
Degree-Constrained Multicastingin Point-to-Point NetworksFred BauerAnujan VarmaUCSC-CRL-95-08February 17, 1995Computer Engineering DepartmentUniversity of CaliforniaSanta Cruz, CA 95064E-mail: ffred,varmag@cse.ucsc.eduAbstractEstablishing a multicast tree in a point-to-point network of switch nodes, such as a wide-area ATM net-work, is often modeled as the NP-complete Steiner problem in networks. In this paper, we study algorithmsfor �nding e�cient multicast trees in the presence of constraints on the copying ability of the individualswitch nodes in the network. We refer to this problem as the degree-constrained multicast tree problem andmodel it as the degree-constrained Steiner problem in networks. Steiner heuristics for the degree-constrainedcase are proposed and their simulation results for sparse, point-to-point networks are presented. The resultsare compared with respect to their quality of solution, cost (running time), and the number of test cases forwhich no solution could be found.The results of our research indicate that e�cient multicast trees can be found in large, sparse networkswith small multicast groups even with limited multicast capability in the individual switches. Some of theSteiner heuristics tested yielded degree-constrained multicast trees within 5% of the best heuristic solutionfound in most of the cases. Even when the fanout of each switch node was restricted to 2, the heuristicswe used were able to generate e�cient multicast trees in almost all our test networks. Surprisingly fewtest networks were unsolvable. In those cases where no solution was found by a heuristic, backtrackingsolved many of the remaining cases. Among the heuristics we used, degree-constrained versions of simplepath-distance heuristics such as SPH and SPH-R provided the best tradeo�s between quality of solution andcost.Keywords: Degree-constrained multicasting, Steiner problem in networks, multicast switch design, ATMmulticast.This research is supported by the Advanced Research Projects Agency (ARPA) under Contract



1 IntroductionMulticasting, de�ned here as the ability to connect multiple nodes in a point-to-point net-work by a low-cost tree, is likely to take an increasingly important role in data networks.Many existing networks already support multicasting. For example the Internet MBONEservice, a popular conferencing tool, already uses the multicast support recently added tothe Internet [7]. Many emerging standards for point-to-point packet-switched networks, no-tably ATM, Frame Relay and SMDS, include support for multicasting. Future applicationssuch as audio and video conferencing, replicated database updating, and distributed resourcediscovery will rely on the ability of the network to perform multicast communication. Thus,multicasting will likely be an essential part of future networks.The cost of multicasting quickly becomes unacceptable for many applications if a separatecopy of data is transmitted from the source to each recipient. Transmitting common copies ofdata over a multicast tree is the preferable method. However, determining the optimal multi-cast tree for a graph, in general, is a di�cult problem. Previous authors have established thatthe multicast tree problemmay be modeled as the Steiner problem in networks [3, 4, 5, 12, 27],referred to hereafter as the SPN, and that explicit solutions are prohibitively expensive. Forexample, two popular explicit algorithms, the spanning tree enumeration algorithm and thedynamic programming algorithm [27], have algorithmic complexity of O(p22(n�p) + n3) andO(n3p + n22p + n3), respectively, where n is the number of nodes in the graph and p thenumber of multicast members. A number of good, inexpensive heuristics exist for the SPNand have been reviewed extensively elsewhere [5, 12, 16, 20, 19, 26, 27]. Some have beenshown through analysis to produce solutions no worse than twice the optimal solution [27].Our empirical evidence indicates that these heuristics �nd solutions much better than twicethe optimal with reasonable speed in most cases.Finding a multicast tree is complicated by the likely heterogeneous nature of the multicastenvironment. Switches in a point-to-point network will likely vary in their ability to supportmulticasting. Some switches may not support multicasting; others may be limited in thenumber of multicast copies they can reasonably make [29]. The multicast capability of eachswitch is represented in this paper by a degree-constraint. Thus, a degree constraint of dimplies that the corresponding switch is able to forward copies of an incoming packet to amaximum of d � 1 output ports. The problem of how to create the initial multicast treewhen switch multicast capabilities vary is hereafter referred to as the degree-constrainedmulticast tree problem. We model the degree-constrained multicast tree problem as thedegree-constrained Steiner problem in networks (DCSP), �rst described by S. Voss [25].The degree-constrained Steiner problem in networks is of particular interest to high-speednetworks since multicast copies must be made quickly, typically by hardware. Whereas alow-speed switch might reasonably approximate in�nite copy-capability, high-speed switchesmay have limited copy capabilities due to their speed constraints. Even when the switchesallow multicasting to an arbitrary number of destination ports, there are several advantagesin limiting the number of copies made by each switch. For example, some packet-switcharchitectures implement multicasting by circulating copies of packets through the switchfabric multiple times [22]. Thus, keeping the degree small reduces the number of passesNo. F19628-93-C-0175 and by the NSF Young Investigator Award No. MIP-9257103. A shortened versionof this paper appears in Proc. IEEE INFOCOM '95, Boston, April 4{6, 1995, pp. 369{376.1



needed through the switch fabric. In addition, a degree-constrained multicast tree alsodistributes the load more evenly among the nodes in the network than an unconstrainedtree. This has two bene�ts: (i) the task of making multicast message copies is shared amongmore nodes, and (ii) the damage in
icted on the tree by the failure of a single node is reduced.Formally, the DCSP as used in this paper is de�ned as follows.GIVEN: A simple, undirected, connected graph G = (V;E) with n nodes, non-negative edgecost ci;j , p multicast members Z � V , and node degree constraints ki � 2.FIND: A multicast tree T such that the degree of each node di � ki and its total cost isminimum among all possible choices of the tree satisfying the degree constraints.The degree-constrained Steiner problem in networks is a relatively new problem and isaddressed in only a handful of published papers [13, 21, 23, 24]. The degree-constrainedSteiner problem is NP-complete [24] and contains the NP-complete problem of determininga degree-constrained spanning tree [9, 15]. Furthermore, �nding a solution to the DCSP isalso NP-complete [24]. In practice, however, the heuristics we tested rarely failed to �nd asolution in our test networks.Although a multicast tree generated by a DCSP heuristic might be an optimal solutionto the graph, it need not be. Since �nding the optimal tree for a graph is prohibitivelyexpensive, we compare heuristic results for each graph against the best tree found by anyheuristic. Some heuristics in this paper generate more than one tree. Each such heuristicreturns the best tree generated as its solution.Few DCSP heuristics exist in the literature [21, 24]. A previous paper by Tode, et al. [21]treats the DCSP as an optimization problem. It presents two DCSP heuristics that minimizethe average degree of the multicast tree. It also includes a discussion of how to modify theheuristics to limit the maximum degree in the multicast tree. However, no provision is madefor networks of switches with dissimilar degree-constraints.This paper presents several heuristics and simulation results for solving the degree-constrained multicast tree problem on sparse, point-to-point, networks of switches withvarying multicast capacity. We believe such models describe typical wide-area networkssuch as the Internet and future ATM networks. We restrict our analysis to sparse networksfor two reasons: (i) they are more representative of real point-to-point networks, and (ii)they are inherently more di�cult to solve because fewer alternative Steiner trees exist ina sparse network than in a dense one. Similarly, the simulated multicast groups are smallrelative to the size of the network, re
ecting likely multicast applications. The heuristicscompared in this paper are centralized algorithms based on popular published heuristicsmodi�ed to handle degree-constraints. They are compared on the basis of three criteria:quality of solution, cost (running time), and the number of unsolved networks. Note thatthese results are not speci�c to any particular type of point-to-point network such as ATM,but may be applied to any point-to-point network matching these assumptions.The results of our research indicate that e�cient multicast trees can be found in large,sparse networks even with limited multicast capability in the individual switches. Some ofthe Steiner heuristics tested yielded degree-constrained multicast trees within 5% of the bestheuristic solution found in almost all of the networks tested. Surprisingly few test networkswere unsolvable. Even with a degree-constraint of 3 (that is, a maximum fanout of 2 per2



switch), the heuristics we used were able to generate e�cient multicast trees in almost allour test networks. In those cases where no solution was found by a heuristic, backtrackingsolved many of the remaining cases. Relatively cheap heuristics often produced high qualityresults while other algorithms of greater complexity rarely justi�ed their additional e�ort.Understandably, dense networks pose less of a challenge as compared to sparse networkssince more alternative paths exist between multicast members in the former. As an exampleconsider the two extremes, a tree and a complete graph. A complete graph has manyalternative Steiner trees, some of which may be degree-constrained. A tree, in contrast, hasonly one Steiner tree and it may not be degree-constrained.While other constraints such as jitter, delay, and link capacity are important in construct-ing multicast tress, we focus speci�cally on the problem of degree-constraints. Papers suchas [1, 14, 17] typify published approaches to multicasting with constraints other than thedegree of individual nodes. For example, Ammar et al. address the multicast tree problemas a 
ow problem, allowing for asymmetric capacities between source and destinations [1];Jiang includes link capacity constraints in his Steiner heuristics [14]; and Kompella et al.include delay constraints in their Steiner heuristics [17].The remainder of this paper is organized as follows. Section 2 describes the evaluatedheuristics. Section 3 discusses the simulation methodology. Section 4 presents the simulationresults and compares the heuristics based on these results. Finally, Section 5 concludes thepaper with a discussion of the results and directions for future research.2 Algorithms for the Degree-Constrained Steiner Prob-lem in NetworksThis section describes algorithms and methods to solve the DCSP. It begins with a summaryof unconstrained Steiner methods and ends with modi�ed heuristics and graph reductionsspeci�c to the DCSP.We use the following de�nitions in the paper: Z is the set of multicast destinations, Sis the set of non-multicast nodes V � Z, Pi;j is the shortest path between nodes i and j,and di;j is the distance of the shortest path between nodes i and j. Graph distances will bede�ned as follows. The distance between nodes is the distance of the shortest path betweenthem. Likewise, the distance between a node and a tree is the distance of the shortest pathbetween the node and any node in the tree. Finally, the distance between two trees is thedistance of the shortest among all paths between any node in one tree and any node in theother tree.Smith and Winter [19] divide Steiner heuristics into a morphological structure similar tothe one shown in Figure 1. At the highest level, heuristics are divided between those that arepath-distance heuristics (PDH) and others. Path-distance heuristics rely on distance calcu-lations and iteratively improve an initial partial solution using appropriately chosen shortestpaths between multicast members until the partial solution contains all the multicast nodes.Path-distance heuristics are further divided between variants of the shortest-path heuristicand other path-distance heuristics. Table 1 summarizes known results on the asymptotictime-complexities of these algorithms, together with the known upper bounds on the ratioof the quality of solution produced to that of an optimal solution.3



SPH-Z [19]K-SPH [19]A29 [26]SPH-R (Section 2.2.2)SPH [19]ADH [19]Naive (Section 2.1.1)PDHLocal Steinalization [6]Contraction [27]Set Cover [2]Dual Ascent [28]Figure 1: Morphological structure of Steiner heuristics.2.1 Unconstrained Steiner Tree HeuristicsMany Steiner heuristics have been proposed in the literature [12, 19, 26, 27] and form asuitable basis for DCSP-speci�c heuristics. In this section, we �rst examine the heuristicsfor the unconstrained Steiner problem listed in Table 1. These heuristics are then modi�edto handle degree constraints and compared by way of simulation.Heuristic Time Complexity Solution BoundSPH O(pn2) 2XSPH-Z O(p2n2) 2XK-SPH O(n3) 2XADH O(n3) 2(1 � 1p)XDual Ascent N.A. N.A.Set Cover N.A. N.A.Local Steinalization N.A. N.A.Contraction N.A. 2(1 � 1p)XTable 1: Characteristics of published Steiner heuristics.4



2.1.1 Heuristic NaiveFor comparison sake, we �rst consider the simplest possible Steiner algorithm that we nameNaive. Heuristic Naive starts with an arbitrary multicast member as the multicast tree. Itthen repeatedly connects another random multicast member to the multicast tree by theshortest path between the new member and the multicast tree until all the members arein the multicast tree. We expected this heuristic to give the worst results; as it sometimesdoes. However, we discovered that it often produces quite respectable results. This matchesDoar's results [8]. We treat heuristic Naive as the baseline from which to compare otherSteiner heuristics. We describe heuristic Naive as follows.1. Initialize subtree T to an arbitrary Z-node.2. Connect subtree T with an arbitrary Z-node 62 T by the shortest path.3. If a Z-node exists 62 T , go to step 2.2.1.2 Shortest Path Heuristic (SPH)The shortest-path heuristic [20] produces surprisingly good results and has many variantsas shown in Figure 1. SPH initializes the multicast tree to an arbitrary multicast member.It then joins the next closest multicast member to the multicast tree by the shortest pathbetween the multicast member and the tree. The algorithm terminates when all membershave joined the tree. Note that this algorithm di�ers from heuristic Naive because multicastmembers join in the order determined by their distance to the multicast tree, rather than inrandom order.This solution may be improved even further using the following technique [19]. Find thegraph induced by the nodes in the solution, derive the induced graph's minimum spanningtree using a method such as Prim's algorithm, and prune the minimum spanning tree ofnon-multicast member leaves. The resulting tree is an improved solution. This improvementis equally applicable to any of the SPH variants.The basic SPH algorithm is described as follows:1. Initialize subtree T to an arbitrary Z-node.2. Connect subtree T with the closest Z-node 62 T3. If a Z-node 62 T exists, go to step 2.4. Further improve the solution(a) Let graph G0 be the subgraph of G induced by T 's nodes. Let U be a minimumspanning tree of G0.(b) Repeatedly prune S-leaves of U .2.1.3 Heuristic SPH-ZThis variant of SPH applies the basic SPH algorithm described in Section 2.1.2 once for eachpossible choice of the starting Z-node, returning the best solution found.5



2.1.4 Heuristic K-SPHUnlike the previous heuristics, K-SPH, the Kruskal-based shortest-path heuristic [18], startswith the forest of multicast member nodes. It repeatedly joins the two closest multicastmember subtrees until a single tree spanning all multicast members remains. K-SPH'salgorithm is described as follows.1. Initialize T to be the forest of Z-nodes.2. Connect the two closest subtrees in T by their shortest path.3. If T is disconnected, go to step 2.4. Improve the solution by constructing a minimumspanning tree of the subgraph inducedby T 's vertices in G and pruning its S-leaves.2.1.5 Heuristic ADHThe average distance heuristic is a generalization of K-SPH. Like K-SPH, the algorithmstarts with the forest of multicast member nodes. It repeatedly connects the three closestmulticast member components through the most central node (de�ned to be the node withthe least average distance to all multicast members). ADH terminates when a single treeremains, spanning all multicast members. Its algorithm is described as follows:1. Initialize T to be the forest of Z-nodes.2. Connect the closest and the second-closest subtrees in T to the most central node bytheir shortest paths.The most central node is determined as follows: For each node v, order the subtreesof T by their distance to node v in nondecreasing order T1; T2; � � �Tk. Let di representthe distance between v and Ti. The most central node is the node with the smallestvalue forf(v) = min2�r�k ( rXi=1 dir � 1) = min d1 + d2; d1 + d2 + d32 ; � � � ; d1 + d2 + d3 + � � �+ dkk � 1 ! :Note that if v belongs to a subtree, that subtree will be �rst on the list with d1 = 0.Fortunately f(v) need not be evaluated in full for each node. If v 2 Z, f(v) = d2. Ifv 2 S, f(v) = d1 + d2 + � � �+ drr � 1for the smallest value of r such thatd1 + d2 + � � � + drr � 1 < d1 + d2 + � � �+ dr+1r :3. If T is disconnected, go to step 2.4. Improve the solution as discussed in step 4 of the SPH heuristic.6



2.1.6 Heuristic Dual AscentWong [28] describes an exact solution and a heuristic to the SPN. The Dual Ascent heuristic�nds a solution to the SPN in �ve steps:1. First, convert the undirected graph G into a directed graph G0 by substituting everyundirected edge by two directed edges of equal weight in opposite directions.2. Next, build a directed subgraph A from G0 which contains a solution. This stepterminates when at least one multicast node is connected to every other multicastmember. Note that in directed graphs, node i is connected to node j if a directed pathexists from i to j. Further, if two nodes are connected to each other, they are said tobe strongly connected. The steps to build auxiliary graph A are as follows.(a) Create directed subgraph A with all the nodes of directed graph G0, but none ofthe edges.Let G0 = (V;E). Let A = (V; ;).(b) Initialize cost matrix S to the edge weights of G0.For all edges of G0, set si;j = ci;j.(c) Pick a root component R of A.A root component is a maximal strongly connected component that contains aZ-node and from which no Z-node dangles. A node dangles from a component ifthe node is connected to the component, but the reverse is not true. A stronglyconnected component is a set of nodes in which every node in the set is stronglyconnected to every other node in the set. A maximal strongly connected compo-nent is a strongly connected component that is not a subset of any other stronglyconnected component.(d) Pick a multicast member z from the root component R.(e) Pick the cheapest edge (m;n) out of z's cut set.The cut set of z are those edges not yet chosen for A which bridge a node connectedto z to a node not connected to z in A. Let C(z) be the set of nodes connectedto node z. The cut set for z isE(z) = f(i; j)j(i; j) 2 G0; (i; j) 62 A; i 62 C(z); j 2 C(z)g:Choose (m;n) such that sm;n = minfsi;jj(i; j) 2 E(z)g(f) Having found the cheapest cut-set edge, deduct its cost from z's remaining cutset edges.For all edges in E(z), set si;j = si;j � sm;n.(g) Update subgraph A by adding the minimum cut set edge.A = AS(m;n)(h) If root components remain, go to step 2(c).7



3. Next, convert A to an undirected graph U .Start with U = (V; ;). For every directed edge in A, add an equivalent, undirectededge to U . This will make U a multigraph. Delete all redundant edges. Note that alledges between the same pair of nodes will have the same weight.4. Next, �nd U 's minimum spanning tree T .If U is a small enough subgraph, the minimum spanning tree represents a reasonableapproximation of the Steiner tree. However, if U is not signi�cantly smaller than G0,then the minimum spanning tree may be a poor approximation of the Steiner tree. Weknow this to be true since simply taking the spanning tree and pruning it to be theSteiner tree can, in the worst case, produce a solution that departs from the optimalby a factor of jSj+ 1 [26].5. Finally, prune all non-multicast member leaves from T . The result is the solution.2.1.7 Local Steinalization HeuristicChen [6] describes a method to determine the optimal node through which to connect threemulticast members. Using this method recursively, he outlines two heuristics, TPS1 andTPS2, which �nd Steiner solutions. Heuristic TPS1, like SPH, expands an initial solutionone component at a time until all multicast members are part of the solution. HeuristicTPS2, like K-SPH, starts with a forest of multicast members and connect the closest threecomponents until all multicast members are part of a single multicast tree.The optimal node to connect the three components must lie within an area de�ned bythe shortest-path distances among the three components. Given three components A, B andC, �nding the optimal node to interconnect them involves the following steps:1. Determine the shortest path PA;B between components A and B.2. Determine the shortest path PC;d between component C and path PA;B.Let d be the endpoint of path PC;d which lies on path PA;B.3. Find the optimal node i to connect components A, B, and C.Let di;j be the distance along the shortest path between i and j. Choose node i suchthat minfdA;i + dB;i + dC;i j dA;i � 2dA;B ; dB;i � 2dA;B ; and dC;i � dC;dg:HeuristicTPS1 expands an initial multicast tree one multicastmember at a time until themulticast tree includes all multicast members. Each additional multicast member is added tothe tree by breaking the existing multicast tree into two components and combining with thetwo old multicast components with the new multicast node through the optimal intermediatenode.Heuristic TPS2 connects a forest of multicast members by building a single tree out ofthe forest, three components at a time. Each set of three components is connected throughan optimal node determined as above. If, at the end, only two components remain, they areconnected using the shortest path between them.8



2.1.8 Set Cover HeuristicAneja [2] describes an integer linear programming approach to the SPN by posing the SPNas the set cover problem. Given a �nite set of elements X and a number of subsets of thoseelements F , the set cover problem attempts to �nd a minimum set of subsets C � F thatincludes all the elements of X. Such a minimum set C is called a cover. A cover is also anon-redundant cover if no proper subset is also a cover.The algorithm repeatedly solves set cover problems, using an evaluation function on eachsuccessive solution to determine if a better solution exists. If so, it adds constraints to theset cover problem and solves again. As the algorithm converges on an optimal solution tothe set cover problem, it also converges on an optimal solution to the SPN. In its unalteredform, this algorithm is an explicit SPN algorithm. The Set Cover heuristic accelerates therate of convergence by modi�ed edge weights and adding constraints. The heuristic result isa (sub-optimal) solution. Unfortunately, this algorithm is very complex and requires manyoptimizations to run e�ciently. Because it is so complex and because other, simpler heuristicsproduced good solutions, we elected to leave this heuristic out of our evaluation.2.1.9 Contraction HeuristicThe Contraction heuristic [27] recursively collapses neighborhoods classes of multicast nodesinto a single multicast super-node. A neighborhood of a node i is de�ned to be the nodes of Gthat lie within a given distance r from i. Two neighborhoods are reachable from each other ifthey are adjacent or if there is a path between them that lies entirely within neighborhoods ofmulticast nodes. A neighborhood class is a maximal set of multicast neighborhoods reachablefrom one another.Using the cost of the cheapest edge adjacent to a multicast node as the given distancer, the algorithm repeatedly collapses each neighborhood class de�ned by r into a super-node. When only one such super-node remains, the heuristic solves each previously de�nedneighborhood class using another Steiner heuristic and pieces together the solution from theresulting Steiner subtrees. An overview of the heuristic follows.1. Let r = the least cost of any edge adjacent to a Z-node in G.2. Let C1; C2; � � �Ct denote the t neighborhood classes of Z-nodes.3. If t > 1, modify G by contracting the t neighborhoods. Go to step 1.4. Determine the solution(a) Find the Steiner subtree for each neighborhood class found using another Steinerheuristic(b) Assemble the Steiner tree out of the neighborhood class subtrees2.2 Degree-Constrained Steiner Tree HeuristicsThe eight DCSP heuristics compared in this paper are a mix of unconstrained Steiner heuris-tics and heuristics speci�c to the DCSP. The unconstrained heuristics are essentially un-changed aside from the exceptions listed below. However, a number of factors di�erentiate9



s1 s2 s3 s4 s5s1 2 Zs1 62 Gs1 2 Z s2 2 Zs1 2 Z s2 62 Gs1 62 G s2 2 Zs1 62 G s2 62 G...s1 62 G s2 62 G s3 62 G s4 62 G s5 62 GTable 2: Subgraphs examined during backtracking.Steiner heuristics running in a constrained environment from those in an unconstrainedenvironment.First, connecting more than two components is muchmore complicated in the constrainedcase than the unconstrained one. For example, in heuristic ADH, three components aremerged at each step. In the unconstrained case, it is su�cient to track the shortest pathbetween each component and the central node. In the constrained case, however, one ormore such shortest paths may exhaust the degree-constraint of nodes in the connecting tree,rendering it infeasible. In short, connecting greater than two components becomes a smallerversion of the DCSP with all of its complications. Thus, each heuristic used in this papermerges at most two components of a graph together by their shortest path.Second, the topology of the network graph G may change during a heuristic because of thepartial solution generated so far. This is because a node's degree-constraint may be exhaustedby a partial solution, eliminating the node and its remaining edges from consideration. Thischanged topology can and does alter the shortest path information for remaining steps. Asa consequence, heuristics must constantly reevaluate shortest paths between nodes.Third, since �nding a solution to the DCSP is NP-complete [24], a given DCSP heuris-tic may not be able to �nd a solution even though one exists. Consequently, all of ourDCSP heuristics employ backtracking. Our backtracking strategy is inspired by Beasley'sLagrangean relaxation approach [3] in which Beasley applies a Steiner heuristic to each sub-graph of G created by forcing every non-member node in or out of the solution. To force anon-member node to be in a solution, Beasley converts it temporarily to a member node.To force a non-member node out of any solution, Beasley temporarily deletes that nodefrom graph G. To examine every such combination, Beasley's explicit algorithm looks at 2ssubgraphs where s is the number of non-multicast nodes. Since non-multicast nodes are themajority of nodes in our networks, we cannot use this approach. Instead, we use only �ve\central" non-multicast nodes s1; s2; : : : ; s5, chosen such that their average shortest-path dis-tances to the multicast members are the lowest among all the non-multicast nodes. Duringbacktracking, we examine the 21+22+� � �+25 = 62 subgraphs created by forcing these nodesin or out of the solution, as shown in Table 2. If no solution is found in these subgraphs, theheuristic terminates without a solution. 10



2.2.1 Modi�ed Steiner Tree HeuristicsAlthough the modi�ed Steiner heuristics in this section are similar to their unconstrainedequivalents, they di�er in at least one important way. All DCSP heuristics must frequentlyreevaluate shortest path information when building a solution as explained in Section 2.2.Most of the heuristics needed no further modi�cation with the exceptions noted below:ADH: ADH connects only the closest subtree to the most central node. This is because ofthe di�culty of connecting greater than two components as explained in Section 2.2. ADH'sstep 2 becomes:2. Connect the closest subtree to the most central node v by its shortest path.Dual Ascent: Modi�ed Dual Ascent di�ers from it unconstrained equivalent because itdoes not �nd the degree-constrained minimum spanning tree to its subgraph. Instead, it usesSPH to generate a Steiner tree from the subgraph. Thus, this Dual Ascent step becomes:4. Next, Use heuristic SPH to �nd a Steiner tree T for U .Local Steinalization: Because the Local Steinalization heuristic combines three compo-nents at a time and because of the di�culties of combining multiple components outlined inSection 2.2, this heuristic is not included in the simulations.Set Cover: As described in Section 2.1.8, the Set Cover heuristic is not included inour simulation because of the sheer complexity of the algorithm. Ultimately, it is doubtfulwhether the quality of solution for the Set Cover heuristic would justify its cost.2.2.2 Constrained HeuristicsIn addition to the above unconstrained heuristics, we simulate two DCSP-speci�c heuristics,A29 and SPH-R. Heuristic A29 was �rst proposed by Voss [24] and heuristic SPH-R is ourown contribution. They are described below.A29: Heuristic A29 [24] is the only published DCSP heuristic of which we are aware. Itis also a variant of SPH. It �rst adds enough edges of in�nite weight to make G a completegraph and then applies heuristic SPH. Since G is complete, A29 will always �nd a degree-constrained Steiner tree, although the solution may contain infeasible edges (edges of in�niteweight). A29's algorithm is described as follows.1. Construct the complete graph G0. Let every edge (i; j) common to both graphs G andG0 have equal cost. Let all other edges have cost 1.2. Apply heuristic SPH to G0.3. Delete all edges in T of cost 1.Note that T may not be connected and may thus be infeasible.SPH-R:Heuristic SPH-R is our own variation of SPH. SPH-R like SPH-Z repeatedly applies SPHto the graph G for di�erent starting points. However, SPH-R terminates the �rst time itgenerates a solution. We observed that SPH-R rarely iterates more than a few times.11



2.3 Graph ReductionsBefore applying a heuristic, a graph may be examined for easily solved subgraphs and modi-�ed so as to reduce the run-time of the heuristic. These modi�cations based on easily solvedsubgraphs are referred to as graph reductions. The strategy employed is to identify suchsubgraphs, solve them, save their results, and track the cost of the partial solution. Themodi�cations reduce the size of the initial graph, reducing subsequent heuristic run-time.Our empirical evidence suggests that on sparse networks even simple graph reductions mayreduce their size as much as 15%. Graph reductions have been extensively reviewed elsewhere[10, 11, 27].A short list of such reductions follows.1. S degree 1.A non-member node that is a leaf of graph G cannot be a part of the solution andmay be deleted. Thus, if G contains S-nodes of degree 1, delete each such node andits adjacent edge. Note that this reduction reduces the degree of the neighbor node byone and may convert a formerly degree-constrained node into an unconstrained one.2. Z degree 1.A leaf Z-node and its adjacent edge must be part of the Steiner tree. Let y denote thesingle neighbor of such a node. Thus, if G contains a Z-node z of degree 1, take thefollowing steps.(a) Delete node z and edge (z; y) from G.(b) Save node z and its adjacent edge for use later in the solution.(c) If neighbor node y is a S-node, convert it to be a Z-node.This step ensures that G's solution will also include node y, solution edge (z; y)'sconnection point.(d) Decrease node y's degree constraint by one.This step reserves node y's degree-constraint for later use when constructing thesolution. Note that if node y's degree-constraint falls below zero, no solutionexists.(e) After �nding a solution using a DCSP heuristic, reconnect the saved edges andZ-nodes to the solution and reconvert former S-nodes.3. S degree 2.If an S-node connects exactly two nodes, it may be replaced by an edge. Thus, ifG contains an S-node s of degree 2 connecting two nodes x and y, replace the nodes and the two edges connecting x and y through node s by an edge (x; y) with costcx;y = cx;s + cs;y. If, as a result of this addition, two edges now connect nodes xand y, delete the more expensive edge. Note that this reduction reduces the degreeof the two neighbor nodes x and y by one and may convert either or both from adegree-constrained node into an unconstrained one.12



4. Reachability Test (RT).Unlike the previous reductions, the reachability test improves upon a solution by elim-inated those non-multicast members that cannot be part of a better solution. Con-sequently, this reduction is not a pre-processing step, but rather an improvement ofan existing DCSP heuristic's solution. It eliminates nodes and edges by examiningevery node outside the solution and eliminating those whose distance to multicastnodes makes them ineligible to be in the solution. This distance criterion is based on anon-multicast member's distance to the closest, second closest and farthest multicastmember.Formally, let cf be the cost of a solution, let U be its nodes, and let ct be the cost ofthe partial solution collected so far. For any such i 2 V � U , letcmax = maxfci;z; z 2 Zg;cmin = minfci;z; z 2 Zg;c2nd = minfci;z; z 2 Z � fzmingg:Node i and its adjacent edges may be eliminated ifct + cmax + cmin + c2nd � cf :Each of the graphs used in our simulations were �rst reduced by the following threereductions: S degree 1, Z degree 1 and S degree 2. Reduction RT was discarded because itwas both expensive and ine�ective. It was expensive because it required a solution to startwith. Furthermore, it failed to eliminate even a single node in the test networks simulated.Detailed results on the e�ectiveness of the reductions are presented in Section 4.3 Evaluation MethodologyThus far, the discussion has centered on descriptions of degree-constrained Steiner heuristicsand graph reductions. Here, we turn to our evaluation methodology. In this section wedescribe our network model and our heuristic simulator.3.1 Network modelBecause our choice of existing networks and multicast applications was small, we chose tocompare DCSP heuristics using randomly generated networks. Each of the heuristics wasrun on a total of 2000 test networks. Each of the 2000 networks is a sparse 200-node networkwith a degree-constraint on 50 or 75% of its nodes. We consider an n-node graph to be sparsewhen less than 5% of the possible  n2 ! edges are present in the graph. We believe sucha graph describes a plausible network of point-to-point nodes in a WAN because a largemulticast network is loosely interconnected and may have many degree-constrained nodes.Likewise, the simulated networks have 10 or 30% of its nodes in the multicast group because13



multicast applications running on such a WAN are likely to involve only a minority of nodesin the network.The 2000 networks were generated to resemble networks in a manner similar that of Doar[8]. Each of n nodes is distributed across a Cartesian coordinate plane with minimum andmaximum coordinates (0; 0) and (2n; 2n), creating a forest of n nodes spread across thisplane. In all of our test graphs, the number of nodes n was set at 200. The nodes are thenconnected by a random spanning tree. This tree is generated by iteratively considering arandom edge between nodes and accepting those edges that connect distinct components.The remaining redundant edges of the graph are chosen by examining each possible edge(x; y) and generating a random number 0 � r < 1. If r is less than a probability functionP (x; y) based on the distance between x and y, then the edge is accepted. The weight ofeach edge is its rectilinear distance plus a small constant. We used the probability functionP (x; y) = �e�dx;y2�n ;where dx;y is the rectilinear distance between nodes x and y [8]. The parameters � and� govern the density of the graph. Increasing � increases the number of connections tonodes far away and increasing � increases the number of edges from each node. After someexperimentation, the graphs in this simulation were generated using � = 0:10 and � = 0:20.These values produced graphs of realistic density and degree-distribution.We performed four di�erent simulations on each generated graph by varying the multicastgroup size and percentage of degree-constrained nodes, each in two ways. The number ofmulticast nodes was chosen as either 20 or 60 of the 200 nodes; the number of degree-constrained nodes was selected as either 100 or 150. Results are presented for all fourcombinations for each graph. Degree-constrained nodes in each case were chosen randomlyand assigned a random degree constraint between 2 (no multicast capability) and one lessthan the degree of the node. Similarly the nodes in a multicast group are chosen randomlyin each case. The random numbers were chosen from a uniform distribution. To ensurefairness, each heuristic was run on the same 2000 networks.In additions to the above simulations where the degree-constraints of individual nodeswere varied randomly, we also performed a set of experiments by limiting the degree con-straint of each node in the network to 3 (that is, at most one additional copy per node).The goal of these experiments was to investigate whether the heuristics are able to generatee�cient solutions even with very limited multicast capability in the individual nodes. Theseexperiments were run on the same 200-node graphs described in the previous paragraphs.3.2 The Heuristic SimulatorEach of the heuristics was implemented on top of our degree-constrained Steiner problemsimulation platform, designed to provide the level playing �eld upon which to base com-parisons. It supplies the basic graph manipulation routines used by the heuristics such asadding and deleting edges, and is written in MAINSAIL, a machine-independent ALGOL-like language. Since the simulator runs on a variety of platforms, including SUN, DEC andIBM workstations, CPU time was a poor metric upon which to base comparisons. Instead,we use source language statement counts as supplied by MAINSAIL's pro�ler, excluding14



operating system sensitive operations such as �le I/O. The heuristics compared use identi-cal source code on all platforms. Because all the heuristics share much of the same code,statement counts provide a means to measure relative computing cost of each heuristic whileminimizing the in
uence of coding style.Each simulated heuristic uses the same steps to insure uniformity of solution: First, thenetwork is evaluated for trivial cases; it is then pre-processed using the graph reductions Zdegree 1, S degree 1, and S degree 2; �nally, the heuristic is run on the reduced graph.4 Simulation ResultsIn this section we present the results from simulations of the heuristics for both degree-constrained and unconstrained cases on 2000 test networks. These heuristics are comparedon the basis of three criteria: cost, quality of solution, and number of cases in which theheuristic was unable to �nd a solution. Cost is the run-time of each heuristic measured insource-level (MAINSAIL) language statements. The quality of solution is measured by theratio of the cost of the heuristic's solution (the sum of the edge weights) to the cost of thebest solution found among all the heuristics simulated. The quality of solution for a heuristicis compared with the best solution found because (i) the cost of �nding an optimal solutionfor a 200-node graph is prohibitive and (ii) the optimal solutions we found for a small numberof graphs using Beasley's Lagrangean Relaxation algorithm [3] often had the same cost asthe the best solution found by the heuristics. The last criterion gives the number of networksfor which a heuristic could not �nd a solution even with backtracking.To verify and calibrate simulation results, we �rst compared our results obtained fromrunning unconstrained versions of the heuristics with those published by Smith [19] andVoss [26]. Of the heuristics compared, only one | Dual Ascent | did not match thepublished results. That only one heuristic di�ered signi�cantly from published results isinteresting since our simulations focused on a much narrower range of networks than thoseconsidered by Smith or Voss. Each of our networks is large, sparse and has a small multicastgroup. By contrast, Smith and Voss simulated a mix of sparse and dense networks with smallto large multicast groups. In Voss' simulations [26], heuristic Dual Ascent found the bestsolution as much as 80% of time. In our simulations, however, the algorithm rarely producedthe best solution; in some cases the solutions were as much as 15% o� when compared withthe best solution among all the heuristics. This behavior is due to two reasons: First, oursimulation networks di�er from Voss's networks in that they are always sparse, reducingthe number of choices possible when building the subgraph in the Dual Ascent heuristic.The subgraph often contained as many nodes as the original graph, reducing Dual Ascent'se�ectiveness. Second, all of our sample networks have 200 nodes with a small multicastgroup-size | 20 or 60 nodes. Voss' simulation results are based on sample graphs with 20 to60 nodes and a wide distribution of multicast sizes. This is important because Dual Ascentuses a minimum spanning tree (MST) of the subgraph to �nd a Steiner tree. Previouslypublished results have shown that the approach based on pruning the MST works well forlarge multicast groups, but poorly for small groups [26]. The published worst-case ratiobetween a solution using the MST and an optimal solution is jSj+1 where jSj is the numberof non-multicast members. Thus, it is not surprising that Dual Ascent's quality of solution15



Heuristic Number of solvednetworks withoutbacktracking Number of solvednetworks withbacktracking Number of unsolvednetworksSPH-Z 1999 0 1SPH-R 1999 0 1SPH 1995 0 5A29 1995 0 5ADH 1992 1 7Naive 1990 9 1K-SPH 1970 23 7Dual Ascent 1951 42 7Table 3: Success rates of degree-constrained heuristics on 2000 test networks.was poor for sparse 200-node networks with 20 or 60 multicast members.Table 3 summarizes the success rates of the degree-constrained heuristics based on sim-ulations on 2000 test networks. As expected, heuristics run on the sample networks withdegree-constraints sometimes had di�culty in �nding solutions. This is because �nding asolution for the degree-constrained case is also NP-complete [24]. In practice, however, mostof the degree-constrained graphs could be solved by the heuristics directly or through back-tracking. In fact, each of the 2000 test networks could be solved by at least one of theheuristics. The maximum number of cases missed by any single heuristic was 7.To further verify the ability of the heuristics to �nd solution with more stringent degreeconstraints, we also tested the heuristics on some of the graphs by imposing a �xed degree-constraint of 3 for each node. Table 4 summarizes the success rates of these simulationson 1000 test networks. As expected, both the number of cases in which backtracking wasneeded and the number of unsolved cases increased as a result of the small degree constraint.However, the increases were barely noticeable in most cases. Indeed, SPH-R and SPH-Zsolved all 1000 test networks even without backtracking. This leads us to conclude thatsome of the tested heuristics will be able �nd multicast trees in large, sparse networks evenwith limited multicast fanout in the individual nodes.4.1 Cost and Quality of SolutionSince the di�erences in the success rates of the individual heuristics were small, the remainingtwo criteria | quality of solution and cost | then become the more important factors toconsider. Figures 2 and 3 summarize the tradeo� between these two criteria. The resultscluster into �ve distinct groups: simple shortest-path heuristics SPH, SPH-R and A29;repetitive shortest path heuristic SPH-Z; Kruskal-based shortest-path heuristics K-SPH andADH; heuristic Dual Ascent; and heuristic Naive. Tables 5 and 6 summarize how often eachheuristic produced a solution equal to the best heuristic solution found and Figures 4 and 5show quality of solution distributions for the degree-constrained and unconstrained cases.16



0

100

200

300

400

500

600

700

800

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

Quality of solution

 C
os

t 
(m

ill
io

ns
 o

f 
st

at
em

en
ts

)

SPH-Z

NAIVE

K-SPH

ADH

A29

SPH

SPH-R

Dual Ascent

Repetitive 

Kruskal Dual Ascent
Naive

Simple

Best

Worst

Figure 2: Cost vs. quality of solution for degree-constrained multicast.
0

100

200

300

400

500

600

700

800

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

Quality of Solution

C
os

t 
(m

ill
io

ns
 o

f 
st

at
em

en
ts

) K-SPH

ADH

A29

SPH

SPH-Z

SPH-R

NAIVE

Dual Ascent

Repetitive

Kruskal

Simple Dual Ascent
Naive

Best

Worst

Figure 3: Cost vs. quality of solution for unconstrained multicast.17



0

10

20

30

40

50

60

70

80

90

100

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

Quality of Solution

C
um

ul
at

iv
e 

P
er

ce
nt

ag
e

Repetitive

Kruskal

Simple

Dual Ascent

Naive

Figure 4: Degree-constrained quality-of-solution distributions.
0

10

20

30

40

50

60

70

80

90

100

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

Quality of Solution

C
um

ul
at

iv
e 

P
er

ce
nt

ag
e Repetitive

Kruskal

Simple

Naive

Dual Ascent

Figure 5: Unconstrained quality-of-solution distributions.18



Heuristic Number of solvednetworks withoutbacktracking Number of solvednetworks withbacktracking Number of unsolvednetworksSPH-Z 1000 0 0SPH-R 1000 0 0SPH 988 8 4A29 988 8 4ADH 984 7 9K-SPH 984 7 9Naive 976 24 0Dual Ascent 950 43 7Table 4: Success rate of degree-constrained heuristics on 1000 test networks with a �xeddegree-constraint of 3.
0

100

200

300

400

500

600

700

800

900

1000

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

QOS Ratio (Constrained/Unconstrained)

C
um

ul
at

iv
e 

N
um

be
r 

of
 C

as
es

Kruskal

Simple

Repetitive

Naive

DualAscentFigure 6: Quality of solution ratios for random degree-constraints.19



Heuristic Frequency ofbest solution (%)SPH-Z 93.20ADH 55.55K-SPH 55.55SPH 32.95A29 32.95SPH-R 30.80Dual Ascent 27.35Naive 1.05Table 5: Frequency of best results produced by individual degree-constrained heuristics on2000 test networks. Heuristic Frequency ofbest solution (%)SPH-Z 48.60ADH 34.10K-SPH 34.10SPH 29.75A29 29.75SPH-R 29.40Naive 3.10Dual Ascent 0.00Table 6: Frequency of best results produced by unconstrained heuristics on 2000 test net-works.Figure 6 shows the ratio of constrained heuristic quality of solution to unconstrainedheuristic quality of solution for each cluster. On comparing cost versus quality of solutionfor the degree-constrained and unconstrained heuristics (Figures 2 and 3), the average qualityof the degree-constrained solutions was within 5% of that of the corresponding unconstrainedsolution for all the heuristics except Dual Ascent and Naive. It is interesting to observe thatthe average quality of solution of heuristic Naive degraded as a result of imposing degreeconstraints, whereas that of Dual Ascent actually improved. The di�erence between thequality of solution of heuristic Dual Ascent's unconstrained and degree-constrained casesmay be explained by comparing the way both algorithms derive the Steiner tree from itssubgraph. The unconstrained version uses a minimum spanning tree (MST) algorithm whilethe degree-constrained version uses the shortest path heuristic (SPH). Since the worst caseratio between a solution and an optimal solution for the SPH is 2X and for the MST is jSj+1(where S is the number of non-multicast members) [26], this di�erence is not surprising.20



0

100

200

300

400

500

600

700

800

900

1000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Cost Ratio (Constrained/Unconstrained)

C
um

ul
at

iv
e 

N
um

be
r 

of
 C

as
es

Kruskal

Simple

Repetitive

Naive

DualAscentFigure 7: Run-time ratios for random degree-constraints.Cluster Degree-Constrained UnconstrainedRepetitive 705.88 797.08Kruskal 81.57 79.17Dual Ascent 72.70 59.13Simple 13.11 15.25Naive 1.94 4.55Table 7: Average cost of heuristics for the degree-constrained and unconstrained cases (inmillions of statements).Each cluster's quality of solution for the unconstrained case in Figure 3 remained essen-tially unchanged for all the clusters except Naive and Dual Ascent. Heuristic Naive yieldeda signi�cant number of solutions of inferior quality in the degree-constrained case that wereworse than the best solution by 10% or more. With Dual Ascent, on the contrary, mostof the solutions in the degree-constrained case were within 5% of the best solutions found,while the majority of solutions in the unconstrained case were worse by 10% or more.On comparing the average cost (running time) of the heuristics for the unconstrained anddegree-constrained cases (Table 7), it may be observed that imposing the degree constraintshad only a small e�ect on the running time of the individual heuristics. Figure 7 shows theratio of run times for the degree-constrained versus unconstrained versions of each heuristiccluster. The run-time of clusters Naive, Simple, and Repetitive actually improved slightly asa result of reducing the number of possible paths between nodes in the degree-constrainedcase. The run-time of the degree-constrained version of cluster Kruskal, however, remained21



close to that of its unconstrained version. This is because the heuristics in this cluster mustre-compute the shortest path between pairs of components every time degree-constraintsforce a topology change. This o�sets any advantage gained by the reduced number of pathsbetween components. In the case of Dual Ascent, the run-time actually increased in thedegree-constrained case because of the cost of �nding a degree-constrained subgraph as com-pared to an unconstrained one. Note that for any degree-constrained heuristic, backtrackingincreases the run-time over its unconstrained equivalent heuristic. However, because back-tracking occurred so infrequently (a maximum 42 out of 2000 cases), it did not have asigni�cant e�ect on the results.The results presented so far demonstrate the cost versus quality-of-solution tradeo�s inthe choice of a heuristic for degree-constrained multicast. At one end of the scale, clus-ter Repetitive (heuristic SPH-Z) yielded the uncontested best solutions. However, it �ndsthese solutions at much higher cost than the other clusters. Clusters Naive and Dual As-cent, although much cheaper, varied wildly in the average quality of solutions between thedegree-constrained and unconstrained cases. Neither appeared to be a suitable choice. Thus,the best tradeo�s are found in the remaining clusters Simple and Kruskal. Cluster Simple(heuristics SPH, SPH-R and A29) yielded the cheapest solutions of the two. Despite thesimplicity of these algorithms, they produced solutions on average within 2% of the bestsolution found. Among the three heuristics in cluster Simple, SPH and SPH-R are favored;Heuristic A29's additional complexity only resulted in higher cost. Cluster Kruskal (heuris-tics K-SPH and ADH) retained its relative middle position for both degree-constrained andunconstrained graphs. It yielded better quality of solution on the average, while costing afraction of cluster Repetitive. However, its disadvantage was the larger number of cases itcould not solve, as shown in Table 3. Of the two heuristics in cluster Kruskal, heuristicK-SPH is favored because of its relative simplicity.While heuristic Naive performed poorly relative to the other clusters in the comparison,it is the easiest heuristic to update with new members: New members join simply by usingthe shortest paths between themselves and the multicast tree. If quality of solution is of lessconcern than quickly updating membership, Naive is a suitable candidate.Figure 8 show the ratio of constrained heuristic quality of solution to unconstrainedheuristic quality of solution for a uniform degree-constraint of 3. The degradation in thequality of solution when all nodes have a uniform degree-constraint of 3 was well within 10%in most cases, except for heuristics Naive and Dual Ascent. Similarly, the run-time ratio fora uniform degree-constraint of 3 (Figure 9) is also relatively unchanged from that for thecase with random degree-constraints. These results lead us to believe that both the costand quality of solution of the heuristics in the cluster Simple are relatively insensitive to thedegree constraints, and provide e�cient solutions for the vast majority of multicast problemsin large, sparsely-connected networks.4.2 E�ectiveness of Graph ReductionsThe graph reductions applied, simple as they might seem, achieved remarkable results. Werestricted ourselves to graph reductions S degree 1, S degree 2, and Z degree 1 becausethese were of reasonable cost and could be applied to the degree-constrained case. We hadto discard many other graph reductions [10, 11, 27] because they eliminated nodes and edges22



0

200

400

600

800

1000

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

QOS Ratio (Constrained/Unconstrained)

C
um

ul
at

iv
e 

N
um

be
r 

of
 C

as
es

Kruskal

Simple

Repetitive

Naive

DualAscentFigure 8: Quality of solution ratios when maximum degree-constraint = 3.
0

200

400

600

800

1000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Cost Ratio (Constrained/Unconstrained)

C
um

ul
at

iv
e 

N
um

be
r 

of
 C

as
es

Naive

Repetitive

Simple

Kruskal

DualAscentFigure 9: Run-time ratios when the maximum degree-constraint = 3.23



needed in the degree-constrained case. For example, some graph reductions identify shortestpaths between multicast members as solution edges, eliminating longer paths. However, inthe degree-constrained case, the multicast tree containing this shortest path may violatedegree constraints of nodes in its path. Consequently, a longer path may be part of the�nal solution edge and should not be eliminated by the reduction. Of the reductions left,we also discarded those whose cost outweighed their bene�t. For example, the reachabilitytest (RT), outlined in Section 4, is as expensive as heuristic SPH, yet did not improve anyof our sample networks. In fact, all of the reductions employed in our simulation togetherrequired far less than 1% of heuristic SPH's cost and achieved much better results.Figure 10 displays the histograms for nodes and edges reduced as a result of applyingthe graph reductions to the 200 test networks we used. The reductions might reducedan average graph in our simulations by 7% of its nodes and 3% of its edges. Figure 11shows the percentage of solution edges identi�ed by the reductions. In our experiments,the reductions on average identi�ed at least one solution edge for approximately 4% of themulticast members.Performing the reductions �rst has two positive e�ects on the subsequent heuristic. First,some solutions of inferior quality are eliminated. Our empirical evidence indicates this hasa positive e�ect on the heuristics, particularly those in cluster Simple (SPH, SPH-R andA29). Solution quality for this cluster in some cases improved from 12% to within 5% ofthe best heuristic solution found. Second, the run-time of heuristics also improves. Ourresults indicate an improvement of 10{20% in heuristic run-time for many cases. This �tsthe 17{20% improvement predicted using the time complexity for heuristics ADH, SPH andSPH-Z [27].5 Concluding RemarksIn this paper we studied the degree-constrained multicast tree problem as applied to point-to-point networks and evaluated the e�ectiveness of several heuristic algorithms based onmodi�cations of algorithms for the unconstrained Steiner-tree problem. These heuristics for�nding degree-constrained multicast trees were compared in terms of their cost (runningtime), quality of solution, and the number of networks they could not solve.Our results show that many of the Steiner heuristics tested yielded degree-constrainedmulticast trees within 5% of the best heuristic solution found in almost all of the networkstested. Surprisingly few of our networks were unsolvable. In those cases where no solutionwas found by a heuristic, backtracking solved many of the remaining cases. In addition,relatively cheap heuristics produced high quality results while others of greater complexitydid not justify their additional e�ort.Of the heuristics simulated, simple Steiner heuristics such as SPH and SPH-R emergedas the clear winners with an attractive balance between the con
icting objectives of solutionquality and algorithm complexity. The next least expensive heuristics K-SPH and ADHoften gave better solutions at moderate, extra expense. Heuristic Naive, our expected worstSteiner heuristic, often did produce the worst solution; however, it also produced manysolutions of surprisingly high quality. This result matches that of Doar and Leslie [8]. Thequality of solution of the more complex heuristics A29 and Dual Ascent rarely justi�ed their24



0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Percentage Nodes and Edges Reduced

C
um

ul
at

iv
e 

P
er

ce
nt

ag
e 

of
 C

as
es

Edges

NodesFigure 10: Distribution of nodes and edges identi�ed by graph reductions.
0

20

40

60

80

100

2 6 10 14 18

Percentage Solution Edges Found

C
um

ul
at

iv
e 

P
er

ce
nt

ag
e 

of
 C

as
es

Figure 11: Distribution of the percentage of multicastmembers for which at least one solutionedge was identi�ed by graph reductions. 25



additional e�ort.As expected, dense networks posed much less of a challenge to degree-constrained Steinerheuristics than sparse networks. In fact, our degree-constrained heuristics easily solved all thedense networks we tested without backtracking. Consequently, our focus in future researchwill continue to be on sparse networks.An interesting result from our simulations is that the need for unlimited multicast capa-bility in the individual switches of a wide-area network (such as an ATM network) may beoverstated. The median degree-constraint in our simulations with random degree-constraintswas 3. Our additional simulations with a �xed degree-constraint of 3 (that is, a fanout of 2per node), also produced similar results. Thus, our results show that ATM switches in a largewide-area network need not be designed with unconstrained multicast capability. Instead,the ability to make even one additional multicast copy (degree-constraint of 3) would allowour DCSP heuristics to �nd a solution in many, perhaps even the overwhelming majority, ofcases.All the degree-constrained multicast heuristics described in this paper are centralizedalgorithms. We are currently working on distributed algorithms that do not require eachof the network nodes to store the entire topology of the network. We are also working onalgorithms for incrementally updating the multicast tree when nodes join and leave the tree.References[1] M. Ammar, S. Cheung, and C. Scoglio. \Routing multipoint connections using virtualpaths in an ATM network," in Proc. IEEE INFOCOM, San Francisco, CA, Apr. 1993,pp. 98{105.[2] Y.P. Aneja. \An integer linear programming approach to the Steiner problem in graphs,"Networks, vol. 10, pp. 167{178, 1980.[3] J. Beasley. \An SST-based algorithm for the Steiner problem in graphs," Networks, vol.19, pp. 1{16, 1989.[4] L. Berry. \Graph theoretic models for multicast communications," in Tra�c theoriesfor new telecommunications services ITC Specialists Seminar, Adelaide, Australia, Sep.1989, pp. 95{99.[5] K. Bharath-Kumar and Ja�e. \Routing to multiple destinations in computer networks,"IEEE Transactions on Communications, vol. COM-31, no. 3, pp. 343{351, Mar. 1983.[6] N. Chen. \New algorithms for Steiner tree on graphs," in 1983 IEEE InternationalSymposium on Circuits and Systems, Newport Beach, CA, May 1983, pp. 1217{1219.[7] S. Deering. \Multicast routing in internetworks and extended LANs," Computer Com-munication Review, vol. 18, no. 4, pp. 55{64, Aug. 1988.[8] M. Doar and I. Leslie. \How bad is naive multicast routing?," in Proc. IEEE INFOCOM,San Francisco, CA, Apr. 1993, pp. 82{89.26



[9] R. Douglas. \NP-completeness and degree restricted spanning trees," Discrete Mathe-matics, vol. 105, pp. 41{47, 1992.[10] C. Duin and A. Volgenant. \An edge elimination test for the Steiner problem in graphs,"Operations Research Letters, vol. 8, pp. 79{83, 1989.[11] C. Duin and A. Volgenant. \Reduction tests for the Steiner problem in graphs," Net-works, vol. 19, no. 5, pp. 549{567, Aug. 1989.[12] F. Hwang and D. Richards. \Steiner tree problems," Networks, vol. 22, pp. 55{89, 1992.[13] F. Hwang, D. Richards, and P. Winter. The Steiner Tree Problem. New York: North-Holland, 1992.[14] X. Jiang. \Path �nding algorithms for broadband multicast," in Third Int'l Conf. onHigh Speed Networking, O. Spaniol and A. Danthine, ed., New York: North-Holland,1991, pp. 153{164.[15] D. Johnson. \The NP-completeness column: an ongoing guide," Journal of Algorithms,vol. 6, no. 3, pp. 434{451, Sep. 1985.[16] V. Kompella, J. Pasquale, and G. Polyzos. \Multicasting for multimedia applications,"in Proc. IEEE INFOCOM, New York, NY, May 1992, pp. 2078{2085.[17] V. Kompella, J. Pasquale, and G. Polyzos. \Multicast routing for multimedia commu-nications," IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp. 286{292, Jun.1993.[18] J. Kruskal. \On the shortest spanning subtree of a graph and the traveling salesmanproblem," Proc. Amer. Math. Soc., vol. 7, pp. 48{50, 1956.[19] M. Smith and P. Winter. \Path-distance heuristics for the Steiner problem in undirectednetworks," Algorithmica, vol. 7, no. 2-3, pp. 309{327, 1992.[20] H. Takahashi and A. Matsuyama. \An approximate solution for the Steiner problem ingraphs," Math. Japonica, vol. 24, no. 6, pp. 573{577, 1980.[21] H. Tode, Y. Sakai, M. Yamamoto, H. Okada, and Y. Tezuka. \Multicast routing algo-rithm for nodal load balancing," in Proc. IEEE INFOCOM, New York, NY, May 1992,pp. 2086{2095.[22] J. Turner. \An optimal nonblocking multicast virtual circuit switch," in Proc. IEEEINFOCOM, Toronto, Canada, Jun. 1994, pp. 298{305.[23] S. Voss. \A survey of some generalizations of Steiner's problem," in Proc. of the FirstBalkan Conference on Operational Research, 1988.[24] S. Voss. Steiner-Probleme in Graphen. Frankfurt/Main: Hain, 1990, pp. 179{184.27



[25] S. Voss. \Problems with generalized Steiner problems," Algorithmica, vol. 7, no. 2-3,pp. 333{335, 1992.[26] S. Voss. \Steiner's problem in graphs: Heuristic methods," Discrete Applied Mathemat-ics, vol. 40, pp. 45{72, 1992.[27] P. Winter. \Steiner problem in networks: A survey," Networks, vol. 17, no. 2, pp.129{167, 1987.[28] R. Wong. \A dual ascent approach for Steiner tree problems on a directed graph,"Mathematical Programming, vol. 28, pp. 271{287, 1984.[29] W. De Zhong, Y. Onozato, and J. Kaniyil. \A copy network with shared bu�ers forlarge-scale multicast ATM switching," IEEE/ACM Transactions on Networking, vol. 1,no. 2, pp. 157{165, Apr. 1993.

28


