
General Game-Playing andReinforcement LearningRobert LevinsonUCSC-CRL-95-06supersedes UCSC-CRL-93-38 and UCSC-CRL-94-32partially supported by NSF Grant IRI-9112862May 5, 1995Department of Computer Science, University of California, Santa Cruz, CA 95060E-mail:levinson@cse.ucsc.eduPhone: 408-459-2087abstractThis paper gives a blueprint for the development of a fully domain-independentsingle-agent and multi-agent heuristic search system. It gives a graph-theoreticrepresentation of search problems based on conceptual graphs, and outlines twodi�erent learning systems. One, an \informed learner," makes use of the the graph-theoretic de�nition of a search problem or game in playing and adapting to a gamein the given environment. The other, a \blind learner," is not given access to therules of a domain, but must discover and then exploit the underlying mathematicalstructure of a given domain. Relevant work of others is referenced within the contextof the blueprint.To illustrate further how one might go about creating general game-playingagents, we show how we can generalize the understanding obtained with the Morphchess system to all games involving the interactions of abstract mathematical re-lations. An example of a monitor for such domains is presented, along with animplementation of a blind and informed learning system known as MorphII. Per-formance results with MorphII are preliminary but encouraging and provide a fewmore data points with which to understand and evaluate the blueprint.Keywords: games, mathematical structure, heuristic search, machine learning,hypergraphs, neural networks, analogical reasoning, RETE, relational patterns,hierarchical reinforcement learning



CONTENTS iContents1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11.1 Previous Work By Others on General-Game Playing : : : : : : : : : 22 Generic Representation of Games and Search Problems : : : : : : : : : : : 42.1 Generic Game Taxonomy of Popular Games : : : : : : : : : : : : : : 53 Generic Games with Abstract Operators : : : : : : : : : : : : : : : : : : : : 63.1 Evaluation of the Graph-theoretic Representation Scheme : : : : : : 94 Extending Tic-tac-toe and Other Games to All Hypergraphs. : : : : : : : : 104.1 Reductions in the Basic Tic-tac-toe Hypergraph Game : : : : : : : : 104.2 Other Basic Hypergraph Games : : : : : : : : : : : : : : : : : : : : 105 Review of Original Morph Model : : : : : : : : : : : : : : : : : : : : : : : : 126 Morph II: Improving on Morph. : : : : : : : : : : : : : : : : : : : : : : : : : 136.1 Weaknesses in Morph : : : : : : : : : : : : : : : : : : : : : : : : : : 136.2 The GLM and the Reinforcement Hierarchy : : : : : : : : : : : : : : 146.3 Generating the Reinforcement Hierarchy From the Rules ofa Domain. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 157 Blind Learning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 167.1 Blind Learning in MorphII : : : : : : : : : : : : : : : : : : : : : : : 178 Exploiting Analogous Relationships in Blind Learning : : : : : : : : : : : : 189 MorphII: Domain-Independent Games Environment in C++ : : : : : : : : : 189.1 Monitoring State-space Search Incrementally Using UDS : : : : : : : 199.2 What Happens After an Operator is Selected : : : : : : : : : : : : : 209.3 Performance Results : : : : : : : : : : : : : : : : : : : : : : : : : : : 2110 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24References : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28



1. Introduction 11 IntroductionArti�cial intelligence research would bene�t from a uni�ed view from which to study thepast and a practical plan from which to proceed into the future. With this objective in mind,we suggest the following tenets or guiding principles for developing machine intelligence:1. Intelligence is optimal problem solving in pursuit of speci�c goals under resourceconstraints. (Note that no mention is made of human cognition or consciousness).2. Given this de�nition, domain-independence and adaptability are fundamental aspectsof intelligence. (Not to adapt, if economical, is sub-optimal)3. Single and multi-agent state space search problems are a large and important class ofproblems in which to develop and study machine intelligence.4. The task before us is to develop fully domain-independent methods for working instate-space search domains.5. The knowledge required to perform well in these domains is embodied in the de�nitionof the domain and the mathematical structure of the state space, i.e. the reasons whya heuristic is good are explainable within the framework of the mathematics of thespace.6. Experience in a state space reveals mathematical structure that can be exploited byan optimal problem solver. (What is not revealed, need not be exploited).7. For many practical problems, experience alone reveals enough structure to lead toe�cient problem solving.8. The underlying mathematical structure in these domains is independent of the labelsgiven to the conditions and operators in the state-space de�nition.9. This mathematical structure is embodied in the interactions of the conditions, de�nedby the operators of the domain, the relationship of this interaction complex to a givenstate, and the relationship of the given state to the goal state.10. The e�ects of such interaction complexes are entirely domain-independent and aregoverned by regular laws, just as such interactions in matter and energy are governedby the laws (not necessarily all known) of physics.11. These laws once discovered and exploited by computers will make them intelligentunder the de�nition given above.12. Computers may be an important tool in the process of discovering these laws.With these tenets in mind and the ultimate goal of discovering the laws of state-spacesearch before us, we suggest a division of research e�orts to work on these separate butabsolutely complementary projects:� GENERIC-REPRESENTATION: A mathematical (probably based on graph theoryand group theory) representation of the de�nition of a single-agent or multi-agentstate-space search problem that is independent of all domain-speci�c or arbitrarylabels, i.e. a program that can convert the declarative de�nition of a state space intoa more generic, but equivalent, mathematical representation.� INFORMED-LEARNER: A program that performs well in state-space search giventhe abstract mathematical de�nition of the state space, supplied domain-independent heuristics and experience.



2 1. Introduction� BLIND-LEARNER: A program that performs well on state-space search problemsgiven no de�nition of the state space or pre-supplied heuristics | just the rewards atthe end of the game, experience and legal states (as raw bit vectors) to choose fromat each choice point.� MONITOR: A programming environment that allows experiments to be easily de-signed and carried out on the above topics.None of these projects is designed to directly produce the laws of state space search butto gradually give us an understanding that could lead to these laws and to their empiricalvalidation. Meanwhile work on these problems increases the power of the machine. Inthis paper, in addition to summarizing previous research, we outline our own work on eachof the four subprojects which has led to a system known as MorphII. We hope that anunderstanding of MorphII will lead to further appreciation of (and work on) the blueprintwe have laid out above for AI research e�orts.MorphII is a successor of the Morph chess system [LS91, GL94] that has achievedapproximately novice strength despite using just 1-ply of search and few human-suppliedheuristics. MorphII is a fully domain-independent version of Morph as opposed to theoriginal which despite good intentions, carries some human biases and chess idiosyncrasies.Further, we believe the new learning mechanism described in the sections on informed-learning and blind learning directly addresses limitations of the original Morph model:overly-speci�c graph patterns and insu�cient freedom given to the system with respect tothe class of patterns that can be formed and to the combination of their weights.1.1 Previous Work By Others on General-Game PlayingFortunately, work on these four projects (directly and indirectly) has been taking placeboth within the computer game-playing community and with AI in general. The most pop-ular approach to date in game-playing research has been the incorporation of search coupledwith game-speci�c evaluation. The search approaches [Kai90] typically meet our objectivesfor domain-independence and generality, but the evaluation mechanisms generally do not.In addition, until a domain is solved (i.e., perfect play can be achieved within speci�edresource constraints) the choice of a search algorithm is itself a heuristic. Thus, even thetraditional domain-dependent approach could bene�t from a more thorough mathematicalunderstanding of state-spaces.Minimax alpha-beta search was introduced in 1956 by John McCarthy [RN94], andhas been used in Samuel's original checkers program and by the large majority of game-playing systems since. Thorough analytic studies of alpha-beta were done by Knuth andMoore [KM75] and later by Pearl [Pea82]. In addition to alpha-beta there has also beena large amount of research on selective search and pruning algorithms [Kai90]. Althoughmany of these algorithms have been applied only to a small number of popular games likechess, checkers and Othello, they are general enough that they could be applied to anyperfect-information game. Algorithms in this category include B* [Ber79], SSS* [Sto79]and conspiracy number search [McC98]. Baum et al. recently gave a mathematicallywell-founded algorithm [Bau93]. Beal [Bea80] and Nau [Nau80] constructed hypothetical\pathological" games in which alpha-beta search becomes less accurate the more deeply itsearches, and thereby showed that the approach is not fully applicable, despite the fact thatit seems to work well on most popular games. Search strategies also become signi�cantlyless e�ective in games of imperfect-information or games with large branching factors (such



1. Introduction 3as Go). Finally, minimax search strategies maximize performance, assuming a worst-casescenario in which the opponent always selects the best moves. A number of importantresearch issues remain in which this assumption has been relaxed (e.g., trying to play intopositions in which the opponent is likely to not �nd the winning line [Jan90]). In this casestatistical and mathematical models of the game and the opponent increase in importance.Recently, Beal [BS94] showed experimentally the interesting result that for certain gamessuch as chess, even random evaluations when coupled with minimax can lead to improvedplay with increasing search-depth, because maximizing and minimizing favors nodes withlarge branching factors and hence roughly corresponds to a mobility coe�cient. Thisapparently simple result has important consequences for adaptive game-playing systems, asit provides a mechanism by which a system can bootstrap itself from no domain knowledgeand the ability to use a few ply of search, in those domains where mobility is relevant.Single-agent problems have, of course, also been approached through search with suchalgorithms as A* [Nil80], best-�rst-search [RK91], and means-ends-analysis [EN69]. Todiscuss single agent search in depth is beyond the scope of this paper. The important thingto note about the traditional search approach is that it tends to obviate the need for theprogram or programmer to have a thorough mathematical understanding of a domain, giventhat a fast and reasonably accurate heuristic evaluation function is available. Althoughsuch an approach has many positive practical consequences, it does not necessarily increaseour scienti�c understanding of how and why heuristics and search algorithms perform asthey do. Further, as the existing search approaches have important limitations (such ashorizon e�ects) in complex domains, a thorough understanding of the mathematics of state-space problems would undoubtedly lead to more e�ective search algorithms as well. Thelimitations of the search approaches have suggested the use of abstract and hierarchicalplanning algorithms that attempt to view a game state as a collection of subproblems tobe solved [Wil80, Pit76, Min84, LNR87, FD89]. To date, these approaches have not provedpowerful or general enough to be serious practical competitors to brute-force search. Butsome researchers expect that to change once the mathematics behind planning is understoodand a wider variety of games such as those with imperfect information are considered [SN93].A number of individual games have succumbed to mathematical and computer-aidedanalysis [BCG82, All92, Vaj92]. We believe that through a general graph-theoretic approachthis type of analysis can be extended to much wider classes of games and problems. Forexample, mathematical techniques have recently been applied successfully to previouslyconsidered intractable Go endgames [BW94].Reinforcement learning has already proved to be highly successful in learning the eval-uation functions for speci�c games such as checkers [Sam59], Othello [LM88] and backgam-mon [TS89]. The latter two programs developed to world-class players in their respectivedomains. Such successes provide important datapoints in pursuing the blueprint; thesesystems used only a moderate amount of human assistance (in de�ning their feature andtraining sets) and thus were not too far from the ideal of full domain-independence. Re-inforcement learning in general is becoming increasingly popular [Sut91] because it canminimize the need for human assistance.Neural networks [RM86] and genetic algorithms [Bet81, BGH89, Gol89, Hol75] can beviewed as blind-learners. These systems attempt to learn functions given pre-classi�edinput-output pairs. To the extent that the supplied classi�cations can also be generatedautomatically (with temporal-di�erence learning [Sut88], for example) the learned functionscoupled with search would produce a general game-playing system. However, these systems



4 2. Generic Representation of Games and Search Problemsdo not yet incorporate a thorough graph-theoretic understanding of machine learning do-mains in their structure. They would be lost in complex domains such as chess, in whichhigh-level relationships and analogies (or large amounts of search, as is currently done) mustbe exploited to handle the large combinatorics of the sample space. It should also be notedthat most reinforcement learning systems and neural nets do not derive their structure di-rectly from a declarative speci�cation of a domain , but instead have their structure suppliedby a human or have a �xed structure that is hoped to be generally applicable. To date,most such systems only perform well in domains for which their application was anticipatedand for which they were tuned. Inductive learning algorithms [Qui86, Mic83] have tendedto su�er from similar limitations, despite showing strength in well-controlled settings. Re-cent developments in inductive logic programming [Mor94] may eventually make inductivelearning more generally applicable. To achieve the goal of the informed learning project,the structure of the learner itself may need to be dynamically adjusted by the system in away that is speci�cally suited to the problem in question. With MorphII we illustrate onemethod in which this might be done.2 Generic Representation of Games and Search ProblemsIn this section we illustrate how the GENERIC-REPRESENTATION of games may bepursued in graph-theoretic terms. We claim that a large class of state-space games can berepresented by utilizing the notion of directed hypergraphs. A hypergraph is a set of nodesS coupled with a set of hyperedges that are subsets of S. A hyperedge is directed if its nodesare ordered. A hypergraph is nested if its nodes themselves may be hypergraphs. We willcall a hypergraph basic if it is not nested.We now de�ne the following game that we call the \generic-hypergraph-game." Thespeci�cations have alternatives that may be selected to form other games.� Each player starts with 0 points.� Let P1,...,Pn be a �nite set of primitive boolean conditions.� States are n-tuples [P1,...,Pn] representing the truth-values of these conditions.� The game starts in some speci�ed initial state or the initial state is selected randomly.Precisely, the initial state is chosen randomly from a set of states satisfying a givenset of conditions.� An operator is an ordered pair of sets of primitive boolean conditions. The �rstrepresents its preconditions and the second its postconditions. An operator is legal at agiven state if its preconditions are satis�ed. If an operator is selected, minimal changesare made to the current state so that the postconditions become true. Alternatively,operators could have probabilistic e�ects. At each state one agent is asked to selectan operator from among the legal ones.� Another set of operators is executed automatically after each state is created. These\reward operators" are usually used for standard bookkeeping operations such asassigning the proper number of points to each player.� Terminal conditions are hyperedges, such that if each of their conditions is achievedthe game is over. Games also terminate if no legal moves are available for the playerto move or (possibly in addition) if a position repeats with the same player to move.� Players alternate turns selecting applicable operators. The player with the most pointsat the end of the game wins.



2. Generic Representation of Games and Search Problems 5� Knowledge limitations: Normally each player has perfect knowledge of the operatorsand of the current state. Variants include restricting each player's knowledge to acertain set of conditions in the current state, or to certain de�nitions of the operators.2.1 Generic Game Taxonomy of Popular GamesHere we outline how popular games can be viewed as variants of the generic hypergraphgame of the previous section.� Single-agent search problems such as the tile puzzles �t naturally in this framework.If the object is to use as few moves as possible, a primitive condition is set that isunaltered by the rules and decrements the player's score by 1 (through the rewardoperators) each time it occurs.� Tic-tac-toe-like games (such as Qubic [All92], Renju and GoMoku) in which objectsare placed and never moved, have operators with one pre-condition, one post-conditionand all terminal hyperedges also produce positive rewards.� Hex is a game played on a grid of hexagons. Players alternate taking possession ofhexagons; one player tries to make a path of his own hexagons from top to bottomand the other player tries to make a path from left to right. Hex �ts the tic-tac-toe format with the hexagons as nodes, the various paths as the hyperedges, andrewards assigned correspondingly to whichever player can win in that path. ButHex can also be viewed as a \more complex" tic-tac-toe like game in that there arean exponential number of hyperedges per nodes in the graph. Hypergraphs whichexhibit this property (including those for checkers and Go) have been shown to bePSPACE-hard (for arbitrarily large boards) and are PSPACE-complete if restrictedto polynomial length games....the fact that a problem is PSPACE-complete is even stronger indica-tion that it is intractable than if it were NP-Complete; we could have P=NPeven if P is not equal to P-Space [GJ79].� Chess-like games, such as those de�ned in MetaGame [Pel92], have primitive operatorsthat are more complicated than those in Hex. Further, conditions once true maybecome false. Note that in a natural \bit" representation for these games there maybe no explicit pieces or squares but boolean conditions representing piece-square pairs.� Go-like games, such as Othello, with point accumulation have richer reward structuresthan tic-tac-toe. Although related to Hex, they have an even greater combinatorialexplosion of goal states over primitive nodes since they involve goals that are, inessence, sets of hyperedges (nested hyperedges) themselves.� Bridge-like games have random initial states. Bridge can be represented as 52 x 6conditions for which player owns which card, whether it has been played, and whetherit has been played in the current trick. The communication aspect of bridge can bede�ned by simply making explicit the reward structure that encourages collaborationand giving each player access to the information on other player's selected operators(corresponding to bids).11The simplicity of the speci�cation, should not obscure the fact that there are rich and complex researchproblems in getting computers to bid e�ectively or to learn to do so.



6 3. Generic Games with Abstract Operators� Chance games, such as Monopoly and backgammon, require stochastic conditions tobe set on each move that then limit the legal moves available to the next player. Thenotion of money in Monopoly may be de�ned directly as the number of points a playerhas. Note that unlike previously mentioned games, having enough points may be anecessary precondition for certain operators.Clearly, this representation is not fully adequate. Certain games, such as the stockmarket, fall out of this framework; some games are expressed unnaturally and are combi-natorially intractable. Simply enumerating all of the terminal sets of conditions in chessor Go is a daunting task for example. Still, by illuminating the mathematical structure ofthese games, the verbiage accompanying individual domains that make us deal with themsingularly rather than holistically has been removed.2 To address the intractability of thegeneric hypergraph language, abstract operators, relations and variables need to be con-sidered. MetaGame is an excellent example of generating generic chess-like games at thenormal abstract operator level. Barney Pell also has general heuristics that allow reason-able MetaGames to be played without any domain knowledge other than the rules. Theseheuristics are, however, con�ned to these chess-like games and do not generally deal withthe mathematics of state-space search itself, although it would seem that generalizing themto this larger class of games is possible.Hoyle [Eps92] is another domain-independent game-playing and learning system thatdeals at the abstract operator level. It carries with it a rich set of advisors that embodyhuman-supplied heuristics. To the degree that these heuristics are truly domain-independentand operate on a generic as opposed to speci�c game-representation we can say that Hoyleis an informed learner, but certainly not a blind learner. In the next section we showhow a more natural graph-theoretic generic game structure may be developed by takingadvantage of the concept of variables and abstract operators, in much the same way aspredicate calculus extends propositional logic.3 Generic Games with Abstract OperatorsThe generic game representation of the previous section su�ers from a potential combi-natorial explosion and an \unnaturalness" frequently characteristic of low-level languages.The complexity at the low-level often obscures richer and simpler structures at higher levelsof description. To reach a more natural de�nition of generic games we add the notionsof domain objects, static relations, dynamic relations, variables and bindings, but retainthe \label-free" framework by omitting the arbitrary names assigned to objects, conditionsand operators.3 The framework, incorporating state space search, is inspired by Peirce'sexistential graphs [Rob92] and the more modern version \conceptual graphs" developed byJohn Sowa [Sow83] and our own work in experience-based planning [LK93].The state space search paradigm breaks problems down into initial conditions, terminalconditions (goals) and operators. It continues to be one of the most pervasive problem2Even precisely de�ned and well-accepted mathematical concepts are not always as general and asappropriate as they could be, and thus may obscure deeper relationships [Ham72].3Once this is done conceptually the names may be retained as mnemonic aids for humans, but recognizedas arbitrary by the machine.



3. Generic Games with Abstract Operators 7solving models used in AI research.4 We now show how all state space search problemsas they are normally formalized [Kor87] can be viewed as relation-based transformationsover hypergraphs, (which are a special case of conceptual graphs). Relations (in the formof predicates and functions) are also the basis for formal �rst-order logic, the foundation ofmany of the declarative representations traditionally used in symbolic AI. It is our thesisthat logic, graph theory and state-space representation should be tied tightly together. Inparticular, the notion of static and dynamic relations presented below is original and addsa temporal dimension to traditional model theory [Tar56] by relating logic and search.The following is a description of the components of a search problem, with runningexamples taken from tic-tac-toe5 and Towers of Hanoi on three disks:6� Each domain has a �nite set of domain objects. In tic-tac-toe the objects will besquares fS1,S2,S3,S4,S5,S6,S7,S8,S9g and pieces fX,O,B (for blank)g. In Towers ofHanoi, the objects are PegsfP1,P2,P3g and Disks fD1,D2,D3g.� Unary, binary and higher relations may be de�ned on these objects. An n-ary relationis a set of n-tuples of domain objects. In the �nite search domains, rather than de�ningtypes explicitly we shall simply note that they are implicitly de�ned as the set ofobjects that occur in any single �eld (attribute) of a relation. At the implementationlevel, relations that are symmetric or transitive may be abbreviated by specifyinga kernel set of tuples and then giving the mathematical properties from which theremaining tuples can be inferred. Other abbreviations and computation of relationsare possible, such as �nding adjacent squares on the chessboard through calculationbased on Cartesian coordinates. We divide relations into two classes: static relationsare those whose de�nitions (tuples) remain constant for a given game, and dynamicrelations are those whose content can change from state to state. A frequent use ofstatic relations is in de�ning board topology (adjacency of squares). Most domainshave a dynamic relation corresponding to ON to say which pieces are on which squares.In tic-tac-toe, we de�ne a THREE-IN-A-ROW static relation corresponding to win-ning sets of squares: f(S1, S2, S3), (S4, S5, S6),...g and the ON dynamic relationinitialized as f(B,S1),(B,S2) etc.g. In Towers of Hanoi there is a static relationSMALLER-THAN initialized to: f(D1,D2),(D2,D3),(D1,D3)g. Towers of Hanoi alsohas the dynamic relation ON, initialized to: f(D3,P1),(D2,P1),(D1,P1)g. Thus, theinitial state of Towers of Hanoi would be viewed as the following hypergraph: 6 nodeslabeled P1,P2,P3,D1,D2, and D3 and 3 binary directed hyperedges labeled ON con-necting D3,D2, and D1 each to P1. The goal is to transform the graph to a similarone in which P3 has replaced the role of P1.� Operators de�ne transformations over states by changing the contents of dynamicrelations. Operators are speci�ed by giving sets of preconditions, additions and4The objective of a state-space search problem is to �nd a sequence of operators (transformations) thatwill convert a state that satis�es the initial conditions into one that satis�es the terminal conditions, undervarious optimality criteria and resource constraints.5Tic-tac-toe is played on a 3x3 board. Two players X and O alternate turns selecting cells; X goes �rst.The �rst player to complete a row, column or diagonal wins.6Towers of Hanoi is a single-agent game involving three disks \small", \medium", \large" placed on topof each other in order on the �rst peg of three. The object is to move the disks one at a time such that atno time is a disk on top of a disk smaller than it on the same peg and such that the disks �nish all on thethird peg.



8 3. Generic Games with Abstract Operatorsdeletions. Each of these sets can be viewed as a conceptual graph or hypergraphand their combination is a nested hypergraph.For Tic-Tac-Toe there is an operator MOVE(piece,square) with precondition ON(B,S1), add condition ON(X,S1) and delete condition ON(B,S1). It is assumed the boardis always oriented with X to move. For Towers of Hanoi we have the following MOVEoperator:MOVE(d1:disk,p1:peg,p2:peg) =pre: ON(d1,p1) AND ~(p1=p2) AND ~((ON(d2,p2) OR ON(d2,p1))AND SMALLER_THAN(d2,d1)).add: ON(d1, p2)del: ON(d1, p1)As a further example, the SWAP operator which switches a bottom block for a topblock in the blocks world [Nil80] and vice versa in a tower of three blocks has thisrepresentation:SWAP(block:x, block:y, block:z)=pre: ON(x,y) AND ON(y,z) AND CLEAR(X)add: ON(z,y)ON(y,x)CLEAR(z)del: ON(x,y)ON(y,z)CLEAR(x)This representation has an equivalent operator graph involving three variable nodesand six dynamic relation edges. Such a representation of SWAP could apply tothousands of domains that involve this type of swapping. Moves in tile puzzles arean instance, but where one of the variables is replaced by a domain object (the blanktile).� States are hypergraphs over domain objects. As the tuples in the static relations arealways the same, it is only necessary to state the dynamic relations when representinga state. Operators directly a�ect the contents of dynamic relations.� An operator is applicable in a given state i� there is a 1-1 mapping in variables of thepreconditions of the operator to domain objects, such that all relations speci�ed in theoperator are true (or false, if negated) of those domain objects. The result of applyingthe operator is to remove from the current state those tuples corresponding to theoperator's deletions and add those tuples associated with the operator's additions tothe contents of the dynamic relations. Since static relations are constant throughoutthe problem solving process, those bindings of objects to variables that could everpossibly (constrained by the static relations) satisfy an operator de�nition, can inprinciple be computed ahead of time, leaving only the dynamic conditions to bechecked. This is e�ected in the implementation presented in Section 7.� Terminal conditions are de�ned in exactly the same way as preconditions, addition anddeletion conditions of operators. It is automatically assumed that a player having nolegal moves is terminal. For tic-tac-toe, we have THREE-IN-A-ROW(s1,s2,s3) ANDON(X,s1) AND ON(X,s2) AND ON(X,s3) as terminal. In Towers of Hanoi, we haveON(D1, P3) AND ON(D2, P3) AND ON(D3, P3) as terminal conditions.� Reward conditions are conditions that are coupled with a reward to each player basedon the outcome of the game. For Towers of Hanoi and tic-tac-toe, reward conditions



3. Generic Games with Abstract Operators 9are the same as terminals and assign a win to the player who has just moved.� Finally, FLIP is a static binary relation over domain objects used to de�ne symme-tries, so that a game can be encoded from one player's perspective only. For tic-tac-toeFLIP is: f(X,O),(O,X),(B,B),(S1,S1),(S2,S2)...g. Towers of Hanoi, as a single-agentgame, does not require a FLIP operator. Similar transformations were introduced inMetaGame.� In summary: An abstract game or search problem is de�ned as a �nite set of domainobjects, and �nite sets of static relations, dynamic relations, operators, terminalconditions and reward conditions. Finally, for convenience in encoding, we de�nea symmetry condition known as FLIP.Thus, many single and multi-agent search problems can be viewed as games of(hyper)graph-to-graph transformation. This conclusion is not surprising, given that con-ceptual graphs and other semantic network schemes have been shown to carry the sameexpressive power as �rst-order logic. The conclusion is signi�cant, however, in that itsuggests the potential for graph-theoretic analysis of the rules of a domain and ensuing ex-perience for uncovering powerful heuristics and decision-making strategies [LK93, LS93]. Italso suggests that state-space search can be monitored in a uniform manner; this topic isdiscussed in Section 7.3.1 Evaluation of the Graph-theoretic Representation SchemeThe hypergraph representation scheme presented above does not include facilities forinference over static and dynamic relations. Such a facility is available in conceptual graphtheory and will be available shortly in the Peirce conceptual graphs workbench [EL92,Gai93] in which our learning system is implemented.An important step in showing the generality of the graph-theoretic representation is toshow that games generated from the MetaGame generator can �t this structure. Althoughall the implications of manipulating such a structure are yet unknown, initial results showgreat potential. For example, any macro-operator that is executable in one search domainwill work in any other (single-agent) domain that carries that operator structure. Withsuch a domain-independent graph-theoretic representation we have been able to show thatthe entire TWEAK planning system can be reduced to 5 abstract operators and a simplecontrol structure, and that Roach's robot problem and Sussman's anomaly can be solvedusing the same database of domain-abstracted operators as macros [LK93].Using the variable-free, graph-theoretic de�nition of problems it is also possible to de�nea hierarchy of single-agent problems by \easier than" using sub-hypergraph-isomorphism.Informally, Problem A is easier-than Problem B if there is a 1-1 mapping of bits in problemA to bits in problem B and a mapping, not necessarily 1-1, from operators in B to less-restricted ones in B. An operator X1 is less-restricted than another operator X2 under a bitmapping M, i� every state-to-state transformation by X2 can also be accomplished by X1under the mapping M.Knowing that problem A is easier than B becomes a good source of heuristics. A solutionpath between two states in B is also a solution path to corresponding states in A, thoughperhaps not optimal. Hence the length of such a path becomes an upperbound on theoptimal solution length in A. Likewise the length of a solution path in A becomes a lowerbound on the length of an optimal solution path in B and thus conforms to the traditionalnotion of admissible heuristic [Nil80]. Finally, the hierarchy over problems by easier-than is



10 4. Extending Tic-tac-toe and Other Games to All Hypergraphs.in conformance with the hierarchies generated dynamically during abstract planning [Kor88,Sac74].4 Extending Tic-tac-toe and Other Games to All Hypergraphs.To further illustrate the unifying power of studying games based on their mathematicalstructure let's take a closer look at the tic-tac-toe-like games. Such games reduce to thefollowing basic hypergraph game.7 Given a hypergraph, players alternate selecting nodesand the �rst player who owns all nodes in any given hyperedge wins. We shall assume in thediscussion below that there are only 2 agents. For example, 3x3 tic-tac-toe has a graph ofnine nodes and 8 hyperedges. 3x3x3 has 27 nodes and 48 hyperedges. 4x4x4x4 (Qubic) has64 nodes and 84 hyperedges. The discussion here builds directly on previous work on forks[Eps90], GoMoku and Qubic [All92], hopefully putting that work in proper perspective.The hypergraph representation makes symmetries fully realizable through graph iso-morphism. This mathematical representation also lends itself to reasonable heuristics. Forexample, the quality of a node choice is proportional to the number of \live edges" it isinvolved in and inversely proportional to the number of nodes remaining in each of thoseedges. Through the use of subgraph analysis more precise heuristics can be developed[Eps90].4.1 Reductions in the Basic Tic-tac-toe Hypergraph GameIt is useful to become familiar with reductions that preserve game-theoretic value inbasic hypergraph games, since such reductions may very well not have been apparent fromthe traditional state representation. After each move, a hypergraph may be translated toa smaller but equivalent representation to calculate the value of a state assuming optimalplay. Given the owner of each edge, and which nodes have been played, edges with nodesowned by both players may be removed. Edges involving exactly the same nodes can bereduced to a single-edge that preserves ownership if all owners are the same, or carries noowner if both agents own such an edge. Similarly, if ownership is the same, edges that aresubsumed by other edges are removed. So with each move:1. Remove each edge incident to the move but owned by another player.2. Remove the node itself and set the ownership of all other a�ected edges to the playerwho has moved.3. If any edge now has zero nodes, the player who moved wins. If no more edges remain,the game is a draw.4. Remove all but one out of a set of duplicate edges and update ownership as describedabove. Remove any edge that is a superset of another and carries the same ownership.4.2 Other Basic Hypergraph GamesWe have already shown how a game like tic-tac-toe may be played on any hypergraphOther popular games may be generalized to all basic hypergraphs. These generalized gamesmay require more complex winning strategies than their smaller, �xed-size counterparts.Reductions such as those above for tic-tac-toe are possible in most hypergraph games andlead to more e�cient and accurate reasoning.7The hypergraphs in this section are basic, as opposed to the nested ones used in previous sections.



4. Extending Tic-tac-toe and Other Games to All Hypergraphs. 11The birthday table or round table game [Vaj92] is described as follows:We will assume two players, let us call them Left and Right. Left will seatall the boys and Right will seat all the girls around a circular table with 15seats. Assuming an unlimited supply of children of both sexes, both playerswill alternate in their `moves' (seatings). To preserve decorum no child may beseated next to another of the opposite sex. Whoever is �rst unable to seat achild loses and will be left to cope with the angry parents.A generalized birthday game can be played on any hypergraph of n nodes and m edgeswhere each edge has one node designated as the center. With each move to a node, a playergains that node and ownership of all hyperedges of which that node is a center. A playeris not allowed to move to a hyperedge that is owned by the other player. The �rst playerthat has no legal moves loses. The speci�c 15 seat birthday game above would be played ona hypergraph of 15 nodes and 15 hyperedges, with each node as a center of a 3-node edge.The round table birthday games have a simple optimal strategy: if the number of seats iseven the second player is guaranteed a win by always moving to the seat exactly oppositethe last move of the �rst player. If the number of seats is odd, the �rst player wins bymoving anywhere and then invoking the even number of seats strategy, as if the �rst playerwent second.Another popular single-agent game is known as Merlin's magic square [Vaj92]. Thissolitaire game, often played on a 3x3 grid can be be generalized to any hypergraph. Allnodes start with parity 0. Each move changes the parity of all nodes in a given hyperedge,i.e., 0 becomes 1 and 1 becomes 0. The goal is to design a sequence of moves that changesall nodes to parity 1. Since the order of moves does not matter (all moves are legal at eachstep) most of these games can be solved directly using linear programming or Gaussianelimination. It is interesting to contrast the Merlin games to other search problems, wheremove order does matter and applying linear programming then becomes very expensive orimpossible.Finally, Nim [Vaj92] can also be extended for play on any hypergraph. Players alternatetaking sets of nodes from the hypergraph, but such that each set is contained within agiven hyperedge. The player who takes the last node wins. Most nim games are playedon hypergraphs in which all edges are disjoint. In these disconnected versions a simplewinning strategy based on binary arithmetic exists. Does this strategy extend to connectedhypergraphs as well? In addition to these games, many NP-complete problems [GJ79] suchas \set covering" can be formulated to take place on basic hypergraphs.The characteristics of the basic hypergraph games are much simpler than the genericnested hypergraphs of the previous section, which represent all state-space search problems,but their analysis may lead to a better understanding of the more general case. For instanceit is desirable to analyze the chess-like games. These games have the following additionalfeatures:1. Operators are more complex because they have multiple preconditions and postcon-ditions.2. Conditions can change non-monotonically; a condition which is true can become falseand vice versa.Chess-like games are examples of perfect information, two-agent search problems. It is thecomplexity of these games and the lack of detailed analytic understanding that has led usto suggest the INFORMED LEARNING and BLIND LEARNING subprojects.



12 5. Review of Original Morph ModelIn the following sections we discuss our group's approach to blind and informed learningwith graph analysis and reinforcement learning. Many other learning approaches may proveequally viable such as: neural networks [RM86], genetic algorithms [Hol75], constraintsatisfaction [RK91], inductive logic programming, and explanation-based generalization[FD89, KM90, RN94]. Most of these methods, however, must be extended to the generalcase of all single and double-agent search problems, just as MorphII generalizes Morph.5 Review of Original Morph ModelMorph is an application of our APS (Adaptive-Predictive Search) method for improvingsearch with experience. In APS, knowledge is stored as pattern-weight pairs (pws) [LF4a],where patterns represented by conceptual graphs are boolean predicates over states, andweights are estimates of the expected distance of states satisfying the pattern from a goalstate. Starting from a virtually empty database, pws are learned from search experiencesusing a combination of learning techniques: temporal-di�erence learning, weight updating,and pattern creation/deletion. Patterns are stored in a partially-ordered hierarchy by more-general-than to facilitate e�cient associative recall. Each state's evaluation is formed asa function of the weights of the most speci�c stored patterns that apply to that state.Ideally, an APS system should converge to a database that serves as a reliable evaluationfunction using 1-ply lookahead. In practice, APS learning agents couple with a guidedsearch based on previous experience. In addition to weights, other statistics such as\number of uses" or variance may be stored with patterns to be used in determining theirimportance and whether they should be maintained by the system. APS systems are similarto genetic classi�er systems, except that structural patterns are used, no �tness function isavailable beyond the outcome of a given search, and the pattern representation and creationmechanisms exploit domain-dependent symbolic knowledge.To use APS in a given domain, a pattern language and pattern addition strategies mustbe added for that domain. Thus, APS is applied to chess in Morph by supplying a graphpattern language that depicts attacking and defending relationships between pieces andother pieces or squares. Nodes are labeled with pieces types, e.g., white bishop, black kingetc. or full and partial square designations, e.g., e2, d5, on-rank-3, on-f-�le, and directededges are labeled (direct, discovered, or indirect). To evaluate a position, the positionis translated into a directed graph using the pattern representation language and thenmatched against a database of pws representing potential subgraphs of the given graph.A typical position might use a weighted average of as many as 50 matched subpatternsin its evaluation. Starting from an empty database, learning patterns of this type and anadditional pattern type that re
ects material for each side, with 1-ply search Morph learnsthe relative values of the chess pieces, defeats human chess novices, and draws its Gnuchesstrainer regularly.Morph obviously bene�ts from a well-chosen pattern representation language. To con-tinue toward the blueprint objective of a domain-independent learner, more responsibilityfor pattern-creation must be placed on the learning system. It is this desire for generalityand deeper understanding that led us to the view of chess as an instance of a game ofabstract mathematical relations and to MorphII. It is hoped that an understanding of howMorph has been adapted to the game of abstract mathematical relations may lend insighton how other systems may be generalized as well.



6. Morph II: Improving on Morph. 136 Morph II: Improving on Morph.Once we understand that search problems are games of graph-to-graph transformations(as described in Section 2), we can also understand how knowledge of the existence ofa subgraph of a graph representing the current state may carry predictive value of theoutcome of the game. Inherent in such a graph are the potentialities of operators that canbe applied (or prevented) and a relationship to terminal conditions and goals of the game.Our current understanding of state-space search does not enable us to assess the value asexpected outcome of such a subgraph directly. Instead it may be learned statistically, fromexperience. In experiments, Morph is often limited to searching 1-ply ahead to force us tofocus on issues associated with heuristic construction and development.86.1 Weaknesses in MorphIf the the weights of subgraphs can be approximated accurately, why is Morph not abetter chess player?.1. Inappropriate mechanisms for combining the values recommended by each of the in-dividual subgraphs. The original hypothesis was that the pattern values could becombined numerically, independent of which patterns have produced these values andthe relationship between these patterns. We now believe that this hypothesis is false,if we are to produce a strong heuristic. The Manhattan Distance for tile puzzlessu�ers similar shortcomings. In fact, experiments we have conducted in which oneattempts to combine the values of higher-level patterns (involving several tiles in the8-puzzle), without knowledge of the underlying patterns but having their correct val-ues (as expected distance to the goal for states having the pattern) have also provedunpromising. These experiments were done by hand rather than using statisticalmethods to form the combination equation as described below, but still demonstratethe di�culty of using even perfect knowledge about a subset of patterns in a complexdomain.2. Speci�city of the graphs in the chess system. Although the graphs are reasonablefeatures, the system lacks the ability to have information learned about one graphdirectly in
uence the values of other, similar graphs. This leads to many learningine�ciencies, especially considering that some speci�c graphs may be only seen a fewtimes in the system's career and that this may provide insu�cient information to givethem accurate values.Fortunately, these di�culties can be addressed. The original hypothesis underlying theMorph design is that knowledge of the relationships between objects must be exploited. Thishypothesis has been borne out by the moderate success Morph has had using its graphs.The hypothesis must simply be carried further: the two di�culties above both refer to lackof exploitation of the relationships among the graphs themselves. In short, a scheme mustbe developed that allows graphs to in
uence and bene�t from the weights of similar graphs.To proceed further, the following mathematical understanding is required: Morph'sgraphs are equivalent to a collection of dynamic binary relations that may occur in aposition, e.g., the direct attack relation, indirect attack relation. Thus, the same relations8In actuality, the restriction to 1-ply search is one of degree rather than kind. Testing for Morph'spatterns requires the equivalent of 1 or 2 ply of search.



14 6. Morph II: Improving on Morph.that are used to describe the rules of a domain for a monitor may be used as the basis forlearning in that domain as well.6.2 The GLM and the Reinforcement HierarchyTo make Morph more general and to address the two learning limitations above wedeveloped the notion of a generic learning module (GLM) with the following properties:� It contains n subsystems.� It estimates the value of a state S, by �rst consulting its subsystems (themselvesgeneric learning modules ) to get their estimates of the value of S. It combines theirvalues numerically (perhaps non-linearly) using an equation that it has learned. Thecombining rule exploits the past accuracy of the subsystems.� The module receives feedback for its predictions from a higher-level system.� The module learns by modifying its combination equation.� A primitive GLM is a GLM in with no subsystems; it simply attempts to predict thefeedback value using a dynamic constant function.To focus this discussion on the important high-level learning issues de�ned above, wemay ignore the learning method used by the GLM. Conceptually, any function learningmethod will do. We focus on the identi�cation of the subsystems themselves and towardstheir interaction. The notion of a hierarchy of control modules is consistent with thehierarchical general systems theory of Mesarovic [MMT70,Kli85]. Our contributions includethe generation of the systems hierarchy from the declarative speci�cations of the domain byexploiting the isomorphism of the terms \logical predicate" and mathematical relation, theformation of higher-order controllers by combining relations, and the connection betweenstandard AI concepts such as state-space search, machine learning algorithm, and TD-learning with graph theory and systems theory. The richness of these connections has beenachieved through the exploitation of the appropriate mathematical abstractions and thus,lends some support to the emphasis on mathematics in the blueprint.The individual learning modules form a partially-ordered hierarchy based on the \sub-system" relation. The top level modules of the hierarchy receive feedback for individualstates in a state sequence using the same temporal di�erence (TD) learning [Sut88] mech-anism as in Morph.9 These modules in turn send feedback to their subsystems and soon, bottoming out in primitive GLMs. During play, higher-level systems compose theirpredictions by combining the recommendations of lower-level systems.As games become more complex, the complexity of each individual learning module andthe hierarchy of learning modules will need to increase as well. For simple games, suchas 3x3 tic-tac-toe it is possible to write an evaluation function for optimal play that issimply a linear combination of the values of objects (X,O, or B) on individual squares. Thiscorresponds to a 2-level hierarchy, with nine modules on the lower level and one moduleon the top. However, for a game such as chess, an evaluation function based directlyon a linear combination of the values of objects on the 64 squares will not perform well,because it is the relationship between objects and not individual objects that is critical. Tosimply expect a non-linear evaluation function to succeed begs the question, \where do thecomplex interactions it needs to consider come from?". Also, to e�ciently learn the proper9After a game is completed, TD learning is used to assign new evaluations to all states that occurredduring the game, given the new information provided by the outcome of the game.



6. Morph II: Improving on Morph. 15coe�cients for this complex function, knowledge must be transferred and shared betweenterms. Otherwise, for example, all instances of a black pawn attacking the white queenwould have to be learned separately,6.3 Generating the Reinforcement Hierarchy From the Rules of aDomain.We use the rules themselves to dictate the structure of the system hierarchy. Ourhypothesis is that for most domains the relations given in the initial description of a domainare enough to support the patterns necessary for learning. A GLM is created correspondingto each relation. GLMs are stored hierarchically based on dependencies. For example, inthe tic-tac-toe de�nition of Section 2 the hierarchy has a middle-level module correspondingto ON , and two higher-level modules corresponding to MOVE and TERMINAL. Towers ofHanoi has a similar hierarchy. The primitive low-level GLMs in these hierarchies correspondto the weights of individual tuples that may be stored in the individual modules. Each tupleof a higher-order module provides feedback to the tuples of lower-level modules that theydepend on. For example, the value of MOVE(D2,P2,P3) in the Towers of Hanoi is built asa combination of the values of ON(D2,P2), ON(D1,P2) and ON(D1,P3).10To evaluate a state, the monitor proceeds as follows:1. The monitor calculates incrementally, based on the previous state and the currentmove, which tuples match and do not match a given state.2. The weights of the lowest level tuples are propagated up the hierarchy and combinedto form the values of higher level tuples.3. Each relation combines the values of its tuples and lower-level relations to producerecommendations to higher-level relations.4. The values of the highest-level relations are combined to produce the evaluation ofthe state itself.The weight combinations are based on the weights themselves as well as the previousaccuracy of the subsystems.This design deals directly with the �rst weakness in Morph discussed above. Noweach module has its own combination function, so that weight combination is localizedand speci�c to the patterns under consideration. In the new framework two weights maybe combined di�erently by the problem solving system based on their location within theGLM hierarchy.The second weakness, inability of patterns to share information, has also been addressed.Patterns with the same structure all occur in the same relational table. Thus the weightsof these patterns may be shared and generalized across the contents of the table. Further,rather than patterns being added one at a time, pattern skeletons represented by newrelational tables may be inserted into the hierarchy and thus many new patterns processedsimultaneously. The exact nature of these relation table insertions is a topic for further work.Finally, higher-level patterns are in
uenced directly by the values of low-level patterns.10In MorphII, the weights of the low-level tuples learned in the primitive GLMs use a learning rule thattakes into account the average of training values seen over time, the most recent training value, and theaccuracy of previous predictions.



16 7. Blind LearningAn important improvement is the use of relational tables as the GLMs in the hierarchy.Most search and game domains can be represented using a small �nite number of domainobjects. The relational tables may therefore be stored as boolean matrices, where each bitcorresponds to an individual tuple. Thus, the expensive graph matching of the originalMorph system has been replaced by simple bit matching operations (see Section 8). Theboolean matrices also potentially allow for the application and mathematical analysis ofe�cient learning schemes based on linear algebra for the GLM.7 Blind LearningClearly, blind learning is more di�cult than informed learning. For example, in MorphIIwith blind learning there would be no domain de�nition to guide the construction of thelearning hierarchy. Not only do the GLMs have to learn as before, the question of whichgeneric modules are formed and their interrelationship becomes a critical issue. Further,recognizing redundancy so it can be exploited becomes a di�cult matter. Not only does aninformed learner start from a better place, it should be able to classify its experience moreaccurately.Despite the di�culties, we feel that it is important for AI researchers to study blindlearning for several reasons:1. In many practical domains one is not given access to any declarative description ofthe rules.2. The additional di�culties in blind learning give us a better appreciation for theinformation supplied in rules.3. Blind learning forces the learning system to make use of all available information. Interms of MorphII, the system must develop a relational structure for a given domainthat works.In our proposed environment for blind learning systems, the agent is given privy to thefollowing information and no more:� The current state of the board as a �nite-length vector of boolean conditions. This bitdescription is exactly the information a legal move generator would need to generatethe correct set of legal moves in a given state. Beyond this, no interpretation is givento the bits and they may be placed in any order. Just as informed learning mayoperate in domains with rule encodings ranging from malicious to benevolent, blindlearning must operate with state encodings of varying quality.� A set of rules , where the legal moves and rewards from any set of conditions is�xed and the same for each player under some inversion or symmetry of the board ordomain objects.� The states resulting from each of its legal moves at any given point in the game.� The reinforcement for the game in terms of some reward that the agent is trying tomaximize.Here is how tic-tac-toe might appear to the blind learning agent. The board is 18 bits:2 bits for each square where 00 is empty, 01 is X, 10 is O, and 11 is an unused code. Tomake things more obscure, one can interpret can consider the board as representing a base3 number, so that each state could now be represented as a 14-bit binary number. Thus,even a straightforward game like tic-tac-toe could quickly disguise any resemblance to thestandard board and the form of the rules of play. Such di�culties are intended. We believe



7. Blind Learning 17that methods must be developed to produce a general learner, one capable of adapting givenadequate experience to any game-playing environment.7.1 Blind Learning in MorphIIA system that can exploit not only relations between objects, but also higher-order andanalogous relations on them will surpass in performance most learning systems currentlyin existence. Most systems do not exploit graph-isomorphism and higher-order morphismsbetween structures despite the fact that such relationships are at the core of the structureof those domains. For example, many implemented learners have di�culty even learningthe simple concept \any three consecutive bits are 1" [Hun94], apparently because thesimple adjacency relationship between bits is not being exploited or ternary relations arenot considered.Our goal is to build a blind learner that constructs and exploits a reinforcement hierarchy,just as in informed learning. The study of how blind learning might do this also leadsto insights on how the informed hierarchy may dynamically modify itself by adding newrelations.Initially, the blind learner starts out with one low-level \state" GLM. This module viewsthe state as a binary relation, with potentially matching tuples represented by its bits. Asbefore, the weights of the individual bits are stored and learned in primitive GLMs.The system uses its experience with the values of bits and their cross-correlation tocreate higher-order and, hopefully, more useful relations. The system learns and stores thefollowing information due to pairing its bits.� The frequency of two bit values (00,01,10,11) occurring together.� The performance weights associated with the pairs of values.� A linear or non-linear function that predicts with least squared error the weight of apair of values given the weights of individual values.With an n-bit representation, there are 4*n*(n-1) possibilities to be studied. Under compu-tational constraints the pairing operations might be restricted to those bits with the mostextreme or predictive weights.The system then creates new relations based on the following:� A set of bits that never occur together, i.e., at most one bit is on at a given time iscalled a variable. For example, variables might correspond to the pieces or squares inboard games.� Pairs of bits that have similar values and similar weight combination rules.� Sets of bits whose parity changes by a single operator application. These sets of bitsgive topological information about the structure of the search space.Currently, the system uses fuzzy graph matching and clustering [Wat85] to form higher-level relations and the associated GLMs. For example, two variables whose bit pairs (onebit from each variable) have similar combining rules are then combined to form a newbinary relation. We believe that through more thorough mathematical analysis, it may bepossible to put forth probabilistic arguments as to which relations should be created andwhich should not be. Currently, the relation GLMs are monitored to determine which arethe most reliable predictors; those that are the best are retained. Higher-order relationsmay then treat the absence or presence of tuples in an analagous manner to the way bitswere treated at the lowest level by the blind learner to create yet higher relations.



18 8. Exploiting Analogous Relationships in Blind Learning8 Exploiting Analogous Relationships in Blind LearningTo gain further insight and understanding into the blind learning method proposed in theprevious section, consider the combinatorial explosion associated with chess, for example,how hard it is to learn not to place the white queen where a black pawn can capture,including places it has not yet been placed. Here we assume no knowledge of piece, square,pawn, or queen. has been supplied.Assume that the blind learning system has observed several instances of the pawn-can-take-queen relationship (relationships between two uninterpreted piece-square conditionsdue to this relationship) and then encounters a new instance, for example, a state wherethe bit for ON(WQ,e4) is 1 and the bit for ON(BP,d5) is 1. If this instance, being a capture,occurred before there would already be a speci�c tuple stored for this pattern. However,if this instance has not been encountered before a generalization from similar instances isrequired. We propose the following scenario for how this chess generalization, and manyothers, might be learned:1. The values of individual bits are learned through su�cient experience. Let X equalthe value learned for ON(WQ,e4) and Y equal the value learned for ON(bp,d5).2. Variables are discovered from the information about which bits occur together. LetV1 be the variable corresponding to the white queen, V2 to e4 and V3 to d5.3. Binary relations are formed from pairs of variables whose pairs of bits have similarcombining rules. The combining rule between two variables is a function that, giventhe values of the bits which are on in the two variables, produces the value for theirconjunction. A binary relation that includes tuples from which a black piece on e4attacks a white piece on d5 can be discovered as a result of the value of most attacktuples being worth much less to white than the values of the components of the tuples.Substituting the values of X and Y in this rule would give an approximately correctresult, especially if the value of the combination is inversely proportional to the valueof X.Relations such as the \e4-attacks-d5" relation above might be collected together to forma general \attacks" relation or specialized further to form a \wp-e4-attacks-d5" relation.These concepts are very similar to Morph's original human supplied edge types. Just likethe edge labels in Morph, the learning of new relations facilitates the analogical reasoningprocess by making precise the combining rule for its components. Once made explicit, thesecombining rules can then themselves be matched to �nd higher-level patterns.The assumption is that games and search problems of interest have regular underlyingstructure. To the degree that this assumption of regularity is false, the learning task willbe more di�cult and more false inferences will be made before the proper structure can belearned, if it can be learned at all. If no connection between these squares has ever beennoticed an agent ignorant of board topology and the rules, would �nd it virtually impossibleto recognize the interaction, unless it were inferable indirectly from other patterns.9 MorphII: Domain-Independent Games Environment in C++The blind and informed learning testbeds described above are available as part of thepublic domain software known as the Peirce Conceptual Graphs Workbench [EL92]. Thelearning system in Peirce, known as MorphII, accepts the rules of a single-agent or a multi-agent state-space search domain, translates them into conceptual graphs, and then monitors



9. MorphII: Domain-Independent Games Environment in C++ 19games and learning via a \super-referee." Thanks to object-oriented C++ code, domainindependence is maintained through polymorphism of domain objects, and independentC++ modules can be coded and tested and modi�cations can be made to our initialimplementations for blind learning and informed learning algorithms. Declarative rule setsfor a number of games are available, including chess, Towers of Hanoi, tic-tac-toe, Hexpawn3,Hexpawn6, the 8-puzzle, Nim and the birthday party game. It is also possible to test thepower of di�erent search algorithms and human-supplied heuristics in these domains. Thissection discusses our implementation methodology, and summarizes performance results.9.1 Monitoring State-space Search Incrementally Using UDSOur primary discovery is that a relational hierarchy can e�ciently monitor and enforcethe rules of a given domain, while it also serves as the basis for the hierarchical reinforcementlearner described in Section 4. We call the relational hierarchy and the algorithms thatoperate over it UDS, for \Universal Data Structure" [Lev94].The \Universal" in UDS refers to an e�ective monitor and executor of the speci�cationsfor any given state space search domain. Due to the relation-based perspective of UDS,the following ideas from the RETE algorithm [For82, Mir87] can be exploited with littleadjustment to the relational hierarchy de�ned above.� The �ring of an individual operator does not a�ect the current state radically.� If an operator did not match in the previous cycle, it most likely will not match in thecurrent cycle either.� On each cycle we should only try to rematch operators that could have been a�ectedby the previous operator application.� Di�erent operators may share a large amount of the same structure. Thus, separateconditions of operators should only be matched once per cycle.� Variable bindings from cycle to cycle remain relatively consistent.UDS monitors search problems as follows. The hierarchy is used to represent dynamicrelations. Speci�c relations that are true are stored beneath the schema declarations for therelations as speci�cations. A schema declaration and its tuples are equivalent to a table ina traditional relational database and are called a table here. The preconditions of operatorsare stored using the graph hierarchy. Repeated parts of operators are only representedonce in the relation hierarchy. Figure 9.1 depicts the initial UDS network for monitoringthe Towers of Hanoi. UDS di�ers from standard RETE implementations; UDS exploitsthe relation-based representation of conceptual graphs to extend the types of patterns thatcan be matched and speed of their matching. However, UDS naturally supports RETE aswell as a variety of other data manipulation methods appropriate to relational databases,conceptual graphs and semantic networks.Those dynamic relations that do not depend on any other relations in their de�nition areknown as primitive dynamic relations.11 The post-conditions of operators work directly onthe primitive dynamic relations through pointers to add or delete tuples from their contents.Static relations are compiled away at network generation time because the set of tuplesthat satisfy them remains constant. Conceptual graphs representing the preconditions ofoperators are only re-matched if the content of one of their composing relations changes.Only that part of the conceptual graph a�ected by the change need be re-matched.11The primitive dynamic relations form the low level GLMs that sit directly above the primitive GLMs(for weights) in the reinforcement hierarchy.
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Figure 9.1: Initial state of UDS network for monitoring Towers of Hanoi.9.2 What Happens After an Operator is Selected1. A selected operator corresponds to a tuple in one of UDS's operator tables, forexample, MOVE(D1,P1,P3) in Towers of Hanoi.2. This tuple is bound to the given variable-arguments of that operator schema and listsof add and delete tuples are built based on the add and delete conditions of thatschema. In our example, ON(D1,P1) will be deleted and ON(D1,P3) will be added.3. These lists of tuples are added and deleted immediately from the appropriate primitivedynamic relation tables in the net, and these new changes are propagated up the net.4. Each of the created tuples in the add/delete lists is iterated through for each table inthe net that it may directly a�ect, changing the truth values of tuples in that table. Ifone of the added or deleted tuples matches a pre-condition of a table, then a \re-join"procedure is called to update the tuples currently being stored in the table. Thosetables not a�ected by the new add/delete tuples are ignored. Thus, in our example,the �ring of Move(D1,P1,D3) removes (D1,P1,P2) and (D1,P1,D3) from the Movetable and adds (D1,P2,P1) and (D2,P1,P3) to the Move table.



9. MorphII: Domain-Independent Games Environment in C++ 21Further details on the implementation, including how join and merge work, can be foundin [Lev94].9.3 Performance ResultsWith this scheme, we have been able to monitor a variety of domains including tic-tac-toe, Towers of Hanoi, 8-puzzle, and Hexpawn12 at a level of e�ciency that is faster (in somecases up to 10 times) than previous programs of ours that had been written speci�cally forthese domains but were not incremental.UDS has played at various search depths and monitored a variety of search domainscompiled into its network from rule de�nitions as in Section 6. UDS is implemented in C++on a SUN SparcII with 64 megabytes of main memory. Although domain-independent, itsresults are reasonable and would likely outperform (for domains with high branching factors)a hard-coded program that does not exploit incrementality.Table 9.1 presents results from our earlier implementation in which relation tables arestored as sparse matrices. In particular, a relation is stored as a set of tuples where eachtuple is identi�ed by its arguments. In the table, \Random vs Random" means that arandom agent competes against another random agent; \n Ply" means that one agentsearches this deep, evaluating leaf nodes with random numbers and then using minimax formove selection, while the other agent plays randomly with no lookahead. The 500 movesTowers of Hanoi results are with game restarts and the 500 move 8-puzzle results are for 1game.Table 9.2 presents results from our most recent implementation in which the multi-dimensional bit array method is used for storing relation tables. Each tuple is an individualbit cell in the matrix. A 1 means the tuple is present; a 0 means the tuple is absent. Thesubscripts of the cell correspond to the arguments of the tuple. The main advantages of thebit matrix storage scheme is that processing is uniform for all tuples and that row operationson the matrices can exploit the bit-parallel concurrency provided by the logic operationsof the workstation. In e�ect, relational join has been reduced to matrix multiplication.Compared to Table 9.1 there are speedups of a factor of 5 to 81, typically around 25.Towers of Hanoi shows the greatest speedup, and Hexpawn the least. With the exceptionof Hexpawn, speedups are signi�cantly greater at higher ply than lower ply.Tables 9.3 and 9.4 summarize the quality of play with blind learning. Towers of Hanoistarts from randomly selected legal initial states. For both tic-tac-toe and Hexpawn, drawsare counted as wins for the second player. The statistics presented are for a very basic blindlearner that simply learns the values of individual bits (through gradient-descent weightupdating) in the uninterpreted state representation, or randomly selected sets of bits in theunderlying representation. For Towers of Hanoi, 9 bits are used to represent which disk ison which peg. In both Hexpawn and tic-tac-toe 18 bits are used to represent the state (00for blank, 01 for O or white pawn, 10 for X or black pawn for each of the 9 positions; 11is not used). No e�ort was made to identify and exploit generalized relationships such asthree-in-a-row for tic-tac-toe.12Hexpawn is a simple version of chess played on a 3x3 board. Each player has 3 pawns. In thestarting con�guration each player's pawns are along their respective edge of the board, with the middlerank unoccupied. White moves �rst and players alternate moves. Pawns move one square forward andcapture diagonally as in normal chess. The �rst player to get get his/her pieces to the opposite side of theboard or to capture all the opponent's pieces wins. The game is a draw given optimal play. Hexpawn 6 isHexpawn but on a 6x6 board where each player has 6 pawns.



22 9. MorphII: Domain-Independent Games Environment in C++Total Average Total AverageSingle{Agent Games 100 Moves 500 MovesTowers of HanoiRandom vs Random < 1.0 { 2.0 0.0041 Ply 3.0 0.03 15.0 0.032 Ply 19.0 0.19 102.0 0.203 Ply 110.0 1.10 618.0 1.248 PuzzleRandom vs Random < 1.0 { 2.0 0.0041 Ply 4.0 0.04 22.0 0.042 Ply 42.0 0.42 205.0 0.413 Ply 298.0 2.98 1605.0 3.21Double{Agent Games 100 Games 500 GamesHex PawnRandom vs Random 2.0 0.02 10.0 0.021 Ply 6.0 0.06 30.0 0.062 Ply 22.0 0.22 110.0 0.223 Ply 80.0 0.80 405.0 0.81Tic-tac-toeRandom vs Random 3.0 0.03 15.0 0.031 Ply 9.0 0.09 45.0 0.092 Ply 55.0 0.55 290.0 0.583 Ply 415.0 4.15 2095.0 4.19Table 9.1: Tuple{List Execution Speeds, in seconds. The amount of time used tomake 100 and 500 moves or play 100 or 500 games is depicted at di�erent searchdepths.Tables 9.5, 9.6, 9.7, and 9.8 present results for the Generic Learning Module (GLM).Although the GLM is in an informed setting, it does not \analyze" the rules, but insteaduses them to form its monitor and reinforcement hierarchy. While future GLMs will add newrelations and patterns to their database, for these experiments only those patterns necessaryfor monitoring the games were stored. Table 9.5 shows how performance against a randomagent grows with early training for hex pawn, hex pawn 6, and tic-tac-toe. Percentages aregiven for wins (W), draws (D), and losses (L) and are cumulative over all games played.In those cases where learning does not seem to improve (as in 1-Ply APS versus random inHex Pawn) very good performance was already achieved in 10 games. We believe that theslight degradation is probably due to learning against a (now) weaker opponent.Table 9.6 shows how performance grows with longer term training for pennies and NIM.13In NIM the raw APS agent did not fare as well as in other domains. This is because thepatterns required to monitor NIM do not include the critical feature: the relationshipbetween the stacks. By manually adding a 3-ary dynamic relation that includes the number13In pennies there is a stack of 15 pennies. Players alternate taking 1{3 pennies from the stack. Theperson who takes the last penny wins. In NIM there are three stacks of 3, 5 and 7 sticks, respectively.Players alternate taking one or more sticks from a given stack; the player who gets the last stick wins. Bothof these games are wins for the �rst player given perfect play.



9. MorphII: Domain-Independent Games Environment in C++ 23Total Average Total AverageSingle{Agent Games 100 Moves 500 MovesTowers of HanoiRandom vs Random 0.02 0.0002 0.14 0.00031 Ply 0.12 0.0012 0.49 0.00102 Ply 0.49 0.0049 2.15 0.00443 Ply 1.41 0.0141 6.61 0.01348 PuzzleRandom vs Random 0.03 0.0003 0.29 0.00051 Ply 0.18 0.0018 0.97 0.00192 Ply 0.61 0.0061 3.19 0.00633 Ply 1.78 0.0178 8.87 0.0178Double{Agent Games 100 Games 500 GamesHex PawnRandom vs Random 0.20 0.0020 0.96 0.001931 Ply 0.44 0.0044 4.85 0.004472 Ply 1.12 0.112 4.85 0.009953 Ply 1.96 0.0196 9.80 0.0196Tic-tac-toeRandom vs Random 0.18 0.018 0.84 0.00171 Ply 0.54 0.0054 2.72 0.00542 Ply 1.96 0.0196 9.24 0.018673 Ply 8.36 0.836 39.52 0.0798Table 9.2: Bit{Matrix Execution Speeds, in seconds. The amount of time used tomake 100 and 500 moves or play 100 or 500 games is depicted at di�erent searchdepths. Towers of Hanoi Lowest Highest AverageNumber of moves 7 21 11Games won in � 10 moves 77%Table 9.3: Blind Learner, Single{Agent Games (100 Games) The number of movesrequired by a blind learner to solve Towers of Hanoi is depicted.of sticks on each stack the improved performance under NIM 2 was achieved. Futuredevelopments will make such feature addition automatic.Table 9.7 shows performance against a greedy opponent over 1000 games after learningduring 500 games (no learning occurs during the 1000 games). The greedy agent is a randomagent except it recognizes (knows the correct value of) winning and loosing positions. \R-APS" refers to the APS agent trained against the random agent, \G-APS" to the APSagent trained against the greedy agent. Table 9.8 presents the same conditions, but whereAPS is the second agent to move. Over the coming months we will be extending our resultsto backgammon, checkers, Othello, and chess and building a GLM that processes the bitmatrix relational tables as \images."



24 10. ConclusionAgent Wins1 2 Agent 1 Agent 2Hex PawnRandom Random 59% 41%Random Blind Learner 21% 79%Blind Learner Random 67% 33%Tic-tac-toeRandom Random 74% 26%Random Blind Learner 44% 56%Blind Learner Random 76% 24%Table 9.4: Blind Learner, Double{Agent Games (500 Games) Blind learning versusa random opponent. Percentage of wins is shown.10 ConclusionEric Baum recently pointed out [Bau93] the inherent potential in of information (math-ematical structure) inherent in a declaration of the rules of a given domain:The computer science approach has since Shannon basically regarded a gameas de�ned by its game tree. But what makes a game interesting is that it has alow complexity, algorithmically e�cient de�nition apart from the game tree....Any procedure which only accesses the underlying simplicity of a game in theform of an evaluation function is inherently doing the wrong thing.. .. the mainopen question is how to go beyond the evaluation function picture of games.We agree strongly with this insight and in this paper have suggested 4 projects that webelieve will lead to a practical exploitation of the underlying structure of game-domains:Agent Agent 11 2 10 Games 100 Games 500 GamesW D L W D L W D LHex PawnRandom Random 30 40 30 41 41 18 45 27 281-Ply APS Random 60 40 0 59 29 12 50 40 102-Ply APS Random 60 40 0 59 29 12 51 45 4Hex Pawn 6Random Random 50 10 40 44 7 49 48 7 451-Ply APS Random 70 10 20 68 4 28 82 4 142-Ply APS Random 50 20 30 77 9 14 87 4 9Tic-tac-toeRandom Random 70 10 20 60 12 28 58 12 301-Ply APS Random 80 10 10 87 5 8 87 5 82-Ply APS Random 60 10 30 89 7 4 93 5 2Table 9.5: GLM, Double{Agent Board Games (numbers are percentages ofwins,losses and draws.) The results of the GLM playing a random opponent atvarious search depths is depicted.



10. Conclusion 25Agent Agent 11 2 250 1000 2000Games Games GamesW L W L W LPennies1-Ply APS Random 93 7 95 5 97 3NIM1-Ply APS Random 72 28 75 25 75 25NIM 21-Ply APS Random 84 16 89 11 92 8Table 9.6: GLM, Double{Agent Stack Games (numbers are percentages of wins,losses and draws. The GLM versus a random opponent for 250, 1000, and 2000games. .1. GENERIC REPRESENTATION: Design a domain-independent mathematical repre-sentation of state-space search domains.2. INFORMED LEARNER: Design a program that performs well in state-space searchgiven just the mathematical de�nition of a given domain, domain-independent heuris-tics and experience.3. BLIND LEARNER: Design a program that performs well on state-space search givenjust experience, the rewards at the end of a given domain and legal states (as raw bitvectors) to choose from at each move.4. MONITOR: A programming environment that supports the design and execution ofexperiments on these topics.We have shown how individual search and game domains may be viewed as instancesof a general graph-theoretic game of abstract mathematical relations, and discussed therelationship of these graphs to relations and �rst-order logic. We argue that the advantagesof taking this perspective are many:1. An e�cient, domain-independent monitor can be developed that exploits the matrixand logic operations of the underlying hardware.2. A study can be made of the relationship between the structure of the rules (problemde�nition) of a given domain and the structure of a hierarchical reinforcement learneror neural net to experientially learn the value of states in that domain. In particular,we outline an algorithm to convert from the relation-based representation of a domainto a reinforcement learning network for that domain.3. The problem de�nition, monitor and learner for a given domain can be seen as arisingtogether from the inherent structure of that domain, rather than being three separateprocesses.4. As a result of this coherence, domains that are similar in structure give rise to similarlearners and monitors. In fact, UDS illustrates how the same network data structurethat monitors the domain may be the basis of a reasonable learner for that domain.5. The relationships of parts-and-wholes in the domain de�nition may be extracted toidentify the placement of \Generic Learning Modules" in the reinforcement hierarchy.Thus learning research might be pursued from the higher perspective of the interactionof learning modules rather than as a choice between methods.



26 10. ConclusionAgent Agent 11 2 W D LHex Pawnrandom greedy 42 29 29greedy greedy 47 26 271-Ply R-APS greedy 51 37 121-Ply G-APS greedy 43 57 02-Ply R-APS greedy 55 45 02-Ply G-APS greedy 56 44 0Hex Pawn 6random greedy 35 4 61greedy greedy 52 5 431-Ply R-APS greedy 73 3 241-Ply G-APS greedy 77 3 20Penniesrandom greedy 26 74greedy greedy 50 501-Ply R-APS greedy 100 01-Ply G-APS greedy 100 0NIMrandom greedy 37 63greedy greedy 52 481-Ply R-APS greedy 21 791-Ply G-APS greedy 20 802-Ply R-APS greedy 73 272-Ply G-APS greedy 67 33NIM 2random greedy 37 63greedy greedy 52 481-Ply R-APS greedy 69 312-Ply R-APS greedy 99 1Table 9.7: GLM, Double-Agent Games After Learning (numbers are percentagesof wins, losses and draws.) The results of tournaments of 100 games between agreedy, random, and APS agents that have been trained for 500 games againstgreedy or random opponents is depicted. APS agents using 1-ply and 2-ply searchare included. APS moves �rst.The performance of our matrix-based monitor (as opposed to learner) lends credenceto the practicality of the general graph-theoretic view of search domains. The results pre-sented here, are preliminary but encouraging; they demonstrate that reasonably strongreinforcement learners of di�ering structure can be constructed automatically from a prob-lem description. Further research will study how the reinforcement learner can enhanceitself by adding new relational tables to the network. This self-organization, coupled withparameterless (not requiring human tuning) learning rules, will further support our themeof giving the computer maximum responsibility for its learning structure.



10. Conclusion 27Agent Agent 11 2 W D LHex Pawngreedy random 50 31 19greedy 1-Ply R-APS 0 56 44greedy 1-Ply G-APS 0 58 42Hex Pawn 6greedy random 65 6 30greedy 1-Ply R-APS 29 4 67greedy 1-Ply G-APS 27 6 67Penniesgreedy random 74 26greedy 1-Ply R-APS 3 97greedy 1-Ply G-APS 5 95NIMgreedy random 65 35greedy 1-Ply R-APS 77 23greedy 1-Ply G-APS 82 18NIM 2greedy random 65 35greedy 1-Ply R-APS 28 72greedy 2-Ply R-APS 3 97Table 9.8: GLM, Double-Agent Games After Learning (numbers are percentages).The results of tournaments of 100 games between a greedy, random, and APSagents that have been trained for 500 games against greedy or random opponentsis depicted. APS agents using 1-ply and 2-ply search are included. APS movessecond.As e�ort by various research groups on the projects of the blueprint proceeds we hopethat computer science and Arti�cial Intelligence will be appreciated as important branchesof mathematics dealing with optimal problem solving under resource constraints, and thatcomputer game-playing will have played an important role in that development.AcknowledgmentsBarney Pell, and the anonymous reviewers provided useful criticism and encouragementduring the writing of the paper. John Amenta developed much of the MorphII software andobtained performance results. Yuxia Zhang assisted in developing the declarative de�nitionof games and implemented the Generic Learning Module. James D. Roberts helped withthe �gures and a late draft of this paper. Susan Epstein provided exhaustive stylistic andeditorial corrections to the writing and other useful comments. Radhika Grover proofreada late draft.
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