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ABSTRACT

L-bases and B-bases are two important classes of polynomial bases used for
representing surfaces in CAGD. The Bézier and multinomial bases are special cases
of both L-bases and B-bases. We establish that certain proper subclasses of bivariate
Lagrange and Newton bases are L-bases and certain proper subclasses of power and
Newton dual bases are B-bases. A geometric point-line duality between B-bases
and L-bases is described and used to investigate the duality between geometric
representations for bivariate Bézier and multinomial bases, Lagrange and power
bases, and Newton and Newton dual bases for surfaces. Under this geometric
duality, lines in L-bases correspond to points or vectors in B-bases and concurrent
lines map to collinear points and vice-versa. The generalized de Boor-Fix formula
for surfaces also provides an algebraic duality between L-bases and B-bases. This
algebraic duality between B-bases and L-bases can be used to develop change of basis
algorithms between any two of these bases. We describe, in particular, a change of
basis algorithm from a bivariate Lagrange L-basis to a bivariate Bézier basis.

Keywords: algorithms, B-bases, change of basis, CAGD, duality, L-bases, surfaces.

*Computer Science, Rice University, Houston, TX



1. Introduction

Lagrange and Newton bases for surfaces are very useful for interpolating point and
derivative data. Here we shall establish that certain proper subclasses of these bivariate
bases arise as L-bases - that is, bases that can be factored in a special way into products of
linear polynomials. Other important examples of bivariate L-bases include the Bézier and
multinomial bases.

We shall also introduce the power and Newton dual bases for surfaces and establish that
certain subclasses of these bases arise as B-bases - that is, bases that are blending functions
for B-patches. B-patches were first introduced by Seidel [Sei91] and later shown to agree
with multivariate B-splines on a certain region of the parameter domain [DMS92]. The
basis functions for the B-patches, that is the B-bases, are known to be local multivariate
generalizations of univariate B-splines. Other important examples of bivariate B-bases again
include the Bézier and multinomial bases.

A duality principle relating homogeneous L-bases and B-bases will be used to show that
the Lagrange and generalized Newton bases are dual to the power and generalized Newton
dual bases. This duality between homogeneous L-bases and B-bases can be derived using a
multivariate polynomial identity [CM92] or by generalizing the de Boor-Fix dual functionals
from curves [dBF73] to surfaces [LG94d]. We demonstrate that this algebraic principle
of duality between homogeneous L-bases and B-bases gives rise to a geometric principle
of duality between geometric representations for affine L-bases and B-bases. Under this
geometric principle of duality, lines representing L-bases correspond to points or vectors
representing B-bases and concurrent lines map to collinear points and vice-versa. This
interpretation unifies a wide variety of bivariate polynomial bases including Lagrange,
Newton, power, Bézier, multinomial, and Newton dual bases. This unification yields an
elegant change of basis algorithm between any two of these bases with computational
complexity O(n?). In particular, we shall present the change of basis algorithm between
the Lagrange and Bézier bases.

Our work easily generalizes to higher dimensions. Nevertheless, for the sake of simplicity,
the results are presented and derived here only for surfaces.

This paper is organized in the following manner. Section 2 reviews the definitions
of L-bases and B-bases. Section 3 focuses on duality: A geometric point-line duality is
introduced between representations for B-bases and L-bases, and an algebraic duality is
formulated from a generalization of the de Boor-Fix formula from curves to surfaces. Many
interesting examples of dual bases are provided in Section 4 including the general bivariate
Bézier and multinomial bases, special Lagrange and power bases, and certain Newton and
Newton dual bases. In Section 5 we turn our attention to algebraic duality. Here we mention
various dual formulas and algorithms based on the algebraic duality between B-bases and
L-bases that arises from the generalized de Boor-Fix formula. We focus, in particular, on
change of basis algorithms for L-bases, and we exhibit these procedures by converting a
bivariate polynomial from Lagrange to Bézier form. We conclude in Section 6 with a short
summary of our work and a brief discussion of future research.

Throughout this paper, we shall adopt the following notation. A multi-index « is
a 3-tuple of non-negative integers. If o = (a1, a2,a3), then |a| = a1 + a2 + a3 and
ao! = aqlaslas!l. Other multi-indices will be denoted by # and v. A unit multi-index ey is a
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3-tuple with 1 in the k-th position and 0 everywhere else. Scalar indices will be denoted by

i, 7, k,l. Finally, given a homogeneous polynomial f(z,y,z), D*f denotes Ml%';%.



2. Bases

Here we review the basic definitions and certain well-known properties of homogeneous
and affine L.-bases and B-bases. We also provide geometric interpretations for the algebraic
entities associated with these bases.

2.1 [-bases

A collection £ of 3 sets {Lq;}, {L2;}, {Ls;}, j=1,---,n of linear homogeneous (resp.
affine) polynomials in three (resp. two) variables is called a knot-net of homogeneous (resp.
affine) polynomials if (L1 o,41, L2,as41: L3.ast+1) are linearly (resp. affinely) independent
polynomials for 0 < |a| < n — 1. A homogeneous (resp. affine) L-basis {{},|a| = n} is a
collection of (”"'2'2) trivariate (resp. bivariate) polynomials defined as follows:

a1 Qg a3z
=T Lvi [] L2s I] Lsr- (2.1)
=1 k=1

J=1

It is well-known that {7, |a| = n} is, in fact, a homogeneous (resp. affine) basis for the
space of homogeneous (resp. affine) polynomials of degree n on R? (resp. R?) [CM92].

By associating the homogeneous polynomial I, = ax 4 by + cz with the affine polynomial
A = azx + by + ¢, one can define a one-to-one correspondence between the knot-net of
homogeneous and affine polynomials and between the homogeneous and afline L-bases.
Due to this one-to-one correspondence between homogeneous and affine L-bases, in the
following discussions we shall refer to either the homogeneous or affine L-basis, whichever
is more convenient or intuitive in the particular context.

Furthermore, we assign to each homogeneous (resp. affine) polynomial, the following
geometric interpretation. The polynomial az + by + ¢z (resp. ax + by 4 ¢) corresponds to
the line in the projective (resp. affine) plane defined by the equation az + by + ¢z = 0
(resp. az + by + ¢ = 0). In particular, the polynomial ¢z (resp. ¢) corresponds to the line
at infinity in the projective plane. Observe that this correspondence between the lines and
polynomials depends on the coordinate system and is unique only up to constant multiples.
Nevertheless, we shall identify the polynomial with the line and vice-versa in the following
discussions, whenever the coordinate system and constant multiples are irrelevant for the
context at hand. The advantage of this correspondence is to allow us to think of algebraic
entities such as polynomials in terms of geometric entities such as lines.

2.2 B-bases

A collection U of 3sets {uy ;}, {uz;}, {us;}, 7 =1, -, nof vectorsin R is called a knot-
net of vectors if (uy 4,41, U2 ay+1, U3,a5+1) are linearly independent vectors in R3 for 0 <
|a| < n—1. One can write any vector u in R> in terms of the basis (W1 4,41, U2,05+1, U3,05+1)
so that

3
u=> hpo(w)ug 41
k=1

Notice that %y are trivariate homogeneous polynomials.
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A homogeneous B-patch of degree n over the knot-net ¢ is a trivariate homogeneous
polynomial B : R?® — R™ defined by the following recurrence. The initial conditions for the
recurrence are given by setting C?(u) = C,, eR™ for |a| = n. The recurrence is constructed
for |a|=n—-10,l=1,---,n by

Ch(u) =3 o ()Co, (w). (2.2)
k=1

The homogeneous B-patch is then defined as B(u) = C§(u). This algorithm is known as
the up recurrence; it generalizes to surfaces the de Boor evaluation algorithm for B-spline
curves [dB72]. A homogeneous B-basis {b7, |a| = n} is a collection of (”"'2'2) homogeneous
trivariate polynomials from R® to R defined by choosing the constants CzeR as follows:

Cy = 1if B=a

= 0 otherwise.

It has been shown that {b2,|a| = n} is, in fact, a basis for the space of homogeneous
polynomials on R® [Sei91]. Moreover, an arbitrary homogeneous B-patch of degree n can
be represented in terms of a homogeneous B-basis as follows:

B(u) = Z Co bk (u).

|o|=n

Associating a knot-net of points in R? to a knot-net of vectors in R is more subtle than
associating lines in the plane with the knot-nets of linear polynomials. First, with any point
v = (a,b) in R?, we associate the vector u = (a,b,1) in R? and with any vector v = (a, b)
in R? we associate the vector u = (a,b,0) in R>.

Now, we need to explore what we mean by the linear independence of points and vectors
in R?. Given any three points or vectors vi, v and vs3 in B2, there are three distinct cases
to consider:

1. vi, vy and vs are all points. Three points in R? are said to be linearly independent

iff they are not collinear or alternatively iff they form a non-degenerate triangle.

2. Two of the three, say v{ and vy, are points and the third one vs is a vector. These
entities are said to be linearly independent iff vi # v, and the vector vz does not lie
along the straight line determined by the two points v; and vs.

3. Two of the three, say vi and vy are vectors and the third one vs is a point. These
entities are said to be linearly independent iff the vectors vy and vy are linearly
independent in RZ.

The fourth and only remaining case when vy, vg, vy are all vectors is not of interest to us
because three vectors in R? are always linearly dependent. It is easy to verify that with the
correspondence between points and vectors of R? and vectors of R? defined above, three
points or vectors in R? are linearly independent iff the corresponding vectors in R> are
linearly independent.

There is an important alternative way of thinking about vectors in R?. A vector (a,b)

in R? can also be thought of as the point at infinity in the direction of the vector (a,b),
that is, the point at infinity on the line: bz — ay = 0 in the projective plane. With this
interpretation all three cases listed above can be combined into a single case where three
points or vectors in R? are linearly independent iff they are not collinear in the projective
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plane. For this reason, instead of referring to vy, v, and vz as points or vectors in R?, we
shall always refer to them as points with the understanding that a point includes a point
at infinity, which can be thought of as a vector in R%. The distinction between points and
vectors in R? will be emphasized only when it is relevant to the context. It is remarkable
that this distinction vanishes after homogenization and that homogenization holds the key
to dealing with point and derivative information on equal footing.

Now formally, the above correspondence associates points in the projective plane with
vectors in R?, where a point (a,b) in the affine plane corresponds to the vector (a,b, 1) in
R3, while a vector (a,b) in the affine plane or equivalently a point (a, b, 0) in the projective
plane corresponds to the vector (a,b,0) in R>.

To describe the correspondence the other way around: to a vector u = (a,b,c) in R®, we
shall associate the point v = (%, %) in the affine plane whenever ¢ # 0 and the vector v =
(a,b) in the affine plane whenever ¢ = 0. Equivalently, we shall associate the point (a,b, c)
in the projective plane to the vector (a,b,c) in R>. With this correspondence, it is again
easy to verify that three vectors in R? are linearly independent iff the corresponding points
or vectors in the affine plane are linearly independent. Observe that this correspondence
between the knot-net of vectors in R> and the knot-net of points in R? is not surjective,
but when restricted to the subset of vectors in B® whose third component is either 1 or 0,

it 18 one-to-one.
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3. Duality between B-bases and L-bases

We now describe the duality between B-bases and L-bases from two different perspec-
tives: algebraic and geometric.

3.1 de Boor-Fix Duality

Given a knot-net of vectors u;; in R>, consider the knot-net of linear homogeneous
polynomials L; ; defined by the correspondence:

(a,b,c) < (ax + by + cz).

Let [ be the L-basis functions defined by the knot-net L;;, and let bf be the B-basis
functions defined by the knot-net u, ;.

The bases [ and bf are related algebraically through the following bilinear form, also
referred to as the bracket operator. Given any two homogeneous polynomials f,g: B> — R
of degree n, define the bilinear form

1

Jal=n

D*f(u) * D*g(u)

ol

Note that this bracket operator depends on n, and therefore, strictly speaking, the notation
[f, 9] is more appropriate. However, we shall suppress the subscript n, whenever it does
not cause any ambiguity.

Theorem 1: Generalized de Boor-Fixz formula [LG94d]: [I5, 3] = dap.
Corollary 1: Cavaretta-Micchelli identity [CM92, LG95]: 3 41=, (0 (2, y, 2)b(a, by c) =
(az + by + c2)".

Because of Theorem 1, the L-basis [ can be used to represent the dual functionals for

the B-basis b7 and vice-versa. We shall explore some of the consequences of this algebraic
duality in Section 5.

3.2 Point-Line Duality

The correspondence (a, b, ¢) <> ax + by +cz = (a,b,c)- (z,y, z) associates to each vector
in % a homogeneous trivariate polynomial. Earlier we saw that vectors in R® correspond to
points in the projective plane (or points and vectors in the affine plane), and homogeneous
trivariate polynomials correspond to lines in the projective plane (or lines in the affine plane
plus the line at infinity). Thus B-bases are represented by knot-nets of points u;; in the
projective plane and L-bases by knot-nets of lines L;; in the projective plane. We say that
a B-basis and an L-basis are dual bases if their knot-nets are related by the correspondence
L;; = w;; - (2,y,2). Under this correspondence points in the projective plane are mapped
to lines in the projective plane and collinear points are mapped to concurrent lines.

Figure 3.1 summarizes the relationships between dual B-bases and L-bases, as well as
the algebra and geometry underlying their associated knot-nets. A double arrow denotes
a 1-1 correspondence; a solid arrow indicates that the correspondence is many to one; and
a dotted 1l-sided arrow means that the correspondence is not onto. Figure 3.1 can be
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Figure 3.1: Point-line duality

made into a one-to-one correspondence between all the categories simply by restricting our
attention to those homogeneous or affine polynomials, or those vectors in R>, which have
third component either 1 or 0. This restriction amounts to losing the additional flexibility
of considering bases which are the same up to constant multiples.
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4. Examples of Dual bases

In this section we discuss three sets of examples of dual B-bases and L-bases: dual Bézier
and multinomial bases, dual Lagrange and power bases, and dual Newton and Newton dual
bases. We begin by showing how each of these bases can be realized as a B-basis or an
L-basis by constructing the appropriate knot-nets. We go on to discuss the geometry of
these knot-nets as well as the geometry of the knot-nets for the corresponding dual bases.
Later we shall see that while the correspondence at the homogenized level is simpler and
more elegant algebraically, the point-line correspondence at the affine level provides better
geometric insight.

4.1 Duality between Bézier and Multinomial Bases

This section explains how to realize any Bézier or multinomial basis as a special case
of both B-bases and L-bases. We also introduce the hybrid BézierMultinomial (BM) basis
in order to help investigate the duality between bivariate Bézier and multinomial bases.
We shall refer to a B-basis as a uniform B-basis if the knot-net u;; satisfies the property:
u;; = u; for j =1,---,n. A uniform L-basis is defined in an analogous manner.

4.1.1 Bézier Bases

First we describe how Bézier bases can be realized as special cases of B-bases. Let
u; = (a1,b1,¢1), uy = (ag, by, c3) and us = (as,bs,c3) be three linearly independent
vectors in R® such that ¢; # 0 for 7 = 1,2,3. Choose the uniform knot-net of vectors
u;; = u;,1 < j < n. Then the corresponding B-basis is a homogeneous Bézier basis. For
example, if uy = (1,0,1), uz = (0,1,1) and uz = (0,0, 1), then it is easy to verify that the
B-basis functions are also the homogeneous Bézier basis functions; that is,

n. oy an

b (z,y,2) = ax Yz —ax —y)*.

More generally, if uy = (ay,b1,1), uz = (ag, bz, 1) and us = (as, bs, 1), then it can readily
be verified that the B-basis functions are indeed homogeneous Bézier basis functions; that
is,
n!
b2 (z,y,2) = ahflhgz’hgg’z”,

where (hy, hy, h3) are the barycentric coordinates of the point (Z,%) with respect to the
points (ai,b1), (az,b) and (as,bs). Even more generally, if ¢; # 0 for ¢ = 1,2,3 and
u; = (ag,b1,¢1), ug = (ag, bz, ¢2) and uz = (as, bs, c3), then it can be verified that the
B-basis functions are again homogeneous Bézier basis functions; this time,

(e (s (M

bo(x,y,2) =

ol e Co Ca ’

where (hy, hy, h3) are the barycentric coordinates of the point (Z,%) with respect to the
points (&, %), (22 k) and (22, b,

a1’ c2 2 cs?ca
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We can also realize Bézier bases as special cases of L-bases. Let Ly = a1z + by + 12,
Lo = aox + by + ¢z and L3 = asx + b3y + c3z be three linearly independent polynomials.
Furthermore, assume that the following three conditions are satisfied: a1by — azb; # 0,
azbs — azby # 0, and asb; — a1bs # 0, that is, no two of the associated lines are parallel.
Choose the uniform knot-net of polynomials L; ; = L;,;1 < j < n. Then the corresponding
L-basis is a homogeneous Bézier basis up to constant multiples. Indeed, one can easily verify
that up to constant multiples this L-basis is the homogenized Bézier basis defined by the
three intersection points of Ly, Ly and Ls: uy = (bacs — bscg, asca — ages, azbs — azbs), ug =
(bgCl — blC37 a1€C3 — azCy, a3b1 —ay bg) and U3 = (b1€2 — b2€17 a3C1 — a1C2, a1b2 — azbl). In fact
with this choice of points, the linear L-basis, which is the same as the barycentric coordinates
with respect to the triangle defined by these three points, is precisely %Ll(u),

asbizaibs ) (), and “223%281 [ 5(u), (or alternatively, %, %, and if’((l?s))) where

A is the determinant of the matrix defined by (a1,b1,¢1), (ag,b2,¢2) and (as, bs,c3). In
particular, Ly = x, Ly = y and L3 = —z — y + z, yields the standard homogeneous Bézier
basis, up to constant multiples, that is, I = 2“1y*2(z — 2 — y)*®. In summary, given a
triangle, we can use the vertices to define the Bézier basis — this is the B-basis point of view
or we can use the lines to define the Bézier basis — this is the L-basis point of view.

4.1.2 Multinomial Bases

The multinomial basis is the standard generalization of the monomial basis to the mul-
tivariate setting. For example, the basis 1, z, y, 22, zy and y? is the bivariate multinomial
basis of degree 2. Sometimes the terminology Taylor basis or power basis is also used instead
of monomial or multinomial basis. However, we shall refer to this basis as the multinomial
basis in accordance with [GB92] and reserve the term power basis for the basis discussed
later in Section 4.2.2. The standard multinomial basis is defined by the origin (0,0) and
the unit vectors (1,0) and (0,1). The most general multinomial basis is similarly defined
by a point and two linearly independent vectors and is discussed below.

We first describe how to realize multinomial bases as special cases of B-bases. Let
u; = (a1,b1,¢1), ug = (ag, by, c3) and us = (as, bs, c3) be three linearly independent vectors
in R® such that ¢; = ¢; = 0. Observe that by the linear independence condition cs # 0.
Choose the uniform knot-net of vectors u;; = u;,1 < 7 < n. Then the corresponding
B-basis is a homogeneous multinomial basis up to constant multiples. In other words, the
multinomial basis is defined by a point and two linearly independent vectors in R%. The
simplest and most popular example of this construction is obtained by setting u; = (1,0, 0),
uz = (0,1,0) and uz = (0,0, 1). In this case it is easy to verify that the B-basis functions
are homogeneous multinomial basis functions, and that

n'
b2($, Y, Z) = axalyOQZaS
If a homogeneous polynomial B(u) has coefficients C,, with respect to the standard multi-
nomial B-basis, then

and the coefficients C', represent, up to constant multiples, the directional derivatives of the
polynomial B(u) at the point (0, 0) along the directions (1,0) and (0,1). The multinomial
basis defined by a point vy and two vectors vy and vs is a generalization where the
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coefficients of a polynomial with respect to this multinomial basis represent, up to constant
multiples, the directional derivatives of this polynomial at the point v along the directions
vy and vs. As an example, if uy = (1,-1,0), uy = (1,1,0) and us = (0,0, 1), then it
can readily be verified that the B-basis functions are again homogeneous multinomial basis

n! (e —y\" S+ y\?
bn —- a3
e =5 () ()=
Ty

where and 5% represent the directions (1, —1) and (1, 1) along which the multinomial
basis is formed instead of along the usual directions (1,0) and (0,1). As another example,
if u; = (1,0,0), uy = (0,1,0) and us = (as, b3, 1), then it can readily be verified that the

B-basis functions are indeed homogeneous multinomial basis functions; this time,

functions; that is,

oty
2

n!
b (z,y,2) = J(x — a3z)™ (y — bgz)*?z7%,
where the multinomial basis is formed at (as, b3) along the usual directions (1,0) and (0, 1).
More generally, if u; = (a1, b1,0), uz = (az, bz, 0) and us = (as, b3, 1), then the homogeneous

B-basis functions are

! - - - — — —
bg(x,%z):%(b?(w azz) — ax(y 532))a1( bi(z — azz) + a1(y bgz))a2za3

arby — azby arby — azby 7

where the multinomial basis is formed at (as, b3) along the directions (a1,b1) and (az, b3).

We can also realize multinomial bases as special cases of L-bases. Let L; = a1z +
by + 1z, Ly = asx + bay + coz and L3 = z be three linearly independent polynomials.
Observe that by the linear independence condition, it follows that aiby — azb; # 0; thus
the lines corresponding to Ly and Lo are not parallel. Choose the uniform knot-net of
polynomials L; ; = L;,1 < j < n. Then one can easily verify that this L-basis is indeed the
homogenized multinomial basis defined by the vectors (%, —%) and (—%, %) and the point
(212;’:222%11 ey ), where k = a1by—azb;. In particular choosing Ly = 2, Ly = yand Lz =
z, yields the standard homogeneous multinomial basis; thatis [} = 21 y“22°2. Also choosing

Liy=2—az, Ly =y—bz and L3 = z, yields the homogeneous multinomial basis defined by
the point (a,b) and the unit vectors (1,0) and (0, 1); that is {2 = (z — az)™ (y — bz)*?22.

4.1.3 Hybrid BézierMultinomial(BM) Bases

We now introduce hybrid BézierMultinomial (BM) bases in order to help describe the
duality between Bézier and multinomial bases in the next section 4.1.4. A Bézier B-basis is
defined by three points, while a multinomial B-basis is defined by a point and two vectors.
A hybrid BézierMultinomial basis is defined by two points and a vector.

Any hybrid BM basis can be realized as a B-basis as follows: Let u; = (a1,b1,¢1),
uy = (ag, by, c3) and uz = (as, bs, c3) be three linearly independent vectors in R® such that
¢ =0, co # 0 and ¢3 # 0. Choose the uniform knot-net of vectors u; ; = u;,1 < j < n. The
corresponding B-basis will be referred to as a hybrid homogeneous BM basis. This basis is
formed by choosing 2 points and a vector. For example, if uy = (1,0,0), ug = (0,0,1) and
us = (0,1, 1), then it can readily be verified that the B-basis functions are

n!
(e, 2) = S (= — )

o2, Q3

Y
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If a homogeneous polynomial B(u) has coefficients C, with respect to this hybrid BM
basis, that is,

n! x x x
Blu)= 3 Calai(s - )y,

|o|=n

the coefficient Co0 represents, up to constant multiples, the directional derivative of B(u)
of order n in the direction of the vector (1,0). The coefficients C} ,—ro (resp. Cign_1)
represent, up to constant multiples, the directional derivatives of B(u) of order k in the
direction of the vector (1,0) evaluated at the point (0,0) (resp. the directional derivatives
of B(u) of order [ in the direction of the vector (1,0) evaluated at the point (0,1)). This
interpretation of the coefficients of a polynomial can be extended easily to the case when
the polynomial is expressed in a general hybrid BM basis defined by 2 points and a vector.

We can also realize a hybrid BM basis as an L-basis. Let Ly = a1x 4+ by + c12,
Lo = aox + by + ¢z and L3 = asx + b3y + c3z be three linearly independent polynomials.
Let us choose the knot-net of polynomials L;; = L;;1 < j < n. The restriction that
arby — agby # 0, a;bs — asby # 0 and agxbs — asby # 0 defines a homogeneous Bézier
basis. The restriction that a3 = b3 = 0 defines a multinomial basis. It is easy to verify
that the only remaining restriction that maintains linear independence is a1by — ayby # 0,
agbs —byas # 0 and a1bs —aszby = 0. Thus the lines corresponding to Ly and Lj are parallel.
With this restriction the homogeneous L-basis is referred to as a hybrid BM basis. This
hybrid basis is defined by the two points: (22=fefL d2ci-aif) (laa—tacy daga-d2cs) gpd

—b

1 a ) — ( —bs as ) — (5301—5103 alcs—ascl)
albg—agbl ’ albg—ale agbg—a2637 ang—agbg, A ’ A .

the vector (

4.1.4 Duality

This section investigates the duality between bivariate Bézier and multinomial bases.
First we describe the algebraic or de Boor-Fix duality between Bézier and multinomial
bases. Then we shall comment upon the geometric duality between these bases.

A Bézier B-basis is defined by (a1, b1,c¢1), (ag,bz,c3) and (as, bs,c3) with ¢; # 0 for
1 = 1,2,3. The dual L-basis is therefore defined by L1 = a1z +b1y+c1z, Ly = asx+bay+coz,
and Lz = asz + bsy + c3z. Depending upon whether zero, one or two of the three terms
a1by — agby, agbs — asbs, and asby — a1b3 are zero, the dual L-basis can be a Bézier basis, a
hybrid BM basis, or a multinomial basis. More specifically, if all three terms are non-zero,
then the dual L-basis is a Bézier basis; if exactly two of these terms are non-zero, then
the dual L-basis is a hybrid BM basis, and finally if exactly one of these three terms is
non-zero, then the dual L-basis is a multinomial basis. Note that these distinctions are very
sensitive to the choice of the coordinate system. The upper diagram of Figure 4.1 presents
three Bézier B-bases each defined by three points forming a right-angle triangle. The dual
to these Bézier B-bases are shown immediately below them in the lower part of Figure 4.1.
Depending upon the choice of the coordinate system, the dual bases are a multinomial basis,
a BM basis, and a Bézier basis respectively.

The duality situation is similar for a multinomial B-basis defined by (aq,b1,c1),
(ag, bz, c2) and (as,bs,c3) where exactly two of the three terms ¢q, ¢z and c¢3 are zero.
Again the dual L-basis can be either a Bézier basis, a hybrid BM basis, or a multinomial
basis depending upon how many of the three terms ayby — azby, a3bs — azby, and asb; —a1bs
vanish.
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(0,1) (1,1) -2,-1) -1,-1)
(0,0) (1,0) (1,0) (2,0) -1,-2)
Bézier Bézier Bezier

(1,0)

(-1,-1) y=-1 X+2y=1

Multinomial BM Bezier

Figure 4.1: Duality between Bézier, multinomial and BM bases

In summary, a uniform B-basis — which can be either a Bézier basis, a hybrid BM basis,
or a multinomial basis - is dual to a uniform L-basis — which can also be either a Bézier
basis, a hybrid BM basis, or a multinomial basis.

These observations lead to the following geometric interpretation of duality between
uniform B-bases and uniform L-bases. A Bézier B-basis is defined by three points; a hybrid
BM B-basis by two points and a vector; a multinomial B-basis by a point and two vectors.
Interpreting a vector as a point at infinity, a uniform B-basis is defined by three points. The
dual L-basis is defined by three lines. Notice that the conditions a;b; — a;b; = 0 correspond
to parallel lines in affine space and the number of parallel lines leads to the distinction
between Bézier, BM, and multinomial L-bases. A Bézier L-basis is defined by three non-
parallel lines in the affine plane. A BM L-basis is defined by three lines in the affine plane,
exactly two of which are parallel. Finally, a multinomial L-basis is defined by the line at
infinity and two non-parallel lines in the affine plane. In projective space where there are
no parallel lines, these distinctions disappear.

Observe that it is not true that the three cases of uniform L-bases, namely Bézier basis,
hybrid BM basis and multinomial basis, arise by taking ¢ lines in the affine plane and 3 — ¢
lines at infinity for ¢ = 3,2,1. In fact although there are many points at infinity, there
is only one line at infinity. The multinomial L-basis arises by choosing exactly one line at
infinity as described above. Alternatively, the three cases of uniform L-bases, namely Bézier
basis, hybrid BM basis, and multinomial basis, arise by taking 3 lines such that 7 points of
intersection of these lines lie in the affine plane and 3 — ¢ points of intersection lie at infinity
for ¢ = 3,2, 1 respectively.

There is another potential source of confusion which is intriguing. Observe that the
Bézier basis defined by the three points vy, vy, and vz is the same as, but not dual
to, the L-basis defined by the three lines vivy, vovs, and vsyvy. Such a duality, if it
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exists, should be referred to as self-duality. Under self-duality, the correspondence between
vectors in R? and the homogeneous polynomials on R would have to be defined from a
set of 3-vectors to 3-polynomials and vice-versa rather than from a vector to a polynomial.
In particular, a triple of vectors (aq,by,¢1), (ag,bs,c2) and (as, bs,c3) would correspond
to the three homogeneous polynomials (bgcs — bscz)x + (asca — ages)y + (azbs — asby)z,
(bgCl—b1€3)$—|—(a1€3—0301)y—|—(a3b1—alb3)2’7 and (blcz—b201)$—|—(agcl—0102)y+(alb2—a2b1)2
under this self-dual correspondence. It would be very interesting to explore this self-duality.
However, the duality presented in this work is not self-duality.

4.2 Duality between Lagrange and Power Bases

This section establishes that certain proper subclasses of bivariate Lagrange and power
bases can be realized respectively as special cases of L-bases and B-bases and then investi-
gates the duality between these special bases.

4.2.1 Lagrange Bases

Let { {L;;}, {L2;}, {Ls;}, 7 =1,---,n } be a knot-net of homogeneous polynomials.
Suppose that the homogeneous polynomials (Lj o,+1,L2,0,41,L3a,+1) are linearly depen-
dent for |a| = n, 0 < ar < n— 1. The corresponding L-basis is then referred to as a
Lagrange L-basis. We shall soon see that these dependency conditions give rise to a point-
line configuration with ("}?) points such that each of the ("3?) L-basis functions vanishes

2
at all the points except one, which justifies the terminology Lagrange L-basis.

To observe this, let us analyze the dependency conditions. Overloading the notation,
let L;; also denote the lines in the projective plane defined by the equations: L;; = 0.
The linear dependency condition on the polynomials L; ,, 41 means that the projective lines
L; 4,41 are concurrent for |a] = n, 0 < o < n—1. Let v, = ﬂ%:l Ly q,+1 for |a| = n,
0 < aj < n—1. These intersections give rise to (”"'2'2) — 3 points corresponding to (”"'2'2) -3
dependency conditions. To these points, we shall add three more points: v,,00 = L31 () L21,
Voo = L11() L1, and voo, = Li1()L21. It is easy to verify using Equation 2.1 that
[2(vg) =12(va)dap. Therefore, {lg(l%} forms a Lagrange basis.

Now we are going to introduce certain interesting point-line configurations that give rise
to bivariate Lagrange L-bases. To this extent, let us investigate the dependency conditions
more closely in the affine plane. Let F;; be the affine polynomials corresponding to the
homogeneous polynomials L;;. Overloading the notation, let F;; also denote the lines in
the affine plane defined by the equations: F;; = 0. The linear dependency condition on the
knot-net of polynomials corresponds to one of the following geometric conditions:

1. The lines (P o,41, P2,a,+1 and P 4,41) are distinct and concurrent; that is, they all
pass through one common point v, = 0%21 Py o, +1 when |a| = n.

2. The lines (P o141, Poa,+1 and Ps,,11) are distinct and parallel. Then { Ly 4,41,
Ly ay+1s L1,ay+1 } all pass through a common point at infinity. For example, if
Lioi+1 = kax + kiby + c12, Lya,41 = keax + koby + coz and Ly o 41 = kzax +
ksby 4 c3z, then the common point v, is (—kb, ka, 0) for some k # 0.

3. Only two of the three lines (P o,+1, P2,a,41 and Ps o,41) are distinct. Let v, be the

point of intersection of the these two lines. If the lines are parallel, then as in case 2,
the point of intersection lies at infinity.
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Figure 4.2: Geometric mesh of order 3 for Lagrange L-basis
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Figure 4.3: Geometric mesh of order 2 for Lagrange L-basis

4. One of the lines Ly ,, 41 lies at infinity. In this case the point of intersection of the

lines { L1,a,+1; L2,as+1s L1041 } lies at infinity.

Observe that it is not possible to have all three lines the same because this would violate
the linear independence condition on the knot-net of polynomials. More specifically, the
linear dependence condition for a = (a1, ag, as) with || = n and the linear independence
condition for (ay — 1, avg, avz) imply that if the two lines Lg 4,41 and Lg 4,41 are same, then
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Figure 4.4: Natural lattice of order 2 for Lagrange L-basis

Figure 4.5: Natural lattice of order 3

a1 must be zero. Therefore, if all three lines are the same, then it must be the case that
a; = 0 for ¢ = 1,2,3; that is n = 0, in which case there is only one L-basis function. This
argument also shows that the condition that two lines are the same is very restrictive and
can happen only if one of the three a;; = 0. Such cases, however, do arise in practice as we
shall see below.

If an affine polynomial B(v of degree n is represented with respect to an affine Lagrange
L — basis, that is,

B(V) = Z CO&PS(V)v

|o|=n

the coefficients C, represent, up to constant multiples, the value of the polynomial B(v)
at v,, whenever v, is not at infinity. More precisely, B(v,) = C, P2 (v,). When v, is
at infinity, as in the cases 2, 3 and 4 above, it can be verified easily, that the coefficients
C, represent, up to constant multiples, the directional derivative of B(v) of order n in the
direction of one of the parallel lines, that give rise to v, as the common point of intersection.
Observe that since B(v) is a polynomial of degree n, its directional derivative of order n is
a constant and therefore, it does not matter where it is evaluated.

Now we present certain point-line configurations that give rise to Lagrange L-bases.
Figure 4.2 shows a configuration of lines in R? for which the dependency conditions are
satisfied and all the lines are distinct and concurrent. The configuration of lines in Figure 4.2
also satisfy the linear independence condition for (L1 o,+41, L2,a5+15 L3,a5+1), 0 < |a| < n—1,
which is required to define a knot-net of polynomials. Figure 4.2 is an example of a principal
lattice or geometric mesh [CY77] of order n, which can be described by three sets of n lines
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11 12

Figure 4.6: Dual geometric mesh of order 3 for power B-basis

{{L1:},{L2;},{Lsr}, 1 <4, j,k < n} such that each set of three lines { Ly ;41, Lo j+1, L3 k+1,
i+ j+ k = n} intersect at exactly one common point v;;z. It is clear from the above
construction that every geometric mesh gives rise to a Lagrange L-basis.

Figure 4.3 shows some configurations of 6 lines and 6 points in the projective plane that
give rise to a Lagrange L-basis. These are examples of geometric meshes of order 2. The
right diagram of Figure 4.3 shows a configuration where one of the points is at infinity.

Figure 4.4 shows some configurations of 4 lines and 6 points in the projective plane that
give rise to a Lagrange L-basis. In this case, two of the lines in every dependency condition
are the same. These are examples of natural lattices [CYTT] of order n, which are defined by
n + 2 lines in the projective plane such that the (n-|2'2) intersection points of these lines are
all distinct. The left, middle and right diagrams of Figure 4.4 show configurations where
0, 1 and 3 points lie at infinity. Since every natural lattice of order n generates a Lagrange
basis of degree n, it is natural to ask whether every natural lattice of order n gives rise to a
Lagrange L-basis of degree n. Unfortunately, the answer is no. Figure 4.5 shows a natural
lattice of order 3. It is easy to verify that it is not possible to realize the Lagrange basis
corresponding to this configuration as an L-basis. Thus the Lagrange L-bases form a proper
subset of the set of all bivariate Lagrange bases.

4.2.2 Power Bases

Let { uwy;, ugj, usj, j = 1,---,n } be a knot-net of vectors. Suppose the vectors
(Wi,00415 U2 apt1, U3 aet1) are linearly dependent for |a] = n, 0 < ap < n — 1. The
corresponding B-basis is referred to as a power basis because, as we shall soon see, up
to constant multiples every basis function is an n-th power of a linear polynomial.

Let vj o,+1 represent the points in the projective plane corresponding to the vectors
Ui o,+1- Then the linear dependency condition on the vectors uy,,+1 means that the
corresponding points vj ,,+1 are collinear in the projective plane. Let (), be the line
defined by the three collinear points v o, 41 for o] =n, 0 < ap < n —1 and let g, = 0 be
the equation of the line ). This construction gives rise to (”"'2'2) — 3 lines corresponding to
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Figure 4.7: Dual geometric mesh of order 2 for power B-basis
V2™ Va2 = Vap
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Figure 4.8: Dual natural lattice of order 2 for power B-basis

Figure 4.9: Dual natural lattice of order 3

32
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the (n-|2'2) — 3 dependency conditions. Now let us add 3 more lines. Define )00, Qoro, and
Qoor, to be the lines passing through the points vo1vsy, vi1vay, and vi1vay respectively, and
let ¢,,00, Gono, and goo, be the equations of these lines. In the Appendix we give an inductive
proof that the B-basis functions b7 for the knot-net u;; are equal to (¢,)" up to constant
multiples. In the next section, we shall give a much simpler proof of this fact based on the
duality between the Lagrange and power bases.

Figure 4.6 shows two configuration of points in R? for which the dependency con-
ditions are satisfied because the points vi,, 41 for |a| = n are collinear. The con-
figuration of points in Figure 4.6 also satisfy the linear independence condition for
U o+1, k= 1,2,3, |a] < n— 1, which is required to define a knot-net of vectors. This figure
is an example of a dual principal lattice or dual geometric mesh of order n, which is defined
by 3n distinct points {vy;, vg;, vs;,7 = 1,- -+, n} such that each set of three points {vy ;41,
V241, V3 k41, 1+ J+k = n}is collinear and defines the line ¢;;5. The seven lines defined by
the dependency conditions are shown as dark lines while the remaining three add-on lines
are shown as dotted lines. It is clear from the above construction that every dual geometric
mesh gives rise to a power B-basis.

Figure 4.7 shows examples of point-line configurations with 6 points and 6 lines that
give rise to power B-bases. These are examples of dual geometric meshes of order 2. The
right diagram of Figure 4.7 shows a configuration where one of the points lie at infinity and
this is represented by a vector in the affine plane.

Figure 4.8 shows some configurations of 6 lines and 4 points in the projective plane that
give rise to a power B-basis. These are examples of dual natural lattices of order 2. A dual
natural lattice of order n is defined by n + 2 distinct points and (”"'2'2) distinct lines joining
these points. The left, middle and right diagrams of Figure 4.8 show configurations of points
and lines, where 0, 1 and 2 points lie at infinity and these are represented by vectors in the
affine plane. Since every dual natural lattice of order n generates a power basis of degree n,
it is natural to ask whether every dual natural lattice of order n gives rise to a power B-basis
of degree n. Unfortunately, the answer is no. It is easy to verify by exhaustive enumeration
that the configuration of points and lines corresponding to the dual natural lattice of order
3 shown in Figure 4.9 cannot be realized as a B-basis. A simpler proof based on duality
will be given at the end of next section 4.2.3. Thus the power B-bases form a proper subset
of the set of all bivariate power bases.

4.2.3 Duality

Let a Lagrange L-basis be defined by a knot-net £ of polynomials {L;;, Ly;, Ls;,j =
1,-+-,n} as in Section 4.2.1, and let the (”"'2'2) points corresponding to this Lagrange L-
basis be denoted by v,. Let the dual B-basis be defined by the knot-net U of vectors
{w;;,uy;,us;,7 = 1,---,n} under the knot net correspondence (a,b,c) < ax + by + cz
defined in Section 3.1 so that L;;(u) = u-u;;. It is clear that both the linear independence
conditions and the linear dependence conditions are preserved under this correspondence.
In particular, the linear dependency condition or the collinearity condition on a set of three
points used for defining B-bases corresponds to the linear dependency condition or the
concurrency condition on the corresponding set of three lines used for defining L-bases.
Therefore, the dual B-basis is a power basis as defined in Section 4.2.2.

The Cavaretta-Micchelli identity mentioned in Section 3.1 provides a very simple proof
that the B-basis dual to a Lagrange L-basis is a power basis, that is, that every element
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of the B-basis is a n-th power of a linear polynomial. Indeed given a Lagrange L-basis, it
was verified in Section 4.2.1 that the L-basis functions {I%} satisfy the relation [7(vg) =
I7(va)dap. Substituting this identity into the Cavaretta-Micchelli identity, we obtain b7 (u)

— (Vaw)”
_ lalva)
is an n-th power of a linear polynomial. Using the definition of the L-basis functions given
in Equation 2.1 together with the fact that by duality ¢, = v, - u, we can also rewrite the

power B-basis functions as

, which establishes that up to constant multiples each element of the dual B-basis

(¢2)"

b (u) = .
¢ [z, api=1,2,3 G (i)

Notice that the Cavaretta-Micchelli identity and the generalized de Boor-Fix formula
hold for all bivariate Lagrange and power bases, even though these bases may not be L-
bases and B-bases respectively. The argument in the preceding paragraph can be used to
establish this general duality between bivariate Lagrange and power bases.

To appreciate the geometry of this correspondence, notice that a Lagrange L-basis of
degree n is defined, in general, by 3n lines while a power B-basis of degree n is defined, in
general, by 3n points. However, these lines (in case of the Lagrange L-basis) and points
(in case of the power B-basis) need not be distinct. Such is the case, for example, with
the natural lattice and dual natural lattice configurations, where certain lines in case of the
Lagrange L-basis and certain points in the case of power B-basis do coincide.

The geometric mesh configuration of order 3 for a Lagrange L-basis depicted in Figure
4.2 consisting of 9 distinct lines and 10 distinct points is dual to the dual geometric mesh
configuration of order 3 for a power B-basis depicted in Figure 4.6 consisting of 9 distinct
points and 10 distinct lines.

Similarly, the geometric mesh configuration of order 2 for a Lagrange L-basis depicted
in Figure 4.4 consisting of 6 distinct lines and 6 distinct points is dual to the dual geometric
mesh configuration of order 2 for a power B-basis depicted in Figure 4.8 consisting of 6
distinct points and 6 distinct lines. The distinction between different cases as to whether
certain points lie at infinity or whether certain lines are parallel disappears in projective
space. Figure 4.4 and Figure 4.8 are self-dual. is self-dual. In a self-dual configuration, the
number of lines must be equal to the number of points. Since 3n = (”"'2'2)
these are the only situations where the geometric mesh configuration is self-dual. Figure
4.6 shows the dual geometric mesh for n = 3 which is not self-dual.

only forn =1, 2,

The natural lattice configuration of order 2 depicted in Figure 4.3 consisting of 4 lines
and 6 points for the Lagrange L-basis is dual to the dual natural lattice configuration of 6
lines and 4 points for the power B-basis depicted in Figure 4.7. Finally, the natural lattice
configuration depicted in Figure 4.5 consisting of 5 lines and 10 points cannot be realized as
a Lagrange L-basis. Therefore by duality the dual natural lattice configuration of 10 lines
and 5 points depicted in Figure 4.9 cannot be realized as a power B-basis.

4.3 Duality between Newton and Newton Dual Bases

This section establishes that certain subclasses of bivariate Newton bases can be realized
as special cases of [-bases. We then introduce the Newton dual bases and investigate the
duality between the Newton and Newton dual bases.
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4.3.1 Newton Bases

Suppose the following restriction is imposed on the knot-net £ of homogeneous poly-
nomials: Ly; = ay;x + by + c1iz, Ly = agw + boiy + c9;2, and Lz; = azx + by + c32.
In other words, one of the three sets of knots consists of one and the same polynomial.
The corresponding L-basis will be referred to as the generalized bivariate homogeneous
Newton L-basis. We shall be interested here in the special case where Ls; = z; the corre-
sponding [-basis will be referred to as the bivariate homogeneous Newton L-basis. Observe
that the multinomial basis is a special case of Newton basis. By choosing the polynomi-
als Li; = v —a;2, Ly; =y — bz, La; = z, and dehomogenizing, we obtain the following
corresponding affine Newton basis:

I = 1:1[(96 — a;) 1:2[(@/ —b).

For example when n = 2 this construction yields the basis functions: 1, (2 — ay), (z —
ar)(z —az), (y — b1), (y — b1)(y — b2) and (z — a1)(y — b1). Therefore, the affine Newton
basis for surfaces defined here is a generalization of the affine Newton basis for curves.

To justify the terminology Newton basis, we are going to establish that these Newton L-
bases are special cases of the bivariate Newton bases defined by Gasca [Gas90]. Gasca starts
with a particular set of lines and points and associates a Newton basis to this point-line
configuration. In contrast, our construction proceeds in the opposite direction.

We have other stronger incentives for establishing this connection. We plan to construct
certain point-line configurations and associated point and derivative interpolation problems,
which give rise to Newton L-bases in a natural way. To be more precise: to each Newton
L-basis, we wish to associate an interpolation problem for point and derivative data with
the following properties: (i) there exists a unique solution to the general interpolation
problem and (ii) the coefficients a, of the interpolant L(u) = 37,2, aall; expressed in the
Newton L-basis are the solutions of a lower triangular system of linear equations. This
task is complicated, however, by the fact that given a suitable point-line configuration, the
associated point and derivative interpolation problem is not unique. This non-uniqueness is
intrinsic to the bivariate Newton basis and is true as well for the univariate Newton basis.

To gain some insight into this important point, we explain the nature and cause of
non-uniqueness in the case of curves by presenting a simple example. To the univariate
affine Newton basis of degree 2 given by 1, (¢ — a1) and (¢ — a1)(2 — a3), a1 # az, one
can associate a point interpolation problem at a; and ao, but for the third interpolation
condition one can choose any arbitrary point as or in fact even the derivative at as. Indeed
if f(z)=co+c1(z—a1)+ c2(x — a1)(x — az), then ¢ = f(a1), and ¢; = flaz, a1], where

flaz) — fla1)

(a2 —a1)

f[a27 al] =

is the usual divided difference. More interestingly, ¢ = flas, az, a1] where
[flas, az] — flas, ai]

(a3 —a1)

['(az) — flaz, ai]

(a2 —a1)

Zf a3 # a2,

f[a?n a2, al] =

flaz,az,a1] = if a3z = as,
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where f'(ay) denotes the first derivative of f at ay. Similarly, if the Newton basis is 1,
(z —ay) and (z — ay)?, then ¢g = f(ay), ca = f'(ay), and ¢y = flaz, ay,ay], where ay is any
arbitrary point including a4.

This freedom in choosing the interpolation problem carries over to the bivariate setting.
Although Gasca [Gas90] observes that there is some freedom, his construction does not
clarify the role of freedom in choosing the lines and points. For our purposes, it is essential
to explore the nature of this non-uniqueness in order to specify certain interesting point-line
configurations associated with Newton L-bases.

To associate an interpolation problem with a Newton L-basis, we first introduce a set of
points. To this purpose, observe that the linear independence conditions on the knot-net
of polynomials imply that the lines Ly 4,41 and Ly o,41 are distinct and non-parallel for
0<ar+ay <n—1. Let Vo, a0 = L1,a;41M L2 0,41 for 0 < ag+ay <n—1. These points
could be distinct or the same depending upon the lines themselves, but, in any event we get

%n(n + 1) points counted with appropriate multiplicity. Next we introduce an additional

n + 1 points for a total of (”"'2'2) points again counted with appropriate multiplicity. The
choice of the remaining n + 1 points v, «, 0 is more subtle and incorporates the freedom
of choice discussed in the previous paragraph. Choose v,g9 and vg,o to be arbitrary points
on the line L, and Lq; respectively. For the remaining points with a3 + a3 = n and
0 < aq, a9 < n— 1, there are three types of choices: (i) symmetric case: let vy, 0,0 =
Ly o 41N Lo o,41 whenever Ly o 41 and Lg ,41 are distinct; otherwise, if they are the same
line, choose any point on this line, (ii) non-symmetric case 1: let v, 4,0 be any point on
the line Ly 4,41 and (iii) non-symmetric case 2: let v, 4,0 be any point on the line L ,, 4.
This freedom in choosing the (n 4 1) points can also be described by selecting additional
lines Fy, -+, Foy1, Fi # Ly ; so that v, 0,0 = Li,a,41 N Fa, 41 or alternatively by selecting
additional lines Fy,---, Fyy1, F; # Lo so that v, 0,0 = L2.ayt+1 N Fay41. Thus we can
associate a total of (”"'2'2) points counted with appropriate multiplicity to a Newton L-basis
defined by 2n lines. This point-line configuration associated with a Newton L-basis is a
subclass of the point-line configurations that form the starting point for the construction
of Newton bases defined by Gasca [Gas90]. With this associated point-line configuration,
it can be readily verified that the Newton L-bases defined here can be realized as special
cases of the bivariate Newton bases defined by Gasca.

Now we are in a position to describe the interpolation system associated with this New-
ton L-basis. Our procedure is exactly the same as in [Gas90]. Let s, be the number
of functions in the set {L11,--+,L1a,4+1, L21, -, L2a,+1} that vanish at v, and coin-
cide with Lj ,,+1 up to constant factors. Let ¢, be the number of functions in the set
{L11,- s L1a,41, L21,- -, L2 ay+1} that vanish at v, and do not coincide with Ly 4,11 up
to constant factors. The associated interpolation problem is to interpolate the following
point and derivative information:

85a+to¢f(va)
8SQL1701+18taL2702+1 7

where % = b% — a%, when L = az + by + c.

It is not too difficult to prove that this interpolation problem has a unique solution and
that the interpolant expressed in terms of the Newton L-basis can be found by solving a
lower triangular system of linear equations. The proof of this fact is also described by Gasca
[Gas90] and is therefore omitted here. In fact, the coefficients of the solution can be inter-

preted as the generalization of divided differences to higher dimensions. Further discussion
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Figure 4.11: Hermite interpolation using Newton L-basis

of the extremely important role the Newton bases play in multivariate interpolation and
approximation can be found in [Gas90].

The configurations of lines and points corresponding to Newton L-bases are very flexible.
By choosing two sets of parallel lines L;; and Lg; as shown in Figure 4.10, selecting the
symmetric choice of the associated interpolation problem, and picking the points vsgo and
vos3o as indicated in Figure 4.10, it is clear that every geometric mesh gives rise to a Newton
L-basis. Recall from Section 4.2 (Figure 4.2) that the same configuration also gives rise to
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a Lagrange L-basis.

More interestingly, every natural lattice of order n also gives rise to a Newton L-basis.
Figure 4.5 shows a natural lattice of order 3. This lattice gives rise to the Newton L-basis by
choosing Ly ; = L; for 1 <t < mn, Ly; = Ly43-;,1 < j < n,selecting the symmetric choice,
and picking the point vo,o on Ly as L1 N Ly and the point v,g0 on Lyqg as Lypo N Lptq.

It is not yet clear whether or not every configuration of lines and points that gives rise
to a Lagrange L-basis also gives rise to a Newton L-basis. More interestingly, one can ask
whether a configuration of lines and points satisfying the GC condition or HGC condition
[Gas90] always gives rise to a Newton L-basis. The HGC conditions, in particular, generalize
the Hermite interpolation conditions to higher dimensions.

A popular Hermite problem corresponding to point interpolation at four points vy, vo,
vs, vy, and the two first order partial derivatives at the three points vy, vo, v3 is depicted
in Figure 4.11. Even for this simple Hermite case, it is non-trivial to demonstrate that it
can be realized as a Newton L-basis. The choice L1y = Li3, L1 = Loz as shown in Figure
4.11 yields the Hermite interpolation problem by picking the following lines Fy = Lo,
Fy = Loy, Fs = M and Fy = Lys, considering the intersection points F; N Ly; for ¢ =1,2,3
and the intersection point Fy with Ly;. This is a non-symmetric choice. By enumerating
all the possibilities, one can verify that it is not possible to generate a Newton L-basis
corresponding to this interpolation problem with any symmetric choice.

4.3.2 Newton Dual Bases

The homogeneous generalized Newton Dual basis is defined as the B-basis functions
obtained by imposing the following restrictions on the knot-net U of vectors: wuy; =
(@1i, b14y €1i), ugi = (ag;, bai, c2i), and us; = (as,bs,c3). In other words, the generalized
Newton dual basis is obtained by restricting one of the three sets of vectors in the knot-net
to contain exactly one element. The homogeneous Newton dual basis for surfaces defined
here is a generalization of the Newton dual basis for curves [BG93]. Observe that the
Bézier, multinomial, and BM B-bases are special cases of the Newton dual basis. Another
important subclass of the generalized Newton dual basis is obtained by imposing the fol-
lowing restrictions on the knot-net: wy; = (ay;, beiy 1), ug; = (1,0,0), and us; = (0,1,0).
One interesting and useful property of this Newton dual basis is that in the up recurrence
relation for the B-basis defined in Section 2.2 by Equation 2.2, the labels hj,(u) do not
involve any divisions. Indeed, if u = (z,y,z2), then hy, = 2, hao(u) = = — a1,4,412,
hs,o(u) =y — by o, 412. This property of the Newton dual basis can be applied to minimize
divisions and simplify computations in change of basis algorithms.

For the sake of completeness, we describe an explicit expression for these special Newton
dual basis functions. Let L; = y — by;z and M; = x — aq;z. Then the dual basis functions
b7 are given by:

= XD B M M,
where the sum is taken over all & = (ay, ag, a3) with |a| = n and @y = a9y + -+ - + a2 0, 41,
a3 = ag1+ -+ a3 4,41, and a;; > 0. The derivation is straightforward from the definition,
although the bookkeeping is somewhat tedious.



24 4. Examples of Dual bases

4.3.3 Duality

Under the knot-net correspondence it is clear from the construction that the generalized
Newton basis is dual to the generalized Newton dual basis. However it is not true that
the Newton basis is dual to the Newton dual basis. Nevertheless, it is these special
cases of the Newton basis and Newton dual basis that turn out to be the most useful
in practical situations and hence the terminology. The duality here is similar to the duality
we encountered for uniform bases, where a uniform L-basis is dual to a uniform B-basis,
although a Bézier basis could be dual to either a Bézier, a multinomial, or a hybrid BM
basis. Similarly, the generalized Newton basis is dual to a generalized Newton dual basis,
although a Newton basis itself may not necessarily be dual to a Newton dual basis.
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5. Applications of Duality

There are many applications of duality between B-bases and L-bases. We can use
geometric duality to show that a particular point-line configuration can (cannot) represent
the knot-net for a B-basis (L-basis) by showing that the dual configuration can (cannot)
represent the knot-net for the dual L-basis (B-basis). We used this argument in Section
4.2.3 to conclude that the dual natural lattice of order 3 (Figure 4.9) cannot represent the
knot-net of a power B-basis because we already knew that the natural lattice of order 3
(Figure 4.5) does not represent the knot-net of any Lagrange L-basis.

We can also use algebraic or de Boor-Fix duality to great effect. By applying algebraic
duality, we can show that many formulas and algorithms for B-bases map to dual formulas
and algorithms for L-bases and vice-versa. Thus once we develop a formula or algorithm
for one type of basis we can often obtain, almost for free, a dual formula or algorithm for
the dual basis. Formulas and algorithms for change of bases [LG95], evaluation [LG94c],
differentiation [L.G94b], degree elevation [L.G94b], and subdivision [LG94a] each have dual
analogues for B-bases and L-bases. This observation allows us to develop a formula or
algorithm for whichever scheme is easier to analyze and then map this to a dual formula or
algorithm for the dual scheme.

A general change of basis algorithm for B-bases is easy to derive via blossoming [LG95].
By de Boor-Fix duality, we can use this procedure to construct dual change of basis
algorithm for L-bases [LG95]. As an application of the constructions in this paper, in
the next section we apply this algorithm to convert a bivariate polynomial from a Lagrange
representation to a Bézier representation. We also observe that the reverse transformation
from Bézier to Lagrange form yields a fast evaluation algorithm for Bézier patches and
hence as well for arbitrary B-patches and L-patches.

020

000 100 200

@ Given Coefficients

@ Empty or zero nodes

Figure 5.1: Labeling of the tetrahedron
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Figure 5.2: Change of basis from Lagrange L-basis to Bézier L-basis

5.1 A Change of Basis Algorithm for L-bases

The computational complexity of general change of basis algorithms from one bivariate
polynomial basis of degree n to another bivariate polynomial basis of degree n using matrix
multiplication is, in general, O(n?). Using blossoming and duality, we have derived change
of basis algorithms with computational complexity O(n>) between any two B-bases, any
two L-bases, and between any B-basis and any L-basis [LG95]. In this work we have
demonstrated that certain bivariate Lagrange bases and Newton bases can be realized as
L-bases and that certain power bases and Newton dual bases can be realized as B-bases.
As a consequence, these change of basis algorithms can now be applied to convert between
Bézier, multinomial, Lagrange, power, Newton, and Newton dual bases.

We shall now describe a specific example of a change of basis algorithm from a Lagrange
L-basis to a Bézier L-basis to illustrate the general procedure.

Suppose we are given the coeflicients R, of a quadratic polynomial I with respect to

the L-basis {I/} defined by the knot-net £ = {{Ly,},{L2;},{Ls;},j = 1,2}, where

Lii== ;L12=$—% ;
Ly =y iLog = —% ;
Lyp=1l-2—yilpy=%5-2—y.

The Lagrange L-basis is then given by (3,0 = z(z—3), By = y(y—13), s = (1—2—y) (3 —
—y), o=y, 3y = 2(1 -2 —y), and l; = y(1 — 2 — y). The point-line configuration
associated with this Lagrange L-basis is shown in the left diagram of Figure 4.3.

We would like to compute the coefficients U, of this polynomial L with respect to the
Bézier L-basis {p>} defined by another knot-net M = {{Mj;}, {My;}, {Ms;},7=1,2},
where
My =2 s Mg =2 )

Mz =y s My =y )

Mygp=1-z—-y; My =1-2—y.

The Bézier L-basis is then given by ploy = 22, pdog = v%, pios = (1 — 2 — y)?%, ph = 2y,
Plor = 2(1 =2 —y), and pgyy = y(1 -z —y).

To describe the change of basis algorithm, we will construct three tetrahedra. We first
explain the labeling scheme for these tetrahedra. For each tetrahedron, W nodes are
placed at the i-th level of the tetrahedron for ¢ = 0, 1,2 and the nodes along one of the
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lateral faces are indexed by « for |a| = 2. An arrow is placed pointing downward from a
node « at i-th level to the three nodes o+ e; — €3, v+ €2 — e3 and a — ez at (i — 1)-st level
directly below it. This labeling scheme for the nodes is shown in Figure 5.1. Values, referred
to as labels, are placed along the arrows. The labels are indexed as g, for £ =1,2,3 and
|a] =0, 1,2 for an arrow from a node (ay,ag,2 — |a|) at the |a|-th level to the three nodes
below it. This labeling scheme for the labels and the arrows is also shown in Figure 5.1.

For the first tetrahedron the known coefficients R, with |a| = 2 are placed at the nodes
along one of the lateral faces of the tetrahedron as depicted in the first diagram of Figure
5.2. The labels gj , are computed as follows: for |a| = 0,1, let ¢ = 2 — |a; then

L3i = g1,0l1,0041 + 92,0L2, 0041 + 93,0 M3,0541-

Thus finding ¢x , amounts to solving a 3 X 3 system of linear equations. For our example,
the labels are: g1 100 = 92,100 = — 3, 3,100 = %, 93,100 = 93,010 = 93001 = 1. The rest of the
labels are zero. These labels are shown in the first diagram of Figure 5.2. The computation
is now carried out as follows. At the start all the nodes at all levels of the pyramid are empty
or zero other than the nodes a with |a] = 2, where the coefficients R, are placed. The
empty or zero nodes are shown as hatched circles in Figures 5.1 and 5.2. The computation
starts at the apex of the tetrahedron and proceeds downwards. A value at any empty
node is computed by multiplying the label along each arrow that enters the node by the
value of the node from which the arrow emerges and adding the results. A value at any
non-empty node is computed by applying the same procedure and simply adding the value
already at that node. After the computation is complete, the new coefficients S, (2_|a|)es
emerge on the nodes « at the base triangle. These coefficients are as follows: Syg0 = Ra200,
S110 = Ri10, So20 = Rozo, S101 = —%Rooz + Rio1, So11 = —%Rooz + Ro11, Sooz = %Rooz-
These new coefficients now express the polynomial L with respect to the L-basis defined by
the knot-net {{Ly;},{Lo;}, {Ms;},7=1,2}

We now repeat the above procedure with a second tetrahedron, where the coefficients
S, are placed at the nodes a with |o| = 2 as shown in the middle diagram of Figure 5.2.
The labels on the tetrahedron are permuted from (¢, 7, k) to (i, k, j) because we now wish
to retain the polynomial Ms; and replace the polynomials Ly; by My;. The labels g are
now computed as follows: For |a| = 0,1, let ¢ = 2 — |a|; then

Loi = g1,0l1,0041 + 92,0 M2 0041 + 93,0 M3,0541-

These labels are also shown in the middle diagram of Figure 5.2 and in our special case turn
out to be the same as in the first tetrahedron. After the computation is complete, the new
coeflicients T, emerge on the nodes at the base triangle. These coefficients are as follows:
Ts00 = S200, T110 = —%5020 + St10, Toz20 = %50207 Tio1 = Sio1, To1r = —%5020 + So11,
Too2 = Soo2. These coefficients now express the polynomial L with respect to the L-basis
defined by the knot-net {{Ly;}, {My;}, {Ms;}, j =1,2}.

Finally we repeat the above procedure with a third tetrahedron, where the coefficients
T, are now placed at the nodes o with || = 2 as shown in the rightmost diagram of Figure
5.2. The labels on the tetrahedron are now permuted from (¢, 7, k) to (j, k,¢) because now
we wish to retain the polynomials Mj; and Ms3; and replace the polynomials Li; by My;.
Now the labels g, are computed as follows: For |a| = 0,1, let ¢ = 2 — «; then

Lii = g1,6M1,01041 + 92,6M2 0541 + 93,6 M3 0541
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Again in our special case these labels are the same as in the first tetrahedron and are shown
in the right diagram of Figure 5.2. After the computation is complete, the new coefficients
U, emerge on the nodes at the base triangle. These new coefficients are as follows:
Uzoo = %T2007 U0 = —%Tzoo + T110, Uo20 = To20, Uror = —%Tzoo + Tio1, Uorr = Tou,
Upoz = Tpoo- These coefficients express the polynomial L with respect to the L-basis defined
by the knot-net M = {{My;},{My;},{Ms;},j =1,2}. The change of basis algorithm is
now complete. The final coefficients T, are: Usgp = %Rzoo, Ui10 = —%Rgoo — %Rogo + Ri10,
Uoz0 = %30207 Uior = —%Rzoo— %R002‘|‘R1017 Uoi1 = —%Rozo— %R002‘|‘R0117 Uooz = %Tooz-
The general change of basis algorithm from any L-basis to any other L-basis is obtained
by following essentially the same procedure. Suppose we are given the coeflicients R,
of a polynomial L of degree n with respect to an L-basis {{”} defined by the knot-net
L = {{Ly;},{Le;},{Ls;},j=1,---,n}. We would like to compute the coefficients U,
of this polynomial L with respect to another L-basis {p}} defined by another knot-net
M= {{Mlj}v {M2j}7 {M3j}7j =1,---,n}.
The general change of basis algorithm is constructed in the following manner:
1. Build three tetrahedra. For each tetrahedron, M%M nodes are placed at the
i-th level of the tetrahedron for i = 0,---,n. The labels g; . along the edges of the
first tetrahedron are computed for |a| = 0,---,n — 1, from

Lsi = g1,0Ll1,0041 + 92,0L2,0041 + 93,0 M30541, 1=n— |-

The labels for the second and the third tetrahedron are computed in a similar fashion.
We assume that the intermediate knot-nets {{Lq;}, {Lo;}, {Ms;}, 5 =1,---,n} are
linearly independent.

2. Point the arrows on the tetrahedron downwards and place the original coefficients R,
along the lateral face of the pyramid. Carry out the computation and collect the new
coeflicients S, along the base of the pyramid.

3. Repeat steps 1 and 2 twice with the second and third tetrahedron using the output
of the previous step as the input of the next step. After 3 steps, the coeflicients at
the base of the tetrahedron are the desired coefficients U,,.

We can use this general change of basis algorithm for L-bases to convert from Bézier to
Lagrange form. Since the Lagrange coefficients are the values of the bivariate polynomial
at O(n?) nodes and since this change of basis algorithm is O(n?), converting from Bézier
to Lagrange form evaluates the polynomial at O(n?) points with an amortized cost of O(n)
computations per point. This cost compares very favorably with the de Casteljau evaluation
algorithm for Bézier surfaces which costs O(n®) computations per point.

Finally, the transformation between a B-basis and an L-basis can be achieved by fac-
toring through the Bézier or multinomial bases, which are both B-bases and L-bases. For
example, given a polynomial with respect to a power B-basis one can convert from the power
B-basis to either a multinomial or Bézier basis using the change of basis algorithms between
B-bases [LG95] and then convert from the multinomial or Bézier basis to the desired L-basis,
say a Lagrange L-basis, by using the change of basis algorithms between L-bases described
above. Again when the L-basis is a Lagrange basis, this change of basis algorithm evaluates
the B-patch at O(n?) points with an amortized cost of O(n) computations per point. This
compares favorably with the generalized de Boor evaluation algorithm for B-patches which
requires O(n®) computations per point.
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6. Conclusions and Future Work

Lagrange and Newton bases play a very important role in point and derivative inter-
polation problems for surfaces. We have demonstrated that a very interesting subclass of
bivariate Lagrange bases can be realized as bivariate [-bases. We have also demonstrated
that a very interesting subclass of bivariate Newton bases can be realized as bivariate L-
bases. Using the principle of duality between L-bases and B-bases, we have established
that Lagrange L-bases and generalized Newton L-bases are dual respectively to power B-
bases and generalized Newton dual B-bases respectively. We have also discussed the duality
between Bézier and multinomial bases, which arise as special cases of both B-bases and L-
bases. We went on to provide a geometric interpretation of the duality principle as point-line
duality, where a point or a vector in a B-basis corresponds to a line in an L-basis. This
duality provides strong geometric insight for working with these bases.

We have presented a unified collection of change of basis algorithms based on the
principle of duality for a wide variety of polynomial bases used in representing surfaces
including the Bézier, multinomial, Lagrange, power, Newton, Newton dual, B-bases, and
L-bases. We have also given an example of change of basis from Lagrange to Bézier basis.

This research has opened up several interesting new questions. The generalization of the
de Boor evaluation algorithm for bivariate B-bases is very well-known. The dual evaluation
algorithm for bivariate L-bases was described by the authors in an earlier work [LG95]. Does
this algorithm yield new algorithms for the evaluation of multinomial, Lagrange and Newton
bases? The de Casteljau subdivision algorithm for a Bézier patch is very well-known. What
is the corresponding dual algorithm? We plan to investigate the dual evaluation algorithms
for L-patches [LG94c], dual de Casteljau subdivision algorithm for Bézier surfaces [L.G94a]
and duality between degree elevation and differentiation formulas [.G94b] in forthcoming
papers. Although we have discussed point-line duality, we have observed that this duality is
not self-dual. It will be interesting to explore self-duality and discover new computational
algorithms based on self-duality. It would also be worthwhile to extend the notions of B-
bases and L-bases to enlarge the configurations of points and lines for which Lagrange or
Newton bases exist but for which a Lagrange L-basis or Newton L-basis does not exist.

Acknowledgments: We would like to thank Phil Barry of the University of Minnesota for
discussing some of the topics presented here, and helping us to improve our presentation.
This work was partially supported by National Science Foundation grants CCR-9309738
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6.1 Appendix

Let { uy;, uy;, ugj, j = 1,---,n } be a knot-net of vectors. Suppose the vectors
(W1,004+15 U2 00415 U3 oat1) are linearly dependent for |a| = n, 0 < ap < n — 1. This
appendix gives an inductive proof of the fact that up to constant multiples each element of
the corresponding B-basis b7 is an n-th power of a linear polynomial. The inductive proof
is very interesting in its own right and reveals the underlying structure of the recurrence
diagram. Also the technique used in the proof is valuable in other situations, including the
proof of the generalized Aitken-Neville algorithm for Lagrange L-bases [L.G94c].

Let g, be the equations of the lines associated with the power B-basis as defined in

Section 4.2.2.
Theorem 2:

(42)"
Hj:1,~~~,ozi;i:1,2,3 o (W)

by (u) =

Proof: The proofis by induction. The case n = 1 reduces to the simple case of a triangle
defined by the points uyq, us; and uszy. The lines opposite to these vertices are (100, Qo1o
and Qgo1 respectively. In this case it can readily be verified that the basis functions biy,,

1 1 9100 4010 9001 . . ..
by and by, are Too(U11)7 7010 (3] and 2001 (13D) respectively. If the three points lie in the

affine plane, then these basis functions are simply the barycentric coordinates with respect
to the triangle formed by uyy, uz; and us;.

The inductive hypothesis assumes that the statement of the theorem is true for n — 1.
We now prove that the statement holds for n. To this purpose, choose an arbitrary but fixed
«. Recall that b7 is defined from the recurrence in Equation 2.2 by substituting C, = 1
and setting the other constants C')3 = 0. With this choice of constants, at the highest level
of the recurrence when || = 0, we make the following observations:

1. C§(u) =0b%.

2. hgoo(u) are the coordinates of u with respect to the triangle (w1, ug1, usg), that is,

_ _q100(1) _ _qo10(u) _ _qoo1(u)
hl,OOO(u) ~ qioo(ui1)’ hz,ooo(ll) ~ go1o(u21)’ and h37000(u) ~ qoo1(us1)”

3. Finally, Cgk_l(u) for k = 1,2,3 are obtained by running only n — 1 levels of the
recurrence in Equation 2.2, and therefore, C2~!(u) = b21 (u), where b3_L (u) are the
B-basis functions corresponding to the knot-nets Wy = {(11,- - -, u1s), (uz1, - -, U24),
(11317 Tty fl3n)}7 Wy = {(11117 Tty ﬁln)7 (fl217 Tty llzn)7 (11317 Tty fl3n)}7 and W5 =
{(uy1,- -+, t1p), (ugq,- -, U2pn), (A1, -, us,)} respectively, where i means that the

term u is missing.
Putting these observations together, Equation 2.2 at the highest level of recurrence when

|a] = 0 now translates into the following:

b () = q100(W) ;1

f]010(11) n—
qroo(u11) ame (W) + bz

u M =1 (4
qoro(uz1) a_62( )+ q001(u31)ba—63( ). (6.1)

We now prove that the knot-nets W;, W, and Ws satisfy the linear independence
condition so that they actually are knot-nets and that they also satisfy the linear dependence
condition of the power basis.

To this purpose, let us denote the knot-net of Wy also as follows: {wy;, wg;, ws;,j =
1,---,3}. The knot-net W satisfies the linear independence condition because (W1 g, 41, W2 8,41, W3 g,41)
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is linearly independent for 0 < |5| < n — 2 iff (uy g 42, U2 8,41, U3 8,+1) is linearly inde-
pendent for 0 < || < n — 2. The latter condition is, however, equivalent to the linear
independence of (U 4,41, U2,a,4+1; Us,a5+1) Where oo = (1 + 1, 82, B3) with 1 < |a| < n —1,
which is satisfied because of the linear independence condition on the original knot-net .
Similarly, the knot-nets Wy and Ws are linearly independent.

Moreover, the knot-net Wy satisfies the linear dependence condition of the power basis
because (Wi 8,41, W2 8,41, W3 g,41) are linearly dependent for |5 =n—1,0 < 8 < n—2iff
(u1,8,4+2; U2 8,41, U3 g,4+1) are linearly dependent for |3| =n—1, 0 < f < n—2. The latter
condition is, however, equivalent to the linear dependence of (uy o,+1, U2 0p41, U3 agt1)
where a = (1 + 1, 82, B3) with || = n, 0 < ap < n — 1, which is satisfied because of the
linear dependence condition on the original knot-net ¢/. Similarly, the knot-nets W5 and
Ws satisfy the linear dependence condition of the power basis.

Since the knot-nets Wy, Wy and Wj satisfy the assumptions of the theorem, we can
apply the inductive hypothesis to these knot-nets. Now observe that the line corresponding
to the power B-basis bZ:él with |a| = n, is the line determined by wy 4,, W2,4,4+1 and
W3 oa41. Which in turn is the line determined by (uy 4,41, U1 0,41, U3,a5+1), and is therefore

¢o. Similar assertions hold for bZ:LA) and bZ:iS. Hence the inductive hypothesis yields:

bn_l 1) = Qa(ukl) L(u n—ll
(w) Hj:1,~~~,ozi;i:1,2,3qa(uij) (2a(w))

Substituting this formula into Equation 6.1, we obtain:

b (u) = (qa(u))”—l ( o (W11) 100(u) + 7%(1121) o10(u) + 7%(1131) f]001(11)) .
“ H]‘:17...7ai;¢:1,2,3 qa(uij) f]loo(uu) f]010(1121) f]001(1131)
(6.2)
Now observe that the expression I within the brackets in Equation 6.2 is a linear poly-
nomial and is therefore completely determined by its value at three independent points.
However, since [(ug1) = ga(ug1) for & = 1,2,3 and uyy, ugy, and us; are linearly indepen-
dent points, it follows that I = g,(u). Thus the statement of the theorem is established.
O



