
Distributed Algorithms for Multicast PathSetupin Data NetworksFred BauerAnujan VarmaUCSC-CRL-95-10August 16, 1995Computer Engineering DepartmentUniversity of CaliforniaSanta Cruz, CA 95064E-mail: ffred,varmag@cse.ucsc.eduAbstractEstablishing a multicast tree in a point-to-point network of switch nodes, such as a wide-area ATMnetwork, can be modeled as the NP-complete Steiner problem in networks. In this paper, we introduceand evaluate two distributed algorithms for �nding multicast trees in point-to-point data networks. Thesealgorithms are based on the centralized Steiner heuristics, the shortest path heuristic (SPH) and the Kruskal-based shortest path heuristic (K-SPH), and have the advantage that only the multicast members and nodesin the neighborhood of the multicast tree need to participate in the execution of the algorithm. We compareour algorithms by simulation against a baseline algorithm, the pruned minimum spanning-tree heuristic,which is the basis of many previously published algorithms for �nding multicast trees. Our results show thatthe competitiveness (the ratio of the sum of the heuristic tree's edge weights to that of the best solutionfound) of both of our algorithms was on the average 25 percent better in comparison to those produced bythe pruned spanning-tree approach. In addition, the competitiveness of our algorithms was, in almost allcases, within 10 percent of the best solution found by any of the Steiner heuristics considered, including bothcentralized and distributed algorithms. Limiting the execution of the algorithm to a subset of the nodesin the network results in an increase in convergence time over the pruned spanning-tree approach, but thisoverhead can be reduced by careful implementation.Keywords: Multicasting, Steiner problem in networks, Distributed algorithms.This research is supported by the Advanced Research Projects Agency (ARPA) under Contract No. F19628-93-C-0175 and by the NSF Young Investigator Award No. MIP-9257103. This paper was presented in part at GLOBECOM'95, Singapore, November 1995.

1 IntroductionMany future applications of computer networks such as distance education, remote collaboration,and teleconferencing will rely on the ability of the network to provide multicast services. Indeed,many recent standards for packet-switched networks, notably ATM, Frame Relay and SMDS, includesupport for multicasting. Thus, multicasting will likely be an essential part of future networks.Multicasting is sometimes supported in a point-to-point packet network by setting up amulticast tree connecting the members of the multicast group. We concern ourselves in this paperwith networks that use virtual circuit routing, such as ATM and Frame Relay. In such a network,a multicast virtual circuit is set up from the source of the multicast to the destinations before datatransmission occurs. Determining this optimal multicast tree for the virtual circuit is a di�cultproblem. Previous authors have established that the multicast tree problem can be modeled asthe Steiner problem in networks [2, 3, 8, 20], referred to hereafter as the SPN, and that �ndingexplicit solutions in large networks is prohibitively expensive. For example, two popular explicitalgorithms, the spanning tree enumeration algorithm and the dynamic programming algorithm [20],have algorithmic complexities of O(p22(n�p) + n3) and O(n3p + n22p + n3), respectively, where nis the number of nodes in the graph and p the number of multicast members. A number of good,inexpensive, centralized heuristics exist for the SPN and have been reviewed extensively elsewhere[3, 8, 10, 15, 16, 17, 20]. Some have been shown through analysis to produce solutions no worse thantwice the optimal solution [20]. Empirical evidence from our previous papers indicate that theseheuristics �nd solutions much better than twice the optimal with reasonable speed in most cases [1].Most of the algorithms proposed in the literature for SPN are serial in nature. However, afew distributed heuristics exist [4, 12]. Many of these algorithms are based on reducing the SPN tothe minimum spanning tree problem, referred to here as the MST, and using a distributed minimumspanning tree algorithm such as the one described by Gallager, Humblet, and Spira [6]. A Steinertree is created by pruning the minimum spanning tree by removing subtrees containing no multicastmembers. For example, Chen, et al. [4] �nds a Steiner tree by applying a distributed minimumspanning tree algorithm twice. First the algorithm is applied to the original graph. This �rstminimum spanning tree is used to create a shortest path forest composed of disjoint trees and edgesthat together form a connected subgraph of the original graph. The distributed minimum spanningtree algorithm is then applied a second time to this subgraph. The solution is obtained by pruningunnecessary leaves and branches from this second minimum spanning tree. Likewise, Kompella,et al. [12] describe two distributed versions of earlier centralized heuristics proposed by the sameauthors [11]. Both of these distributed heuristics �rst build a constrained Steiner tree that re
ectsthe combined criteria of cost and delay. A distributed MST algorithm is applied to this constrainedSteiner tree and the solution tree is pruned. The two heuristics di�er in their criteria for choosingedges while constructing the MST.Distributed Steiner heuristics based on a minimum spanning tree algorithm su�er from twodrawbacks: First, all the nodes in the network must participate in the execution of the algorithm.This may be impractical in a large network with sparse multicast groups. Second, the theoreticalupper bound on competitiveness of a pruned MST to that of an optimal Steiner tree has been shownto be s + 1, where s is the number of non-multicast nodes [17]. Here competitiveness is de�ned tobe the ratio of the sum of the heuristic tree's edge weights to that of an optimal tree [9, 18, 19].1

Other equivalent terms for this measure include ine�ciency and quality of solution. Thus thecompetitiveness of a multicast tree decreases with the size of the multicast group. In comparison,the equivalent theoretical upper bound for the shortest path heuristic (SPH) for the Steiner treeproblem is 2(1� 1p) [20], where p is the size of the multicast group. Our empirical evidence suggeststhat pruned MST heuristics often produce solutions of inferior quality as compared to those producedby shortest path Steiner heuristics.In this paper, we present two distributed algorithms for the Steiner problem in networks.The algorithms are based on the shortest path heuristic (SPH) and the Kruskal-based shortest pathheuristic (K-SPH), described in [1]. We analyze their message and convergence-time complexitiesand compare their simulation results against those from a pruned MST algorithm. We choose thedistributed MST algorithm due to Gallager, Humblet, and Spira [6] as our baseline algorithm forcomparison. This algorithm is perhaps the simplest of all pruned MST algorithms, yet producesSteiner trees that are representative of other, more elaborate pruned MST heuristics such as thosedescribed in [4, 12]. The distributed heuristics are compared on the basis of three criteria: compet-itiveness, number of messages exchanged, and convergence time.Our simulations of the algorithms are performed on a large set of sparse, randomly-generatednetwork topologies. We use the distance propagation delay model, using the distance between nodesas the weight of the edge between them. We restrict our analysis to sparse networks for two reasons:(i) they are more representative of real point-to-point networks, and (ii) they are inherently moredi�cult to solve because, in general, fewer solutions exist in a sparse network than in a dense one.Similarly, the simulated multicast groups are small relative to the size of the network, re
ectinglikely multicast applications such as video conferencing, distance learning, resource discovery andreplicated database updating. Note that our results are not speci�c to any particular type of networksuch as ATM, but may be applied to any virtual circuit-based point-to-point network.The remainder of this paper is organized as follows. Section 2 introduces and analyzes ourtwo distributed heuristics, based on the centralized Steiner heuristics K-SPH and SPH, respectively.Section 3 compares the algorithms in terms of their competitiveness, convergence time, and numberof messages exchanged. We show that the distributed shortest-path heuristics produced multicasttrees with competitiveness within 5% of that of the best solution found by any heuristic, bothcentralized and distributed, in more than 90 percent of our test networks. In contrast, only 0.3% ofthe solutions produced by the pruned MST algorithm fell within 5% of the best solutions in termsof their cost (sum of edge weights). Finally, Section 4 concludes the paper with a discussion of theresults.2 Steiner Tree HeuristicsIn this section, we summarize previous Steiner heuristics and introduce the two distributed Steinerheuristics.Before continuing, we make the following basic de�nitions and notations. Z is the set ofmulticast destinations, S is the set of non-multicast nodes V � Z, Pi;j is the shortest path betweennodes i and j, di;j is the distance of the shortest path between nodes i and j as well as the weightof the edge between nodes i and j, and C(T) is the cost of tree T (the sum of T 's edge weights).Graph distances will be de�ned as follows: The distance between two nodes is the distance of the2

shortest path between them. Likewise, the distance between a node and a tree is the distance of theshortest path between the node and any node in the tree. Finally, the distance between two treesis the distance of the shortest among all paths between any node in one tree and any node in theother tree. As in [6], we append the weight of an edge or path with the index of its destination nodein determining shortest paths so that, in case of a tie, the actions of the individual nodes would beconsistent. Since we do not allow multiple edges between the same pair of nodes, this ensures thatall the nodes select the same edge or path, given the same set of edge weights.To be suitable for distributed implementation, a heuristic must satisfy four criteria. It must(i) use the existing routing information available at each node in the network, (ii) use minimalcomputational and network resources, (iii) require a minimum of coordination between neighbors,and (iv) limit itself to nodes directly involved in the multicast. Of the centralized heuristics evaluatedin [1], we chose the following four heuristics as candidates for distributed implementation: theshortest-path heuristic (SPH), a variant of SPH known as SPH-Z, the Kruskal-based shortest-pathheuristic (K-SPH), and the Average distance heuristic (ADH). Each of these heuristics is describedin [15]. A brief summary of heuristics SPH and K-SPH follows.SPHHeuristic SPH, introduced in [16], initializes the multicast tree to an arbitrary multicast member. Itthen grows the tree by successively adding the next closest multicast member to the multicast treeby the shortest path between the multicast member and the tree. The algorithm terminates whenall the multicast members have joined the tree.K-SPHHeuristic K-SPH, introduced in [13], di�ers from SPH in the manner in which the multicast treeis expanded. Instead of growing the tree one node at a time, the algorithm joins subtrees pairwiserepeatedly until all the multicast nodes are part of a single tree. The algorithm initially starts withZ subtrees, each a multicast member itself. In the expansion step, it �nds two subtrees that areclosest to each other and joins them along the shortest path between them to form a single subtree.This heuristic is a re�nement of the average distance heuristic �rst proposed by Rayward-Smith [14].2.1 Distributed Steiner HeuristicsAfter further consideration, only two of the four heuristics, SPH and K-SPH, remain as suitablecandidates for distributed implementation. Both heuristics SPH-Z and ADH fail our criteria forconversion. Although heuristic SPH-Z initially appears attractive as a distributed heuristic, itscomponent distance information for each of the Z instances could be distinct. This forces as manyas Z copies of component information at each node and a virtual storm of network messages beforeconvergence. Likewise, ADH fails our criteria because its calculation of the most central node requiresexcessive overhead for coordination between nodes in the network. In addition, our earlier resultsindicate that, on the average, the solutions produced by K-SPH and ADH are of nearly identicalquality [1]. Of these two heuristics, K-SPH is the more attractive candidate because of its relativesimplicity and lower running time. 3

flood
to N

wait

init

request

Distributed
K−SPH

flood

connect

query

request connectFigure 1: The �nite state machine for fragment leaders in distributed K-SPH.Distributed heuristics SPH and K-SPH are designed to run as asynchronous, independentprocesses running one per node in a network.We assume that each such node knows its shortest path to all other nodes in the network.Each distributed heuristic assumes that each node in the network is a router; the routing tables ineach such node is up-to-date; all shortest paths are symmetric in the sense that nodes i and j shareshortest paths between them; no topology changes occur during the execution of the algorithm; thenetwork is connected; every node has a unique index; each multicast member has knowledge of theindices of all other multicast members; and each multicast member is able to determine the distanceto every other node from its routing table.Heuristic SPH is inherently a serial algorithm, since there is only one subtree expandingitself at any time during the execution of the algorithm and nodes must join the tree serially.Heuristic K-SPH, on the other hand, allows many of the join operations to proceed in parallel. Thelatter, however, is substantially more di�cult to parallelize because of the signi�cant amount ofcoordination that may be needed while combining subtrees. In the following, we present distributedK-SPH �rst, followed by a similar distributed implementation of SPH.2.1.1 Distributed Heuristic K-SPHLike its centralized version, distributed K-SPH starts with a forest of Z multicast members (Z-nodes)and connects them pairwise into successively larger subtrees until a single multicast tree remains orno further connections are possible. We refer to the subtrees during the execution of the algorithmas fragments. Thus, at the beginning of the algorithm, there are Z fragments, each a trivial subtreeconsisting of one Z-node. As the algorithm proceeds, these fragments grow into increasingly largercollections of multicast members.At any instant during the execution of the algorithm, each node in the network is eitherpart of a fragment or has not been yet been included in the multicast tree. Note that every Z-node is always a fragment node and every non-member node (S-node) is initially a non-fragmentnode. When two fragments merge, the nodes in both fragments and the nodes that lie on the pathconnecting them become the fragment nodes of the new, merged fragment.4

while fragments remain do# algorithm discovery stepupdate fragment information for nearby fragmentsf closest fragment# algorithm connection steprequest merger with fragment fif merger requests exchanged with fragment f thenattempt connection to fragment fif connection established thenmerge fragmentselse restore original fragmentsend ifend ifend whileFigure 2: Pseudocode for fragment leaders in distributed K-SPH.Each fragment has a fragment leader coordinating the activities of the fragment. Thisfragment leader is the fragment Z-node with the lowest index. Each fragment leader executes the�nite state machine shown in Figure 1. Initially, each multicast member is the leader of its ownone-node fragment; when two fragments merge, leadership is assigned to the fragment leader withthe lower index. To identify fragments uniquely, each fragment has the same index as its leader andeach fragment node is aware of its fragment index.At the highest level, each fragment, guided by its leader, executes the pseudocode shown inFigure 2. During the execution of the algorithm, each fragment attempts to merge with its closestneighboring fragment. This is accomplished in two steps | a discovery step and a connection step.During the discovery step, the leader gathers and updates its information on other fragments andgraph nodes. Based on the information gathered, it determines the closest fragment to merge with.During the connection step, it communicates with the closest neighbor fragment's leader, requestinga merge. This closest fragment leader is simply the Z-node with the same index as the closestfragment. If accepted, the leader with the lowest index attempts to connect the two fragments.Regardless of the outcome (the request is rejected, the fragments are connected, or the connectionattempt fails), the cycle repeats until the algorithm terminates.Distributed K-SPH processes running on each node rely on the shortest path informationassumed available at its node, as well as information maintained by the fragment leaders. Eachnode also stores the index of its fragment. Initially, only multicast nodes have a fragment index|its own index. Each leader maintains additional shortest path information for its fragment. Thisinformation augments the shortest path information at each node. For example, the leader storesonly the distance, and the head and tail of the shortest path between its fragment and every otherfragment. The additional details necessary to build the path between fragments is stored at the5

request merger with fragment fdo send request to fragment f 's leaderwait for responseuntil accept or rejectleader this fragment index < fragment f 's indexif accept and leader then# attempt connection to fragment fsend connect message to head of shortest pathwait for connection success or failureif failure thensend reject to fragment f 's leaderend ifFigure 3: Fragment leader pseudocode for the connection step in distributed K-SPH.head of the path, a node in the leader's subtree. Note that the shortest path between fragmentsneed not start or end at a leader node.2.1.2 The �nite state machine of heuristic K-SPHState init: When distributed K-SPH starts, each Z-node, the leader of its own trivial one-nodefragment, already knows its distance to every other fragment as provided by the initial distancetables and no discovery step is necessary. Instead, each distributed K-SPH leader starts with theconnection step, described below.States request, wait, and connect: States request, wait and connect in Figure 1 comprise theconnection step. During this step, each leader attempts to connect its fragment with the closestfragment, known as its preferred fragment (Figure 3 shows the pseudocode for this step). It does soby sending a merge requestmessage to the leader of the preferred fragment (That is, the Z-node withthe same index as the preferred fragment). A leader receives one of three responses to its request:accept, reject, or busy.busy A fragment leader returns the busy response when a request arrives during its discovery step.Upon receiving a busy response, a fragment will retransmit its merge request.reject A fragment node returns a reject message when (i) it receives a connections request from afragment other than its preferred fragment, (ii) when a connection attempt fails, or (iii) whenit is no longer a fragment leader.accept A fragment leader returns an accept response when it exchanges merge requests with itspreferred fragment. Once an accept message is sent, the fragment may not leave the connectstep or accept a request from another fragment until the connection attempt completes.6

Fragment
 A

Fragment
 B

Fragment edges Shortest path

= Fragment leader
= Fragment node
= Non−fragment node

Head

Graph
 edges

TailFigure 4: Example of fragments A and B merging in distributed K-SPH.Connecting fragments: Upon receiving the accept response, the fragment leader with the lowestindex attempts to connect the two fragments together using a shortest path. To do so, a connectmessage is sent down this shortest path. The message may either reach the target fragment or beblocked ; blocking occurs when the message reaches a node in a third fragment before reaching thetarget fragment.Figure 4 illustrates a successful connection where fragments A and B are connected by theirshortest path. This path has its head in one fragment, its tail in the other, and passes through onlynon-fragment nodes. The connect message stops at the �rst node in the target fragment it reachesand sends a status message back along the same path.If the connect message is blocked, the blocked node returns a status message back along theshortest path. Each intermediate node upon receiving this status message reverts to its previousnon-fragment status. Upon receiving the status message, the initiating fragment leader sends areject message to the other fragment leader.After the connection step, fragment leaders enter the discovery step.The discovery step: The discovery step accomplishes three tasks: (i) it informs every node inthe fragment of its new fragment index, (ii) it gathers fragment information about nodes close to thefragment, and (iii) it refreshes its information on shortest paths to other fragments. The pseudocodefor the discovery step is shown in Figure 5. Each fragment leader achieves these tasks by performinga multicast on its fragment rooted at itself. In the multicast message, the leader includes thefragment index, the distance to the preferred fragment and shortest paths to other fragments. Aseach node in the fragment receives the multicast, it updates its fragment index, queries nearby nodesand passes the multicast message to its children. Nearby nodes are de�ned to be those nodes thatlie within the shortest distance from this fragment to the preferred fragment. Nearby nodes arequeried for fragment index information. The objective of queries to nearby nodes is to �nd fragmentnodes closer than those already known by the leader. Figure 6 illustrates a case where this is useful.Queries could be sent to all nodes in the graph, but are limited to nearby nodes for two reasons:(i) a set distance avoids broadcast storms and (ii) new shortest paths discovered should be shorterthan those already available. The discovery step is implemented by state
ood-to-N in Figure 1.Analysis of Distributed K-SPH Algorithm: Having described the distributed K-SPH in theprevious section, we now turn to its properties. We use a directed request graph to show the7

send update request to all childrenfor all fragment children dosend fragment index, distance to closest fragment,and shortest path information to each childend for# query all nodes closer than closest fragmentfor nodes nearer than closest fragment dosend nodes query for component informationend forwait for responsesupdate shortest path information information# forward resultsif not leader thensend summary of shortest path informationto parentend ifif leader thenf closest fragmentFigure 5: Fragment leader pseudocode for the discovery step in distributed K-SPH.relationship of fragments to one another during the execution of the algorithm. Each fragmentin the network is represented by a node in the request graph and its current choice of preferredfragment by a directed edge. Figure 7 illustrates an example graph with three vertices representingfragments A, B, and C. In this example, the fragment pair A and B request each other, while athird, more distant fragment C requests fragment B. Fragments A and B will merge, creating a newfragment that will form a pair with fragment C and merge. A fragment is considered stable when itis in the states wait or request since its choice of preferred partner is unknown when the fragmentis in states connect,
ood-to-N, or init.The request graph can be used to show that the distributed K-SPH algorithm does notdeadlock. To prove that the algorithm will terminate, we need to only show that at any time duringthe execution of the algorithm, the shortest-path distances maintained by two of the fragments toeach other will converge to the same value in a �nite time (that is, a cycle of length 2 in the requestgraph). These two fragments will then merge to form a new fragment. Thus, by induction, thealgorithm will terminate in �nite time.Lemma 1 At any time during the execution of the algorithm, the shortest-path distances maintainedby two stable fragments to each other will converge to the same value within a �nite time.Proof: Initially, the shortest path between any two single-node multicast members is the shortestpath between their fragments. This path is symmetric in the sense that both paths consist of8

= Fragment leader
= Fragment node
= Non−fragment node

fragment A

fragment B

fragment C

1

2

3

4Figure 6: Example of the discovery phase in distributed K-SPH. Fragment B's leader believes thatfragment C is the closest fragment. During fragment B's discovery step, it instructs fragment nodesto query those nodes closer than fragment C. This distance is the distance between node 3, thehead of the path to fragment C, and node 4, its tail, and is marked by the dotted circles aroundeach of fragment B's nodes. Since nodes 1 and 2 fall within one such circle, they receive queries andfragment B's leader discovers the closer fragment A.
CBA

A B

C

FragmentsRequest GraphFigure 7: An example for request graph.the same nodes and edges. This is because of the strict ordering of all shortest paths. Supposethat at some later time, the shortest paths between two fragments di�er in distance as shown inFigure 8. Suppose further, that one fragment, in this case fragmentB, has the longer path. The nexttime fragment B enters state
ood-to-N, it will query every node in its neighborhood for fragmentinformation. Any node in fragmentA closer to B must fall within B's neighborhood and will becomethe tail of a new, shorter path to fragment A. The shortest of all such paths will become fragmentB's new shortest path to fragment A. By a symmetrical argument, the paths between fragments Aand B must converge on the same distance.Inconsistencies may also occur when a path is blocked. Assume that only one of a pair offragments �nds the shortest path between them blocked. Assume fragment A has a shortest path toB, but B's shortest path to A is blocked. The shortest path between fragments can only be blockedby a node belonging to a third fragment C. In this case, fragment A will query the blocking node infragment C the next time A enters the discovery phase (state
ood-to-N). In addition, C will alsoupdate its distance to A during its recovery phase, resulting in consistent values for the distance9

A

B

B’s neighborhood

Path from A to B

Path from B to A

Figure 8: Two subtrees with di�erent shortest paths.
B

A

C

X Y

Three−fragment cycle No cyclesFigure 9: A request graph demonstrating deadlock.between A and C.A deadlock occurs when no two-fragment cycle exists in the request graph even when allfragments are stable. Figure 9 shows two such examples. In the �rst case, three fragments are lockedin a cycle and in the other, one fragment has no outgoing edges and cannot merge with any otherfragment. Either of these cases could mean that distributed K-SPH would never terminate. In thefollowing, we show that such deadlocks cannot occur.Lemma 2 Distributed K-SPH does not deadlock.Proof: Let d(I; J) represent the distance between fragments I and J . In Figure 9, stable fragmentsA, B and C are locked in a three-node cycle. Since each fragment prefers the closest fragment, thefollowing inequalities must hold: d(A;B) < d(A;C), d(B;C) < d(B;A), and d(C;A) < d(C;B).However, we know from Lemma 1 that at least two of the fragments, say A and B, must haveequidistant shortest paths. This leads to a contradiction. A similar argument holds for any cycle ofmore than two fragments. Consider the case where no cycle exists as shown by fragments X andY in Figure 9. Fragment Y has no outgoing edge, which indicates that it has no shortest path toany fragment. This means that Y 's path to X must be blocked and by Lemma 1 will eventuallybe discovered. Distributed K-SPH terminates with an error when both X and Y have no outgoingedges.Convergence Time and Number of Messages: We now derive some simple asymptotic boundson the number of messages and convergence time of the distributed K-SPH algorithm.10

flood
to N

wait

init

request

flood

connect

connect

query

request

leader not leader

Distributed
SPH

not
source

source

Figure 10: The �nite state machine for each node performing distributed SPH.Distributed K-SPH uses the least number of messages when the network has Z = 2i multicastnodes, any number of non-multicast nodes, and fragments always �nd a partner. Under theseconditions, a total of Z21 + Z22 + � � �+ Z2i = Z 2i�12i = 2i 2i�12i = 2i � 1 merges occur during i rounds.Each fragment merges using a relatively small number of messages and the new fragment entersthe discovery phase, In the discovery phase, each fragment node queries every child and neighborfor fragment and distance information. Assume that on average each fragment node queries a �nitenumber of neighbors and children approximated by c. The total number of messages sent by multicastmembers during each round is cZi = cZ logZ =
(Z logZ). During each of the logZ rounds, thelongest round-trip message time between leader and fragment root dominates. This round-trip timecan be at worst twice the diameter of the graph, and at best a constant. Thus, the time to convergeis lower-bounded by c logZ =
(logZ).In the worst case, only one fragment �nds a partner during any round. Thus, Z � 1 roundsoccur before a solution is found. If fragments are always relatively large then the number of messageswould be the number of rounds times the number of nodes on all fragments, c(Z�1)N = O(ZN). Ifthe round-trip times during each of the Z � 1 rounds is large and close to twice the graph diameter,2D, then the convergence time for this case is 2D(Z � 1) = O(DZ).These bounds are summarized in Tables 1 and 2, along with the bounds for the otheralgorithms considered in this paper. Our results from simulations of the algorithm show that therates of increase of both the convergence time and the number of messages with the number of nodesfell within these bounds as shown in Section 3.2.1.3 Distributed SPHThe distributed shortest path heuristic is a special case of distributed K-SPH described in section2.1.1. In distributed SPH, any one of the multicast members may act as the source of the multicast,referred to here simply as the source node. In contrast to distributed K-SPH, only one fragment,the source fragment grows, connecting multicast members to itself until all the multicast membersare part of the same fragment. The heuristic terminates when a single tree remains.In SPH, the preferred fragment of every fragment is always the source fragment. The sole11

Distributed DistributedBound K-SPH SPHLower Bound Z logZ Z2Upper Bound ZN ZNTable 1: Messages bounds for distributed heuristics K-SPH and SPH.Distributed DistributedBound K-SPH SPHLower Bound logZ DZUpper Bound DZ DZTable 2: Convergence-time bounds for distributed heuristics K-SPH and SPH.exception, of course, is the source fragment itself which prefers its closest fragment. Note thatall other fragments are trivial one-node subtrees containing one multicast member each. However,to maintain uniformity with our previous heuristic description we will continue to use the termfragment instead of multicast member. Using the same connection step outlined for heuristic K-SPH, the source fragment merges with its closest fragment. As the source fragment grows, it usesthe same discovery step to determine the new, closest fragment. The source fragment never changesits index. This preserves the source fragment's original index so that non-source fragments neverneed to change their preferred fragment index. As a consequence, non-source fragments do not enterthe discovery phase. In all other respects, distributed SPH is very similar to distributed K-SPH.Figure 10 shows the �nite state machine used by each node.Algorithm Analysis: Since distributed SPH is a special case of distributed K-SPH, its analysisproceeds similarly to that of distributed K-SPH. For example, it too will not deadlock as shown byLemma 3.Lemma 3 Heuristic SPH does not deadlock.Proof: Consider Figure 9 again. A three-node cycle such as the one in Figure 9 cannot occur indistributed SPH because every fragment except the source prefers the source fragment. Thus, thelongest request graph cycle in distributed SPH has length two: an edge from the source to a fragmentand the return edge. A longer request cycle is an error. Likewise, a zero-node cycle indicates anerror since every fragment except the source fragment always prefers the source fragment and thesource fragment prefers its closest fragment.Messages and Convergence Time: Like distributed K-SPH, distributed SPH uses the leastnumber of messages when Z = 2i multicast members exist. Distributed SPH di�ers from distributedK-SPH in that only two fragments merge during a round. Assume that on average each fragmentnode queries a �nite number of neighbors and children approximated by c. The number of messagesin this case would be c + 2c + 3c + � � �+ (Z � 1)c = c (Z�1)2�(Z�1)22 = O(Z2). The round-trip time12

during each of the Z�1 rounds cannot be greater than twice the graph diameter and the convergencetime is c(2D)(Z � 1) =
(DZ).In the worst case, assume that the source fragment grows quickly and the round-time dis-tance for messages approaches twice the graph diameter, 2D. The number of messages in this caseis c(Z � 1)N = O(ZN). Likewise the convergence time becomes 2D(Z � 1) = O(DZ).The convergence-time and message bounds for the distributed heuristics are summarized inTables 1 and 2, respectively.3 Simulation ResultsTo evaluate the two distributed heuristics presented in the last section, we implemented the algo-rithms in a simulator and performed extensive simulations on randomly generated test networks.We choose the distributed MST algorithm due to Gallager, Humblet, and Spira [6] as our baselinealgorithm to compare the results. This algorithm was used to produce a minimum spanning tree ofthe network graph, which was then pruned to obtain a Steiner tree. We chose this MST algorithmas our baseline algorithm because the majority of previous distributed algorithms reviewed �ndmulticast trees are based on �nding minimal spanning trees [4, 12]. This algorithm di�ers from ouralgorithms, distributed K-SPH and SPH, in the fact that all the network nodes must participate inthe execution of the algorithm in the former, while only the multicast members and nodes in thevicinity of the multicast tree being set up execute the algorithm in the latter.This section summarizes the simulation results and compares the algorithms in terms oftheir convergence time, competitiveness, and the number of messages exchanged.3.1 Evaluation Methodology3.1.1 Network modelBecause our choice of existing network topologies and multicast applications was small, we chose tocompare Steiner heuristics using randomly generated networks. Each algorithmwas run on a total of1000 test networks. Each of the 1000 networks is a sparse 200-node network. We consider an n-nodegraph to be sparse when less than 5% of the possible �n2� edges are present in the graph. Note thatthe number of edges in an n-node connected graph can vary from n � 1 for a tree to �n2� for thecomplete graph on n nodes. For our test networks on 200 nodes, the number of edges must fall in thenarrow range from 199 to 5% of maximumedges possible = 995. Figure 11 shows the distribution ofnumber of edges for our test networks. We believe such a graph describes a plausible WAN becausea large network is likely to be loosely interconnected. Likewise, the simulated networks have 10% or30% of its nodes in the multicast group because multicast applications running on such a WAN arelikely to involve only a minority of nodes in the network. For example, consider a video conferencein a large corporate network. The conference is most likely to directly involve a minority of nodes inthe network. The choice of 10% and 30% of the nodes was made since these �gures represent moredi�cult cases of the Steiner problem. Later in Section 3.3 we discuss how these heuristics scale withincreasing multicast membership size (10% to 90%) and network size (20 to 200 nodes).13

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

460 480 500 520 540 560 580 600

Number of Edges

P
er

ce
nt

ag
e

of
 C

as
es

Figure 11: The histogram of the number of edges in the test graphs.The 1000 networks were generated to resemble real networks in a manner similar to that ofDoar [5]. Each of the 200 nodes is distributed across a Cartesian coordinate plane with minimumand maximum coordinates (0; 0) and (400; 400), creating a forest of 200 nodes spread across thisplane. The nodes are then connected by a random spanning tree. This tree is generated by iter-atively considering a random edge between nodes and accepting those edges that connect distinctcomponents. The remaining edges of the graph are chosen by examining each possible edge (x; y)and generating a random number 0 � r < 1. If r is less than a probability function P (x; y) basedon the distance between x and y, then the edge is accepted. Each edge's distance is its rectilineardistance plus a small constant. This distance is also the time it takes for a message to traverse thisedge. We used the probability function P (x; y) = �e�dx;y2�n ;where dx;y is the rectilinear distance between nodes x and y [5]. The parameters � and � governthe density of the graph. Increasing � increases the number of connections to nodes far away andincreasing � increases the number of edges from each node. After some experimentation, we chose� = 0:10 and � = 0:20 for generating the graphs used in this simulation. These values producedgraphs of realistic density.We performed two di�erent simulations on each generated graph by varying the multicastgroup size in two ways; the number of multicast nodes was chosen as either 20 or 60 of the 200nodes. Results are presented for both combinations for each graph. The nodes in a multicast groupwere chosen randomly in each case. The random numbers were chosen from a uniform distribution.To ensure fairness, each heuristic was run on the same 1000 networks.3.2 Evaluation MetricsThe metrics we use for comparison are the competitiveness, convergence time, and messages passed.Competitiveness is the ratio of heuristic tree cost C(T) to that of the best solutionCbest found by anyheuristic. To determine the best solution, we considered solutions produced by the two distributed14

heuristics described in this paper and the distributed MST algorithm, as well as the serial heuristicsdescribed in [1]. We use the best heuristic solution found for each test network rather than anoptimal solution because explicit algorithms to �nd optimal solutions are prohibitively expensive onlarge networks. The convergence time was found by measuring the elapsed time in the simulatednetwork from the start of simulation to the time at which the last message reaches its destination.Since message-passing delays are likely to dominate processing delays on the convergence time of thealgorithm in a wide-area network, we considered only the former in computing the simulation time.We used the distance between two nodes as the delay to pass a message between them. Messagespassed is the total number of messages passed between nodes before convergence.3.3 Simulation ResultsHaving described the algorithms and the simulation environment, we now turn to the results of oursimulations.Figure 12 shows the competitiveness distribution for the centralized versions of SPH, K-SPH,and pruned MST algorithms. Each of the three plots shows the cumulative percentage of cases whosecompetitiveness is less than or equal to a given value. Figure 13 shows the same distributions for thedistributed versions of the three algorithms. Note that the distributed versions of SPH and K-SPHmay provide inferior solutions compared to their centralized versions because of the lack of globaltopology information in each node in the former. However, the degradation in the competitivenesswas small in our test networks. In fact, the competitiveness produced by distributed K-SPH wasoften superior to that of centralized SPH.When comparing the competitiveness, heuristics SPH and K-SPH consistently outperformedthe pruned MST heuristic, in both centralized and distributed cases. This result is consistent withthe known theoretical upper bounds on the heuristics. It has been shown that the cost of a solutionproduced by either SPH or K-SPH is within twice the cost of an optimal solution [20]. In contrast,the ratio between the cost of a solution produced by pruning a minimum spanning tree and thatof an optimal solution can be as large as the number of non-multicast nodes [17]. In our case, thecost of pruned MST solutions was rarely worse than twice that of the best solution found, but wasoften signi�cantly worse than that produced by shortest path heuristics. Figure 14 displays thecomplete cumulative distribution for the pruned minimum spanning tree algorithm. In Figure 13,90% of the solutions produced by both distributed K-SPH and SPH were within 4% of the best interms of their cost. In comparison, when the best 90% of the solutions produced by the prunedMST algorithm were considered, some of the solutions had costs as high as 50% more than that ofthe optimal algorithm. Thus, if competitiveness is the most important criterion in the choice of thealgorithm, distributed K-SPH is the heuristic of choice.Heuristics SPH and K-SPH also enjoy the advantage that neither requires the participationof all the nodes in the network. Only the nodes in the multicast tree and within its neighborhoodneed to participate in the execution of the algorithm. The pruned minimumspanning tree algorithm,on the other hand, requires participation from every node of the network, a condition di�cult tosatisfy in practice in a large wide-area network.Viewed from the perspective of messages exchanged and convergence-time, however, thepruned MST heuristic enjoys an advantage over shortest path heuristics SPH and K-SPH. Figure 15displays the cumulative percentage of networks solved within a given number of messages for the15

0

20

40

60

80

100

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18

Competitiveness (Solution/Best)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 C

as
es centralized K-SPH

centralized SPH

centralized pruned MST

Figure 12: Competitiveness distribution for centralized Steiner heuristics.
0

20

40

60

80

100

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18

Competitiveness (Solution/Best)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 C

as
es

distributed K-SPH

distributed SPH

distributed pruned MST

Figure 13: Competitiveness distribution for distributed Steiner heuristics.16

0

20

40

60

80

100

1.05 1.13 1.21 1.29 1.37 1.45 1.53 1.61 1.69 1.77

Competitiveness (Heuristic/Best)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 C

as
es

Figure 14: Competitiveness distribution for the distributed pruned minimumspanning tree heuristic.three algorithms. Likewise, Figure 16 displays the cumulative percentage of networks solved withina given convergence time. Both the number of messages and the convergence time for the solutionsproduced by pruned MST algorithm fell well within a much narrower range as compared to theresults for distributed K-SPH and SPH. This is again consistent with the known theoretical boundson the number of messages generated by the heuristics. In the case of the pruned MST heuristic, theadditional e�ort to prune the minimum spanning tree is inconsequential as compared to the e�ortrequired to �nd the minimum spanning tree. Thus, the theoretical upper bound on the number ofmessages in the pruned MST heuristic is O(N log2N + E) [6]. In comparison, the upper bound onthe number of messages for both SPH and K-SPH is O(ZN). Thus, when the number of multicastnodes is large in comparison to logN , the pruned MST heuristic has a smaller upper bound on thenumber of messages.On comparing the SPH and K-SPH algorithms, it is interesting to observe that the al-gorithms had the same level of communication complexity in terms of the number of messagesgenerated, yet the range of convergence times produced by K-SPH was signi�cantly tighter. Thisis primarily due to the disparate approaches used by the algorithms in growing the multicast tree.Distributed SPH grows the tree by adding one multicast member at a time to the source fragment,concentrating much of the work at the source, while distributed K-SPH allows multiple fragments ofthe tree to combine in parallel. This allows distributed K-SPH to provide lower convergence timeswithout increasing the number of messages substantially.To answer the question of how the distributed heuristics scale with multicast group sizeand network size, we performed 3600 additional simulations summarized by Figures 17 through 19.17

0

20

40

60

80

100

5 15 25 35 45 55 65 75 85 95

Messages (in Thousands)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 C

as
es

Pruned MST

K-SPH

SPHFigure 15: Cumulative distribution for number of messages transmitted by the three distributedSteiner heuristics.
0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100 110 120

Convergence Time (in Thousands)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 C

as
es

Pruned MST

K-SPH

SPHFigure 16: Convergence time distribution for distributed Steiner heuristics.18

Figures 17 and 18 show the average convergence time passed for both SPH and K-SPH when eitherthe multicast group size is varied from 10% to 90% in a 200-node graph or when network sizeis varied from 20 nodes to 200 nodes. Each graph point summarizes the average value for 200test networks. Minimum and maximum values for each are displayed using error bars. Similarly,Figure 19 summarizes the average messages passed when membership size and graph size are varied.The equivalent graphs for distributed heuristic SPH are omitted since they mirror the results shownin the convergence time graphs. These graphs demonstrate that distributed heuristics SPH andK-SPH scale reasonably well for both multicast-group size and network size.Even though the convergence times for distributed K-SPH in Figure 16 are higher thanthose of the pruned MST algorithm by as much as 10 times, we believe that the former can bebrought down by modifying distributed K-SPH in the following ways:1. If a fragment receives a reject message because the preferred fragment has already mergedwith another, the fragment enters the discovery step and looks for the next closest fragment.If the rejecting fragment indicates its new fragment index, a fragment could skip the discoverystep and send a merge request to the new, merged component. Preliminary tests indicate thatthis can reduce convergence time by 5%.2. Ine�ciencies result when a large fragment merges with a small fragment. This ine�ciency isevident in distributed SPH because the largest fragment, the source fragment, always mergeswith a fragment containing a single multicast member. Although such merges cannot beavoided in distributed K-SPH, the duration of such a merge can be reduced by taking intoaccount the fragment size when merging fragments as follows: if a small fragment is addedto a large fragment, the discovery step can be shortened by performing a partial discoverystep. A partial discovery step updates the fragment leader's knowledge of fragment distancesusing existing fragment distance information and new information gathered by propagating amulticast through the smaller fragment's nodes. Such a partial discovery step is signi�cantlyfaster | as much as 35% in our tests. However, the new fragment may be unaware of fragmentdistance information it might otherwise have found through a full discovery step and hencethe competitiveness may su�er. Thus, this approach trades o� competitiveness for speed.3. In our simulations, we observed that few connection attempts between fragments are blockedin practice. This allows the connection and discovery steps to be overlapped, reducing thetime it takes for two fragments to complete a merge. The price paid is an occasional failedconnection attempt requiring longer discovery steps in both the original fragments to restorethe fragments to their original states.4 Concluding RemarksIn this paper we introduced two distributed heuristics based on shortest path Steiner hueristics,and evaluated their performance relative to a baseline pruned minimum spanning-tree heuristic.The primary advantage of our distributed algorithms over previous algorithms is that they requireparticipation from only the nodes in the multicast tree and within their neighborhood. Among thetwo algorithms studied, distributed K-SPH emerged as the clear winner; in comparison to distributedSPH, it has substantially lower convergence time and slightly better competitiveness.19

0

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160 180 200

Graph Size (in Nodes)

C
on

ve
rg

en
ce

 T
im

e
(in

 T
ho

us
an

ds
)

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50 60 70 80 90

Percentage Multicast Members

C
on

ve
rg

en
ce

 T
im

e
(in

 T
ho

us
an

ds
)(a) (b)Figure 17: Convergence time of the distributed K-SPH algorithm as a function of network size (a)with 30% multicast membership, and (b) as a percentage of multicast membership in a 200-nodenetwork.

0

50

100

150

200

250

300

350

400

20 40 60 80 100 120 140 160 180 200

Graph Size (in Nodes)

C
on

ve
rg

en
ce

 T
im

e
(in

 T
ho

us
an

ds
)

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90

Percentage Multicast Members

C
on

ve
rg

en
ce

 T
im

e
(in

 T
ho

us
an

ds
)(a) (b)Figure 18: Convergence time of the distributed SPH algorithm as a function of network size (a)with 30% multicast membership, and (b) as a percentage of multicast membership in a 200-nodenetwork.

0

20

40

60

80

100

120

140

160

180

20 40 60 80 100 120 140 160 180 200

Graph Size (in Nodes)

M
es

sa
ge

s
(in

 T
ho

us
an

ds
)

0

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90

Percentage Multicast Members

M
es

sa
ge

s
(in

 T
ho

us
an

ds
)(a) (b)Figure 19: Number of messaged generated by the distributed K-SPH algorithm (a) as a function ofnetwork size with 30% membership, and (b) as a percentage of multicast membership in a 200-nodenetwork. 20

The heuristics developed are an improvement over existing distributed Steiner heuristicsbased on the minimum spanning tree [4, 12] for two reasons: they produce solutions of superiorquality in most cases and requires the participation of only a subset of network nodes. Our resultsshow that the competitiveness of the solutions produced by both of our algorithms were, on theaverage, at least 25 percent better in comparison to those produced by the pruned spanning-treeapproach. In addition, the competitiveness found by our algorithms in almost all cases was within10% of the best solution found by any of the Steiner heuristics considered, including both centralizedand distributed algorithms.Limiting the execution of the algorithm to a subset of the nodes in the network can resultin an increase in convergence time over the pruned spanning-tree approach. Indeed, the convergencetime of distributed K-SPH was as large as ten times that of pruned MST algorithm in many our testnetworks. However, we believe that the distributed K-SPH algorithm can be streamlined in severalways, as discussed in the last section, to narrow this gap.Areas for future research include provisions for robustness of the algorithms in an environ-ment where node and link failures occur. The heuristics as stated here assume reliable delivery ofmessages and a stable topology during their execution. If an environment is assumed where nodesand links do fail during execution, a combination of schemes to ensure convergence and correctnessneed to be applied. These would certainly include an adaptive all-paths distributed algorithm suchas the one described by Humblet [7] and a timeout mechanism to detect rejected merger requests.Additional work is required to study the e�ectiveness and performance of these schemes.References[1] F. Bauer and A. Varma. \Degree-constrained multicasting in point-to-point networks," in Proc.IEEE INFOCOM, Boston, Apr. 1995, pp. 369{376.[2] J. Beasley. \An SST-based algorithm for the Steiner problem in graphs," Networks, vol. 19, pp.1{16, 1989.[3] K. Bharath-Kumar and Ja�e. \Routing to multiple destinations in computer networks," IEEETransactions on Communications, vol. COM-31, no. 3, pp. 343{351, Mar. 1983.[4] G. Chen, M. Houle, and M. Kuo. \The Steiner problem in distributed computing systems,"Information Sciences, vol. 74, no. 1-2, pp. 73{96, Oct. 1993.[5] M. Doar and I. Leslie. \How bad is naive multicast routing?," in Proc. IEEE INFOCOM, SanFrancisco, CA, Apr. 1993, pp. 82{89.[6] R. Gallager, P. Humblet, and P. Spira. \A distributed algorithm for minimum-weight spanningtrees," ACM Transactions on Programming Languages and Systems, vol. 5, no. 1, pp. 66{77,Jan. 1983.[7] P. Humblet. \Another adaptive distributed shortest path algorithm," IEEE/ACM Transactionson Communications, vol. 39, no. 6, pp. 995{1003, Jun. 1991.[8] F. Hwang and D. Richards. \Steiner tree problems," Networks, vol. 22, pp. 55{89, 1992.21

[9] M. Imase and B. Waxman. \Dynamic Steiner tree problem," SIAM J. Disc. Math., vol. 4, no.3, pp. 369{384, Aug. 1991.[10] V. Kompella, J. Pasquale, and G. Polyzos. \Multicasting for multimedia applications," in Proc.IEEE INFOCOM, New York, NY, May 1992, pp. 2078{2085.[11] V. Kompella, J. Pasquale, and G. Polyzos. \Multicast routing for multimedia communications,"IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp. 286{292, Jun. 1993.[12] V. Kompella, J. Pasquale, and G. Polyzos. \Two distributed algorithms for the constrainedSteiner tree problem," in Proc. Comput. Commun. and Netw., San Diego, CA, Jun. 1993.[13] J. Kruskal. \On the shortest spanning subtree of a graph and the traveling salesman problem,"Proc. Amer. Math. Soc., vol. 7, pp. 48{50, 1956.[14] V. Rayward-Smith and A. Clare. \On �nding Steiner vertices," Networks, vol. 16, pp. 283{294,1986.[15] M. Smith and P. Winter. \Path-distance heuristics for the Steiner problem in undirectednetworks," Algorithmica, vol. 7, no. 2-3, pp. 309{327, 1992.[16] H. Takahashi and A. Matsuyama. \An approximate solution for the Steiner problem in graphs,"Math. Japonica, vol. 24, no. 6, pp. 573{577, 1980.[17] S. Voss. \Steiner's problem in graphs: Heuristic methods," Discrete Applied Mathematics, vol.40, pp. 45{72, 1992.[18] B. Waxman. \Routing of multipoint connections," IEEE Journal on Selected Areas in Com-munications, vol. 6, no. 9, pp. 1617{1622, Dec. 1988.[19] J. Westbrook and D. Yan. \Greedy algorithms for the on-line Steiner tree and generalizedSteiner problems," in Algorithms and data structures. Third Workshop, WADS '93., Montreal,Quebec, Canada, Aug. 1993, pp. 621{633.[20] P. Winter. \Steiner problem in networks: A survey," Networks, vol. 17, no. 2, pp. 129{167,1987.
22

