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2 1. Introduction1 IntroductionInterconnect design has become an important issue in the high performance systems due to therecent advance in the processing technology. As the packaging density and the clock speed of theIntegrated Circuit (IC) increase, the frequency-dependent losses as well as the crosstalk inducednoise have become some of the major issues in the designs of the interconnect networks. As a result,an accurate and a more e�cient circuit simulator is necessary for the design of the more advanceICs.Due to the high switching speed of today's digital systems, the magnitudes of the harmonicsof the transmitted signals above 1 GHz can often become the signi�cant components in the powerspectrum. At these high frequencies, the interconnects exhibit more frequency-dependent conductor(skin e�ect) and the dielectric losses. The electro-static �eld solution can no longer predict thecorrect parasitics for the interconnects that carry the high-speed digital signals. The macromodelof the transmission lines is required to accurately model both the frequency-dependent conductor(skin e�ect) and the dielectric losses.The objectives of this paper is to provide a method of �nding the Taylor series expansions ofthe S-parameter functions from the measured parasitic data, R(f), L(f), C(f) andG(f). A curve-�tting is �rst applied to �nd the moments of these four parasitic functions, which are used later tocompute the exact moments of the S-parameter functions. Based on the exact moments found usingthis approach, the macromodel of transmission lines characterized with the frequency-dependentlosses is constructed and the transient simulation is performed.The scattering parameter (S-parameter) based macromodel simulator has been previously devel-oped as a novel circuit simulator. Given the scattering parameter description of the measured data,lumped elements, interconnect junctions [17], and single transmission lines, combining with the useof the two e�cient reduction rules, the original distributed and lumped network can be reduced bythe circuit simulator into a network containing one multi-port component together with the sourcesand the loads of interest [19]. In addition, when the lower order approximation is used in the repre-sentation of the scattering parameter macromodels, a better control of a trade-o� between accuracyand e�ciency of the transient simulation can be obtained. Their utility, however, is very limiteddue to the number of macromodels available because of the relative short course of its existence. Itis therefore important to pursue other macromodels that can deal with the crosstalk noise and the



2. Representing the Frequency-Dependent Coupled Lines Using the S-Parameter Macromodel 3frequency-dependent issues as well as devices characterized with the measured S-parameter data.In the following sections, two newly developed macromodels will be presented which represent thefrequency-dependent single and coupled transmission lines.Compared to other accurate time domain simulators, the S-parameter macromodel based sim-ulator provides e�ciency because it is at least thirty times faster. However, it only providesmoderate accuracy because it utilizes lower order Pade approximation. This trade-o� betweenaccuracy and e�ciency has to be made in order to play what-if scenario for a performance-drivenlayout synthesis which thousands of simulations must be executed to obtain timing and ampli-tude information. Traditional approaches which use empirical equations might not work duringperformance-driven layout synthesis because there are a lot of assumptions made by them. Only asimulator with enough accuracy yet does not take a long time to simulate can �t this requirement.The S-parameter macromodel simulator is well suitable for this kind of application.The S-parameter macromodel of the frequency-dependent single and coupled transmission lineswill be discussed in Section 2. The experimental results will be presented in Section 3 and theconclusion will be addressed in Section 4.2 Representing the Frequency-Dependent Coupled Lines Using theS-Parameter MacromodelPrevious researches which took frequency-dependent losses into consideration include those byGruodis et al. [14], Schutt-Aine et al. [24], Chang et al. [6], Beyene [3], Baumgartner [1], Cooke etal. [9], Gordon et al. [13], and Nguyen [21]. Gruodis et al. measured the admittance matrix Y2nand impedance matrix Z2n of the transmission lines, computed the Y0 matrix and propagationconstant �, and then simulated the circuit's transient behavior using the state variable transferfunction method [14]. Schutt-Aine et al. utilized the scattering parameter matrix method [24].Chang et al. chose the method of characteristic with a network synthesis [6]. Beyene combinedthe bi-level waveform relaxation with scattering parameters [3]. Baumgartner used a state variabletransfer function with an exponential approximation [1]. Cooke et al. selected to use the scatteringparameter frequency domain simulation with the Fast Fourier Transformation (FFT) method [9].Gordon et al. used the impulse response convolution method [13], and Nguyen preferred to usethe state variable transfer function with the rational function approximation improvement [21]. In



4 2. Representing the Frequency-Dependent Coupled Lines Using the S-Parameter Macromodelsome of these previous researches including those by Schutt-Aine et al. [24], Beyene [3], and Cookeet al. [9], they chose to use the scattering parameter for the analysis of the transmission lines withthe frequency-dependent losses. The scattering parameter matrix method adopted by Schutt-Aineet al. [24] used those of S11(s) and S21(s) to �nd the transmission T (t) and reection �(t) matrixfor the time domain convolution. The drawback of this Schutt-Aine method is the large numberof matrix operations that were required. The bi-level waveform relaxation method adopted byBeyene [3] utilized the FFT and the inverse FFT (IFFT) to iterate between the frequency domainsimulation and the time domain simulation. The de�ciency of Beyene's method is the need of morethan one thousand data points in order to do the evaluation of the FFT (IFFT) operation with thesame degree of accuracy as comparing to other approaches. The scattering parameter frequencydomain simulation with the FFT method by Cooke et al. [9] selected to use all the scatteringparameters without reduction. The drawbacks of Cooke et al. method are its poor e�ciency andits lack of accuracy when compared to the published ASTAP results. In summary, all of the abovemethods lack the required e�ciency because they do not employ the lower order approximationand the macromodel reductions that were found in the scattering parameter macromodel basedsimulator.Building the novel macromodels for both the frequency-dependent single and coupled transmis-sion lines facilitates an accurate and a more e�cient transient simulation of the interconnectionsthat are characterized by lossy transmission lines with skin e�ects. The contribution of this partof the paper is to determine the moments of the S-parameters of the decoupling congruence trans-former and the decoupled transmission lines characterized with frequency-dependent losses fromthe curve-�tting coe�cients of the R(f), L(f), C(f) and G(f) data sets. Section 2.1 will derivethe representations of the S-parameters macromodel for the frequency-dependent single transmis-sion line and Section 2.2 will derive the representations of the S-parameters macromodel for thefrequency-dependent coupled transmission line.2.1 S-Parameter Macromodel of the Frequency-Dependent SingleTransmission LineWith the assumption of quasi-TEM wave propagation, the distributions of voltages and currentsin a single lossy transmission line can be described by the generalized Telegraphist's equations [7]:



2. Representing the Frequency-Dependent Coupled Lines Using the S-Parameter Macromodel 5@v(x; t)@x = �L(f)@i(x; t)@t �R(f)i(x; t) (2.1)@i(x; t)@x = �C(f)@v(x; t)@t �G(f)v(x; t); (2.2)where 0 � x � l, and v(x; t) and i(x; t) de�ne the voltage distributions vk(x; t) and currentdistributions ik(x; t) on the conductor. The L(f) and C(f) are the frequency-dependent per-unit-length inductance and capacitance of the single conductor system. The R(f) is the frequency-dependent per-unit-length resistance of the single conductor. The G(f) is the frequency-dependentper-unit-length conductance of the single conductor.The R(f), L(f), C(f) and G(f) are used to characterize transmission line with frequency-dependent losses. The scattering parameter matrix for a transmission line is shown in Equation(2.3). S(s) = 12Z0Zc(s) cosh((s)) + (Z2c (s) + Z20) sinh((s))24 (Z2c (s)� Z20) sinh((s)) 2Z0Zc(s)2Z0Zc(s) (Z2c (s)� Z20) sinh((s)) 35 ; (2.3)The Zc(s) is the characteristic impedance and (s) is the propagation constant. Both Zc(s) and(s) are computed from the frequency-dependent values of R(f), L(f), C(f) and G(f) based onthe following Equations: (s) = q(R(s) + sL(s))(G(s) + sC(s)) � lZc(s) = sR(s) + sL(s)G(s) + sC(s) :For an uniform conductor, the S-parameter matrix is symmetrical [12]. Rearrange the repre-sentations of S11(s) and S21(s) in Equation (2.3), one has:S11(s) = �Z2c (s)� Z20� � sinh((s))2Z0Zc(s) cosh((s)) + (Z2c (s) + Z20) sinh((s)); (2.4)S21(s) = 2Z02Z0Zc(s) cosh((s)) + (Z2c (s) + Z20) sinh((s)): (2.5)In order to �nd the lower order approximations of S11(s) and S21(s), the representations of



6 2. Representing the Frequency-Dependent Coupled Lines Using the S-Parameter Macromodelthe R(f), L(f), C(f) and G(f) must �rst be found. A curve-�tting method is then adapted to�nd the coe�cients of the polynomials which model the parasitics. At �rst, the linear �t is runon each data set to obtain two coe�cients as the initial assignment for the successive curve-�ttingsteps. Then the problem of �nding the coe�cients of the polynomials are transformed into oneof the least-square error estimation. The Levenberg-Marquardt method [20] is used to solve thisleast-square error estimation problem. This method is chosen because it combines the best featuresof both the Taylor series expansion and the gradient methods. It can �nd the best solution even itis outside of the circle of convergence like gradient methods and the rate of convergence is as fastas the Taylor series methods.The two coe�cients found in the linear �t is passed on to the Levenberg-Marquardt method asan initial guess. The Levenberg-Marquardt method then iterates to �nd the best �t coe�cients forthe curves of R(f), L(f), C(f) and G(f). This method stops when the results converges or thenumber of iteration exceeds a preset limit. For all of the experiments, this curve-�tting methodshows better results than the one-pass least-square �t and the singular-value decomposition �tmethods.If one de�nes: T (s) � 2(s) � qXi=0 ti � si + o(sq) (2.6)A(s) � Zc(s)(s)� Z20 � (s)Zc(s)� qXi=0 ai � si + o(sq) (2.7)B(s) � Zc(s)(s) + Z20 � (s)Zc(s)� qXi=0 bi � si + o(sq); (2.8)whereas 2(s) = (R(s)+sL(s))(G(s)+sC(s)), (s)Zc(s) = G(s)+sC(s), and Zc(s)(s) = R(s)+sL(s),there is no square root involved in the evaluation of the approximations of the T (s), A(s), and B(s)complex functions. The approximation of the R(s), L(s), G(s), and C(s) real functions are knownthrough curve-�tting. The coe�cients of the T (s), A(s), and B(s) complex functions can be foundthrough simple polynomial operations.



2. Representing the Frequency-Dependent Coupled Lines Using the S-Parameter Macromodel 7If one further de�nes: T (s) � t0 + qXi=1 ti � si + o(sq)� t0 + Tq(s) + o(sq): (2.9)where the constant term is separated from the rest of function. The separation will make the �ndingof the coe�cients in Equation (2.14) and (2.15) much easier. The expansions of 2Z0 cosh((s)) andsinh((s))(s) are shown in Equation (2.10) and (2.11):U(s) � 2Z0 cosh((s))� 1Xi=0 2i(s)2i! � 2Z0 1Xi=0 T i(s)2i!� 2Z0 qXi=0 ui � si + o(sq) (2.10)V (s) � sinh((s))(s) � 1Xi=0 2i(s)(2i+ 1)! � 1Xi=0 T i(s)(2i+ 1)!� qXi=0 vi � si + o(sq): (2.11)Based on Equations (2.7), (2.8), (2.10), and (2.11), Equations (2.4) and (2.5) can be rewritten as:S11(s) = A(s) � V (s)U(s) +B(s) � V (s) (2.12)S21(s) = 2Z0U(s) +B(s) � V (s) : (2.13)It can be shown that: U(s) = 2Z0 qXk=0 �k � T kq (s) + o(sq) (2.14)V (s) = qXk=0�k � T kq (s) + o(sq); (2.15)where �k = 1Xk=0 Cki2i! � ti�k0 (2.16)



8 2. Representing the Frequency-Dependent Coupled Lines Using the S-Parameter Macromodel�k = 1Xk=0 Cki(2i+ 1)! � ti�k0 ; (2.17)and t0 is the separated constant term in Equation (2.9). Although the summation of both �k and�k are an in�nity series, in reality, the inverse of the factorial is a fast converging series and theycan be truncated at a certain point without introducing much error. The coe�cients of U(s) andV (s) are: ui = iXk=1 �k Xj1+j2+���+jk=i tj1 � tj2 � � � tjk (2.18)vi = iXk=1�k Xj1+j2+���+jk=i tj1 � tj2 � � � tjk : (2.19)Since the coe�cients of the polynomial T (s) are known from Equation (2.6), the coe�cients of U(s)and V (s) can then be computed.If one de�nes: S11(s) = C(s)D(s) (2.20)S21(s) = C0(s)D(s) : (2.21)Comparing Equations (2.12), (2.13), (2.20), and (2.21), one �nds:C(s) � qXi=0 ci � si + o(sq) = A(s) � V (s) (2.22)D(s) � qXi=0 di � si + o(sq)= U(s) +B(s) � V (s) (2.23)C 0(s) = 2Z0: (2.24)It can be shown that the coe�cients of C(s) and D(s) are:ck = Xi+j=k aivj (2.25)dk = uk + Xi+j=k bivj : (2.26)



2. Representing the Frequency-Dependent Coupled Lines Using the S-Parameter Macromodel 9If the moments of S11(s) and S21(s) are mi and ni, one can write:S11(s) = qXi=0mi � si + o(sq) (2.27)S21(s) = qXi=0 ni � si + o(sq): (2.28)From Equation (2.20) and (2.28), one can derive:Xi+j=kmidj = ck: (2.29)If one denotes: Dq = 266666666664 d0 0 0 : : : 0d1 d0 0 : : : 0d2 d1 d0 : : : 0: : :dq dq�1 dq�2 : : : d0 377777777775 (2.30)Mq = h m0 m1 m2 � � � mq iT (2.31)Cq = h c0 c1 c2 � � � cq iT ; (2.32)where T represents the transpose of the vector, one can rewrite DqMq = Cq, i.e. Mq = D�1q Cq.Thus the moments mi of the S11(s) function can be found through simple backward substitutions.Similarly, if one denotes: Nq = h n0 n1 n2 � � � nq iT (2.33)C0q = h 2Z0 0 0 � � � 0 iT ; (2.34)where T again represents the transpose of the vector, one can rewrite DqNq = C 0q, i.e. Nq =D�1q C0q, and the moments ni of the S21(s) function can again be found through simple backwardsubstitutions.



10 2. Representing the Frequency-Dependent Coupled Lines Using the S-Parameter Macromodel2.2 S-Parameter Macromodel of the Frequency-Dependent CoupledTransmission LineWave propagation in multi-conductor has been extensively studied by the Microwave, ElectronicMagnetic Compatibility (EMC), and Electrical engineers. Due to the coupling between the trans-mission lines, di�erent modes which have di�erent propagation velocities exist simultaneously inthe system. For a n conductor system shown in Figure 2.1 (a), there exists n fundamental modesof propagation. As the system clock speed increases, the crosstalk becomes one of the major source
v11

v1k

v1n v2n

v2k

v21

i11 i21

i1k i2k

i1n i2n

x = 0 x = l

(a)
X X

v11

v1k

v1n v2n

v2k

v21

i11 i21

i1k i2k

i1n i2n

j11

j1k

j1n

j11

j1k

j1n

u11

u1k

u1n

u21

u2k

u2n

Lk Ck

L1 C1

Ln Cn

X X
v11

v1k

v1n v2n

v2k

v21

i11 i21

i1k i2k

i1n i2n

j11

j1k

j1n

j11

j1k

j1n

u11

u1k

u1n

u21

u2k

u2n

Lk Ck

L1 C1

Ln Cn

R11

Rkk

Rnn

(b) (c)Figure 2.1: Coupled Transmission Lines. The n coupled transmission lines with totalcoupled length l are shown here. The lines can be either lossless (b) or lossy (c). Thecoupled system is decoupled into two congruence transformers X and n decoupled singletransmission lines.of noise not to mention the delay and ringing which can limit the performance of high-speed digitalsystems [5] [7] [8] [9] [11] [22] [23] [24] [26] [25]. The crosstalk can often lead to excessive overshoots,undershoots and glitches. It can also cause false switchings on the non-active lines as well as unde-tected switchings on the active lines, in addition to its potential in increasing the power dissipationof the output drivers. The coupled noise (crosstalk) is inversely proportion to the inter-line spacingand is directly proportional to several parameters including those of the thickness of the dielectric



2. Representing the Frequency-Dependent Coupled Lines Using the S-Parameter Macromodel 11material, the distance of the coupled lines which are in parallel, the rate of change of the inputwaveforms, as well as the line impedances.Previous researches which used scattering parameter for the analysis of the coupled transmissionlines include those of the general convolution by Winklestein et al. [26], the full-wave analysis byCooke et al. [9] and the time domain transient simulation by Schutt-Aine et al. [24]. WhileSchutt-Aine et al. demonstrated a greater accuracy improvement in simulating the circuits thatincluded non-linear drivers and terminations, their method involved costly matrix computation forconverting the frequency domain scattering parameter matrix representation into the time domaintransmission/reection matrix representation [24]. Cooke et al. illustrated an ability to simulatefrequency dependent modal propagation, but a time consuming full-wave analysis was required [9].Recently, a novel frequency domain simulator using scattering parameter based macromodels hasbeen presented by Liao et al [18] [19]. Based on the scattering parameter based macromodel, Padetechnique or Exponentially Decayed Polynomial Function (EDPF) can be used to approximatetransfer functions of the coupled interconnects. In the following section, we are going to try toovercome some of these shortcomings by deriving the S-parameter macromodel for the frequency-dependent coupled transmission lines.Based upon the assumption of quasi-TEM wave propagation, the distributions of voltagesand currents in a n coupled lossy transmission-line system can be described by the generalizedTelegraphist's equations [7]:@v(x; t)@x = �L(f)@i(x; t)@t �R(f)i(x; t) (2.35)@i(x; t)@x = �C(f)@v(x; t)@t �G(f)v(x; t); (2.36)where 0 � x � l. v(x; t) and i(x; t) are column vectors de�ning the voltages distributions vk(x; t)and currents distributions ik(x; t) on the conductors k = 1; 2; 3; :::; n. The L(f) and C(f) are the nby n symmetric matrices of the frequency-dependent per-unit-length inductance and capacitanceof the n conductor system. The R(f) = diag(Rkk(f)), k = 1:::n is the diagonal matrix ofthe frequency-dependent per-unit-length resistance of the n conductors. The G(f) is the n byn symmetric matrix of the frequency-dependent per-unit-length conductance of the n conductorsystem [24].It is very important to accurately model the frequency dependence of the parasitics for the case



12 2. Representing the Frequency-Dependent Coupled Lines Using the S-Parameter Macromodelof the coupled transmission lines. There are o�-diagonal elements in the R(f), L(f), C(f) andG(f) matrices describing the mutual coupling e�ects which do not exist in the case of the singletransmission line. The mutual inductance Lij(f), where i 6= j, increases as frequency increases dueto more coupling between lines at higher frequency. The mutual capacitance Cij(f), where i 6= j,stays constant as the Cii(f). Both the Rii(f) and Rij(f), where i 6= j, increase as the frequencyrises.There are two major methods to �nd the time domain transient response waveforms of acoupled transmission line system. One method is to �nd the impulse response of the linearcoupled transmission line system and then use either the convolution or the waveform relaxationto �nd the time domain waveforms. However, this method su�ers from both the large memoryrequirement and the long computation time that are required. The other method is a modal wavepropagation decoupling method which is preferred over the �rst method because it models thephysical phenomenon of n fundamental mode of the wave propagation that exists in the n multi-conductor transmission line system. By decoupling the modal waves, the simulator is only requiredto memorize a period of the waveforms equal to the time-of-ight of each decoupled transmissionline, which is much shorter when compared to the duration of the impulse response. Furthermore,with the help of the S-parameter macromodel, the recursive convolution can be applied with asigni�cantly shorter computation time. After successfully decoupling of the coupled transmissionlines system, the computation of the scattering parameter macromodel of the entire system becomesthe computation of the decoupling networks and that of the decoupled transmission lines withfrequency-dependent losses. The macromodel of the later is already available and is presented inSection 2.1.To incorporate the macromodel of the frequency-dependent decoupling networks into the S-parameter macromodel simulator presents a very di�cult challenge. This process requires the�nding of a frequency-dependent transformation matrix in order to decouple the system. It is acomplex process and requires the eigenvalues at each frequency point prior to diagonalization. Theresulting matrix elements are characterized by the tabulated S-parameter data.Taking the Laplace transform of the Equation (2.35) and (2.36), they can be rewritten as:@V(x; s)@x = �ZI(x; s) (2.37)



2. Representing the Frequency-Dependent Coupled Lines Using the S-Parameter Macromodel 13@I(x; s)@x = �YV(x; s); (2.38)where Z = R + jwL, and Y = G + jwC. Throughout this paper, the following assumptionsreported by Blazeck et al. are used [4]. The assumptions are: the modes of propagation must beTEM or quasi-TEM, and the lines are of uniform cross-section throughout their length; that is, R,L, C, and G are assumed to be constant with respect to the spatial variable x.Solving Equation (2.37) and (2.38), one has:@2V(x; s)@x2 = ZYV(x; s) = �2V(x; s) (2.39)@2I(x; s)@x2 = YZI(x; s) = (�2)T I(x; s); (2.40)where T indicates transpose and � is de�ned as �2 = ZY [4]. The existence of eigenvectors thatdiagonalize �2, and thus �, is also assumed throughout this paper [4]. De�ne� = X�X�1; (2.41)where X is the eigenvectors of �; therefore, they are also the eigenvectors of �2, and � is thediagonal matrix of the eigenvalues of �. It can be shown that [25] [10]@Vm(x; s)@x = ��ZmIm(x; s) (2.42)@Im(x; s)@x = ��YmVm(x; s); (2.43)where V(x; s) = XVm(x; s), I(x; s) = (XT )�1Im(x; s). The modal impedance matrix Zm andmodal admittance matrix Ym are related to the eigenvector matrix X and the impedance matrixZ by Zm = (Ym)�1 = ��1XZ(XT)�1: (2.44)With the eigenvector matrix X, the original coupled transmission lines can be decoupled into twocongruence transformer and a set of n decoupled transmission lines [7]. The task of �nding themacromodel of the frequency-dependent coupled transmission lines becomes that of �nding the



14 2. Representing the Frequency-Dependent Coupled Lines Using the S-Parameter Macromodelmacromodel representations of the congruence transformers and the frequency-dependent singletransmission lines [25]. The macromodel of the single transmission line that is characterized withfrequency-dependent losses has already been developed in Section 2.1. The remaining task is to�nd the macromodel representation of a frequency-dependent congruence transformer.Bayard �rst outlined the transformation, AtZA, and called it \translator" [2]. Hazony is the�rst one to name the transformation \congruence transformer" in his book [15]. Chang used thecongruence transformer to decouple both the lossless [5] and lossy coupled transmission lines [7].Chang's method for the analysis of coupled transmission lines relies on simultaneously diagonalizingall the matrices using a special conditioned matrix.It is known that the modal eigenvectors of two symmetrical coupled transmission lines arefrequency independent constant vectors even the lines are characterized by the frequency-dependentparasitics [13]. It can be shown that the decoupling networks can be constructed from the constanteigenvectors: X = 264 1p2 � 1p21p2 1p2 375 : (2.45)These two vectors correspond to the odd and even mode of propagation that exists in the symmet-rical coupled transmission lines.For asymmetrical coupled dual transmission lines and for coupled transmission lines with morethan two conductors which are characterized with the frequency-dependent parasitic, the modelstructure of the lines becomes frequency-dependent [13], and �nding the moments of the modelstructure will pose an even greater challenge.It can be shown that for the coupled lossy transmission line systems, the congruence transformermatrix is the eigenvector matrix of the complex matrix � [4]. The existence of such eigenvectormatrix X that simultaneously diagonalize the complex matrices �, �2, ZY, and YZ is assumedthroughout this paper. This assumption is also adopted by Gordon et al. [13], Blazeck et al. [4]and Schutt-Aine et al. [24].Gordon et al. suggested that the frequency-dependent congruence transformer can be found byperforming the congruence decoupling at each frequency point, and by checking the orthogonalityof all the eigenvectors for all the frequency points [13]. If the eigenvectors were not orthogonal



3. Experimental Results 15to each other, column swapping must be performed so that for all the congruence transformationmatrices at all the frequency points are orthogonal to any other one. During this process, the R(f),L(f), C(f) and G(f) matrices have been diagonalized to be: diag(R(f)), diag(L(f)), diag(C(f))and diag(G(f)) eigenvalue matrices. The i � th diagonal eigenvalues of each frequency pointsconstitute the parasitic of the decouple frequency-dependent single transmission line. Thus thesediagonal eigenvalue matrices can be used to form the macromodels using a method outlined in theSection 2.1.Once the tabulated S-parameter data for the congruence transformation have been found,a curve-�tting using Levenberg-Marquardt method [20] is used to �nd the coe�cients for theconstruction of the congruence transformer: X(f).One has derived the scattering parameter matrix S(s) of the congruence transformer X(f) tobe [25]:S(s) = 24 �[X�1(f) +Xt(f)]�1[X�1(f) �Xt(f)] 2[X(f) + (Xt(f))�1]�12[X�1(f) +Xt(f)]�1 �[X(f) + (Xt(f))�1]�1[X(f) � (Xt(f))�1] 35 ; (2.46)where the sub-matrix X(f) is found using curve-�tting the tabulated congruence transformationdata.Similar to the process stated in an earlier paper [25], the macromodels of the two congruencetransformers and the n decoupled transmission lines are passed onto the S-parameter macromodelbased simulator to perform the transient analysis.3 Experimental ResultsThe data in the �rst two examples as well as the fourth example presented here are obtained fromDr. J. C. Liao of Intel Corporation. The data in the third example is obtained from the user manualof Dr. Raji Mittra's "mtltda" simulator. Figure 3.1 (b) only shows the simulation result which takesfrequency-dependent losses into consideration. Figure 3.2 shows the di�erent simulation resultsbetween taking and not taking the frequency-dependent losses into consideration. The discrepancyin simulation waveforms con�rms that one needs to include frequency-dependent losses in circuitsimulation. Figure 3.3 and Figure 3.4 show the comparison between the S-parameter macromodelbased simulator and a time-domain circuit simulator. Although the S-parameter macromodel based



16 3. Experimental Resultssimulator does not have the accuracy demonstrated by the time-domain simulator, it provides morethan thirty times speedup in Example 4. This kind of e�ciency lands it in the application ofperformance-driven layout synthesis.3.1 Example 1This is a single transmission line characterized with frequency-dependent losses. The frequencydependence of the per-unit-length inductance and resistance are given in Table 3.1. The per-unit-Frequency L (nH/cm) R (ohm/cm)10 kHz 4:070 5:000100 MHz 4:069 5:000250 MHz 4:064 5:000500 MHz 4:050 5:150750 MHz 4:032 5:3101 GHz 4:012 5:5202 GHz 3:904 6:7504 GHz 3:789 8:9606 GHz 3:724 10:858 GHz 3:645 12:35Table 3.1: The Frequency-Dependent Per-Unit-Length Inductance and Resis-tance.length capacitance is 1:460pF=cm and the per-unit-length conductance is assumed to be zero. Thedriving signal is 100-MHz, 50% duty-cycle pulse with 0:5ns rise/fall time. The Far-end waveformsare simulated with time-of-ight extracted [16]. The circuit schematic is shown in 3.1 (a) with thecomponent values. The simulation waveforms of this example are shown in Figure 3.1 (b).3.2 Example 2This is an example with two coupled transmission lines characterized with frequency-dependentlosses. The frequency-dependent per-unit-length inductance and resistance are given in Table 3.2.The per-unit-length capacitance matrix is a constant matrix which does not vary with frequency:24 1:637pF=cm �0:177pF=cm�0:177pF=cm 1:637pF=cm 35 (3.1)
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(a) (b)Figure 3.1: Simulation Waveforms of the Single Transmission Line character-ized with frequency-dependent losses: The topology is shown in (a). The outputwaveforms of the far end is shown in (b).Frequency L11 L22 (nH/cm) L12 L21 (nH/cm) R11 R22 (ohm/cm) R12 R21 (ohm/cm)10 kHz 4:070 0:975 5:000 0:000100 MHz 4:069 0:975 5:000 0:000250 MHz 4:064 0:974 5:000 0:000500 MHz 4:050 0:973 5:150 0:0564750 MHz 4:032 0:972 5:310 0:1001 GHz 4:012 0:971 5:520 0:1402 GHz 3:904 0:969 6:750 0:2724 GHz 3:789 0:966 8:960 0:4536 GHz 3:724 0:965 10:85 0:5638 GHz 3:645 0:964 12:35 0:666Table 3.2: The Frequency-Dependent Per-Unit-Length Inductance, Mutual In-ductance, and Resistance.The per-unit-length conductance is assumed to be zero. The driving signal is 100-MHz, 50%duty-cycle pulse with 0:5ns rise/fall time. The Far-end waveforms are simulated with time-of-ightextracted [16]. The circuit schematic is shown in 3.2 (a) with the component values. The simulationwaveforms of this example are shown in Figure 3.2 (b), (c), (d) and (e).For all of the �gures, there are three output waveforms of the same coupled transmission lines, theyare modeled:� using the lossy macromodel.
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(d) (e)Figure 3.2: Simulation Waveforms of the Coupled Transmission Line charac-terized without and with frequency-dependent losses: The topology is shown in(a). There are three waveforms in each plot, two of them are obtained from the usualfrequency-independent models, the third one is obtained from the frequency-dependentmodel. The output waveforms of the near end of the active line is shown in (b), waveformsof the far end of the active line is shown in (c), waveforms of the near end of the senseline is shown in (d). waveforms of the far end of the sense line is shown in (e).



3. Experimental Results 19� using the frequency-independent macromodel.� using the frequency-dependent macromodel.The per-unit-length parasitic of the lossy macromodel are taken from the DC values of thefrequency-dependent model. The frequency-independent macromodel is created using the DC val-ues of the frequency-dependent model at all the frequency points. The results show that the out-put waveforms of the frequency-independent macromodel match that of the lossy macromodel asexpected. The results also indicate that the output waveforms of the frequency-dependent macro-model di�er from that of the lossy and frequency-independent model because of the frequency-dependent natural of the per-unit-length parasitic. This prompts the importance of takingfrequency-dependent losses into consideration when doing circuit simulation.3.3 Example 3This is an example of two cascade sections of two coupled transmission lines, one section ischaracterized with frequency-dependent losses, and the other is characterized only with losslessmodel. The frequency-dependent per-unit-length inductance and resistance of the �rst section aregiven in Table 3.3. The frequency-dependent per-unit-length capacitance matrix of the �rst sectionFrequency L11 L22 (nH/cm) L12 L21 (nH/cm) R11 R22 (ohm/cm) R12 R21 (ohm/cm)DC 5:150 0:995 0:6406 0:128320 MHz 4:777 0:943 0:6829 0:132550 MHz 4:511 0:818 0:7793 0:1736100 MHz 4:354 0:818 1:0147 0:2359200 MHz 4:022 0:688 1:2572 0:2609500 MHz 3:601 0:588 2:1743 0:42841 GHz 3:409 0:580 3:6886 0:6957Table 3.3: The Frequency-Dependent Per-Unit-Length Inductance, Mutual In-ductance, and Resistance.is given in Table 3.4. The per-unit-length conductance is assumed to be zero.The second section is characterized as a lossless coupled transmission lines. The per-unit-lengthinductance and capacitance matrices are as follows:L = 24 5:105nH=cm �0:995nH=cm�0:995nH=cm 5:105nH=cm 35
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(f) (g)Figure 3.3: Simulation Waveforms of the Coupled Transmission Line character-ized with frequency-dependent losses: The topology is shown in (a). The waveformsare obtained from the S-parameter macromodel based simulator and Dr. Raji Mittra's\mtltda" simulator. The output waveforms of the near end of the active line is shown in(b), waveforms of the junction of the active line is shown in (c), waveforms of the far endof the active line is shown in (d), waveforms of the near end of the sense line is shown in(e), waveforms of the junction of the sense line is shown in (f), waveforms of the far endof the sense line is shown in (g).



3. Experimental Results 21Frequency C11 C22 (pF/cm) C12 C21 (pF/cm)DC 0:862 �0:14020 MHz 0:752 �0:15950 MHz 0:756 �0:140100 MHz 0:754 �0:153200 MHz 0:786 �0:147500 MHz 0:768 �0:1421 GHz 0:766 �0:146Table 3.4: The Frequency-Dependent Per-Unit-Length Capacitance Matrix.C = 24 0:862pF=cm �0:140pF=cm�0:140pF=cm 0:862pF=cm 35 (3.2)The driving signal is 100-MHz, 50% duty-cycle pulse with 0:5ns rise/fall time. The Far-endwaveforms are simulated with time-of-ight extracted [16]. The circuit schematic is shown in3.3 (a) with the component values. The simulation waveforms of this example are shown in Figure3.3 (b), (c), (d) and (e).For all of the �gures, there are two output waveforms, they are:� the output waveform of the frequency-dependent macromodel.� the output waveform obtained from Dr. Mittra's "mtltda" simulator.The results show that the output waveforms of the frequency-dependent macromodel match theone produced by Dr. Mittra's "mtltda" simulator as expected. The seemly di�erences that wereshown on the sense line waveforms are due to the lower number of order chosen and the Padeapproximation error. Please note, however, the amplitude of the waveforms on the sense line areonly one to two hundred millivolts. These waveforms, although di�erent in large, have the sameamplitude magnitude and tracking each other closely. Both simulators use 12 seconds on a SUNSparc1+ workstation. However, the second data point for R(f) and L(f) is taken at 20MHz. Asevident in the data that includes skin e�ects, there are some information lost in this simpli�cation.If one includes these informations, the time-domain simulator will needs much longer simulationtime.



22 4. Conclusions3.4 Example 4This is an example with three coupled transmission lines characterized with frequency-dependentlosses. The per-unit-length inductance, resistance, and capacitance are not given in order toconserve space. The per-unit-length conductance is assumed to be zero. The driving signal is200-MHz, 50% duty-cycle pulse with 0:5ns rise/fall time. The Far-end waveforms are simulatedwith time-of-ight extracted [16]. The circuit schematic is shown in 3.4 (a) with the componentvalues. The simulation waveforms of this example are shown in Figure 3.4 (b), (c), (d) and (e).Similar to Example 3, for all of the �gures, there are two output waveforms, they are:� the output waveform of the frequency-dependent macromodel.� the output waveform obtained from Dr. Mittra's "mtltda" simulator.Again, all the results show that the output waveforms of the frequency-dependent macromodelmatch the one produced by Dr. Mittra's "mtltda" simulator as expected. The seemly di�erencesthat were shown on the sense line waveforms are due to the lower number of order chosen and thePade approximation error. In this particular example, increase the order of Pade approximationdoes not increase accuracy, one must turn to other method such as Complex-Frequency-Hopping(CFH) or Pade-via-Lancsoz (PVL) to solve this accuracy problem.The S-parameter macromodel based simulator takes 9:23 seconds on the SUN Sparc1+ workstation.The time-domain simulators takes 288 seconds on the same machine. This is due to the fact thatthe second data point is taking at 1MHz instead at 20MHz. In order to use the time-domainsimulator, the actual data taking at 10KHz and 100KHz are thrown away.4 ConclusionsThe task of designing interconnect networks for today's high performance digital systems re-quires an accurate and a more e�cient transient analysis which takes the frequency-dependentlosses into consideration. The contribution of this paper is to develop the two novel macromod-els for both the single and coupled transmission lines characterized with the frequency-dependentparasitic functions R(f), L(f), C(f), and G(f) data in order to perform an accurate and a moree�cient transient simulation. These two novel macromodels provides a moderate accuracy and a
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(d) (e)Figure 3.4: Simulation Waveforms of the Coupled Transmission Line character-ized with frequency-dependent losses: The topology is shown in (a). The waveformsare obtained from the S-parameter macromodel based simulator and Dr. Raji Mittra's\mtltda" simulator. The output waveforms of the near end of the active line is shown in(b), waveforms of the far end of the active line is shown in (c), waveforms of the near endof the sense line is shown in (d). waveforms of the far end of the sense line is shown in(e).
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