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Abstract

Establishing a multicast tree in a point-to-point network of switch nodes, such as a wide-area ATM network,
is often modeled as the NP-complete Steiner problem in networks. In this paper, we present distributed algorithms
for finding efficient multicast trees in the presence of constraints on the copying ability of the individual switch
nodes in the network. We refer to this problem as the degree-constrained multicast tree problem and model it as
the degree-constrained Steiner problem (DCSP) in networks. We consider two distinct approaches to the design
of distributed DCPS heuristics. The first approach involves design of distributed versions of centralized DCSP
algorithms. We introduce distributed versions of two DCSP heuristics: the shortest path heuristic (SPH) and the
Kruskal-based shortest path heuristic (K-SPH). The second approach is to modify the solution obtained from an
unconstrained heuristic to satisfy the degree constraints using a distributed post-processing algorithm. Unlike previous
spanning-tree based approaches in which all nodes in the graph must participate, only nodes in the neighborhood
of the multicast tree need participate in these algorithms. We compare the algorithms by simulation based on three
criteria: competitiveness (the ratio between the sum of edge weights of the heuristic tree to that of the optimal tree),
convergence time, and the number of unsolved networks. Our results show that each of the heuristics generated degree-
constrained multicast trees within 10% of the best solution found. Surprisingly few test networks were unsolvable.
The distributed post-processing heuristic presented is of particular interest since it may be used with any Steiner
heuristic. When paired with a good unconstrained distributed Steiner heuristic, this post-processing heuristic gave
away little competitiveness while converging rapidly.
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1 Introduction

Multicasting, defined here as the ability to connect multiple nodes in a point-to-point network by a low-cost
tree, is likely to take an increasingly important role in data networks. Many existing networks already
support multicasting. For example, the Internet MBONE service, a popular conferencing tool, already uses
the multicast support recently added to the Internet [10]. Many emerging standards for packet-switched
networks, notably ATM, Frame Relay and SMDS, include support for multicasting. Future applications
such as audio and video conferencing, replicated database updating, and distributed resource discovery will
rely on the ability of the network to perform multicast communication. Thus, multicasting will likely be an
essential part of future networks.

The cost of multicasting quickly becomes unacceptable for many applications if a separate copy
of data is transmitted from the source to each recipient. Transmitting common copies of data over a
multicast tree is the preferred method. However, determining the optimal multicast tree for a network is a
difficult problem. Previous authors have established that the multicast tree problem may be modeled as the
Steiner problem in networks [3, 4, 5, 15, 33], referred to hereafter as the SPN, and that explicit solutions
are prohibitively expensive. For example, two popular explicit algorithms, the spanning tree enumeration
algorithm and the dynamic programming algorithm [33], have algorithmic complexities of O(p?2("=?) 4 n?)
and O(n3F + n?2? + n?), respectively, where n is the number of nodes in the graph and p the number of
multicast members. A number of good, inexpensive, centralized heuristics exist for the SPN and have been
reviewed extensively elsewhere [5, 15, 20, 25, 26, 32, 33]. Some have been shown through analysis to produce
solutions no worse than twice the optimal solution. [33]. That is to say, the sum of the edge weights of the
heuristic tree is no more than twice the sum of edge weights of an optimal tree. In practice, our empirical
evidence indicates that these heuristics find solutions much better than twice this bound with reasonable
speed in most cases.

Most of the algorithms proposed in the literature for SPN are serial in nature. However, a few
distributed heuristics have been known [8, 17, 22, 24]. Many of these algorithms are based on reducing
the SPN to the minimum spanning tree problem (MST) and using a distributed minimum spanning tree
algorithm such as the one described by Gallager, Humblet, and Spira [13]. The resulting minimum spanning
tree is then pruned of unnecessary leaves and branches. For example, Chen, et al. [8] finds a Steiner tree by
applying a distributed minimum spanning tree algorithm twice. First the algorithm is applied to the original
graph. This first minimum spanning tree is used to create a shortest path forest composed of disjoint trees
and edges that together form a subgraph of the original graph. The distributed minimum spanning tree
algorithm is then applied a second time to this subgraph. The solution is obtained by pruning unnecessary
leaves and branches from this second minimum spanning tree. Likewise, Kompella, et al. [22] describe
two distributed versions of earlier centralized heuristics proposed by the same authors [21]. Both of these
distributed heuristics first build a constrained Steiner tree that reflects the combined criteria of cost and
delay. Gallager, Humblet and Spira’s distributed MST algorithm is then applied to this constrained Steiner
tree and the solution tree is pruned. The two heuristics differ in their criteria for choosing edges when
building the MST. The primary disadvantage of using a minimum spanning tree algorithm is that every
node in the network must participate in the search for a Steiner tree. This may not be feasible or desirable
in practice. In contrast, Jiang’s Steiner heuristic [17] does not use an MST algorithm, but instead relies
on flooding from the multicast source to find the shortest path tree to the multicast members. The source

node repeatedly broadcasts messages and builds a Steiner tree from responses received until a suitable tree



1s found.

Finding a multicast tree is complicated by the likely heterogeneous nature of the multicast environ-
ment. The routers or switches in an internetwork will likely vary in their ability to support multicasting.
Some nodes may not support multicasting; others may be limited in the number of multicast copies they
can reasonably make [6, 7, 19, 34]. The multicast capability of each node is represented in this paper by a
degree-constraint. Thus, a degree constraint of d implies that the corresponding switch or router is able to
forward copies of an incoming packet to a maximum of d — 1 output ports. The problem of finding a mul-
ticast tree in the presence of copy constraints in individual switches is referred to as the degree-constrained
multicast tree problem. We model the degree-constrained multicast tree problem as the degree-constrained
Steiner problem in networks (DCSP), first described by S. Voss [31]. Formally, the DCSP as used in this

paper is defined as follows.

GIVEN: A simple, undirected, connected graph G = (V, E') with n nodes, non-negative edge cost ¢; ;,

p multicast members Z C V| and node degree constraints k; > 2.

FIND: A multicast tree T such that the degree of each node d; < k; and the sum of its edge weights is

minimum among all possible choices of the tree satisfying the degree constraints.

The degree-constrained Steiner problem in networks is of particular interest to ATM networks since
multicast copies of ATM cells must be made quickly, typically by hardware. Whereas a low-speed switch
or router might reasonably approximate infinite copy-capability, high-speed switches may have limited copy
capabilities due to their speed constraints. Even when the switches allow multicasting to an arbitrary number
of destination ports, there are several advantages in limiting the number of copies made by each switch. For
example, some packet-switch architectures implement multicasting by circulating copies of packets through
the switch fabric multiple times [28]. Thus, keeping the degree small reduces the number of passes needed
through the switch fabric. In addition, a degree-constrained multicast tree also distributes the load more
evenly among the nodes in the network than an unconstrained tree. This has two benefits: (i) the task of
making multicast message copies is shared among more nodes, and (ii) the damage inflicted on the tree by
the failure of a single node 1s reduced.

The degree-constrained Steiner problem in networks is a relatively new problem [16, 27, 29, 30].
The degree-constrained Steiner problem is NP-complete [30] and contains the NP-complete problem of de-
termining a degree-constrained spanning tree [12; 18]. Furthermore, finding a solution to the DCSP is also
NP-complete [30]. In practice, however, the heuristics rarely failed to find a solution in our test networks.

Few centralized DCSP heuristics exist in the literature [27, 30] and we know of no published dis-
tributed DCSP heuristics. Since the degree-constrained spanning tree problem is also NP-complete, dis-
tributed Steiner heuristics that use a distributed minimum spanning-tree algorithm cannot easily be modified
for DCSP.

In an earlier paper, we introduced several centralized DCSP heuristics and compared their run-
time and the competitiveness of the solutions produced [1]. The competitiveness of a solution improves
when a tree has lower cost where cost is the defined to be sum of the tree edge weights. This paper
introduces and analyzes distributed algorithms for DCSP. We consider two distinct approaches to the design
of distributed DCPS heuristics. The first approach involves design of distributed versions of centralized
DCSP algorithms. We introduce distributed versions of two DCSP heuristics K-SPH and SPH described
in [1]. The second approach is to find a Steiner tree first with no degree constraints and then modify the

solution to satisfy the degree constraints using a distributed post-processing algorithm. The second approach



has the advantage that any of the known distributed Steiner heuristics can be used during the first step;
for the second step, we present a distributed “fixup” heuristic to construct a degree-constrained multicast
tree from the unconstrained one. The two approaches are compared by simulating the algorithms on sparse,
point-to-point, networks of switches with varying multicast capacity. We analyze the message and time
complexity of the algorithms, and compare them on the basis of three criteria: competitiveness, convergence
time, and the number of unsolved networks. Ideally, a heuristic’s competitiveness is measured by the ratio of
its tree cost (sum of edge weights) to that of an optimal tree. This proves to be impractical, since computing
the latter may be prohibitively expensive in large networks. Instead of an optimal tree we use the best
heuristic solution found for each network by any heuristic we have tested, distributed or centralized.

Our simulations of the algorithms are performed on a large set of sparse, randomly-generated network
topologies. We restrict our analysis to sparse networks for two reasons: (i) they are more representative
of real point-to-point networks, and (ii) they are inherently more difficult to solve because fewer solutions
exist in a sparse network than a dense one. Similarly, the simulated multicast groups are small relative to
the size of the network, reflecting likely multicast applications. Note that our results are not specific to any
particular type of network such as ATM, but may be applied to any point-to-point network matching these
assumptions.

The results of our research show that the distributed versions of heuristics K-SPH and SPH compare
favorably with their centralized versions in the competitiveness of the solutions produced. Despite each node
having only local topology information, the distributed versions of these programs often produced trees
within 10% of the best solution found by any heuristic and solved over 90% of our test networks. However,
the most interesting results concern the post-processing heuristic. This heuristic showed rapid convergence
and produced degree-constrained trees from unconstrained ones while sacrificing little of their quality.

The remainder of this paper is organized as follows. Section 2 summarizes previous DCSP heuristics
of interest, introduces distributed versions for two of these heuristics, and analyzes their convergence-time
and message bounds. Section 3 presents a new distributed post-processing algorithm that can be used
to modify any valid Steiner tree solution to satisfy the given degree constraints. Section 4 compares the
algorithms by convergence time, competitiveness, and the number of unsolved test cases. Finally, Section 5

concludes the paper with a discussion of the results.

2 Degree-Constrained Steiner Heuristics

In this section, we summarize previous degree-constrained Steiner heuristics and introduce two distributed
degree-constrained Steiner heuristics.

Before continuing, we make the following basic definitions and notations. 7 is the set of multicast
destinations, S is the set of non-multicast nodes V' — 7, F; ; is the shortest path between nodes ¢ and j, and
d; ; 1s the distance of the shortest path between nodes ¢ and j. Graph distances will be defined as follows:
The distance between two nodes is the distance of the shortest path between them. Likewise, the distance
between a node and a tree is the distance of the shortest path between the node and any node in the tree.
Finally, the distance between two trees is the distance of the shortest among all paths between any node in
one tree and any node in the other tree. Asin [13], we append the weight of an edge or path with the index
of its destination node in determining shortest paths so that, in case of a tie, the actions of the individual
nodes would be consistent. Since we do not allow multiple edges between node pairs, this ensures that all

the nodes select the same edge or path, given the same set of edge weights.



2.1 Centralized Degree-Constrained Steiner Heuristics

To be suitable for distributed implementation, a DCSP heuristic must satisfy four criteria. It must (i) use
the existing routing information available at each node in the network, (ii) use minimal computational and
network resources, (iii) require a minimum of coordination between neighbors, and (iv) limit itself to nodes
directly involved in the multicast. Of the centralized DCSP heuristics evaluated in [1], we chose the following
four heuristics as candidates for distributed implementation: the shortest-path heuristic (SPH), a variant of
SPH known as SPH-Z, the Kruskal-based shortest-path heuristic (K-SPH), and the Average distance heuristic
(ADH). Each heuristic’s unconstrained version is described in [25] and each heuristic’s degree-constrained

version is described in [1]. A brief summary of each degree-constrained heuristic follows.

DCSP SPH

Heuristic SPH, whose unconstrained version was introduced in [26], initializes the multicast tree to an
arbitrary multicast member. It then grows the tree by successively adding the next closest multicast member
to the multicast tree by the shortest, degree-constrained path between the multicast member and the tree.
The algorithm terminates when all the members have joined the tree or the remaining multicast members

cannot be connected.

DCSP SPH-Z

Heuristic SPH-Z, whose unconstrained version is introduced in [25], is a variant of SPH that runs SPH
repeatedly, once for each multicast member (Z-node). This results in up to Z degree-constrained multicast

trees. At SPH-Z’s conclusion, the lowest cost tree is returned as the result.

DCSP K-SPH

Heuristic K-SPH, whose unconstrained version was introduced in [23], differs from SPH in the manner in
which tree i1s expanded. Instead of growing the tree one node at a time, the algorithm joins subtrees pairwise
repeatedly until all the multicast nodes are part of a single tree or components can no longer be connected.
The algorithm starts with Z subtrees, each a multicast member itself. In the expansion step, it finds two
subtrees that are closest to each other and joins them along the shortest, degree-constrained path between

them to form a single subtree.

DCSP ADH

Heuristic ADH, whose unconstrained version is described in [25], is a generalization of K-SPH. The degree-
constrained version repeatedly connects the two closest sub-trees using the most central node. The most
central node is defined to be the node with the least average distance to all multicast members. ADH
terminates when a single tree remains spanning all multicast members or the remaining components cannot

be connected.

2.2 Distributed Degree-Constrained Steiner Heuristics

After further consideration, only two of the four heuristics, SPH and K-SPH, remain as suitable candidates

for distributed implementation. Both heuristics SPH-Z and ADH fail our criteria for conversion. Although



heuristic SPH-Z appears initially attractive as a distributed heuristic, its component distance and degree-
constraint information for each of the Z instances could be distinct. This forces as many as Z copies of
component information at each node and a virtual storm of network messages before convergence. Likewise,
ADH fails our criteria because its calculation of the most central node requires excessive overhead for co-
ordination between nodes in the network. In addition, our earlier results indicate that, on the average, the
solutions produced by K-SPH and ADH are of nearly identical quality. Of these two heuristics, K-SPH is
the more attractive candidate because of its relative simplicity and lower running time.

Distributed heuristics SPH and K-SPH are designed to run as asynchronous, independent processes
running one per node in a degree-constrained network. Each distributed heuristic assumes that the routing
tables in each node is up-to-date; no topology changes occur during the execution of the algorithm; the
network is connected; every node has a unique index; each multicast member has knowledge of the indices
of all other multicast members; each multicast is able to determine the distance to each of them from its
routing table; and all non-leaf nodes have a degree-constraint > 2.

Heuristic SPH is inherently a serial algorithm, since there is only one subtree expanding itself at any
time during the execution of the algorithm and nodes must join the tree serially. Heuristic K-SPH, on the
other hand, allows many of the join operations to proceed in parallel. The latter, however, is substantially
more difficult to parallelize because of the significant amount of coordination that may be needed while
combining subtrees. In the following, we present distributed K-SPH first, followed by a similar distributed
implementation of SPH.

2.2.1 Distributed Heuristic K-SPH

Like its centralized version, distributed K-SPH starts with a forest of Z multicast members (Z-nodes) and
connects them pairwise into successively larger subtrees until a single multicast tree remains or no further
connections are possible. We refer to the subtrees during the execution of the algorithm as fragments. Thus,
at the beginning of the algorithm, there are Z fragments, each a trivial subtree consisting of one Z-node.

At any instant during the execution of the algorithm, each node in the network is either part of
a fragment or has not been yet been included in the multicast tree. Note that every Z-node is always a
fragment node and every non-member node (S-node) is initially a non-fragment node. When two fragments
merge, the nodes in both fragments and the nodes in the path connecting them become the fragment nodes
of the new, merged fragment.

Each fragment has a fragment leader coordinating the activities of the fragment. This fragment
leader 1s the fragment Z-node with the lowest index. Each fragment leader executes the same finite state
machine shown in Figure 1. Other fragment node executes a simplified version of the leader’s finite state
machine shown in Figure 2. Initially, each multicast member is the leader of its own one-node fragment;
when two fragments merge, leadership is assigned to the fragment leader with the lower index. To identify
fragments uniquely, each fragment has the same index as its leader and each fragment node is aware of its
fragment index.

At the highest level, each fragment, guided by its leader, executes the pseudocode shown in Figure 3.
During the execution of the algorithm, each fragment attempts to merge with its closest neighboring fragment.
This is accomplished in two steps — a discovery step and a connection step. During the discovery step, the
leader gathers and updates its information on other fragments and graph nodes. Based on the information
gathered, it determines the closest fragment to merge with. During the connection step, it communicates

with the closest neighbor fragment’s leader, requesting a merge. This closest fragment leader 1s simply the
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Figure 1: The finite state machine for fragment leaders.

Distributed
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Figure 2: The finite state machine for other fragment nodes.

Z-node with the same index as the closest fragment. If accepted, the leader with the lowest index attempts
to connect the two fragments. Regardless of the outcome (the request is rejected, the subtrees are connected,
or the connection attempt fails), the cycle repeats until the algorithm terminates.

Distributed K-SPH processes running on each node rely on shortest path and degree-constraint
information available at its node, as well as information maintained by the fragment leaders. The shortest
path information stored at each node is the distance, next hop and next-to-last hop of the shortest path to
other nodes. This path information is similar to that stored by distance-vector routing protocols and may
already be available in each node’s routing tables. If so, distributed K-SPH may use the existing tables,
avoiding unnecessary extra storage at each node. If not, this information may be derived using a distance
vector routing algorithm such as [14]. The next-to-last hop table allows distributed K-SPH processes to derive
the entire shortest path between nodes by recursively considering the path as described in [9]. Each node
also stores its degree-constraint information and the index of its fragment. Initially, only multicast nodes
have a fragment index (its own index). Each leader maintains additional shortest path and degree-constraint
information for its fragment. This information augments the shortest path information at each node. For

example, the leader stores only the distance, and the head and tail of the shortest path between its fragment



while fragments remain and valid paths exist do

# algorithm discovery step
update fragment information for nearby fragments
[ < closest fragment

# algorithm connection step
request merger with fragment f
if request accepted then
attempt connection to fragment f
if connection established then
merge fragments
else
restore original fragments
end if
end if

end while

Figure 3: Pseudocode for fragment leaders.

and every other fragment. The additional details necessary to build the path between fragments is stored at
the head of the path, a node in the leader’s subtree (Note that the shortest path between fragments need not
start or end at a leader node). The leader also stores the currently available degree-constraint information
for every node in the graph. Initially, each leader knows only about its own degree-constraint and assumes
all other degree-constraints to be infinite.

When distributed K-SPH starts, each Z-node, the leader of its own trivial one-node fragment, already
knows its distance to every other fragment as provided by the initial distance tables and no discovery step

is necessary. Instead, each distributed K-SPH leader starts with the connection step, described as follows.

The connection step During the connection step, each leader attempts to connect its fragment with the
closest fragment, known as its preferred fragment. It does so by sending a merge request message to the
leader of the preferred fragment (That is, the Z-node with the same index as the preferred fragment). A
leader receives one of three responses to its request: accept, reject, or busy. We consider each response in
turn below.

The busy response occurs when a fragment’s request arrives at its preferred fragment while the
latter is in its discovery step described below. While in the discovery step, a leader cannot accept or reject
merge requests, as it is in the process of updating its information. Instead, the busy response is sent. When
the requesting leader receives the busy response; 1t repeats its request in the hopes or reaching its preferred
fragment after its discovery step. A leader will repeat its connection request until it receives either an accept
or reject response.

When a leader receives a connection request from a fragment other than its preferred fragment, it
returns a reject message. This message forces the requesting fragment into a discovery step to find another
preferred fragment. If a former leader node receives a connection request from any fragment, it returns a

reject message since a connection is no longer possible to the old fragment.



# request merger with fragment f
do

send request to fragment f’s leader

wait for response

update degree-constraint information from responding fragment
until accept or reject

leader « this fragment index < fragment f’s index
if accept and leader then

# attempt connection to fragment f

send connect message to head of shortest path

walt for connection success or failure
if failure then
send reject to fragment f’s leader

end if

Figure 4: Fragment leader pseudocode for the connection step.

Fragment edges Head  Shortest path

Fragment
A

= Fragment leader
= Fragment node
= Non-fragment node

Figure 5: Example of fragments A and B merging.

Figure 4 shows the pseudocode for the connection step.

When two fragments exchange merge requests with one another, each responds by returning an
accept message. Once an accept message is sent, the fragment may not leave the connect step or accept a
request from another fragment until the connection attempt completes. Of the two leaders in a connection
attempt, only the leader with the lower index acts, while the leader with the higher index waits passively
for the result of the connection attempt. This is because if the connection attempt succeeds, the leader with
the lower index becomes the leader of the new, merged fragment. The leader with the lower index initiates
a connection attempt by sending a message to the head of the shortest path between the two fragments,
a node in its fragment. In its message to the head of the shortest path, the leader specifies the tail of the
shortest path, a node in the other fragment. Upon receiving the connect message, the head node sends a
connect message along its shortest path to the tail node.

When two fragments A and B merge as shown in Figure 5, the shortest path used to join them must



have its head in one fragment, its tail in the other, and pass through only non-fragment nodes.

The connect message may either reach the target fragment or be blocked; blocking may occur either
as a result of the degree constraint being exceeded in one of the intermediate nodes, or because the message
reaches a node in a third fragment before reaching the target fragment. In either case, a status message
returns to the head of the shortest path.

Consider the case of a successful connection first. In this case, the connect message travels down
the shortest path, reserving intermediate nodes in the path as part of the new fragment, until it reaches
a node in the target fragment. It is possible that the first node reached in the target fragment is not the
specified tail. This occurs when the leader’s shortest-path information for other fragments may be stale and
an intermediate node in the selected path is already part of the other fragment. In any case, the connect
message stops at the first node in the target fragment it reaches. The target fragment node then sends a
status message back along the shortest path to the head of shortest path. Each reserved, non-fragment node
along the path receives the status message, includes itself in the new, merged fragment, and passes the status
message along the path. The head of the shortest path forwards the status message to its leader, now the
leader of the new, merged fragment. This completes the connection step and the leader enters the discover
step described below.

Now consider the case of an unsuccessful connection. In this case, the shortest path between the
fragments 1s blocked. This could occur because a node in the shortest path has already reached its degree
constraint, or has become part of a third fragment. When the connect message reaches a blocked node,
the blocked node returns a status message along the shortest path to the head of the path. As each
intermediate node receives the status message, it removes its reservation from the new fragment, becoming
an non-fragment node once again. The head of the shortest path forwards the status message to the leader.
The leader informs the other fragment leader of the connection failure by sending a reject message. This
completes the connection step. Both leaders then enter the discover step described below.

States request, wait and connect in Figure 1 comprise the connection step.

The discovery step The discovery step accomplishes three tasks: (i) it informs every node in the fragment
of its new fragment index, (ii) it gathers fragment and degree-constraint information about nodes close to the
fragment, and (iii) it refreshes its information on shortest paths to other fragments. The pseudocode for the
discovery step is shown in Figure 6. Each fragment leader achieves these tasks by performing a multicast on
its fragment rooted at itself. In the multicast message, the leader includes the fragment index, the distance
to the preferred fragment, degree-constraint information, and shortest paths to other fragments. As each
node in the fragment receives the multicast, it updates its fragment index, queries nearby nodes and passes
the multicast message to its children. Only those nodes that lie within the distance from this fragment to
the preferred fragment are queried for fragment index and degree-constraint information. The objective of
queries to nearby nodes is to find fragment nodes closer than those already known by the leader. Figure 7
illustrates a case where this is useful. Fragment B’s leader believes that fragment C' is the closest fragment.
During fragment B’s discovery step, it instructs fragment nodes to query those nodes closer than fragment
C'. This distance is the distance between node 3, the head of the path to fragment C', and node 4, its tail,
and is marked by the dotted circles around each of fragment B’s nodes. Since nodes 1 and 2 fall within one
such circle, they receive queries and fragment B’s leader discovers the closer fragment A. Queries could be
sent to all nodes in the graph, but are limited to nodes within a small distance for two reasons: (i) a set

distance avoids broadcast storms and (ii) new shortest paths discovered should be shorter than those already



7t send all children update request
for all fragment children do
send fragment index, closest fragment distance, shortest path information,
and degree-constraint information to each child
end for

# query all nodes closer than closest fragment
for nodes nearer than closest fragment do

send nodes query for component and degree-constraint information
end for

wait for responses
update shortest path information, and degree-constraint information

7t forward results
if not leader then
send summary of shortest path information and degree-constraint
information to parent

end if

if leader then
f < closest fragment

Figure 6: Fragment leader pseudocode for the discovery step.

available. The discovery step i1s implement by state flood-to-N in Figure 1.

Analysis of Distributed K-SPH Algorithm: Having described the distributed K-SPH in the previous
section, we now turn to its properties. We use a directed request graph to show the relationship of fragments
to one another during the execution of the algorithm. Each fragment in the network is represented by a node
in the request graph and its current choice of preferred fragment by a directed edge. Figure 8 illustrates an
example graph with three vertices representing fragments A, B, and C'. In this example, the fragment pair
A and B request each other, while a third, more distant fragment C' requests fragment B. Fragments A
and B will merge, creating a new fragment that will form a pair with fragment C' and merge. A fragment
is considered stable when 1t is in the states wait or request since its choice of preferred partner is unknown
when the fragment 1s in states connect, flood-to-N, or init.

The request graph can be used to show that the distributed K-SPH algorithm does not deadlock.
To prove that the algorithm will terminate, we need to only show that at any time during the execution of
the algorithm, the shortest-path distances maintained by two of the fragments to each other will converge
to the same value in a finite time (that is, a cycle of length 2 in the request graph). These two fragments

will then merge to form a new fragment. Thus, by induction, the algorithm will terminate in finite time.

Property 1 At any time during the execution of the algorithm, the shortest-path distances maintained by

two stable fragments to each other will converge to the same value within a finite time.

10



fragment A

Q = Fragment leader
= Fragment node
= Non-fragment node

Figure 7: Illustration of the querying process in the discovery phase of distributed K-SPH.

D0,

Request Graph Fragments

Figure 8: An example for request graph.

Proof: Initially, the shortest path between any two single-node multicast members 1s the shortest path
between their fragments. This path is, by definition, equal. Suppose that at some later time, the shortest
paths between two fragments differ in distance as shown in Figure 9. Suppose further, that one fragment, in
this case fragment B, has the longer path. The next time fragment B enters state flood-to-N, it will query
every node in its neighborhood for fragment and degree-constraint information. Any node in fragment A
closer to B must fall within B’s neighborhood and will become the tail of a new, shorter path to fragment A.
The shortest of all such paths will become fragment B’s new shortest path to fragment A. By a symmetrical
argument, the paths between fragments A and B must converge on the same distance.

Inconsistencies may also occur when a path is blocked. Assume that only one of a pair of fragments
finds that the shortest path between them blocked. Assume fragment A has a shortest path to B, but
B’s shortest path to A is blocked. The shortest path between fragments can only be blocked by a degree-
constrained node, or by a node belonging to a third fragment C'. If the shortest path is blocked by a
degree-constrained node, fragment A will know of the over-constrained node the next time it exchanges
degree-constraint information with fragment B (that is, when it receives a reject response to its merge
request). If the shortest path is blocked by a third fragment C'| fragment A will query the blocking node in
fragment C the next time fragment A enters the discovery phase (state flood-to-N). In addition, C' will also

update its distance to A during its recovery phase, resulting in consistent values for the distance between A

11
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Figure 9: Two subtrees with different shortest paths.
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Figure 10: A request graph demonstrating deadlock.

and C'.

A deadlock occurs when no two-fragment cycle exists in the request graph even when all fragments
are stable. Figure 10 shows two such examples. In the first case, three fragments are locked in a cycle and
in the other, one fragment has no outgoing edges and cannot merge with any other fragment. Either of
these cases could mean that distributed K-SPH would never terminate. In the following, we show that such

deadlocks cannot occur.
Property 2 Distributed K-SPH does not deadlock.

Proof: Let d(I,J) represent the distance between fragments [ and J. In Figure 10, stable fragments A,
B and C' are locked in a three-node cycle. Since each fragment prefers the closest fragment, the following
inequalities must hold: d(A, B) < d(A,C), d(B,C) < d(B, A), and d(C, A) < d(C, B). However, we know
from property 1 that at least two of the fragments, say A and B, must have equidistant shortest paths.
This leads to a contradiction. A similar argument holds for any cycle of more than two fragments. Consider
the case where no cycle exists as shown by fragments X and Y in Figure 10. Fragment Y has no outgoing
edge, which indicates that it has no shortest path to any fragment. This means that Y’s path to X must be
blocked and by property 1 will eventually be discovered. Distributed K-SPH will terminate when both X

and Y have no outgoing edges.
Convergence Time and Number of Messages: We now derive some simple asymptotic bounds on the

number of messages and convergence time of the distributed K-SPH algorithm. We consider the both the

degree-constrained and the unconstrained versions of the algorithm.
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Distributed K-SPH uses the least number of messages for both the unconstrained and constrained
cases when the network has Z = 2/ multicast nodes, any number of non-multicast nodes, and fragments
always find a partner. Under these conditions, a total of 2% + 2% 4+ -+ % = Zz;_, = 2”;—‘,1 =2 -1
merges occur during ¢ rounds. Fach fragment merges using a relatively small number of messages and the

new fragment enters the discovery phase, In the discovery phase, each fragment node queries every child
and neighbor for fragment and distance information. Assume that on average each fragment node queries a
finite number of neighbors and children approximated by ¢. The total number of messages sent by multicast
members during each round is ¢Zi = ¢Z log 7 = Q(Z log 7). During each of the log Z rounds, the longest
round-trip message time between leader and fragment root dominates. This round-trip time can be at worst
twice the diameter of the graph, and at best a constant. Thus, the time to converge is lower-bounded by
clog 7 = Q(log 7).

Now consider the worst case with no degree constraints. In the worst case, only one fragment finds
a partner during any round. Thus, Z — 1 rounds occur before a solution is found. If fragments are always
relatively large then the number of messages would be the number of rounds times the number of nodes on
all fragments, ¢(Z7 — 1)N = O(ZN). If the round-trip times during each of the Z — 1 rounds is large and
close to twice the graph diameter, 2D, then the convergence time for this case is 2D(Z — 1) = O(DZ).

The worst case for degree-constrained distributed K-SPH is similar except that each pair of fragments
might try many paths between them before finding a viable, degree-constrained shortest path between them.
The number of alternate shortest paths between nodes could be as high as the number of fragment nodes
in the initiating fragment. Thus, if the initiating fragment is always large, each of the Z — 1 rounds could
iterate as many as N times. The number of messages for this case would be N time greater than the
unconstrained worst case, that is, O(ZN?). Likewise, the convergence time would be the number of rounds
(now < (7 — 1)N) times the largest possible round-trip time, or O(DN 7).

These bounds are summarized in Tables 1 and 2, along with the bounds for the other algorithms
considered in this paper. Our results from simulations of the unconstrained version of the algorithm show
that the rates of increase of both the convergence time and the number of messages with the number of
nodes fell within these bounds [2].

2.2.2 Distributed SPH

The distributed shortest path heuristic is a special case of distributed K-SPH described in section 2.2.1. In
distributed SPH, any one of the multicast members may act as the source of the multicast, referred to here
simply as the source node. In contrast to distributed K-SPH, only one fragment, the source fragment grows,
connecting multicast members to itself until all the multicast members are part of the same fragment. The
heuristic terminates when a single tree remains or the source fragment cannot merge with the remaining
fragments due to degree constraints.

In SPH, the preferred fragment of every fragment is always the source fragment. The sole exception,
of course, is the source fragment itself which prefers its closest fragment. Using the same connection step
outlined for heuristic K-SPH, the source fragment merges with its closest fragment. As the source fragment
grows, it uses the same discovery step to determine the new, closest fragment. The source fragment never
changes its index. This preserves the source fragment’s original index so that non-source fragments never
need to change their preferred fragment index. As a consequence, non-source fragments do not enter the
discovery phase. In all other respects, distributed SPH is very similar to distributed K-SPH.

Figure 11 shows the finite state machine used by each node.
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Distributed
SPH

Figure 11: The finite state machine for each node performing the distributed SPH heuristic.

Algorithm Analysis: Since distributed SPH is a special case of distributed K-SPH, its analysis proceeds
similarly to that of distributed K-SPH. For example, it too will not deadlock as shown by property 3.

Property 3 Heuristic SPH does not deadlock.

Proof: Consider Figure 10 again. A three-node cycle such as the one in Figure 10 cannot occur in distributed
SPH because every fragment except the source prefers the source fragment. Thus, the longest request graph
cycle in distributed SPH has length two: an edge from the source to a fragment and the return edge. A
longer request cycle is an error. A zero-node cycle, however, indicates either an error or heuristic termination.
Since every fragment except the source fragment always prefers the source fragment, only a source fragment
can break the two-node cycle it has with every fragment. However, this is also a condition for termination.

In the degree-constrained case, this is a valid termination condition.

Messages and Convergence Time: Like distributed K-SPH, distributed SPH uses the least number
of messages when Z = 2' multicast members exist. Distributed SPH differs from distributed K-SPH in
that only two fragments merge during a round. Assume that on average each fragment node queries a
finite number of neighbors and children approximated by ¢. The number of messages in this case would be
c+2c+3c+--+(Z—-1)c= CW = O(Z?). The round-trip time during each of the Z — 1 rounds
cannot be greater than twice the graph diameter and the convergence time is ¢(2D)(Z — 1) = Q(DZ).

In the unconstrained worst case, assume that the source fragment grows quickly and the round-time
distance for messages approaches twice the graph diameter, 2. The number of messages in this case is
e(Z —1)N = O(ZN). Likewise the convergence time becomes 2D(7 — 1) = O(DZ).

In the degree-constrained worst case, just as in distributed K-SPH the source fragment might try
many paths before finding a viable, degree-constrained shortest path. The number of alternate shortest
paths between nodes could be as high as the number of fragment nodes in the source fragment. Since the
source fragment is always the largest fragment, the number of alternate paths available grows quickly. The
number of messages for this case would be N time greater than the unconstrained worst case, or O(ZN?).
Likewise, the convergence time would be the number of rounds (now < (Z — 1)N) times the largest possible
round-trip time, or 2DNZ = O(DN 7).
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Figure 12: The finite state machine for each node performing the distributed Fixup heuristic.

These bounds are summarized in Tables 1 and 2, and have been found to agree with results from

simulation of the unconstrained SPH heuristic [2].

3 Post-Processing Heuristics

An alternate approach to using a distributed algorithm for finding a degree-constrained Steiner tree is to first
construct a Steiner tree with no degree constraints and then modify the solution to satisfy the constraints.
This has the advantage that any known distributed Steiner heuristic can be used in the first step. If the
number of nodes violating their degree constraints in the solution is small, the second step can typically be
completed in much less time as compared to the first. The second step involves removing incident edges from
the Steiner tree and finding alternate paths to re-connect the fragments such that the degree constraints are
not violated. In this section, we describe a distributed heuristic to find a degree-constrained Steiner tree

using this approach.

3.1 Distributed Heuristic Fixup

Heuristic Fixup modifies an unconstrained tree by examining each vertex in the unconstrained tree for
degree-constraint violations and replacing the edges of an over-constrained node, one at a time, with an
alternate degree-constrained path. In Figure 13, the edge between the over-constrained node and fragment
A is replaced by an alternate path. This alternate path is discovered by exploring alternate paths between
neighbors of the over-constrained node. It is reasonable to expect competitiveness and the number of solved
cases to improve with the size of the neighborhood searched. While our results confirm this intuition, they also
demonstrate that a point of diminishing returns exist. We use three hops for our neighborhood size because
it offered the best balance between convergence time and competitiveness. The effect of neighborhood size
on heuristic Fixup is discussed in Section 4.

Distributed heuristic Fixup first runs on the tree’s leader and examines the tree, looking for degree-
constrained nodes. The algorithm assumes that the leader knows members of the multicast tree and their

degree constraints. Note that this information may be gathered by the leader by propagating a request
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Figure 13: Replacing an adjacent edge to an over-constrained node.

along the multicast tree. In our test cases, a small but significant number of trees generated by distributed
heuristic K-SPH were already degree-constrained. Of course, a tree that is already degree-constrained
need no further processing. If, however, over-constrained nodes exist, heuristic Fixup runs on each over-
constrained node in sequence, replacing one edge at at time until the degree-constraints are met. Heuristics
Fixup terminates when either a degree-constrained tree is found or no alternate path to an over-constrained
node is available. Heuristic Fixup runs on one over-constrained node at a time to reduce algorithm and
communication complexity. The finite state machine used by heuristic Fixup’s nodes is shown in Figure 12.

Just as in distributed heuristics SPH and K-SPH, heuristic Fixup relies on shortest path and degree-
constraint information available at each node. The shortest path information stored at each node is the
distance, next hop and next-to-last hop of the shortest path to graph nodes. In addition, heuristic Fixup
passes each node the degree-constraints of every other node in the tree. The shortest path information
allows each node to determine intermediate nodes in a shortest path while degree-constraint information
allows nodes to eliminate over-constrained paths. Since heuristic Fixup runs on only one node at a time,
changes in degree-constraint information made during heuristic Fixup are easily recorded and are passed on
to neighborhood nodes.

Consider the fragments left if an over-constrained node were deleted from the tree. In Figure 13,
three such fragments, fragments A, B, and C' would remain. At each over-constrained node, heuristic
Fixup asks nodes in its neighborhood for alternate degree-constrained paths to connect two such fragments,
replacing one of the over-constrained node’s edges. Such an alternate path must start at one fragment’s
node, traverse non-fragment nodes and end at another fragment’s node. Using its shortest path and degree-
constraint information, each node eliminates unsuitable alternate paths. It returns the shortest alternate
path found.

Heuristic Fixup’s query to each of the over-constrained node’s tree neighbors is passed on to their
neighbors and further in the network until the message reaches the farthest nodes in the neighborhood. Each
node then returns the shortest alternate path found by either itself or its neighbors. Of the alternate paths
reported, heuristic Fixup picks the best one. It then deletes the now redundant over-constrained edge and
replaces it with the alternate path. It does so by commanding the head of the alternate path to reconnect

the tree. In addition, it sends a disconnect message to its former neighbor at the other end of the over-
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for all neighbors do
send request for alternate paths to neighbor
wait for responses

if shortest alternate path exists then
send connect message to head of alternate path
wait for connect status

if success then

drop redundant adjacent edge

pass control to closest over-constrained node
else

7t connect failure, heuristic fails

Figure 14: Pseudocode for over-constrained node in heuristic Fixup.

constrained edge. If this former neighbor is now a non-multicast leaf node, it deletes itself and its edge,
forwarding the disconnect message to its former neighbor. This process repeats until all non-multicast leafs

created are deleted. Heuristic Fixup’s pseudocode is shown in Figure 14.

Messages and Convergence Time: In the best case, Heuristic Fixup uses the least number of messages
when the initial tree is already degree constrained. Since the leader node has the complete tree’s topology
and degree constraints, this case requires zero messages and no convergence time. In our test networks,
6.7% of the solutions produced by unconstrained distributed K-SPH satisfied the degree constraints without
post-processing. Likewise, 8.5% of the solutions produced by unconstrained distributed SPH also did not
require post-processing.

In the worst case for degree-constrained distributed heuristic Fixup, every node in the tree is over-
constrained. This forces heuristic Fixup to run on all Z nodes of the tree. Each node queries its neighbors
for alternate paths. The number of such messages is the average degree raised to the neighborhood size.
Thus, the number of messages = O(Z). For example, our test networks have an average degree of three and
we employ a neighborhood of three hops which leads to the constant = 3% = 27. Likewise, the worst case
convergence time occurs when each message in the tree must travel a distance at most twice the diameter of
the graph, 2D. Thus, the convergence bound for heuristics Fixup = O(DZ).

The convergence-time and message bounds for the three distributed heuristics are summarized in

Tables 1 and 2, respectively.

4 Simulation Results

To compare the three DCSP heuristics presented in the last section, we implemented the algorithms and
performed extensive simulations. This section summarizes the simulation results and compares the algorithms

in terms of their convergence time, competitiveness, and percentage of unsolved cases.

17



Distributed | Distributed | Distributed
Bound K-SPH SPH Fixup
Lower Bound log Z Dz 0
Upper Bound DZ DZ N.A.
Degree-Constrained
Upper Bound DNZ DNZ DZ

Table 1: Convergence-time bounds for distributed heuristics K-SPH, SPH and Fixup.

Distributed | Distributed | Distributed
Bound K-SPH SPH Fixup
Lower Bound Zlog Z 72 0
Upper Bound ZN ZN N.A.
Degree-Constrained
Upper Bound ZN? ZN? Z

Table 2: Messages bounds for distributed heuristics K-SPH, SPH and Fixup.

4.1 Evaluation Methodology

4.1.1 Network model

Because our choice of existing network topologies and multicast applications was small, we chose to compare
DCSP heuristics using randomly generated networks. FEach algorithm was run on a total of 2000 test

networks. Each of the 2000 networks is a sparse 200-node network with a degree-constraint on 50 or 75% of

its nodes. We consider an n-node graph to be sparse when less than 5% of the possible edges are present

n
2
in the graph. For our 200-node test networks, this means the number of edges must fall in the narrow range
between the minimum number of edges for a 200-node graph and (g) edges out of a possible 19,900 edges

for a complete graph: 199 — 995 edges. Figure 15 shows the distribution of number of edges for our test
networks. We believe these networks describe plausible networks of point-to-point nodes in a WAN because
such large networks are likely to be loosely interconnected and may have many degree-constrained nodes.
Likewise, the simulated networks have 10% or 30% of its nodes in the multicast group because multicast
applications running on such a WAN are likely to involve only a minority of nodes in the network.

The 2000 networks were generated to resemble networks in a manner similar to that of Doar [11].
Each of the n nodes is distributed across a Cartesian coordinate plane with minimum and maximum coordi-
nates (0,0) and (2n, 2n), creating a forest of n nodes spread across this plane. In all of our test graphs, the
number of nodes n was set at 200. The nodes are then connected by a random spanning tree. This tree is
generated by iteratively considering a random edge between nodes and accepting those edges that connect
distinct components. The remaining redundant edges of the graph are chosen by examining each possible
edge (x,y) and generating a random number 0 < r < 1. If r is less than a probability function P(z,y) based
on the distance between z and y, then the edge 1s accepted. Each edge’s distance is its rectilinear distance

plus a small constant. This distance is also the time it takes for a message to traverse this edge. We used
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Figure 15: The histogram of the number of edges in the test graphs.

the probability function

Pz,y) = 66%,
where dy , is the rectilinear distance between nodes z and y [11]. The parameters « and 3 govern the
density of the graph. Increasing « increases the number of connections to nodes far away and increasing (3
increases the number of edges from each node. After some experimentation, we chose a = 0.10 and 5 = 0.20
for generating the graphs used in this simulation. These values produced graphs of realistic density and
degree-distribution.

We performed four different simulations on each generated graph by varying the multicast group
size and the percentage of degree-constrained nodes, each in two ways. The number of multicast nodes was
chosen as either 20 or 60 of the 200 nodes; the number of degree-constrained nodes was selected as either
100 or 150. Results are presented for all four combinations for each graph. Degree-constrained nodes in each
case were chosen randomly and each node’s degree-constraint was chosen randomly between 2 (no multicast
capability) and one less than the degree of the node. Similarly the nodes in a multicast group were chosen
randomly in each case. The random numbers were chosen from a uniform distribution. Figure 16 shows the
distribution of degree-constraints for our test networks. Nearly a fifth of the nodes have degree constraints
two — no multicast capability — because so many of the graph nodes have low degree. In addition to our
random degree-constraints, we also simulated our distributed heuristics on 1000 test networks with a degree
constraint of three on all nodes. These more difficult test networks serve two purposes (i) they further test
our degree-constrained heuristics under more stringent conditions and (ii) they represent an environment in
which degree-constraints are generally much less than than the degree of a switch.

To ensure fairness, each heuristic was run on the same networks. Their results are discussed in
Section 4.3.

4.2 The Heuristic Simulator

Each of the heuristics was implemented on top of our degree-constrained Steiner problem simulation platform,

designed to provide the level playing field upon which to base comparisons. It supplies the basic graph
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Figure 16: The histogram of degree-constraints for our test networks.

manipulation routines used by the heuristics such as adding and deleting edges.

The metrics we use for comparison are the competitiveness, convergence time, and percentage of
cases where the algorithm succeeded in constructing a multicast tree satisfying the given degree constraints.
Competitiveness is defined to be the ratio between the cost of the solution tree (sum of edge distances)
produced by the algorithm under consideration to the cost of the best solution found by any of the evaluated
heuristics, including both centralized and distributed versions, for that test case. Convergence time is
expressed in terms of thousands of time units, where each time unit is defined as the time for a message to

propagate in a link of unit distance.

4.3 Results

Having described the heuristics evaluated and the simulation environment, we turn now to the results of our
simulations.

Figure 17 displays the distribution of competitiveness for centralized SPH and K-SPH, distributed
SPH and K-SPH, and heuristic Fixup. Each of the five curves shows the cumulative percentage of cases
whose competitiveness is less than or equal to a given value. Distributed K-SPH was used to generate the
initial unconstrained solutions for the Fixup heuristic.

The competitiveness for most cases shown in Figure 17 fell well within 10% of the best heuristic
solution found. Even the worst-performing heuristic, heuristic Fixup, solved the majority of its test cases
within 5% of the best solution found. This high competitiveness for all evaluated heuristics is similar to
our findings for centralized Steiner heuristics and shows that factors other than the competitiveness may
determine the choice of the algorithm among the three.

The distributed versions of SPH and K-SPH performed slightly inferior in competitiveness as com-
pared to their centralized versions; this is because of the lack of global network topology information that
is available in the centralized versions. However, the differences in quality were not significant. In fact,
distributed K-SPH often outperformed centralized SPH. Among the three heuristics evaluated, heuristic
K-SPH consistently outperformed both heuristic SPH and heuristic Fixup.
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Figure 17: The cumulative competitiveness histogram for degree-constrained graphs.
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Figure 18: The cumulative convergence time histogram for degree-constrained graphs.
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| Heuristic | Percentage |

Fixup on distributed K-SPH 99.0%
Distributed SPH 96.4%
Distributed K-SPH 95.6%

Table 3: Percentage of cases solved using distributed DCSP heuristics.

Heuristic Fixup, however, does enjoy an advantage over distributed heuristics SPH and K-SPH in
convergence time as shown by Figure 18. This figure displays the cumulative percentage of networks solved
within a given convergence time. Note that since our simulations are split between cases with 20 multicast
members and those with 60 multicast members, the plots in the figure exhibit two peaks: one for 20 multicast
members and one for 60 multicast members. Convergence time for heuristic Fixup is the sum of heuristic
K-SPH’s convergence time and the convergence time of heuristic Fixup. Since heuristic K-SPH converges
faster when run on an unconstrained graph than on a degree-constrained one and since heuristic Fixup
converges in a fraction of K-SPH’s convergence time (see Figure 20), the total convergence time for this
combination edges out distributed K-SPH run on degree-constrained graphs. This result conforms to the
asymptotic bounds given in Table 1. Both distributed heuristics SPH and K-SPH have a higher upper bound
for degree-constrained graphs because of the additional complexity of finding degree-constrained paths. This
additional complexity is also reflected in the bounds for messages as shown by Table 2.

Comparing the two distributed heuristics SPH and K-SPH, heuristic K-SPH’s convergence time is
superior to that of SPH. The reason that distributed K-SPH converges more quickly than distributed SPH is
that the size of fragments in the K-SPH algorithm starts small (one node per fragment) and tends to remain
small. If every fragment in distributed K-SPH always found a partner, the final two fragments would each
contain about half the nodes in the final tree. Distributed heuristic SPH, by contrast, starts with a single
fragment of one node that grows at most a few multicast members at a time until it contains all the multicast
members. With increasing fragment size comes increasing coordination overhead between tree nodes. This
increased overhead is evident in distributed SPH’s elongated plot for 60 multicast members in Figure 18.

Table 4 summarizes the percentage of test networks solved using the distributed heuristics. It is
remarkable that all three heuristics solved greater than 95% of the test networks. Among the heuristics,
heuristic Fixup solved the largest number of networks. Distributed heuristic SPH was next and was better
than distributed K-SPH by less than one percent for the 2000 test networks. We believe that the larger
amount of topology information available to the single, large fragment in distributed heuristic SPH allowed
it to solve a slightly larger number of our test networks. Similarly, distributed heuristic Fixup has fairly
complete topology information about the test network before even beginning the heuristic and this allows
Fixup to make better choices when building a degree-constrained tree.

Heuristic Fixup’s results depend not only on the initial tree, but also on how far we allow Fixup to
search for alternate paths to over-constrained nodes. To determine the effect of the size of the neighborhood
examined by the heuristic for alternate solutions on its performance, we ran the heuristic with neighborhood
sizes of 2, 3, 4, and 6 hops. The results are summarized in Figures 19 and 20 as well as in Table 4. A
neighborhood size of 3 to 6 hops allowed heuristic Fixup to solve at least 99% of our test networks. However,
reducing the neighborhood size to 2 drastically reduced the number of test networks solved to 86.1%. This

is because few good alternate paths were available very close to the nodes violating degree constraints.
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| Hops | Percentage |

6 99.8%
4 99.0%
3 99.0%
2 86.1%

Table 4: Percentage of cases solved by distributed K-SPH + Fixup using 2, 3, 4 and 6 hops.
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Figure 19: Heuristic Fixup’s cumulative competitiveness histogram for 2, 3, 4, and 6 hops.
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Figure 20: Heuristic Fixup’s cumulative convergence time histogram for 2, 3, and 4, and 6 hops.
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Figure 21: The cumulative competitiveness histogram for graphs with a degree-constraint of 3.
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Figure 22: The cumulative convergence time histogram for graphs with a degree-constraint of 3.
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| Heuristic | Percentage |

Fixup on distributed K-SPH 100.0%
Distributed SPH 92.8%
Distributed K-SPH 89.3%

Table 5: Percentage of cases solved using distributed DCSP heuristics when degree-constraint set at 3.

Similarly, degree-constrained trees built using a neighborhood size of 2 hops were inferior in quality to those
built using neighborhoods of 3, 4 and 6. The differences, however, between trees built using neighborhoods
3, 4 and 6 hops were slight.

Finally, the convergence time for heuristic Fixup was best overall for a neighborhood size of 3 hops.
With 2 hops, the convergence time was promising for the easiest cases, but became far too high for the
remaining, harder cases.

Although setting the neighborhood size to 6 hops allows heuristic Fixup to solve almost all of
our test networks, a neighborhood size of 3 represents the best tradeoff between number of cases solved,
competitiveness, and convergence time for our test networks. Hence, this was the neighborhood size used in
the results of Figure 17 and 18. This best neighborhood size may vary for other networks.

For example, in the more stringent degree-constrained environment of Figures 21 and 22, fixup was
able to solve only 69.3% of the cases when its neighborhood was set to 3. In these simulations, the degree-
constraint of all nodes is set to 3. When Fixup’s neighborhood is doubled to 6 hops, the number of cases
solved jumps to 100% as shown in Table 5. Ironically, heuristic Fixup is even able to solve the one case out of
1000 that neither distributed K-SPH nor SPH could solve. In these figures competitiveness and convergence
time are shown in relation to those cases where degree-constraints are randomly distributed. Each heuristic
in both figures either has “(3)” appended to its name meaning that node degree-constraints are fixed at 3
or “(N)” appended to its name meaning that node degree-constraints are variable. For all three heuristics,
the fixed degree-constraint cases performs slightly worse relative to the random degree-constrained case.

Even though the competitiveness of all three heuristics with a fixed degree-constraint of 3 trail
their random degree-constraint equivalents, they continue to produce the majority of solutions well within
10% of the best solution found. Similarly, convergence time for all three heuristics is longer, but not
significantly. From these results we draw the conclusion that the degree-constrained heuristics SPH and K-
SPH are relatively insensitive to degree-constraints, degrading slowly when node degree-constraints becomes
tighter. Heuristic Fixup, however, is sensitive to the severity of degree-constraints and needs an increased

neighborhood size to compensate for tighter degree-constraints.

5 Concluding Remarks

In this paper we studied the degree-constrained multicast tree problem as applied to point-to-point networks
and evaluated the effectiveness of two distributed heuristics and one post-processing heuristic. Each of
the evaluated heuristics enjoys the advantage that it does not require the nodes to have knowledge of the
complete topology of the network. Instead, local information about neighbors is sufficient. In addition, only
those nodes directly involved in the multicast tree participate, unlike spanning-tree based heuristics. These

heuristics were compared in terms of their competitiveness, convergence time, and the number of networks
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they could not solve. Surprisingly few (less than 5%) of our test networks were unsolvable for random
degree-constraints. With a constant degree-constraint of 3, the number of unsolved cases rose to 10% for
heuristics SPH and K-SPH. By allowing heuristic Fixup a larger neighborhood size, its number of unsolved
cases remained the same.

Perhaps the most interesting result from our simulations is that while the degree-constrained dis-
tributed heuristics compare favorably with their centralized versions and solved most of the test networks,
post-processing unconstrained Steiner trees often produce better solutions. Post-processed Steiner trees lost
little of their quality and were within 10% of the best solution found by any heuristic — centralized, or
distributed.

While the focus of this paper is on distributed Steiner heuristics to find multicast trees in data
networks with degree-constraints, our initial results show that the same heuristics produce good quality
solutions in the general, unconstrained problem. In particular, their competitiveness is often superior to that
produced by previous heuristics [8, 22] that are based on a distributed minimum spanning tree algorithm. A
detailed comparison of the performance of these distributed heuristics on unconstrained networks will appear

in [2].
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