General Game-Playing and
Reinforcement Learning

Robert Levinson

UCSC-CRL-95-06
supersedes UCSC-CRI-93-38 and UCSC-CRL-94-32
partially supported by NSF Grant IRI-9112862
May 5, 1995

Department of Computer Science, University of California, Santa Cruz, CA 95060
E-mail:levinson@cse.ucsc.edu
Phone: 408-459-2087

ABSTRACT

This paper gives a blueprint for the development of a fully domain-independent
single-agent and multi-agent heuristic search system. It gives a graph-theoretic
representation of search problems based on conceptual graphs, and outlines two
different learning systems. One, an “informed learner,” makes use of the the graph-
theoretic definition of a search problem or game in playing and adapting to a game
in the given environment. The other, a “blind learner,” is not given access to the
rules of a domain, but must discover and then exploit the underlying mathematical
structure of a given domain. Relevant work of others is referenced within the context
of the blueprint.

To illustrate further how one might go about creating general game-playing
agents, we show how we can generalize the understanding obtained with the Morph
chess system to all games involving the interactions of abstract mathematical re-
lations. An example of a monitor for such domains is presented, along with an
implementation of a blind and informed learning system known as Morphll. Per-
formance results with Morphll are preliminary but encouraging and provide a few
more data points with which to understand and evaluate the blueprint.

Keywords: games, mathematical structure, heuristic search, machine learning,
hypergraphs, neural networks, analogical reasoning, RETE, relational patterns,
hierarchical reinforcement learning

CONTENTS i

Contents

1 Introduction L 1
1.1 Previous Work By Others on General-Game Playing 2
2 Generic Representation of Games and Search Problems 4
2.1 Generic Game Taxonomy of Popular Games 5
3 Generic Games with Abstract Operators 6
3.1 Evaluation of the Graph-theoretic Representation Scheme 9
4 Extending Tic-tac-toe and Other Games to All Hypergraphs. 10
4.1 Reductions in the Basic Tic-tac-toe Hypergraph Game 10
4.2 Other Basic Hypergraph Games 10
5 Review of Original Morph Model o L. 12
6 Morph II: Improving on Morph. o oL 13
6.1 Weaknesses in Morph L oo oL 13
6.2 The GLM and the Reinforcement Hierarchy 14

6.3 Generating the Reinforcement Hierarchy From the Rules of
aDomain. Lo L e 15
7 Blind Learning e 16
7.1 Blind Learning in MorphIl 17
8 Exploiting Analogous Relationships in Blind Learning 18
9 Morphll: Domain-Independent Games Environment in C++ 18
9.1 Monitoring State-space Search Incrementally Using UDS. 19
9.2 What Happens After an Operator is Selected 20
9.3 Performance Results o o oL 21
10 Conclusion oo e e 24

References e 28

1. Introduction 1

1

Introduction

Artificial intelligence research would benefit from a unified view from which to study the
past and a practical plan from which to proceed into the future. With this objective in mind,
we suggest the following tenets or guiding principles for developing machine intelligence:

1.

10.

11.

12.

Intelligence is optimal problem solving in pursuit of specific goals under resource
constraints. (Note that no mention is made of human cognition or consciousness).

. Given this definition, domain-independence and adaptability are fundamental aspects

of intelligence. (Not to adapt, if economical, is sub-optimal)

. Single and multi-agent state space search problems are a large and important class of

problems in which to develop and study machine intelligence.

. The task before us is to develop fully domain-independent methods for working in

state-space search domains.

. The knowledge required to perform well in these domains is embodied in the definition

of the domain and the mathematical structure of the state space, i.e. the reasons why
a heuristic is good are explainable within the framework of the mathematics of the
space.

. Experience in a state space reveals mathematical structure that can be exploited by

an optimal problem solver. (What is not revealed, need not be exploited).

. For many practical problems, experience alone reveals enough structure to lead to

efficient problem solving.

. The underlying mathematical structure in these domains is independent of the labels

given to the conditions and operators in the state-space definition.

. This mathematical structure is embodied in the interactions of the conditions, defined

by the operators of the domain, the relationship of this interaction complex to a given
state, and the relationship of the given state to the goal state.

The effects of such interaction complexes are entirely domain-independent and are
governed by regular laws, just as such interactions in matter and energy are governed
by the laws (not necessarily all known) of physics.

These laws once discovered and exploited by computers will make them intelligent
under the definition given above.

Computers may be an important tool in the process of discovering these laws.

With these tenets in mind and the ultimate goal of discovering the laws of state-space
search before us, we suggest a division of research efforts to work on these separate but
absolutely complementary projects:

e GENERIC-REPRESENTATION: A mathematical (probably based on graph theory

and group theory) representation of the definition of a single-agent or multi-agent
state-space search problem that is independent of all domain-specific or arbitrary
labels, i.e. a program that can convert the declarative definition of a state space into
a more generic, but equivalent, mathematical representation.

o INFORMED-LEARNER: A program that performs well in state-space search given

the abstract mathematical definition of the state space, supplied domain-
independent heuristics and experience.

2 1. Introduction

e BLIND-LEARNER: A program that performs well on state-space search problems
given no definition of the state space or pre-supplied heuristics — just the rewards at
the end of the game, experience and legal states (as raw bit vectors) to choose from
at each choice point.

e MONITOR: A programming environment that allows experiments to be easily de-

signed and carried out on the above topics.

Nomne of these projects is designed to directly produce the laws of state space search but
to gradually give us an understanding that could lead to these laws and to their empirical
validation. Meanwhile work on these problems increases the power of the machine. In
this paper, in addition to summarizing previous research, we outline our own work on each
of the four subprojects which has led to a system known as Morphll. We hope that an
understanding of Morphll will lead to further appreciation of (and work on) the blueprint
we have laid out above for Al research efforts.

Morphll is a successor of the Morph chess system [LS91, GL94] that has achieved
approximately novice strength despite using just 1-ply of search and few human-supplied
heuristics. Morphll is a fully domain-independent version of Morph as opposed to the
original which despite good intentions, carries some human biases and chess idiosyncrasies.
Further, we believe the new learning mechanism described in the sections on informed-
learning and blind learning directly addresses limitations of the original Morph model:
overly-specific graph patterns and insufficient freedom given to the system with respect to
the class of patterns that can be formed and to the combination of their weights.

1.1 Previous Work By Others on General-Game Playing

Fortunately, work on these four projects (directly and indirectly) has been taking place
both within the computer game-playing community and with Al in general. The most pop-
ular approach to date in game-playing research has been the incorporation of search coupled
with game-specific evaluation. The search approaches [Kai90] typically meet our objectives
for domain-independence and generality, but the evaluation mechanisms generally do not.
In addition, until a domain is solved (i.e., perfect play can be achieved within specified
resource constraints) the choice of a search algorithm is itself a heuristic. Thus, even the
traditional domain-dependent approach could benefit from a more thorough mathematical
understanding of state-spaces.

Minimax alpha-beta search was introduced in 1956 by John McCarthy [RN94], and
has been used in Samuel’s original checkers program and by the large majority of game-
playing systems since. Thorough analytic studies of alpha-beta were done by Knuth and
Moore [KM75] and later by Pearl [Pea82]. In addition to alpha-beta there has also been
a large amount of research on selective search and pruning algorithms [Kai90]. Although
many of these algorithms have been applied only to a small number of popular games like
chess, checkers and Othello, they are general enough that they could be applied to any
perfect-information game. Algorithms in this category include B* [Ber79], SSS* [Sto79]
and conspiracy number search [McC98]. Baum et al. recently gave a mathematically
well-founded algorithm [Bau93]. Beal [Bea80] and Nau [Nau80] constructed hypothetical
“pathological” games in which alpha-beta search becomes less accurate the more deeply it
searches, and thereby showed that the approach is not fully applicable, despite the fact that
it seems to work well on most popular games. Search strategies also become significantly
less effective in games of imperfect-information or games with large branching factors (such

1. Introduction 3

as Go). Finally, minimax search strategies maximize performance, assuming a worst-case
scenario in which the opponent always selects the best moves. A number of important
research issues remain in which this assumption has been relaxed (e.g., trying to play into
positions in which the opponent is likely to not find the winning line [Jan90]). In this case
statistical and mathematical models of the game and the opponent increase in importance.

Recently, Beal [BS94] showed experimentally the interesting result that for certain games
such as chess, even random evaluations when coupled with minimax can lead to improved
play with increasing search-depth, because maximizing and minimizing favors nodes with
large branching factors and hence roughly corresponds to a mobility coefficient. This
apparently simple result has important consequences for adaptive game-playing systems, as
it provides a mechanism by which a system can bootstrap itself from no domain knowledge
and the ability to use a few ply of search, in those domains where mobility is relevant.

Single-agent problems have, of course, also been approached through search with such
algorithms as A* [Nil80], best-first-search [RK91], and means-ends-analysis [EN69]. To
discuss single agent search in depth is beyond the scope of this paper. The important thing
to note about the traditional search approach is that it tends to obviate the need for the
program or programmer to have a thorough mathematical understanding of a domain, given
that a fast and reasonably accurate heuristic evaluation function is available. Although
such an approach has many positive practical consequences, it does not necessarily increase
our scientific understanding of how and why heuristics and search algorithms perform as
they do. Further, as the existing search approaches have important limitations (such as
horizon effects) in complex domains, a thorough understanding of the mathematics of state-
space problems would undoubtedly lead to more effective search algorithms as well. The
limitations of the search approaches have suggested the use of abstract and hierarchical
planning algorithms that attempt to view a game state as a collection of subproblems to
be solved [Wil80, Pit76, Min84, LNR&7, FD&9]. To date, these approaches have not proved
powerful or general enough to be serious practical competitors to brute-force search. But
some researchers expect that to change once the mathematics behind planning is understood
and a wider variety of games such as those with imperfect information are considered [SN93].

A number of individual games have succumbed to mathematical and computer-aided
analysis [BCG82, All92, Vaj92]. We believe that through a general graph-theoretic approach
this type of analysis can be extended to much wider classes of games and problems. For
example, mathematical techniques have recently been applied successfully to previously
considered intractable Go endgames [BW94].

Reinforcement learning has already proved to be highly successful in learning the eval-
uation functions for specific games such as checkers [Sam59], Othello [LM88] and backgam-
mon [TS89]. The latter two programs developed to world-class players in their respective
domains. Such successes provide important datapoints in pursuing the blueprint; these
systems used only a moderate amount of human assistance (in defining their feature and
training sets) and thus were not too far from the ideal of full domain-independence. Re-
inforcement learning in general is becoming increasingly popular [Sut91] because it can
minimize the need for human assistance.

Neural networks [RM86] and genetic algorithms [Bet81, BGH89, Gol89, Hol75] can be
viewed as blind-learners. These systems attempt to learn functions given pre-classified
input-output pairs. To the extent that the supplied classifications can also be generated
automatically (with temporal-difference learning [Sut88], for example) the learned functions
coupled with search would produce a general game-playing system. However, these systems

4 2. Generic Representation of Games and Search Problems

do not yet incorporate a thorough graph-theoretic understanding of machine learning do-
mains in their structure. They would be lost in complex domains such as chess, in which
high-level relationships and analogies (or large amounts of search, as is currently done) must
be exploited to handle the large combinatorics of the sample space. It should also be noted
that most reinforcement learning systems and neural nets do not derive their structure di-
rectly from a declarative specification of a domain , but instead have their structure supplied
by a human or have a fixed structure that is hoped to be generally applicable. To date,
most such systems only perform well in domains for which their application was anticipated
and for which they were tuned. Inductive learning algorithms [Qui86, Mic83] have tended
to suffer from similar limitations, despite showing strength in well-controlled settings. Re-
cent developments in inductive logic programming [Mor94] may eventually make inductive
learning more generally applicable. To achieve the goal of the informed learning project,
the structure of the learner itself may need to be dynamically adjusted by the system in a
way that is specifically suited to the problem in question. With Morphll we illustrate one
method in which this might be done.

2 Generic Representation of Games and Search Problems

In this section we illustrate how the GENERIC-REPRESENTATION of games may be
pursued in graph-theoretic terms. We claim that a large class of state-space games can be
represented by utilizing the notion of directed hypergraphs. A hypergraph is a set of nodes
S coupled with a set of hyperedges that are subsets of S. A hyperedge is directed if its nodes
are ordered. A hypergraph is nested if its nodes themselves may be hypergraphs. We will
call a hypergraph basic if it is not nested.

We now define the following game that we call the “generic-hypergraph-game.” The
specifications have alternatives that may be selected to form other games.

e Each player starts with 0 points.

e Let P1,...,Pn be a finite set of primitive boolean conditions.

e States are n-tuples [P1,...,Pn] representing the truth-values of these conditions.

e The game starts in some specified initial state or the initial state is selected randomly.
Precisely, the initial state is chosen randomly from a set of states satisfying a given
set of conditions.

e An operator is an ordered pair of sets of primitive boolean conditions. The first
represents its preconditions and the second its postconditions. An operator is legal at a
given state if its preconditions are satisfied. If an operator is selected, minimal changes
are made to the current state so that the postconditions become true. Alternatively,
operators could have probabilistic effects. At each state one agent is asked to select
an operator from among the legal ones.

e Another set of operators is executed automatically after each state is created. These
“reward operators” are usually used for standard bookkeeping operations such as
assigning the proper number of points to each player.

e Terminal conditions are hyperedges, such that if each of their conditions is achieved
the game is over. Games also terminate if no legal moves are available for the player
to move or (possibly in addition) if a position repeats with the same player to move.

e Players alternate turns selecting applicable operators. The player with the most points
at the end of the game wins.

2. Generic Representation of Games and Search Problems 5

o Knowledge limitations: Normally each player has perfect knowledge of the operators
and of the current state. Variants include restricting each player’s knowledge to a
certain set of conditions in the current state, or to certain definitions of the operators.

2.1 Generic Game Taxonomy of Popular Games

Here we outline how popular games can be viewed as variants of the generic hypergraph
game of the previous section.

e Single-agent search problems such as the tile puzzles fit naturally in this framework.
If the object is to use as few moves as possible, a primitive condition is set that is
unaltered by the rules and decrements the player’s score by 1 (through the reward
operators) each time it occurs.

e Tic-tac-toe-like games (such as Qubic [All92], Renju and GoMoku) in which objects
are placed and never moved, have operators with one pre-condition, one post-condition
and all terminal hyperedges also produce positive rewards.

e Hex is a game played on a grid of hexagons. Players alternate taking possession of
hexagons; one player tries to make a path of his own hexagons from top to bottom
and the other player tries to make a path from left to right. Hex fits the tic-tac-
toe format with the hexagons as nodes, the various paths as the hyperedges, and
rewards assigned correspondingly to whichever player can win in that path. But
Hex can also be viewed as a “more complex” tic-tac-toe like game in that there are
an exponential number of hyperedges per nodes in the graph. Hypergraphs which
exhibit this property (including those for checkers and Go) have been shown to be
PSPACE-hard (for arbitrarily large boards) and are PSPACE-complete if restricted
to polynomial length games.

...the fact that a problem is PSPACE-complete is even stronger indica-
tion that it is intractable than if it were NP-Complete; we could have P=NP
even if P is not equal to P-Space [GJ79].

e Chess-like games, such as those defined in MetaGame [Pel92], have primitive operators
that are more complicated than those in Hex. Further, conditions once true may
become false. Note that in a natural “bit” representation for these games there may
be no explicit pieces or squares but boolean conditions representing piece-square pairs.

o Go-like games, such as Othello, with point accumulation have richer reward structures
than tic-tac-toe. Although related to Hex, they have an even greater combinatorial
explosion of goal states over primitive nodes since they involve goals that are, in
essence, sets of hyperedges (nested hyperedges) themselves.

e Bridge-like games have random initial states. Bridge can be represented as 52 x 6
conditions for which player owns which card, whether it has been played, and whether
it has been played in the current trick. The communication aspect of bridge can be
defined by simply making explicit the reward structure that encourages collaboration
and giving each player access to the information on other player’s selected operators
(corresponding to bids).!

! The simplicity of the specification, should not obscure the fact that there are rich and complex research
problems in getting computers to bid effectively or to learn to do so.

6 3. Generic Games with Abstract Operators

e Chance games, such as Monopoly and backgammon, require stochastic conditions to
be set on each move that then limit the legal moves available to the next player. The
notion of money in Monopoly may be defined directly as the number of points a player
has. Note that unlike previously mentioned games, having enough points may be a
necessary precondition for certain operators.

Clearly, this representation is not fully adequate. Certain games, such as the stock
market, fall out of this framework; some games are expressed unnaturally and are combi-
natorially intractable. Simply enumerating all of the terminal sets of conditions in chess
or Go is a daunting task for example. Still, by illuminating the mathematical structure of
these games, the verbiage accompanying individual domains that make us deal with them
singularly rather than holistically has been removed.? To address the intractability of the
generic hypergraph language, abstract operators, relations and variables need to be con-
sidered. MetaGame is an excellent example of generating generic chess-like games at the
normal abstract operator level. Barney Pell also has general heuristics that allow reason-
able MetaGames to be played without any domain knowledge other than the rules. These
heuristics are, however, confined to these chess-like games and do not generally deal with
the mathematics of state-space search itself, although it would seem that generalizing them
to this larger class of games is possible.

Hoyle [Eps92] is another domain-independent game-playing and learning system that
deals at the abstract operator level. It carries with it a rich set of advisors that embody
human-supplied heuristics. To the degree that these heuristics are truly domain-independent
and operate on a generic as opposed to specific game-representation we can say that Hoyle
is an informed learner, but certainly not a blind learner. In the next section we show
how a more natural graph-theoretic generic game structure may be developed by taking
advantage of the concept of variables and abstract operators, in much the same way as
predicate calculus extends propositional logic.

3 Generic Games with Abstract Operators

The generic game representation of the previous section suffers from a potential combi-
natorial explosion and an “unnaturalness” frequently characteristic of low-level languages.
The complexity at the low-level often obscures richer and simpler structures at higher levels
of description. To reach a more natural definition of generic games we add the notions
of domain objects, static relations, dynamic relations, variables and bindings, but retain
the “label-free” framework by omitting the arbitrary names assigned to objects, conditions
and operators.> The framework, incorporating state space search, is inspired by Peirce’s
existential graphs [Rob92] and the more modern version “conceptual graphs” developed by
John Sowa [Sow83] and our own work in experience-based planning [LK93].

The state space search paradigm breaks problems down into initial conditions, terminal
conditions (goals) and operators. It continues to be one of the most pervasive problem

?Even precisely defined and well-accepted mathematical concepts are not always as general and as
appropriate as they could be, and thus may obscure deeper relationships [Ham72].

?Once this is done conceptually the names may be retained as mnemonic aids for humans, but recognized
as arbitrary by the machine.

3. Generic Games with Abstract Operators 7

solving models used in AI research.! We now show how all state space search problems
as they are normally formalized [Kor87] can be viewed as relation-based transformations
over hypergraphs, (which are a special case of conceptual graphs). Relations (in the form
of predicates and functions) are also the basis for formal first-order logic, the foundation of
many of the declarative representations traditionally used in symbolic Al. It is our thesis
that logic, graph theory and state-space representation should be tied tightly together. In
particular, the notion of static and dynamic relations presented below is original and adds
a temporal dimension to traditional model theory [Tar56] by relating logic and search.

The following is a description of the components of a search problem, with running
examples taken from tic-tac-toe® and Towers of Hanoi on three disks:®

e Fach domain has a finite set of domain objects. In tic-tac-toe the objects will be
squares {51,52,53,54,55,56,57,58,59} and pieces {X,0,B (for blank)}. In Towers of
Hanoi, the objects are Pegs{P1,P2,P3} and Disks {D1,D2,D3}.

o Unary, binary and higher relations may be defined on these objects. An n-ary relation
is a set of n-tuples of domain objects. In the finite search domains, rather than defining
types explicitly we shall simply note that they are implicitly defined as the set of
objects that occur in any single field (attribute) of a relation. At the implementation
level, relations that are symmetric or transitive may be abbreviated by specifying
a kernel set of tuples and then giving the mathematical properties from which the
remaining tuples can be inferred. Other abbreviations and computation of relations
are possible, such as finding adjacent squares on the chessboard through calculation
based on Cartesian coordinates. We divide relations into two classes: static relations
are those whose definitions (tuples) remain constant for a given game, and dynamic
relations are those whose content can change from state to state. A frequent use of
static relations is in defining board topology (adjacency of squares). Most domains
have a dynamic relation corresponding to ON to say which pieces are on which squares.

In tic-tac-toe, we define a THREE-IN-A-ROW static relation corresponding to win-
ning sets of squares: {(S1, S2, S3), (S4, S5, S6),...} and the ON dynamic relation
initialized as {(B,51),(B,S2) etc.}. In Towers of Hanoi there is a static relation
SMALLER-THAN initialized to: {(D1,D2),(D2,D3),(D1,D3)}. Towers of Hanoi also
has the dynamic relation ON, initialized to: {(D3,P1),(D2,P1),(D1,P1)}. Thus, the
initial state of Towers of Hanoi would be viewed as the following hypergraph: 6 nodes
labeled P1,P2.P3.D1,D2, and D3 and 3 binary directed hyperedges labeled ON con-
necting D3,D2, and D1 each to P1. The goal is to transform the graph to a similar
one in which P3 has replaced the role of P1.

e Operators define transformations over states by changing the contents of dynamic
relations. Operators are specified by giving sets of preconditions, additions and

*The objective of a state-space search problem is to find a sequence of operators (transformations) that
will convert a state that satisfies the initial conditions into one that satisfies the terminal conditions, under
various optimality criteria and resource constraints.

®Tic-tac-toe is played on a 3x3 board. Two players X and O alternate turns selecting cells; X goes first.
The first player to complete a row, column or diagonal wins.

STowers of Hanoi is a single-agent game involving three disks “small”, “medium”, “large” placed on top
of each other in order on the first peg of three. The object is to move the disks one at a time such that at
no time is a disk on top of a disk smaller than it on the same peg and such that the disks finish all on the
third peg.

3. Generic Games with Abstract Operators

deletions. FEach of these sets can be viewed as a conceptual graph or hypergraph
and their combination is a nested hypergraph.

For Tic-Tac-Toe there is an operator MOVE(piece,square) with precondition ON(B,
S1), add condition ON(X,S1) and delete condition ON(B,S1). It is assumed the board
is always oriented with X to move. For Towers of Hanoi we have the following MOVE
operator:
MOVE(d1:disk,pl:peg,p2:peg) =
pre: ON(d1,pl) AND ~(pl=p2) AND ~((ON(d2,p2) OR ON(d2,p1))

AND SMALLER_THAN(d2,d1)).
add: ON(d1, p2)
del: ON(d1l, pl)
As a further example, the SWAP operator which switches a bottom block for a top
block in the blocks world [Nil80] and vice versa in a tower of three blocks has this
representation:
SWAP (block:x, block:y, block:z)=
pre: ON(x,y) AND ON(y,z) AND CLEAR(X)
add: ON(z,y)

ON(y,x)

CLEAR(z)
del: ON(x,y)

0N (y,z)

CLEAR(x)
This representation has an equivalent operator graph involving three variable nodes
and six dynamic relation edges. Such a representation of SWAP could apply to
thousands of domains that involve this type of swapping. Moves in tile puzzles are
an instance, but where one of the variables is replaced by a domain object (the blank
tile).
States are hypergraphs over domain objects. As the tuples in the static relations are
always the same, it is only necessary to state the dynamic relations when representing
a state. Operators directly affect the contents of dynamic relations.

An operator is applicable in a given state iff there is a 1-1 mapping in variables of the
preconditions of the operator to domain objects, such that all relations specified in the
operator are true (or false, if negated) of those domain objects. The result of applying
the operator is to remove from the current state those tuples corresponding to the
operator’s deletions and add those tuples associated with the operator’s additions to
the contents of the dynamic relations. Since static relations are constant throughout
the problem solving process, those bindings of objects to variables that could ever
possibly (constrained by the static relations) satisfy an operator definition, can in
principle be computed ahead of time, leaving only the dynamic conditions to be
checked. This is effected in the implementation presented in Section 7.

Terminal conditions are defined in exactly the same way as preconditions, addition and
deletion conditions of operators. 1t is automatically assumed that a player having no
legal moves is terminal. For tic-tac-toe, we have THREE-IN-A-ROW(s1,52,s3) AND
ON(X,s1) AND ON(X,s2) AND ON(X,s3) as terminal. In Towers of Hanoi, we have
ON(D1, P3) AND ON(D2, P3) AND ON(D3, P3) as terminal conditions.

Reward conditions are conditions that are coupled with a reward to each player based
on the outcome of the game. For Towers of Hanoi and tic-tac-toe, reward conditions

3. Generic Games with Abstract Operators 9

are the same as terminals and assign a win to the player who has just moved.

o Finally, FLIP is a static binary relation over domain objects used to define symme-
tries, so that a game can be encoded from one player’s perspective only. For tic-tac-toe
FLIP is: {(X,0),(0,X),(B,B),(51,51),(52,52)...}. Towers of Hanoi, as a single-agent
game, does not require a FLIP operator. Similar transformations were introduced in
MetaGame.

o In summary: An abstract game or search problem is defined as a finite set of domain
objects, and finite sets of static relations, dynamic relations, operators, terminal
conditions and reward conditions. Finally, for convenience in encoding, we define
a symmetry condition known as FLIP.

Thus, many single and multi-agent search problems can be viewed as games of
(hyper)graph-to-graph transformation. This conclusion is not surprising, given that con-
ceptual graphs and other semantic network schemes have been shown to carry the same
expressive power as first-order logic. The conclusion is significant, however, in that it
suggests the potential for graph-theoretic analysis of the rules of a domain and ensuing ex-
perience for uncovering powerful heuristics and decision-making strategies [LK93, 1L.593]. It
also suggests that state-space search can be monitored in a uniform manner; this topic is
discussed in Section 7.

3.1 Evaluation of the Graph-theoretic Representation Scheme

The hypergraph representation scheme presented above does not include facilities for
inference over static and dynamic relations. Such a facility is available in conceptual graph
theory and will be available shortly in the Peirce conceptual graphs workbench [EL92,
Gai93] in which our learning system is implemented.

An important step in showing the generality of the graph-theoretic representation is to
show that games generated from the MetaGame generator can fit this structure. Although
all the implications of manipulating such a structure are yet unknown, initial results show
great potential. For example, any macro-operator that is executable in one search domain
will work in any other (single-agent) domain that carries that operator structure. With
such a domain-independent graph-theoretic representation we have been able to show that
the entire TWEAK planning system can be reduced to 5 abstract operators and a simple
control structure, and that Roach’s robot problem and Sussman’s anomaly can be solved
using the same database of domain-abstracted operators as macros [LK93].

Using the variable-free, graph-theoretic definition of problems it is also possible to define
a hierarchy of single-agent problems by “easier than” using sub-hypergraph-isomorphism.
Informally, Problem A is easier-than Problem B if there is a 1-1 mapping of bits in problem
A to bits in problem B and a mapping, not necessarily 1-1, from operators in B to less-
restricted ones in B. An operator X1 is less-restricted than another operator X2 under a bit
mapping M, iff every state-to-state transformation by X2 can also be accomplished by X1
under the mapping M.

Knowing that problem A is easier than B becomes a good source of heuristics. A solution
path between two states in B is also a solution path to corresponding states in A, though
perhaps not optimal. Hence the length of such a path becomes an upperbound on the
optimal solution length in A. Likewise the length of a solution path in A becomes a lower
bound on the length of an optimal solution path in B and thus conforms to the traditional
notion of admissible heuristic [Nil80]. Finally, the hierarchy over problems by easier-than is

10 4. Extending Tic-tac-toe and Other Games to All Hypergraphs.

in conformance with the hierarchies generated dynamically during abstract planning [Kor88,
Sac74].

4 Extending Tic-tac-toe and Other Games to All Hypergraphs.

To further illustrate the unifying power of studying games based on their mathematical
structure let’s take a closer look at the tic-tac-toe-like games. Such games reduce to the
following basic hypergraph game.” Given a hypergraph, players alternate selecting nodes
and the first player who owns all nodes in any given hyperedge wins. We shall assume in the
discussion below that there are only 2 agents. For example, 3x3 tic-tac-toe has a graph of
nine nodes and 8 hyperedges. 3x3x3 has 27 nodes and 48 hyperedges. 4x4x4x4 (Qubic) has
64 nodes and 84 hyperedges. The discussion here builds directly on previous work on forks
[Eps90], GoMoku and Qubic [Al192], hopefully putting that work in proper perspective.

The hypergraph representation makes symmetries fully realizable through graph iso-
morphism. This mathematical representation also lends itself to reasonable heuristics. For
example, the quality of a node choice is proportional to the number of “live edges” it is
involved in and inversely proportional to the number of nodes remaining in each of those
edges. Through the use of subgraph analysis more precise heuristics can be developed
[Eps90].

4.1 Reductions in the Basic Tic-tac-toe Hypergraph Game

It is useful to become familiar with reductions that preserve game-theoretic value in
basic hypergraph games, since such reductions may very well not have been apparent from
the traditional state representation. After each move, a hypergraph may be translated to
a smaller but equivalent representation to calculate the value of a state assuming optimal
play. Given the owner of each edge, and which nodes have been played, edges with nodes
owned by both players may be removed. Edges involving exactly the same nodes can be
reduced to a single-edge that preserves ownership if all owners are the same, or carries no
owner if both agents own such an edge. Similarly, if ownership is the same, edges that are
subsumed by other edges are removed. So with each move:

1. Remove each edge incident to the move but owned by another player.

2. Remove the node itself and set the ownership of all other affected edges to the player

who has moved.

3. If any edge now has zero nodes, the player who moved wins. If no more edges remain,

the game is a draw.

4. Remove all but one out of a set of duplicate edges and update ownership as described

above. Remove any edge that is a superset of another and carries the same ownership.

4.2 Other Basic Hypergraph Games

We have already shown how a game like tic-tac-toe may be played on any hypergraph
Other popular games may be generalized to all basic hypergraphs. These generalized games
may require more complex winning strategies than their smaller, fixed-size counterparts.
Reductions such as those above for tic-tac-toe are possible in most hypergraph games and
lead to more efficient and accurate reasoning.

"The hypergraphs in this section are basic, as opposed to the nested ones used in previous sections.

4. Extending Tic-tac-toe and Other Games to All Hypergraphs. 11

The birthday table or round table game [Vaj92] is described as follows:

We will assume two players, let us call them Left and Right. Left will seat
all the boys and Right will seat all the girls around a circular table with 15
seats. Assuming an unlimited supply of children of both sexes, both players
will alternate in their ‘moves’ (seatings). To preserve decorum no child may be
seated next to another of the opposite sex. Whoever is first unable to seat a
child loses and will be left to cope with the angry parents.

A generalized birthday game can be played on any hypergraph of n nodes and m edges
where each edge has one node designated as the center. With each move to a node, a player
gains that node and ownership of all hyperedges of which that node is a center. A player
is not allowed to move to a hyperedge that is owned by the other player. The first player
that has no legal moves loses. The specific 15 seat birthday game above would be played on
a hypergraph of 15 nodes and 15 hyperedges, with each node as a center of a 3-node edge.
The round table birthday games have a simple optimal strategy: if the number of seats is
even the second player is guaranteed a win by always moving to the seat exactly opposite
the last move of the first player. If the number of seats is odd, the first player wins by
moving anywhere and then invoking the even number of seats strategy, as if the first player
went second.

Another popular single-agent game is known as Merlin’s magic square [Vaj92]. This
solitaire game, often played on a 3x3 grid can be be generalized to any hypergraph. All
nodes start with parity 0. Each move changes the parity of all nodes in a given hyperedge,
i.e., 0 becomes 1 and 1 becomes 0. The goal is to design a sequence of moves that changes
all nodes to parity 1. Since the order of moves does not matter (all moves are legal at each
step) most of these games can be solved directly using linear programming or Gaussian
elimination. It is interesting to contrast the Merlin games to other search problems, where
move order does matter and applying linear programming then becomes very expensive or
impossible.

Finally, Nim [Vaj92] can also be extended for play on any hypergraph. Players alternate
taking sets of nodes from the hypergraph, but such that each set is contained within a
given hyperedge. The player who takes the last node wins. Most nim games are played
on hypergraphs in which all edges are disjoint. In these disconnected versions a simple
winning strategy based on binary arithmetic exists. Does this strategy extend to connected
hypergraphs as well? In addition to these games, many NP-complete problems [GJ79] such
as “set covering” can be formulated to take place on basic hypergraphs.

The characteristics of the basic hypergraph games are much simpler than the generic
nested hypergraphs of the previous section, which represent all state-space search problems,
but their analysis may lead to a better understanding of the more general case. For instance
it is desirable to analyze the chess-like games. These games have the following additional
features:

1. Operators are more complex because they have multiple preconditions and postcon-
ditions.

2. Conditions can change non-monotonically; a condition which is true can become false
and vice versa.
Chess-like games are examples of perfect information, two-agent search problems. It is the
complexity of these games and the lack of detailed analytic understanding that has led us
to suggest the INFORMED LEARNING and BLIND LEARNING subprojects.

12 5. Review of Original Morph Model

In the following sections we discuss our group’s approach to blind and informed learning
with graph analysis and reinforcement learning. Many other learning approaches may prove
equally viable such as: neural networks [RMB86], genetic algorithms [Hol75], constraint
satisfaction [RK91], inductive logic programming, and explanation-based generalization
[FD89, KM90, RN94]. Most of these methods, however, must be extended to the general
case of all single and double-agent search problems, just as Morphll generalizes Morph.

5 Review of Original Morph Model

Morph is an application of our APS (Adaptive-Predictive Search) method for improving
search with experience. In APS, knowledge is stored as pattern-weight pairs (pws) [LF4a],
where patterns represented by conceptual graphs are boolean predicates over states, and
weights are estimates of the expected distance of states satisfying the pattern from a goal
state. Starting from a virtually empty database, pws are learned from search experiences
using a combination of learning techniques: temporal-difference learning, weight updating,
and pattern creation/deletion. Patterns are stored in a partially-ordered hierarchy by more-
general-than to facilitate efficient associative recall. Each state’s evaluation is formed as
a function of the weights of the most specific stored patterns that apply to that state.
Ideally, an APS system should converge to a database that serves as a reliable evaluation
function using 1-ply lookahead. In practice, APS learning agents couple with a guided
search based on previous experience. In addition to weights, other statistics such as
“number of uses” or variance may be stored with patterns to be used in determining their
importance and whether they should be maintained by the system. APS systems are similar
to genetic classifier systems, except that structural patterns are used, no fitness function is
available beyond the outcome of a given search, and the pattern representation and creation
mechanisms exploit domain-dependent symbolic knowledge.

To use APS in a given domain, a pattern language and pattern addition strategies must
be added for that domain. Thus, APS is applied to chess in Morph by supplying a graph
pattern language that depicts attacking and defending relationships between pieces and
other pieces or squares. Nodes are labeled with pieces types, e.g., white bishop, black king
etc. or full and partial square designations, e.g., 2, d5, on-rank-3, on-f-file, and directed
edges are labeled (direct, discovered, or indirect). To evaluate a position, the position
is translated into a directed graph using the pattern representation language and then
matched against a database of pws representing potential subgraphs of the given graph.
A typical position might use a weighted average of as many as 50 matched subpatterns
in its evaluation. Starting from an empty database, learning patterns of this type and an
additional pattern type that reflects material for each side, with 1-ply search Morph learns
the relative values of the chess pieces, defeats human chess novices, and draws its Gnuchess
trainer regularly.

Morph obviously benefits from a well-chosen pattern representation language. To con-
tinue toward the blueprint objective of a domain-independent learner, more responsibility
for pattern-creation must be placed on the learning system. It is this desire for generality
and deeper understanding that led us to the view of chess as an instance of a game of
abstract mathematical relations and to Morphll. Tt is hoped that an understanding of how
Morph has been adapted to the game of abstract mathematical relations may lend insight
on how other systems may be generalized as well.

6. Morph II: Improving on Morph. 13

6 Morph II: Improving on Morph.

Once we understand that search problems are games of graph-to-graph transformations
(as described in Section 2), we can also understand how knowledge of the existence of
a subgraph of a graph representing the current state may carry predictive value of the
outcome of the game. Inherent in such a graph are the potentialities of operators that can
be applied (or prevented) and a relationship to terminal conditions and goals of the game.
Our current understanding of state-space search does not enable us to assess the value as
expected outcome of such a subgraph directly. Instead it may be learned statistically, from
experience. In experiments, Morph is often limited to searching 1-ply ahead to force us to
focus on issues associated with heuristic construction and development.®

6.1 Weaknesses in Morph

If the the weights of subgraphs can be approximated accurately, why is Morph not a
better chess player?.

1. Inappropriate mechanisms for combining the values recommended by each of the in-
dividual subgraphs. The original hypothesis was that the pattern values could be
combined numerically, independent of which patterns have produced these values and
the relationship between these patterns. We now believe that this hypothesis is false,
if we are to produce a strong heuristic. The Manhattan Distance for tile puzzles
suffers similar shortcomings. In fact, experiments we have conducted in which one
attempts to combine the values of higher-level patterns (involving several tiles in the
8-puzzle), without knowledge of the underlying patterns but having their correct val-
ues (as expected distance to the goal for states having the pattern) have also proved
unpromising. These experiments were done by hand rather than using statistical
methods to form the combination equation as described below, but still demonstrate
the difficulty of using even perfect knowledge about a subset of patterns in a complex
domain.

2. Specificity of the graphs in the chess system. Although the graphs are reasonable
features, the system lacks the ability to have information learned about one graph
directly influence the values of other, similar graphs. This leads to many learning
inefficiencies, especially considering that some specific graphs may be only seen a few
times in the system’s career and that this may provide insufficient information to give
them accurate values.

Fortunately, these difficulties can be addressed. The original hypothesis underlying the
Morph design is that knowledge of the relationships between objects must be exploited. This
hypothesis has been borne out by the moderate success Morph has had using its graphs.
The hypothesis must simply be carried further: the two difficulties above both refer to lack
of exploitation of the relationships among the graphs themselves. In short, a scheme must
be developed that allows graphs to influence and benefit from the weights of similar graphs.

To proceed further, the following mathematical understanding is required: Morph’s
graphs are equivalent to a collection of dynamic binary relations that may occur in a
position, e.g., the direct attack relation, indirect attack relation. Thus, the same relations

8In actuality, the restriction to 1-ply search is one of degree rather than kind. Testing for Morph’s
patterns requires the equivalent of 1 or 2 ply of search.

14 6. Morph II: Improving on Morph.

that are used to describe the rules of a domain for a monitor may be used as the basis for
learning in that domain as well.

6.2 The GLM and the Reinforcement Hierarchy

To make Morph more general and to address the two learning limitations above we
developed the notion of a generic learning module (GLM) with the following properties:

e It contains n subsystems.

e It estimates the value of a state S, by first consulting its subsystems (themselves
generic learning modules) to get their estimates of the value of S. It combines their
values numerically (perhaps non-linearly) using an equation that it has learned. The
combining rule exploits the past accuracy of the subsystems.

e The module receives feedback for its predictions from a higher-level system.
e The module learns by modifying its combination equation.

e A primitive GLM is a GLM in with no subsystems; it simply attempts to predict the

feedback value using a dynamic constant function.

To focus this discussion on the important high-level learning issues defined above, we
may ignore the learning method used by the GLM. Conceptually, any function learning
method will do. We focus on the identification of the subsystems themselves and towards
their interaction. The notion of a hierarchy of control modules is consistent with the
hierarchical general systems theory of Mesarovic [MMT70, Kli85]. Our contributions include
the generation of the systems hierarchy from the declarative specifications of the domain by
exploiting the isomorphism of the terms “logical predicate” and mathematical relation, the
formation of higher-order controllers by combining relations, and the connection between
standard Al concepts such as state-space search, machine learning algorithm, and TD-
learning with graph theory and systems theory. The richness of these connections has been
achieved through the exploitation of the appropriate mathematical abstractions and thus,
lends some support to the emphasis on mathematics in the blueprint.

The individual learning modules form a partially-ordered hierarchy based on the “sub-
system” relation. The top level modules of the hierarchy receive feedback for individual
states in a state sequence using the same temporal difference (TD) learning [Sut88] mech-
anism as in Morph.? These modules in turn send feedback to their subsystems and so
on, bottoming out in primitive GLMs. During play, higher-level systems compose their
predictions by combining the recommendations of lower-level systems.

As games become more complex, the complexity of each individual learning module and
the hierarchy of learning modules will need to increase as well. For simple games, such
as 3x3 tic-tac-toe it is possible to write an evaluation function for optimal play that is
simply a linear combination of the values of objects (X,0, or B) on individual squares. This
corresponds to a 2-level hierarchy, with nine modules on the lower level and one module
on the top. However, for a game such as chess, an evaluation function based directly
on a linear combination of the values of objects on the 64 squares will not perform well,
because it is the relationship between objects and not individual objects that is critical. To
simply expect a non-linear evaluation function to succeed begs the question, “where do the
complex interactions it needs to consider come from?”. Also, to efficiently learn the proper

?After a game is completed, TD learning is used to assign new evaluations to all states that occurred
during the game, given the new information provided by the outcome of the game.

6. Morph II: Improving on Morph. 15

coeflicients for this complex function, knowledge must be transferred and shared between
terms. Otherwise, for example, all instances of a black pawn attacking the white queen
would have to be learned separately,

6.3 Generating the Reinforcement Hierarchy From the Rules of a
Domain.

We use the rules themselves to dictate the structure of the system hierarchy. Our
hypothesis is that for most domains the relations given in the initial description of a domain
are enough to support the patterns necessary for learning. A GLM is created corresponding
to each relation. GLMs are stored hierarchically based on dependencies. For example, in
the tic-tac-toe definition of Section 2 the hierarchy has a middle-level module corresponding
to ON , and two higher-level modules corresponding to MOVE and TERMINAL. Towers of
Hanoi has a similar hierarchy. The primitive low-level GLMs in these hierarchies correspond
to the weights of individual tuples that may be stored in the individual modules. Each tuple
of a higher-order module provides feedback to the tuples of lower-level modules that they
depend on. For example, the value of MOVE(D2,P2,P3) in the Towers of Hanoi is built as
a combination of the values of ON(D2,P2), ON(D1,P2) and ON(D1,P3).1°

To evaluate a state, the monitor proceeds as follows:

1. The monitor calculates incrementally, based on the previous state and the current
move, which tuples match and do not match a given state.

2. The weights of the lowest level tuples are propagated up the hierarchy and combined
to form the values of higher level tuples.

3. Each relation combines the values of its tuples and lower-level relations to produce
recommendations to higher-level relations.

4. The values of the highest-level relations are combined to produce the evaluation of
the state itself.
The weight combinations are based on the weights themselves as well as the previous
accuracy of the subsystems.

This design deals directly with the first weakness in Morph discussed above. Now
each module has its own combination function, so that weight combination is localized
and specific to the patterns under consideration. In the new framework two weights may
be combined differently by the problem solving system based on their location within the
GLM hierarchy.

The second weakness, inability of patterns to share information, has also been addressed.
Patterns with the same structure all occur in the same relational table. Thus the weights
of these patterns may be shared and generalized across the contents of the table. Further,
rather than patterns being added one at a time, pattern skeletons represented by new
relational tables may be inserted into the hierarchy and thus many new patterns processed
simultaneously. The exact nature of these relation table insertions is a topic for further work.
Finally, higher-level patterns are influenced directly by the values of low-level patterns.

1%In Morphll, the weights of the low-level tuples learned in the primitive GLMs use a learning rule that
takes into account the average of training values seen over time, the most recent training value, and the
accuracy of previous predictions.

16 7. Blind Learning

An important improvement is the use of relational tables as the GLMs in the hierarchy.
Most search and game domains can be represented using a small finite number of domain
objects. The relational tables may therefore be stored as boolean matrices, where each bit
corresponds to an individual tuple. Thus, the expensive graph matching of the original
Morph system has been replaced by simple bit matching operations (see Section 8). The
boolean matrices also potentially allow for the application and mathematical analysis of
efficient learning schemes based on linear algebra for the GLM.

7 Blind Learning

Clearly, blind learning is more difficult than informed learning. For example, in Morphll
with blind learning there would be no domain definition to guide the construction of the
learning hierarchy. Not only do the GLMs have to learn as before, the question of which
generic modules are formed and their interrelationship becomes a critical issue. Further,
recognizing redundancy so it can be exploited becomes a difficult matter. Not only does an
informed learner start from a better place, it should be able to classify its experience more
accurately.

Despite the difficulties, we feel that it is important for Al researchers to study blind
learning for several reasons:

1. In many practical domains one is not given access to any declarative description of

the rules.

2. The additional difficulties in blind learning give us a better appreciation for the
information supplied in rules.

3. Blind learning forces the learning system to make use of all available information. In
terms of Morphll, the system must develop a relational structure for a given domain
that works.

In our proposed environment for blind learning systems, the agent is given privy to the

following information and no more:

e The current state of the board as a finite-length vector of boolean conditions. This bit
description is exactly the information a legal move generator would need to generate
the correct set of legal moves in a given state. Beyond this, no interpretation is given
to the bits and they may be placed in any order. Just as informed learning may
operate in domains with rule encodings ranging from malicious to benevolent, blind
learning must operate with state encodings of varying quality.

o A set of rules , where the legal moves and rewards from any set of conditions is
fixed and the same for each player under some inversion or symmetry of the board or
domain objects.

e The states resulting from each of its legal moves at any given point in the game.

e The reinforcement for the game in terms of some reward that the agent is trying to
maximize.
Here is how tic-tac-toe might appear to the blind learning agent. The board is 18 bits:
2 bits for each square where 00 is empty, 01 is X, 10 is O, and 11 is an unused code. To
make things more obscure, one can interpret can consider the board as representing a base
3 number, so that each state could now be represented as a 14-bit binary number. Thus,
even a straightforward game like tic-tac-toe could quickly disguise any resemblance to the
standard board and the form of the rules of play. Such difficulties are intended. We believe

7. Blind Learning 17

that methods must be developed to produce a general learner, one capable of adapting given
adequate experience to any game-playing environment.

7.1 Blind Learning in MorphII

A system that can exploit not only relations between objects, but also higher-order and
analogous relations on them will surpass in performance most learning systems currently
in existence. Most systems do not exploit graph-isomorphism and higher-order morphisms
between structures despite the fact that such relationships are at the core of the structure
of those domains. For example, many implemented learners have difficulty even learning
the simple concept “any three consecutive bits are 1”7 [Hun94], apparently because the
simple adjacency relationship between bits is not being exploited or ternary relations are
not considered.

Our goal is to build a blind learner that constructs and exploits a reinforcement hierarchy,
just as in informed learning. The study of how blind learning might do this also leads
to insights on how the informed hierarchy may dynamically modify itself by adding new
relations.

Initially, the blind learner starts out with one low-level “state” GLM. This module views
the state as a binary relation, with potentially matching tuples represented by its bits. As
before, the weights of the individual bits are stored and learned in primitive GLMs.

The system uses its experience with the values of bits and their cross-correlation to
create higher-order and, hopefully, more useful relations. The system learns and stores the
following information due to pairing its bits.

e The frequency of two bit values (00,01,10,11) occurring together.
e The performance weights associated with the pairs of values.

e A linear or non-linear function that predicts with least squared error the weight of a
pair of values given the weights of individual values.
With an n-bit representation, there are 4*n*(n-1) possibilities to be studied. Under compu-
tational constraints the pairing operations might be restricted to those bits with the most
extreme or predictive weights.

The system then creates new relations based on the following;:

o A set of bits that never occur together, i.e., at most one bit is on at a given time is
called a variable. For example, variables might correspond to the pieces or squares in
board games.

e Pairs of bits that have similar values and similar weight combination rules.

e Sets of bits whose parity changes by a single operator application. These sets of bits

give topological information about the structure of the search space.

Currently, the system uses fuzzy graph matching and clustering [Wat85] to form higher-
level relations and the associated GLMs. For example, two variables whose bit pairs (one
bit from each variable) have similar combining rules are then combined to form a new
binary relation. We believe that through more thorough mathematical analysis, it may be
possible to put forth probabilistic arguments as to which relations should be created and
which should not be. Currently, the relation GLMs are monitored to determine which are
the most reliable predictors; those that are the best are retained. Higher-order relations
may then treat the absence or presence of tuples in an analagous manner to the way bits
were treated at the lowest level by the blind learner to create yet higher relations.

18 8. Exploiting Analogous Relationships in Blind Learning

8 Exploiting Analogous Relationships in Blind Learning

To gain further insight and understanding into the blind learning method proposed in the
previous section, consider the combinatorial explosion associated with chess, for example,
how hard it is to learn not to place the white queen where a black pawn can capture,
including places it has not yet been placed. Here we assume no knowledge of piece, square,
pawn, or queen. has been supplied.

Assume that the blind learning system has observed several instances of the pawn-can-
take-queen relationship (relationships between two uninterpreted piece-square conditions
due to this relationship) and then encounters a new instance, for example, a state where
the bit for ON(WQ,e4) is 1 and the bit for ON(BP,d5) is 1. If this instance, being a capture,
occurred before there would already be a specific tuple stored for this pattern. However,
if this instance has not been encountered before a generalization from similar instances is
required. We propose the following scenario for how this chess generalization, and many
others, might be learned:

1. The values of individual bits are learned through sufficient experience. Let X equal

the value learned for ON(WQ,e4) and Y equal the value learned for ON(bp,d5).

2. Variables are discovered from the information about which bits occur together. Let
V1 be the variable corresponding to the white queen, V2 to e4 and V3 to db.

3. Binary relations are formed from pairs of variables whose pairs of bits have similar
combining rules. The combining rule between two variables is a function that, given
the values of the bits which are on in the two variables, produces the value for their
conjunction. A binary relation that includes tuples from which a black piece on e4
attacks a white piece on d5 can be discovered as a result of the value of most attack
tuples being worth much less to white than the values of the components of the tuples.
Substituting the values of X and Y in this rule would give an approximately correct
result, especially if the value of the combination is inversely proportional to the value
of X.

Relations such as the “ed-attacks-d5” relation above might be collected together to form

a general “attacks” relation or specialized further to form a “wp-ed-attacks-d5” relation.
These concepts are very similar to Morph’s original human supplied edge types. Just like
the edge labels in Morph, the learning of new relations facilitates the analogical reasoning
process by making precise the combining rule for its components. Once made explicit, these
combining rules can then themselves be matched to find higher-level patterns.

The assumption is that games and search problems of interest have regular underlying
structure. To the degree that this assumption of regularity is false, the learning task will
be more difficult and more false inferences will be made before the proper structure can be
learned, if it can be learned at all. If no connection between these squares has ever been
noticed an agent ignorant of board topology and the rules, would find it virtually impossible
to recognize the interaction, unless it were inferable indirectly from other patterns.

9 MorphlIl: Domain-Independent Games Environment in C++4

The blind and informed learning testbeds described above are available as part of the
public domain software known as the Peirce Conceptual Graphs Workbench [EL92]. The
learning system in Peirce, known as Morphll, accepts the rules of a single-agent or a multi-
agent state-space search domain, translates them into conceptual graphs, and then monitors

9. Morphll: Domain-Independent Games Environment in C++ 19

games and learning via a “super-referee.” Thanks to object-oriented C4++ code, domain
independence is maintained through polymorphism of domain objects, and independent
C++ modules can be coded and tested and modifications can be made to our initial
implementations for blind learning and informed learning algorithms. Declarative rule sets
for a number of games are available, including chess, Towers of Hanoi, tic-tac-toe, Hexpawn3,
Hexpawn6, the 8-puzzle, Nim and the birthday party game. It is also possible to test the
power of different search algorithms and human-supplied heuristics in these domains. This
section discusses our implementation methodology, and summarizes performance results.

9.1 Monitoring State-space Search Incrementally Using UDS

Our primary discovery is that a relational hierarchy can efficiently monitor and enforce
the rules of a given domain, while it also serves as the basis for the hierarchical reinforcement
learner described in Section 4. We call the relational hierarchy and the algorithms that
operate over it UDS, for “Universal Data Structure” [Lev94].

The “Universal” in UDS refers to an effective monitor and executor of the specifications
for any given state space search domain. Due to the relation-based perspective of UDS,
the following ideas from the RETE algorithm [For82, Mir87] can be exploited with little
adjustment to the relational hierarchy defined above.

o The firing of an individual operator does not affect the current state radically.

e If an operator did not match in the previous cycle, it most likely will not match in the
current cycle either.

e On each cycle we should only try to rematch operators that could have been affected
by the previous operator application.

o Different operators may share a large amount of the same structure. Thus, separate

conditions of operators should only be matched once per cycle.

e Variable bindings from cycle to cycle remain relatively consistent.

UDS monitors search problems as follows. The hierarchy is used to represent dynamic
relations. Specific relations that are true are stored beneath the schema declarations for the
relations as specifications. A schema declaration and its tuples are equivalent to a table in
a traditional relational database and are called a table here. The preconditions of operators
are stored using the graph hierarchy. Repeated parts of operators are only represented
once in the relation hierarchy. Figure 9.1 depicts the initial UDS network for monitoring
the Towers of Hanoi. UDS differs from standard RETE implementations; UDS exploits
the relation-based representation of conceptual graphs to extend the types of patterns that
can be matched and speed of their matching. However, UDS naturally supports RETE as
well as a variety of other data manipulation methods appropriate to relational databases,
conceptual graphs and semantic networks.

Those dynamic relations that do not depend on any other relations in their definition are
known as primitive dynamic relations.'! The post-conditions of operators work directly on
the primitive dynamic relations through pointers to add or delete tuples from their contents.
Static relations are compiled away at network generation time because the set of tuples
that satisfy them remains constant. Conceptual graphs representing the preconditions of
operators are only re-matched if the content of one of their composing relations changes.
Only that part of the conceptual graph affected by the change need be re-matched.

"' The primitive dynamic relations form the low level GLMs that sit directly above the primitive GLMs
for weights) in the reinforcement hierarchy.
g

20 9. Morphll: Domain-Independent Games Environment in C++

P1 P2 P3
D1
D2
D3
+ON (dynamic) —eemTTTTT 77~ -> TERMINAL (dynamic)
, Disk | Peg
[DL|PL =T F
' D2 P2 R
D3 | P3
: e,
* MOVE (dynamic) <~ -7~~~ 7""==--- SMALLER-THAN (static)
Disk |Pegl |Peg2 |Delete/|add [¢ Disk1 | Disk2
DL| PL | P2 | e |D1P2e’ D1 | D2
D1| P1L | P3 e |D1P3e D2 | D3
D1 | D3

Figure 9.1: Initial state of UDS network for monitoring Towers of Hanoi.

9.2 What Happens After an Operator is Selected

1. A selected operator corresponds to a tuple in one of UDS’s operator tables, for
example, MOVE(D1,P1,P3) in Towers of Hanoi.

2. This tuple is bound to the given variable-arguments of that operator schema and lists
of add and delete tuples are built based on the add and delete conditions of that
schema. In our example, ON(D1,P1) will be deleted and ON(D1,P3) will be added.

3. These lists of tuples are added and deleted immediately from the appropriate primitive
dynamic relation tables in the net, and these new changes are propagated up the net.

4. Each of the created tuples in the add/delete lists is iterated through for each table in
the net that it may directly affect, changing the truth values of tuples in that table. If
one of the added or deleted tuples matches a pre-condition of a table, then a “re-join”
procedure is called to update the tuples currently being stored in the table. Those
tables not affected by the new add/delete tuples are ignored. Thus, in our example,
the firing of Move(D1,P1,D3) removes (D1,P1,P2) and (D1,P1,D3) from the Move
table and adds (D1,P2,P1) and (D2,P1,P3) to the Move table.

9. Morphll: Domain-Independent Games Environment in C++ 21

Further details on the implementation, including how join and merge work, can be found
in [Lev94].

9.3 Performance Results

With this scheme, we have been able to monitor a variety of domains including tic-tac-
toe, Towers of Hanoi, 8-puzzle, and Hexpawn'? at a level of efficiency that is faster (in some
cases up to 10 times) than previous programs of ours that had been written specifically for
these domains but were not incremental.

UDS has played at various search depths and monitored a variety of search domains
compiled into its network from rule definitions as in Section 6. UDS is implemented in C++
on a SUN Sparcll with 64 megabytes of main memory. Although domain-independent, its
results are reasonable and would likely outperform (for domains with high branching factors)
a hard-coded program that does not exploit incrementality.

Table 9.1 presents results from our earlier implementation in which relation tables are
stored as sparse matrices. In particular, a relation is stored as a set of tuples where each
tuple is identified by its arguments. In the table, “Random vs Random” means that a
random agent competes against another random agent; “n Ply” means that one agent
searches this deep, evaluating leaf nodes with random numbers and then using minimax for
move selection, while the other agent plays randomly with no lookahead. The 500 moves
Towers of Hanoi results are with game restarts and the 500 move 8-puzzle results are for 1
game.

Table 9.2 presents results from our most recent implementation in which the multi-
dimensional bit array method is used for storing relation tables. Fach tuple is an individual
bit cell in the matrix. A 1 means the tuple is present; a 0 means the tuple is absent. The
subscripts of the cell correspond to the arguments of the tuple. The main advantages of the
bit matrix storage scheme is that processing is uniform for all tuples and that row operations
on the matrices can exploit the bit-parallel concurrency provided by the logic operations
of the workstation. In effect, relational join has been reduced to matrix multiplication.
Compared to Table 9.1 there are speedups of a factor of 5 to 81, typically around 25.
Towers of Hanoi shows the greatest speedup, and Hexpawn the least. With the exception
of Hexpawn, speedups are significantly greater at higher ply than lower ply.

Tables 9.3 and 9.4 summarize the quality of play with blind learning. Towers of Hanoi
starts from randomly selected legal initial states. For both tic-tac-toe and Hexpawn, draws
are counted as wins for the second player. The statistics presented are for a very basic blind
learner that simply learns the values of individual bits (through gradient-descent weight
updating) in the uninterpreted state representation, or randomly selected sets of bits in the
underlying representation. For Towers of Hanoi, 9 bits are used to represent which disk is
on which peg. In both Hexpawn and tic-tac-toe 18 bits are used to represent the state (00
for blank, 01 for O or white pawn, 10 for X or black pawn for each of the 9 positions; 11
is not used). No effort was made to identify and exploit generalized relationships such as
three-in-a-row for tic-tac-toe.

12Hexpawn is a simple version of chess played on a 3x3 board. Fach player has 3 pawns. In the
starting configuration each player’s pawns are along their respective edge of the board, with the middle
rank unoccupied. White moves first and players alternate moves. Pawns move one square forward and
capture diagonally as in normal chess. The first player to get get his/her pieces to the opposite side of the
board or to capture all the opponent’s pieces wins. The game i1s a draw given optimal play. Hexpawn 6 is
Hexpawn but on a 6x6 board where each player has 6 pawns.

22 9. Morphll: Domain-Independent Games Environment in C++

Total Average Total Average

Single—Agent Games 100 Moves 500 Moves
Towers of Hanoi
Random vs Random <10 - 2.0 0.004
1 Ply 3.0 0.03 15.0 0.03
2 Ply 19.0 0.19 102.0 0.20
3 Ply 110.0 1.10 618.0 1.24
8 Puzzle
Random vs Random <10 - 2.0 0.004
1 Ply 4.0 0.04 22.0 0.04
2 Ply 42.0 0.42 205.0 0.41
3 Ply 298.0 2.98 1605.0 3.21
Double-Agent Games 100 Games 500 Games
Hex Pawn
Random vs Random 2.0 0.02 10.0 0.02
1 Ply 6.0 0.06 30.0 0.06
2 Ply 22.0 0.22 110.0 0.22
3 Ply 80.0 0.80 405.0 0.81
Tic-tac-toe
Random vs Random 3.0 0.03 15.0 0.03
1 Ply 9.0 0.09 45.0 0.09
2 Ply 55.0 0.55 290.0 0.58
3 Ply 415.0 4.15 2095.0 4.19

Table 9.1: Tuple-List Execution Speeds, in seconds. The amount of time used to
make 100 and 500 moves or play 100 or 500 games is depicted at different search
depths.

Tables 9.5, 9.6, 9.7, and 9.8 present results for the Generic Learning Module (GLM).
Although the GLM is in an informed setting, it does not “analyze” the rules, but instead
uses them to form its monitor and reinforcement hierarchy. While future GLMs will add new
relations and patterns to their database, for these experiments only those patterns necessary
for monitoring the games were stored. Table 9.5 shows how performance against a random
agent grows with early training for hex pawn, hex pawn 6, and tic-tac-toe. Percentages are
given for wins (W), draws (D), and losses (L) and are cumulative over all games played.
In those cases where learning does not seem to improve (as in 1-Ply APS versus random in
Hex Pawn) very good performance was already achieved in 10 games. We believe that the
slight degradation is probably due to learning against a (now) weaker opponent.

Table 9.6 shows how performance grows with longer term training for pennies and NIM.!?
In NIM the raw APS agent did not fare as well as in other domains. This is because the
patterns required to monitor NIM do not include the critical feature: the relationship
between the stacks. By manually adding a 3-ary dynamic relation that includes the number

13In pennies there is a stack of 15 pennies. Players alternate taking 1-3 pennies from the stack. The
person who takes the last penny wins. In NIM there are three stacks of 3, 5 and 7 sticks, respectively.
Players alternate taking one or more sticks from a given stack; the player who gets the last stick wins. Both
of these games are wins for the first player given perfect play.

9. Morphll: Domain-Independent Games Environment in C++ 23

Total Average Total Average

Single-Agent Games 100 Moves 500 Moves
Towers of Hanoi
Random vs Random 0.02 0.0002 0.14 0.0003
1 Ply 0.12 0.0012 0.49 0.0010
2 Ply 0.49 0.0049 2.15 0.0044
3 Ply 1.41 0.0141 6.61 0.0134
8 Puzzle
Random vs Random 0.03 0.0003 0.29 0.0005
1 Ply 0.18 0.0018 0.97 0.0019
2 Ply 0.61 0.0061 3.19 0.0063
3 Ply 1.78 0.0178 8.87 0.0178
Double-Agent Games 100 Games 500 Games
Hex Pawn
Random vs Random 0.20 0.0020 0.96 0.00193
1 Ply 0.44 0.0044 4.85 0.00447
2 Ply 1.12 0.112 4.85 0.00995
3 Ply 1.96 0.0196 9.80 0.0196
Tic-tac-toe
Random vs Random 0.18 0.018 0.84 0.0017
1 Ply 0.54 0.0054 2.72 0.0054
2 Ply 1.96 0.0196 9.24 0.01867
3 Ply 8.36 0.836 39.52 0.0798

Table 9.2: Bit—Matrix Execution Speeds, in seconds. The amount of time used to
make 100 and 500 moves or play 100 or 500 games is depicted at different search
depths.

Towers of Hanol

Lowest Highest Average
Number of moves 7 21 11
Games won in < 10 moves %

Table 9.3: Blind Learner, Single-Agent Games (100 Games) The number of moves
required by a blind learner to solve Towers of Hanoi is depicted.

of sticks on each stack the improved performance under NIM 2 was achieved. Future
developments will make such feature addition automatic.

Table 9.7 shows performance against a greedy opponent over 1000 games after learning
during 500 games (no learning occurs during the 1000 games). The greedy agent is a random
agent except it recognizes (knows the correct value of) winning and loosing positions. “R-
APS” refers to the APS agent trained against the random agent, “G-APS” to the APS
agent trained against the greedy agent. Table 9.8 presents the same conditions, but where
APS is the second agent to move. Over the coming months we will be extending our results
to backgammon, checkers, Othello, and chess and building a GLM that processes the bit
matrix relational tables as “images.”

24 10. Conclusion
Agent Wins

1 2 Agent 1 Agent 2
Hex Pawn

Random Random 59% 41%

Random Blind Learner 21% 9%

Blind Learner Random 67% 33%
Tic-tac-toe

Random Random 4% 26%

Random Blind Learner 44% 56%

Blind Learner Random 6% 24%

Table 9.4: Blind Learner, Double-Agent Games (500 Games) Blind learning versus
a random opponent. Percentage of wins is shown.

10 Conclusion

Eric Baum recently pointed out [Bau93] the inherent potential in of information (math-
ematical structure) inherent in a declaration of the rules of a given domain:
The computer science approach has since Shannon basically regarded a game
as defined by its game tree. But what makes a game interesting is that it has a
low complexity, algorithmically efficient definition apart from the game tree....
Any procedure which only accesses the underlying simplicity of a game in the
form of an evaluation function is inherently doing the wrong thing.. .. the main
open question is how to go beyond the evaluation function picture of games.
We agree strongly with this insight and in this paper have suggested 4 projects that we
believe will lead to a practical exploitation of the underlying structure of game-domains:

Agent Agent 1
1 2 10 Games 100 Games 500 Games
w D L W D L W D L
Hex Pawn
Random Random 30 40 30 41 41 18 45 27 28

1-Ply APS Random 60 40 0 59 29 12 50 40 10

2-Ply APS Random 60 40 0 59 29 12 51 45 4
Hex Pawn 6

Random Random 50 10 40 44 7 49 48 7 45

1-Ply APS Random 70 10 20 68 4 28 82 4 14

2-Ply APS Random 50 20 30 77 9 14 87 4 9
Tic-tac-toe

Random Random 70 10 20 60 12 28 58 12 30

1-Ply APS Random 80 10 10 &7 5 8 &7 5 8

2-Ply APS Random 60 10 30 &89 7 4 93 5 2

Table 9.5: GLM, Double-Agent Board Games (numbers are percentages of

wins,losses and draws.) The results of the GLM playing a random opponent at
various search depths is depicted.

10.

1.

4.

Conclusion 25

Agent Agent 1
1 2 250 1000 2000
Games Games (Games

wW L W L W L

Pennies

1-Ply APS Random 93 7T 9 5 97 3
NIM

1-Ply APS Random 72 28 75 25 75 25
NIM 2

1-Ply APS Random 84 16 89 11 92 8

Table 9.6: GLM, Double-Agent Stack Games (numbers are percentages of wins,
losses and draws. The GLM versus a random opponent for 250, 1000, and 2000
games.

GENERIC REPRESENTATION: Design a domain-independent mathematical repre-
sentation of state-space search domains.

. INFORMED LEARNER: Design a program that performs well in state-space search

given just the mathematical definition of a given domain, domain-independent heuris-
tics and experience.

. BLIND LEARNER: Design a program that performs well on state-space search given

just experience, the rewards at the end of a given domain and legal states (as raw bit
vectors) to choose from at each move.

MONITOR: A programming environment that supports the design and execution of
experiments on these topics.

We have shown how individual search and game domains may be viewed as instances

of a general graph-theoretic game of abstract mathematical relations, and discussed the

relationship of these graphs to relations and first-order logic. We argue that the advantages

of taking this perspective are many:

1.

An efficient, domain-independent monitor can be developed that exploits the matrix
and logic operations of the underlying hardware.

. A study can be made of the relationship between the structure of the rules (problem

definition) of a given domain and the structure of a hierarchical reinforcement learner
or neural net to experientially learn the value of states in that domain. In particular,
we outline an algorithm to convert from the relation-based representation of a domain
to a reinforcement learning network for that domain.

. The problem definition, monitor and learner for a given domain can be seen as arising

together from the inherent structure of that domain, rather than being three separate
processes.

. As a result of this coherence, domains that are similar in structure give rise to similar

learners and monitors. In fact, UDS illustrates how the same network data structure
that monitors the domain may be the basis of a reasonable learner for that domain.

. The relationships of parts-and-wholes in the domain definition may be extracted to

identify the placement of “Generic Learning Modules” in the reinforcement hierarchy.
Thus learning research might be pursued from the higher perspective of the interaction
of learning modules rather than as a choice between methods.

26 10. Conclusion

Agent Agent 1
1 2 W D L
Hex Pawn
random greedy 42 29 29
greedy greedy 47 26 27

1-Ply R-APS greedy 51 37 12

1-Ply G-APS greedy 43 57 0
2-Ply R-APS greedy 55 45 0
2-Ply G-APS greedy 56 44 0
Hex Pawn 6
random greedy 35 4 61
greedy greedy 52 5 43
1-Ply R-APS greedy 73 3 24
1-Ply G-APS greedy T3 20
Pennies
random greedy 26 74
greedy greedy 50 50
1-Ply R-APS greedy 100 0
1-Ply G-APS greedy 100 0
NIM
random greedy 37 63
greedy greedy 52 48
1-Ply R-APS greedy 21 79
1-Ply G-APS greedy 20 80
2-Ply R-APS greedy 73 27
2-Ply G-APS greedy 67 33
NIM 2
random greedy 37 63
greedy greedy 52 48
1-Ply R-APS greedy 69 31
2-Ply R-APS greedy 99 1

Table 9.7: GLM, Double-Agent Games After Learning (numbers are percentages
of wins, losses and draws.) The results of tournaments of 100 games between a
greedy, random, and APS agents that have been trained for 500 games against
greedy or random opponents is depicted. APS agents using 1-ply and 2-ply search
are included. APS moves first.

The performance of our matrix-based monitor (as opposed to learner) lends credence
to the practicality of the general graph-theoretic view of search domains. The results pre-
sented here, are preliminary but encouraging; they demonstrate that reasonably strong
reinforcement learners of differing structure can be constructed automatically from a prob-
lem description. Further research will study how the reinforcement learner can enhance
itself by adding new relational tables to the network. This self-organization, coupled with
parameterless (not requiring human tuning) learning rules, will further support our theme
of giving the computer maximum responsibility for its learning structure.

10. Conclusion 27

Agent Agent 1
1 2 W D L
Hex Pawn
greedy random 50 31 19

greedy 1-Ply R-APS 0 56 44

greedy 1-Ply G-APS 0 58 42
Hex Pawn 6

greedy random 65 6 30

greedy 1-Ply R-APS 29 67

greedy 1-Ply G-APS 27 6 67

e

Pennies
greedy random 74 26
greedy 1-Ply R-APS 3 97
greedy 1-Ply G-APS 5 95
NIM
greedy random 65 35
greedy 1-Ply R-APS 77 23
greedy 1-Ply G-APS 82 18
NIM 2
greedy random 65 35
greedy 1-Ply R-APS 28 72
greedy 2-Ply R-APS 3 97

Table 9.8: GLM, Double-Agent Games After Learning (numbers are percentages).
The results of tournaments of 100 games between a greedy, random, and APS
agents that have been trained for 500 games against greedy or random opponents
is depicted. APS agents using 1-ply and 2-ply search are included. APS moves
second.

As effort by various research groups on the projects of the blueprint proceeds we hope
that computer science and Artificial Intelligence will be appreciated as important branches
of mathematics dealing with optimal problem solving under resource constraints, and that
computer game-playing will have played an important role in that development.

Acknowledgments

Barney Pell, and the anonymous reviewers provided useful criticism and encouragement
during the writing of the paper. John Amenta developed much of the MorphlI software and
obtained performance results. Yuxia Zhang assisted in developing the declarative definition
of games and implemented the Generic Learning Module. James D. Roberts helped with
the figures and a late draft of this paper. Susan Epstein provided exhaustive stylistic and
editorial corrections to the writing and other useful comments. Radhika Grover proofread
a late draft.

28 References

References

[All92] V. Allis. Qubic solved again. In J.V.D. Herik and L.V. Allis, editors, Heuristic
Programming in Artificial Intelligence 3, pages 192-204. Ellis Horwood, 1992.

[Bau93] E.B. Baum. How a bayesian approaches games like chess. In Games: Planning
and Learning, Proceedings of the AAAI Fall Symposium, Menlo Park, CA, October
1993. AAAT Press.

[BCGR2] E.R. Berlekamp, J.H. Conway, and R.K. Guy. Winning Ways for Your Mathe-
matical Plays. Academic Press, New York, 1982.

[Bea80] D.F. Beal. An analysis of minimax. In M.R.B. Clarke, editor, Advances in Com-
puter Chess 2, pages 103-109. Edinburgh University Press, Edinburgh, Scotland,
1980.

[Ber79] Hans Berliner. The B* tree search algorithm: A best first proof procedure.
Artificial Intelligence, 12(1):23-40, 1979.

[Bet81] A.D. Bethke. Genetic Algorithms as Function Optimizers. PhD thesis, University
of Michigan, DAI 41(9), 3503B, 1981.

[BGH89] L.B. Booker, D.E. Goldberg, and J.H. Holland. Classifier systems and genetic
algorithms. Artificial Intelligence, 40:235-282, 1989.

[BS94] D. Beal and M. C. Smith. Random evaluations in chess. International Computer
Chess Association Journal, 17(1):3-9, March 1994.

[BW94] E. Berlekamp and D. Wolfe. Mathematical GO FEndgames: Nightmares for the
Professional Go Player. A K. Peters, Wellesley, Massachusetts, 1994.

[E1.92] Gerard Ellis and Robert Levinson, editors. Proceedings of the First International
Workshop on PEIRCE: A Conceptual Graphs Workbench. Department of Com-
puter Science, The University of Queensland, 1992.

[EN69] G.W.Ernstand A. Newell. GPS: A Case Study in Generality and Problem-Solving.
Academic Press, New York, 1969.

[Eps90] S.L. Epstein. Learning plans for competitive domains. In Proceedings of the 7th
International Conference on Machine Learning, pages 190-197, Austin, TX., 1990.
Morgan Kaufmann.

[Eps92] S.L. Epstein. Prior knowledge strengthens learning to control search in weak
theory domains. International Journal of Intelligent Systems, 7:547-586, 1992.

[FD89] N. S. Flann and T. G. Dietterich. A study of explanation-based methods for
inductive learning. Machine Learning, 4:187-226, 1989.

[For82] C.L. Forgy. Rete: A fast algorithm for the many pattern/many object patern
match problem. Artificial Intelligence, 19(1):17-37, 1982.

[Gai93] B. R. Gaines. Representation, discourse, logic and truth: Situated knowledge
technology. In Conceptual Graphs for Knowledge Representation, number 699 in
Lecture Notes in Computer Science, pages 36-63. Springer-Verlag, 1993.

[GJT79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, Murray-Hill, 1979.

[GL94] J. Gould and R. Levinson. Experience-based adaptive search. In R. Michalski

and G. Tecuci, editors, Machine Learning:A Multi-Strategy Approach, volume 4,
pages 579-604. Morgan Kauffman, 1994.

References 29

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Welsley, Reading, MA, 1989.

[Ham72] P. C. Hammer. Mathematics and systems theory. In G. Klir, editor, Trends in
General Systems Theory, pages 408-433. Wiley and Sons, New York, 1972.

[Hol75] J. H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, 1975.

[Hun94] L. Hunter. Disjunctive concept learning. December 1994. A communication in
the moderated electronic Machine Learning List.

[Jan90] P. Jansen. Problematic positions and speculative play. In T. A. Marsland and
J. Schaeffer, editors, Computer, Chess and Cognition, chapter 10, pages 169-181.
Springer-Verlag, 1990.

[Kai90] H. Kaindl. Tree searching algorithms. In A.T. Marsland and J. Schaeffer, editors,
Computers, Chess and Cognition, pages 133—-158. Springer-Verlag, 1990.

[K1i85] G. J. Klir. Architecture of Systems Problem-Solving. Plenum Publishing, New
York, 1985.

[KM75] D. E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial
Intelligence, 6(4):293-326, 191975.

[KM90] Yves Kodratoff and Ryszard Michalski. Machine Learning An Artificial Intelli-
gence Approach, volume 3, chapter 1, pages 13-16. Morgan Kaufman, 1990. See
the bibliography of this book for extensive references to recent work in constructive
induction.

[Kor87] R. E. Korf. Planning as search. Artificial Intelligence, 1987.

[Kor88] R. E. Korf. Optimal path-finding algorithms. In L. Kanal and V. Kumar, editors,
Search in Artificial Intelligence, pages 223-267. Springer-Verlag, 1988.

[Lev94] R. A. Levinson. Uds: A universal data structure. In W.M. Tepfenhart, J.P. Dick,
and J.F. Sowa, editors, Conceptual Structures: Theory and Practice, number 835
in Lecture Notes in Al, pages 230-250. Springer-Verlag, Berlin, 1994.

[LF4a] Robert Levinson and Gil Fuchs. A pattern-weight formulation of search knowledge.
Technical Report UCSC-CRL-91-15, University of California Santa Cruz, 1994a.
Revision to appear in Computational Intelligence.

[LK93] R. Levinson and K. Karplus. Graph-isomorphism and experience-based planning,.
In D. Subramaniam, editor, Proceedings of Workshop on Knowledge Compilation
and Speed-Up Learning, Amherst, MA., June 1993.

[LM88] K.F.LeeandS. Mahajan. A pattern classification approach to evaluation function
learning. Artificial Intelligence, 36:1-25, 1988.

[LNR87] J. Laird, A. Newell, and P. Rosenbloom. Soar: An architecture for general
intelligence. Artificial Intelligence, 33:1-64, 1987.

[LS91] R. Levinson and R. Snyder. Adaptive pattern oriented chess. In Proceedings of
AAAI-91, pages 601-605. Morgan-Kaufman, 1991.

[LS93] R. Levinson and R. Snyder. Distance: Towards the unification of chess knowledge.
International Computer Chess Association Journal, 16(3):315-337, September
1993.

[McC98] D.A. McCallester. Conspiracy numbers for minmax search. Artificial Intelligence,
35(3):287-310, 1998.

30

[Mic83]

[Min84]

[Mir87]
[IMMT70]
[Mor94]

[Nau80]

[NilS0]
[Pea82]

[Pel92]

[Pit76]
[Quis]
[RK91]
[RMS6]
[RN94]
[Rob92]
[Sac74]
[Sam59]
[SN93]
[Sow83]

[Sto79]

[Sut88]

References

R. S. Michalski. A theory and methodology of inductive learning. In R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine learning: An
Artificial Intelligence Approach. Tioga Press, 1983.

S. Minton. Constraint based generalization- learning game playing plans from
single examples. In Proceedings of AAAI-84, pages 251-254. AAAT, AAAT Press,
1984.

D. P. Miranker. Treat: A better match algorithm for ai production systems. In
Proceedings of AAAI-87, pages 42-47. AAAI Press, 1987.

M.D. Mesarovic, D. Macko, and Y. Takahara. Theory of Hierarchical, Multi- Level
Systems. Academic Press, Massachusetts, 1970.

E. Morales. Learning patterns for playing strategies. International Computer
Chess Association Journal, 17(1):15-26, March 1994.

D.S. Nau. Pathology on game-trees: A summary of results. In Proceedings of the
First National Conference on Artificial Intelligence (AAAI-80), pages 102-104,
Stanford, Calif., 1980. AAAT Press.

N. J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann Publishers,
1980.

J. Pearl. Thesolution for the branching factor of the alpha-beta pruning alghorithm
and its optimality. Communications of the ACM, 25(8):559-564, 1982.

Barney Pell. METAGAME: A new challenge for games and learning. In H. J.
van den Herik and L. V. Allis, editors, Programming in Artificial Intellegence: The
Third Computer Olympiad. Ellis Horwood, 1992.

J. Pitrat. A program for learning to play chess. In Pattern Recognition and
Artificial Intelligence. Academic Press, 1976.

J. R. Quinlan. Induction on decision trees. Machine Learning, 1:81-106, 1986.
E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill, 1991.

E. D. Rumelhart and J. L. McClelland. Parallel Distributed Processing, volume
1-2. MIT Press, 1986.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall, Massachusetts, 1994.

D.D. Roberts. The existential graphs. In Semantic Networks in Artificial Intelli-
gence, pages 639-664. Roberts, 1992.

E.D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelli-
gence, 5(2):115-135, 1974.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3(3):211-229, 1959.

S.J. Smith and D.S. Nau. Strategic planning for imperfect information games. In
Proceedings of 1993 AAAI Fall Symposium on Games: Planning and Learning,
Menlo Park., 1993. AAAT Press.

J. F. Sowa. Conceptual Structures. Addison-Wesley, 1983.

G.Stockman. A minimax algorithm better than alpha-beta. Artificial Intelligence,
12(2):179-196, 1979.

R.S.Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3(1):9-44, August 1988.

References 31

[Sut91] R.S. Sutton. Special issue on reinforcement learning. Machine Learning, 1991.

[Tar56] A.Tarski. Logic, Semantics, Metamathematics: Papers from 1923 to 1938. Oxford
University Press, Oxford, 1956.

[TS89] G. Tesauro and T. J. Sejnowski. A parallel network that learns to play backgam-
mon. Artificial Intelligence, 39:357-390, 1989.

[Vaj92] S. Vajda. Mathematical Games and How to Play Them. Ellis Horwood Ltd., Great
Britain, 1992.

[Wat85] S. Watanabe. Pattern Recognition:Human and Mechanical. Wiley, New York,
1985.

[Wil80] D. Wilkins. Using patterns and plans in chess. Artificial Intelligence, 14(2):165—
203, 1980.

