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11. IntroductionLagrange and Newton bases for surfaces are very useful for interpolating point andderivative data. Here we shall establish that certain proper subclasses of these bivariatebases arise as L-bases - that is, bases that can be factored in a special way into products oflinear polynomials. Other important examples of bivariate L-bases include the B�ezier andmultinomial bases.We shall also introduce the power and Newton dual bases for surfaces and establish thatcertain subclasses of these bases arise as B-bases - that is, bases that are blending functionsfor B-patches. B-patches were �rst introduced by Seidel [Sei91] and later shown to agreewith multivariate B-splines on a certain region of the parameter domain [DMS92]. Thebasis functions for the B-patches, that is the B-bases, are known to be local multivariategeneralizations of univariate B-splines. Other important examples of bivariate B-bases againinclude the B�ezier and multinomial bases.A duality principle relating homogeneous L-bases and B-bases will be used to show thatthe Lagrange and generalized Newton bases are dual to the power and generalized Newtondual bases. This duality between homogeneous L-bases and B-bases can be derived using amultivariate polynomial identity [CM92] or by generalizing the de Boor-Fix dual functionalsfrom curves [dBF73] to surfaces [LG94d]. We demonstrate that this algebraic principleof duality between homogeneous L-bases and B-bases gives rise to a geometric principleof duality between geometric representations for a�ne L-bases and B-bases. Under thisgeometric principle of duality, lines representing L-bases correspond to points or vectorsrepresenting B-bases and concurrent lines map to collinear points and vice-versa. Thisinterpretation uni�es a wide variety of bivariate polynomial bases including Lagrange,Newton, power, B�ezier, multinomial, and Newton dual bases. This uni�cation yields anelegant change of basis algorithm between any two of these bases with computationalcomplexity O(n3). In particular, we shall present the change of basis algorithm betweenthe Lagrange and B�ezier bases.Our work easily generalizes to higher dimensions. Nevertheless, for the sake of simplicity,the results are presented and derived here only for surfaces.This paper is organized in the following manner. Section 2 reviews the de�nitionsof L-bases and B-bases. Section 3 focuses on duality: A geometric point-line duality isintroduced between representations for B-bases and L-bases, and an algebraic duality isformulated from a generalization of the de Boor-Fix formula from curves to surfaces. Manyinteresting examples of dual bases are provided in Section 4 including the general bivariateB�ezier and multinomial bases, special Lagrange and power bases, and certain Newton andNewton dual bases. In Section 5 we turn our attention to algebraic duality. Here we mentionvarious dual formulas and algorithms based on the algebraic duality between B-bases andL-bases that arises from the generalized de Boor-Fix formula. We focus, in particular, onchange of basis algorithms for L-bases, and we exhibit these procedures by converting abivariate polynomial from Lagrange to B�ezier form. We conclude in Section 6 with a shortsummary of our work and a brief discussion of future research.Throughout this paper, we shall adopt the following notation. A multi-index � isa 3-tuple of non-negative integers. If � = (�1; �2; �3), then j�j = �1 + �2 + �3 and�! = �1!�2!�3!. Other multi-indices will be denoted by � and . A unit multi-index ek is a



2 1. Introduction3-tuple with 1 in the k-th position and 0 everywhere else. Scalar indices will be denoted byi; j; k; l. Finally, given a homogeneous polynomial f(x; y; z), D�f denotes @j�jf@x�1@y�2@z�3 .



32. BasesHere we review the basic de�nitions and certain well-known properties of homogeneousand a�ne L-bases and B-bases. We also provide geometric interpretations for the algebraicentities associated with these bases.2.1 L-basesA collection L of 3 sets fL1;jg, fL2;jg, fL3;jg, j = 1; � � � ; n of linear homogeneous (resp.a�ne) polynomials in three (resp. two) variables is called a knot-net of homogeneous (resp.a�ne) polynomials if (L1;�1+1; L2;�2+1; L3;�3+1) are linearly (resp. a�nely) independentpolynomials for 0 � j�j � n � 1. A homogeneous (resp. a�ne) L-basis fln�; j�j = ng is acollection of �n+22 � trivariate (resp. bivariate) polynomials de�ned as follows:ln� = �1Yi=1L1i �2Yj=1L2j �3Yk=1L3k: (2.1)It is well-known that fln�; j�j = ng is, in fact, a homogeneous (resp. a�ne) basis for thespace of homogeneous (resp. a�ne) polynomials of degree n on R3 (resp. R2) [CM92].By associating the homogeneous polynomial L = ax+by+cz with the a�ne polynomialA = ax + by + c, one can de�ne a one-to-one correspondence between the knot-net ofhomogeneous and a�ne polynomials and between the homogeneous and a�ne L-bases.Due to this one-to-one correspondence between homogeneous and a�ne L-bases, in thefollowing discussions we shall refer to either the homogeneous or a�ne L-basis, whicheveris more convenient or intuitive in the particular context.Furthermore, we assign to each homogeneous (resp. a�ne) polynomial, the followinggeometric interpretation. The polynomial ax+ by + cz (resp. ax + by + c) corresponds tothe line in the projective (resp. a�ne) plane de�ned by the equation ax + by + cz = 0(resp. ax + by + c = 0). In particular, the polynomial cz (resp. c) corresponds to the lineat in�nity in the projective plane. Observe that this correspondence between the lines andpolynomials depends on the coordinate system and is unique only up to constant multiples.Nevertheless, we shall identify the polynomial with the line and vice-versa in the followingdiscussions, whenever the coordinate system and constant multiples are irrelevant for thecontext at hand. The advantage of this correspondence is to allow us to think of algebraicentities such as polynomials in terms of geometric entities such as lines.2.2 B-basesA collection U of 3 sets fu1;jg, fu2;jg, fu3;jg, j = 1; � � � ; n of vectors in R3 is called a knot-net of vectors if (u1;�1+1;u2;�2+1;u3;�3+1) are linearly independent vectors in R3 for 0 �j�j � n�1. One can write any vector u in R3 in terms of the basis (u1;�1+1;u2;�2+1;u3;�3+1)so that u = 3Xk=1 hk;�(u)uk;�k+1:Notice that hk;� are trivariate homogeneous polynomials.



4 2. BasesA homogeneous B-patch of degree n over the knot-net U is a trivariate homogeneouspolynomial B : R3 ! Rm de�ned by the following recurrence. The initial conditions for therecurrence are given by setting C0�(u) = C� �Rm for j�j = n. The recurrence is constructedfor j�j = n� l, l = 1; � � � ; n byCl�(u) = 3Xk=1 hk;�(u)Cl�1�+ek(u): (2.2)The homogeneous B-patch is then de�ned as B(u) = Cn0 (u). This algorithm is known asthe up recurrence; it generalizes to surfaces the de Boor evaluation algorithm for B-splinecurves [dB72]. A homogeneous B-basis fbn�; j�j = ng is a collection of �n+22 � homogeneoustrivariate polynomials from R3 to R de�ned by choosing the constants C��R as follows:C� = 1 if � = �= 0 otherwise:It has been shown that fbn�; j�j = ng is, in fact, a basis for the space of homogeneouspolynomials on R3 [Sei91]. Moreover, an arbitrary homogeneous B-patch of degree n canbe represented in terms of a homogeneous B-basis as follows:B(u) = Xj�j=nC�bn�(u):Associating a knot-net of points in R2 to a knot-net of vectors in R3 is more subtle thanassociating lines in the plane with the knot-nets of linear polynomials. First, with any pointv = (a; b) in R2, we associate the vector u = (a; b; 1) in R3, and with any vector v = (a; b)in R2, we associate the vector u = (a; b; 0) in R3.Now, we need to explore what we mean by the linear independence of points and vectorsin R2. Given any three points or vectors v1, v2 and v3 in R2, there are three distinct casesto consider:1. v1, v2 and v3 are all points. Three points in R2 are said to be linearly independenti� they are not collinear or alternatively i� they form a non-degenerate triangle.2. Two of the three, say v1 and v2, are points and the third one v3 is a vector. Theseentities are said to be linearly independent i� v1 6= v2 and the vector v3 does not liealong the straight line determined by the two points v1 and v2.3. Two of the three, say v1 and v2 are vectors and the third one v3 is a point. Theseentities are said to be linearly independent i� the vectors v1 and v2 are linearlyindependent in R2.The fourth and only remaining case when v1, v2, v3 are all vectors is not of interest to usbecause three vectors in R2 are always linearly dependent. It is easy to verify that with thecorrespondence between points and vectors of R2 and vectors of R3 de�ned above, threepoints or vectors in R2 are linearly independent i� the corresponding vectors in R3 arelinearly independent.There is an important alternative way of thinking about vectors in R2. A vector (a; b)in R2 can also be thought of as the point at in�nity in the direction of the vector (a; b),that is, the point at in�nity on the line: bx � ay = 0 in the projective plane. With thisinterpretation all three cases listed above can be combined into a single case where threepoints or vectors in R2 are linearly independent i� they are not collinear in the projective



2.2. B-bases 5plane. For this reason, instead of referring to v1, v2 and v3 as points or vectors in R2, weshall always refer to them as points with the understanding that a point includes a pointat in�nity, which can be thought of as a vector in R2. The distinction between points andvectors in R2 will be emphasized only when it is relevant to the context. It is remarkablethat this distinction vanishes after homogenization and that homogenization holds the keyto dealing with point and derivative information on equal footing.Now formally, the above correspondence associates points in the projective plane withvectors in R3, where a point (a; b) in the a�ne plane corresponds to the vector (a; b; 1) inR3, while a vector (a; b) in the a�ne plane or equivalently a point (a; b; 0) in the projectiveplane corresponds to the vector (a; b; 0) in R3.To describe the correspondence the other way around: to a vector u = (a; b; c) in R3, weshall associate the point v = (ac ; bc ) in the a�ne plane whenever c 6= 0 and the vector v =(a; b) in the a�ne plane whenever c = 0. Equivalently, we shall associate the point (a; b; c)in the projective plane to the vector (a; b; c) in R3. With this correspondence, it is againeasy to verify that three vectors in R3 are linearly independent i� the corresponding pointsor vectors in the a�ne plane are linearly independent. Observe that this correspondencebetween the knot-net of vectors in R3 and the knot-net of points in R2 is not surjective,but when restricted to the subset of vectors in R3 whose third component is either 1 or 0,it is one-to-one.



6 3. Duality between B-bases and L-bases3. Duality between B-bases and L-basesWe now describe the duality between B-bases and L-bases from two di�erent perspec-tives: algebraic and geometric.3.1 de Boor-Fix DualityGiven a knot-net of vectors ui;j in R3, consider the knot-net of linear homogeneouspolynomials Li;j de�ned by the correspondence:(a; b; c)$ (ax+ by + cz):Let ln� be the L-basis functions de�ned by the knot-net Li;j , and let bn� be the B-basisfunctions de�ned by the knot-net ui;j .The bases ln� and bn� are related algebraically through the following bilinear form, alsoreferred to as the bracket operator. Given any two homogeneous polynomials f; g : R3 ! Rof degree n, de�ne the bilinear form[f; g](u) = 1n! Xj�j=n D�f(u) �D�g(u)�! :Note that this bracket operator depends on n, and therefore, strictly speaking, the notation[f; g]n is more appropriate. However, we shall suppress the subscript n, whenever it doesnot cause any ambiguity.Theorem 1: Generalized de Boor-Fix formula [LG94d]: [ln�; bn�] = ���.Corollary 1: Cavaretta-Micchelli identity [CM92, LG95]: Pj�j=n ln�(x; y; z)bn�(a; b; c) =(ax+ by + cz)n:Because of Theorem 1, the L-basis ln� can be used to represent the dual functionals forthe B-basis bn� and vice-versa. We shall explore some of the consequences of this algebraicduality in Section 5.3.2 Point-Line DualityThe correspondence (a; b; c)$ ax+ by+ cz = (a; b; c) � (x; y; z) associates to each vectorin R3 a homogeneous trivariate polynomial. Earlier we saw that vectors in R3 correspond topoints in the projective plane (or points and vectors in the a�ne plane), and homogeneoustrivariate polynomials correspond to lines in the projective plane (or lines in the a�ne planeplus the line at in�nity). Thus B-bases are represented by knot-nets of points uij in theprojective plane and L-bases by knot-nets of lines Lij in the projective plane. We say thata B-basis and an L-basis are dual bases if their knot-nets are related by the correspondenceLij = uij � (x; y; z). Under this correspondence points in the projective plane are mappedto lines in the projective plane and collinear points are mapped to concurrent lines.Figure 3.1 summarizes the relationships between dual B-bases and L-bases, as well asthe algebra and geometry underlying their associated knot-nets. A double arrow denotesa 1-1 correspondence; a solid arrow indicates that the correspondence is many to one; anda dotted 1-sided arrow means that the correspondence is not onto. Figure 3.1 can be



3.2. Point-Line Duality 7
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Figure 3.1: Point-line dualitymade into a one-to-one correspondence between all the categories simply by restricting ourattention to those homogeneous or a�ne polynomials, or those vectors in R3, which havethird component either 1 or 0. This restriction amounts to losing the additional exibilityof considering bases which are the same up to constant multiples.



8 4. Examples of Dual bases4. Examples of Dual basesIn this section we discuss three sets of examples of dual B-bases and L-bases: dual B�ezierand multinomial bases, dual Lagrange and power bases, and dual Newton and Newton dualbases. We begin by showing how each of these bases can be realized as a B-basis or anL-basis by constructing the appropriate knot-nets. We go on to discuss the geometry ofthese knot-nets as well as the geometry of the knot-nets for the corresponding dual bases.Later we shall see that while the correspondence at the homogenized level is simpler andmore elegant algebraically, the point-line correspondence at the a�ne level provides bettergeometric insight.4.1 Duality between B�ezier and Multinomial BasesThis section explains how to realize any B�ezier or multinomial basis as a special caseof both B-bases and L-bases. We also introduce the hybrid B�ezierMultinomial (BM) basisin order to help investigate the duality between bivariate B�ezier and multinomial bases.We shall refer to a B-basis as a uniform B-basis if the knot-net uij satis�es the property:uij = ui for j = 1; � � � ; n. A uniform L-basis is de�ned in an analogous manner.4.1.1 B�ezier BasesFirst we describe how B�ezier bases can be realized as special cases of B-bases. Letu1 = (a1; b1; c1), u2 = (a2; b2; c2) and u3 = (a3; b3; c3) be three linearly independentvectors in R3 such that ci 6= 0 for i = 1; 2; 3. Choose the uniform knot-net of vectorsui;j = ui; 1 � j � n. Then the corresponding B-basis is a homogeneous B�ezier basis. Forexample, if u1 = (1; 0; 1), u2 = (0; 1; 1) and u3 = (0; 0; 1), then it is easy to verify that theB-basis functions are also the homogeneous B�ezier basis functions; that is,bn�(x; y; z) = n!�!x�1y�2(z � x� y)�3:More generally, if u1 = (a1; b1; 1), u2 = (a2; b2; 1) and u3 = (a3; b3; 1), then it can readilybe veri�ed that the B-basis functions are indeed homogeneous B�ezier basis functions; thatis, bn�(x; y; z) = n!�!h�11 h�22 h�33 zn;where (h1; h2; h3) are the barycentric coordinates of the point (xz ; yz ) with respect to thepoints (a1; b1), (a2; b2) and (a3; b3). Even more generally, if ci 6= 0 for i = 1; 2; 3 andu1 = (a1; b1; c1), u2 = (a2; b2; c2) and u3 = (a3; b3; c3), then it can be veri�ed that theB-basis functions are again homogeneous B�ezier basis functions; this time,bn�(x; y; z) = n!�! (h1c1 )�1(h2c2 )�2(h3c3 )�3zn;where (h1; h2; h3) are the barycentric coordinates of the point (xz ; yz ) with respect to thepoints (a1c1 ; b1c1 ), (a2c2 ; b2c2 ) and (a3c3 ; b3c3 ).



4.1. Duality between B�ezier and Multinomial Bases 9We can also realize B�ezier bases as special cases of L-bases. Let L1 = a1x+ b1y + c1z,L2 = a2x+ b2y + c2z and L3 = a3x+ b3y + c3z be three linearly independent polynomials.Furthermore, assume that the following three conditions are satis�ed: a1b2 � a2b1 6= 0,a2b3 � a3b2 6= 0, and a3b1 � a1b3 6= 0, that is, no two of the associated lines are parallel.Choose the uniform knot-net of polynomials Li;j = Li; 1 � j � n. Then the correspondingL-basis is a homogeneous B�ezier basis up to constant multiples. Indeed, one can easily verifythat up to constant multiples this L-basis is the homogenized B�ezier basis de�ned by thethree intersection points of L1, L2 and L3: u1 = (b2c3� b3c2; a3c2�a2c3; a2b3�a3b2), u2 =(b3c1� b1c3; a1c3�a3c1; a3b1�a1b3) and u3 = (b1c2� b2c1; a2c1�a1c2; a1b2�a2b1). In factwith this choice of points, the linear L-basis, which is the same as the barycentric coordinateswith respect to the triangle de�ned by these three points, is precisely a2b3�a3b2� L1(u),a3b1�a1b3� L2(u), and a1b2�a2b1� L3(u), (or alternatively, L1(u)L1(u1) , L2(u)L2(u2) , and L3(u)L3(u3)) where� is the determinant of the matrix de�ned by (a1; b1; c1), (a2; b2; c2) and (a3; b3; c3). Inparticular, L1 = x, L2 = y and L3 = �x � y + z, yields the standard homogeneous B�ezierbasis, up to constant multiples, that is, ln� = x�1y�2(z � x � y)�3 : In summary, given atriangle, we can use the vertices to de�ne the B�ezier basis { this is the B-basis point of viewor we can use the lines to de�ne the B�ezier basis { this is the L-basis point of view.4.1.2 Multinomial BasesThe multinomial basis is the standard generalization of the monomial basis to the mul-tivariate setting. For example, the basis 1, x, y, x2, xy and y2 is the bivariate multinomialbasis of degree 2. Sometimes the terminology Taylor basis or power basis is also used insteadof monomial or multinomial basis. However, we shall refer to this basis as the multinomialbasis in accordance with [GB92] and reserve the term power basis for the basis discussedlater in Section 4.2.2. The standard multinomial basis is de�ned by the origin (0; 0) andthe unit vectors (1; 0) and (0; 1). The most general multinomial basis is similarly de�nedby a point and two linearly independent vectors and is discussed below.We �rst describe how to realize multinomial bases as special cases of B-bases. Letu1 = (a1; b1; c1), u2 = (a2; b2; c2) and u3 = (a3; b3; c3) be three linearly independent vectorsin R3 such that c1 = c2 = 0. Observe that by the linear independence condition c3 6= 0.Choose the uniform knot-net of vectors ui;j = ui; 1 � j � n. Then the correspondingB-basis is a homogeneous multinomial basis up to constant multiples. In other words, themultinomial basis is de�ned by a point and two linearly independent vectors in R2. Thesimplest and most popular example of this construction is obtained by setting u1 = (1; 0; 0),u2 = (0; 1; 0) and u3 = (0; 0; 1). In this case it is easy to verify that the B-basis functionsare homogeneous multinomial basis functions, and thatbn�(x; y; z) = n!�!x�1y�2z�3 :If a homogeneous polynomial B(u) has coe�cients C� with respect to the standard multi-nomial B-basis, then B(u) = Xj�j=n n!�!C�x�1y�2z�3 ;and the coe�cients C� represent, up to constant multiples, the directional derivatives of thepolynomial B(u) at the point (0; 0) along the directions (1; 0) and (0; 1). The multinomialbasis de�ned by a point v1 and two vectors v2 and v3 is a generalization where the



10 4. Examples of Dual basescoe�cients of a polynomial with respect to this multinomial basis represent, up to constantmultiples, the directional derivatives of this polynomial at the point v1 along the directionsv2 and v3. As an example, if u1 = (1;�1; 0), u2 = (1; 1; 0) and u3 = (0; 0; 1), then itcan readily be veri�ed that the B-basis functions are again homogeneous multinomial basisfunctions; that is, bn�(x; y; z) = n!�! �x� y2 ��1 �x+ y2 ��2 z�3 ;where x+y2 and x�y2 represent the directions (1;�1) and (1; 1) along which the multinomialbasis is formed instead of along the usual directions (1; 0) and (0; 1). As another example,if u1 = (1; 0; 0), u2 = (0; 1; 0) and u3 = (a3; b3; 1), then it can readily be veri�ed that theB-basis functions are indeed homogeneous multinomial basis functions; this time,bn�(x; y; z) = n!�! (x� a3z)�1(y � b3z)�2z�3 ;where the multinomial basis is formed at (a3; b3) along the usual directions (1; 0) and (0; 1).More generally, if u1 = (a1; b1; 0), u2 = (a2; b2; 0) and u3 = (a3; b3; 1), then the homogeneousB-basis functions arebn�(x; y; z) = n!�! (b2(x� a3z)� a2(y � b3z)a1b2 � a2b1 )�1(�b1(x� a3z) + a1(y � b3z)a1b2 � a2b1 )�2z�3 ;where the multinomial basis is formed at (a3; b3) along the directions (a1; b1) and (a2; b2).We can also realize multinomial bases as special cases of L-bases. Let L1 = a1x +b1y + c1z, L2 = a2x + b2y + c2z and L3 = z be three linearly independent polynomials.Observe that by the linear independence condition, it follows that a1b2 � a2b1 6= 0; thusthe lines corresponding to L1 and L2 are not parallel. Choose the uniform knot-net ofpolynomials Li;j = Li; 1 � j � n. Then one can easily verify that this L-basis is indeed thehomogenized multinomial basis de�ned by the vectors ( b2k ;�a2k ) and (� b1k ; a1k ) and the point( b1c2�b2c1a1b2�a2b1 ; c1a2�c2a1a1b2�a2b1 ), where k = a1b2�a2b1. In particular choosing L1 = x, L2 = y and L3 =z, yields the standard homogeneous multinomial basis; that is ln� = x�1y�2z�3 :Also choosingL1 = x� az, L2 = y� bz and L3 = z, yields the homogeneous multinomial basis de�ned bythe point (a; b) and the unit vectors (1; 0) and (0; 1); that is ln� = (x� az)�1(y � bz)�2z�3 :4.1.3 Hybrid B�ezierMultinomial(BM) BasesWe now introduce hybrid B�ezierMultinomial (BM) bases in order to help describe theduality between B�ezier and multinomial bases in the next section 4.1.4. A B�ezier B-basis isde�ned by three points, while a multinomial B-basis is de�ned by a point and two vectors.A hybrid B�ezierMultinomial basis is de�ned by two points and a vector.Any hybrid BM basis can be realized as a B-basis as follows: Let u1 = (a1; b1; c1),u2 = (a2; b2; c2) and u3 = (a3; b3; c3) be three linearly independent vectors in R3 such thatc1 = 0, c2 6= 0 and c3 6= 0. Choose the uniform knot-net of vectors ui;j = ui; 1 � j � n. Thecorresponding B-basis will be referred to as a hybrid homogeneous BM basis. This basis isformed by choosing 2 points and a vector. For example, if u1 = (1; 0; 0), u2 = (0; 0; 1) andu3 = (0; 1; 1), then it can readily be veri�ed that the B-basis functions arebn�(x; y; z) = n!�!x�1(z � y)�2y�3 :



4.1. Duality between B�ezier and Multinomial Bases 11If a homogeneous polynomial B(u) has coe�cients C� with respect to this hybrid BMbasis, that is, B(u) = Xj�j=nC�n!�!x�1(z � y)�2y�3 ;the coe�cient Cn00 represents, up to constant multiples, the directional derivative of B(u)of order n in the direction of the vector (1; 0). The coe�cients Ck;n�k;0 (resp. Cl;0;n�l)represent, up to constant multiples, the directional derivatives of B(u) of order k in thedirection of the vector (1; 0) evaluated at the point (0; 0) (resp. the directional derivativesof B(u) of order l in the direction of the vector (1; 0) evaluated at the point (0; 1)). Thisinterpretation of the coe�cients of a polynomial can be extended easily to the case whenthe polynomial is expressed in a general hybrid BM basis de�ned by 2 points and a vector.We can also realize a hybrid BM basis as an L-basis. Let L1 = a1x + b1y + c1z,L2 = a2x+ b2y + c2z and L3 = a3x+ b3y + c3z be three linearly independent polynomials.Let us choose the knot-net of polynomials Li;j = Li; 1 � j � n. The restriction thata1b2 � a2b1 6= 0, a1b3 � a3b1 6= 0 and a2b3 � a3b2 6= 0 de�nes a homogeneous B�ezierbasis. The restriction that a3 = b3 = 0 de�nes a multinomial basis. It is easy to verifythat the only remaining restriction that maintains linear independence is a1b2 � a2b1 6= 0,a2b3�b2a3 6= 0 and a1b3�a3b1 = 0. Thus the lines corresponding to L1 and L3 are parallel.With this restriction the homogeneous L-basis is referred to as a hybrid BM basis. Thishybrid basis is de�ned by the two points: ( b1c2�b2c1a1b2�a2b1 ; a2c1�a1c2a1b2�a2b1 ), ( b2c3�b3c2a2b3�a3b2 ; a3c2�a2c3a2b3�a3b2 ) andthe vector ( �b1a1b2�a2b1 ; a1a1b2�a2b1 ) = ( �b3a3b2�a2b3 ; a3a3b2�a2b3 ) = ( b3c1�b1c3� ; a1c3�a3c1� ).4.1.4 DualityThis section investigates the duality between bivariate B�ezier and multinomial bases.First we describe the algebraic or de Boor-Fix duality between B�ezier and multinomialbases. Then we shall comment upon the geometric duality between these bases.A B�ezier B-basis is de�ned by (a1; b1; c1), (a2; b2; c2) and (a3; b3; c3) with ci 6= 0 fori = 1; 2; 3. The dual L-basis is therefore de�ned by L1 = a1x+b1y+c1z, L2 = a2x+b2y+c2z,and L3 = a3x + b3y + c3z. Depending upon whether zero, one or two of the three termsa1b2 � a2b1, a2b3 � a3b2, and a3b1 � a1b3 are zero, the dual L-basis can be a B�ezier basis, ahybrid BM basis, or a multinomial basis. More speci�cally, if all three terms are non-zero,then the dual L-basis is a B�ezier basis; if exactly two of these terms are non-zero, thenthe dual L-basis is a hybrid BM basis, and �nally if exactly one of these three terms isnon-zero, then the dual L-basis is a multinomial basis. Note that these distinctions are verysensitive to the choice of the coordinate system. The upper diagram of Figure 4.1 presentsthree B�ezier B-bases each de�ned by three points forming a right-angle triangle. The dualto these B�ezier B-bases are shown immediately below them in the lower part of Figure 4.1.Depending upon the choice of the coordinate system, the dual bases are a multinomial basis,a BM basis, and a B�ezier basis respectively.The duality situation is similar for a multinomial B-basis de�ned by (a1; b1; c1),(a2; b2; c2) and (a3; b3; c3) where exactly two of the three terms c1, c2 and c3 are zero.Again the dual L-basis can be either a B�ezier basis, a hybrid BM basis, or a multinomialbasis depending upon how many of the three terms a1b2�a2b1, a2b3�a3b2, and a3b1�a1b3vanish.
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x + 2y = 1Figure 4.1: Duality between B�ezier, multinomial and BM basesIn summary, a uniform B-basis { which can be either a B�ezier basis, a hybrid BM basis,or a multinomial basis - is dual to a uniform L-basis { which can also be either a B�ezierbasis, a hybrid BM basis, or a multinomial basis.These observations lead to the following geometric interpretation of duality betweenuniform B-bases and uniform L-bases. A B�ezier B-basis is de�ned by three points; a hybridBM B-basis by two points and a vector; a multinomial B-basis by a point and two vectors.Interpreting a vector as a point at in�nity, a uniform B-basis is de�ned by three points. Thedual L-basis is de�ned by three lines. Notice that the conditions aibj � ajbi = 0 correspondto parallel lines in a�ne space and the number of parallel lines leads to the distinctionbetween B�ezier, BM, and multinomial L-bases. A B�ezier L-basis is de�ned by three non-parallel lines in the a�ne plane. A BM L-basis is de�ned by three lines in the a�ne plane,exactly two of which are parallel. Finally, a multinomial L-basis is de�ned by the line atin�nity and two non-parallel lines in the a�ne plane. In projective space where there areno parallel lines, these distinctions disappear.Observe that it is not true that the three cases of uniform L-bases, namely B�ezier basis,hybrid BM basis and multinomial basis, arise by taking i lines in the a�ne plane and 3� ilines at in�nity for i = 3; 2; 1. In fact although there are many points at in�nity, thereis only one line at in�nity. The multinomial L-basis arises by choosing exactly one line atin�nity as described above. Alternatively, the three cases of uniform L-bases, namely B�ezierbasis, hybrid BM basis, and multinomial basis, arise by taking 3 lines such that i points ofintersection of these lines lie in the a�ne plane and 3� i points of intersection lie at in�nityfor i = 3; 2; 1 respectively.There is another potential source of confusion which is intriguing. Observe that theB�ezier basis de�ned by the three points v1, v2, and v3 is the same as, but not dualto, the L-basis de�ned by the three lines v1v2, v2v3, and v3v1. Such a duality, if it



4.2. Duality between Lagrange and Power Bases 13exists, should be referred to as self-duality. Under self-duality, the correspondence betweenvectors in R3 and the homogeneous polynomials on R3 would have to be de�ned from aset of 3-vectors to 3-polynomials and vice-versa rather than from a vector to a polynomial.In particular, a triple of vectors (a1; b1; c1), (a2; b2; c2) and (a3; b3; c3) would correspondto the three homogeneous polynomials (b2c3 � b3c2)x + (a3c2 � a2c3)y + (a2b3 � a3b2)z,(b3c1�b1c3)x+(a1c3�a3c1)y+(a3b1�a1b3)z, and (b1c2�b2c1)x+(a2c1�a1c2)y+(a1b2�a2b1)zunder this self-dual correspondence. It would be very interesting to explore this self-duality.However, the duality presented in this work is not self-duality.4.2 Duality between Lagrange and Power BasesThis section establishes that certain proper subclasses of bivariate Lagrange and powerbases can be realized respectively as special cases of L-bases and B-bases and then investi-gates the duality between these special bases.4.2.1 Lagrange BasesLet f fLijg, fL2jg, fL3jg, j = 1; � � � ; n g be a knot-net of homogeneous polynomials.Suppose that the homogeneous polynomials (L1;�1+1,L2;�2+1,L3;�3+1) are linearly depen-dent for j�j = n, 0 � �k � n � 1. The corresponding L-basis is then referred to as aLagrange L-basis. We shall soon see that these dependency conditions give rise to a point-line con�guration with �n+22 � points such that each of the �n+22 � L-basis functions vanishesat all the points except one, which justi�es the terminology Lagrange L-basis.To observe this, let us analyze the dependency conditions. Overloading the notation,let Lij also denote the lines in the projective plane de�ned by the equations: Lij = 0.The linear dependency condition on the polynomials Li;�i+1 means that the projective linesLi;�i+1 are concurrent for j�j = n, 0 � �k � n � 1. Let v� = T3k=1 Lk;�k+1 for j�j = n,0 � �k � n� 1. These intersections give rise to �n+22 �� 3 points corresponding to �n+22 �� 3dependency conditions. To these points, we shall add three more points: vn00 = L31TL21,v0n0 = L11TL31, and v00n = L11TL21. It is easy to verify using Equation 2.1 thatln�(v�) = ln�(v�)���. Therefore, f ln�ln�(v�)g forms a Lagrange basis.Now we are going to introduce certain interesting point-line con�gurations that give riseto bivariate Lagrange L-bases. To this extent, let us investigate the dependency conditionsmore closely in the a�ne plane. Let Pij be the a�ne polynomials corresponding to thehomogeneous polynomials Lij . Overloading the notation, let Pij also denote the lines inthe a�ne plane de�ned by the equations: Pij = 0. The linear dependency condition on theknot-net of polynomials corresponds to one of the following geometric conditions:1. The lines (P1;�1+1, P2;�2+1 and P3;�3+1) are distinct and concurrent; that is, they allpass through one common point v� = T3k=1 Pk;�k+1 when j�j = n.2. The lines (P1;�1+1, P2;�2+1 and P3;�3+1) are distinct and parallel. Then f L1;�1+1,L2;�2+1, L1;�1+1 g all pass through a common point at in�nity. For example, ifL1;�1+1 = k1ax + k1by + c1z, L2;�2+1 = k2ax + k2by + c2z and L1;�1+1 = k3ax +k3by + c3z, then the common point v� is (�kb; ka; 0) for some k 6= 0.3. Only two of the three lines (P1;�1+1, P2;�2+1 and P3;�3+1) are distinct. Let v� be thepoint of intersection of the these two lines. If the lines are parallel, then as in case 2,the point of intersection lies at in�nity.
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Figure 4.2: Geometric mesh of order 3 for Lagrange L-basis
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 Figure 4.5: Natural lattice of order 3�1 must be zero. Therefore, if all three lines are the same, then it must be the case that�i = 0 for i = 1; 2; 3; that is n = 0, in which case there is only one L-basis function. Thisargument also shows that the condition that two lines are the same is very restrictive andcan happen only if one of the three �i = 0. Such cases, however, do arise in practice as weshall see below.If an a�ne polynomial B(v of degree n is represented with respect to an a�ne LagrangeL� basis, that is, B(v) = Xj�j=nC�Pn� (v);the coe�cients C� represent, up to constant multiples, the value of the polynomial B(v)at v�, whenever v� is not at in�nity. More precisely, B(v�) = C�Pn� (v�). When v� isat in�nity, as in the cases 2, 3 and 4 above, it can be veri�ed easily, that the coe�cientsC� represent, up to constant multiples, the directional derivative of B(v) of order n in thedirection of one of the parallel lines, that give rise to v� as the common point of intersection.Observe that since B(v) is a polynomial of degree n, its directional derivative of order n isa constant and therefore, it does not matter where it is evaluated.Now we present certain point-line con�gurations that give rise to Lagrange L-bases.Figure 4.2 shows a con�guration of lines in R2 for which the dependency conditions aresatis�ed and all the lines are distinct and concurrent. The con�guration of lines in Figure 4.2also satisfy the linear independence condition for (L1;�1+1; L2;�2+1; L3;�3+1), 0 � j�j � n�1,which is required to de�ne a knot-net of polynomials. Figure 4.2 is an example of a principallattice or geometric mesh [CY77] of order n, which can be described by three sets of n lines
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Figure 4.6: Dual geometric mesh of order 3 for power B-basisffL1ig, fL2jg, fL3kg, 1 � i; j; k � ng such that each set of three lines fL1;i+1; L2;j+1; L3;k+1,i + j + k = ng intersect at exactly one common point vijk. It is clear from the aboveconstruction that every geometric mesh gives rise to a Lagrange L-basis.Figure 4.3 shows some con�gurations of 6 lines and 6 points in the projective plane thatgive rise to a Lagrange L-basis. These are examples of geometric meshes of order 2. Theright diagram of Figure 4.3 shows a con�guration where one of the points is at in�nity.Figure 4.4 shows some con�gurations of 4 lines and 6 points in the projective plane thatgive rise to a Lagrange L-basis. In this case, two of the lines in every dependency conditionare the same. These are examples of natural lattices [CY77] of order n, which are de�ned byn+ 2 lines in the projective plane such that the �n+22 � intersection points of these lines areall distinct. The left, middle and right diagrams of Figure 4.4 show con�gurations where0, 1 and 3 points lie at in�nity. Since every natural lattice of order n generates a Lagrangebasis of degree n, it is natural to ask whether every natural lattice of order n gives rise to aLagrange L-basis of degree n. Unfortunately, the answer is no. Figure 4.5 shows a naturallattice of order 3. It is easy to verify that it is not possible to realize the Lagrange basiscorresponding to this con�guration as an L-basis. Thus the Lagrange L-bases form a propersubset of the set of all bivariate Lagrange bases.4.2.2 Power BasesLet f u1j , u2j , u3j , j = 1; � � � ; n g be a knot-net of vectors. Suppose the vectors(u1;�1+1;u2;�2+1;u3;�3+1) are linearly dependent for j�j = n, 0 � �k � n � 1. Thecorresponding B-basis is referred to as a power basis because, as we shall soon see, upto constant multiples every basis function is an n-th power of a linear polynomial.Let vk;�k+1 represent the points in the projective plane corresponding to the vectorsuk;�k+1. Then the linear dependency condition on the vectors uk;�k+1 means that thecorresponding points vk;�k+1 are collinear in the projective plane. Let Q� be the linede�ned by the three collinear points vk;�k+1 for j�j = n, 0 � �k � n� 1 and let q� = 0 bethe equation of the line Q�. This construction gives rise to �n+22 �� 3 lines corresponding to
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18 4. Examples of Dual basesthe �n+22 �� 3 dependency conditions. Now let us add 3 more lines. De�ne Qn00, Q0n0, andQ00n to be the lines passing through the points v21v31, v11v31, and v11v21 respectively, andlet qn00, q0n0, and q00n be the equations of these lines. In the Appendix we give an inductiveproof that the B-basis functions bn� for the knot-net uij are equal to (q�)n up to constantmultiples. In the next section, we shall give a much simpler proof of this fact based on theduality between the Lagrange and power bases.Figure 4.6 shows two con�guration of points in R2 for which the dependency con-ditions are satis�ed because the points vk;�k+1 for j�j = n are collinear. The con-�guration of points in Figure 4.6 also satisfy the linear independence condition foruk;�k+1; k = 1; 2; 3; j�j � n� 1, which is required to de�ne a knot-net of vectors. This �gureis an example of a dual principal lattice or dual geometric mesh of order n, which is de�nedby 3n distinct points fv1j, v2j , v3j ; j = 1; � � � ; ng such that each set of three points fv1;i+1,v2;j+1, v3;k+1, i+j+k = ng is collinear and de�nes the line Qijk. The seven lines de�ned bythe dependency conditions are shown as dark lines while the remaining three add-on linesare shown as dotted lines. It is clear from the above construction that every dual geometricmesh gives rise to a power B-basis.Figure 4.7 shows examples of point-line con�gurations with 6 points and 6 lines thatgive rise to power B-bases. These are examples of dual geometric meshes of order 2. Theright diagram of Figure 4.7 shows a con�guration where one of the points lie at in�nity andthis is represented by a vector in the a�ne plane.Figure 4.8 shows some con�gurations of 6 lines and 4 points in the projective plane thatgive rise to a power B-basis. These are examples of dual natural lattices of order 2. A dualnatural lattice of order n is de�ned by n+ 2 distinct points and �n+22 � distinct lines joiningthese points. The left, middle and right diagrams of Figure 4.8 show con�gurations of pointsand lines, where 0, 1 and 2 points lie at in�nity and these are represented by vectors in thea�ne plane. Since every dual natural lattice of order n generates a power basis of degree n,it is natural to ask whether every dual natural lattice of order n gives rise to a power B-basisof degree n. Unfortunately, the answer is no. It is easy to verify by exhaustive enumerationthat the con�guration of points and lines corresponding to the dual natural lattice of order3 shown in Figure 4.9 cannot be realized as a B-basis. A simpler proof based on dualitywill be given at the end of next section 4.2.3. Thus the power B-bases form a proper subsetof the set of all bivariate power bases.4.2.3 DualityLet a Lagrange L-basis be de�ned by a knot-net L of polynomials fLij ; L2j; L3j; j =1; � � � ; ng as in Section 4.2.1, and let the �n+22 � points corresponding to this Lagrange L-basis be denoted by v�. Let the dual B-basis be de�ned by the knot-net U of vectorsfuij ;u2j;u3j; j = 1; � � � ; ng under the knot net correspondence (a; b; c) $ ax + by + czde�ned in Section 3.1 so that Lij(u) = u �uij . It is clear that both the linear independenceconditions and the linear dependence conditions are preserved under this correspondence.In particular, the linear dependency condition or the collinearity condition on a set of threepoints used for de�ning B-bases corresponds to the linear dependency condition or theconcurrency condition on the corresponding set of three lines used for de�ning L-bases.Therefore, the dual B-basis is a power basis as de�ned in Section 4.2.2.The Cavaretta-Micchelli identity mentioned in Section 3.1 provides a very simple proofthat the B-basis dual to a Lagrange L-basis is a power basis, that is, that every element



4.3. Duality between Newton and Newton Dual Bases 19of the B-basis is a n-th power of a linear polynomial. Indeed given a Lagrange L-basis, itwas veri�ed in Section 4.2.1 that the L-basis functions fln�g satisfy the relation ln�(v�) =ln�(v�)���. Substituting this identity into the Cavaretta-Micchelli identity, we obtain bn�(u)= (v� �u)nln�(v�) , which establishes that up to constant multiples each element of the dual B-basisis an n-th power of a linear polynomial. Using the de�nition of the L-basis functions givenin Equation 2.1 together with the fact that by duality q� = v� � u, we can also rewrite thepower B-basis functions as bn�(u) = (q�)nQj=1;���;�i;i=1;2;3 q�(uij) :Notice that the Cavaretta-Micchelli identity and the generalized de Boor-Fix formulahold for all bivariate Lagrange and power bases, even though these bases may not be L-bases and B-bases respectively. The argument in the preceding paragraph can be used toestablish this general duality between bivariate Lagrange and power bases.To appreciate the geometry of this correspondence, notice that a Lagrange L-basis ofdegree n is de�ned, in general, by 3n lines while a power B-basis of degree n is de�ned, ingeneral, by 3n points. However, these lines (in case of the Lagrange L-basis) and points(in case of the power B-basis) need not be distinct. Such is the case, for example, withthe natural lattice and dual natural lattice con�gurations, where certain lines in case of theLagrange L-basis and certain points in the case of power B-basis do coincide.The geometric mesh con�guration of order 3 for a Lagrange L-basis depicted in Figure4.2 consisting of 9 distinct lines and 10 distinct points is dual to the dual geometric meshcon�guration of order 3 for a power B-basis depicted in Figure 4.6 consisting of 9 distinctpoints and 10 distinct lines.Similarly, the geometric mesh con�guration of order 2 for a Lagrange L-basis depictedin Figure 4.4 consisting of 6 distinct lines and 6 distinct points is dual to the dual geometricmesh con�guration of order 2 for a power B-basis depicted in Figure 4.8 consisting of 6distinct points and 6 distinct lines. The distinction between di�erent cases as to whethercertain points lie at in�nity or whether certain lines are parallel disappears in projectivespace. Figure 4.4 and Figure 4.8 are self-dual. is self-dual. In a self-dual con�guration, thenumber of lines must be equal to the number of points. Since 3n = �n+22 � only for n = 1; 2,these are the only situations where the geometric mesh con�guration is self-dual. Figure4.6 shows the dual geometric mesh for n = 3 which is not self-dual.The natural lattice con�guration of order 2 depicted in Figure 4.3 consisting of 4 linesand 6 points for the Lagrange L-basis is dual to the dual natural lattice con�guration of 6lines and 4 points for the power B-basis depicted in Figure 4.7. Finally, the natural latticecon�guration depicted in Figure 4.5 consisting of 5 lines and 10 points cannot be realized asa Lagrange L-basis. Therefore by duality the dual natural lattice con�guration of 10 linesand 5 points depicted in Figure 4.9 cannot be realized as a power B-basis.4.3 Duality between Newton and Newton Dual BasesThis section establishes that certain subclasses of bivariate Newton bases can be realizedas special cases of L-bases. We then introduce the Newton dual bases and investigate theduality between the Newton and Newton dual bases.



20 4. Examples of Dual bases4.3.1 Newton BasesSuppose the following restriction is imposed on the knot-net L of homogeneous poly-nomials: L1i = a1ix + b1iy + c1iz, L2i = a2ix + b2iy + c2iz, and L3i = a3x + b3y + c3z.In other words, one of the three sets of knots consists of one and the same polynomial.The corresponding L-basis will be referred to as the generalized bivariate homogeneousNewton L-basis. We shall be interested here in the special case where L3i = z; the corre-sponding L-basis will be referred to as the bivariate homogeneous Newton L-basis. Observethat the multinomial basis is a special case of Newton basis. By choosing the polynomi-als L1i = x � aiz, L2i = y � bjz, L3i = z, and dehomogenizing, we obtain the followingcorresponding a�ne Newton basis:ln� = �1Yi=1(x� ai) �2Yj=1(y � bj):For example when n = 2 this construction yields the basis functions: 1, (x � a1), (x �a1)(x � a2), (y � b1), (y � b1)(y � b2) and (x � a1)(y � b1). Therefore, the a�ne Newtonbasis for surfaces de�ned here is a generalization of the a�ne Newton basis for curves.To justify the terminology Newton basis, we are going to establish that these Newton L-bases are special cases of the bivariate Newton bases de�ned by Gasca [Gas90]. Gasca startswith a particular set of lines and points and associates a Newton basis to this point-linecon�guration. In contrast, our construction proceeds in the opposite direction.We have other stronger incentives for establishing this connection. We plan to constructcertain point-line con�gurations and associated point and derivative interpolation problems,which give rise to Newton L-bases in a natural way. To be more precise: to each NewtonL-basis, we wish to associate an interpolation problem for point and derivative data withthe following properties: (i) there exists a unique solution to the general interpolationproblem and (ii) the coe�cients a� of the interpolant L(u) =Pj�j=n a�ln� expressed in theNewton L-basis are the solutions of a lower triangular system of linear equations. Thistask is complicated, however, by the fact that given a suitable point-line con�guration, theassociated point and derivative interpolation problem is not unique. This non-uniqueness isintrinsic to the bivariate Newton basis and is true as well for the univariate Newton basis.To gain some insight into this important point, we explain the nature and cause ofnon-uniqueness in the case of curves by presenting a simple example. To the univariatea�ne Newton basis of degree 2 given by 1, (x � a1) and (x � a1)(x � a2), a1 6= a2, onecan associate a point interpolation problem at a1 and a2, but for the third interpolationcondition one can choose any arbitrary point a3 or in fact even the derivative at a2. Indeedif f(x) = c0 + c1(x� a1) + c2(x� a1)(x� a2), then c0 = f(a1), and c1 = f [a2; a1], wheref [a2; a1] = f(a2)� f(a1)(a2 � a1)is the usual divided di�erence. More interestingly, c2 = f [a3; a2; a1] wheref [a3; a2; a1] = f [a3; a2]� f [a2; a1](a3 � a1) if a3 6= a2;f [a2; a2; a1] = f 0(a2)� f [a2; a1](a2 � a1) if a3 = a2;



4.3. Duality between Newton and Newton Dual Bases 21where f 0(a2) denotes the �rst derivative of f at a2. Similarly, if the Newton basis is 1,(x� a1) and (x� a1)2, then c0 = f(a1), c2 = f 0(a1), and c2 = f [a2; a1; a1], where a2 is anyarbitrary point including a1.This freedom in choosing the interpolation problem carries over to the bivariate setting.Although Gasca [Gas90] observes that there is some freedom, his construction does notclarify the role of freedom in choosing the lines and points. For our purposes, it is essentialto explore the nature of this non-uniqueness in order to specify certain interesting point-linecon�gurations associated with Newton L-bases.To associate an interpolation problem with a Newton L-basis, we �rst introduce a set ofpoints. To this purpose, observe that the linear independence conditions on the knot-netof polynomials imply that the lines L1;�1+1 and L2;�2+1 are distinct and non-parallel for0 � �1+�2 � n�1. Let v�1;�2;�3 = L1;�1+1\L2;�2+1 for 0 � �1+�2 � n�1. These pointscould be distinct or the same depending upon the lines themselves, but, in any event we get12n(n + 1) points counted with appropriate multiplicity. Next we introduce an additionaln + 1 points for a total of �n+22 � points again counted with appropriate multiplicity. Thechoice of the remaining n + 1 points v�1;�2;0 is more subtle and incorporates the freedomof choice discussed in the previous paragraph. Choose vn00 and v0n0 to be arbitrary pointson the line L21 and L11 respectively. For the remaining points with �1 + �2 = n and0 � �1; �2 � n � 1, there are three types of choices: (i) symmetric case: let v�1;�2;0 =L1;�1+1\L2;�2+1 whenever L1;�1+1 and L2;�2+1 are distinct; otherwise, if they are the sameline, choose any point on this line, (ii) non-symmetric case 1: let v�1;�2;0 be any point onthe line L1;�1+1 and (iii) non-symmetric case 2: let v�1;�2;0 be any point on the line L2;�1+1.This freedom in choosing the (n + 1) points can also be described by selecting additionallines F1; � � � ; Fn+1, Fi 6= L1;i so that v�1;�2;0 = L1;�1+1 \F�1+1 or alternatively by selectingadditional lines F1; � � � ; Fn+1, Fj 6= L2;j so that v�1;�2;0 = L2;�2+1 \ F�2+1. Thus we canassociate a total of �n+22 � points counted with appropriate multiplicity to a Newton L-basisde�ned by 2n lines. This point-line con�guration associated with a Newton L-basis is asubclass of the point-line con�gurations that form the starting point for the constructionof Newton bases de�ned by Gasca [Gas90]. With this associated point-line con�guration,it can be readily veri�ed that the Newton L-bases de�ned here can be realized as specialcases of the bivariate Newton bases de�ned by Gasca.Now we are in a position to describe the interpolation system associated with this New-ton L-basis. Our procedure is exactly the same as in [Gas90]. Let s� be the numberof functions in the set fL1;1; � � � ; L1;�1+1; L2;1; � � � ; L2;�2+1g that vanish at v� and coin-cide with L1;�1+1 up to constant factors. Let t� be the number of functions in the setfL1;1; � � � ; L1;�1+1; L2;1; � � � ; L2;�2+1g that vanish at v� and do not coincide with L1;�1+1 upto constant factors. The associated interpolation problem is to interpolate the followingpoint and derivative information: @s�+t�f(v�)@s�L1;�1+1@t�L2;�2+1 ;where @f@L = b@f@x � a@f@y , when L = ax+ by + c.It is not too di�cult to prove that this interpolation problem has a unique solution andthat the interpolant expressed in terms of the Newton L-basis can be found by solving alower triangular system of linear equations. The proof of this fact is also described by Gasca[Gas90] and is therefore omitted here. In fact, the coe�cients of the solution can be inter-preted as the generalization of divided di�erences to higher dimensions. Further discussion
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Figure 4.10: Point interpolation using Newton L-basis
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Figure 4.11: Hermite interpolation using Newton L-basisof the extremely important role the Newton bases play in multivariate interpolation andapproximation can be found in [Gas90].The con�gurations of lines and points corresponding to Newton L-bases are very exible.By choosing two sets of parallel lines L1;i and L2;j as shown in Figure 4.10, selecting thesymmetric choice of the associated interpolation problem, and picking the points v300 andv030 as indicated in Figure 4.10, it is clear that every geometric mesh gives rise to a NewtonL-basis. Recall from Section 4.2 (Figure 4.2) that the same con�guration also gives rise to



4.3. Duality between Newton and Newton Dual Bases 23a Lagrange L-basis.More interestingly, every natural lattice of order n also gives rise to a Newton L-basis.Figure 4.5 shows a natural lattice of order 3. This lattice gives rise to the Newton L-basis bychoosing L1;i = Li for 1 � i � n, L2;j = Ln+3�j , 1 � j � n, selecting the symmetric choice,and picking the point v0n0 on L1 as L1 \ L2 and the point vn00 on Ln+2 as Ln+2 \ Ln+1.It is not yet clear whether or not every con�guration of lines and points that gives riseto a Lagrange L-basis also gives rise to a Newton L-basis. More interestingly, one can askwhether a con�guration of lines and points satisfying the GC condition or HGC condition[Gas90] always gives rise to a Newton L-basis. The HGC conditions, in particular, generalizethe Hermite interpolation conditions to higher dimensions.A popular Hermite problem corresponding to point interpolation at four points v1, v2,v3, v4, and the two �rst order partial derivatives at the three points v1, v2, v3 is depictedin Figure 4.11. Even for this simple Hermite case, it is non-trivial to demonstrate that itcan be realized as a Newton L-basis. The choice L11 = L13, L12 = L23 as shown in Figure4.11 yields the Hermite interpolation problem by picking the following lines F1 = L21,F2 = L21, F3 = M and F4 = L12, considering the intersection points Fi \ L1i for i = 1; 2; 3and the intersection point F4 with L21. This is a non-symmetric choice. By enumeratingall the possibilities, one can verify that it is not possible to generate a Newton L-basiscorresponding to this interpolation problem with any symmetric choice.4.3.2 Newton Dual BasesThe homogeneous generalized Newton Dual basis is de�ned as the B-basis functionsobtained by imposing the following restrictions on the knot-net U of vectors: u1i =(a1i; b1i; c1i), u2i = (a2i; b2i; c2i), and u3i = (a3; b3; c3). In other words, the generalizedNewton dual basis is obtained by restricting one of the three sets of vectors in the knot-netto contain exactly one element. The homogeneous Newton dual basis for surfaces de�nedhere is a generalization of the Newton dual basis for curves [BG93]. Observe that theB�ezier, multinomial, and BM B-bases are special cases of the Newton dual basis. Anotherimportant subclass of the generalized Newton dual basis is obtained by imposing the fol-lowing restrictions on the knot-net: u1i = (a1i; b2i; 1), u2i = (1; 0; 0), and u3i = (0; 1; 0).One interesting and useful property of this Newton dual basis is that in the up recurrencerelation for the B-basis de�ned in Section 2.2 by Equation 2.2, the labels hk;�(u) do notinvolve any divisions. Indeed, if u = (x; y; z), then h1;� = z, h2;�(u) = x � a1;�1+1z,h3;�(u) = y� b1;�1+1z. This property of the Newton dual basis can be applied to minimizedivisions and simplify computations in change of basis algorithms.For the sake of completeness, we describe an explicit expression for these special Newtondual basis functions. Let Li = y � b1iz and Mi = x� a1iz. Then the dual basis functionsbn� are given by: bn� =XL�211 � � �L�2;�1+1�1+1 M�311 � � �M�3;�1+1�1+1 z�1 ;where the sum is taken over all � = (�1; �2; �3) with j�j = n and �2 = �21 + � � �+ �2;�1+1,�3 = �31+ � � �+�3;�1+1, and �ij � 0. The derivation is straightforward from the de�nition,although the bookkeeping is somewhat tedious.



24 4. Examples of Dual bases4.3.3 DualityUnder the knot-net correspondence it is clear from the construction that the generalizedNewton basis is dual to the generalized Newton dual basis. However it is not true thatthe Newton basis is dual to the Newton dual basis. Nevertheless, it is these specialcases of the Newton basis and Newton dual basis that turn out to be the most usefulin practical situations and hence the terminology. The duality here is similar to the dualitywe encountered for uniform bases, where a uniform L-basis is dual to a uniform B-basis,although a B�ezier basis could be dual to either a B�ezier, a multinomial, or a hybrid BMbasis. Similarly, the generalized Newton basis is dual to a generalized Newton dual basis,although a Newton basis itself may not necessarily be dual to a Newton dual basis.



255. Applications of DualityThere are many applications of duality between B-bases and L-bases. We can usegeometric duality to show that a particular point-line con�guration can (cannot) representthe knot-net for a B-basis (L-basis) by showing that the dual con�guration can (cannot)represent the knot-net for the dual L-basis (B-basis). We used this argument in Section4.2.3 to conclude that the dual natural lattice of order 3 (Figure 4.9) cannot represent theknot-net of a power B-basis because we already knew that the natural lattice of order 3(Figure 4.5) does not represent the knot-net of any Lagrange L-basis.We can also use algebraic or de Boor-Fix duality to great e�ect. By applying algebraicduality, we can show that many formulas and algorithms for B-bases map to dual formulasand algorithms for L-bases and vice-versa. Thus once we develop a formula or algorithmfor one type of basis we can often obtain, almost for free, a dual formula or algorithm forthe dual basis. Formulas and algorithms for change of bases [LG95], evaluation [LG94c],di�erentiation [LG94b], degree elevation [LG94b], and subdivision [LG94a] each have dualanalogues for B-bases and L-bases. This observation allows us to develop a formula oralgorithm for whichever scheme is easier to analyze and then map this to a dual formula oralgorithm for the dual scheme.A general change of basis algorithm for B-bases is easy to derive via blossoming [LG95].By de Boor-Fix duality, we can use this procedure to construct dual change of basisalgorithm for L-bases [LG95]. As an application of the constructions in this paper, inthe next section we apply this algorithm to convert a bivariate polynomial from a Lagrangerepresentation to a B�ezier representation. We also observe that the reverse transformationfrom B�ezier to Lagrange form yields a fast evaluation algorithm for B�ezier patches andhence as well for arbitrary B-patches and L-patches.
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_Figure 5.2: Change of basis from Lagrange L-basis to B�ezier L-basis5.1 A Change of Basis Algorithm for L-basesThe computational complexity of general change of basis algorithms from one bivariatepolynomial basis of degree n to another bivariate polynomial basis of degree n using matrixmultiplication is, in general, O(n4). Using blossoming and duality, we have derived changeof basis algorithms with computational complexity O(n3) between any two B-bases, anytwo L-bases, and between any B-basis and any L-basis [LG95]. In this work we havedemonstrated that certain bivariate Lagrange bases and Newton bases can be realized asL-bases and that certain power bases and Newton dual bases can be realized as B-bases.As a consequence, these change of basis algorithms can now be applied to convert betweenB�ezier, multinomial, Lagrange, power, Newton, and Newton dual bases.We shall now describe a speci�c example of a change of basis algorithm from a LagrangeL-basis to a B�ezier L-basis to illustrate the general procedure.Suppose we are given the coe�cients R� of a quadratic polynomial L with respect tothe L-basis fln�g de�ned by the knot-net L = ffL1jg; fL2jg; fL3jg; j = 1; 2g, whereL11 = x ;L12 = x� 12 ;L21 = y ;L22 = y � 12 ;L31 = 1� x� y ;L32 = 12 � x� y .The Lagrange L-basis is then given by l2200 = x(x� 12), l2020 = y(y� 12), l2002 = (1�x�y)(12�x� y), l2110 = xy, l2101 = x(1� x� y), and l2011 = y(1� x� y). The point-line con�gurationassociated with this Lagrange L-basis is shown in the left diagram of Figure 4.3.We would like to compute the coe�cients U� of this polynomial L with respect to theB�ezier L-basis fpn�g de�ned by another knot-net M = ffM1jg; fM2jg; fM3jg; j = 1; 2g,whereM11 = x ; M12 = x ;M21 = y ; M22 = y ;M31 = 1� x� y ; M32 = 1� x� y .The B�ezier L-basis is then given by p2200 = x2, p2020 = y2, p2002 = (1 � x � y)2, p2110 = xy,p2101 = x(1� x� y), and p2011 = y(1� x� y).To describe the change of basis algorithm, we will construct three tetrahedra. We �rstexplain the labeling scheme for these tetrahedra. For each tetrahedron, (3�i)(4�i)2 nodes areplaced at the i-th level of the tetrahedron for i = 0; 1; 2 and the nodes along one of the



5.1. A Change of Basis Algorithm for L-bases 27lateral faces are indexed by � for j�j = 2. An arrow is placed pointing downward from anode � at i-th level to the three nodes �+ e1 � e3, �+ e2� e3 and �� e3 at (i� 1)-st leveldirectly below it. This labeling scheme for the nodes is shown in Figure 5.1. Values, referredto as labels, are placed along the arrows. The labels are indexed as gk;� for k = 1; 2; 3 andj�j = 0; 1; 2 for an arrow from a node (�1; �2; 2� j�j) at the j�j-th level to the three nodesbelow it. This labeling scheme for the labels and the arrows is also shown in Figure 5.1.For the �rst tetrahedron the known coe�cients R� with j�j = 2 are placed at the nodesalong one of the lateral faces of the tetrahedron as depicted in the �rst diagram of Figure5.2. The labels gk;� are computed as follows: for j�j = 0; 1, let i = 2� j�j; thenL3i = g1;�L1;�1+1 + g2;�L2;�2+1 + g3;�M3;�3+1:Thus �nding gk;� amounts to solving a 3� 3 system of linear equations. For our example,the labels are: g1;100 = g2;100 = �12 , g3;100 = 12 , g3;100 = g3;010 = g3;001 = 1. The rest of thelabels are zero. These labels are shown in the �rst diagram of Figure 5.2. The computationis now carried out as follows. At the start all the nodes at all levels of the pyramid are emptyor zero other than the nodes � with j�j = 2, where the coe�cients R� are placed. Theempty or zero nodes are shown as hatched circles in Figures 5.1 and 5.2. The computationstarts at the apex of the tetrahedron and proceeds downwards. A value at any emptynode is computed by multiplying the label along each arrow that enters the node by thevalue of the node from which the arrow emerges and adding the results. A value at anynon-empty node is computed by applying the same procedure and simply adding the valuealready at that node. After the computation is complete, the new coe�cients S�+(2�j�j)e3emerge on the nodes � at the base triangle. These coe�cients are as follows: S200 = R200,S110 = R110, S020 = R020, S101 = �12R002 + R101, S011 = �12R002 + R011, S002 = 12R002.These new coe�cients now express the polynomial L with respect to the L-basis de�ned bythe knot-net ffL1jg; fL2jg; fM3jg; j = 1; 2g.We now repeat the above procedure with a second tetrahedron, where the coe�cientsS� are placed at the nodes � with j�j = 2 as shown in the middle diagram of Figure 5.2.The labels on the tetrahedron are permuted from (i; j; k) to (i; k; j) because we now wishto retain the polynomial M3j and replace the polynomials L2j by M2j . The labels gk;� arenow computed as follows: For j�j = 0; 1, let i = 2� j�j; thenL2i = g1;�L1;�1+1 + g2;�M2;�2+1 + g3;�M3;�3+1:These labels are also shown in the middle diagram of Figure 5.2 and in our special case turnout to be the same as in the �rst tetrahedron. After the computation is complete, the newcoe�cients T� emerge on the nodes at the base triangle. These coe�cients are as follows:T200 = S200, T110 = �12S020 + S110, T020 = 12S020, T101 = S101, T011 = �12S020 + S011,T002 = S002. These coe�cients now express the polynomial L with respect to the L-basisde�ned by the knot-net ffL1jg, fM2jg, fM3jg, j = 1; 2g.Finally we repeat the above procedure with a third tetrahedron, where the coe�cientsT� are now placed at the nodes � with j�j = 2 as shown in the rightmost diagram of Figure5.2. The labels on the tetrahedron are now permuted from (i; j; k) to (j; k; i) because nowwe wish to retain the polynomials M2j and M3j and replace the polynomials L1j by M1j .Now the labels gk;� are computed as follows: For j�j = 0; 1, let i = 2� �; thenL1i = g1;�M1;�1+1 + g2;�M2;�2+1 + g3;�M3;�3+1:



28 5. Applications of DualityAgain in our special case these labels are the same as in the �rst tetrahedron and are shownin the right diagram of Figure 5.2. After the computation is complete, the new coe�cientsU� emerge on the nodes at the base triangle. These new coe�cients are as follows:U200 = 12T200, U110 = �12T200 + T110, U020 = T020, U101 = �12T200 + T101, U011 = T011,U002 = T002. These coe�cients express the polynomial L with respect to the L-basis de�nedby the knot-net M = ffM1jg; fM2jg; fM3jg; j = 1; 2g. The change of basis algorithm isnow complete. The �nal coe�cients T�, are: U200 = 12R200, U110 = �12R200� 12R020+R110,U020 = 12R020, U101 = �12R200� 12R002+R101, U011 = �12R020� 12R002+R011, U002 = 12T002.The general change of basis algorithm from any L-basis to any other L-basis is obtainedby following essentially the same procedure. Suppose we are given the coe�cients R�of a polynomial L of degree n with respect to an L-basis fln�g de�ned by the knot-netL = ffL1jg; fL2jg; fL3jg; j = 1; � � � ; ng. We would like to compute the coe�cients U�of this polynomial L with respect to another L-basis fpn�g de�ned by another knot-netM = ffM1jg; fM2jg; fM3jg; j = 1; � � � ; ng.The general change of basis algorithm is constructed in the following manner:1. Build three tetrahedra. For each tetrahedron, (n+1�i)(n+2�i)2 nodes are placed at thei-th level of the tetrahedron for i = 0; � � � ; n. The labels gk;� along the edges of the�rst tetrahedron are computed for j�j = 0; � � � ; n� 1, fromL3i = g1;�L1;�1+1 + g2;�L2;�2+1 + g3;�M3;�3+1; i = n� j�j:The labels for the second and the third tetrahedron are computed in a similar fashion.We assume that the intermediate knot-nets ffL1jg, fL2jg, fM3jg, j = 1; � � � ; ng arelinearly independent.2. Point the arrows on the tetrahedron downwards and place the original coe�cients R�along the lateral face of the pyramid. Carry out the computation and collect the newcoe�cients S� along the base of the pyramid.3. Repeat steps 1 and 2 twice with the second and third tetrahedron using the outputof the previous step as the input of the next step. After 3 steps, the coe�cients atthe base of the tetrahedron are the desired coe�cients U�.We can use this general change of basis algorithm for L-bases to convert from B�ezier toLagrange form. Since the Lagrange coe�cients are the values of the bivariate polynomialat O(n2) nodes and since this change of basis algorithm is O(n3), converting from B�ezierto Lagrange form evaluates the polynomial at O(n2) points with an amortized cost of O(n)computations per point. This cost compares very favorably with the de Casteljau evaluationalgorithm for B�ezier surfaces which costs O(n3) computations per point.Finally, the transformation between a B-basis and an L-basis can be achieved by fac-toring through the B�ezier or multinomial bases, which are both B-bases and L-bases. Forexample, given a polynomial with respect to a power B-basis one can convert from the powerB-basis to either a multinomial or B�ezier basis using the change of basis algorithms betweenB-bases [LG95] and then convert from the multinomial or B�ezier basis to the desired L-basis,say a Lagrange L-basis, by using the change of basis algorithms between L-bases describedabove. Again when the L-basis is a Lagrange basis, this change of basis algorithm evaluatesthe B-patch at O(n2) points with an amortized cost of O(n) computations per point. Thiscompares favorably with the generalized de Boor evaluation algorithm for B-patches whichrequires O(n3) computations per point.



296. Conclusions and Future WorkLagrange and Newton bases play a very important role in point and derivative inter-polation problems for surfaces. We have demonstrated that a very interesting subclass ofbivariate Lagrange bases can be realized as bivariate L-bases. We have also demonstratedthat a very interesting subclass of bivariate Newton bases can be realized as bivariate L-bases. Using the principle of duality between L-bases and B-bases, we have establishedthat Lagrange L-bases and generalized Newton L-bases are dual respectively to power B-bases and generalized Newton dual B-bases respectively. We have also discussed the dualitybetween B�ezier and multinomial bases, which arise as special cases of both B-bases and L-bases. We went on to provide a geometric interpretation of the duality principle as point-lineduality, where a point or a vector in a B-basis corresponds to a line in an L-basis. Thisduality provides strong geometric insight for working with these bases.We have presented a uni�ed collection of change of basis algorithms based on theprinciple of duality for a wide variety of polynomial bases used in representing surfacesincluding the B�ezier, multinomial, Lagrange, power, Newton, Newton dual, B-bases, andL-bases. We have also given an example of change of basis from Lagrange to B�ezier basis.This research has opened up several interesting new questions. The generalization of thede Boor evaluation algorithm for bivariate B-bases is very well-known. The dual evaluationalgorithm for bivariate L-bases was described by the authors in an earlier work [LG95]. Doesthis algorithm yield new algorithms for the evaluation of multinomial, Lagrange and Newtonbases? The de Casteljau subdivision algorithm for a B�ezier patch is very well-known. Whatis the corresponding dual algorithm? We plan to investigate the dual evaluation algorithmsfor L-patches [LG94c], dual de Casteljau subdivision algorithm for B�ezier surfaces [LG94a]and duality between degree elevation and di�erentiation formulas [LG94b] in forthcomingpapers. Although we have discussed point-line duality, we have observed that this duality isnot self-dual. It will be interesting to explore self-duality and discover new computationalalgorithms based on self-duality. It would also be worthwhile to extend the notions of B-bases and L-bases to enlarge the con�gurations of points and lines for which Lagrange orNewton bases exist but for which a Lagrange L-basis or Newton L-basis does not exist.Acknowledgments: We would like to thank Phil Barry of the University of Minnesota fordiscussing some of the topics presented here, and helping us to improve our presentation.This work was partially supported by National Science Foundation grants CCR-9309738and CCR-9113239 and by faculty research funds granted by the University of California,Santa Cruz.
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6.1. Appendix 316.1 AppendixLet f u1j , u2j , u3j , j = 1; � � � ; n g be a knot-net of vectors. Suppose the vectors(u1;�1+1;u2;�2+1;u3;�3+1) are linearly dependent for j�j = n, 0 � �k � n � 1. Thisappendix gives an inductive proof of the fact that up to constant multiples each element ofthe corresponding B-basis bn� is an n-th power of a linear polynomial. The inductive proofis very interesting in its own right and reveals the underlying structure of the recurrencediagram. Also the technique used in the proof is valuable in other situations, including theproof of the generalized Aitken-Neville algorithm for Lagrange L-bases [LG94c].Let q� be the equations of the lines associated with the power B-basis as de�ned inSection 4.2.2.Theorem 2: bn�(u) = (q�)nQj=1;���;�i;i=1;2;3 q�(uij) :Proof: The proof is by induction. The case n = 1 reduces to the simple case of a trianglede�ned by the points u11, u21 and u31. The lines opposite to these vertices are Q100, Q010and Q001 respectively. In this case it can readily be veri�ed that the basis functions b1100,b1010 and b1001 are q100q100(u11) , q010q010(u21) and q001q001(u31) respectively. If the three points lie in thea�ne plane, then these basis functions are simply the barycentric coordinates with respectto the triangle formed by u11, u21 and u31.The inductive hypothesis assumes that the statement of the theorem is true for n � 1.We now prove that the statement holds for n. To this purpose, choose an arbitrary but �xed�. Recall that bn� is de�ned from the recurrence in Equation 2.2 by substituting C� = 1and setting the other constants C� = 0. With this choice of constants, at the highest levelof the recurrence when j�j = 0, we make the following observations:1. Cn0 (u) = bn�:2. hk;000(u) are the coordinates of u with respect to the triangle (u11;u21;u31), that is,h1;000(u) = q100(u)q100(u11) , h2;000(u) = q010(u)q010(u21) , and h3;000(u) = q001(u)q001(u31) .3. Finally, Cn�1ek (u) for k = 1; 2; 3 are obtained by running only n � 1 levels of therecurrence in Equation 2.2, and therefore, Cn�1ek (u) = bn�1��ek(u), where bn�1��ek(u) are theB-basis functions corresponding to the knot-netsW1 = f(û11; � � � ;u1n), (u21; � � � ; û2n),(u31; � � � ; û3n)g; W2 = f(u11; � � � ; û1n), (û21; � � � ;u2n), (u31; � � � ; û3n)g; and W3 =f(u11; � � � ; û1n), (u21; � � � ; û2n), (û31; � � � ;u3n)g respectively, where û means that theterm u is missing.Putting these observations together, Equation 2.2 at the highest level of recurrence whenj�j = 0 now translates into the following:bn�(u) = q100(u)q100(u11)bn�1��e1(u) + q010(u)q010(u21)bn�1��e2(u) + q001(u)q001(u31)bn�1��e3(u): (6.1)We now prove that the knot-nets W1, W2 and W3 satisfy the linear independencecondition so that they actually are knot-nets and that they also satisfy the linear dependencecondition of the power basis.To this purpose, let us denote the knot-net of W1 also as follows: fw1j ;w2j;w3j; j =1; � � � ; 3g. The knot-netW1 satis�es the linear independence condition because (w1;�1+1;w2;�2+1;w3;�3+1)



32 Referencesis linearly independent for 0 � j�j � n � 2 i� (u1;�1+2;u2;�2+1;u3;�3+1) is linearly inde-pendent for 0 � j�j � n � 2. The latter condition is, however, equivalent to the linearindependence of (u1;�1+1;u2;�2+1;u3;�3+1) where � = (�1 + 1; �2; �3) with 1 � j�j � n� 1,which is satis�ed because of the linear independence condition on the original knot-net U .Similarly, the knot-nets W2 and W3 are linearly independent.Moreover, the knot-net W1 satis�es the linear dependence condition of the power basisbecause (w1;�1+1, w2;�2+1, w3;�3+1) are linearly dependent for j�j = n�1, 0 � �k � n�2 i�(u1;�1+2, u2;�2+1, u3;�3+1) are linearly dependent for j�j = n�1, 0 � �k � n�2. The lattercondition is, however, equivalent to the linear dependence of (u1;�1+1, u2;�2+1, u3;�3+1)where � = (�1 + 1; �2; �3) with j�j = n, 0 � �k � n � 1, which is satis�ed because of thelinear dependence condition on the original knot-net U . Similarly, the knot-nets W2 andW3 satisfy the linear dependence condition of the power basis.Since the knot-nets W1, W2 and W3 satisfy the assumptions of the theorem, we canapply the inductive hypothesis to these knot-nets. Now observe that the line correspondingto the power B-basis bn�1��e1 with j�j = n, is the line determined by w1;�1 , w2;�2+1 andw3;�3+1. which in turn is the line determined by (u1;�1+1;u1;�2+1;u3;�3+1), and is thereforeq�. Similar assertions hold for bn�1��e2 and bn�1��e3 . Hence the inductive hypothesis yields:bn�1��ek(u) = q�(uk1)Qj=1;���;�i;i=1;2;3 q�(uij) (q�(u))n�1 :Substituting this formula into Equation 6.1, we obtain:bn�(u) = (q�(u))n�1Qj=1;���;�i;i=1;2;3 q�(uij) � q�(u11)q100(u11)q100(u) + q�(u21)q010(u21)q010(u) + q�(u31)q001(u31)q001(u)� :(6.2)Now observe that the expression I within the brackets in Equation 6.2 is a linear poly-nomial and is therefore completely determined by its value at three independent points.However, since I(uk1) = q�(uk1) for k = 1; 2; 3 and u11, u21, and u31 are linearly indepen-dent points, it follows that I = q�(u). Thus the statement of the theorem is established.2


