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1 IntroductionMany future applications of computer networks such as distance education, remote collaboration,and teleconferencing will rely on the ability of the network to provide multicast services. Indeed,many recent standards for packet-switched networks, notably ATM, Frame Relay and SMDS, includesupport for multicasting. Thus, multicasting will likely be an essential part of future networks.Multicasting is sometimes supported in a point-to-point packet network by setting up amulticast tree connecting the members of the multicast group. We concern ourselves in this paperwith networks that use virtual circuit routing, such as ATM and Frame Relay. In such a network,a multicast virtual circuit is set up from the source of the multicast to the destinations before datatransmission occurs. Determining this optimal multicast tree for the virtual circuit is a di�cultproblem. Previous authors have established that the multicast tree problem can be modeled asthe Steiner problem in networks [2, 3, 8, 20], referred to hereafter as the SPN, and that �ndingexplicit solutions in large networks is prohibitively expensive. For example, two popular explicitalgorithms, the spanning tree enumeration algorithm and the dynamic programming algorithm [20],have algorithmic complexities of O(p22(n�p) + n3) and O(n3p + n22p + n3), respectively, where nis the number of nodes in the graph and p the number of multicast members. A number of good,inexpensive, centralized heuristics exist for the SPN and have been reviewed extensively elsewhere[3, 8, 10, 15, 16, 17, 20]. Some have been shown through analysis to produce solutions no worse thantwice the optimal solution [20]. Empirical evidence from our previous papers indicate that theseheuristics �nd solutions much better than twice the optimal with reasonable speed in most cases [1].Most of the algorithms proposed in the literature for SPN are serial in nature. However, afew distributed heuristics exist [4, 12]. Many of these algorithms are based on reducing the SPN tothe minimum spanning tree problem, referred to here as the MST, and using a distributed minimumspanning tree algorithm such as the one described by Gallager, Humblet, and Spira [6]. A Steinertree is created by pruning the minimum spanning tree by removing subtrees containing no multicastmembers. For example, Chen, et al. [4] �nds a Steiner tree by applying a distributed minimumspanning tree algorithm twice. First the algorithm is applied to the original graph. This �rstminimum spanning tree is used to create a shortest path forest composed of disjoint trees and edgesthat together form a connected subgraph of the original graph. The distributed minimum spanningtree algorithm is then applied a second time to this subgraph. The solution is obtained by pruningunnecessary leaves and branches from this second minimum spanning tree. Likewise, Kompella,et al. [12] describe two distributed versions of earlier centralized heuristics proposed by the sameauthors [11]. Both of these distributed heuristics �rst build a constrained Steiner tree that re
ectsthe combined criteria of cost and delay. A distributed MST algorithm is applied to this constrainedSteiner tree and the solution tree is pruned. The two heuristics di�er in their criteria for choosingedges while constructing the MST.Distributed Steiner heuristics based on a minimum spanning tree algorithm su�er from twodrawbacks: First, all the nodes in the network must participate in the execution of the algorithm.This may be impractical in a large network with sparse multicast groups. Second, the theoreticalupper bound on competitiveness of a pruned MST to that of an optimal Steiner tree has been shownto be s + 1, where s is the number of non-multicast nodes [17]. Here competitiveness is de�ned tobe the ratio of the sum of the heuristic tree's edge weights to that of an optimal tree [9, 18, 19].1



Other equivalent terms for this measure include ine�ciency and quality of solution. Thus thecompetitiveness of a multicast tree decreases with the size of the multicast group. In comparison,the equivalent theoretical upper bound for the shortest path heuristic (SPH) for the Steiner treeproblem is 2(1� 1p ) [20], where p is the size of the multicast group. Our empirical evidence suggeststhat pruned MST heuristics often produce solutions of inferior quality as compared to those producedby shortest path Steiner heuristics.In this paper, we present two distributed algorithms for the Steiner problem in networks.The algorithms are based on the shortest path heuristic (SPH) and the Kruskal-based shortest pathheuristic (K-SPH), described in [1]. We analyze their message and convergence-time complexitiesand compare their simulation results against those from a pruned MST algorithm. We choose thedistributed MST algorithm due to Gallager, Humblet, and Spira [6] as our baseline algorithm forcomparison. This algorithm is perhaps the simplest of all pruned MST algorithms, yet producesSteiner trees that are representative of other, more elaborate pruned MST heuristics such as thosedescribed in [4, 12]. The distributed heuristics are compared on the basis of three criteria: compet-itiveness, number of messages exchanged, and convergence time.Our simulations of the algorithms are performed on a large set of sparse, randomly-generatednetwork topologies. We use the distance propagation delay model, using the distance between nodesas the weight of the edge between them. We restrict our analysis to sparse networks for two reasons:(i) they are more representative of real point-to-point networks, and (ii) they are inherently moredi�cult to solve because, in general, fewer solutions exist in a sparse network than in a dense one.Similarly, the simulated multicast groups are small relative to the size of the network, re
ectinglikely multicast applications such as video conferencing, distance learning, resource discovery andreplicated database updating. Note that our results are not speci�c to any particular type of networksuch as ATM, but may be applied to any virtual circuit-based point-to-point network.The remainder of this paper is organized as follows. Section 2 introduces and analyzes ourtwo distributed heuristics, based on the centralized Steiner heuristics K-SPH and SPH, respectively.Section 3 compares the algorithms in terms of their competitiveness, convergence time, and numberof messages exchanged. We show that the distributed shortest-path heuristics produced multicasttrees with competitiveness within 5% of that of the best solution found by any heuristic, bothcentralized and distributed, in more than 90 percent of our test networks. In contrast, only 0.3% ofthe solutions produced by the pruned MST algorithm fell within 5% of the best solutions in termsof their cost (sum of edge weights). Finally, Section 4 concludes the paper with a discussion of theresults.2 Steiner Tree HeuristicsIn this section, we summarize previous Steiner heuristics and introduce the two distributed Steinerheuristics.Before continuing, we make the following basic de�nitions and notations. Z is the set ofmulticast destinations, S is the set of non-multicast nodes V � Z, Pi;j is the shortest path betweennodes i and j, di;j is the distance of the shortest path between nodes i and j as well as the weightof the edge between nodes i and j, and C(T ) is the cost of tree T (the sum of T 's edge weights).Graph distances will be de�ned as follows: The distance between two nodes is the distance of the2



shortest path between them. Likewise, the distance between a node and a tree is the distance of theshortest path between the node and any node in the tree. Finally, the distance between two treesis the distance of the shortest among all paths between any node in one tree and any node in theother tree. As in [6], we append the weight of an edge or path with the index of its destination nodein determining shortest paths so that, in case of a tie, the actions of the individual nodes would beconsistent. Since we do not allow multiple edges between the same pair of nodes, this ensures thatall the nodes select the same edge or path, given the same set of edge weights.To be suitable for distributed implementation, a heuristic must satisfy four criteria. It must(i) use the existing routing information available at each node in the network, (ii) use minimalcomputational and network resources, (iii) require a minimum of coordination between neighbors,and (iv) limit itself to nodes directly involved in the multicast. Of the centralized heuristics evaluatedin [1], we chose the following four heuristics as candidates for distributed implementation: theshortest-path heuristic (SPH), a variant of SPH known as SPH-Z, the Kruskal-based shortest-pathheuristic (K-SPH), and the Average distance heuristic (ADH). Each of these heuristics is describedin [15]. A brief summary of heuristics SPH and K-SPH follows.SPHHeuristic SPH, introduced in [16], initializes the multicast tree to an arbitrary multicast member. Itthen grows the tree by successively adding the next closest multicast member to the multicast treeby the shortest path between the multicast member and the tree. The algorithm terminates whenall the multicast members have joined the tree.K-SPHHeuristic K-SPH, introduced in [13], di�ers from SPH in the manner in which the multicast treeis expanded. Instead of growing the tree one node at a time, the algorithm joins subtrees pairwiserepeatedly until all the multicast nodes are part of a single tree. The algorithm initially starts withZ subtrees, each a multicast member itself. In the expansion step, it �nds two subtrees that areclosest to each other and joins them along the shortest path between them to form a single subtree.This heuristic is a re�nement of the average distance heuristic �rst proposed by Rayward-Smith [14].2.1 Distributed Steiner HeuristicsAfter further consideration, only two of the four heuristics, SPH and K-SPH, remain as suitablecandidates for distributed implementation. Both heuristics SPH-Z and ADH fail our criteria forconversion. Although heuristic SPH-Z initially appears attractive as a distributed heuristic, itscomponent distance information for each of the Z instances could be distinct. This forces as manyas Z copies of component information at each node and a virtual storm of network messages beforeconvergence. Likewise, ADH fails our criteria because its calculation of the most central node requiresexcessive overhead for coordination between nodes in the network. In addition, our earlier resultsindicate that, on the average, the solutions produced by K-SPH and ADH are of nearly identicalquality [1]. Of these two heuristics, K-SPH is the more attractive candidate because of its relativesimplicity and lower running time. 3
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while fragments remain do# algorithm discovery stepupdate fragment information for nearby fragmentsf  closest fragment# algorithm connection steprequest merger with fragment fif merger requests exchanged with fragment f thenattempt connection to fragment fif connection established thenmerge fragmentselse restore original fragmentsend ifend ifend whileFigure 2: Pseudocode for fragment leaders in distributed K-SPH.Each fragment has a fragment leader coordinating the activities of the fragment. Thisfragment leader is the fragment Z-node with the lowest index. Each fragment leader executes the�nite state machine shown in Figure 1. Initially, each multicast member is the leader of its ownone-node fragment; when two fragments merge, leadership is assigned to the fragment leader withthe lower index. To identify fragments uniquely, each fragment has the same index as its leader andeach fragment node is aware of its fragment index.At the highest level, each fragment, guided by its leader, executes the pseudocode shown inFigure 2. During the execution of the algorithm, each fragment attempts to merge with its closestneighboring fragment. This is accomplished in two steps | a discovery step and a connection step.During the discovery step, the leader gathers and updates its information on other fragments andgraph nodes. Based on the information gathered, it determines the closest fragment to merge with.During the connection step, it communicates with the closest neighbor fragment's leader, requestinga merge. This closest fragment leader is simply the Z-node with the same index as the closestfragment. If accepted, the leader with the lowest index attempts to connect the two fragments.Regardless of the outcome (the request is rejected, the fragments are connected, or the connectionattempt fails), the cycle repeats until the algorithm terminates.Distributed K-SPH processes running on each node rely on the shortest path informationassumed available at its node, as well as information maintained by the fragment leaders. Eachnode also stores the index of its fragment. Initially, only multicast nodes have a fragment index|its own index. Each leader maintains additional shortest path information for its fragment. Thisinformation augments the shortest path information at each node. For example, the leader storesonly the distance, and the head and tail of the shortest path between its fragment and every otherfragment. The additional details necessary to build the path between fragments is stored at the5



# request merger with fragment fdo send request to fragment f 's leaderwait for responseuntil accept or rejectleader  this fragment index < fragment f 's indexif accept and leader then# attempt connection to fragment fsend connect message to head of shortest pathwait for connection success or failureif failure thensend reject to fragment f 's leaderend ifFigure 3: Fragment leader pseudocode for the connection step in distributed K-SPH.head of the path, a node in the leader's subtree. Note that the shortest path between fragmentsneed not start or end at a leader node.2.1.2 The �nite state machine of heuristic K-SPHState init: When distributed K-SPH starts, each Z-node, the leader of its own trivial one-nodefragment, already knows its distance to every other fragment as provided by the initial distancetables and no discovery step is necessary. Instead, each distributed K-SPH leader starts with theconnection step, described below.States request, wait, and connect: States request, wait and connect in Figure 1 comprise theconnection step. During this step, each leader attempts to connect its fragment with the closestfragment, known as its preferred fragment (Figure 3 shows the pseudocode for this step). It does soby sending a merge requestmessage to the leader of the preferred fragment (That is, the Z-node withthe same index as the preferred fragment). A leader receives one of three responses to its request:accept, reject, or busy.busy A fragment leader returns the busy response when a request arrives during its discovery step.Upon receiving a busy response, a fragment will retransmit its merge request.reject A fragment node returns a reject message when (i) it receives a connections request from afragment other than its preferred fragment, (ii) when a connection attempt fails, or (iii) whenit is no longer a fragment leader.accept A fragment leader returns an accept response when it exchanges merge requests with itspreferred fragment. Once an accept message is sent, the fragment may not leave the connectstep or accept a request from another fragment until the connection attempt completes.6
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ood-to-N in Figure 1.Analysis of Distributed K-SPH Algorithm: Having described the distributed K-SPH in theprevious section, we now turn to its properties. We use a directed request graph to show the7



# send update request to all childrenfor all fragment children dosend fragment index, distance to closest fragment,and shortest path information to each childend for# query all nodes closer than closest fragmentfor nodes nearer than closest fragment dosend nodes query for component informationend forwait for responsesupdate shortest path information information# forward resultsif not leader thensend summary of shortest path informationto parentend ifif leader thenf  closest fragmentFigure 5: Fragment leader pseudocode for the discovery step in distributed K-SPH.relationship of fragments to one another during the execution of the algorithm. Each fragmentin the network is represented by a node in the request graph and its current choice of preferredfragment by a directed edge. Figure 7 illustrates an example graph with three vertices representingfragments A, B, and C. In this example, the fragment pair A and B request each other, while athird, more distant fragment C requests fragment B. Fragments A and B will merge, creating a newfragment that will form a pair with fragment C and merge. A fragment is considered stable when itis in the states wait or request since its choice of preferred partner is unknown when the fragmentis in states connect, 
ood-to-N, or init.The request graph can be used to show that the distributed K-SPH algorithm does notdeadlock. To prove that the algorithm will terminate, we need to only show that at any time duringthe execution of the algorithm, the shortest-path distances maintained by two of the fragments toeach other will converge to the same value in a �nite time (that is, a cycle of length 2 in the requestgraph). These two fragments will then merge to form a new fragment. Thus, by induction, thealgorithm will terminate in �nite time.Lemma 1 At any time during the execution of the algorithm, the shortest-path distances maintainedby two stable fragments to each other will converge to the same value within a �nite time.Proof: Initially, the shortest path between any two single-node multicast members is the shortestpath between their fragments. This path is symmetric in the sense that both paths consist of8
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FragmentsRequest GraphFigure 7: An example for request graph.the same nodes and edges. This is because of the strict ordering of all shortest paths. Supposethat at some later time, the shortest paths between two fragments di�er in distance as shown inFigure 8. Suppose further, that one fragment, in this case fragmentB, has the longer path. The nexttime fragment B enters state 
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ood-to-N). In addition, C will alsoupdate its distance to A during its recovery phase, resulting in consistent values for the distance9
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Distributed DistributedBound K-SPH SPHLower Bound Z logZ Z2Upper Bound ZN ZNTable 1: Messages bounds for distributed heuristics K-SPH and SPH.Distributed DistributedBound K-SPH SPHLower Bound logZ DZUpper Bound DZ DZTable 2: Convergence-time bounds for distributed heuristics K-SPH and SPH.exception, of course, is the source fragment itself which prefers its closest fragment. Note thatall other fragments are trivial one-node subtrees containing one multicast member each. However,to maintain uniformity with our previous heuristic description we will continue to use the termfragment instead of multicast member. Using the same connection step outlined for heuristic K-SPH, the source fragment merges with its closest fragment. As the source fragment grows, it usesthe same discovery step to determine the new, closest fragment. The source fragment never changesits index. This preserves the source fragment's original index so that non-source fragments neverneed to change their preferred fragment index. As a consequence, non-source fragments do not enterthe discovery phase. In all other respects, distributed SPH is very similar to distributed K-SPH.Figure 10 shows the �nite state machine used by each node.Algorithm Analysis: Since distributed SPH is a special case of distributed K-SPH, its analysisproceeds similarly to that of distributed K-SPH. For example, it too will not deadlock as shown byLemma 3.Lemma 3 Heuristic SPH does not deadlock.Proof: Consider Figure 9 again. A three-node cycle such as the one in Figure 9 cannot occur indistributed SPH because every fragment except the source prefers the source fragment. Thus, thelongest request graph cycle in distributed SPH has length two: an edge from the source to a fragmentand the return edge. A longer request cycle is an error. Likewise, a zero-node cycle indicates anerror since every fragment except the source fragment always prefers the source fragment and thesource fragment prefers its closest fragment.Messages and Convergence Time: Like distributed K-SPH, distributed SPH uses the leastnumber of messages when Z = 2i multicast members exist. Distributed SPH di�ers from distributedK-SPH in that only two fragments merge during a round. Assume that on average each fragmentnode queries a �nite number of neighbors and children approximated by c. The number of messagesin this case would be c + 2c + 3c + � � �+ (Z � 1)c = c (Z�1)2�(Z�1)22 = O(Z2). The round-trip time12



during each of the Z�1 rounds cannot be greater than twice the graph diameter and the convergencetime is c(2D)(Z � 1) = 
(DZ).In the worst case, assume that the source fragment grows quickly and the round-time dis-tance for messages approaches twice the graph diameter, 2D. The number of messages in this caseis c(Z � 1)N = O(ZN ). Likewise the convergence time becomes 2D(Z � 1) = O(DZ).The convergence-time and message bounds for the distributed heuristics are summarized inTables 1 and 2, respectively.3 Simulation ResultsTo evaluate the two distributed heuristics presented in the last section, we implemented the algo-rithms in a simulator and performed extensive simulations on randomly generated test networks.We choose the distributed MST algorithm due to Gallager, Humblet, and Spira [6] as our baselinealgorithm to compare the results. This algorithm was used to produce a minimum spanning tree ofthe network graph, which was then pruned to obtain a Steiner tree. We chose this MST algorithmas our baseline algorithm because the majority of previous distributed algorithms reviewed �ndmulticast trees are based on �nding minimal spanning trees [4, 12]. This algorithm di�ers from ouralgorithms, distributed K-SPH and SPH, in the fact that all the network nodes must participate inthe execution of the algorithm in the former, while only the multicast members and nodes in thevicinity of the multicast tree being set up execute the algorithm in the latter.This section summarizes the simulation results and compares the algorithms in terms oftheir convergence time, competitiveness, and the number of messages exchanged.3.1 Evaluation Methodology3.1.1 Network modelBecause our choice of existing network topologies and multicast applications was small, we chose tocompare Steiner heuristics using randomly generated networks. Each algorithmwas run on a total of1000 test networks. Each of the 1000 networks is a sparse 200-node network. We consider an n-nodegraph to be sparse when less than 5% of the possible �n2� edges are present in the graph. Note thatthe number of edges in an n-node connected graph can vary from n � 1 for a tree to �n2� for thecomplete graph on n nodes. For our test networks on 200 nodes, the number of edges must fall in thenarrow range from 199 to 5% of maximumedges possible = 995. Figure 11 shows the distribution ofnumber of edges for our test networks. We believe such a graph describes a plausible WAN becausea large network is likely to be loosely interconnected. Likewise, the simulated networks have 10% or30% of its nodes in the multicast group because multicast applications running on such a WAN arelikely to involve only a minority of nodes in the network. For example, consider a video conferencein a large corporate network. The conference is most likely to directly involve a minority of nodes inthe network. The choice of 10% and 30% of the nodes was made since these �gures represent moredi�cult cases of the Steiner problem. Later in Section 3.3 we discuss how these heuristics scale withincreasing multicast membership size (10% to 90%) and network size (20 to 200 nodes).13
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Figure 11: The histogram of the number of edges in the test graphs.The 1000 networks were generated to resemble real networks in a manner similar to that ofDoar [5]. Each of the 200 nodes is distributed across a Cartesian coordinate plane with minimumand maximum coordinates (0; 0) and (400; 400), creating a forest of 200 nodes spread across thisplane. The nodes are then connected by a random spanning tree. This tree is generated by iter-atively considering a random edge between nodes and accepting those edges that connect distinctcomponents. The remaining edges of the graph are chosen by examining each possible edge (x; y)and generating a random number 0 � r < 1. If r is less than a probability function P (x; y) basedon the distance between x and y, then the edge is accepted. Each edge's distance is its rectilineardistance plus a small constant. This distance is also the time it takes for a message to traverse thisedge. We used the probability function P (x; y) = �e�dx;y2�n ;where dx;y is the rectilinear distance between nodes x and y [5]. The parameters � and � governthe density of the graph. Increasing � increases the number of connections to nodes far away andincreasing � increases the number of edges from each node. After some experimentation, we chose� = 0:10 and � = 0:20 for generating the graphs used in this simulation. These values producedgraphs of realistic density.We performed two di�erent simulations on each generated graph by varying the multicastgroup size in two ways; the number of multicast nodes was chosen as either 20 or 60 of the 200nodes. Results are presented for both combinations for each graph. The nodes in a multicast groupwere chosen randomly in each case. The random numbers were chosen from a uniform distribution.To ensure fairness, each heuristic was run on the same 1000 networks.3.2 Evaluation MetricsThe metrics we use for comparison are the competitiveness, convergence time, and messages passed.Competitiveness is the ratio of heuristic tree cost C(T ) to that of the best solutionCbest found by anyheuristic. To determine the best solution, we considered solutions produced by the two distributed14



heuristics described in this paper and the distributed MST algorithm, as well as the serial heuristicsdescribed in [1]. We use the best heuristic solution found for each test network rather than anoptimal solution because explicit algorithms to �nd optimal solutions are prohibitively expensive onlarge networks. The convergence time was found by measuring the elapsed time in the simulatednetwork from the start of simulation to the time at which the last message reaches its destination.Since message-passing delays are likely to dominate processing delays on the convergence time of thealgorithm in a wide-area network, we considered only the former in computing the simulation time.We used the distance between two nodes as the delay to pass a message between them. Messagespassed is the total number of messages passed between nodes before convergence.3.3 Simulation ResultsHaving described the algorithms and the simulation environment, we now turn to the results of oursimulations.Figure 12 shows the competitiveness distribution for the centralized versions of SPH, K-SPH,and pruned MST algorithms. Each of the three plots shows the cumulative percentage of cases whosecompetitiveness is less than or equal to a given value. Figure 13 shows the same distributions for thedistributed versions of the three algorithms. Note that the distributed versions of SPH and K-SPHmay provide inferior solutions compared to their centralized versions because of the lack of globaltopology information in each node in the former. However, the degradation in the competitivenesswas small in our test networks. In fact, the competitiveness produced by distributed K-SPH wasoften superior to that of centralized SPH.When comparing the competitiveness, heuristics SPH and K-SPH consistently outperformedthe pruned MST heuristic, in both centralized and distributed cases. This result is consistent withthe known theoretical upper bounds on the heuristics. It has been shown that the cost of a solutionproduced by either SPH or K-SPH is within twice the cost of an optimal solution [20]. In contrast,the ratio between the cost of a solution produced by pruning a minimum spanning tree and thatof an optimal solution can be as large as the number of non-multicast nodes [17]. In our case, thecost of pruned MST solutions was rarely worse than twice that of the best solution found, but wasoften signi�cantly worse than that produced by shortest path heuristics. Figure 14 displays thecomplete cumulative distribution for the pruned minimum spanning tree algorithm. In Figure 13,90% of the solutions produced by both distributed K-SPH and SPH were within 4% of the best interms of their cost. In comparison, when the best 90% of the solutions produced by the prunedMST algorithm were considered, some of the solutions had costs as high as 50% more than that ofthe optimal algorithm. Thus, if competitiveness is the most important criterion in the choice of thealgorithm, distributed K-SPH is the heuristic of choice.Heuristics SPH and K-SPH also enjoy the advantage that neither requires the participationof all the nodes in the network. Only the nodes in the multicast tree and within its neighborhoodneed to participate in the execution of the algorithm. The pruned minimumspanning tree algorithm,on the other hand, requires participation from every node of the network, a condition di�cult tosatisfy in practice in a large wide-area network.Viewed from the perspective of messages exchanged and convergence-time, however, thepruned MST heuristic enjoys an advantage over shortest path heuristics SPH and K-SPH. Figure 15displays the cumulative percentage of networks solved within a given number of messages for the15
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Figure 12: Competitiveness distribution for centralized Steiner heuristics.
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Figure 13: Competitiveness distribution for distributed Steiner heuristics.16
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Figure 14: Competitiveness distribution for the distributed pruned minimumspanning tree heuristic.three algorithms. Likewise, Figure 16 displays the cumulative percentage of networks solved withina given convergence time. Both the number of messages and the convergence time for the solutionsproduced by pruned MST algorithm fell well within a much narrower range as compared to theresults for distributed K-SPH and SPH. This is again consistent with the known theoretical boundson the number of messages generated by the heuristics. In the case of the pruned MST heuristic, theadditional e�ort to prune the minimum spanning tree is inconsequential as compared to the e�ortrequired to �nd the minimum spanning tree. Thus, the theoretical upper bound on the number ofmessages in the pruned MST heuristic is O(N log2N + E) [6]. In comparison, the upper bound onthe number of messages for both SPH and K-SPH is O(ZN ). Thus, when the number of multicastnodes is large in comparison to logN , the pruned MST heuristic has a smaller upper bound on thenumber of messages.On comparing the SPH and K-SPH algorithms, it is interesting to observe that the al-gorithms had the same level of communication complexity in terms of the number of messagesgenerated, yet the range of convergence times produced by K-SPH was signi�cantly tighter. Thisis primarily due to the disparate approaches used by the algorithms in growing the multicast tree.Distributed SPH grows the tree by adding one multicast member at a time to the source fragment,concentrating much of the work at the source, while distributed K-SPH allows multiple fragments ofthe tree to combine in parallel. This allows distributed K-SPH to provide lower convergence timeswithout increasing the number of messages substantially.To answer the question of how the distributed heuristics scale with multicast group sizeand network size, we performed 3600 additional simulations summarized by Figures 17 through 19.17
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Figures 17 and 18 show the average convergence time passed for both SPH and K-SPH when eitherthe multicast group size is varied from 10% to 90% in a 200-node graph or when network sizeis varied from 20 nodes to 200 nodes. Each graph point summarizes the average value for 200test networks. Minimum and maximum values for each are displayed using error bars. Similarly,Figure 19 summarizes the average messages passed when membership size and graph size are varied.The equivalent graphs for distributed heuristic SPH are omitted since they mirror the results shownin the convergence time graphs. These graphs demonstrate that distributed heuristics SPH andK-SPH scale reasonably well for both multicast-group size and network size.Even though the convergence times for distributed K-SPH in Figure 16 are higher thanthose of the pruned MST algorithm by as much as 10 times, we believe that the former can bebrought down by modifying distributed K-SPH in the following ways:1. If a fragment receives a reject message because the preferred fragment has already mergedwith another, the fragment enters the discovery step and looks for the next closest fragment.If the rejecting fragment indicates its new fragment index, a fragment could skip the discoverystep and send a merge request to the new, merged component. Preliminary tests indicate thatthis can reduce convergence time by 5%.2. Ine�ciencies result when a large fragment merges with a small fragment. This ine�ciency isevident in distributed SPH because the largest fragment, the source fragment, always mergeswith a fragment containing a single multicast member. Although such merges cannot beavoided in distributed K-SPH, the duration of such a merge can be reduced by taking intoaccount the fragment size when merging fragments as follows: if a small fragment is addedto a large fragment, the discovery step can be shortened by performing a partial discoverystep. A partial discovery step updates the fragment leader's knowledge of fragment distancesusing existing fragment distance information and new information gathered by propagating amulticast through the smaller fragment's nodes. Such a partial discovery step is signi�cantlyfaster | as much as 35% in our tests. However, the new fragment may be unaware of fragmentdistance information it might otherwise have found through a full discovery step and hencethe competitiveness may su�er. Thus, this approach trades o� competitiveness for speed.3. In our simulations, we observed that few connection attempts between fragments are blockedin practice. This allows the connection and discovery steps to be overlapped, reducing thetime it takes for two fragments to complete a merge. The price paid is an occasional failedconnection attempt requiring longer discovery steps in both the original fragments to restorethe fragments to their original states.4 Concluding RemarksIn this paper we introduced two distributed heuristics based on shortest path Steiner hueristics,and evaluated their performance relative to a baseline pruned minimum spanning-tree heuristic.The primary advantage of our distributed algorithms over previous algorithms is that they requireparticipation from only the nodes in the multicast tree and within their neighborhood. Among thetwo algorithms studied, distributed K-SPH emerged as the clear winner; in comparison to distributedSPH, it has substantially lower convergence time and slightly better competitiveness.19
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The heuristics developed are an improvement over existing distributed Steiner heuristicsbased on the minimum spanning tree [4, 12] for two reasons: they produce solutions of superiorquality in most cases and requires the participation of only a subset of network nodes. Our resultsshow that the competitiveness of the solutions produced by both of our algorithms were, on theaverage, at least 25 percent better in comparison to those produced by the pruned spanning-treeapproach. In addition, the competitiveness found by our algorithms in almost all cases was within10% of the best solution found by any of the Steiner heuristics considered, including both centralizedand distributed algorithms.Limiting the execution of the algorithm to a subset of the nodes in the network can resultin an increase in convergence time over the pruned spanning-tree approach. Indeed, the convergencetime of distributed K-SPH was as large as ten times that of pruned MST algorithm in many our testnetworks. However, we believe that the distributed K-SPH algorithm can be streamlined in severalways, as discussed in the last section, to narrow this gap.Areas for future research include provisions for robustness of the algorithms in an environ-ment where node and link failures occur. The heuristics as stated here assume reliable delivery ofmessages and a stable topology during their execution. If an environment is assumed where nodesand links do fail during execution, a combination of schemes to ensure convergence and correctnessneed to be applied. These would certainly include an adaptive all-paths distributed algorithm suchas the one described by Humblet [7] and a timeout mechanism to detect rejected merger requests.Additional work is required to study the e�ectiveness and performance of these schemes.References[1] F. Bauer and A. Varma. \Degree-constrained multicasting in point-to-point networks," in Proc.IEEE INFOCOM, Boston, Apr. 1995, pp. 369{376.[2] J. Beasley. \An SST-based algorithm for the Steiner problem in graphs," Networks, vol. 19, pp.1{16, 1989.[3] K. Bharath-Kumar and Ja�e. \Routing to multiple destinations in computer networks," IEEETransactions on Communications, vol. COM-31, no. 3, pp. 343{351, Mar. 1983.[4] G. Chen, M. Houle, and M. Kuo. \The Steiner problem in distributed computing systems,"Information Sciences, vol. 74, no. 1-2, pp. 73{96, Oct. 1993.[5] M. Doar and I. Leslie. \How bad is naive multicast routing?," in Proc. IEEE INFOCOM, SanFrancisco, CA, Apr. 1993, pp. 82{89.[6] R. Gallager, P. Humblet, and P. Spira. \A distributed algorithm for minimum-weight spanningtrees," ACM Transactions on Programming Languages and Systems, vol. 5, no. 1, pp. 66{77,Jan. 1983.[7] P. Humblet. \Another adaptive distributed shortest path algorithm," IEEE/ACM Transactionson Communications, vol. 39, no. 6, pp. 995{1003, Jun. 1991.[8] F. Hwang and D. Richards. \Steiner tree problems," Networks, vol. 22, pp. 55{89, 1992.21
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