Distributed Algorithms for Multicast Path
Setup

in Data Networks

Fred Bauer

Anujan Varma

UCSC-CRL-95-10
August 16, 1995

Computer Engineering Department
University of California
Santa Cruz, CA 95064

E-mail: {fred,varma}@cse.ucsc.edu

Abstract

Establishing a multicast tree in a point-to-point network of switch nodes, such as a wide-area ATM
network, can be modeled as the NP-complete Steiner problem in networks. In this paper, we introduce
and evaluate two distributed algorithms for finding multicast trees in point-to-point data networks. These
algorithms are based on the centralized Steiner heuristics, the shortest path heuristic (SPH) and the Kruskal-
based shortest path heuristic (K-SPH), and have the advantage that only the multicast members and nodes
in the neighborhood of the multicast tree need to participate in the execution of the algorithm. We compare
our algorithms by simulation against a baseline algorithm, the pruned minimum spanning-tree heuristic,
which is the basis of many previously published algorithms for finding multicast trees. Our results show that
the competitiveness (the ratio of the sum of the heuristic tree’s edge weights to that of the best solution
found) of both of our algorithms was on the average 25 percent better in comparison to those produced by
the pruned spanning-tree approach. In addition, the competitiveness of our algorithms was, in almost all
cases, within 10 percent of the best solution found by any of the Steiner heuristics considered, including both
centralized and distributed algorithms. Limiting the execution of the algorithm to a subset of the nodes
in the network results in an increase in convergence time over the pruned spanning-tree approach, but this
overhead can be reduced by careful implementation.

Keywords: Multicasting, Steiner problem in networks, Distributed algorithms.

This research is supported by the Advanced Research Projects Agency (ARPA) under Contract No. F19628-93-C-
0175 and by the NSF Young Investigator Award No. MIP-9257103. This paper was presented in part at GLOBECOM
95, Singapore, November 1995.

1 Introduction

Many future applications of computer networks such as distance education, remote collaboration,
and teleconferencing will rely on the ability of the network to provide multicast services. Indeed,
many recent standards for packet-switched networks, notably ATM, Frame Relay and SMDS, include
support for multicasting. Thus, multicasting will likely be an essential part of future networks.

Multicasting is sometimes supported in a point-to-point packet network by setting up a
multicast tree connecting the members of the multicast group. We concern ourselves in this paper
with networks that use virtual circuit routing, such as ATM and Frame Relay. In such a network,
a multicast virtual circuit is set up from the source of the multicast to the destinations before data
transmission occurs. Determining this optimal multicast tree for the virtual circuit is a difficult
problem. Previous authors have established that the multicast tree problem can be modeled as
the Steiner problem in networks [2, 3, 8, 20], referred to hereafter as the SPN, and that finding
explicit solutions in large networks is prohibitively expensive. For example, two popular explicit
algorithms, the spanning tree enumeration algorithm and the dynamic programming algorithm [20],
have algorithmic complexities of O(p?2(*=?) 4 n3) and O(n3? + n?2P + n?), respectively, where n
is the number of nodes in the graph and p the number of multicast members. A number of good,
inexpensive, centralized heuristics exist for the SPN and have been reviewed extensively elsewhere
[3, 8, 10, 15, 16, 17, 20]. Some have been shown through analysis to produce solutions no worse than
twice the optimal solution [20]. Empirical evidence from our previous papers indicate that these
heuristics find solutions much better than twice the optimal with reasonable speed in most cases [1].

Most of the algorithms proposed in the literature for SPN are serial in nature. However, a
few distributed heuristics exist [4, 12]. Many of these algorithms are based on reducing the SPN to
the minimum spanning tree problem, referred to here as the MST, and using a distributed minimum
spanning tree algorithm such as the one described by Gallager, Humblet, and Spira [6]. A Steiner
tree is created by pruning the minimum spanning tree by removing subtrees containing no multicast
members. For example, Chen, et al. [4] finds a Steiner tree by applying a distributed minimum
spanning tree algorithm twice. First the algorithm is applied to the original graph. This first
minimum spanning tree is used to create a shortest path forest composed of disjoint trees and edges
that together form a connected subgraph of the original graph. The distributed minimum spanning
tree algorithm is then applied a second time to this subgraph. The solution is obtained by pruning
unnecessary leaves and branches from this second minimum spanning tree. Likewise, Kompella,
et al. [12] describe two distributed versions of earlier centralized heuristics proposed by the same
authors [11]. Both of these distributed heuristics first build a constrained Steiner tree that reflects
the combined criteria of cost and delay. A distributed MST algorithm is applied to this constrained
Steiner tree and the solution tree is pruned. The two heuristics differ in their criteria for choosing
edges while constructing the MST.

Distributed Steiner heuristics based on a minimum spanning tree algorithm suffer from two
drawbacks: First, all the nodes in the network must participate in the execution of the algorithm.
This may be impractical in a large network with sparse multicast groups. Second, the theoretical
upper bound on competitiveness of a pruned MST to that of an optimal Steiner tree has been shown
to be s + 1, where s is the number of non-multicast nodes [17]. Here competitiveness is defined to

be the ratio of the sum of the heuristic tree’s edge weights to that of an optimal tree [9, 18, 19].

Other equivalent terms for this measure include inefficiency and quality of solution. Thus the
competitiveness of a multicast tree decreases with the size of the multicast group. In comparison,
the equivalent theoretical upper bound for the shortest path heuristic (SPH) for the Steiner tree
problem is 2(1 — Zl)) [20], where p is the size of the multicast group. Our empirical evidence suggests
that pruned MST heuristics often produce solutions of inferior quality as compared to those produced
by shortest path Steiner heuristics.

In this paper, we present two distributed algorithms for the Steiner problem in networks.
The algorithms are based on the shortest path heuristic (SPH) and the Kruskal-based shortest path
heuristic (K-SPH), described in [1]. We analyze their message and convergence-time complexities
and compare their simulation results against those from a pruned MST algorithm. We choose the
distributed MST algorithm due to Gallager, Humblet, and Spira [6] as our baseline algorithm for
comparison. This algorithm is perhaps the simplest of all pruned MST algorithms, yet produces
Steiner trees that are representative of other, more elaborate pruned MST heuristics such as those
described in [4, 12]. The distributed heuristics are compared on the basis of three criteria: compet-
itiveness, number of messages exchanged, and convergence time.

Our simulations of the algorithms are performed on a large set of sparse, randomly-generated
network topologies. We use the distance propagation delay model, using the distance between nodes
as the weight of the edge between them. We restrict our analysis to sparse networks for two reasons:
(i) they are more representative of real point-to-point networks, and (ii) they are inherently more
difficult to solve because, in general, fewer solutions exist in a sparse network than in a dense one.
Similarly, the simulated multicast groups are small relative to the size of the network, reflecting
likely multicast applications such as video conferencing, distance learning, resource discovery and
replicated database updating. Note that our results are not specific to any particular type of network
such as ATM, but may be applied to any virtual circuit-based point-to-point network.

The remainder of this paper is organized as follows. Section 2 introduces and analyzes our
two distributed heuristics, based on the centralized Steiner heuristics K-SPH and SPH, respectively.
Section 3 compares the algorithms in terms of their competitiveness, convergence time, and number
of messages exchanged. We show that the distributed shortest-path heuristics produced multicast
trees with competitiveness within 5% of that of the best solution found by any heuristic, both
centralized and distributed, in more than 90 percent of our test networks. In contrast, only 0.3% of
the solutions produced by the pruned MST algorithm fell within 5% of the best solutions in terms
of their cost (sum of edge weights). Finally, Section 4 concludes the paper with a discussion of the

results.

2 Steiner Tree Heuristics

In this section, we summarize previous Steiner heuristics and introduce the two distributed Steiner
heuristics.

Before continuing, we make the following basic definitions and notations. 7 is the set of
multicast destinations, S'is the set of non-multicast nodes V' — 7, F; ; is the shortest path between
nodes ¢ and j, d; ; is the distance of the shortest path between nodes ¢ and j as well as the weight
of the edge between nodes ¢ and j, and C(T) is the cost of tree T' (the sum of T’s edge weights).

Graph distances will be defined as follows: The distance between two nodes is the distance of the

shortest path between them. Likewise, the distance between a node and a tree is the distance of the
shortest path between the node and any node in the tree. Finally, the distance between two trees
is the distance of the shortest among all paths between any node in one tree and any node in the
other tree. As in [6], we append the weight of an edge or path with the index of its destination node
in determining shortest paths so that, in case of a tie, the actions of the individual nodes would be
consistent. Since we do not allow multiple edges between the same pair of nodes, this ensures that
all the nodes select the same edge or path, given the same set of edge weights.

To be suitable for distributed implementation, a heuristic must satisfy four criteria. It must
(i) use the existing routing information available at each node in the network, (ii) use minimal
computational and network resources, (iii) require a minimum of coordination between neighbors,
and (iv) limit itself to nodes directly involved in the multicast. Of the centralized heuristics evaluated
in [1], we chose the following four heuristics as candidates for distributed implementation: the
shortest-path heuristic (SPH), a variant of SPH known as SPH-Z, the Kruskal-based shortest-path
heuristic (K-SPH), and the Average distance heuristic (ADH). Each of these heuristics is described
in [15]. A brief summary of heuristics SPH and K-SPH follows.

SPH

Heuristic SPH, introduced in [16], initializes the multicast tree to an arbitrary multicast member. It
then grows the tree by successively adding the next closest multicast member to the multicast tree
by the shortest path between the multicast member and the tree. The algorithm terminates when

all the multicast members have joined the tree.

K-SPH

Heuristic K-SPH, introduced in [13], differs from SPH in the manner in which the multicast tree
is expanded. Instead of growing the tree one node at a time, the algorithm joins subtrees pairwise
repeatedly until all the multicast nodes are part of a single tree. The algorithm initially starts with
Z subtrees, each a multicast member itself. In the expansion step, it finds two subtrees that are
closest to each other and joins them along the shortest path between them to form a single subtree.

This heuristic is a refinement of the average distance heuristic first proposed by Rayward-Smith [14].

2.1 Distributed Steiner Heuristics

After further consideration, only two of the four heuristics, SPH and K-SPH, remain as suitable
candidates for distributed implementation. Both heuristics SPH-Z and ADH fail our criteria for
conversion. Although heuristic SPH-Z initially appears attractive as a distributed heuristic, its
component distance information for each of the Z instances could be distinct. This forces as many
as Z copies of component information at each node and a virtual storm of network messages before
convergence. Likewise, ADH fails our criteria because its calculation of the most central node requires
excessive overhead for coordination between nodes in the network. In addition, our earlier results
indicate that, on the average, the solutions produced by K-SPH and ADH are of nearly identical
quality [1]. Of these two heuristics, K-SPH is the more attractive candidate because of its relative

simplicity and lower running time.

Distributed
K-SPH

Figure 1: The finite state machine for fragment leaders in distributed K-SPH.

Distributed heuristics SPH and K-SPH are designed to run as asynchronous, independent
processes running one per node in a network.

We assume that each such node knows its shortest path to all other nodes in the network.
Each distributed heuristic assumes that each node in the network is a router; the routing tables in
each such node is up-to-date; all shortest paths are symmetric in the sense that nodes ¢ and j share
shortest paths between them; no topology changes occur during the execution of the algorithm; the
network is connected; every node has a unique index; each multicast member has knowledge of the
indices of all other multicast members; and each multicast member is able to determine the distance
to every other node from its routing table.

Heuristic SPH is inherently a serial algorithm, since there is only one subtree expanding
itself at any time during the execution of the algorithm and nodes must join the tree serially.
Heuristic K-SPH, on the other hand, allows many of the join operations to proceed in parallel. The
latter, however, is substantially more difficult to parallelize because of the significant amount of
coordination that may be needed while combining subtrees. In the following, we present distributed
K-SPH first, followed by a similar distributed implementation of SPH.

2.1.1 Distributed Heuristic K-SPH

Like its centralized version, distributed K-SPH starts with a forest of 7 multicast members (Z-nodes)
and connects them pairwise into successively larger subtrees until a single multicast tree remains or
no further connections are possible. We refer to the subtrees during the execution of the algorithm
as fragments. Thus, at the beginning of the algorithm, there are Z fragments, each a trivial subtree
consisting of one Z-node. As the algorithm proceeds, these fragments grow into increasingly larger
collections of multicast members.

At any instant during the execution of the algorithm, each node in the network is either
part of a fragment or has not been yet been included in the multicast tree. Note that every Z-
node is always a fragment node and every non-member node (S-node) is initially a non-fragment
node. When two fragments merge, the nodes in both fragments and the nodes that lie on the path

connecting them become the fragment nodes of the new, merged fragment.

while fragments remain do

algorithm discovery step
update fragment information for nearby fragments
f — closest fragment

algorithm connection step
request merger with fragment f
if merger requests exchanged with fragment f then
attempt connection to fragment f
if connection established then
merge fragments
else
restore original fragments
end if
end if
end while

Figure 2: Pseudocode for fragment leaders in distributed K-SPH.

Each fragment has a fragment leader coordinating the activities of the fragment. This
fragment leader is the fragment Z-node with the lowest index. Each fragment leader executes the
finite state machine shown in Figure 1. Initially, each multicast member is the leader of its own
one-node fragment; when two fragments merge, leadership is assigned to the fragment leader with
the lower index. To identify fragments uniquely, each fragment has the same index as its leader and
each fragment node is aware of its fragment index.

At the highest level, each fragment, guided by its leader, executes the pseudocode shown in
Figure 2. During the execution of the algorithm, each fragment attempts to merge with its closest
neighboring fragment. This is accomplished in two steps — a discovery step and a connection step.
During the discovery step, the leader gathers and updates its information on other fragments and
graph nodes. Based on the information gathered, it determines the closest fragment to merge with.
During the connection step, it communicates with the closest neighbor fragment’s leader, requesting
a merge. This closest fragment leader is simply the Z-node with the same index as the closest
fragment. If accepted, the leader with the lowest index attempts to connect the two fragments.
Regardless of the outcome (the request is rejected, the fragments are connected, or the connection
attempt fails), the cycle repeats until the algorithm terminates.

Distributed K-SPH processes running on each node rely on the shortest path information
assumed available at its node, as well as information maintained by the fragment leaders. Each
node also stores the index of its fragment. Initially, only multicast nodes have a fragment index
—its own index. Each leader maintains additional shortest path information for its fragment. This
information augments the shortest path information at each node. For example, the leader stores
only the distance, and the head and tail of the shortest path between its fragment and every other

fragment. The additional details necessary to build the path between fragments is stored at the

request merger with fragment f

do
send request to fragment f’s leader
wait for response

until accept or reject

leader < this fragment index < fragment f’s index
if accept and leader then

attempt connection to fragment f

send connect message to head of shortest path

walt for connection success or failure
if failure then
send reject to fragment f’s leader

end if

Figure 3: Fragment leader pseudocode for the connection step in distributed K-SPH.

head of the path, a node in the leader’s subtree. Note that the shortest path between fragments

need not start or end at a leader node.

2.1.2 The finite state machine of heuristic K-SPH

State init: When distributed K-SPH starts, each Z-node, the leader of its own trivial one-node
fragment, already knows its distance to every other fragment as provided by the initial distance
tables and no discovery step is necessary. Instead, each distributed K-SPH leader starts with the

connection step, described below.

States request, wait, and connect: States request, wait and connect in Figure 1 comprise the
connection step. During this step, each leader attempts to connect its fragment with the closest
fragment, known as its preferred fragment (Figure 3 shows the pseudocode for this step). It does so
by sending a merge request message to the leader of the preferred fragment (That is, the Z-node with
the same index as the preferred fragment). A leader receives one of three responses to its request:

accept, reject, or busy.

busy A fragment leader returns the busy response when a request arrives during its discovery step.

Upon receiving a busy response, a fragment will retransmit its merge request.

reject A fragment node returns a reject message when (i) it receives a connections request from a
fragment other than its preferred fragment, (ii) when a connection attempt fails, or (iii) when

it 18 no longer a fragment leader.

accept A fragment leader returns an accept response when it exchanges merge requests with its
preferred fragment. Once an accept message is sent, the fragment may not leave the connect

step or accept a request from another fragment until the connection attempt completes.

Fragment edges Head Shortest path

= Fragment leader
= Fragment node
= Non-fragment node

Figure 4: Example of fragments A and B merging in distributed K-SPH.

Connecting fragments: Upon receiving the accept response, the fragment leader with the lowest
index attempts to connect the two fragments together using a shortest path. To do so, a connect
message 1s sent down this shortest path. The message may either reach the target fragment or be
blocked; blocking occurs when the message reaches a node in a third fragment before reaching the
target fragment.

Figure 4 illustrates a successful connection where fragments A and B are connected by their
shortest path. This path has its head in one fragment, its tail in the other, and passes through only
non-fragment nodes. The connect message stops at the first node in the target fragment it reaches
and sends a status message back along the same path.

If the connect message is blocked, the blocked node returns a status message back along the
shortest path. Each intermediate node upon receiving this status message reverts to its previous
non-fragment status. Upon receiving the status message, the initiating fragment leader sends a
reject message to the other fragment leader.

After the connection step, fragment leaders enter the discovery step.

The discovery step: The discovery step accomplishes three tasks: (i) it informs every node in
the fragment of its new fragment index, (ii) it gathers fragment information about nodes close to the
fragment, and (iii) it refreshes its information on shortest paths to other fragments. The pseudocode
for the discovery step is shown in Figure 5. Each fragment leader achieves these tasks by performing
a multicast on its fragment rooted at itself. In the multicast message, the leader includes the
fragment index, the distance to the preferred fragment and shortest paths to other fragments. As
each node in the fragment receives the multicast, it updates its fragment index, queries nearby nodes
and passes the multicast message to its children. Nearby nodes are defined to be those nodes that
lie within the shortest distance from this fragment to the preferred fragment. Nearby nodes are
queried for fragment index information. The objective of queries to nearby nodes is to find fragment
nodes closer than those already known by the leader. Figure 6 illustrates a case where this 1s useful.
Queries could be sent to all nodes in the graph, but are limited to nearby nodes for two reasons:
(i) a set distance avoids broadcast storms and (ii) new shortest paths discovered should be shorter

than those already available. The discovery step i1s implemented by state flood-to-N in Figure 1.

Analysis of Distributed K-SPH Algorithm: Having described the distributed K-SPH in the

previous section, we now turn to its properties. We use a directed request graph to show the

7t send update request to all children
for all fragment children do
send fragment index, distance to closest fragment,
and shortest path information to each child
end for

query all nodes closer than closest fragment
for nodes nearer than closest fragment do

send nodes query for component information
end for

wait for responses
update shortest path information information

7t forward results

if not leader then
send summary of shortest path information

to parent

end if

if leader then
f «— closest fragment

Figure 5: Fragment leader pseudocode for the discovery step in distributed K-SPH.

relationship of fragments to one another during the execution of the algorithm. FEach fragment
in the network is represented by a node in the request graph and its current choice of preferred
fragment by a directed edge. Figure 7 illustrates an example graph with three vertices representing
fragments A, B, and C'. In this example, the fragment pair A and B request each other, while a
third, more distant fragment C' requests fragment B. Fragments A and B will merge, creating a new
fragment that will form a pair with fragment C' and merge. A fragment is considered stable when it
is in the states wait or request since its choice of preferred partner is unknown when the fragment
1s in states connect, flood-to-N, or init.

The request graph can be used to show that the distributed K-SPH algorithm does not
deadlock. To prove that the algorithm will terminate, we need to only show that at any time during
the execution of the algorithm, the shortest-path distances maintained by two of the fragments to
each other will converge to the same value in a finite time (that is, a cycle of length 2 in the request
graph). These two fragments will then merge to form a new fragment. Thus, by induction, the

algorithm will terminate in finite time.

Lemma 1 At any time during the execution of the algorithm, the shortest-path distances maintained

by two stable fragments to each other will converge to the same value within a finite time.

Proof: Initially, the shortest path between any two single-node multicast members is the shortest

path between their fragments. This path is symmetric in the sense that both paths consist of

fragment A

\

~~ ——— —_———

~ N > ~
- 27N

7 \\ Va N N

/
/ / fragy?(ent B \ \

Q = Fragment leader
= Fragment node
2 = Non-fragment node

Figure 6: Example of the discovery phase in distributed K-SPH. Fragment B’s leader believes that
fragment C' is the closest fragment. During fragment B’s discovery step, it instructs fragment nodes
to query those nodes closer than fragment C'. This distance is the distance between node 3, the
head of the path to fragment C', and node 4, its tail, and is marked by the dotted circles around
each of fragment B’s nodes. Since nodes 1 and 2 fall within one such circle, they receive queries and
fragment B’s leader discovers the closer fragment A.

o.e ®

Request Graph Fragments

Figure 7: An example for request graph.

the same nodes and edges. This is because of the strict ordering of all shortest paths. Suppose
that at some later time, the shortest paths between two fragments differ in distance as shown in
Figure 8. Suppose further, that one fragment, in this case fragment B, has the longer path. The next
time fragment B enters state flood-to-N| it will query every node in its neighborhood for fragment
information. Any node in fragment A closer to B must fall within B’s neighborhood and will become
the tail of a new, shorter path to fragment A. The shortest of all such paths will become fragment
B’s new shortest path to fragment A. By a symmetrical argument, the paths between fragments A
and B must converge on the same distance.

Inconsistencies may also occur when a path is blocked. Assume that only one of a pair of
fragments finds the shortest path between them blocked. Assume fragment A has a shortest path to
B, but B’s shortest path to A is blocked. The shortest path between fragments can only be blocked
by a node belonging to a third fragment C'. In this case, fragment A will query the blocking node in
fragment C' the next time A enters the discovery phase (state flood-to-N). In addition, C' will also

update its distance to A during its recovery phase, resulting in consistent values for the distance

7
- _ - Path fromAto B

B’s neighborhood

Figure 8: Two subtrees with different shortest paths.

®) O—0
©

Three—fragment cycle No cycles

Figure 9: A request graph demonstrating deadlock.

between A and C.

A deadlock occurs when no two-fragment cycle exists in the request graph even when all
fragments are stable. Figure 9 shows two such examples. In the first case, three fragments are locked
in a cycle and in the other, one fragment has no outgoing edges and cannot merge with any other
fragment. Either of these cases could mean that distributed K-SPH would never terminate. In the

following, we show that such deadlocks cannot occur.
Lemma 2 Distributed K-SPH does not deadlock.

Proof: Let d(I,.J) represent the distance between fragments I and J. In Figure 9, stable fragments
A, B and C' are locked in a three-node cycle. Since each fragment prefers the closest fragment, the
following inequalities must hold: d(A, B) < d(A, (), d(B,C) < d(B, A), and d(C, A) < d(C, B).
However, we know from Lemma 1 that at least two of the fragments, say A and B, must have
equidistant shortest paths. This leads to a contradiction. A similar argument holds for any cycle of
more than two fragments. Consider the case where no cycle exists as shown by fragments X and
Y in Figure 9. Fragment Y has no outgoing edge, which indicates that it has no shortest path to
any fragment. This means that Y’s path to X must be blocked and by Lemma 1 will eventually
be discovered. Distributed K-SPH terminates with an error when both X and Y have no outgoing
edges.

Convergence Time and Number of Messages: We now derive some simple asymptotic bounds

on the number of messages and convergence time of the distributed K-SPH algorithm.

10

Distributed
SPH

Figure 10: The finite state machine for each node performing distributed SPH.

Distributed K-SPH uses the least number of messages when the network has Z = 2¢ multicast
nodes, any number of non-multicast nodes, and fragments always find a partner. Under these
conditions, a total of 2% + 2% 4+ 4 % = Z%‘,—l = Qi%,—l = 2° — 1 merges occur during i rounds.
Each fragment merges using a relatively small number of messages and the new fragment enters
the discovery phase, In the discovery phase, each fragment node queries every child and neighbor
for fragment and distance information. Assume that on average each fragment node queries a finite
number of neighbors and children approximated by ¢. The total number of messages sent by multicast
members during each round is ¢Zi = ¢Zlog 7 = Q(Zlog 7). During each of the log Z rounds, the
longest round-trip message time between leader and fragment root dominates. This round-trip time
can be at worst twice the diameter of the graph, and at best a constant. Thus, the time to converge
is lower-bounded by clog 7 = Q(log 7).

In the worst case, only one fragment finds a partner during any round. Thus, Z — 1 rounds
occur before a solution is found. If fragments are always relatively large then the number of messages
would be the number of rounds times the number of nodes on all fragments, ¢(Z —1)N = O(ZN). If
the round-trip times during each of the Z — 1 rounds is large and close to twice the graph diameter,
2D, then the convergence time for this case is 2D(Z — 1) = O(DZ).

These bounds are summarized in Tables 1 and 2, along with the bounds for the other
algorithms considered in this paper. Our results from simulations of the algorithm show that the
rates of increase of both the convergence time and the number of messages with the number of nodes

fell within these bounds as shown in Section 3.

2.1.3 Distributed SPH

The distributed shortest path heuristic is a special case of distributed K-SPH described in section
2.1.1. In distributed SPH, any one of the multicast members may act as the source of the multicast,
referred to here simply as the source node. In contrast to distributed K-SPH, only one fragment,
the source fragment grows, connecting multicast members to itself until all the multicast members
are part of the same fragment. The heuristic terminates when a single tree remains.

In SPH, the preferred fragment of every fragment is always the source fragment. The sole

11

Distributed | Distributed
Bound K-SPH SPH
Lower Bound Zlog Z Z?
Upper Bound ZN ZN

Table 1: Messages bounds for distributed heuristics K-SPH and SPH.

Distributed | Distributed
Bound K-SPH SPH
Lower Bound log 7 DZ
Upper Bound DZ DZ

Table 2: Convergence-time bounds for distributed heuristics K-SPH and SPH.

exception, of course, is the source fragment itself which prefers its closest fragment. Note that
all other fragments are trivial one-node subtrees containing one multicast member each. However,
to maintain uniformity with our previous heuristic description we will continue to use the term
fragment instead of multicast member. Using the same connection step outlined for heuristic K-
SPH, the source fragment merges with its closest fragment. As the source fragment grows, it uses
the same discovery step to determine the new, closest fragment. The source fragment never changes
its index. This preserves the source fragment’s original index so that non-source fragments never
need to change their preferred fragment index. As a consequence, non-source fragments do not enter
the discovery phase. In all other respects, distributed SPH is very similar to distributed K-SPH.

Figure 10 shows the finite state machine used by each node.

Since distributed SPH is a special case of distributed K-SPH, its analysis
proceeds similarly to that of distributed K-SPH. For example, it too will not deadlock as shown by

Algorithm Analysis:

Lemma 3.
Lemma 3 Heuristic SPH does not deadlock.

Proof: Consider Figure 9 again. A three-node cycle such as the one in Figure 9 cannot occur in
distributed SPH because every fragment except the source prefers the source fragment. Thus, the
longest request graph cycle in distributed SPH has length two: an edge from the source to a fragment
and the return edge. A longer request cycle is an error. Likewise, a zero-node cycle indicates an
error since every fragment except the source fragment always prefers the source fragment and the

source fragment prefers its closest fragment.

Like distributed K-SPH, distributed SPH uses the least

number of messages when Z = 2° multicast members exist. Distributed SPH differs from distributed

Messages and Convergence Time:

K-SPH in that only two fragments merge during a round. Assume that on average each fragment
node queries a finite number of neighbors and children approximated by ¢. The number of messages

in this case would be ¢ +2¢+3c+-- 4+ (Z = 1)e = c@%ﬂ = O(Z?). The round-trip time

12

during each of the Z —1 rounds cannot be greater than twice the graph diameter and the convergence
time is ¢(2D)(Z — 1) = Q(DZ).

In the worst case, assume that the source fragment grows quickly and the round-time dis-
tance for messages approaches twice the graph diameter, 2D. The number of messages in this case
is ¢«(Z — 1)N = O(ZN). Likewise the convergence time becomes 2D(Z — 1) = O(DZ).

The convergence-time and message bounds for the distributed heuristics are summarized in

Tables 1 and 2, respectively.

3 Simulation Results

To evaluate the two distributed heuristics presented in the last section, we implemented the algo-
rithms in a simulator and performed extensive simulations on randomly generated test networks.
We choose the distributed MST algorithm due to Gallager, Humblet, and Spira [6] as our baseline
algorithm to compare the results. This algorithm was used to produce a minimum spanning tree of
the network graph, which was then pruned to obtain a Steiner tree. We chose this MST algorithm
as our baseline algorithm because the majority of previous distributed algorithms reviewed find
multicast trees are based on finding minimal spanning trees [4, 12]. This algorithm differs from our
algorithms, distributed K-SPH and SPH, in the fact that all the network nodes must participate in
the execution of the algorithm in the former, while only the multicast members and nodes in the
vicinity of the multicast tree being set up execute the algorithm in the latter.

This section summarizes the simulation results and compares the algorithms in terms of

their convergence time, competitiveness, and the number of messages exchanged.
3.1 Evaluation Methodology

3.1.1 Network model

Because our choice of existing network topologies and multicast applications was small, we chose to
compare Steiner heuristics using randomly generated networks. Each algorithm was run on a total of

1000 test networks. Each of the 1000 networks is a sparse 200-node network. We consider an n-node

graph to be sparse when less than 5% of the possible (;) edges are present in the graph. Note that

2

complete graph on n nodes. For our test networks on 200 nodes, the number of edges must fall in the

the number of edges in an n-node connected graph can vary from n — 1 for a tree to (n) for the

narrow range from 199 to 5% of maximum edges possible = 995. Figure 11 shows the distribution of
number of edges for our test networks. We believe such a graph describes a plausible WAN because
a large network is likely to be loosely interconnected. Likewise, the simulated networks have 10% or
30% of its nodes in the multicast group because multicast applications running on such a WAN are
likely to involve only a minority of nodes in the network. For example, consider a video conference
in a large corporate network. The conference is most likely to directly involve a minority of nodes in
the network. The choice of 10% and 30% of the nodes was made since these figures represent more
difficult cases of the Steiner problem. Later in Section 3.3 we discuss how these heuristics scale with

increasing multicast membership size (10% to 90%) and network size (20 to 200 nodes).

13

20%

18% T
16% T
14%
12% 1
10% T

Percentage of Case:

8% T
6%
4%
2% T

0% -

460 480 500 520 540 560 580 600

Number of Edges

Figure 11: The histogram of the number of edges in the test graphs.

The 1000 networks were generated to resemble real networks in a manner similar to that of
Doar [5]. Each of the 200 nodes is distributed across a Cartesian coordinate plane with minimum
and maximum coordinates (0,0) and (400,400), creating a forest of 200 nodes spread across this
plane. The nodes are then connected by a random spanning tree. This tree is generated by iter-
atively considering a random edge between nodes and accepting those edges that connect distinct
components. The remaining edges of the graph are chosen by examining each possible edge (z,y)
and generating a random number 0 < r < 1. If r is less than a probability function P(z,y) based
on the distance between z and y, then the edge is accepted. FEach edge’s distance is its rectilinear
distance plus a small constant. This distance is also the time it takes for a message to traverse this

edge. We used the probability function
—day
P(xz,y) = e 2om |

where d, , is the rectilinear distance between nodes z and y [5]. The parameters o and § govern
the density of the graph. Increasing « increases the number of connections to nodes far away and
increasing [increases the number of edges from each node. After some experimentation, we chose
a = 0.10 and g = 0.20 for generating the graphs used in this simulation. These values produced
graphs of realistic density.

We performed two different simulations on each generated graph by varying the multicast
group size in two ways; the number of multicast nodes was chosen as either 20 or 60 of the 200
nodes. Results are presented for both combinations for each graph. The nodes in a multicast group
were chosen randomly in each case. The random numbers were chosen from a uniform distribution.

To ensure fairness, each heuristic was run on the same 1000 networks.

3.2 Evaluation Metrics

The metrics we use for comparison are the competitiveness, convergence time, and messages passed.
Competitiveness is the ratio of heuristic tree cost C(7T') to that of the best solution Cjes: found by any

heuristic. To determine the best solution, we considered solutions produced by the two distributed

14

heuristics described in this paper and the distributed MST algorithm, as well as the serial heuristics
described in [1]. We use the best heuristic solution found for each test network rather than an
optimal solution because explicit algorithms to find optimal solutions are prohibitively expensive on
large networks. The convergence time was found by measuring the elapsed time in the simulated
network from the start of simulation to the time at which the last message reaches its destination.
Since message-passing delays are likely to dominate processing delays on the convergence time of the
algorithm in a wide-area network, we considered only the former in computing the simulation time.
We used the distance between two nodes as the delay to pass a message between them. Messages

passed is the total number of messages passed between nodes before convergence.

3.3 Simulation Results

Having described the algorithms and the simulation environment, we now turn to the results of our
simulations.

Figure 12 shows the competitiveness distribution for the centralized versions of SPH, K-SPH,
and pruned MST algorithms. Each of the three plots shows the cumulative percentage of cases whose
competitiveness is less than or equal to a given value. Figure 13 shows the same distributions for the
distributed versions of the three algorithms. Note that the distributed versions of SPH and K-SPH
may provide inferior solutions compared to their centralized versions because of the lack of global
topology information in each node in the former. However, the degradation in the competitiveness
was small in our test networks. In fact, the competitiveness produced by distributed K-SPH was
often superior to that of centralized SPH.

When comparing the competitiveness, heuristics SPH and K-SPH consistently outperformed
the pruned MST heuristic, in both centralized and distributed cases. This result is consistent with
the known theoretical upper bounds on the heuristics. It has been shown that the cost of a solution
produced by either SPH or K-SPH is within twice the cost of an optimal solution [20]. In contrast,
the ratio between the cost of a solution produced by pruning a minimum spanning tree and that
of an optimal solution can be as large as the number of non-multicast nodes [17]. In our case, the
cost of pruned MST solutions was rarely worse than twice that of the best solution found, but was
often significantly worse than that produced by shortest path heuristics. Figure 14 displays the
complete cumulative distribution for the pruned minimum spanning tree algorithm. In Figure 13,
90% of the solutions produced by both distributed K-SPH and SPH were within 4% of the best in
terms of their cost. In comparison, when the best 90% of the solutions produced by the pruned
MST algorithm were considered, some of the solutions had costs as high as 50% more than that of
the optimal algorithm. Thus, if competitiveness i1s the most important criterion in the choice of the
algorithm, distributed K-SPH is the heuristic of choice.

Heuristics SPH and K-SPH also enjoy the advantage that neither requires the participation
of all the nodes in the network. Only the nodes in the multicast tree and within its neighborhood
need to participate in the execution of the algorithm. The pruned minimum spanning tree algorithm,
on the other hand, requires participation from every node of the network, a condition difficult to
satisfy in practice in a large wide-area network.

Viewed from the perspective of messages exchanged and convergence-time, however, the
pruned MST heuristic enjoys an advantage over shortest path heuristics SPH and K-SPH. Figure 15

displays the cumulative percentage of networks solved within a given number of messages for the

15

100 +

—&— centralized K-SPH
—l— centralized SPH
—&— centralized pruned MST

[0}
o
!

T

o2}
o
o !

Cumulative Percentage of Case
N
o

N
o

1 1.02 1.04 1.06 1.08 11 1.12 1.14 1.16 1.18

Competitiveness (Solution/Best

Figure 12: Competitiveness distribution for centralized Steiner heuristics.

100 +

—&— distributed K-SPH
—— distributed SPH
—&— distributed pruned MST

60

40

Cumulative Percentage of Case

20 -
4

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18

Competitiveness (Solution/Best

Figure 13: Competitiveness distribution for distributed Steiner heuristics.

16

100 + b

80

60

40

Cumulative Percentage of Case

1.05 1.13 121 1.29 1.37 1.45 153 1.61 1.69 1.77

Competitiveness (Heuristic/Best)

Figure 14: Competitiveness distribution for the distributed pruned minimum spanning tree heuristic.

three algorithms. Likewise, Figure 16 displays the cumulative percentage of networks solved within
a given convergence time. Both the number of messages and the convergence time for the solutions
produced by pruned MST algorithm fell well within a much narrower range as compared to the
results for distributed K-SPH and SPH. This is again consistent with the known theoretical bounds
on the number of messages generated by the heuristics. In the case of the pruned MST heuristic, the
additional effort to prune the minimum spanning tree is inconsequential as compared to the effort
required to find the minimum spanning tree. Thus, the theoretical upper bound on the number of
messages in the pruned MST heuristic is O(N log, N + F) [6]. In comparison, the upper bound on
the number of messages for both SPH and K-SPH is O(ZN). Thus, when the number of multicast
nodes is large in comparison to log N, the pruned MST heuristic has a smaller upper bound on the
number of messages.

On comparing the SPH and K-SPH algorithms, it is interesting to observe that the al-
gorithms had the same level of communication complexity in terms of the number of messages
generated, yet the range of convergence times produced by K-SPH was significantly tighter. This
is primarily due to the disparate approaches used by the algorithms in growing the multicast tree.
Distributed SPH grows the tree by adding one multicast member at a time to the source fragment,
concentrating much of the work at the source, while distributed K-SPH allows multiple fragments of
the tree to combine in parallel. This allows distributed K-SPH to provide lower convergence times
without increasing the number of messages substantially.

To answer the question of how the distributed heuristics scale with multicast group size

and network size, we performed 3600 additional simulations summarized by Figures 17 through 19.

17

Cumulative Percentage of Case

100 +

80

60

40
—&— Pruned MST

20 —&—K-SPH
—— SPH

0 f f f f f f f f f f f f f
5 15 25 35 45 55 65 75 85 95

Messages (in Thousands

Figure 15: Cumulative distribution for number of messages transmitted by the three distributed
Steiner heuristics.

Cumulative Percentage of Case

100

80

—&— Pruned MST
20 —&—K-SPH
—8—SPH
0 f f f f f f f f
10 20 30 40 50 60 70 80 90 100 110 120

Convergence Time (in Thousands

Figure 16: Convergence time distribution for distributed Steiner heuristics.

18

Figures 17 and 18 show the average convergence time passed for both SPH and K-SPH when either
the multicast group size is varied from 10% to 90% in a 200-node graph or when network size
is varied from 20 nodes to 200 nodes. Each graph point summarizes the average value for 200
test networks. Minimum and maximum values for each are displayed using error bars. Similarly,
Figure 19 summarizes the average messages passed when membership size and graph size are varied.
The equivalent graphs for distributed heuristic SPH are omitted since they mirror the results shown
in the convergence time graphs. These graphs demonstrate that distributed heuristics SPH and
K-SPH scale reasonably well for both multicast-group size and network size.

Even though the convergence times for distributed K-SPH in Figure 16 are higher than
those of the pruned MST algorithm by as much as 10 times, we believe that the former can be
brought down by modifying distributed K-SPH in the following ways:

1. If a fragment receives a reject message because the preferred fragment has already merged
with another, the fragment enters the discovery step and looks for the next closest fragment.
If the rejecting fragment indicates its new fragment index, a fragment could skip the discovery
step and send a merge request to the new, merged component. Preliminary tests indicate that

this can reduce convergence time by 5%.

2. Inefficiencies result when a large fragment merges with a small fragment. This inefficiency is
evident in distributed SPH because the largest fragment, the source fragment, always merges
with a fragment containing a single multicast member. Although such merges cannot be
avoided in distributed K-SPH, the duration of such a merge can be reduced by taking into
account the fragment size when merging fragments as follows: if a small fragment is added
to a large fragment, the discovery step can be shortened by performing a partial discovery
step. A partial discovery step updates the fragment leader’s knowledge of fragment distances
using existing fragment distance information and new information gathered by propagating a
multicast through the smaller fragment’s nodes. Such a partial discovery step 1s significantly
faster — as much as 35% in our tests. However, the new fragment may be unaware of fragment
distance information it might otherwise have found through a full discovery step and hence

the competitiveness may suffer. Thus, this approach trades off competitiveness for speed.

3. In our simulations, we observed that few connection attempts between fragments are blocked
in practice. This allows the connection and discovery steps to be overlapped, reducing the
time it takes for two fragments to complete a merge. The price paid is an occasional failed
connection attempt requiring longer discovery steps in both the original fragments to restore

the fragments to their original states.

4 Concluding Remarks

In this paper we introduced two distributed heuristics based on shortest path Steiner hueristics,
and evaluated their performance relative to a baseline pruned minimum spanning-tree heuristic.
The primary advantage of our distributed algorithms over previous algorithms is that they require
participation from only the nodes in the multicast tree and within their neighborhood. Among the
two algorithms studied, distributed K-SPH emerged as the clear winner; in comparison to distributed

SPH, it has substantially lower convergence time and slightly better competitiveness.

19

Convergence Time (in Thousands Convergence Time (in Thousands

Messages (in Thousands

.
@
S

[
® & N B
S 8 oS o

60

40

20

450

400

350

300

250

200

150

100

Convergence Time (in Thousands

50

0 + + + + 0 +
20 40 60 80 100 120 140 160 180 200 10 20 30 40 50 60 70 80 90

Graph Size (in Nodes) Percentage Multicast Members

(a) (b)

Figure 17: Convergence time of the distributed K-SPH algorithm as a function of network size (a)
with 30% multicast membership, and (b) as a percentage of multicast membership in a 200-node
network.

400 1400
350 » 1200
B
2
3001 8
£ 1000
e
2507 c
= 800
@
2001 £
E
o 600
150 £
8
=
100 g 400 T
S
o
50 200 T
0 T t t 0 + + +
20 40 60 80 100 120 140 160 180 200 10 20 30 40 50 60 70 80 90
Graph Size (in Nodes) Percentage Multicast Members

(a) (b)

Figure 18: Convergence time of the distributed SPH algorithm as a function of network size (a)
with 30% multicast membership, and (b) as a percentage of multicast membership in a 200-node
network.

180 400
160 350
w1 € 300
g
1204 8
3 250
2
100+ £
£ 200
80 4
g 150
60 8
g
= 100
40
20 50
0 N N 0 : + + + +
20 40 60 80 100 120 140 160 180 200 10 20 30 40 50 60 70 80 90
Graph Size (in Nodes) Percentage Multicast Members

(a) (b)

Figure 19: Number of messaged generated by the distributed K-SPH algorithm (a) as a function of
network size with 30% membership, and (b) as a percentage of multicast membership in a 200-node
network.

20

The heuristics developed are an improvement over existing distributed Steiner heuristics
based on the minimum spanning tree [4, 12] for two reasons: they produce solutions of superior
quality in most cases and requires the participation of only a subset of network nodes. Our results
show that the competitiveness of the solutions produced by both of our algorithms were, on the
average, at least 25 percent better in comparison to those produced by the pruned spanning-tree
approach. In addition, the competitiveness found by our algorithms in almost all cases was within
10% of the best solution found by any of the Steiner heuristics considered, including both centralized
and distributed algorithms.

Limiting the execution of the algorithm to a subset of the nodes in the network can result
in an increase in convergence time over the pruned spanning-tree approach. Indeed, the convergence
time of distributed K-SPH was as large as ten times that of pruned MST algorithm in many our test
networks. However, we believe that the distributed K-SPH algorithm can be streamlined in several
ways, as discussed in the last section, to narrow this gap.

Areas for future research include provisions for robustness of the algorithms in an environ-
ment where node and link failures occur. The heuristics as stated here assume reliable delivery of
messages and a stable topology during their execution. If an environment is assumed where nodes
and links do fail during execution, a combination of schemes to ensure convergence and correctness
need to be applied. These would certainly include an adaptive all-paths distributed algorithm such
as the one described by Humblet [7] and a timeout mechanism to detect rejected merger requests.

Additional work is required to study the effectiveness and performance of these schemes.

References

[1] F. Bauer and A. Varma. “Degree-constrained multicasting in point-to-point networks,” in Proc.

IEEE INFOCOM, Boston, Apr. 1995, pp. 369-376.

[2] J. Beasley. “An SST-based algorithm for the Steiner problem in graphs,” Networks, vol. 19, pp.
1-16, 1989.

[3] K. Bharath-Kumar and Jaffe. “Routing to multiple destinations in computer networks,” IEEE
Transactions on Communications, vol. COM-31, no. 3, pp. 343-351, Mar. 1983.

[4] G. Chen, M. Houle, and M. Kuo. “The Steiner problem in distributed computing systems,”
Information Sciences, vol. 74, no. 1-2, pp. 73-96, Oct. 1993.

[5] M. Doar and I. Leslie. “How bad is naive multicast routing?,” in Proc. IEEE INFOCOM, San
Francisco, CA, Apr. 1993, pp. 82-89.

[6] R. Gallager, P. Humblet, and P. Spira. “A distributed algorithm for minimum-weight spanning
trees,” ACM Transactions on Programming Languages and Systems, vol. 5, no. 1, pp. 66-77,
Jan. 1983.

[7] P. Humblet. “Another adaptive distributed shortest path algorithm,” IEEE/ACM Transactions
on Communications, vol. 39, no. 6, pp. 995-1003, Jun. 1991.

[8] F. Hwang and D. Richards. “Steiner tree problems,” Networks, vol. 22, pp. 55—89, 1992.

21

[9]

[10]

[11]

[12]

[13]

[14]

[20]

M. Imase and B. Waxman. “Dynamic Steiner tree problem,” SIAM J. Disc. Math., vol. 4, no.
3, pp. 369-384, Aug. 1991.

V. Kompella, J. Pasquale, and G. Polyzos. “Multicasting for multimedia applications,” in Proc.

IEFE INFOCOM, New York, NY, May 1992, pp. 2078-2085.

V. Kompella, J. Pasquale, and G. Polyzos. “Multicast routing for multimedia communications,”
IEFE/ACM Transaclions on Networking, vol. 1, no. 3, pp. 286-292, Jun. 1993.

V. Kompella, J. Pasquale, and G. Polyzos. “Two distributed algorithms for the constrained
Steiner tree problem,” in Proc. Comput. Commun. and Netw., San Diego, CA, Jun. 1993.

J. Kruskal. “On the shortest spanning subtree of a graph and the traveling salesman problem,”

Proc. Amer. Math. Soc., vol. 7, pp. 48-50, 1956.

V. Rayward-Smith and A. Clare. “On finding Steiner vertices,” Networks, vol. 16, pp. 283-294,
1986.

M. Smith and P. Winter. “Path-distance heuristics for the Steiner problem in undirected
networks,” Algorithmica, vol. 7, no. 2-3, pp. 309-327, 1992.

H. Takahashi and A. Matsuyama. “An approximate solution for the Steiner problem in graphs,”

Math. Japonica, vol. 24, no. 6, pp. b73-577, 1980.

S. Voss. “Steiner’s problem in graphs: Heuristic methods,” Discrete Applied Mathematics, vol.
40, pp. 45-72, 1992.

B. Waxman. “Routing of multipoint connections,” ITEEE Journal on Selected Areas in Com-
munications, vol. 6, no. 9, pp. 1617-1622, Dec. 1988.

J. Westbrook and D. Yan. “Greedy algorithms for the on-line Steiner tree and generalized
Steiner problems,” in Algorithms and data structures. Third Workshop, WADS ’93., Montreal,
Quebec, Canada, Aug. 1993, pp. 621-633.

P. Winter. “Steiner problem in networks: A survey,” Networks, vol. 17, no. 2, pp. 129-167,
1987.

22

