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ABSTRACT

This paper describes a novel approach for incorporating the components character-
ized by the measured scattering-parameter (S-parameter) data into an S-parameter macro-
model based simulator. This approach first converts the measured S-parameter data into
frequency-dependent parasitic functions: R(f), L(f), C(f), and G(f), which are later used
to compute the moments of the S-parameter for the construction of the macromodel. Ben-
efiting from the weak frequency dependency nature of the R(f), L(f), C(f), and G(f)
functions, this method allows the moments to be calculated in a much more accurate fash-
ion than those obtained from fitting the S-parameter directly. This method also has several
added advantages such as: the moments produced are independent of the approximation
order and insensitive to measurement errors, furthermore, they observe power conservation
rule for passive systems. The simulation results show very good agreements with the results
produced by the direct convolution approach.

Keywords: Measured Data, Scattering Parameter, S-Parameter, Transient Analysis, Mea-
sured S-Parameter, Tabulated S-Parameter, Macromodel, S-Parameter Based Macromodel
Simulator, Frequency-Dependent Parasitic
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2 1. Introduction

1 Introduction

Interconnect design has become an important issue in the high performance systems due to the
recent advance in the packaging technology. As the packaging density and the clock speed of the
Integrated Circuit (IC) increase, the frequency-dependent losses as well as the crosstalk induced
noise have become some of the major issues in the designs of the interconnect networks. Due to the
high switching speed of today’s digital system, the magnitudes of the harmonics of the transmitted
signals above 1 GHz can often become the significant components in the power spectrum. At these
high frequencies, the interconnects exhibit more frequency-dependent conductor (skin effect) and
the dielectric losses. The electro-static field solution can no longer predict the correct parasitics for
the interconnects that carry the high-speed digital signals. The correct modeling of the transmission
lines requires accurate modeling of both the frequency-dependent conductor (skin effect) and the
dielectric losses. The measured S-parameter data can easily capture the behavior of these losses.
The discontinuities in interconnects are difficult to describe with close form equations; they are
better characterized with the measured S-parameter data. As a result, an accurate and a more
efficient circuit simulator which can accept devices characterized with measured S-parameter data

is necessary for the design of advanced packaging.

Integrating the measured models into a moment matching simulator is a problem because
derivatives of the frequency dependent measured data which are required to generate the moments
are not available explicitly. Generating the required moments using a numerical differentiation can
often lead to large computation errors [15]. Since the information necessary for the construction of
the scattering parameter macromodel does not exist explicitly, a novel method for retrieving the
information needed must be developed with special attentions must be paid to avoid the numerical

instabilities.

Gruodis et al. has previously reported the measurements of the admittance matrix Yo, and the
impedance matrix Zsg, of the transmission lines, the computation of the Yy matrix propagation
constant I', and the simulation using the state variable transfer function method [9]. The deficiency
associated with Gruodis’ method was the fact that the admittance matrix Yy, and the impedance
matrix Z,, were difficult to measure at a frequency above several MHz which is specifically stated in

Gruodis et al. paper [9]. Unlike the impedance matrix Zsg, and the admittance matrix Yy, which
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may not exist for the cases of the serial circuits or shunt circuits respectively, the S-parameter
matrix always exists for any physical circuits [15] [17]. So the choice is to measure the S-parameter
data for the transient simulation. Sanaie et al. used the balance-reduction method [15] and Miguel
Silveria et al. utilized the curve-fitting of the transfer function section-by-section [17]. Kuznetsov
et al. used the direct rational function curve-fitting of the wave propagation function [11]. All of
them try to extract information from the curve-fitting of the S-parameter data directly. Since the S-
parameter data are strong functions of frequency, the direct approach is very difficult. Thus Miguel
Silveria et al. suggested to perform the curve-fitting section-by-section with each section no larger
than a decade. Although accurate, this section-by-section method generates more information than
necessary. This leads to Miguel Silveria’s proposal to use a balance-reduction method to reduce
the order. Chang et al. has implemented a direct convolution method into the HP Spice [18]. This
method requires the impulse response found from inverse Fast Fourier Transform (IFFT) of the
measured S-parameter data. Chang et al. further improves their method using direct fitting of the
measured data with a rational function [4]. Hu et al. has incorporated the recursive convolution
method into SWEC [10]. This method also calls for the impulse response found through IFFT. The
drawback of convoluting the impulse response is the assumption of the relations between the real
part and the imaginary part of all the S-parameters. The implementation usually requires the data
of the imaginary part to be thrown away, whereas the Gruodis method of converting the measured

S-parameter data into the parasitic functions makes use of all the data on hand.

The purpose of this paper is to propose an indirect method of finding the moments from the
measured S-parameter data. The novel indirect method of computing the moments calls for a
conversion of the S-parameter data into the parasitic functions before finding the Taylor series
expansions. After the S-parameters has been converted into the parasitic functions, R(f), L(f),
C(f) and G(f), a Least-Square curve-fitting of the S-parameter computed from these four data sets
with respect to the measured S-parameter data is issued in order to find the moments of these four
parasitic functions. The exact moments of the S-parameter functions are subsequently computed
from the moments of these four parasitic functions. Based on the exact moments found using the
indirect approach, the macromodel of transmission lines characterized with frequency-dependent

losses is constructed and the transient simulation is performed.

The motivation of taking this indirect approach is shown in Section 2. The general steps of this
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novel indirect approach will be presented in Section 3, whereas in Section 4, two methods to convert
the measured S-parameter data into the parasitic functions will be shown. Section 5 will present the
algorithm for the finding of the moments of the parasitic functions through indirect curve-fitting
method. Section 6 will demonstrate the approach of how to construct the S-parameter macromodel
from the moments of the parasitic functions. The experimental results will be presented in Section

7 and the conclusion will be addressed in Section 8.

2 Motivations

One cannot emphasis enough the advantages of finding the moments of the S-parameters from

this algorithm. The followings are the most compelling reasons for this indirect approach: The
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Figure 2.1: A Particular Curve-Fitting Example: The curves in (a) is plotted against
extended frequency range beyond the sampled frequency spectrum. The curves in (b) is
plotted against only the sampled frequency spectrum which spans from 1.0 GHz to 11.5
GHz.

computed S-parameter curves demonstrate the periodical nature not only within the spectrum of
the measurements but also in the spectra above and below. This is not true for other methods
which do curve-fitting the measured S-parameters directly. For example, the Root-Mean-Square
(RMS) error for the Least-Square curve-fitting within the sampling spectrum could be very small,

but can be unbounded outside of the sampling spectrum. Figure 2.1 (a) shows a particular example
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Figure 2.2: AWEsim and Rational function Curve-Fitting Comparison: AWEsim
is proven inadequate to be used in curve-fitting and interpolation. Direct fitting to rational
function is good only to be used as interpolation tool.
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Figure 2.3: Indirect Curve-Fitting Example: The indirect method produces bounded
and periodical computed S-parameter data both inside and outside of the sampling spec-
trum which spans from 0.5 GHz to 40.5 GHz.

It is good both as an interpolation and
extrapolation tool.

where the RMS error of the Least-Square curve-fitting equals to 0.0245 and the resulting function is
unbounded outside of the sampled spectrum. Figure 2.1 (b) shows how well the least-square curve-
fitting performs over the sampled spectrum. Figure 2.2 shows the AW Esim fitting characteristic and

the direct rational function fitting results [12]. AWEsim is not suitable for the fitting to functions
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with many oscillations. The direct rational function fitting is good to be used as an interpolation
tool but cannot be used in extrapolating. Figure 2.3 shows the indirect method produces the
computed the S-parameters data which are both bounded and preserving the periodical nature

above and below the spectrum of the measured frequencies.

The jitters in the measured S-parameter data usually comes from the instrument limitations
and the human errors and requires a lot of measurements to average out. Due to the smooth nature
of the S-parameter computed from the analytic equations, there is no jitter shown in the computed
S-parameter. Fitting the computed S-parameter data to the measured S-parameter data will not

be affected by the small measurement error jitters abundant in the examples tested.

Sometimes the measured S-parameter data can rise above 1.0 for a passive system, but with the
computed S-parameters which are evaluated from the parasitic functions, they never violate the
power conservation rule and hence always stable for a passive system.

The lower order moment terms in a Taylor series expansion around a given point should be
order independent, which does not hold true for direct curve-fitting method. Compute S-parameter
moments from parasitic functions guarantee the moment found are independent of the order of the

approximation.
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Figure 2.4: The Introduced Conversion Error: The original measured S-parameter
data and the converted S-parameter are plotted in (a). The difference between them are
plotted in (b).
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The conversion processes for both the two-port measured data and 2N-port measured data
shown in Section 4 are almost lossless. The regenerated S-parameters based on the converted
RLCG compared with the original S-parameter data show that this conversion process introduces

very little error. Figure 2.4 demonstrates the conversion error is less than 10715,

3 Proposed Method of Attack

The steps required for the transient analysis of the device characterized with the measured

S-parameter data macromodel include:
e Converting measured S-parameter data into parasitic functions: R(f), L(f), C(f) and G(f).

e Finding moments of the four parasitic functions through Least-Square curve-fitting of the

computed S-parameter w.r.t. the measured S-parameter data.

e Computing moments of the S-parameters from the moments of the R(f), L(f), C(f) and
G(f) data sets.

e Constructing macromodel for the congruence transformer for the 2/N-port coupled intercon-
nects.

e Incorporating the computed S-parameter macromodels into the S-parameter macromodel

based simulator to perform the transient analysis.

4 Converting Measured S-Parameter Data into Parasitic Functions

For the completeness of this paper, the methods for converting two-port and 2N-port S-
parameter data into the Parasitic functions are presented here.

Previous researches that converted the measured two-port S-parameter data into the RLCG
data sets include those of Eisenstadt et al. [6] and Owazr [14]. Their primary focus was on the
interconnect characterization and not on the transient simulation. Besides, only a two-port device

and not the 2/V-port device was described in their papers.

The following Equations are taken from Fisenstadt et al. paper to demonstrate the steps taken
to convert the S-parameters into R(f), L(f), C(f) and G(f) [6]. Starting with the S-parameter

matrix of a lossy transmission line which is presented in Equation (4.1).
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S(s) = !
= 2707.(s) cosh(7 () ¥ (Z2(s) + Z2) snh(7())

(72(s) — 72)sinh(7(s)) 2707.(5) "
2707.(5) (Z2(s) — 22) sinh(7(s))

The Z.(s) is the characteristic impedance and v(s) is the propagation constant. Both Z.(s) and
v(s) are computed from the frequency-dependent values of R(f), L(f), C(f) and G(f) based on

the following Equations:

2“0 = G
It can be shown that:
e = {% + K}_l : (4.2)
where
K::Fh%ﬁﬁm—mm?% )
(2521)2
7 = At )

During the extraction of +, one must choose the root with the positive attenuation factor a and
correct the negative propagation 3 into a positive value. After extracting the 4 and Z from e~

and Z2, the R(f), L(f), C(f) and G(f) can be found from the following Equations:

R(f) = Re{yZ.) (1.5)
L(f) = Im{y2}/w (1.6)
G(f) = Re{y/Z} (4.7)
C(f) = Imiy/Z}/e. (1.8)

The conversion for 2 V-port measured S-parameter data requires a different approach which must
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handle RLCG matrices. Gruodis et al. has previously reported the conversion of the measured
admittance and the measured impedance data into the RLCG data sets [9]. Applying the standard
equations found in microwave textbook, one can find the admittance matrix Yy, and impedance
matrix Zsg, from the measured S-parameter data matrix S,,,, and then apply Gruodis et al. method
to find the parasitic function matrices: R(f), L(f), C(f) and G(f).

Assume there only exists the TEM or Quasi-TEM mode of wave propagation, for the (n +
1) conductor coupled transmission lines, there are 2N ports. The differential equations in the

frequency domain are [9]:

d| v 1
S = oz 7Y (4.9)
dz VR IR
d |1 A%
T = x| T, (4.10)
dz IR VR

where Vg and Vg are the n by 1 column vector for line voltage w.r.t. the reference conductor
on the sending and the receiving side, Is and Ir are the n by 1 column vector for line current on
both sides, Z = R + jwL, and Y = G + jwC. R(f), L(f), C(f) and G(f) are n by n symmetric

matrices in which every elements are functions of frequency but independent of .

Following the same assumptions as proposed in Gruodis et al. paper that there exists a complex

square root matrix (ZY)I/Q, the solutions of the above differential equations become [9]:

Ig Yocoth'd —YgeschI'd Vg
= (4.11)
Ir —Yqesch'd  YgeothId Vg
where
r = (zY)Y?=PyP !, (4.12)
Yo, = Z7'r=YIr L. (4.13)

P is the eigenvector matrix of I' as well as the eigenvector matrix of the ZY product, and = is the

diagonal eigenvalue matrix of I'.
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Given the measured 2N port S-parameter data S,,”**?, the symmetry of the S-parameter

matrix can be assured by taking the arithmetic average as follows:

SQn — [(S2nmeasd) 1+ (Sznmeasd)T] . (414)

N | —

From any microwave text book, one can find:

Yoo = Zo7" (1)~ Su)([1] + S20)”! (4.15)
Zow = Zo([1+ S2a)([T) — Sa0) 7, (4.16)

where Zj is the reference impedance, and [I] is the identity matrix which has all elements equal to

zero except the diagonal elements where they are equal to one.

After securing the Yg, and Zj, matrices, one can use the data analysis method 2 in Gruodis

et al. paper to give [9]:

—Y21_1Y11 = coshId

Id = Pleoth™ A_y, -1y P, (4.17)

where P is the eigenvector matrix of —Y5; 'Y as well as the eigenvector matrix of I'd. From

Equations (4.17) and Y11 = YgcothI'd, one has:

YO = —YglsinhI‘d

Y P[sinh(coth™' A_y -1y )P~ (4.18)
Having derived I'd and Y, one can use Equation (4.13) for the following:

Z

R+ jwL =Td-Y,™ ! (4.19)

Y

G + jwC = Y, - I'd. (4.20)

The Ryj, Ljj, Cjj and Gyj can be found from the following Equations:

ij> Lijo
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Rij(f) = Re{Zy} (4.21)
Lij(f) = Im{Z}/w (4.22)
Gi;(f) = Re{Yy} (4.23)
Cij(f) = Im{Y;}/w. (4.24)

5 Finding the Moments of the Four Parasitic Functions

The key contribution of this paper is to find the moments of the parasitic functions indirectly.
The indirect approach proposed here is to find the moments of the measured S-parameter data
indirectly through converting the strongly frequency-dependent S-parameter data into parasitic
functions: R(f), L(f), C(f) and G(f) data sets. When taking advantage of the fact that the L( f),
C(f) and G(f) are weak functions of frequency and the R(f) is a strong function of frequency [1],

the moments of these four parasitic functions are much simpler to find.

The input is the measured S-parameter data tabulated w.r.t. the sampling frequencies. The
output is the moments of the parasitic functions. R(f), L(f), C(f) and G(f). These moments
are the coeflicients of the Taylor series expansion around s = 0 for the parasitic functions: First,
one converts the measured S-parameter data into frequency-dependent parasitic data sets. Then a
least-square curve-fitting is performed to find the coeflicients of the polynomials which represent the
parasitic data sets. These coefficients are used as the initial values for the following optimization
procedure. The S-parameter data sets are computed from the moments of the parasitic functions
based upon analytic equations. The Levenberg-Marquardt optimization method is used to find the
moments of the parasitic functions through comparing the computed S-parameter and the original
measured S-parameter data. The partial derivatives of the Least-Square error between these two
S-parameter data sets w.r.t. each of the moments of the parasitic functions are obtained from
perturbation method. Assume the initial coefficients are C'(®), and there are total m coefficients.
The next coefficients C'**1) can be computed from the previous coefficients C*)| which according

to Levenberg-Marquardt, is optimized according to the following formula [13]:

kD) = c® _ (T4 AN T [w] ,

Cj
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where k is the number of iteration, C'*) the column vector of the k — th iteration, and LSE the
Least-Square Error. J is the sensitivity matrix, J? is the transposition vector of J where the
j — th element JT(j) = J(j), A is a value which are equal to the product of J7.J, and A is the

Lagrange Multiplier properly selected to speed up the convergence of the optimization process [13].

JT [w

5 ] represents the gradient around the current coefficients C'®). To obtain the sensitivity
J

matrix J, the j — th element is defined as:

J(j)= == 1<ji<m. (5.2)
J

The partial derivatives are computed using a central difference method. The optimization continues
until the Least-Square Error cannot be further improved, or the iteration number exceeds a preset

limit. The convergence to the optimal values of Levenberg-Marquardt method is proved in [13].

6 Computing the Moments of the S-Parameter

Given the moments of the four parasitic functions R(f), L(f), C(f) and G(f), one can compute
the moments of the S-parameters and create the S-parameter Macromodel to perform the transient
simulation. The four parasitic functions represent the frequency-dependent losses in the measured
structures.

With the assumption of quasi-TEM wave propagation, the distributions of voltages and currents

in a single lossy transmission line can be described by the generalized Telegraphist’s equations [3]:

WD P8R pjice (6.1)
di(z,t) ov(z,t)
on _C(f)—at - G(f)v(ac, t)v (6.2)

where 0 < 2 <[, v(z,t) and i(z,t) define the voltage distributions vg(z,t) and current distributions
ir(x,t) on the conductor respectively, L(f) and C(f) are the frequency-dependent per-unit-length
inductance and capacitance of the single conductor system, R(f) the frequency-dependent per-

unit-length resistance, G(f) the frequency-dependent per-unit-length conductance.

In order to find the lower order approximations of S11(s) and S91(s), the representations of the
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R(f), L(f), C(f) and G(f) must first be found. The method presented in Section 5 is applied to
find the moments of the parasitic functions. Once found, the same moments are used to compute

the lower order approximations of the S-parameters.

If one defines:

~
—~
V)
~—
Il
-2
[\
—~
V)
~—
Il
S
V)
_'_
=)
—~~
V)
W
~—
—~
[@p}
w
~—

Als) = Zs)y(s)— 72 ;C((‘SS)) =2 a4 ols) (6.4)
B(s) = Zu(s)y(s)+ 22 ;C((SS)) Ez_:bz s+ o(s7), (6.5)

whereas 7%(s) = (R(s)+sL(s))(G(s)+sC(s)), ZJC(_L) = G(s)+sC(s), and Z.(s)y(s) = R(s)+sL(s).
There is no square root involved in the evaluation of the approximations of the T'(s), A(s), and B(s)
complex functions. The approximation of the R(s), L(s), G(s), and C(s) real functions are known
through indirect curve-fitting. The coefficients of the T'(s), A(s), and B(s) complex functions can

be found through simple polynomial operations.

If one separates the constant term from the rest of the function,
q .
T(s) = to+ > ti-s' +o(s?) =to+Ty(s)+ o(s?). (6.6)
=1

It will make the finding of the coefficients in Equation (6.11) and (6.12) much easier. The expansions
of 27 cosh(v(s)) and %:(zl)ﬁl are shown in Equation (6.7) and (6.8):

U(s) = 2Zycosh(y(s)) = i_o:’ygl('s = QZOZ 25 s) = QZOZUZ s+ o(s?) (6.7)
% (

=0

sinh(~(s = (s) =T
Vi(is) = % E;(m Z Qf-l-l sz s+ o(s (6.8)

2:0 =0

Based on Equations (6.4), (6.5), (6.7), and (6.8), the representations of 511 and 521 can be

rewritten as:
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270

S21(s) 0057 Bls) V(o) (6.10)
It can be shown that:
g
U(s) = QZOZﬁk -qu(s)—l—o(sq) (6.11)
k=0
Vis) = Zq: ay, -qu(s) + o(s7), (6.12)
k=0
where
> ok
B = > i to (6.13)
k=0 .
_ .- Czk i—k

and {o is the separated constant term in Equation (6.6). Although the summation of both aj and
[1 are an infinity series, in reality, the inverse of the factorial is a fast converging series and they
can be truncated at a certain point without introducing much error. The coefficients of U(s) and

V(s) are:

U = Z Br Z Ljy gy oLy (6'15)

k=1 jtjet+-tix=t

v, = Z ap Z ti <ty ot (6.16)

k=1 Jitse+Hie=t

Since the coefficients of the polynomial 7'(s) are known from Equation (6.3), the coefficients of U(s)

and V(s) can then be computed.

If one defines:

g - G0
S1i(s) = D/(s) (6.17)
Sa(s) = %((j)) (6.18)

Comparing Equations (6.9), (6.10), (6.17), and (6.18), one finds:
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C(s) = Zci st o(s?) = A(s) - V(s)
D(s) = Edi st o(s?) = U(s)+ B(s) - V(s)
C'(s) = Q_Zo.

It can be shown that the coefficients of C'(s) and D(s) are:

cr, = Z a;v;

iti=k

dr = wup+ Z bﬂ]j.
=k

If the moments of S11(s) and S31(s) are m; and n; respectively, one can write:

q
Su(s) = ZmZ - s' 4 o(s?)
=0
q .
So1(s) = an s 4 o(s?).
=0

From Equation (6.17) and (6.25), one can derive:

Z md; = ci.

i+j=k
If one denotes:
do 0 0 0
dy do 0 0
Dq = d2 d1 do 0
| dy dp dy do |
T
Mq = mg M1 My My
T
Cq = cop €1 €y Cq ”

15
(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)
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where T’ represents the transpose of the vector, one can rewrite D,M, = C, i.e. M, = Dq_qu.
Thus the moments m; of the S11(s) function can be found through simple backward substitutions.

Similarly, if one denotes:

T
N, = [no nmong - - - on (6.30)
T
CQI[QZOOO---O : (6.31)
where T’ again represents the transpose of the vector, one can rewrite D, N, = C;, ie. Ny =

Dq_lCé, and the moments n; of the S3;(s) function can again be found through simple backward
substitutions.

Once the moments of the S11 and 521 of the two-port interconnect are established, they are
passed to the S-parameter macromodel based simulator to perform the transient analysis.

The analysis of 2/N-port coupled interconnects are different from that of the two-port intercon-
nect analysis. However, after decoupling, the 2/N-port coupled interconnects analysis becomes that
of the decoupling congruence transformers and that of the decoupled two-port interconnects [19].

Starting from the assumption of quasi-TEM wave propagation, the distributions of voltages
and currents in a n coupled lossy transmission-line system can be described by the generalized

Telegraphist’s equations [3]:

3Véz’t) - _L() 8i(§t’t) ~ R(f)i(e, 1) (6.32)
di(z,t) av(z,t)
o = _C(f)T - G(f)v(a,1), (6.33)

where 0 < 2 <[, v(z,t) and i(z,t) are column vectors defining the voltages distributions vy(x,1)
and currents distributions ¢x(,t) on the conductors £ = 1,2,3,...,n, L(f) and C(f) are the n
by n symmetric matrices of the frequency-dependent per-unit-length inductance and capacitance
of the n conductor system respectively, R(f) = diag(Rii(f)), k = 1...n the diagonal matrix of
the frequency-dependent per-unit-length resistance, G(f) the n by n symmetric matrix of the

frequency-dependent per-unit-length conductance [16].

To incorporate the macromodel of the frequency-dependent decoupling networks into the S-
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parameter macromodel simulator presents a challenge. This process requires the finding of a
frequency-dependent transformation matrix in order to decouple the system. It is a complex process
and requires the eigenvalues at each frequency point prior to diagonalization. The resulting matrix

elements are characterized by the tabulated S-parameter data.

Taking the Laplace transform of the Equation (6.32) and (6.33), they can be rewritten as:

LV@(Q?S) = —ZI(z,s) (6.34)
81(82’8) = —YV(z,s), (6.35)

where Z = R 4+ jwL, and Y = G 4 jwC. Throughout this paper, the following assumptions
reported by Blazeck et al. are used [2]. The modes of propagation must be TEM or quasi-TEM,
and the lines are of uniform cross-section throughout their length; that is, R, L, C, and G are

assumed to be constant with respect to the spatial variable z.

Solving Equation (6.34) and (6.35), one has:

% = ZYV(z,s)=T*V(z,s) (6.36)
% = YZI(z,s) = (T*)"1(z, ), (6.37)

where T indicates transpose and T' defined as T'? = ZY [2]. The existence of eigenvectors that

diagonalize T'? and T is also assumed throughout this paper [2]. Define
I'=XAX™, (6.38)

where X is the eigenvectors of I'; therefore, they are also the eigenvectors of I'?, and A is the

diagonal matrix of the eigenvalues of I'. It can be shown that [5]

Wrgif’s) ~AZpIm(z, ) (6.39)
W =AYy V(z,s), (6.40)

where V(z,s) = XV(z,s), I(z,s) = (XT)"'Iy(z,5). The modal impedance matrix Zy, and
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modal admittance matrix Yy, are related to the eigenvector matrix X and the impedance matrix

Z by
Zym = (Ym) ' = AIXZ(XT)7L (6.41)

With the eigenvector matrix X, the original coupled transmission lines can be decoupled into two
congruence transformers and a set of n decoupled transmission lines [3]. The task of finding the
macromodel of the frequency-dependent coupled transmission lines becomes that of finding the
macromodel representations of the congruence transformers and the frequency-dependent single
transmission lines. The macromodel of the single transmission line characterized with frequency-
dependent losses has already been developed in the early part of this section. The remaining task

is to find the macromodel representation of a frequency-dependent congruence transformer.

It can be shown that for the coupled lossy transmission line systems, the congruence transformer
matrix is the eigenvector matrix of the complex matrix I' [2]. The existence of such eigenvector
matrix X that simultaneously diagonalize the complex matrices I, T2, ZY, and YZ is assumed
throughout this paper. This assumption is also adopted by Gordon et al. [8], Blazeck et al. [2] and
Schutt-Aine et al. [16].

Gordon et al. suggested that the frequency-dependent congruence transformer can be found
by performing the congruence decoupling at each frequency point, as well as by checking the
orthogonality of all the eigenvectors for all the frequency points [8]. If the eigenvectors were not
orthogonal to each other, column swapping must be performed so that for all the congruence
transformation matrices at all the frequency points are orthogonal to any other one. During this
process, the R(f), L(f), C(f) and G(f) matrices have been diagonalized to be: diag(R(f)),
diag(L(f)), diag(C(f)) and diag(G(f)) eigenvalue matrices. The 7 — th diagonal eigenvalues of
each frequency points constitute the parasitic functions of the decoupled frequency-dependent single
transmission line. Thus these diagonal eigenvalue matrices can be used to form the macromodels
using a method outlined in the early part of this Section.

Once the tabulated S-parameter data for the congruence transformation have been found, a
curve-fitting using Levenberg-Marquardt method [13] is used to find the moments for the construc-

tion of the congruence transformer: X(f).
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e the HP Spice simulator from Hewlett Packard Company.

e the S-parameter Macromodel based simulator.

Throughout all the examples, the simulation waveforms of the HP Spice serve as the correct
solutions, because its underlying implementation is the direct convolution. The direct convolution
with the impulse response obtained through IFFT method is considered to be the most accurate
method for the transient analysis of the frequency-dependent transmission lines because there is
no approximation involved [18] [7]. The only drawback is the simulation time is exponentially

proportioned to the transient analysis time[8].

All the results show that the output waveforms of the measured S-parameter macromodel match
well with those produced by HP Spice simulator as expected. The seemly differences that were
shown on both the near end and far end waveforms are due to the lower order chosen and the
Pade approximation error. In all the examples, increase the order of Pade approximation does not
increase accuracy, one must turn to other method such as the Pade-via-Lancsoz (PVL) the to solve

this accuracy problem.

7.1 Example 1

This is an example with two uniform transmission line sections each with different width joined
together, and the whole structure is characterized with measured S-parameter data. It is simulated
using the same test circuit and input driving signal. The near end and far end simulation waveforms
of the HP Spice simulator and the S-parameter macromodel based simulator are shown in Figure

7.2 (a) and Figure 7.2 (b) respectively. Figure 7.3 shows enlarged waveforms.

7.2 Example 2

This is an example with an uniform transmission line characterized with measured S-parameter
data. It is simulated using the same test circuit and input driving signal. The near end and far end
simulation waveforms of the HP Spice simulator and the S-parameter macromodel based simulator

are shown in Figure 7.4 (a) and Figure 7.4 (b) respectively.
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Figure 7.2: Simulation Waveforms of the Transmission Line characterized with
measured S-parameter data: The output waveforms of the near end of the two-port
is shown in (a), waveforms of the far end of the two-port is shown in (b).

Far End Simulation Waveforms
Volts

Macromaodel V(3)

1.00 H
0.50

0.00

-0.50

‘ ‘ ‘ Time (Nano Second)
2.00 2.50 3.00

Figure 7.3: Enlarged Far End Simulation Waveforms: The two closely follow
each other are the simulation waveforms of the HP Spice and the S-parameter based
Macromodel simulator.
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Figure 7.4: Simulation Waveforms of the Transmission Line characterized with
measured S-parameter data: The output waveforms of the near end of the two-port
is shown in (a), waveforms of the far end of the two-port is shown in (b).

7.3 Example 3

This is an example with two uniform transmission line sections joined by a 90° bend, and the
whole structure is characterized with measured S-parameter data. It is simulated using the same
test circuit and input driving signal. The near end and far end simulation waveforms of the HP
Spice simulator and the S-parameter macromodel based simulator are shown in Figure 7.5 (a) and

Figure 7.5 (b) respectively.

8 Conclusions

Designing interconnect networks for today’s high performance digital systems requires more
accurate and more efficient transient analysis of the interconnects characterized by the measured
S-parameter data. The novel macromodel of transmission lines and discontinuities characterized
by the measured S-parameter data is developed.

The main contribution of this paper is an indirect method for finding the moments from
the measured S-parameter data. This indirect approach produces more accurate moments than
those obtained from fitting the S-parameter directly. It also capture the periodical nature of

the S-parameters in the frequency spectra both above and below the sampled frequency points.
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Figure 7.5: Simulation Waveforms of the Transmission Line characterized with
measured S-parameter data: The output waveforms of the near end of the two-port
is shown in (a), waveforms of the far end of the two-port is shown in (b).

Furthermore, the moments produced are independent of the approximation order which usually
does not hold true for the curve-fitting methods. Since the moments are computed from the four
parasitic functions, they observe power conservation rule for passive system. By the same token, the
computed S-parameters are smooth functions of frequency, and this makes this indirect approach
insensitive to measurement errors. The results in Section 7 show very good agreements with the

results produced by the direct convolution approach implemented in the HP Spice.
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