
Distributed Degree-ConstrainedMulticastingin Point-to-Point NetworksFred BauerAnujan VarmaUCSC-CRL-95-09March 3, 1995Computer Engineering DepartmentUniversity of CaliforniaSanta Cruz, CA 95064E-mail: ffred,varmag@cse.ucsc.eduAbstractEstablishing a multicast tree in a point-to-point network of switch nodes, such as a wide-area ATM network,is often modeled as the NP-complete Steiner problem in networks. In this paper, we present distributed algorithmsfor �nding e�cient multicast trees in the presence of constraints on the copying ability of the individual switchnodes in the network. We refer to this problem as the degree-constrained multicast tree problem and model it asthe degree-constrained Steiner problem (DCSP) in networks. We consider two distinct approaches to the designof distributed DCPS heuristics. The �rst approach involves design of distributed versions of centralized DCSPalgorithms. We introduce distributed versions of two DCSP heuristics: the shortest path heuristic (SPH) and theKruskal-based shortest path heuristic (K-SPH). The second approach is to modify the solution obtained from anunconstrained heuristic to satisfy the degree constraints using a distributed post-processing algorithm. Unlike previousspanning-tree based approaches in which all nodes in the graph must participate, only nodes in the neighborhoodof the multicast tree need participate in these algorithms. We compare the algorithms by simulation based on threecriteria: competitiveness (the ratio between the sum of edge weights of the heuristic tree to that of the optimal tree),convergence time, and the number of unsolved networks. Our results show that each of the heuristics generated degree-constrained multicast trees within 10% of the best solution found. Surprisingly few test networks were unsolvable.The distributed post-processing heuristic presented is of particular interest since it may be used with any Steinerheuristic. When paired with a good unconstrained distributed Steiner heuristic, this post-processing heuristic gaveaway little competitiveness while converging rapidly.Keywords: Degree-constrained multicasting, Steiner problem in networks, Distributed algorithms.

1 IntroductionMulticasting, de�ned here as the ability to connect multiple nodes in a point-to-point network by a low-costtree, is likely to take an increasingly important role in data networks. Many existing networks alreadysupport multicasting. For example, the Internet MBONE service, a popular conferencing tool, already usesthe multicast support recently added to the Internet [10]. Many emerging standards for packet-switchednetworks, notably ATM, Frame Relay and SMDS, include support for multicasting. Future applicationssuch as audio and video conferencing, replicated database updating, and distributed resource discovery willrely on the ability of the network to perform multicast communication. Thus, multicasting will likely be anessential part of future networks.The cost of multicasting quickly becomes unacceptable for many applications if a separate copyof data is transmitted from the source to each recipient. Transmitting common copies of data over amulticast tree is the preferred method. However, determining the optimal multicast tree for a network is adi�cult problem. Previous authors have established that the multicast tree problem may be modeled as theSteiner problem in networks [3, 4, 5, 15, 33], referred to hereafter as the SPN, and that explicit solutionsare prohibitively expensive. For example, two popular explicit algorithms, the spanning tree enumerationalgorithm and the dynamic programming algorithm [33], have algorithmic complexities of O(p22(n�p) + n3)and O(n3p + n22p + n3), respectively, where n is the number of nodes in the graph and p the number ofmulticast members. A number of good, inexpensive, centralized heuristics exist for the SPN and have beenreviewed extensively elsewhere [5, 15, 20, 25, 26, 32, 33]. Some have been shown through analysis to producesolutions no worse than twice the optimal solution. [33]. That is to say, the sum of the edge weights of theheuristic tree is no more than twice the sum of edge weights of an optimal tree. In practice, our empiricalevidence indicates that these heuristics �nd solutions much better than twice this bound with reasonablespeed in most cases.Most of the algorithms proposed in the literature for SPN are serial in nature. However, a fewdistributed heuristics have been known [8, 17, 22, 24]. Many of these algorithms are based on reducingthe SPN to the minimum spanning tree problem (MST) and using a distributed minimum spanning treealgorithm such as the one described by Gallager, Humblet, and Spira [13]. The resulting minimum spanningtree is then pruned of unnecessary leaves and branches. For example, Chen, et al. [8] �nds a Steiner tree byapplying a distributed minimum spanning tree algorithm twice. First the algorithm is applied to the originalgraph. This �rst minimum spanning tree is used to create a shortest path forest composed of disjoint treesand edges that together form a subgraph of the original graph. The distributed minimum spanning treealgorithm is then applied a second time to this subgraph. The solution is obtained by pruning unnecessaryleaves and branches from this second minimum spanning tree. Likewise, Kompella, et al. [22] describetwo distributed versions of earlier centralized heuristics proposed by the same authors [21]. Both of thesedistributed heuristics �rst build a constrained Steiner tree that reects the combined criteria of cost anddelay. Gallager, Humblet and Spira's distributed MST algorithm is then applied to this constrained Steinertree and the solution tree is pruned. The two heuristics di�er in their criteria for choosing edges whenbuilding the MST. The primary disadvantage of using a minimum spanning tree algorithm is that everynode in the network must participate in the search for a Steiner tree. This may not be feasible or desirablein practice. In contrast, Jiang's Steiner heuristic [17] does not use an MST algorithm, but instead relieson ooding from the multicast source to �nd the shortest path tree to the multicast members. The sourcenode repeatedly broadcasts messages and builds a Steiner tree from responses received until a suitable tree1

is found.Finding a multicast tree is complicated by the likely heterogeneous nature of the multicast environ-ment. The routers or switches in an internetwork will likely vary in their ability to support multicasting.Some nodes may not support multicasting; others may be limited in the number of multicast copies theycan reasonably make [6, 7, 19, 34]. The multicast capability of each node is represented in this paper by adegree-constraint. Thus, a degree constraint of d implies that the corresponding switch or router is able toforward copies of an incoming packet to a maximum of d� 1 output ports. The problem of �nding a mul-ticast tree in the presence of copy constraints in individual switches is referred to as the degree-constrainedmulticast tree problem. We model the degree-constrained multicast tree problem as the degree-constrainedSteiner problem in networks (DCSP), �rst described by S. Voss [31]. Formally, the DCSP as used in thispaper is de�ned as follows.GIVEN: A simple, undirected, connected graph G = (V;E) with n nodes, non-negative edge cost ci;j,p multicast members Z � V , and node degree constraints ki � 2.FIND: A multicast tree T such that the degree of each node di � ki and the sum of its edge weights isminimum among all possible choices of the tree satisfying the degree constraints.The degree-constrained Steiner problem in networks is of particular interest to ATM networks sincemulticast copies of ATM cells must be made quickly, typically by hardware. Whereas a low-speed switchor router might reasonably approximate in�nite copy-capability, high-speed switches may have limited copycapabilities due to their speed constraints. Even when the switches allowmulticasting to an arbitrary numberof destination ports, there are several advantages in limiting the number of copies made by each switch. Forexample, some packet-switch architectures implement multicasting by circulating copies of packets throughthe switch fabric multiple times [28]. Thus, keeping the degree small reduces the number of passes neededthrough the switch fabric. In addition, a degree-constrained multicast tree also distributes the load moreevenly among the nodes in the network than an unconstrained tree. This has two bene�ts: (i) the task ofmaking multicast message copies is shared among more nodes, and (ii) the damage inicted on the tree bythe failure of a single node is reduced.The degree-constrained Steiner problem in networks is a relatively new problem [16, 27, 29, 30].The degree-constrained Steiner problem is NP-complete [30] and contains the NP-complete problem of de-termining a degree-constrained spanning tree [12, 18]. Furthermore, �nding a solution to the DCSP is alsoNP-complete [30]. In practice, however, the heuristics rarely failed to �nd a solution in our test networks.Few centralized DCSP heuristics exist in the literature [27, 30] and we know of no published dis-tributed DCSP heuristics. Since the degree-constrained spanning tree problem is also NP-complete, dis-tributed Steiner heuristics that use a distributed minimumspanning-tree algorithm cannot easily be modi�edfor DCSP.In an earlier paper, we introduced several centralized DCSP heuristics and compared their run-time and the competitiveness of the solutions produced [1]. The competitiveness of a solution improveswhen a tree has lower cost where cost is the de�ned to be sum of the tree edge weights. This paperintroduces and analyzes distributed algorithms for DCSP. We consider two distinct approaches to the designof distributed DCPS heuristics. The �rst approach involves design of distributed versions of centralizedDCSP algorithms. We introduce distributed versions of two DCSP heuristics K-SPH and SPH describedin [1]. The second approach is to �nd a Steiner tree �rst with no degree constraints and then modify thesolution to satisfy the degree constraints using a distributed post-processing algorithm. The second approach2

has the advantage that any of the known distributed Steiner heuristics can be used during the �rst step;for the second step, we present a distributed \�xup" heuristic to construct a degree-constrained multicasttree from the unconstrained one. The two approaches are compared by simulating the algorithms on sparse,point-to-point, networks of switches with varying multicast capacity. We analyze the message and timecomplexity of the algorithms, and compare them on the basis of three criteria: competitiveness, convergencetime, and the number of unsolved networks. Ideally, a heuristic's competitiveness is measured by the ratio ofits tree cost (sum of edge weights) to that of an optimal tree. This proves to be impractical, since computingthe latter may be prohibitively expensive in large networks. Instead of an optimal tree we use the bestheuristic solution found for each network by any heuristic we have tested, distributed or centralized.Our simulations of the algorithms are performed on a large set of sparse, randomly-generated networktopologies. We restrict our analysis to sparse networks for two reasons: (i) they are more representativeof real point-to-point networks, and (ii) they are inherently more di�cult to solve because fewer solutionsexist in a sparse network than a dense one. Similarly, the simulated multicast groups are small relative tothe size of the network, reecting likely multicast applications. Note that our results are not speci�c to anyparticular type of network such as ATM, but may be applied to any point-to-point network matching theseassumptions.The results of our research show that the distributed versions of heuristics K-SPH and SPH comparefavorably with their centralized versions in the competitiveness of the solutions produced. Despite each nodehaving only local topology information, the distributed versions of these programs often produced treeswithin 10% of the best solution found by any heuristic and solved over 90% of our test networks. However,the most interesting results concern the post-processing heuristic. This heuristic showed rapid convergenceand produced degree-constrained trees from unconstrained ones while sacri�cing little of their quality.The remainder of this paper is organized as follows. Section 2 summarizes previous DCSP heuristicsof interest, introduces distributed versions for two of these heuristics, and analyzes their convergence-timeand message bounds. Section 3 presents a new distributed post-processing algorithm that can be usedto modify any valid Steiner tree solution to satisfy the given degree constraints. Section 4 compares thealgorithms by convergence time, competitiveness, and the number of unsolved test cases. Finally, Section 5concludes the paper with a discussion of the results.2 Degree-Constrained Steiner HeuristicsIn this section, we summarize previous degree-constrained Steiner heuristics and introduce two distributeddegree-constrained Steiner heuristics.Before continuing, we make the following basic de�nitions and notations. Z is the set of multicastdestinations, S is the set of non-multicast nodes V �Z, Pi;j is the shortest path between nodes i and j, anddi;j is the distance of the shortest path between nodes i and j. Graph distances will be de�ned as follows:The distance between two nodes is the distance of the shortest path between them. Likewise, the distancebetween a node and a tree is the distance of the shortest path between the node and any node in the tree.Finally, the distance between two trees is the distance of the shortest among all paths between any node inone tree and any node in the other tree. As in [13], we append the weight of an edge or path with the indexof its destination node in determining shortest paths so that, in case of a tie, the actions of the individualnodes would be consistent. Since we do not allow multiple edges between node pairs, this ensures that allthe nodes select the same edge or path, given the same set of edge weights.3

2.1 Centralized Degree-Constrained Steiner HeuristicsTo be suitable for distributed implementation, a DCSP heuristic must satisfy four criteria. It must (i) usethe existing routing information available at each node in the network, (ii) use minimal computational andnetwork resources, (iii) require a minimum of coordination between neighbors, and (iv) limit itself to nodesdirectly involved in the multicast. Of the centralized DCSP heuristics evaluated in [1], we chose the followingfour heuristics as candidates for distributed implementation: the shortest-path heuristic (SPH), a variant ofSPH known as SPH-Z, the Kruskal-based shortest-path heuristic (K-SPH), and the Average distance heuristic(ADH). Each heuristic's unconstrained version is described in [25] and each heuristic's degree-constrainedversion is described in [1]. A brief summary of each degree-constrained heuristic follows.DCSP SPHHeuristic SPH, whose unconstrained version was introduced in [26], initializes the multicast tree to anarbitrary multicast member. It then grows the tree by successively adding the next closest multicast memberto the multicast tree by the shortest, degree-constrained path between the multicast member and the tree.The algorithm terminates when all the members have joined the tree or the remaining multicast memberscannot be connected.DCSP SPH-ZHeuristic SPH-Z, whose unconstrained version is introduced in [25], is a variant of SPH that runs SPHrepeatedly, once for each multicast member (Z-node). This results in up to Z degree-constrained multicasttrees. At SPH-Z's conclusion, the lowest cost tree is returned as the result.DCSP K-SPHHeuristic K-SPH, whose unconstrained version was introduced in [23], di�ers from SPH in the manner inwhich tree is expanded. Instead of growing the tree one node at a time, the algorithm joins subtrees pairwiserepeatedly until all the multicast nodes are part of a single tree or components can no longer be connected.The algorithm starts with Z subtrees, each a multicast member itself. In the expansion step, it �nds twosubtrees that are closest to each other and joins them along the shortest, degree-constrained path betweenthem to form a single subtree.DCSP ADHHeuristic ADH, whose unconstrained version is described in [25], is a generalization of K-SPH. The degree-constrained version repeatedly connects the two closest sub-trees using the most central node. The mostcentral node is de�ned to be the node with the least average distance to all multicast members. ADHterminates when a single tree remains spanning all multicast members or the remaining components cannotbe connected.2.2 Distributed Degree-Constrained Steiner HeuristicsAfter further consideration, only two of the four heuristics, SPH and K-SPH, remain as suitable candidatesfor distributed implementation. Both heuristics SPH-Z and ADH fail our criteria for conversion. Although4

heuristic SPH-Z appears initially attractive as a distributed heuristic, its component distance and degree-constraint information for each of the Z instances could be distinct. This forces as many as Z copies ofcomponent information at each node and a virtual storm of network messages before convergence. Likewise,ADH fails our criteria because its calculation of the most central node requires excessive overhead for co-ordination between nodes in the network. In addition, our earlier results indicate that, on the average, thesolutions produced by K-SPH and ADH are of nearly identical quality. Of these two heuristics, K-SPH isthe more attractive candidate because of its relative simplicity and lower running time.Distributed heuristics SPH and K-SPH are designed to run as asynchronous, independent processesrunning one per node in a degree-constrained network. Each distributed heuristic assumes that the routingtables in each node is up-to-date; no topology changes occur during the execution of the algorithm; thenetwork is connected; every node has a unique index; each multicast member has knowledge of the indicesof all other multicast members; each multicast is able to determine the distance to each of them from itsrouting table; and all non-leaf nodes have a degree-constraint � 2.Heuristic SPH is inherently a serial algorithm, since there is only one subtree expanding itself at anytime during the execution of the algorithm and nodes must join the tree serially. Heuristic K-SPH, on theother hand, allows many of the join operations to proceed in parallel. The latter, however, is substantiallymore di�cult to parallelize because of the signi�cant amount of coordination that may be needed whilecombining subtrees. In the following, we present distributed K-SPH �rst, followed by a similar distributedimplementation of SPH.2.2.1 Distributed Heuristic K-SPHLike its centralized version, distributed K-SPH starts with a forest of Z multicast members (Z-nodes) andconnects them pairwise into successively larger subtrees until a single multicast tree remains or no furtherconnections are possible. We refer to the subtrees during the execution of the algorithm as fragments. Thus,at the beginning of the algorithm, there are Z fragments, each a trivial subtree consisting of one Z-node.At any instant during the execution of the algorithm, each node in the network is either part ofa fragment or has not been yet been included in the multicast tree. Note that every Z-node is always afragment node and every non-member node (S-node) is initially a non-fragment node. When two fragmentsmerge, the nodes in both fragments and the nodes in the path connecting them become the fragment nodesof the new, merged fragment.Each fragment has a fragment leader coordinating the activities of the fragment. This fragmentleader is the fragment Z-node with the lowest index. Each fragment leader executes the same �nite statemachine shown in Figure 1. Other fragment node executes a simpli�ed version of the leader's �nite statemachine shown in Figure 2. Initially, each multicast member is the leader of its own one-node fragment;when two fragments merge, leadership is assigned to the fragment leader with the lower index. To identifyfragments uniquely, each fragment has the same index as its leader and each fragment node is aware of itsfragment index.At the highest level, each fragment, guided by its leader, executes the pseudocode shown in Figure 3.During the execution of the algorithm, each fragment attempts to merge with its closest neighboring fragment.This is accomplished in two steps | a discovery step and a connection step. During the discovery step, theleader gathers and updates its information on other fragments and graph nodes. Based on the informationgathered, it determines the closest fragment to merge with. During the connection step, it communicateswith the closest neighbor fragment's leader, requesting a merge. This closest fragment leader is simply the5

flood
to N

wait

init

request

Distributed
K−SPH

flood

connect

query

request connectFigure 1: The �nite state machine for fragment leaders.
flood
to N

waitinit

Distributed
K−SPH

flood

connect

query

connectFigure 2: The �nite state machine for other fragment nodes.Z-node with the same index as the closest fragment. If accepted, the leader with the lowest index attemptsto connect the two fragments. Regardless of the outcome (the request is rejected, the subtrees are connected,or the connection attempt fails), the cycle repeats until the algorithm terminates.Distributed K-SPH processes running on each node rely on shortest path and degree-constraintinformation available at its node, as well as information maintained by the fragment leaders. The shortestpath information stored at each node is the distance, next hop and next-to-last hop of the shortest path toother nodes. This path information is similar to that stored by distance-vector routing protocols and mayalready be available in each node's routing tables. If so, distributed K-SPH may use the existing tables,avoiding unnecessary extra storage at each node. If not, this information may be derived using a distancevector routing algorithm such as [14]. The next-to-last hop table allows distributed K-SPH processes to derivethe entire shortest path between nodes by recursively considering the path as described in [9]. Each nodealso stores its degree-constraint information and the index of its fragment. Initially, only multicast nodeshave a fragment index (its own index). Each leader maintains additional shortest path and degree-constraintinformation for its fragment. This information augments the shortest path information at each node. Forexample, the leader stores only the distance, and the head and tail of the shortest path between its fragment6

while fragments remain and valid paths exist do# algorithm discovery stepupdate fragment information for nearby fragmentsf closest fragment# algorithm connection steprequest merger with fragment fif request accepted thenattempt connection to fragment fif connection established thenmerge fragmentselse restore original fragmentsend ifend ifend whileFigure 3: Pseudocode for fragment leaders.and every other fragment. The additional details necessary to build the path between fragments is stored atthe head of the path, a node in the leader's subtree (Note that the shortest path between fragments need notstart or end at a leader node). The leader also stores the currently available degree-constraint informationfor every node in the graph. Initially, each leader knows only about its own degree-constraint and assumesall other degree-constraints to be in�nite.When distributed K-SPH starts, each Z-node, the leader of its own trivial one-node fragment, alreadyknows its distance to every other fragment as provided by the initial distance tables and no discovery stepis necessary. Instead, each distributed K-SPH leader starts with the connection step, described as follows.The connection step During the connection step, each leader attempts to connect its fragment with theclosest fragment, known as its preferred fragment. It does so by sending a merge request message to theleader of the preferred fragment (That is, the Z-node with the same index as the preferred fragment). Aleader receives one of three responses to its request: accept, reject, or busy. We consider each response inturn below.The busy response occurs when a fragment's request arrives at its preferred fragment while thelatter is in its discovery step described below. While in the discovery step, a leader cannot accept or rejectmerge requests, as it is in the process of updating its information. Instead, the busy response is sent. Whenthe requesting leader receives the busy response, it repeats its request in the hopes or reaching its preferredfragment after its discovery step. A leader will repeat its connection request until it receives either an acceptor reject response.When a leader receives a connection request from a fragment other than its preferred fragment, itreturns a reject message. This message forces the requesting fragment into a discovery step to �nd anotherpreferred fragment. If a former leader node receives a connection request from any fragment, it returns areject message since a connection is no longer possible to the old fragment.7

request merger with fragment fdo send request to fragment f 's leaderwait for responseupdate degree-constraint information from responding fragmentuntil accept or rejectleader this fragment index < fragment f 's indexif accept and leader then# attempt connection to fragment fsend connect message to head of shortest pathwait for connection success or failureif failure thensend reject to fragment f 's leaderend ifFigure 4: Fragment leader pseudocode for the connection step.
Fragment
 A

Fragment
 B

Fragment edges Shortest path

= Fragment leader
= Fragment node
= Non−fragment node

Head

Graph
 edges

TailFigure 5: Example of fragments A and B merging.Figure 4 shows the pseudocode for the connection step.When two fragments exchange merge requests with one another, each responds by returning anaccept message. Once an accept message is sent, the fragment may not leave the connect step or accept arequest from another fragment until the connection attempt completes. Of the two leaders in a connectionattempt, only the leader with the lower index acts, while the leader with the higher index waits passivelyfor the result of the connection attempt. This is because if the connection attempt succeeds, the leader withthe lower index becomes the leader of the new, merged fragment. The leader with the lower index initiatesa connection attempt by sending a message to the head of the shortest path between the two fragments,a node in its fragment. In its message to the head of the shortest path, the leader speci�es the tail of theshortest path, a node in the other fragment. Upon receiving the connect message, the head node sends aconnect message along its shortest path to the tail node.When two fragments A and B merge as shown in Figure 5, the shortest path used to join them must8

have its head in one fragment, its tail in the other, and pass through only non-fragment nodes.The connect message may either reach the target fragment or be blocked ; blocking may occur eitheras a result of the degree constraint being exceeded in one of the intermediate nodes, or because the messagereaches a node in a third fragment before reaching the target fragment. In either case, a status messagereturns to the head of the shortest path.Consider the case of a successful connection �rst. In this case, the connect message travels downthe shortest path, reserving intermediate nodes in the path as part of the new fragment, until it reachesa node in the target fragment. It is possible that the �rst node reached in the target fragment is not thespeci�ed tail. This occurs when the leader's shortest-path information for other fragments may be stale andan intermediate node in the selected path is already part of the other fragment. In any case, the connectmessage stops at the �rst node in the target fragment it reaches. The target fragment node then sends astatus message back along the shortest path to the head of shortest path. Each reserved, non-fragment nodealong the path receives the status message, includes itself in the new, merged fragment, and passes the statusmessage along the path. The head of the shortest path forwards the status message to its leader, now theleader of the new, merged fragment. This completes the connection step and the leader enters the discoverstep described below.Now consider the case of an unsuccessful connection. In this case, the shortest path between thefragments is blocked. This could occur because a node in the shortest path has already reached its degreeconstraint, or has become part of a third fragment. When the connect message reaches a blocked node,the blocked node returns a status message along the shortest path to the head of the path. As eachintermediate node receives the status message, it removes its reservation from the new fragment, becomingan non-fragment node once again. The head of the shortest path forwards the status message to the leader.The leader informs the other fragment leader of the connection failure by sending a reject message. Thiscompletes the connection step. Both leaders then enter the discover step described below.States request, wait and connect in Figure 1 comprise the connection step.The discovery step The discovery step accomplishes three tasks: (i) it informs every node in the fragmentof its new fragment index, (ii) it gathers fragment and degree-constraint information about nodes close to thefragment, and (iii) it refreshes its information on shortest paths to other fragments. The pseudocode for thediscovery step is shown in Figure 6. Each fragment leader achieves these tasks by performing a multicast onits fragment rooted at itself. In the multicast message, the leader includes the fragment index, the distanceto the preferred fragment, degree-constraint information, and shortest paths to other fragments. As eachnode in the fragment receives the multicast, it updates its fragment index, queries nearby nodes and passesthe multicast message to its children. Only those nodes that lie within the distance from this fragment tothe preferred fragment are queried for fragment index and degree-constraint information. The objective ofqueries to nearby nodes is to �nd fragment nodes closer than those already known by the leader. Figure 7illustrates a case where this is useful. Fragment B's leader believes that fragment C is the closest fragment.During fragment B's discovery step, it instructs fragment nodes to query those nodes closer than fragmentC. This distance is the distance between node 3, the head of the path to fragment C, and node 4, its tail,and is marked by the dotted circles around each of fragment B's nodes. Since nodes 1 and 2 fall within onesuch circle, they receive queries and fragment B's leader discovers the closer fragment A. Queries could besent to all nodes in the graph, but are limited to nodes within a small distance for two reasons: (i) a setdistance avoids broadcast storms and (ii) new shortest paths discovered should be shorter than those already9

send all children update requestfor all fragment children dosend fragment index, closest fragment distance, shortest path information,and degree-constraint information to each childend for# query all nodes closer than closest fragmentfor nodes nearer than closest fragment dosend nodes query for component and degree-constraint informationend forwait for responsesupdate shortest path information, and degree-constraint information# forward resultsif not leader thensend summary of shortest path information and degree-constraintinformation to parentend ifif leader thenf closest fragmentFigure 6: Fragment leader pseudocode for the discovery step.available. The discovery step is implement by state ood-to-N in Figure 1.Analysis of Distributed K-SPH Algorithm: Having described the distributed K-SPH in the previoussection, we now turn to its properties. We use a directed request graph to show the relationship of fragmentsto one another during the execution of the algorithm. Each fragment in the network is represented by a nodein the request graph and its current choice of preferred fragment by a directed edge. Figure 8 illustrates anexample graph with three vertices representing fragments A, B, and C. In this example, the fragment pairA and B request each other, while a third, more distant fragment C requests fragment B. Fragments Aand B will merge, creating a new fragment that will form a pair with fragment C and merge. A fragmentis considered stable when it is in the states wait or request since its choice of preferred partner is unknownwhen the fragment is in states connect, ood-to-N, or init.The request graph can be used to show that the distributed K-SPH algorithm does not deadlock.To prove that the algorithm will terminate, we need to only show that at any time during the execution ofthe algorithm, the shortest-path distances maintained by two of the fragments to each other will convergeto the same value in a �nite time (that is, a cycle of length 2 in the request graph). These two fragmentswill then merge to form a new fragment. Thus, by induction, the algorithm will terminate in �nite time.Property 1 At any time during the execution of the algorithm, the shortest-path distances maintained bytwo stable fragments to each other will converge to the same value within a �nite time.10

= Fragment leader
= Fragment node
= Non−fragment node

fragment A

fragment B

fragment C

1

2

3

4Figure 7: Illustration of the querying process in the discovery phase of distributed K-SPH.
CBA

A B

C

FragmentsRequest Graph Figure 8: An example for request graph.Proof: Initially, the shortest path between any two single-node multicast members is the shortest pathbetween their fragments. This path is, by de�nition, equal. Suppose that at some later time, the shortestpaths between two fragments di�er in distance as shown in Figure 9. Suppose further, that one fragment, inthis case fragment B, has the longer path. The next time fragment B enters state ood-to-N, it will queryevery node in its neighborhood for fragment and degree-constraint information. Any node in fragment Acloser to B must fall within B's neighborhood and will become the tail of a new, shorter path to fragment A.The shortest of all such paths will become fragment B's new shortest path to fragment A. By a symmetricalargument, the paths between fragments A and B must converge on the same distance.Inconsistencies may also occur when a path is blocked. Assume that only one of a pair of fragments�nds that the shortest path between them blocked. Assume fragment A has a shortest path to B, butB's shortest path to A is blocked. The shortest path between fragments can only be blocked by a degree-constrained node, or by a node belonging to a third fragment C. If the shortest path is blocked by adegree-constrained node, fragment A will know of the over-constrained node the next time it exchangesdegree-constraint information with fragment B (that is, when it receives a reject response to its mergerequest). If the shortest path is blocked by a third fragment C, fragment A will query the blocking node infragment C the next time fragment A enters the discovery phase (state ood-to-N). In addition, C will alsoupdate its distance to A during its recovery phase, resulting in consistent values for the distance between A11

A

B

B’s neighborhood

Path from A to B

Path from B to A

Figure 9: Two subtrees with di�erent shortest paths.
B

A

C

X Y

Three−fragment cycle No cyclesFigure 10: A request graph demonstrating deadlock.and C. A deadlock occurs when no two-fragment cycle exists in the request graph even when all fragmentsare stable. Figure 10 shows two such examples. In the �rst case, three fragments are locked in a cycle andin the other, one fragment has no outgoing edges and cannot merge with any other fragment. Either ofthese cases could mean that distributed K-SPH would never terminate. In the following, we show that suchdeadlocks cannot occur.Property 2 Distributed K-SPH does not deadlock.Proof: Let d(I; J) represent the distance between fragments I and J . In Figure 10, stable fragments A,B and C are locked in a three-node cycle. Since each fragment prefers the closest fragment, the followinginequalities must hold: d(A;B) < d(A;C), d(B;C) < d(B;A), and d(C;A) < d(C;B). However, we knowfrom property 1 that at least two of the fragments, say A and B, must have equidistant shortest paths.This leads to a contradiction. A similar argument holds for any cycle of more than two fragments. Considerthe case where no cycle exists as shown by fragments X and Y in Figure 10. Fragment Y has no outgoingedge, which indicates that it has no shortest path to any fragment. This means that Y 's path to X must beblocked and by property 1 will eventually be discovered. Distributed K-SPH will terminate when both Xand Y have no outgoing edges.Convergence Time and Number of Messages: We now derive some simple asymptotic bounds on thenumber of messages and convergence time of the distributed K-SPH algorithm. We consider the both thedegree-constrained and the unconstrained versions of the algorithm.12

Distributed K-SPH uses the least number of messages for both the unconstrained and constrainedcases when the network has Z = 2i multicast nodes, any number of non-multicast nodes, and fragmentsalways �nd a partner. Under these conditions, a total of Z21 + Z22 + � � � + Z2i = Z 2i�12i = 2i 2i�12i = 2i � 1merges occur during i rounds. Each fragment merges using a relatively small number of messages and thenew fragment enters the discovery phase, In the discovery phase, each fragment node queries every childand neighbor for fragment and distance information. Assume that on average each fragment node queries a�nite number of neighbors and children approximated by c. The total number of messages sent by multicastmembers during each round is cZi = cZ logZ =
(Z logZ). During each of the logZ rounds, the longestround-trip message time between leader and fragment root dominates. This round-trip time can be at worsttwice the diameter of the graph, and at best a constant. Thus, the time to converge is lower-bounded byc logZ =
(logZ).Now consider the worst case with no degree constraints. In the worst case, only one fragment �ndsa partner during any round. Thus, Z � 1 rounds occur before a solution is found. If fragments are alwaysrelatively large then the number of messages would be the number of rounds times the number of nodes onall fragments, c(Z � 1)N = O(ZN). If the round-trip times during each of the Z � 1 rounds is large andclose to twice the graph diameter, 2D, then the convergence time for this case is 2D(Z � 1) = O(DZ).The worst case for degree-constrained distributed K-SPH is similar except that each pair of fragmentsmight try many paths between them before �nding a viable, degree-constrained shortest path between them.The number of alternate shortest paths between nodes could be as high as the number of fragment nodesin the initiating fragment. Thus, if the initiating fragment is always large, each of the Z � 1 rounds coulditerate as many as N times. The number of messages for this case would be N time greater than theunconstrained worst case, that is, O(ZN2). Likewise, the convergence time would be the number of rounds(now � (Z � 1)N) times the largest possible round-trip time, or O(DNZ).These bounds are summarized in Tables 1 and 2, along with the bounds for the other algorithmsconsidered in this paper. Our results from simulations of the unconstrained version of the algorithm showthat the rates of increase of both the convergence time and the number of messages with the number ofnodes fell within these bounds [2].2.2.2 Distributed SPHThe distributed shortest path heuristic is a special case of distributed K-SPH described in section 2.2.1. Indistributed SPH, any one of the multicast members may act as the source of the multicast, referred to heresimply as the source node. In contrast to distributed K-SPH, only one fragment, the source fragment grows,connecting multicast members to itself until all the multicast members are part of the same fragment. Theheuristic terminates when a single tree remains or the source fragment cannot merge with the remainingfragments due to degree constraints.In SPH, the preferred fragment of every fragment is always the source fragment. The sole exception,of course, is the source fragment itself which prefers its closest fragment. Using the same connection stepoutlined for heuristic K-SPH, the source fragment merges with its closest fragment. As the source fragmentgrows, it uses the same discovery step to determine the new, closest fragment. The source fragment neverchanges its index. This preserves the source fragment's original index so that non-source fragments neverneed to change their preferred fragment index. As a consequence, non-source fragments do not enter thediscovery phase. In all other respects, distributed SPH is very similar to distributed K-SPH.Figure 11 shows the �nite state machine used by each node.13

flood
to N

wait

init

request

flood

connect

connect

query

request

leader not leader

Distributed
SPH

not
source

source

Figure 11: The �nite state machine for each node performing the distributed SPH heuristic.Algorithm Analysis: Since distributed SPH is a special case of distributed K-SPH, its analysis proceedssimilarly to that of distributed K-SPH. For example, it too will not deadlock as shown by property 3.Property 3 Heuristic SPH does not deadlock.Proof: Consider Figure 10 again. A three-node cycle such as the one in Figure 10 cannot occur in distributedSPH because every fragment except the source prefers the source fragment. Thus, the longest request graphcycle in distributed SPH has length two: an edge from the source to a fragment and the return edge. Alonger request cycle is an error. A zero-node cycle, however, indicates either an error or heuristic termination.Since every fragment except the source fragment always prefers the source fragment, only a source fragmentcan break the two-node cycle it has with every fragment. However, this is also a condition for termination.In the degree-constrained case, this is a valid termination condition.Messages and Convergence Time: Like distributed K-SPH, distributed SPH uses the least numberof messages when Z = 2i multicast members exist. Distributed SPH di�ers from distributed K-SPH inthat only two fragments merge during a round. Assume that on average each fragment node queries a�nite number of neighbors and children approximated by c. The number of messages in this case would bec+2c+3c+ � � �+(Z � 1)c = c (Z�1)2�(Z�1)22 = O(Z2). The round-trip time during each of the Z � 1 roundscannot be greater than twice the graph diameter and the convergence time is c(2D)(Z � 1) =
(DZ).In the unconstrained worst case, assume that the source fragment grows quickly and the round-timedistance for messages approaches twice the graph diameter, 2D. The number of messages in this case isc(Z � 1)N = O(ZN). Likewise the convergence time becomes 2D(Z � 1) = O(DZ).In the degree-constrained worst case, just as in distributed K-SPH the source fragment might trymany paths before �nding a viable, degree-constrained shortest path. The number of alternate shortestpaths between nodes could be as high as the number of fragment nodes in the source fragment. Since thesource fragment is always the largest fragment, the number of alternate paths available grows quickly. Thenumber of messages for this case would be N time greater than the unconstrained worst case, or O(ZN2).Likewise, the convergence time would be the number of rounds (now � (Z � 1)N) times the largest possibleround-trip time, or 2DNZ = O(DNZ). 14

Distributed
fix−up

wait

inquire

init connect

inquire(N)

init

connect

disconnect

dis−
connectFigure 12: The �nite state machine for each node performing the distributed Fixup heuristic.These bounds are summarized in Tables 1 and 2, and have been found to agree with results fromsimulation of the unconstrained SPH heuristic [2].3 Post-Processing HeuristicsAn alternate approach to using a distributed algorithm for �nding a degree-constrained Steiner tree is to �rstconstruct a Steiner tree with no degree constraints and then modify the solution to satisfy the constraints.This has the advantage that any known distributed Steiner heuristic can be used in the �rst step. If thenumber of nodes violating their degree constraints in the solution is small, the second step can typically becompleted in much less time as compared to the �rst. The second step involves removing incident edges fromthe Steiner tree and �nding alternate paths to re-connect the fragments such that the degree constraints arenot violated. In this section, we describe a distributed heuristic to �nd a degree-constrained Steiner treeusing this approach.3.1 Distributed Heuristic FixupHeuristic Fixup modi�es an unconstrained tree by examining each vertex in the unconstrained tree fordegree-constraint violations and replacing the edges of an over-constrained node, one at a time, with analternate degree-constrained path. In Figure 13, the edge between the over-constrained node and fragmentA is replaced by an alternate path. This alternate path is discovered by exploring alternate paths betweenneighbors of the over-constrained node. It is reasonable to expect competitiveness and the number of solvedcases to improve with the size of the neighborhood searched. While our results con�rm this intuition, they alsodemonstrate that a point of diminishing returns exist. We use three hops for our neighborhood size becauseit o�ered the best balance between convergence time and competitiveness. The e�ect of neighborhood sizeon heuristic Fixup is discussed in Section 4.Distributed heuristic Fixup �rst runs on the tree's leader and examines the tree, looking for degree-constrained nodes. The algorithm assumes that the leader knows members of the multicast tree and theirdegree constraints. Note that this information may be gathered by the leader by propagating a request15

Over−constrained node

Alternate path

Redundant, adjacent edge

Subtree B

Subtree A

Subtree CFigure 13: Replacing an adjacent edge to an over-constrained node.along the multicast tree. In our test cases, a small but signi�cant number of trees generated by distributedheuristic K-SPH were already degree-constrained. Of course, a tree that is already degree-constrainedneed no further processing. If, however, over-constrained nodes exist, heuristic Fixup runs on each over-constrained node in sequence, replacing one edge at at time until the degree-constraints are met. HeuristicsFixup terminates when either a degree-constrained tree is found or no alternate path to an over-constrainednode is available. Heuristic Fixup runs on one over-constrained node at a time to reduce algorithm andcommunication complexity. The �nite state machine used by heuristic Fixup's nodes is shown in Figure 12.Just as in distributed heuristics SPH and K-SPH, heuristic Fixup relies on shortest path and degree-constraint information available at each node. The shortest path information stored at each node is thedistance, next hop and next-to-last hop of the shortest path to graph nodes. In addition, heuristic Fixuppasses each node the degree-constraints of every other node in the tree. The shortest path informationallows each node to determine intermediate nodes in a shortest path while degree-constraint informationallows nodes to eliminate over-constrained paths. Since heuristic Fixup runs on only one node at a time,changes in degree-constraint information made during heuristic Fixup are easily recorded and are passed onto neighborhood nodes.Consider the fragments left if an over-constrained node were deleted from the tree. In Figure 13,three such fragments, fragments A, B, and C would remain. At each over-constrained node, heuristicFixup asks nodes in its neighborhood for alternate degree-constrained paths to connect two such fragments,replacing one of the over-constrained node's edges. Such an alternate path must start at one fragment'snode, traverse non-fragment nodes and end at another fragment's node. Using its shortest path and degree-constraint information, each node eliminates unsuitable alternate paths. It returns the shortest alternatepath found.Heuristic Fixup's query to each of the over-constrained node's tree neighbors is passed on to theirneighbors and further in the network until the message reaches the farthest nodes in the neighborhood. Eachnode then returns the shortest alternate path found by either itself or its neighbors. Of the alternate pathsreported, heuristic Fixup picks the best one. It then deletes the now redundant over-constrained edge andreplaces it with the alternate path. It does so by commanding the head of the alternate path to reconnectthe tree. In addition, it sends a disconnect message to its former neighbor at the other end of the over-16

for all neighbors dosend request for alternate paths to neighborwait for responsesif shortest alternate path exists thensend connect message to head of alternate pathwait for connect statusif success thendrop redundant adjacent edgepass control to closest over-constrained nodeelse# connect failure, heuristic failsFigure 14: Pseudocode for over-constrained node in heuristic Fixup.constrained edge. If this former neighbor is now a non-multicast leaf node, it deletes itself and its edge,forwarding the disconnect message to its former neighbor. This process repeats until all non-multicast leafscreated are deleted. Heuristic Fixup's pseudocode is shown in Figure 14.Messages and Convergence Time: In the best case, Heuristic Fixup uses the least number of messageswhen the initial tree is already degree constrained. Since the leader node has the complete tree's topologyand degree constraints, this case requires zero messages and no convergence time. In our test networks,6.7% of the solutions produced by unconstrained distributed K-SPH satis�ed the degree constraints withoutpost-processing. Likewise, 8.5% of the solutions produced by unconstrained distributed SPH also did notrequire post-processing.In the worst case for degree-constrained distributed heuristic Fixup, every node in the tree is over-constrained. This forces heuristic Fixup to run on all Z nodes of the tree. Each node queries its neighborsfor alternate paths. The number of such messages is the average degree raised to the neighborhood size.Thus, the number of messages = O(Z). For example, our test networks have an average degree of three andwe employ a neighborhood of three hops which leads to the constant = 33 = 27. Likewise, the worst caseconvergence time occurs when each message in the tree must travel a distance at most twice the diameter ofthe graph, 2D. Thus, the convergence bound for heuristics Fixup = O(DZ).The convergence-time and message bounds for the three distributed heuristics are summarized inTables 1 and 2, respectively.4 Simulation ResultsTo compare the three DCSP heuristics presented in the last section, we implemented the algorithms andperformed extensive simulations. This section summarizes the simulation results and compares the algorithmsin terms of their convergence time, competitiveness, and percentage of unsolved cases.17

Distributed Distributed DistributedBound K-SPH SPH FixupLower Bound logZ DZ 0Upper Bound DZ DZ N.A.Degree-ConstrainedUpper Bound DNZ DNZ DZTable 1: Convergence-time bounds for distributed heuristics K-SPH, SPH and Fixup.Distributed Distributed DistributedBound K-SPH SPH FixupLower Bound Z logZ Z2 0Upper Bound ZN ZN N.A.Degree-ConstrainedUpper Bound ZN2 ZN2 ZTable 2: Messages bounds for distributed heuristics K-SPH, SPH and Fixup.4.1 Evaluation Methodology4.1.1 Network modelBecause our choice of existing network topologies and multicast applications was small, we chose to compareDCSP heuristics using randomly generated networks. Each algorithm was run on a total of 2000 testnetworks. Each of the 2000 networks is a sparse 200-node network with a degree-constraint on 50 or 75% ofits nodes. We consider an n-node graph to be sparse when less than 5% of the possible �n2� edges are presentin the graph. For our 200-node test networks, this means the number of edges must fall in the narrow rangebetween the minimum number of edges for a 200-node graph and �n2� edges out of a possible 19,900 edgesfor a complete graph: 199 | 995 edges. Figure 15 shows the distribution of number of edges for our testnetworks. We believe these networks describe plausible networks of point-to-point nodes in a WAN becausesuch large networks are likely to be loosely interconnected and may have many degree-constrained nodes.Likewise, the simulated networks have 10% or 30% of its nodes in the multicast group because multicastapplications running on such a WAN are likely to involve only a minority of nodes in the network.The 2000 networks were generated to resemble networks in a manner similar to that of Doar [11].Each of the n nodes is distributed across a Cartesian coordinate plane with minimum and maximum coordi-nates (0; 0) and (2n; 2n), creating a forest of n nodes spread across this plane. In all of our test graphs, thenumber of nodes n was set at 200. The nodes are then connected by a random spanning tree. This tree isgenerated by iteratively considering a random edge between nodes and accepting those edges that connectdistinct components. The remaining redundant edges of the graph are chosen by examining each possibleedge (x; y) and generating a random number 0 � r < 1. If r is less than a probability function P (x; y) basedon the distance between x and y, then the edge is accepted. Each edge's distance is its rectilinear distanceplus a small constant. This distance is also the time it takes for a message to traverse this edge. We used18

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

460 480 500 520 540 560 580 600

Number of Edges

P
er

ce
nt

ag
e

of
 C

as
es

Figure 15: The histogram of the number of edges in the test graphs.the probability function P (x; y) = �e�dx;y2�n ;where dx;y is the rectilinear distance between nodes x and y [11]. The parameters � and � govern thedensity of the graph. Increasing � increases the number of connections to nodes far away and increasing �increases the number of edges from each node. After some experimentation, we chose � = 0:10 and � = 0:20for generating the graphs used in this simulation. These values produced graphs of realistic density anddegree-distribution.We performed four di�erent simulations on each generated graph by varying the multicast groupsize and the percentage of degree-constrained nodes, each in two ways. The number of multicast nodes waschosen as either 20 or 60 of the 200 nodes; the number of degree-constrained nodes was selected as either100 or 150. Results are presented for all four combinations for each graph. Degree-constrained nodes in eachcase were chosen randomly and each node's degree-constraint was chosen randomly between 2 (no multicastcapability) and one less than the degree of the node. Similarly the nodes in a multicast group were chosenrandomly in each case. The random numbers were chosen from a uniform distribution. Figure 16 shows thedistribution of degree-constraints for our test networks. Nearly a �fth of the nodes have degree constraintstwo | no multicast capability | because so many of the graph nodes have low degree. In addition to ourrandom degree-constraints, we also simulated our distributed heuristics on 1000 test networks with a degreeconstraint of three on all nodes. These more di�cult test networks serve two purposes (i) they further testour degree-constrained heuristics under more stringent conditions and (ii) they represent an environment inwhich degree-constraints are generally much less than than the degree of a switch.To ensure fairness, each heuristic was run on the same networks. Their results are discussed inSection 4.3.4.2 The Heuristic SimulatorEach of the heuristics was implemented on top of our degree-constrained Steiner problem simulation platform,designed to provide the level playing �eld upon which to base comparisons. It supplies the basic graph19

0%

5%

10%

15%

20%

2 3 4 5 6 7 8 9 10 11 12 13 14

Degree-Constraint

P
er

ce
nt

ag
e

of
 C

as
es

Figure 16: The histogram of degree-constraints for our test networks.manipulation routines used by the heuristics such as adding and deleting edges.The metrics we use for comparison are the competitiveness, convergence time, and percentage ofcases where the algorithm succeeded in constructing a multicast tree satisfying the given degree constraints.Competitiveness is de�ned to be the ratio between the cost of the solution tree (sum of edge distances)produced by the algorithm under consideration to the cost of the best solution found by any of the evaluatedheuristics, including both centralized and distributed versions, for that test case. Convergence time isexpressed in terms of thousands of time units, where each time unit is de�ned as the time for a message topropagate in a link of unit distance.4.3 ResultsHaving described the heuristics evaluated and the simulation environment, we turn now to the results of oursimulations.Figure 17 displays the distribution of competitiveness for centralized SPH and K-SPH, distributedSPH and K-SPH, and heuristic Fixup. Each of the �ve curves shows the cumulative percentage of caseswhose competitiveness is less than or equal to a given value. Distributed K-SPH was used to generate theinitial unconstrained solutions for the Fixup heuristic.The competitiveness for most cases shown in Figure 17 fell well within 10% of the best heuristicsolution found. Even the worst-performing heuristic, heuristic Fixup, solved the majority of its test caseswithin 5% of the best solution found. This high competitiveness for all evaluated heuristics is similar toour �ndings for centralized Steiner heuristics and shows that factors other than the competitiveness maydetermine the choice of the algorithm among the three.The distributed versions of SPH and K-SPH performed slightly inferior in competitiveness as com-pared to their centralized versions; this is because of the lack of global network topology information thatis available in the centralized versions. However, the di�erences in quality were not signi�cant. In fact,distributed K-SPH often outperformed centralized SPH. Among the three heuristics evaluated, heuristicK-SPH consistently outperformed both heuristic SPH and heuristic Fixup.20

0

20

40

60

80

100

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

Competitiveness (Solution/Best)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Centralized K-SPH

Distributed K-SPH

Centralized SPH

Distributed SPH

Fixup on Distributed K-SPHFigure 17: The cumulative competitiveness histogram for degree-constrained graphs.
0

20

40

60

80

100

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290

Convergence Time (in Thousands)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Fixup on Distributed K-SPH

Distributed K-SPH

Distributed SPHFigure 18: The cumulative convergence time histogram for degree-constrained graphs.21

Heuristic PercentageFixup on distributed K-SPH 99.0%Distributed SPH 96.4%Distributed K-SPH 95.6%Table 3: Percentage of cases solved using distributed DCSP heuristics.Heuristic Fixup, however, does enjoy an advantage over distributed heuristics SPH and K-SPH inconvergence time as shown by Figure 18. This �gure displays the cumulative percentage of networks solvedwithin a given convergence time. Note that since our simulations are split between cases with 20 multicastmembers and those with 60 multicast members, the plots in the �gure exhibit two peaks: one for 20 multicastmembers and one for 60 multicast members. Convergence time for heuristic Fixup is the sum of heuristicK-SPH's convergence time and the convergence time of heuristic Fixup. Since heuristic K-SPH convergesfaster when run on an unconstrained graph than on a degree-constrained one and since heuristic Fixupconverges in a fraction of K-SPH's convergence time (see Figure 20), the total convergence time for thiscombination edges out distributed K-SPH run on degree-constrained graphs. This result conforms to theasymptotic bounds given in Table 1. Both distributed heuristics SPH and K-SPH have a higher upper boundfor degree-constrained graphs because of the additional complexity of �nding degree-constrained paths. Thisadditional complexity is also reected in the bounds for messages as shown by Table 2.Comparing the two distributed heuristics SPH and K-SPH, heuristic K-SPH's convergence time issuperior to that of SPH. The reason that distributed K-SPH converges more quickly than distributed SPH isthat the size of fragments in the K-SPH algorithm starts small (one node per fragment) and tends to remainsmall. If every fragment in distributed K-SPH always found a partner, the �nal two fragments would eachcontain about half the nodes in the �nal tree. Distributed heuristic SPH, by contrast, starts with a singlefragment of one node that grows at most a few multicast members at a time until it contains all the multicastmembers. With increasing fragment size comes increasing coordination overhead between tree nodes. Thisincreased overhead is evident in distributed SPH's elongated plot for 60 multicast members in Figure 18.Table 4 summarizes the percentage of test networks solved using the distributed heuristics. It isremarkable that all three heuristics solved greater than 95% of the test networks. Among the heuristics,heuristic Fixup solved the largest number of networks. Distributed heuristic SPH was next and was betterthan distributed K-SPH by less than one percent for the 2000 test networks. We believe that the largeramount of topology information available to the single, large fragment in distributed heuristic SPH allowedit to solve a slightly larger number of our test networks. Similarly, distributed heuristic Fixup has fairlycomplete topology information about the test network before even beginning the heuristic and this allowsFixup to make better choices when building a degree-constrained tree.Heuristic Fixup's results depend not only on the initial tree, but also on how far we allow Fixup tosearch for alternate paths to over-constrained nodes. To determine the e�ect of the size of the neighborhoodexamined by the heuristic for alternate solutions on its performance, we ran the heuristic with neighborhoodsizes of 2, 3, 4, and 6 hops. The results are summarized in Figures 19 and 20 as well as in Table 4. Aneighborhood size of 3 to 6 hops allowed heuristic Fixup to solve at least 99% of our test networks. However,reducing the neighborhood size to 2 drastically reduced the number of test networks solved to 86.1%. Thisis because few good alternate paths were available very close to the nodes violating degree constraints.22

Hops Percentage6 99.8%4 99.0%3 99.0%2 86.1%Table 4: Percentage of cases solved by distributed K-SPH + Fixup using 2, 3, 4 and 6 hops.
0

20

40

60

80

100

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

Competitiveness (Solution/Best)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

6 Hops

4 Hops

3 Hops

2 HopsFigure 19: Heuristic Fixup's cumulative competitiveness histogram for 2, 3, 4, and 6 hops.
0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

Convergence Time (in thousands of time units)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

2 Hops

3 Hops

4 Hops

6 HopsFigure 20: Heuristic Fixup's cumulative convergence time histogram for 2, 3, and 4, and 6 hops.23

0

20

40

60

80

100

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

Competitiveness (Heuristic/Best)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 C

as
es

Fixup(N)

Fixup(3)

K-SPH(N)

K-SPH(3)

SPH(N)

SPH(3)Figure 21: The cumulative competitiveness histogram for graphs with a degree-constraint of 3.
0

20

40

60

80

100

10 40 70 100 130 160 190 220 250 280

Convergence Time (in Thousands)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 C

as
es

Fixup(N)

Fixup(3)

K-SPH(N)

K-SPH(3)

SPH(N)

SPH(3)Figure 22: The cumulative convergence time histogram for graphs with a degree-constraint of 3.24

Heuristic PercentageFixup on distributed K-SPH 100.0%Distributed SPH 92.8%Distributed K-SPH 89.3%Table 5: Percentage of cases solved using distributed DCSP heuristics when degree-constraint set at 3.Similarly, degree-constrained trees built using a neighborhood size of 2 hops were inferior in quality to thosebuilt using neighborhoods of 3, 4 and 6. The di�erences, however, between trees built using neighborhoods3, 4 and 6 hops were slight.Finally, the convergence time for heuristic Fixup was best overall for a neighborhood size of 3 hops.With 2 hops, the convergence time was promising for the easiest cases, but became far too high for theremaining, harder cases.Although setting the neighborhood size to 6 hops allows heuristic Fixup to solve almost all ofour test networks, a neighborhood size of 3 represents the best tradeo� between number of cases solved,competitiveness, and convergence time for our test networks. Hence, this was the neighborhood size used inthe results of Figure 17 and 18. This best neighborhood size may vary for other networks.For example, in the more stringent degree-constrained environment of Figures 21 and 22, �xup wasable to solve only 69.3% of the cases when its neighborhood was set to 3. In these simulations, the degree-constraint of all nodes is set to 3. When Fixup's neighborhood is doubled to 6 hops, the number of casessolved jumps to 100% as shown in Table 5. Ironically, heuristic Fixup is even able to solve the one case out of1000 that neither distributed K-SPH nor SPH could solve. In these �gures competitiveness and convergencetime are shown in relation to those cases where degree-constraints are randomly distributed. Each heuristicin both �gures either has \(3)" appended to its name meaning that node degree-constraints are �xed at 3or \(N)" appended to its name meaning that node degree-constraints are variable. For all three heuristics,the �xed degree-constraint cases performs slightly worse relative to the random degree-constrained case.Even though the competitiveness of all three heuristics with a �xed degree-constraint of 3 trailtheir random degree-constraint equivalents, they continue to produce the majority of solutions well within10% of the best solution found. Similarly, convergence time for all three heuristics is longer, but notsigni�cantly. From these results we draw the conclusion that the degree-constrained heuristics SPH and K-SPH are relatively insensitive to degree-constraints, degrading slowly when node degree-constraints becomestighter. Heuristic Fixup, however, is sensitive to the severity of degree-constraints and needs an increasedneighborhood size to compensate for tighter degree-constraints.5 Concluding RemarksIn this paper we studied the degree-constrained multicast tree problem as applied to point-to-point networksand evaluated the e�ectiveness of two distributed heuristics and one post-processing heuristic. Each ofthe evaluated heuristics enjoys the advantage that it does not require the nodes to have knowledge of thecomplete topology of the network. Instead, local information about neighbors is su�cient. In addition, onlythose nodes directly involved in the multicast tree participate, unlike spanning-tree based heuristics. Theseheuristics were compared in terms of their competitiveness, convergence time, and the number of networks25

they could not solve. Surprisingly few (less than 5%) of our test networks were unsolvable for randomdegree-constraints. With a constant degree-constraint of 3, the number of unsolved cases rose to 10% forheuristics SPH and K-SPH. By allowing heuristic Fixup a larger neighborhood size, its number of unsolvedcases remained the same.Perhaps the most interesting result from our simulations is that while the degree-constrained dis-tributed heuristics compare favorably with their centralized versions and solved most of the test networks,post-processing unconstrained Steiner trees often produce better solutions. Post-processed Steiner trees lostlittle of their quality and were within 10% of the best solution found by any heuristic | centralized, ordistributed.While the focus of this paper is on distributed Steiner heuristics to �nd multicast trees in datanetworks with degree-constraints, our initial results show that the same heuristics produce good qualitysolutions in the general, unconstrained problem. In particular, their competitiveness is often superior to thatproduced by previous heuristics [8, 22] that are based on a distributed minimum spanning tree algorithm. Adetailed comparison of the performance of these distributed heuristics on unconstrained networks will appearin [2].References[1] F. Bauer and A. Varma. \Degree-constrained multicasting in point-to-point networks," in Proc. IEEEINFOCOM, Boston, Apr. 1995, pp. 369{376.[2] F. Bauer and A. Varma. \Distributed algorithms for multicast path setup in data networks," in Proc.IEEE GLOBECOM, Singapore, Nov. 1995.[3] J. Beasley. \An SST-based algorithm for the Steiner problem in graphs," Networks, vol. 19, pp. 1{16,1989.[4] L. Berry. \Graph theoretic models for multicast communications," in Tra�c theories for new telecom-munications services ITC Specialists Seminar, Adelaide, Australia, Sep. 1989, pp. 95{99.[5] K. Bharath-Kumar and Ja�e. \Routing to multiple destinations in computer networks," IEEE Trans-actions on Communications, vol. COM-31, no. 3, pp. 343{351, Mar. 1983.[6] J. Byun and T. Lee. \The design and analysis of an ATM multicast switch with adaptive tra�ccontroller," IEEE Transactions on Networking, vol. 2, no. 3, pp. 288{298, Jun. 1994.[7] H. Chao and B. Choe. \Design and analysis of a large-scale multicast output bu�ered ATM switch,"IEEE Transactions on Networking, vol. 3, no. 2, pp. 126{138, Apr. 1995.[8] G. Chen, M. Houle, and M. Kuo. \The Steiner problem in distributed computing systems," InformationSciences, vol. 74, no. 1-2, pp. 73{96, Oct. 1993.[9] C. Cheng, R. Riley, S. Kumar, and JJ. Garcia-Luna-Aceves. \A loop-free extended Bellman-Ford routingprotocol without bouncing e�ect," ACM Computer Communications Review, vol. 19, no. 4, pp. 224{236,Sep. 1989.[10] S. Deering. \Multicast routing in internetworks and extended LANs," Computer Communication Re-view, vol. 18, no. 4, pp. 55{64, Aug. 1988. 26

[11] M. Doar and I. Leslie. \How bad is naive multicast routing?," in Proc. IEEE INFOCOM, San Francisco,CA, Apr. 1993, pp. 82{89.[12] R. Douglas. \NP-completeness and degree restricted spanning trees," Discrete Mathematics, vol. 105,pp. 41{47, 1992.[13] R. Gallager, P. Humblet, and P. Spira. \A distributed algorithm for minimum-weight spanning trees,"ACM Transactions on Programming Languages and Systems, vol. 5, no. 1, pp. 66{77, Jan. 1983.[14] P. Humblet. \Another adaptive distributed shortest path algorithm," IEEE/ACM Transactions onCommunications, vol. 39, no. 6, pp. 995{1003, Jun. 1991.[15] F. Hwang and D. Richards. \Steiner tree problems," Networks, vol. 22, pp. 55{89, 1992.[16] F. Hwang, D. Richards, and P. Winter. The Steiner Tree Problem. New York: North-Holland, 1992.[17] X. Jiang. \Distributed path �nding algorithm for stream multicast," Computer Communications, vol.16, no. 12, pp. 767{775, Dec. 1993.[18] D. Johnson. \The NP-completeness column: an ongoing guide," Journal of Algorithms, vol. 6, no. 3,pp. 434{451, Sep. 1985.[19] H. Kim. \Design and performance of multinet switch: a multistage ATM switch architecture withpartially shared bu�ers," IEEE Transactions on Networking, vol. 2, no. 6, pp. 581{587, Dec. 1994.[20] V. Kompella, J. Pasquale, and G. Polyzos. \Multicasting for multimedia applications," in Proc. IEEEINFOCOM, New York, NY, May 1992, pp. 2078{2085.[21] V. Kompella, J. Pasquale, and G. Polyzos. \Multicast routing for multimedia communications,"IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp. 286{292, Jun. 1993.[22] V. Kompella, J. Pasquale, and G. Polyzos. \Two distributed algorithms for the constrained Steiner treeproblem," in Proc. Comput. Commun. and Netw., San Diego, CA, Jun. 1993.[23] J. Kruskal. \On the shortest spanning subtree of a graph and the traveling salesman problem," Proc.Amer. Math. Soc., vol. 7, pp. 48{50, 1956.[24] J. Rugelj. \Distributed multicast routing mechanism for global point-to-point networks," in Proceedingsof the 20th EUROMICRO Conference, Liverpool, UK, Sep. 1994, pp. 389{395.[25] M. Smith and P. Winter. \Path-distance heuristics for the Steiner problem in undirected networks,"Algorithmica, vol. 7, no. 2-3, pp. 309{327, 1992.[26] H. Takahashi and A. Matsuyama. \An approximate solution for the Steiner problem in graphs," Math.Japonica, vol. 24, no. 6, pp. 573{577, 1980.[27] H. Tode, Y. Sakai, M. Yamamoto, H. Okada, and Y. Tezuka. \Multicast routing algorithm for nodalload balancing," in Proc. IEEE INFOCOM, New York, NY, May 1992, pp. 2086{2095.[28] J. Turner. \An optimal nonblocking multicast virtual circuit switch," in Proc. IEEE INFOCOM,Toronto, Canada, Jun. 1994, pp. 298{305. 27

[29] S. Voss. \A survey of some generalizations of Steiner's problem," in Proc. of the First Balkan Conferenceon Operational Research, 1988.[30] S. Voss. Steiner-Probleme in Graphen. Frankfurt/Main: Hain, 1990, pp. 179{184.[31] S. Voss. \Problems with generalized Steiner problems," Algorithmica, vol. 7, no. 2-3, pp. 333{335, 1992.[32] S. Voss. \Steiner's problem in graphs: Heuristic methods," Discrete Applied Mathematics, vol. 40, pp.45{72, 1992.[33] P. Winter. \Steiner problem in networks: A survey," Networks, vol. 17, no. 2, pp. 129{167, 1987.[34] W. De Zhong, Y. Onozato, and J. Kaniyil. \A copy network with shared bu�ers for large-scale multicastATM switching," IEEE/ACM Transactions on Networking, vol. 1, no. 2, pp. 157{165, Apr. 1993.

28

