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2 1. Introduction1 IntroductionInterconnect design has become an important issue in the high performance systems due to therecent advance in the packaging technology. As the packaging density and the clock speed of theIntegrated Circuit (IC) increase, the frequency-dependent losses as well as the crosstalk inducednoise have become some of the major issues in the designs of the interconnect networks. Due to thehigh switching speed of today's digital system, the magnitudes of the harmonics of the transmittedsignals above 1 GHz can often become the signi�cant components in the power spectrum. At thesehigh frequencies, the interconnects exhibit more frequency-dependent conductor (skin e�ect) andthe dielectric losses. The electro-static �eld solution can no longer predict the correct parasitics forthe interconnects that carry the high-speed digital signals. The correct modeling of the transmissionlines requires accurate modeling of both the frequency-dependent conductor (skin e�ect) and thedielectric losses. The measured S-parameter data can easily capture the behavior of these losses.The discontinuities in interconnects are di�cult to describe with close form equations; they arebetter characterized with the measured S-parameter data. As a result, an accurate and a moree�cient circuit simulator which can accept devices characterized with measured S-parameter datais necessary for the design of advanced packaging.Integrating the measured models into a moment matching simulator is a problem becausederivatives of the frequency dependent measured data which are required to generate the momentsare not available explicitly. Generating the required moments using a numerical di�erentiation canoften lead to large computation errors [15]. Since the information necessary for the construction ofthe scattering parameter macromodel does not exist explicitly, a novel method for retrieving theinformation needed must be developed with special attentions must be paid to avoid the numericalinstabilities.Gruodis et al. has previously reported the measurements of the admittance matrixY2n and theimpedance matrix Z2n of the transmission lines, the computation of the Y0 matrix propagationconstant �, and the simulation using the state variable transfer function method [9]. The de�ciencyassociated with Gruodis' method was the fact that the admittance matrix Y2n and the impedancematrix Z2n were di�cult to measure at a frequency above several MHz which is speci�cally stated inGruodis et al. paper [9]. Unlike the impedance matrix Z2n and the admittance matrix Y2n which



1. Introduction 3may not exist for the cases of the serial circuits or shunt circuits respectively, the S-parametermatrix always exists for any physical circuits [15] [17]. So the choice is to measure the S-parameterdata for the transient simulation. Sanaie et al. used the balance-reduction method [15] and MiguelSilveria et al. utilized the curve-�tting of the transfer function section-by-section [17]. Kuznetsovet al. used the direct rational function curve-�tting of the wave propagation function [11]. All ofthem try to extract information from the curve-�tting of the S-parameter data directly. Since the S-parameter data are strong functions of frequency, the direct approach is very di�cult. Thus MiguelSilveria et al. suggested to perform the curve-�tting section-by-section with each section no largerthan a decade. Although accurate, this section-by-section method generates more information thannecessary. This leads to Miguel Silveria's proposal to use a balance-reduction method to reducethe order. Chang et al. has implemented a direct convolution method into the HP Spice [18]. Thismethod requires the impulse response found from inverse Fast Fourier Transform (IFFT) of themeasured S-parameter data. Chang et al. further improves their method using direct �tting of themeasured data with a rational function [4]. Hu et al. has incorporated the recursive convolutionmethod into SWEC [10]. This method also calls for the impulse response found through IFFT. Thedrawback of convoluting the impulse response is the assumption of the relations between the realpart and the imaginary part of all the S-parameters. The implementation usually requires the dataof the imaginary part to be thrown away, whereas the Gruodis method of converting the measuredS-parameter data into the parasitic functions makes use of all the data on hand.The purpose of this paper is to propose an indirect method of �nding the moments from themeasured S-parameter data. The novel indirect method of computing the moments calls for aconversion of the S-parameter data into the parasitic functions before �nding the Taylor seriesexpansions. After the S-parameters has been converted into the parasitic functions, R(f), L(f),C(f) andG(f), a Least-Square curve-�tting of the S-parameter computed from these four data setswith respect to the measured S-parameter data is issued in order to �nd the moments of these fourparasitic functions. The exact moments of the S-parameter functions are subsequently computedfrom the moments of these four parasitic functions. Based on the exact moments found using theindirect approach, the macromodel of transmission lines characterized with frequency-dependentlosses is constructed and the transient simulation is performed.The motivation of taking this indirect approach is shown in Section 2. The general steps of this



4 2. Motivationsnovel indirect approach will be presented in Section 3, whereas in Section 4, two methods to convertthe measured S-parameter data into the parasitic functions will be shown. Section 5 will present thealgorithm for the �nding of the moments of the parasitic functions through indirect curve-�ttingmethod. Section 6 will demonstrate the approach of how to construct the S-parameter macromodelfrom the moments of the parasitic functions. The experimental results will be presented in Section7 and the conclusion will be addressed in Section 8.2 MotivationsOne cannot emphasis enough the advantages of �nding the moments of the S-parameters fromthis algorithm. The followings are the most compelling reasons for this indirect approach: The
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2. Motivations 5
Figure 2.2: AWEsim and Rational function Curve-Fitting Comparison: AWEsimis proven inadequate to be used in curve-�tting and interpolation. Direct �tting to rationalfunction is good only to be used as interpolation tool.
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6 2. Motivationswith many oscillations. The direct rational function �tting is good to be used as an interpolationtool but cannot be used in extrapolating. Figure 2.3 shows the indirect method produces thecomputed the S-parameters data which are both bounded and preserving the periodical natureabove and below the spectrum of the measured frequencies.The jitters in the measured S-parameter data usually comes from the instrument limitationsand the human errors and requires a lot of measurements to average out. Due to the smooth natureof the S-parameter computed from the analytic equations, there is no jitter shown in the computedS-parameter. Fitting the computed S-parameter data to the measured S-parameter data will notbe a�ected by the small measurement error jitters abundant in the examples tested.Sometimes the measured S-parameter data can rise above 1:0 for a passive system, but with thecomputed S-parameters which are evaluated from the parasitic functions, they never violate thepower conservation rule and hence always stable for a passive system.The lower order moment terms in a Taylor series expansion around a given point should beorder independent, which does not hold true for direct curve-�tting method. Compute S-parametermoments from parasitic functions guarantee the moment found are independent of the order of theapproximation.
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3. Proposed Method of Attack 7The conversion processes for both the two-port measured data and 2N -port measured datashown in Section 4 are almost lossless. The regenerated S-parameters based on the convertedRLCG compared with the original S-parameter data show that this conversion process introducesvery little error. Figure 2.4 demonstrates the conversion error is less than 10�15.3 Proposed Method of AttackThe steps required for the transient analysis of the device characterized with the measuredS-parameter data macromodel include:� Converting measured S-parameter data into parasitic functions: R(f), L(f), C(f) and G(f).� Finding moments of the four parasitic functions through Least-Square curve-�tting of thecomputed S-parameter w.r.t. the measured S-parameter data.� Computing moments of the S-parameters from the moments of the R(f), L(f), C(f) andG(f) data sets.� Constructing macromodel for the congruence transformer for the 2N -port coupled intercon-nects.� Incorporating the computed S-parameter macromodels into the S-parameter macromodelbased simulator to perform the transient analysis.4 Converting Measured S-Parameter Data into Parasitic FunctionsFor the completeness of this paper, the methods for converting two-port and 2N -port S-parameter data into the Parasitic functions are presented here.Previous researches that converted the measured two-port S-parameter data into the RLCGdata sets include those of Eisenstadt et al. [6] and Owazr [14]. Their primary focus was on theinterconnect characterization and not on the transient simulation. Besides, only a two-port deviceand not the 2N -port device was described in their papers.The following Equations are taken from Eisenstadt et al. paper to demonstrate the steps takento convert the S-parameters into R(f), L(f), C(f) and G(f) [6]. Starting with the S-parametermatrix of a lossy transmission line which is presented in Equation (4.1).



8 4. Converting Measured S-Parameter Data into Parasitic FunctionsS(s) = 12Z0Zc(s) cosh(
(s)) + (Z2c (s) + Z20) sinh(
(s))264 (Z2c (s)� Z20) sinh(
(s)) 2Z0Zc(s)2Z0Zc(s) (Z2c (s)� Z20) sinh(
(s)) 375 ; (4.1)The Zc(s) is the characteristic impedance and 
(s) is the propagation constant. Both Zc(s) and
(s) are computed from the frequency-dependent values of R(f), L(f), C(f) and G(f) based onthe following Equations: 
(s) = q(R(s) + sL(s))(G(s) + sC(s)) � lZc(s) = sR(s) + sL(s)G(s) + sC(s) :It can be shown that: e�
l = (1� S211 + S2212S21 �K)�1 ; (4.2)where K = ( (1� S211 + S221)2 � (2S11)2(2S21)2 ) 12 (4.3)Z2c = Z20 (1 + S11)2 � S221(1� S11)2 � S221 : (4.4)During the extraction of 
, one must choose the root with the positive attenuation factor � andcorrect the negative propagation � into a positive value. After extracting the 
 and Z from e�
land Z2c , the R(f), L(f), C(f) and G(f) can be found from the following Equations:R(f) = Ref
Zcg (4.5)L(f) = Imf
Zcg=! (4.6)G(f) = Ref
=Zcg (4.7)C(f) = Imf
=Zcg=!: (4.8)The conversion for 2N -port measured S-parameter data requires a di�erent approach which must



4. Converting Measured S-Parameter Data into Parasitic Functions 9handle RLCG matrices. Gruodis et al. has previously reported the conversion of the measuredadmittance and the measured impedance data into the RLCG data sets [9]. Applying the standardequations found in microwave textbook, one can �nd the admittance matrix Y2n and impedancematrix Z2n from the measured S-parameter data matrix S2n, and then apply Gruodis et al. methodto �nd the parasitic function matrices: R(f), L(f), C(f) and G(f).Assume there only exists the TEM or Quasi-TEM mode of wave propagation, for the (n +1) conductor coupled transmission lines, there are 2N ports. The di�erential equations in thefrequency domain are [9]: ddx 264 VSVR 375 = �Z264 ISIR 375 (4.9)ddx 264 ISIR 375 = �Y264 VSVR 375 ; (4.10)where VS and VR are the n by 1 column vector for line voltage w.r.t. the reference conductoron the sending and the receiving side, IS and IR are the n by 1 column vector for line current onboth sides, Z = R + jwL, and Y = G+ jwC. R(f), L(f), C(f) and G(f) are n by n symmetricmatrices in which every elements are functions of frequency but independent of x.Following the same assumptions as proposed in Gruodis et al. paper that there exists a complexsquare root matrix (ZY)1=2, the solutions of the above di�erential equations become [9]:264 ISIR 375 = 264 Y0coth�d �Y0csch�d�Y0csch�d Y0coth�d 375264 VSVR 375 : (4.11)where � = (ZY)1=2 = P
P�1; (4.12)Y0 = Z�1� = Y��1: (4.13)P is the eigenvector matrix of � as well as the eigenvector matrix of the ZY product, and 
 is thediagonal eigenvalue matrix of �.



10 4. Converting Measured S-Parameter Data into Parasitic FunctionsGiven the measured 2N port S-parameter data S2nmeasd, the symmetry of the S-parametermatrix can be assured by taking the arithmetic average as follows:S2n = 12 h(S2nmeasd) + (S2nmeasd)Ti : (4.14)From any microwave text book, one can �nd:Y2n = Z0�1([I]� S2n)([I] + S2n)�1 (4.15)Z2n = Z0([I] + S2n)([I]� S2n)�1; (4.16)where Z0 is the reference impedance, and [I] is the identity matrix which has all elements equal tozero except the diagonal elements where they are equal to one.After securing the Y2n and Z2n matrices, one can use the data analysis method 2 in Gruodiset al. paper to give [9]: �Y21�1Y11 = cosh�d�d = P[coth�1��Y21�1Y11 ]P�1; (4.17)where P is the eigenvector matrix of �Y21�1Y11 as well as the eigenvector matrix of �d. FromEquations (4.17) and Y11 = Y0coth�d, one has:Y0 = �Y21sinh�d= �Y21P[sinh(coth�1��Y21�1Y11)]P�1: (4.18)Having derived �d and Y0, one can use Equation (4.13) for the following:Z = R + jwL = �d �Y0�1 (4.19)Y = G + jwC = Y0 � �d: (4.20)The Rij, Lij, Cij and Gij can be found from the following Equations:



5. Finding the Moments of the Four Parasitic Functions 11Rij(f) = RefZijg (4.21)Lij(f) = ImfZijg=! (4.22)Gij(f) = RefYijg (4.23)Cij(f) = ImfYijg=!: (4.24)5 Finding the Moments of the Four Parasitic FunctionsThe key contribution of this paper is to �nd the moments of the parasitic functions indirectly.The indirect approach proposed here is to �nd the moments of the measured S-parameter dataindirectly through converting the strongly frequency-dependent S-parameter data into parasiticfunctions: R(f), L(f), C(f) and G(f) data sets. When taking advantage of the fact that the L(f),C(f) and G(f) are weak functions of frequency and the R(f) is a strong function of frequency [1],the moments of these four parasitic functions are much simpler to �nd.The input is the measured S-parameter data tabulated w.r.t. the sampling frequencies. Theoutput is the moments of the parasitic functions. R(f), L(f), C(f) and G(f). These momentsare the coe�cients of the Taylor series expansion around s = 0 for the parasitic functions: First,one converts the measured S-parameter data into frequency-dependent parasitic data sets. Then aleast-square curve-�tting is performed to �nd the coe�cients of the polynomials which represent theparasitic data sets. These coe�cients are used as the initial values for the following optimizationprocedure. The S-parameter data sets are computed from the moments of the parasitic functionsbased upon analytic equations. The Levenberg-Marquardt optimization method is used to �nd themoments of the parasitic functions through comparing the computed S-parameter and the originalmeasured S-parameter data. The partial derivatives of the Least-Square error between these twoS-parameter data sets w.r.t. each of the moments of the parasitic functions are obtained fromperturbation method. Assume the initial coe�cients are C(0), and there are total m coe�cients.The next coe�cients C(k+1) can be computed from the previous coe�cients C(k), which accordingto Levenberg-Marquardt, is optimized according to the following formula [13]:C(k+1) = C(k) � (JTJ + ��)�1JT "@ LSE@cj # ; (5.1)



12 6. Computing the Moments of the S-Parameterwhere k is the number of iteration, C(k) the column vector of the k � th iteration, and LSE theLeast-Square Error. J is the sensitivity matrix, JT is the transposition vector of J where thej � th element JT (j) = J(j), � is a value which are equal to the product of JTJ , and � is theLagrange Multiplier properly selected to speed up the convergence of the optimization process [13].JT h@ LSE@cj i represents the gradient around the current coe�cients C(k). To obtain the sensitivitymatrix J , the j � th element is de�ned as:J(j) = @ LSE@cj ; 1 � j � m: (5.2)The partial derivatives are computed using a central di�erence method. The optimization continuesuntil the Least-Square Error cannot be further improved, or the iteration number exceeds a presetlimit. The convergence to the optimal values of Levenberg-Marquardt method is proved in [13].6 Computing the Moments of the S-ParameterGiven the moments of the four parasitic functions R(f), L(f), C(f) andG(f), one can computethe moments of the S-parameters and create the S-parameter Macromodel to perform the transientsimulation. The four parasitic functions represent the frequency-dependent losses in the measuredstructures.With the assumption of quasi-TEM wave propagation, the distributions of voltages and currentsin a single lossy transmission line can be described by the generalized Telegraphist's equations [3]:@v(x; t)@x = �L(f)@i(x; t)@t �R(f)i(x; t) (6.1)@i(x; t)@x = �C(f)@v(x; t)@t �G(f)v(x; t); (6.2)where 0 � x � l, v(x; t) and i(x; t) de�ne the voltage distributions vk(x; t) and current distributionsik(x; t) on the conductor respectively, L(f) and C(f) are the frequency-dependent per-unit-lengthinductance and capacitance of the single conductor system, R(f) the frequency-dependent per-unit-length resistance, G(f) the frequency-dependent per-unit-length conductance.In order to �nd the lower order approximations of S11(s) and S21(s), the representations of the



6. Computing the Moments of the S-Parameter 13R(f), L(f), C(f) and G(f) must �rst be found. The method presented in Section 5 is applied to�nd the moments of the parasitic functions. Once found, the same moments are used to computethe lower order approximations of the S-parameters.If one de�nes: T (s) � 
2(s) � qXi=0 ti � si + o(sq) (6.3)A(s) � Zc(s)
(s)� Z20 � 
(s)Zc(s) � qXi=0 ai � si + o(sq) (6.4)B(s) � Zc(s)
(s) + Z20 � 
(s)Zc(s) � qXi=0 bi � si + o(sq); (6.5)whereas 
2(s) = (R(s)+sL(s))(G(s)+sC(s)), 
(s)Zc(s) = G(s)+sC(s), and Zc(s)
(s) = R(s)+sL(s).There is no square root involved in the evaluation of the approximations of the T (s), A(s), and B(s)complex functions. The approximation of the R(s), L(s), G(s), and C(s) real functions are knownthrough indirect curve-�tting. The coe�cients of the T (s), A(s), and B(s) complex functions canbe found through simple polynomial operations.If one separates the constant term from the rest of the function,T (s) � t0 + qXi=1 ti � si + o(sq) � t0 + Tq(s) + o(sq): (6.6)It will make the �nding of the coe�cients in Equation (6.11) and (6.12) much easier. The expansionsof 2Z0 cosh(
(s)) and sinh(
(s))
(s) are shown in Equation (6.7) and (6.8):U(s) � 2Z0 cosh(
(s)) � 1Xi=0 
2i(s)2i! � 2Z0 1Xi=0 T i(s)2i! � 2Z0 qXi=0 ui � si + o(sq) (6.7)V (s) � sinh(
(s))
(s) � 1Xi=0 
2i(s)(2i+ 1)! � 1Xi=0 T i(s)(2i+ 1)! � qXi=0 vi � si + o(sq): (6.8)Based on Equations (6.4), (6.5), (6.7), and (6.8), the representations of S11 and S21 can berewritten as: S11(s) = A(s) � V (s)U(s) +B(s) � V (s) (6.9)



14 6. Computing the Moments of the S-ParameterS21(s) = 2Z0U(s) +B(s) � V (s) : (6.10)It can be shown that: U(s) = 2Z0 qXk=0 �k � T kq (s) + o(sq) (6.11)V (s) = qXk=0�k � T kq (s) + o(sq); (6.12)where �k = 1Xk=0 Cki2i! � ti�k0 (6.13)�k = 1Xk=0 Cki(2i+ 1)! � ti�k0 ; (6.14)and t0 is the separated constant term in Equation (6.6). Although the summation of both �k and�k are an in�nity series, in reality, the inverse of the factorial is a fast converging series and theycan be truncated at a certain point without introducing much error. The coe�cients of U(s) andV (s) are: ui = iXk=1 �k Xj1+j2+���+jk=i tj1 � tj2 � � � tjk (6.15)vi = iXk=1�k Xj1+j2+���+jk=i tj1 � tj2 � � � tjk : (6.16)Since the coe�cients of the polynomial T (s) are known from Equation (6.3), the coe�cients of U(s)and V (s) can then be computed.If one de�nes: S11(s) = C(s)D(s) (6.17)S21(s) = C0(s)D(s) : (6.18)Comparing Equations (6.9), (6.10), (6.17), and (6.18), one �nds:



6. Computing the Moments of the S-Parameter 15C(s) � qXi=0 ci � si + o(sq) = A(s) � V (s) (6.19)D(s) � qXi=0 di � si + o(sq) = U(s) +B(s) � V (s) (6.20)C 0(s) = 2Z0: (6.21)It can be shown that the coe�cients of C(s) and D(s) are:ck = Xi+j=k aivj (6.22)dk = uk + Xi+j=k bivj : (6.23)If the moments of S11(s) and S21(s) are mi and ni respectively, one can write:S11(s) = qXi=0mi � si + o(sq) (6.24)S21(s) = qXi=0 ni � si + o(sq): (6.25)From Equation (6.17) and (6.25), one can derive:Xi+j=kmidj = ck: (6.26)If one denotes: Dq = 2666666666664 d0 0 0 : : : 0d1 d0 0 : : : 0d2 d1 d0 : : : 0: : :dq dq�1 dq�2 : : : d0 3777777777775 (6.27)Mq = � m0 m1 m2 � � � mq �T (6.28)Cq = � c0 c1 c2 � � � cq �T ; (6.29)



16 6. Computing the Moments of the S-Parameterwhere T represents the transpose of the vector, one can rewrite DqMq = Cq, i.e. Mq = D�1q Cq.Thus the moments mi of the S11(s) function can be found through simple backward substitutions.Similarly, if one denotes: Nq = � n0 n1 n2 � � � nq �T (6.30)C 0q = � 2Z0 0 0 � � � 0 �T ; (6.31)where T again represents the transpose of the vector, one can rewrite DqNq = C 0q, i.e. Nq =D�1q C0q, and the moments ni of the S21(s) function can again be found through simple backwardsubstitutions.Once the moments of the S11 and S21 of the two-port interconnect are established, they arepassed to the S-parameter macromodel based simulator to perform the transient analysis.The analysis of 2N -port coupled interconnects are di�erent from that of the two-port intercon-nect analysis. However, after decoupling, the 2N -port coupled interconnects analysis becomes thatof the decoupling congruence transformers and that of the decoupled two-port interconnects [19].Starting from the assumption of quasi-TEM wave propagation, the distributions of voltagesand currents in a n coupled lossy transmission-line system can be described by the generalizedTelegraphist's equations [3]:@v(x; t)@x = �L(f)@i(x; t)@t �R(f)i(x; t) (6.32)@i(x; t)@x = �C(f)@v(x; t)@t �G(f)v(x; t); (6.33)where 0 � x � l, v(x; t) and i(x; t) are column vectors de�ning the voltages distributions vk(x; t)and currents distributions ik(x; t) on the conductors k = 1; 2; 3; :::; n, L(f) and C(f) are the nby n symmetric matrices of the frequency-dependent per-unit-length inductance and capacitanceof the n conductor system respectively, R(f) = diag(Rkk(f)), k = 1:::n the diagonal matrix ofthe frequency-dependent per-unit-length resistance, G(f) the n by n symmetric matrix of thefrequency-dependent per-unit-length conductance [16].To incorporate the macromodel of the frequency-dependent decoupling networks into the S-



6. Computing the Moments of the S-Parameter 17parameter macromodel simulator presents a challenge. This process requires the �nding of afrequency-dependent transformation matrix in order to decouple the system. It is a complex processand requires the eigenvalues at each frequency point prior to diagonalization. The resulting matrixelements are characterized by the tabulated S-parameter data.Taking the Laplace transform of the Equation (6.32) and (6.33), they can be rewritten as:@V(x; s)@x = �ZI(x; s) (6.34)@I(x; s)@x = �YV(x; s); (6.35)where Z = R + jwL, and Y = G + jwC. Throughout this paper, the following assumptionsreported by Blazeck et al. are used [2]. The modes of propagation must be TEM or quasi-TEM,and the lines are of uniform cross-section throughout their length; that is, R, L, C, and G areassumed to be constant with respect to the spatial variable x.Solving Equation (6.34) and (6.35), one has:@2V(x; s)@x2 = ZYV(x; s) = �2V(x; s) (6.36)@2I(x; s)@x2 = YZI(x; s) = (�2)T I(x; s); (6.37)where T indicates transpose and � de�ned as �2 = ZY [2]. The existence of eigenvectors thatdiagonalize �2 and � is also assumed throughout this paper [2]. De�ne� = X�X�1; (6.38)where X is the eigenvectors of �; therefore, they are also the eigenvectors of �2, and � is thediagonal matrix of the eigenvalues of �. It can be shown that [5]@Vm(x; s)@x = ��ZmIm(x; s) (6.39)@Im(x; s)@x = ��YmVm(x; s); (6.40)where V(x; s) = XVm(x; s), I(x; s) = (XT )�1Im(x; s). The modal impedance matrix Zm and



18 6. Computing the Moments of the S-Parametermodal admittance matrix Ym are related to the eigenvector matrix X and the impedance matrixZ by Zm = (Ym)�1 = ��1XZ(XT)�1: (6.41)With the eigenvector matrix X, the original coupled transmission lines can be decoupled into twocongruence transformers and a set of n decoupled transmission lines [3]. The task of �nding themacromodel of the frequency-dependent coupled transmission lines becomes that of �nding themacromodel representations of the congruence transformers and the frequency-dependent singletransmission lines. The macromodel of the single transmission line characterized with frequency-dependent losses has already been developed in the early part of this section. The remaining taskis to �nd the macromodel representation of a frequency-dependent congruence transformer.It can be shown that for the coupled lossy transmission line systems, the congruence transformermatrix is the eigenvector matrix of the complex matrix � [2]. The existence of such eigenvectormatrix X that simultaneously diagonalize the complex matrices �, �2, ZY, and YZ is assumedthroughout this paper. This assumption is also adopted by Gordon et al. [8], Blazeck et al. [2] andSchutt-Aine et al. [16].Gordon et al. suggested that the frequency-dependent congruence transformer can be foundby performing the congruence decoupling at each frequency point, as well as by checking theorthogonality of all the eigenvectors for all the frequency points [8]. If the eigenvectors were notorthogonal to each other, column swapping must be performed so that for all the congruencetransformation matrices at all the frequency points are orthogonal to any other one. During thisprocess, the R(f), L(f), C(f) and G(f) matrices have been diagonalized to be: diag(R(f)),diag(L(f)), diag(C(f)) and diag(G(f)) eigenvalue matrices. The i � th diagonal eigenvalues ofeach frequency points constitute the parasitic functions of the decoupled frequency-dependent singletransmission line. Thus these diagonal eigenvalue matrices can be used to form the macromodelsusing a method outlined in the early part of this Section.Once the tabulated S-parameter data for the congruence transformation have been found, acurve-�tting using Levenberg-Marquardt method [13] is used to �nd the moments for the construc-tion of the congruence transformer: X(f).



7. Experimental Results 19One has derived the scattering parameter matrix S(s) of the congruence transformer X(f) tobe [19]:S(s) = 24 �[X�1(f) +Xt(f)]�1[X�1(f) �Xt(f)] 2[X(f) + (Xt(f))�1]�12[X�1(f) +Xt(f)]�1 �[X(f) + (Xt(f))�1]�1[X(f) � (Xt(f))�1] 35 ; (6.42)where the sub-matrix X(f) is found using curve-�tting of the tabulated congruence transformationdata.Once found, the macromodels of the two congruence transformers and the n decoupled two-port interconnects are passed onto the S-parameter macromodel based simulator to perform thetransient analysis.7 Experimental ResultsThe measured S-parameter data �les are courtesy of HP Santa Rosa devision, Hewlett PackardCompany. The measured S-parameter data in all the examples are not given in order to conservespace. The driving signal is 1-GHz, 50% duty-cycle pulse with 0:1ns rise/fall time. All the driversare modeled with a piecewise-linear input voltage source in series with the parallel combination of a25
 resistor and a 4:3pF capacitor. The receivers in all the examples are modeled using the parallelcombination of a 100
 resistor and a 1:0pF capacitor. The testing circuits are the same for all theexamples. The circuit schematic is shown in Figure 7.1. For all of the �gures of the simulation
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Figure 7.1: Test Circuit Schematicresults, there are two output waveforms of the same transmission lines, they are simulated using:



20 7. Experimental Results� the HP Spice simulator from Hewlett Packard Company.� the S-parameter Macromodel based simulator.Throughout all the examples, the simulation waveforms of the HP Spice serve as the correctsolutions, because its underlying implementation is the direct convolution. The direct convolutionwith the impulse response obtained through IFFT method is considered to be the most accuratemethod for the transient analysis of the frequency-dependent transmission lines because there isno approximation involved [18] [7]. The only drawback is the simulation time is exponentiallyproportioned to the transient analysis time[8].All the results show that the output waveforms of the measured S-parameter macromodel matchwell with those produced by HP Spice simulator as expected. The seemly di�erences that wereshown on both the near end and far end waveforms are due to the lower order chosen and thePade approximation error. In all the examples, increase the order of Pade approximation does notincrease accuracy, one must turn to other method such as the Pade-via-Lancsoz (PVL) the to solvethis accuracy problem.7.1 Example 1This is an example with two uniform transmission line sections each with di�erent width joinedtogether, and the whole structure is characterized with measured S-parameter data. It is simulatedusing the same test circuit and input driving signal. The near end and far end simulation waveformsof the HP Spice simulator and the S-parameter macromodel based simulator are shown in Figure7.2 (a) and Figure 7.2 (b) respectively. Figure 7.3 shows enlarged waveforms.7.2 Example 2This is an example with an uniform transmission line characterized with measured S-parameterdata. It is simulated using the same test circuit and input driving signal. The near end and far endsimulation waveforms of the HP Spice simulator and the S-parameter macromodel based simulatorare shown in Figure 7.4 (a) and Figure 7.4 (b) respectively.
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0.00 1.00 2.00 3.00(a) (b)Figure 7.2: Simulation Waveforms of the Transmission Line characterized withmeasured S-parameter data: The output waveforms of the near end of the two-portis shown in (a), waveforms of the far end of the two-port is shown in (b).
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Near End Simulation Waveforms
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0.00 1.00 2.00 3.00(a) (b)Figure 7.4: Simulation Waveforms of the Transmission Line characterized withmeasured S-parameter data: The output waveforms of the near end of the two-portis shown in (a), waveforms of the far end of the two-port is shown in (b).7.3 Example 3This is an example with two uniform transmission line sections joined by a 900 bend, and thewhole structure is characterized with measured S-parameter data. It is simulated using the sametest circuit and input driving signal. The near end and far end simulation waveforms of the HPSpice simulator and the S-parameter macromodel based simulator are shown in Figure 7.5 (a) andFigure 7.5 (b) respectively.8 ConclusionsDesigning interconnect networks for today's high performance digital systems requires moreaccurate and more e�cient transient analysis of the interconnects characterized by the measuredS-parameter data. The novel macromodel of transmission lines and discontinuities characterizedby the measured S-parameter data is developed.The main contribution of this paper is an indirect method for �nding the moments fromthe measured S-parameter data. This indirect approach produces more accurate moments thanthose obtained from �tting the S-parameter directly. It also capture the periodical nature ofthe S-parameters in the frequency spectra both above and below the sampled frequency points.
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Near End Simulation Waveforms
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