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Abstract

Establishing a multicast tree in a point-to-point network of switch nodes, such as a wide-area ATM net-
work, is often modeled as the NP-complete Steiner problem in networks. In this paper, we study algorithms
for finding efficient multicast trees in the presence of constraints on the copying ability of the individual
switch nodes in the network. We refer to this problem as the degree-constrained multicast tree problem and
model it as the degree-constrained Steiner problem in networks. Steiner heuristics for the degree-constrained
case are proposed and their simulation results for sparse, point-to-point networks are presented. The results
are compared with respect to their quality of solution, cost (running time), and the number of test cases for
which no solution could be found.

The results of our research indicate that efficient multicast trees can be found in large, sparse networks
with small multicast groups even with limited multicast capability in the individual switches. Some of the
Steiner heuristics tested yielded degree-constrained multicast trees within 5% of the best heuristic solution
found in most of the cases. Even when the fanout of each switch node was restricted to 2, the heuristics
we used were able to generate efficient multicast trees in almost all our test networks. Surprisingly few
test networks were unsolvable. In those cases where no solution was found by a heuristic, backtracking
solved many of the remaining cases. Among the heuristics we used, degree-constrained versions of simple
path-distance heuristics such as SPH and SPH-R provided the best tradeoffs between quality of solution and
cost.
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1 Introduction

Multicasting, defined here as the ability to connect multiple nodes in a point-to-point net-
work by a low-cost tree, is likely to take an increasingly important role in data networks.
Many existing networks already support multicasting. For example the Internet MBONE
service, a popular conferencing tool, already uses the multicast support recently added to
the Internet [7]. Many emerging standards for point-to-point packet-switched networks, no-
tably ATM, Frame Relay and SMDS, include support for multicasting. Future applications
such as audio and video conferencing, replicated database updating, and distributed resource
discovery will rely on the ability of the network to perform multicast communication. Thus,
multicasting will likely be an essential part of future networks.

The cost of multicasting quickly becomes unacceptable for many applications if a separate
copy of data is transmitted from the source to each recipient. Transmitting common copies of
data over a multicast tree is the preferable method. However, determining the optimal multi-
cast tree for a graph, in general, is a difficult problem. Previous authors have established that
the multicast tree problem may be modeled as the Steiner problem in networks [3, 4, 5, 12, 27],
referred to hereafter as the SPN, and that explicit solutions are prohibitively expensive. For
example, two popular explicit algorithms, the spanning tree enumeration algorithm and the
dynamic programming algorithm [27], have algorithmic complexity of O(p?2(*=?) 4 1?) and
O(n3? 4+ n?2P + n?), respectively, where n is the number of nodes in the graph and p the
number of multicast members. A number of good, inexpensive heuristics exist for the SPN
and have been reviewed extensively elsewhere [5, 12, 16, 20, 19, 26, 27]. Some have been
shown through analysis to produce solutions no worse than twice the optimal solution [27].
Our empirical evidence indicates that these heuristics find solutions much better than twice
the optimal with reasonable speed in most cases.

Finding a multicast tree is complicated by the likely heterogeneous nature of the multicast
environment. Switches in a point-to-point network will likely vary in their ability to support
multicasting. Some switches may not support multicasting; others may be limited in the
number of multicast copies they can reasonably make [29]. The multicast capability of each
switch is represented in this paper by a degree-constraint. Thus, a degree constraint of d
implies that the corresponding switch is able to forward copies of an incoming packet to a
maximum of d — 1 output ports. The problem of how to create the initial multicast tree
when switch multicast capabilities vary is hereafter referred to as the degree-constrained
multicast tree problem. We model the degree-constrained multicast tree problem as the
degree-constrained Steiner problem in networks (DCSP), first described by S. Voss [25].

The degree-constrained Steiner problem in networks is of particular interest to high-speed
networks since multicast copies must be made quickly, typically by hardware. Whereas a
low-speed switch might reasonably approximate infinite copy-capability, high-speed switches
may have limited copy capabilities due to their speed constraints. Even when the switches
allow multicasting to an arbitrary number of destination ports, there are several advantages
in limiting the number of copies made by each switch. For example, some packet-switch
architectures implement multicasting by circulating copies of packets through the switch
fabric multiple times [22]. Thus, keeping the degree small reduces the number of passes
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needed through the switch fabric. In addition, a degree-constrained multicast tree also

distributes the load more evenly among the nodes in the network than an unconstrained

tree. This has two benefits: (i) the task of making multicast message copies is shared among

more nodes, and (ii) the damage inflicted on the tree by the failure of a single node is reduced.
Formally, the DCSP as used in this paper is defined as follows.

GIVEN: A simple, undirected, connected graph G = (V, E') with n nodes, non-negative edge
cost ¢; ;, p multicast members Z C V| and node degree constraints k; > 2.

FIND: A multicast tree T such that the degree of each node d; < k; and its total cost is
minimum among all possible choices of the tree satisfying the degree constraints.

The degree-constrained Steiner problem in networks is a relatively new problem and is
addressed in only a handful of published papers [13, 21, 23, 24]. The degree-constrained
Steiner problem is NP-complete [24] and contains the NP-complete problem of determining
a degree-constrained spanning tree [9, 15]. Furthermore, finding a solution to the DCSP is
also NP-complete [24]. In practice, however, the heuristics we tested rarely failed to find a
solution in our test networks.

Although a multicast tree generated by a DCSP heuristic might be an optimal solution
to the graph, it need not be. Since finding the optimal tree for a graph is prohibitively
expensive, we compare heuristic results for each graph against the best tree found by any
heuristic. Some heuristics in this paper generate more than one tree. Fach such heuristic
returns the best tree generated as its solution.

Few DCSP heuristics exist in the literature [21, 24]. A previous paper by Tode, et al. [21]
treats the DCSP as an optimization problem. It presents two DCSP heuristics that minimize
the average degree of the multicast tree. It also includes a discussion of how to modify the
heuristics to limit the mazimum degree in the multicast tree. However, no provision is made
for networks of switches with dissimilar degree-constraints.

This paper presents several heuristics and simulation results for solving the degree-
constrained multicast tree problem on sparse, point-to-point, networks of switches with
varying multicast capacity. We believe such models describe typical wide-area networks
such as the Internet and future ATM networks. We restrict our analysis to sparse networks
for two reasons: (i) they are more representative of real point-to-point networks, and (ii)
they are inherently more difficult to solve because fewer alternative Steiner trees exist in
a sparse network than in a dense one. Similarly, the simulated multicast groups are small
relative to the size of the network, reflecting likely multicast applications. The heuristics
compared in this paper are centralized algorithms based on popular published heuristics
modified to handle degree-constraints. They are compared on the basis of three criteria:
quality of solution, cost (running time), and the number of unsolved networks. Note that
these results are not specific to any particular type of point-to-point network such as ATM,
but may be applied to any point-to-point network matching these assumptions.

The results of our research indicate that efficient multicast trees can be found in large,
sparse networks even with limited multicast capability in the individual switches. Some of
the Steiner heuristics tested yielded degree-constrained multicast trees within 5% of the best
heuristic solution found in almost all of the networks tested. Surprisingly few test networks
were unsolvable. Even with a degree-constraint of 3 (that is, a maximum fanout of 2 per



switch), the heuristics we used were able to generate efficient multicast trees in almost all
our test networks. In those cases where no solution was found by a heuristic, backtracking
solved many of the remaining cases. Relatively cheap heuristics often produced high quality
results while other algorithms of greater complexity rarely justified their additional effort.
Understandably, dense networks pose less of a challenge as compared to sparse networks
since more alternative paths exist between multicast members in the former. As an example
consider the two extremes, a tree and a complete graph. A complete graph has many
alternative Steiner trees, some of which may be degree-constrained. A tree, in contrast, has
only one Steiner tree and it may not be degree-constrained.

While other constraints such as jitter, delay, and link capacity are important in construct-
ing multicast tress, we focus specifically on the problem of degree-constraints. Papers such
as [1, 14, 17] typify published approaches to multicasting with constraints other than the
degree of individual nodes. For example, Ammar et al. address the multicast tree problem
as a flow problem, allowing for asymmetric capacities between source and destinations [1];
Jiang includes link capacity constraints in his Steiner heuristics [14]; and Kompella et al.
include delay constraints in their Steiner heuristics [17].

The remainder of this paper is organized as follows. Section 2 describes the evaluated
heuristics. Section 3 discusses the simulation methodology. Section 4 presents the simulation
results and compares the heuristics based on these results. Finally, Section 5 concludes the
paper with a discussion of the results and directions for future research.

2 Algorithms for the Degree-Constrained Steiner Prob-
lem in Networks

This section describes algorithms and methods to solve the DCSP. It begins with a summary
of unconstrained Steiner methods and ends with modified heuristics and graph reductions
specific to the DCSP.

We use the following definitions in the paper: Z is the set of multicast destinations, S
is the set of non-multicast nodes V' — Z, P, ; is the shortest path between nodes ¢ and j,
and d; ; 1s the distance of the shortest path between nodes ¢ and j. Graph distances will be
defined as follows. The distance between nodes is the distance of the shortest path between
them. Likewise, the distance between a node and a tree is the distance of the shortest path
between the node and any node in the tree. Finally, the distance between two trees is the
distance of the shortest among all paths between any node in one tree and any node in the
other tree.

Smith and Winter [19] divide Steiner heuristics into a morphological structure similar to
the one shown in Figure 1. At the highest level, heuristics are divided between those that are
path-distance heuristics (PDH) and others. Path-distance heuristics rely on distance calcu-
lations and iteratively improve an initial partial solution using appropriately chosen shortest
paths between multicast members until the partial solution contains all the multicast nodes.
Path-distance heuristics are further divided between variants of the shortest-path heuristic
and other path-distance heuristics. Table 1 summarizes known results on the asymptotic
time-complexities of these algorithms, together with the known upper bounds on the ratio
of the quality of solution produced to that of an optimal solution.



2.1

SPH-Z [19]

K-SPH [19]
SPH [19]
A29 [26]
PDH
SPH-R (Section 2.2.2)
ADH [19]

— Set Cover [2]

Naive (Section 2.1.1)
— Local Steinalization [6]

— Contraction [27]

— Dual Ascent [28]

Figure 1: Morphological structure of Steiner heuristics.

Unconstrained Steiner Tree Heuristics

Many Steiner heuristics have been proposed in the literature [12, 19, 26, 27] and form a
suitable basis for DCSP-specific heuristics. In this section, we first examine the heuristics
for the unconstrained Steiner problem listed in Table 1. These heuristics are then modified
to handle degree constraints and compared by way of simulation.

‘ Heuristic ‘ Time Complexity ‘ Solution Bound ‘
SPH O(pn?) 2X
SPH-Z O(p*n?) 2X
K-SPH O(n?) 2X
ADH O(n?) 2(1 — ]%)X
Dual Ascent N.A. N.A.
Set Cover N.A. N.A.
Local Steinalization N.A. N.A.
Contraction N.A. 2(1 — %)X

Table 1: Characteristics of published Steiner heuristics.




2.1.1 Heuristic Naive

For comparison sake, we first consider the simplest possible Steiner algorithm that we name
Naive. Heuristic Naive starts with an arbitrary multicast member as the multicast tree. It
then repeatedly connects another random multicast member to the multicast tree by the
shortest path between the new member and the multicast tree until all the members are
in the multicast tree. We expected this heuristic to give the worst results; as it sometimes
does. However, we discovered that it often produces quite respectable results. This matches
Doar’s results [8]. We treat heuristic Naive as the baseline from which to compare other
Steiner heuristics. We describe heuristic Naive as follows.

1. Initialize subtree T' to an arbitrary Z-node.
2. Connect subtree T" with an arbitrary Z-node € T' by the shortest path.

3. If a Z-node exists € T', go to step 2.

2.1.2 Shortest Path Heuristic (SPH)

The shortest-path heuristic [20] produces surprisingly good results and has many variants
as shown in Figure 1. SPH initializes the multicast tree to an arbitrary multicast member.
It then joins the next closest multicast member to the multicast tree by the shortest path
between the multicast member and the tree. The algorithm terminates when all members
have joined the tree. Note that this algorithm differs from heuristic Naive because multicast
members join in the order determined by their distance to the multicast tree, rather than in
random order.

This solution may be improved even further using the following technique [19]. Find the
graph induced by the nodes in the solution, derive the induced graph’s minimum spanning
tree using a method such as Prim’s algorithm, and prune the minimum spanning tree of
non-multicast member leaves. The resulting tree is an improved solution. This improvement
is equally applicable to any of the SPH variants.

The basic SPH algorithm is described as follows:

1. Initialize subtree T' to an arbitrary Z-node.

2. Connect subtree T" with the closest Z-node ¢ T
3. If a Z-node ¢ T exists, go to step 2.

4. Further improve the solution

(a) Let graph GG’ be the subgraph of GG induced by T’s nodes. Let U be a minimum
spanning tree of .

(b) Repeatedly prune S-leaves of U.

2.1.3 Heuristic SPH-Z

This variant of SPH applies the basic SPH algorithm described in Section 2.1.2 once for each
possible choice of the starting Z-node, returning the best solution found.



2.1.4 Heuristic K-SPH

Unlike the previous heuristics, K-SPH, the Kruskal-based shortest-path heuristic [18], starts
with the forest of multicast member nodes. It repeatedly joins the two closest multicast
member subtrees until a single tree spanning all multicast members remains. K-SPH’s
algorithm is described as follows.

1. Initialize T' to be the forest of Z-nodes.
2. Connect the two closest subtrees in T" by their shortest path.

3. If T is disconnected, go to step 2.

.

. Improve the solution by constructing a minimum spanning tree of the subgraph induced
by 1"s vertices in G and pruning its S-leaves.

2.1.5 Heuristic ADH

The average distance heuristic is a generalization of K-SPH. Like K-SPH, the algorithm
starts with the forest of multicast member nodes. It repeatedly connects the three closest
multicast member components through the most central node (defined to be the node with
the least average distance to all multicast members). ADH terminates when a single tree
remains, spanning all multicast members. Its algorithm is described as follows:

1. Initialize T to be the forest of Z-nodes.

2. Connect the closest and the second-closest subtrees in T' to the most central node by
their shortest paths.

The most central node is determined as follows: For each node v, order the subtrees
of T' by their distance to node v in nondecreasing order 11,75, ---Ty. Let d; represent
the distance between v and T;. The most central node is the node with the smallest
value for

f(v) = min {Zr: d; }—min(d +d dy + dy + ds d1—|—d2-|-d3_|_..._|_dk)
B = 1 gy ————————— -, ‘

2<r<k | r — 2 k—1

Note that if v belongs to a subtree, that subtree will be first on the list with d; = 0.
Fortunately f(v) need not be evaluated in full for each node. If v € 7, f(v) = dp. If

veESs,
:%+%+m+@

(o) _—

for the smallest value of r such that

dy+dy+---+d, <d1+d2‘|’"'+dr+1

r—1 r

3. If T is disconnected, go to step 2.

4. Improve the solution as discussed in step 4 of the SPH heuristic.



2.1.6 Heuristic Dual Ascent

Wong [28] describes an exact solution and a heuristic to the SPN. The Dual Ascent heuristic
finds a solution to the SPN in five steps:

1. First, convert the undirected graph G into a directed graph G’ by substituting every
undirected edge by two directed edges of equal weight in opposite directions.

2. Next, build a directed subgraph A from G’ which contains a solution. This step
terminates when at least one multicast node is connected to every other multicast
member. Note that in directed graphs, node 7 is connected to node j if a directed path
exists from ¢ to j. Further, if two nodes are connected to each other, they are said to
be strongly connected. The steps to build auxiliary graph A are as follows.

(a)

(b)

(2)
(h)

Create directed subgraph A with all the nodes of directed graph G’, but none of
the edges.

Let G' = (V. E). Let A= (V,0).

Initialize cost matrix S to the edge weights of G'.
For all edges of G/, set s, ; = ¢; ;.

Pick a root component R of A.

A root component is a maximal strongly connected component that contains a
Z-node and from which no Z-node dangles. A node dangles from a component if
the node is connected to the component, but the reverse is not true. A strongly
connected component is a set of nodes in which every node in the set is strongly
connected to every other node in the set. A maximal strongly connected compo-
nent is a strongly connected component that is not a subset of any other strongly
connected component.

Pick a multicast member z from the root component K.

Pick the cheapest edge (m,n) out of z’s cut set.

The cut set of z are those edges not yet chosen for A which bridge a node connected
to z to a node not connected to z in A. Let C'(z) be the set of nodes connected
to node z. The cut set for 2 is

E(z) = {(i,)1(i,5) € G',(i,5) ¢ A,i € C(2),5 € C(2)}-

Choose (m,n) such that s, , = min{s; ;|(7,7) € F(2)}

Having found the cheapest cut-set edge, deduct its cost from z’s remaining cut
set edges.

For all edges in F(z), set s;; = $;j — Smn-
Update subgraph A by adding the minimum cut set edge.
A= AU(m,n)

If root components remain, go to step 2(c).



3. Next, convert A to an undirected graph U.

Start with 7 = (V,0). For every directed edge in A, add an equivalent, undirected
edge to U. This will make U a multigraph. Delete all redundant edges. Note that all
edges between the same pair of nodes will have the same weight.

4. Next, find U’s minimum spanning tree 7T'.

If U is a small enough subgraph, the minimum spanning tree represents a reasonable
approximation of the Steiner tree. However, if U is not significantly smaller than G’,
then the minimum spanning tree may be a poor approximation of the Steiner tree. We
know this to be true since simply taking the spanning tree and pruning it to be the
Steiner tree can, in the worst case, produce a solution that departs from the optimal

by a factor of |S|+ 1 [26].

5. Finally, prune all non-multicast member leaves from 7. The result is the solution.

2.1.7 Local Steinalization Heuristic

Chen [6] describes a method to determine the optimal node through which to connect three
multicast members. Using this method recursively, he outlines two heuristics, TPS1 and
TPS2, which find Steiner solutions. Heuristic TPS1, like SPH, expands an initial solution
one component at a time until all multicast members are part of the solution. Heuristic
TPS2, like K-SPH, starts with a forest of multicast members and connect the closest three
components until all multicast members are part of a single multicast tree.

The optimal node to connect the three components must lie within an area defined by
the shortest-path distances among the three components. Given three components A, B and
C', finding the optimal node to interconnect them involves the following steps:

1. Determine the shortest path P4 p between components A and B.

2. Determine the shortest path Pr 4 between component €' and path Py p.
Let d be the endpoint of path Py 4 which lies on path Py p.

3. Find the optimal node 7 to connect components A, B, and C.

Let d;; be the distance along the shortest path between ¢ and 7. Choose node ¢ such
that
min{da; +dp; +de,; | da; <2dap,dp; <2dsp,and de; < dcgq}.

Heuristic TPS1 expands an initial multicast tree one multicast member at a time until the
multicast tree includes all multicast members. Each additional multicast member is added to
the tree by breaking the existing multicast tree into two components and combining with the
two old multicast components with the new multicast node through the optimal intermediate
node.

Heuristic TPS2 connects a forest of multicast members by building a single tree out of
the forest, three components at a time. Each set of three components is connected through
an optimal node determined as above. If, at the end, only two components remain, they are
connected using the shortest path between them.



2.1.8 Set Cover Heuristic

Aneja [2] describes an integer linear programming approach to the SPN by posing the SPN
as the set cover problem. Given a finite set of elements X and a number of subsets of those
elements I, the set cover problem attempts to find a minimum set of subsets C' C F' that
includes all the elements of X. Such a minimum set C' is called a cover. A cover is also a
non-redundant cover if no proper subset is also a cover.

The algorithm repeatedly solves set cover problems, using an evaluation function on each
successive solution to determine if a better solution exists. If so, it adds constraints to the
set cover problem and solves again. As the algorithm converges on an optimal solution to
the set cover problem, it also converges on an optimal solution to the SPN. In its unaltered
form, this algorithm is an explicit SPN algorithm. The Set Cover heuristic accelerates the
rate of convergence by modified edge weights and adding constraints. The heuristic result is
a (sub-optimal) solution. Unfortunately, this algorithm is very complex and requires many
optimizations to run efficiently. Because it is so complex and because other, simpler heuristics
produced good solutions, we elected to leave this heuristic out of our evaluation.

2.1.9 Contraction Heuristic

The Contraction heuristic [27] recursively collapses neighborhoods classes of multicast nodes
into a single multicast super-node. A neighborhood of a node 7 is defined to be the nodes of ¢
that lie within a given distance r from 7. Two neighborhoods are reachable from each other if
they are adjacent or if there is a path between them that lies entirely within neighborhoods of
multicast nodes. A neighborhood class is a maximal set of multicast neighborhoods reachable
from one another.

Using the cost of the cheapest edge adjacent to a multicast node as the given distance
r, the algorithm repeatedly collapses each neighborhood class defined by r into a super-
node. When only one such super-node remains, the heuristic solves each previously defined
neighborhood class using another Steiner heuristic and pieces together the solution from the
resulting Steiner subtrees. An overview of the heuristic follows.

1. Let r = the least cost of any edge adjacent to a Z-node in (.

2. Let Cy,Cs,---C} denote the ¢ neighborhood classes of Z-nodes.

3. If t > 1, modify & by contracting the ¢ neighborhoods. Go to step 1.
4. Determine the solution

(a) Find the Steiner subtree for each neighborhood class found using another Steiner
heuristic

(b) Assemble the Steiner tree out of the neighborhood class subtrees

2.2 Degree-Constrained Steiner Tree Heuristics

The eight DCSP heuristics compared in this paper are a mix of unconstrained Steiner heuris-
tics and heuristics specific to the DCSP. The unconstrained heuristics are essentially un-
changed aside from the exceptions listed below. However, a number of factors differentiate
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Table 2: Subgraphs examined during backtracking.

Steiner heuristics running in a constrained environment from those in an unconstrained
environment.

First, connecting more than two components is much more complicated in the constrained
case than the unconstrained one. For example, in heuristic ADH, three components are
merged at each step. In the unconstrained case, it is sufficient to track the shortest path
between each component and the central node. In the constrained case, however, one or
more such shortest paths may exhaust the degree-constraint of nodes in the connecting tree,
rendering it infeasible. In short, connecting greater than two components becomes a smaller
version of the DCSP with all of its complications. Thus, each heuristic used in this paper
merges at most two components of a graph together by their shortest path.

Second, the topology of the network graph G may change during a heuristic because of the
partial solution generated so far. This is because a node’s degree-constraint may be exhausted
by a partial solution, eliminating the node and its remaining edges from consideration. This
changed topology can and does alter the shortest path information for remaining steps. As
a consequence, heuristics must constantly reevaluate shortest paths between nodes.

Third, since finding a solution to the DCSP is NP-complete [24], a given DCSP heuris-
tic may not be able to find a solution even though one exists. Consequently, all of our
DCSP heuristics employ backtracking. Our backtracking strategy is inspired by Beasley’s
Lagrangean relaxation approach [3] in which Beasley applies a Steiner heuristic to each sub-
graph of G created by forcing every non-member node in or out of the solution. To force a
non-member node to be in a solution, Beasley converts it temporarily to a member node.
To force a non-member node out of any solution, Beasley temporarily deletes that node
from graph . To examine every such combination, Beasley’s explicit algorithm looks at 2°
subgraphs where s is the number of non-multicast nodes. Since non-multicast nodes are the
majority of nodes in our networks, we cannot use this approach. Instead, we use only five
“central” non-multicast nodes sy, s9, ..., s5, chosen such that their average shortest-path dis-
tances to the multicast members are the lowest among all the non-multicast nodes. During
backtracking, we examine the 21 422 +...42% = 62 subgraphs created by forcing these nodes
in or out of the solution, as shown in Table 2. If no solution is found in these subgraphs, the
heuristic terminates without a solution.
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2.2.1 Modified Steiner Tree Heuristics

Although the modified Steiner heuristics in this section are similar to their unconstrained
equivalents, they differ in at least one important way. All DCSP heuristics must frequently
reevaluate shortest path information when building a solution as explained in Section 2.2.
Most of the heuristics needed no further modification with the exceptions noted below:

ADH: ADH connects only the closest subtree to the most central node. This is because of
the difficulty of connecting greater than two components as explained in Section 2.2. ADH’s
step 2 becomes:

2. Connect the closest subtree to the most central node v by its shortest path.

Dual Ascent: Modified Dual Ascent differs from it unconstrained equivalent because it
does not find the degree-constrained minimum spanning tree to its subgraph. Instead, it uses
SPH to generate a Steiner tree from the subgraph. Thus, this Dual Ascent step becomes:

4. Next, Use heuristic SPH to find a Steiner tree T' for U.

Local Steinalization: Because the Local Steinalization heuristic combines three compo-
nents at a time and because of the difficulties of combining multiple components outlined in
Section 2.2, this heuristic is not included in the simulations.

Set Cover: As described in Section 2.1.8, the Set Cover heuristic is not included in
our simulation because of the sheer complexity of the algorithm. Ultimately, it is doubtful
whether the quality of solution for the Set Cover heuristic would justify its cost.

2.2.2 Constrained Heuristics

In addition to the above unconstrained heuristics, we simulate two DCSP-specific heuristics,
A29 and SPH-R. Heuristic A29 was first proposed by Voss [24] and heuristic SPH-R is our
own contribution. They are described below.

A29: Heuristic A29 [24] is the only published DCSP heuristic of which we are aware. It
is also a variant of SPH. It first adds enough edges of infinite weight to make G a complete
graph and then applies heuristic SPH. Since (' is complete, A29 will always find a degree-
constrained Steiner tree, although the solution may contain infeasible edges (edges of infinite
weight). A29’s algorithm is described as follows.

1. Construct the complete graph . Let every edge (7, j) common to both graphs GG and
(' have equal cost. Let all other edges have cost cc.

2. Apply heuristic SPH to G'.

3. Delete all edges in T' of cost occ.
Note that 7" may not be connected and may thus be infeasible.
SPH-R:
Heuristic SPH-R is our own variation of SPH. SPH-R like SPH-Z repeatedly applies SPH

to the graph G for different starting points. However, SPH-R terminates the first time it
generates a solution. We observed that SPH-R rarely iterates more than a few times.

11



2.3 Graph Reductions

Before applying a heuristic, a graph may be examined for easily solved subgraphs and modi-
fied so as to reduce the run-time of the heuristic. These modifications based on easily solved
subgraphs are referred to as graph reductions. The strategy employed is to identify such
subgraphs, solve them, save their results, and track the cost of the partial solution. The
modifications reduce the size of the initial graph, reducing subsequent heuristic run-time.
Our empirical evidence suggests that on sparse networks even simple graph reductions may
reduce their size as much as 15%. Graph reductions have been extensively reviewed elsewhere
[10, 11, 27].

A short list of such reductions follows.

1. S degree 1.

A non-member node that is a leaf of graph G cannot be a part of the solution and
may be deleted. Thus, if G contains S-nodes of degree 1, delete each such node and
its adjacent edge. Note that this reduction reduces the degree of the neighbor node by
one and may convert a formerly degree-constrained node into an unconstrained one.

2. 7 degree 1.

A leaf Z-node and its adjacent edge must be part of the Steiner tree. Let y denote the
single neighbor of such a node. Thus, if G contains a Z-node z of degree 1, take the
following steps.

(a) Delete node z and edge (z,y) from G.
(b) Save node z and its adjacent edge for use later in the solution.

(c¢) If neighbor node y is a S-node, convert it to be a Z-node.

This step ensures that G’s solution will also include node y, solution edge (z,y)’s
connection point.

(d) Decrease node y’s degree constraint by one.
This step reserves node y’s degree-constraint for later use when constructing the
solution. Note that if node y’s degree-constraint falls below zero, no solution
exists.

(e) After finding a solution using a DCSP heuristic, reconnect the saved edges and
Z-nodes to the solution and reconvert former S-nodes.

3. S degree 2.

If an S-node connects exactly two nodes, it may be replaced by an edge. Thus, if
(G contains an S-node s of degree 2 connecting two nodes z and y, replace the node
s and the two edges connecting x and y through node s by an edge (x,y) with cost
Coy = Cps + Csy. If, as a result of this addition, two edges now connect nodes z
and y, delete the more expensive edge. Note that this reduction reduces the degree
of the two neighbor nodes = and y by one and may convert either or both from a
degree-constrained node into an unconstrained one.
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4. Reachability Test (RT).

Unlike the previous reductions, the reachability test improves upon a solution by elim-
inated those non-multicast members that cannot be part of a better solution. Con-
sequently, this reduction is not a pre-processing step, but rather an improvement of
an existing DCSP heuristic’s solution. It eliminates nodes and edges by examining
every node outside the solution and eliminating those whose distance to multicast
nodes makes them ineligible to be in the solution. This distance criterion is based on a
non-multicast member’s distance to the closest, second closest and farthest multicast
member.

Formally, let ¢; be the cost of a solution, let U be its nodes, and let ¢; be the cost of
the partial solution collected so far. For any such ¢ € V — U, let

Crmar = Max{¢; .,z € Z};

Cin = Min{¢; ., 2 € Z};
Cond = Min{¢; ., 2 € Z — {zmin} }-

Node ¢ and its adjacent edges may be eliminated if

Ct + Crmaz + Coin + Cond Z Cr.

Each of the graphs used in our simulations were first reduced by the following three
reductions: S degree 1, Z degree 1 and S degree 2. Reduction RT was discarded because it
was both expensive and ineffective. It was expensive because it required a solution to start
with. Furthermore, it failed to eliminate even a single node in the test networks simulated.
Detailed results on the effectiveness of the reductions are presented in Section 4.

3 Evaluation Methodology

Thus far, the discussion has centered on descriptions of degree-constrained Steiner heuristics
and graph reductions. Here, we turn to our evaluation methodology. In this section we
describe our network model and our heuristic simulator.

3.1 Network model

Because our choice of existing networks and multicast applications was small, we chose to
compare DCSP heuristics using randomly generated networks. Each of the heuristics was
run on a total of 2000 test networks. Each of the 2000 networks is a sparse 200-node network
with a degree-constraint on 50 or 75% of its nodes. We consider an n-node graph to be sparse

when less than 5% of the possible edges are present in the graph. We believe such

n
2
a graph describes a plausible network of point-to-point nodes in a WAN because a large
multicast network is loosely interconnected and may have many degree-constrained nodes.

Likewise, the simulated networks have 10 or 30% of its nodes in the multicast group because
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multicast applications running on such a WAN are likely to involve only a minority of nodes
in the network.

The 2000 networks were generated to resemble networks in a manner similar that of Doar
[8]. Each of n nodes is distributed across a Cartesian coordinate plane with minimum and
maximum coordinates (0,0) and (2n,2n), creating a forest of n nodes spread across this
plane. In all of our test graphs, the number of nodes n was set at 200. The nodes are then
connected by a random spanning tree. This tree is generated by iteratively considering a
random edge between nodes and accepting those edges that connect distinct components.
The remaining redundant edges of the graph are chosen by examining each possible edge
(x,y) and generating a random number 0 < r < 1. If r is less than a probability function
P(z,y) based on the distance between = and y, then the edge is accepted. The weight of
each edge is its rectilinear distance plus a small constant. We used the probability function

_d.T

Pa,y) = fezer

where d,, is the rectilinear distance between nodes @ and y [8]. The parameters o and
( govern the density of the graph. Increasing « increases the number of connections to
nodes far away and increasing (3 increases the number of edges from each node. After some
experimentation, the graphs in this simulation were generated using a = 0.10 and 3 = 0.20.
These values produced graphs of realistic density and degree-distribution.

We performed four different simulations on each generated graph by varying the multicast
group size and percentage of degree-constrained nodes, each in two ways. The number of
multicast nodes was chosen as either 20 or 60 of the 200 nodes; the number of degree-
constrained nodes was selected as either 100 or 150. Results are presented for all four
combinations for each graph. Degree-constrained nodes in each case were chosen randomly
and assigned a random degree constraint between 2 (no multicast capability) and one less
than the degree of the node. Similarly the nodes in a multicast group are chosen randomly
in each case. The random numbers were chosen from a uniform distribution. To ensure
fairness, each heuristic was run on the same 2000 networks.

In additions to the above simulations where the degree-constraints of individual nodes
were varied randomly, we also performed a set of experiments by limiting the degree con-
straint of each node in the network to 3 (that is, at most one additional copy per node).
The goal of these experiments was to investigate whether the heuristics are able to generate
efficient solutions even with very limited multicast capability in the individual nodes. These
experiments were run on the same 200-node graphs described in the previous paragraphs.

3.2 The Heuristic Simulator

Each of the heuristics was implemented on top of our degree-constrained Steiner problem
simulation platform, designed to provide the level playing field upon which to base com-
parisons. It supplies the basic graph manipulation routines used by the heuristics such as
adding and deleting edges, and is written in MAINSAIL, a machine-independent ALGOL-
like language. Since the simulator runs on a variety of platforms, including SUN, DEC and
IBM workstations, CPU time was a poor metric upon which to base comparisons. Instead,
we use source language statement counts as supplied by MAINSAIL’s profiler, excluding
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operating system sensitive operations such as file [/O. The heuristics compared use identi-
cal source code on all platforms. Because all the heuristics share much of the same code,
statement counts provide a means to measure relative computing cost of each heuristic while
minimizing the influence of coding style.

Each simulated heuristic uses the same steps to insure uniformity of solution: First, the
network is evaluated for trivial cases; it is then pre-processed using the graph reductions Z
degree 1, S degree 1, and S degree 2; finally, the heuristic is run on the reduced graph.

4 Simulation Results

In this section we present the results from simulations of the heuristics for both degree-
constrained and unconstrained cases on 2000 test networks. These heuristics are compared
on the basis of three criteria: cost, quality of solution, and number of cases in which the
heuristic was unable to find a solution. Cost is the run-time of each heuristic measured in
source-level (MAINSAIL) language statements. The quality of solution is measured by the
ratio of the cost of the heuristic’s solution (the sum of the edge weights) to the cost of the
best solution found among all the heuristics simulated. The quality of solution for a heuristic
is compared with the best solution found because (i) the cost of finding an optimal solution
for a 200-node graph is prohibitive and (ii) the optimal solutions we found for a small number
of graphs using Beasley’s Lagrangean Relaxation algorithm [3] often had the same cost as
the the best solution found by the heuristics. The last criterion gives the number of networks
for which a heuristic could not find a solution even with backtracking.

To verify and calibrate simulation results, we first compared our results obtained from
running unconstrained versions of the heuristics with those published by Smith [19] and
Voss [26]. Of the heuristics compared, only one — Dual Ascent — did not match the
published results. That only one heuristic differed significantly from published results is
interesting since our simulations focused on a much narrower range of networks than those
considered by Smith or Voss. Each of our networks is large, sparse and has a small multicast
group. By contrast, Smith and Voss simulated a mix of sparse and dense networks with small
to large multicast groups. In Voss’ simulations [26], heuristic Dual Ascent found the best
solution as much as 80% of time. In our simulations, however, the algorithm rarely produced
the best solution; in some cases the solutions were as much as 15% off when compared with
the best solution among all the heuristics. This behavior is due to two reasons: First, our
simulation networks differ from Voss’s networks in that they are always sparse, reducing
the number of choices possible when building the subgraph in the Dual Ascent heuristic.
The subgraph often contained as many nodes as the original graph, reducing Dual Ascent’s
effectiveness. Second, all of our sample networks have 200 nodes with a small multicast
group-size — 20 or 60 nodes. Voss’ simulation results are based on sample graphs with 20 to
60 nodes and a wide distribution of multicast sizes. This is important because Dual Ascent
uses a minimum spanning tree (MST) of the subgraph to find a Steiner tree. Previously
published results have shown that the approach based on pruning the MST works well for
large multicast groups, but poorly for small groups [26]. The published worst-case ratio
between a solution using the MST and an optimal solution is |S|+ 1 where |S| is the number
of non-multicast members. Thus, it is not surprising that Dual Ascent’s quality of solution
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Number of solved | Number of solved
Heuristic networks without | networks with Number of unsolved

backtracking backtracking networks
SPH-Z 1999 0 1
SPH-R 1999 0 1
SPH 1995 0 5
A29 1995 0 5
ADH 1992 1 7
Naive 1990 9 1
K-SPH 1970 23 7
Dual Ascent 1951 42 7

Table 3: Success rates of degree-constrained heuristics on 2000 test networks.

was poor for sparse 200-node networks with 20 or 60 multicast members.

Table 3 summarizes the success rates of the degree-constrained heuristics based on sim-
ulations on 2000 test networks. As expected, heuristics run on the sample networks with
degree-constraints sometimes had difficulty in finding solutions. This is because finding a
solution for the degree-constrained case is also NP-complete [24]. In practice, however, most
of the degree-constrained graphs could be solved by the heuristics directly or through back-
tracking. In fact, each of the 2000 test networks could be solved by at least one of the
heuristics. The maximum number of cases missed by any single heuristic was 7.

To further verify the ability of the heuristics to find solution with more stringent degree
constraints, we also tested the heuristics on some of the graphs by imposing a fixed degree-
constraint of 3 for each node. Table 4 summarizes the success rates of these simulations
on 1000 test networks. As expected, both the number of cases in which backtracking was
needed and the number of unsolved cases increased as a result of the small degree constraint.
However, the increases were barely noticeable in most cases. Indeed, SPH-R and SPH-Z
solved all 1000 test networks even without backtracking. This leads us to conclude that
some of the tested heuristics will be able find multicast trees in large, sparse networks even
with limited multicast fanout in the individual nodes.

4.1 Cost and Quality of Solution

Since the differences in the success rates of the individual heuristics were small, the remaining
two criteria — quality of solution and cost — then become the more important factors to
consider. Figures 2 and 3 summarize the tradeoff between these two criteria. The results
cluster into five distinct groups: simple shortest-path heuristics SPH, SPH-R and A29;
repetitive shortest path heuristic SPH-Z; Kruskal-based shortest-path heuristics K-SPH and
ADH; heuristic Dual Ascent; and heuristic Naive. Tables 5 and 6 summarize how often each
heuristic produced a solution equal to the best heuristic solution found and Figures 4 and 5
show quality of solution distributions for the degree-constrained and unconstrained cases.

16



800 Wors
700\ M) Repetitive
@
£ 600
£ m SPH-Z
g 50T ANAIVE
S 4004+ © K-SPH
S 0 ADH
E 300 + +A29
ot X SPH
3 200 +
O 0 SPH-R
Kruskal Dual Ascent
100 + @ Naive - Dual Ascent
D o
0 @ S'mple: : : : (a) : :
Best 1 1.02 1.04 1.06 1.08 11 1.12 1.14 1.16 1.18 1.2

Quality of solution

Figure 2: Cost vs. quality of solution for degree-constrained multicast.
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Figure 3: Cost vs. quality of solution for unconstrained multicast.
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Number of solved | Number of solved
Heuristic networks without | networks with Number of unsolved

backtracking backtracking networks
SPH-Z 1000 0 0
SPH-R 1000 0 0
SPH 988 8 4
A29 988 8 4
ADH 984 7 9
K-SPH 984 7 9
Naive 976 24 0
Dual Ascent 950 43 7

Table 4: Success rate of degree-constrained heuristics on 1000 test networks with a fixed
degree-constraint of 3.
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Figure 6: Quality of solution ratios for random degree-constraints.
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Heuristic Frequency of
best solution (%)
SPH-Z 93.20
ADH 55.55
K-SPH 55.55
SPH 32.95
A29 32.95
SPH-R 30.80
Dual Ascent 27.35
Naive 1.05

Table 5: Frequency of best results produced by individual degree-constrained heuristics on
2000 test networks.

Heuristic Frequency of
best solution (%)
SPH-7 48.60
ADH 34.10
K-SPH 34.10
SPH 29.75
A29 29.75
SPH-R 29.40
Naive 3.10
Dual Ascent 0.00

Table 6: Frequency of best results produced by unconstrained heuristics on 2000 test net-
works.

Figure 6 shows the ratio of constrained heuristic quality of solution to unconstrained
heuristic quality of solution for each cluster. On comparing cost versus quality of solution
for the degree-constrained and unconstrained heuristics (Figures 2 and 3), the average quality
of the degree-constrained solutions was within 5% of that of the corresponding unconstrained
solution for all the heuristics except Dual Ascent and Naive. It is interesting to observe that
the average quality of solution of heuristic Naive degraded as a result of imposing degree
constraints, whereas that of Dual Ascent actually improved. The difference between the
quality of solution of heuristic Dual Ascent’s unconstrained and degree-constrained cases
may be explained by comparing the way both algorithms derive the Steiner tree from its
subgraph. The unconstrained version uses a minimum spanning tree (MST) algorithm while
the degree-constrained version uses the shortest path heuristic (SPH). Since the worst case
ratio between a solution and an optimal solution for the SPH is 2X and for the MST is |S|+1
(where S is the number of non-multicast members) [26], this difference is not surprising.
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Figure 7: Run-time ratios for random degree-constraints.

‘ Cluster ‘ Degree-Constrained ‘ Unconstrained ‘
Repetitive 705.88 797.08
Kruskal 81.57 79.17
Dual Ascent 72.70 59.13
Simple 13.11 15.25
Naive 1.94 4.55

Table 7: Average cost of heuristics for the degree-constrained and unconstrained cases (in
millions of statements).

Each cluster’s quality of solution for the unconstrained case in Figure 3 remained essen-
tially unchanged for all the clusters except Naive and Dual Ascent. Heuristic Naive yielded
a significant number of solutions of inferior quality in the degree-constrained case that were
worse than the best solution by 10% or more. With Dual Ascent, on the contrary, most
of the solutions in the degree-constrained case were within 5% of the best solutions found,
while the majority of solutions in the unconstrained case were worse by 10% or more.

On comparing the average cost (running time) of the heuristics for the unconstrained and
degree-constrained cases (Table 7), it may be observed that imposing the degree constraints
had only a small effect on the running time of the individual heuristics. Figure 7 shows the
ratio of run times for the degree-constrained versus unconstrained versions of each heuristic
cluster. The run-time of clusters Naive, Simple, and Repetitive actually improved slightly as
a result of reducing the number of possible paths between nodes in the degree-constrained
case. The run-time of the degree-constrained version of cluster Kruskal, however, remained
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close to that of its unconstrained version. This is because the heuristics in this cluster must
re-compute the shortest path between pairs of components every time degree-constraints
force a topology change. This offsets any advantage gained by the reduced number of paths
between components. In the case of Dual Ascent, the run-time actually increased in the
degree-constrained case because of the cost of finding a degree-constrained subgraph as com-
pared to an unconstrained one. Note that for any degree-constrained heuristic, backtracking
increases the run-time over its unconstrained equivalent heuristic. However, because back-
tracking occurred so infrequently (a maximum 42 out of 2000 cases), it did not have a
significant effect on the results.

The results presented so far demonstrate the cost versus quality-of-solution tradeoffs in
the choice of a heuristic for degree-constrained multicast. At one end of the scale, clus-
ter Repetitive (heuristic SPH-Z) yielded the uncontested best solutions. However, it finds
these solutions at much higher cost than the other clusters. Clusters Naive and Dual As-
cent, although much cheaper, varied wildly in the average quality of solutions between the
degree-constrained and unconstrained cases. Neither appeared to be a suitable choice. Thus,
the best tradeoffs are found in the remaining clusters Simple and Kruskal. Cluster Simple
(heuristics SPH, SPH-R and A29) yielded the cheapest solutions of the two. Despite the
simplicity of these algorithms, they produced solutions on average within 2% of the best
solution found. Among the three heuristics in cluster Simple, SPH and SPH-R are favored;
Heuristic A29’s additional complexity only resulted in higher cost. Cluster Kruskal (heuris-
tics K-SPH and ADH) retained its relative middle position for both degree-constrained and
unconstrained graphs. It yielded better quality of solution on the average, while costing a
fraction of cluster Repetitive. However, its disadvantage was the larger number of cases it
could not solve, as shown in Table 3. Of the two heuristics in cluster Kruskal, heuristic
K-SPH is favored because of its relative simplicity.

While heuristic Naive performed poorly relative to the other clusters in the comparison,
it is the easiest heuristic to update with new members: New members join simply by using
the shortest paths between themselves and the multicast tree. If quality of solution is of less
concern than quickly updating membership, Naive is a suitable candidate.

Figure 8 show the ratio of constrained heuristic quality of solution to unconstrained
heuristic quality of solution for a uniform degree-constraint of 3. The degradation in the
quality of solution when all nodes have a uniform degree-constraint of 3 was well within 10%
in most cases, except for heuristics Naive and Dual Ascent. Similarly, the run-time ratio for
a uniform degree-constraint of 3 (Figure 9) is also relatively unchanged from that for the
case with random degree-constraints. These results lead us to believe that both the cost
and quality of solution of the heuristics in the cluster Simple are relatively insensitive to the
degree constraints, and provide efficient solutions for the vast majority of multicast problems
in large, sparsely-connected networks.

4.2 Effectiveness of Graph Reductions

The graph reductions applied, simple as they might seem, achieved remarkable results. We
restricted ourselves to graph reductions S degree 1, S degree 2, and Z degree 1 because
these were of reasonable cost and could be applied to the degree-constrained case. We had
to discard many other graph reductions [10, 11, 27] because they eliminated nodes and edges
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Figure 9: Run-time ratios when the maximum degree-constraint = 3.
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needed in the degree-constrained case. For example, some graph reductions identify shortest
paths between multicast members as solution edges, eliminating longer paths. However, in
the degree-constrained case, the multicast tree containing this shortest path may violate
degree constraints of nodes in its path. Consequently, a longer path may be part of the
final solution edge and should not be eliminated by the reduction. Of the reductions left,
we also discarded those whose cost outweighed their benefit. For example, the reachability
test (RT), outlined in Section 4, is as expensive as heuristic SPH, yet did not improve any
of our sample networks. In fact, all of the reductions employed in our simulation together
required far less than 1% of heuristic SPH’s cost and achieved much better results.

Figure 10 displays the histograms for nodes and edges reduced as a result of applying
the graph reductions to the 200 test networks we used. The reductions might reduced
an average graph in our simulations by 7% of its nodes and 3% of its edges. Figure 11
shows the percentage of solution edges identified by the reductions. In our experiments,
the reductions on average identified at least one solution edge for approximately 4% of the
multicast members.

Performing the reductions first has two positive effects on the subsequent heuristic. First,
some solutions of inferior quality are eliminated. Our empirical evidence indicates this has
a positive effect on the heuristics, particularly those in cluster Simple (SPH, SPH-R and
A29). Solution quality for this cluster in some cases improved from 12% to within 5% of
the best heuristic solution found. Second, the run-time of heuristics also improves. Our
results indicate an improvement of 10-20% in heuristic run-time for many cases. This fits
the 17-20% improvement predicted using the time complexity for heuristics ADH, SPH and
SPH-Z [27].

5 Concluding Remarks

In this paper we studied the degree-constrained multicast tree problem as applied to point-
to-point networks and evaluated the effectiveness of several heuristic algorithms based on
modifications of algorithms for the unconstrained Steiner-tree problem. These heuristics for
finding degree-constrained multicast trees were compared in terms of their cost (running
time), quality of solution, and the number of networks they could not solve.

Our results show that many of the Steiner heuristics tested yielded degree-constrained
multicast trees within 5% of the best heuristic solution found in almost all of the networks
tested. Surprisingly few of our networks were unsolvable. In those cases where no solution
was found by a heuristic, backtracking solved many of the remaining cases. In addition,
relatively cheap heuristics produced high quality results while others of greater complexity
did not justify their additional effort.

Of the heuristics simulated, simple Steiner heuristics such as SPH and SPH-R emerged
as the clear winners with an attractive balance between the conflicting objectives of solution
quality and algorithm complexity. The next least expensive heuristics K-SPH and ADH
often gave better solutions at moderate, extra expense. Heuristic Naive, our expected worst
Steiner heuristic, often did produce the worst solution; however, it also produced many
solutions of surprisingly high quality. This result matches that of Doar and Leslie [§8]. The
quality of solution of the more complex heuristics A29 and Dual Ascent rarely justified their
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Figure 10: Distribution of nodes and edges identified by graph reductions.
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additional effort.

As expected, dense networks posed much less of a challenge to degree-constrained Steiner
heuristics than sparse networks. In fact, our degree-constrained heuristics easily solved all the
dense networks we tested without backtracking. Consequently, our focus in future research
will continue to be on sparse networks.

An interesting result from our simulations is that the need for unlimited multicast capa-
bility in the individual switches of a wide-area network (such as an ATM network) may be
overstated. The median degree-constraint in our simulations with random degree-constraints
was 3. Our additional simulations with a fixed degree-constraint of 3 (that is, a fanout of 2
per node), also produced similar results. Thus, our results show that ATM switches in a large
wide-area network need not be designed with unconstrained multicast capability. Instead,
the ability to make even one additional multicast copy (degree-constraint of 3) would allow
our DCSP heuristics to find a solution in many, perhaps even the overwhelming majority, of
cases.

All the degree-constrained multicast heuristics described in this paper are centralized
algorithms. We are currently working on distributed algorithms that do not require each
of the network nodes to store the entire topology of the network. We are also working on
algorithms for incrementally updating the multicast tree when nodes join and leave the tree.
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