(�ri+1)). Figure 1 shows a pin �ri , next(�ri ), prev(�ri ) andthe grid cell gri .Now we proceed to prove that EVENPGA produces a uniformly distributed topological routing.The following lemma states that the wires are uniformly distributed among the cuts in all the rings.More precisely, it says that the number of wires between two adjacent pins in the same ring di�ers



4. Uniform Wiring Distribution 9at most by one.Lemma 3: For all r = 1; : : : ; R;max8i (F (�ri ; �ri+1))�min8i (F (�ri ; �ri+1)) � 1:F (�ri ; �sj) is the 
ow of the cut (�ri ; �sj), i.e. the number of wires intersecting the cut.Proof: By induction on r. For ring 1, in each iteration of i, it is incremented by either k ork + 1. Hence the number of wires between any two adjacent pin in ring 1 is either k � 1 or k.Therefore max8i (F (�ri ; �ri+1))�min8i (F (�ri ; �ri+1)) � k � (k � 1) = 1:Now assume that it is true for rings 1; 2; : : : ; r. Consider ring r + 1. Since the pads assigned tothe �rst r rings are removed from the set X , this is exactly the problem instance (�0; X 0) where�0 = [Ri=r+1�i and X 0 = X � all assigned pads. By a similar argument as ring 1, it is true for ringr + 1. 2Lemma 3 is not strong enough for a uniform wire distribution because the wires may not beeven between the rings. We are going to show that this is not the case. Figure 5 shows the topright quadrant with the 
ows of the cuts in the �rst ring. At the center of the top side and theright side, the wires intersect the ring at right angles. At the corner, the wires intersect the ring at45 degrees. Consider the two side cuts of a grid cell at the center, i.e., the cuts (�ri ; prev(�ri )) and(�ri+1; prev(�ri+1)) for a grid cell gri . All the wires enter at the bottom and leave at the top. Thereare no wires going through the two side cuts. For a grid cell near the corner, most wires enter atthe bottom and leave at one of the sides. There is a transition from zero to many wires as we movefrom the top center to the top right corner. The inverse transition takes place when we move fromthe corner to the right center. We want to know how smooth the transition is and the bound ofthe maximum side 
ow.We start with a lemma that relates the step sizes of adjacent rings.Lemma 4: Let kr and kr+1 are the values of k in iteration r and r+1 respectively. If R < � then0 < kr � kr+1 < 3 where � = 1=2�N +p3N2 + 3N + 1=4.Proof: Let Xr be the set X at iteration r. At iteration r, jX j = T �4(r�1)(N+(r�1)�1) =



10 4. Uniform Wiring DistributionT � 4(r � 1)(N + r � 2). From EVENPGA,kr = bjXrj=Prc; kr+1 = bjXr+1j=Pr+1c:We have kr � kr+1 > T � 4(r� 1)(2N + r � 2)8(N + r � 1) � T � 4r(2N + r � 1)8(N + r) � 1= 4R(2N +R� 1)� 4r(2N + r� 1)8(N + r� 1)(N + r) > 0since R � r. kr � kr+1 < T � 4(r� 1)(2N + r � 2)8(N + r � 1) � T � 4r(2N + r � 1)8(N + r) + 1� R(2N + R� 1)� 2N2N(N + 1) + 2It can be shown that the right hand side is less than 3 if R < �. Thus 0 < kr � kr+1 < 3 ifR < �. 2Since � > N=2 and in most packages R is far less than N , this requirement is not a strongconstraint. From now on we will assume that R always satisfy this requirement.We will now derive a relationship between the step sizes of adjacent rings. Since in each iterationof i, i increments either k or k+1, it appears that the di�erence of step sizes between two adjacentrings may be as large as 3. The following lemma states that in fact the maximum di�erence is atmost 2. This is because of the relative magnitudes of the remainder q.Lemma 5: Let T ri be the 
ow of the top cut of a cell gri and Bri be the 
ow of the bottom cut ofthe same cell. Then 1 � Bri � T ri � 2 if R < �.Proof: Since kr � 1 � T ri � kr and kr�1 � 1 � Bri � kr�1, we have Bri � T ri � kr�1 � kr + 1.By Lemma4, either kr�1 � kr = 1 or kr�1 � kr = 2. If kr�1 � kr = 1, Bri � T ri � 2. Otherwise wehave the following equations.jXrj = krPr + qr ; jXr�1j = kr�1Pr�1 + qr�1:



4. Uniform Wiring Distribution 11
Figure 6: The 
ows of a grid cellSolving them, with kr � kr�1 = 2, we have qr � qr�1 = Pr�1 � 8kr�1 + 16. It can be shown thatthis is greater than 0 if R < �.On each ring, EVENPGA �rst make steps of k + 1 for q pins and then switch to steps of k. Ifqr > qr�1, we can divide the i-loop into three regions.Region I j � qr�1. In this region T ri = kr and Bri = kr�1, so Bri � T ri = 2.Region II qr�1 < j � qr. In this region T ri = kr and Bri = kr�1 � 1, so Bri � T ri = 1.Region III j > qr . In this region T ri = kr � 1 and Bri = kr+1 � 1, so Bri � T ri = 2.If kr�1� kr = 2, Bri �T ri � 1. Otherwise, solving the same set of equations with kr� kr�1 = 1,we have qr � qr�1 = 8(1� kr�1) � �1. Hence qr�1 > qr if kr�1 � kr = 1. We can also divide thei-loop into three regions.Region I j � qr. In this region T ri = kr and Bri = kr�1, so Bri � T ri = 1.Region II qr < j � qr�1. In this region T ri = kr � 1 and Bri = kr�1, so Bri � T ri = 2.Region III j > qr�1. In this region T ri = kr � 1 and Bri = kr�1 � 1, so Bri � T ri = 1.Therefore in any case, 1 � Bri � T ri � 2. 2From Lemma 5, we can bound the di�erence of neighboring side cuts. Let the 
ow through theleft and right side cut of the grid cell gri be Lri and Rri respectively. If the number of pins connectedwith a wire in the cell is a, we have the following equation.Lri +Bri = T ri +Rri + a) Rri � Lri + a = Bri � T ri (4:1)Figure 6 illustrates three types of cells based on the possible 
ows within the cell. We only



12 4. Uniform Wiring Distributionneed to investigate the change of cell type along the top center edge towards the top right cornerbecause the package is symmetrical.We start with the �rst cell in ring r. Cell gr1 can be any type. Note that Lr1 = 0. Since Br1 �T r1is at most 2, Rr1 = 0. a = 1 if Br1 � T r1 = 1 and a = 2 otherwise.Now consider the cell gri and gri+1. There are four cases.Case I gri is Type 3 and Bri+1 � T ri+1 = 1. Rri+1 � Lri+1 = 0 because a = 1 for a Type 3 cell. Thismeans that gri+1 is also a Type 3 cell.Case II gri is Type 3 and Bri+1 � T ri+1 = 2. Since the left neighbor of gri+1 is Type 3 and sinceLr1 = 0 and Lri does not change between neighboring Type 3 cells (Case I), Lri+1 = 0. Since griis Type 3, �ri+1 must be connected within gi+1r. If Rri+1 > 0, then �ri+2 will not be connectedbecause Bri+1 � T ri+1 � Connection of �ri+1 = 1. It is impossible to connect this pin in thenext cell, gri+2, because the wire leaving the right side cut will block any possible connectionin gri+2. Therefore Rri+1 must be 0. gri+1 is a Type 2 cell.Case III gri is Type 2. Lri+1 = 0 by Case II. Note that �ri+1 is connected within gri . Therefore gri+1can only be a Type 1 cell. Rri+1�Lri+1 = 1 if Bri+1�T ri+1 = 2 and Rri+1�Lri+1 = 0 otherwise.Case IV gri is Type 1. gri+1 must be a Type 1 cell because �ri+1 is already connected in gri .Rri+1 � Lri+1 = 1 if Bri+1 � T ri+1 = 2 and Rri+1 � Lri+1 = 0 otherwise.We summarize the cases into the following lemma.Lemma 6: The right neighbor of a cell can only be of certain type.1. The right neighbor of a Type 1 cell must be a Type 1 cell.2. The right neighbor of a Type 3 cell can be a Type 3 cell or a Type 2 cell.3. The right neighbor of a Type 2 cell is a Type 1 cell.Figure 5 shows the types of cells in the second ring. The chain breaks at the corner cell g313.Note that the Type 1 cells on the right edge are mirrored with respect to the one shown in Figure 6because the upper right edge is assigned in counterclockwise direction from the center of the rightedge (Figure 2). In general, if the �rst cell in the ring is Type 1, then all the cells up to top rightcorner is Type 1. If the �rst cell is Type 2, all the cells except the �rst is Type 1. If the �rst cellis Type 3, somewhere along the path the chain of Type 3 cells will end with a Type 2 cell (whereBri �T ri = 2) and then after the Type 2 cell everything is Type 1. The cells from the center of right



4. Uniform Wiring Distribution 13edge to the top right corner are all Type 1. The chain ends at a corner cell because the orientationof the cells changed.From all four cases the maximum di�erence between Rri and Lri is 1. Therefore we have thefollowing lemma.Lemma 7: The change of 
ow between two neighboring side cuts is at most 1.From the four cases we can see that only Type 1 cells can have Rri � Lri > 0. So the maximum
ow on side cuts from the top center to the top right corner is less than or equal to the number ofType 1 cells with Bri � T ri = 2. From the proof of Lemma 5, we know that Bri � T ri = 2 happensonly in:1. Region I and III if qr > qr�1 and2. Region II if qr�1 > qr.If qr > qr�1, the number of cells where Bri � T ri = 2 is equal to qr�1 + (kr�1 � qr) < kr�1.If qr�1 > qr , the number of cells is equal to qr�1 � qr < kr�1. Therefore we have the followingconclusion.Lemma 8: The maximum 
ow of a side cut between rings r and r + 1 is less than kr.Now we have rather tight bounds on the cuts in the rings and on all the side cuts. To showthat EVENPGA generates a even wiring distribution, we measure the densest cuts within the gridcells along a ring. We will show that the di�erence of the densest cuts will not di�er by more than1. Since the cuts within a ring has a uniform density (Lemma 3), the critical cut within a gridcell and its density is determined by the amount of side 
ow. There are only two competing cutswithin the cell that can be the critical cut of the cell|the bottom cut and the diagonal cut whichhave the larger 
ow. At the center of an edge, the side 
ow is 0. All wires enter the cell from thebottom cut and leave from the top cut. The critical cut is between two adjacent pins in the samering, i.e. (�r1; �r2). This cut is critical because at least kr� 1 and at most kr wires intersect it. At acorner cell, wires enter the cell from both the bottom and a side and leaves from the top and theother side. Any one side cut is not as critical because there is only at most kr wires intersect it.However, the diagonal cut, either (�ri ; prev(�ri+1)) or (�ri+1; prev(�ri )), become more critical becauseup to 2(kr � 1) wires may intersect it. These wires include the kr � 1 wires from the bottom cutand up to kr � 1 wires from a side cut (Lemma 8). The densities of the critical cuts of cells from



14 4. Uniform Wiring Distributionthe top center to the top right corner is bounded by the density of the critical cut of the cell atthe center and that at the corner because the amount of side 
ow increase monotonically fromcenter to corner. Therefore the maximum di�erence of densities of critical cuts across the ring isthe di�erence of densities of critical cuts between a center cell and a corner cell. The followinglemma summarizes the arguments.Lemma 9: The critical cuts of ring r is either the bottom cut (�r1; �r2) or the diagonals (�r+1Pr=8; prev(�r+1Pr=8+1))and (�r+1Pr=8+1; prev(�r+1Pr=8)).EVENPGA tries to decrease the density of the diagonal cut at the corners because a diagonalcut does not have twice the capacity of a side cut but may have up to 2(kr � 1) wires intersectingit. It put all the extra wires (there are q of them) at the center.The optimal wire distribution is such that the maximum di�erence of densities of the criticalcuts in all the cells among a ring is less than 1. Mathematically,�� = max8i (D(crit(gri )))�min8i (D(crit(gri ))) < 1D(c) is the density of a cut c and crit(g) is the critical cut of the grid cell g which is one of thecuts listed in Lemma 9.We will show that the maximum di�erence in a routing generated by EVENPGA is optimal ifkr < 3 + 2p2 = 5:83.Theorem 2 (Even Wiring): EVENPGA generates a topological routing such that� = max8i (D(crit(gri )))�min8i (D(crit(gri ))) < 1if kr < 3 + 2p2.Proof: By Lemma 9, � = jD(bottom cut) � D(diagonal)j. The density of the bottom cutof the cell in the center of the top edge is kr. The density of the diagonal cut at the top rightcorner cell is less than or equal to 2(kr � 1). Hence � = j2(kr � 1)=p2� krj. This is less than 1 if1 < kr < 3 + 2p2. 2Since kr > kr+1, Lemma 9 implies that the critical cuts of the whole package is on ring 1.



5. Wire Length Analysis 15Finally, we consider whether EVENPGA produces an optimal routing in the sense that themaximum density of any critical cut in any cell in a ring is the minimum. Consider the cuts aroundring 1. If we want to minimize the maximum density of the cuts in the ring, i.e. the density of cuts(�1i ; �1i+1) for all i, we must spread out the wires evenly among all cuts. Thus the minimum 
owfor these cuts must be bT=8Nc. With this strategy, the maximum density is dT=8Ne=1 = dT=8Ne.Lemma 3 showed that the maximum di�erence of 
ow of an MTR created by EVENPGA is lessthan or equal to 1. Since k1 = bT=8Nc, the MTR of EVENPGA exactly equals the minimum andmaximum 
ow requirements. Therefore we have following conclusion.Theorem 3: If the MTR created by EVENPGA is routable, the maximum density of the criticalcut is the minimum possible.5 Wire Length AnalysisIntuitively, the wire length generated by EVENPGA is short. MPA guarantees an MTR whichmeans no detours for any net. In this section, we will derive a bound for the wire length of all nets.First we �nd the bound on the number of side, bottom and top cuts of the grid cells a wire mayintersect. Let �(w) be the total number of side, bottom and top cuts of cells w intersected. Sinceno detouring is allowed by the de�nition of MTR, a connection w = (�ri ; p) must pass throughexactly one cut on ring 1, 2, : : : , r � 1. So �(w) � r � 1 for all w.Next we will show that a wire intersects at most one side cut between any pair of adjacent rings.To show that this is true, we need the following lemma:Lemma 10: A grid cell gri is always one of the three types as shown in Figure 6.Proof: From the four cases discussed before Lemma 6, the side 
ows of Type 2 and Type 3 cellsare always 0. For Type 1 cells, the di�erence of side 
ows may be 1. In Figure 6, the connection wireis between the 
ows F1 and F2 in a Type 1 cell. For a Type 1 cell gri where Bri �T ri = 2, Lri �Rri = 1so F1 � F3 = 1. Consider the right neighbor of this cell gri+1. It must be Type 1 (Lemma 6). IfBri+1 � T ri+1 = 2 in this cell too, Rri+1 � Li+ 1r = 1. So F1 = Rri+1 = 1+ Lri+1 = 1 +Rri = 2 + Lri .Therefore F1 monotonically increase down the chain of Type 1 cells. The question is: since the
ow of the bottom cut, Bri is either kr or kr � 1, will F1 be greater than or equal to Bri so thatat the end of a long chain of Type 1 cells the connecting wire comes from the left side cut instead
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Figure 7: A Wire Intersecting Two Cells Between a Pair of Ringsfrom the bottom cut? This will not happen because side 
ow is bounded by kr � 1 according toLemma 8. Therefore there is no other 
ow pattern except the three types shown in Figure 6. 2By Lemma 10, the wire that makes the connection in a cell gri always partitions the cell verticallyinto two disjoint parts. No wire can intersect both left and right side cuts across the cell. Thismeans that a wire cannot enter a cell from one side and leave the cell from the other. Hence anywire can only intersect at most one side cut between two bottom/top cuts. Therefore a wire mayintersect two cells between a pair of adjacent rings by intersecting a side cut (Type I Intersection)or it may intersect only one cell between a pair of adjacent rings by not intersecting any side cut(Type II Intersection). �(w) � 2(r � 1) where r = ringof(w). We de�ne �1(w) to be the numberof Type I intersections, i.e. the number of cells w intersect orthogonally. We de�ne �2(w) to bethe number of Type II intersections, i.e. the number of cells w intersect diagonally. We have�1(w) + 2�2(w) = �(w) and �1(w) + �2(w) = r � 1 where r = ringof(w). From this result we canstate the following:Lemma 11: The wire length of a wire w within the pin grid is less than or equal to �1(w) +p2�2(w).Proof: If a wire leaves a cell from the top cut, the length of the wire is equal to the height ofthe cell which is 1. If a wire w leaves a cell from one of the side cuts, it intersects two cells between



6. Implementation and Results 17a pair of rings. Figure 7 shows the wire in the cells. Since the ordering of the two cuts Bri andT ri+1 is the same, the maximum wire length of w is bounded by the diagonal length which is p2 inEuclidean metric. Therefore if the wire intersects �2(w) cells diagonally, the bound of wire lengthis p2�2(w)=2.Therefore if the wire w intersects �1(w) cells orthogonally and �2(w) cells diagonally, the wirelength of w is bounded by Gamma1(w) +p2�2(w)=2. 2Since the total number of cells a wire intersect does not exceed the number of rings beneaththe pin of the wire, 0 < �1(w) < r � 1. From the relation length(w) = �1(w) + p2�2(w)(Lemma 11) and the relation �1(w) + �2(w) = r � 1, the bounds of a wire can be derived tobe r � 1 < length(w) < p2(r� 1).We can do a better analysis by using the `Taxicab' wiring metric as discussed by Maley[1]. It issimilar to Manhattan wiring metric but the equidistance square is rotated 45 degrees. The distanceof a point (x; y) to origin is (jy+xj+ jy�xj)=2. According to the taxicab wiring metric, the lengthof a diagonal of a square is the same as the length of a side. Therefore the wire length in diagonallyintersected cells is equal to the wire length in orthogonally intersected cells and is equal to 1. Henceall wires connected to a given ring has length length(w) = 1 � �1(w) + 1 � �2(w), which is equal tor� 1. This is minimum because the minimum number of cells a wire intersects is also r� 1. Hencewe have the following theorem.Theorem 4 (MinimumWire Length): EVENPGA produces a topological routing where eachwire is of minimum length in taxicab wiring metric.6 Implementation and ResultsFigure 8 is a 600 pin PGA routed with EVENPGA in the Surf environment. EVENPGA wasimplemented as a router module of Surf[5]. Surf provides a powerful framework on which therouter can be easily built. Speci�cally, Surf has all the facilities to manipulate rubber-bands as arepresentation of topological routing. The design-rule enforcement algorithm[7, 9] and geometrictransformation algorithm[10, 6] automatically enforces design rules and transforms the topologicalrouting into a detail routing. The run-time of EVENPGA is negligible compared to the generation
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Figure 8: 600 Pin Single-Layer PGA and a Cornerof topological routing (MAKEMTR), and enforcing design rules.7 ConclusionThis paper studies the pin assignment and routability of a single-layer pin grid array. We haveshown that the key to good topological routing is a good pin assignment. This paper is the �rst toconsider both pin assignment and routing and investigated the relationship between the two. Weproposed an algorithm that created a good pin assignment that results in a uniformly distributedwires and bounded wire length.8 AcknowledgmentThe authors wish to thank David Staepelaere, Je�rey Su and Tal Dayan for their work onSurf. We also like to thank Joel Darnauer for helpful discussions on even wiring distribution. Weappreciate the help from Intel, Motorola, IBM and LSI Logic for providing examples and helpingus understanding the problem. Finally we would like to thank the National Science Foundation(NSF) for funding and support of this project.
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