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ABSTRACT

This paper describes two novel macromodels for incorporating the single and coupled
transmission Lines characterized by the frequency-dependent losses into an S-parameter
macromodel based simulator. This approach computes the moments of the S-parameter
based upon the frequency-dependent parasitic functions: R(f), L(f), C(f), and G(f)
which characterize either the single or the coupled transmission lines. These same moments
can be used later to construct the macromodels. Once the macromodels are built, the
transient analysis can be performed by using the Scattering-Parameter (S-parameter) based
macromodel simulator.

Keywords: Coupled Transmission Lines, Transient Analysis, Congruence Transforma-
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Frequency-Dependent Losses
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2 1. Introduction

1 Introduction

Interconnect design has become an important issue in the high performance systems due to the
recent advance in the processing technology. As the packaging density and the clock speed of the
Integrated Circuit (IC) increase, the frequency-dependent losses as well as the crosstalk induced
noise have become some of the major issues in the designs of the interconnect networks. As a result,

an accurate and a more efficient circuit simulator is necessary for the design of the more advance

ICs.

Due to the high switching speed of today’s digital systems, the magnitudes of the harmonics
of the transmitted signals above 1 GHz can often become the significant components in the power
spectrum. At these high frequencies, the interconnects exhibit more frequency-dependent conductor
(skin effect) and the dielectric losses. The electro-static field solution can no longer predict the
correct parasitics for the interconnects that carry the high-speed digital signals. The macromodel
of the transmission lines is required to accurately model both the frequency-dependent conductor

(skin effect) and the dielectric losses.

The objectives of this paper is to provide a method of finding the Taylor series expansions of
the S-parameter functions from the measured parasitic data, R(f), L(f), C(f) and G(f). A curve-
fitting is first applied to find the moments of these four parasitic functions, which are used later to
compute the exact moments of the S-parameter functions. Based on the exact moments found using
this approach, the macromodel of transmission lines characterized with the frequency-dependent

losses is constructed and the transient simulation is performed.

The scattering parameter (S-parameter) based macromodel simulator has been previously devel-
oped as a novel circuit simulator. Given the scattering parameter description of the measured data,
lumped elements, interconnect junctions [17], and single transmission lines, combining with the use
of the two efficient reduction rules, the original distributed and lumped network can be reduced by
the circuit simulator into a network containing one multi-port component together with the sources
and the loads of interest [19]. In addition, when the lower order approximation is used in the repre-
sentation of the scattering parameter macromodels, a better control of a trade-off between accuracy
and efficiency of the transient simulation can be obtained. Their utility, however, is very limited
due to the number of macromodels available because of the relative short course of its existence. It

is therefore important to pursue other macromodels that can deal with the crosstalk noise and the
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frequency-dependent issues as well as devices characterized with the measured S-parameter data.
In the following sections, two newly developed macromodels will be presented which represent the

frequency-dependent single and coupled transmission lines.

Compared to other accurate time domain simulators, the S-parameter macromodel based sim-
ulator provides efficiency because it is at least thirty times faster. However, it only provides
moderate accuracy because it utilizes lower order Pade approximation. This trade-off between
accuracy and efficiency has to be made in order to play what-if scenario for a performance-driven
layout synthesis which thousands of simulations must be executed to obtain timing and ampli-
tude information. Traditional approaches which use empirical equations might not work during
performance-driven layout synthesis because there are a lot of assumptions made by them. Only a
simulator with enough accuracy yet does not take a long time to simulate can fit this requirement.

The S-parameter macromodel simulator is well suitable for this kind of application.

The S-parameter macromodel of the frequency-dependent single and coupled transmission lines
will be discussed in Section 2. The experimental results will be presented in Section 3 and the

conclusion will be addressed in Section 4.

2 Representing the Frequency-Dependent Coupled Lines Using the

S-Parameter Macromodel

Previous researches which took frequency-dependent losses into consideration include those by
Gruodis et al. [14], Schutt-Aine et al. [24], Chang et al. [6], Beyene [3], Baumgartner [1], Cooke et
al. [9], Gordon et al. [13], and Nguyen [21]. Gruodis et al. measured the admittance matrix Yz,
and impedance matrix Zs, of the transmission lines, computed the Yo matrix and propagation
constant I', and then simulated the circuit’s transient behavior using the state variable transfer
function method [14]. Schutt-Aine et al. utilized the scattering parameter matrix method [24].
Chang et al. chose the method of characteristic with a network synthesis [6]. Beyene combined
the bi-level waveform relaxation with scattering parameters [3]. Baumgartner used a state variable
transfer function with an exponential approximation [1]. Cooke et al. selected to use the scattering
parameter frequency domain simulation with the Fast Fourier Transformation (FFT) method [9].
Gordon et al. used the impulse response convolution method [13], and Nguyen preferred to use

the state variable transfer function with the rational function approximation improvement [21]. In
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some of these previous researches including those by Schutt-Aine et al. [24], Beyene [3], and Cooke
et al. [9], they chose to use the scattering parameter for the analysis of the transmission lines with
the frequency-dependent losses. The scattering parameter matrix method adopted by Schutt-Aine
et al. [24] used those of S11(s) and $21(s) to find the transmission 7'(¢) and reflection I'(¢) matrix
for the time domain convolution. The drawback of this Schutt-Aine method is the large number
of matrix operations that were required. The bi-level waveform relaxation method adopted by
Beyene [3] utilized the FFT and the inverse FF'T (IFFT) to iterate between the frequency domain
simulation and the time domain simulation. The deficiency of Beyene’s method is the need of more
than one thousand data points in order to do the evaluation of the FFT (IFFT) operation with the
same degree of accuracy as comparing to other approaches. The scattering parameter frequency
domain simulation with the FFT method by Cooke et al. [9] selected to use all the scattering
parameters without reduction. The drawbacks of Cooke et al. method are its poor efliciency and
its lack of accuracy when compared to the published ASTAP results. In summary, all of the above
methods lack the required efficiency because they do not employ the lower order approximation
and the macromodel reductions that were found in the scattering parameter macromodel based

simulator.

Building the novel macromodels for both the frequency-dependent single and coupled transmis-
sion lines facilitates an accurate and a more efficient transient simulation of the interconnections
that are characterized by lossy transmission lines with skin effects. The contribution of this part
of the paper is to determine the moments of the S-parameters of the decoupling congruence trans-
former and the decoupled transmission lines characterized with frequency-dependent losses from
the curve-fitting coefficients of the R(f), L(f), C(f) and G(f) data sets. Section 2.1 will derive
the representations of the S-parameters macromodel for the frequency-dependent single transmis-
sion line and Section 2.2 will derive the representations of the S-parameters macromodel for the

frequency-dependent coupled transmission line.

2.1 S-Parameter Macromodel of the Frequency-Dependent Single

Transmission Line

With the assumption of quasi-TEM wave propagation, the distributions of voltages and currents

in a single lossy transmission line can be described by the generalized Telegraphist’s equations [7]:
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D -y PR (2.1
di(x, 1) ov(z,t)
o _C(f)T - G(f)V($,t), (22)

where 0 < 2 < [, and v(z,t) and i(z,?) define the voltage distributions vg(2,t) and current
distributions ix(x,t) on the conductor. The L(f) and C(f) are the frequency-dependent per-unit-
length inductance and capacitance of the single conductor system. The R(f) is the frequency-
dependent per-unit-length resistance of the single conductor. The G(f) is the frequency-dependent
per-unit-length conductance of the single conductor.

The R(f), L(f), C(f) and G(f) are used to characterize transmission line with frequency-

dependent losses. The scattering parameter matrix for a transmission line is shown in Equation

(2.3).

S(s) = : -
2Z07(5) cosh3(5)) + (Z2(s) & Z3) sinh(7(5))

(72(s) = 72) sinh(3(5)) 2Z07(s) o
2207.(5) (72(s) = 73)sinh(7(s))

The Z.(s) is the characteristic impedance and v(s) is the propagation constant. Both Z.(s) and
v(s) are computed from the frequency-dependent values of R(f), L(f), C(f) and G(f) based on
the following Equations:

For an uniform conductor, the S-parameter matrix is symmetrical [12]. Rearrange the repre-

sentations of S11(s) and S31(s) in Equation (2.3), one has:

. 172(s) = 73) - sinh(1(s))
)= 707  cosh((5)) + (Z2(s) + Z2) snh((5))" (24
270

270 Zc(s) cosh(y(s)) + (Z2(s) + Z5) sinh(7(s))’

(2.5)

521(8)

In order to find the lower order approximations of S31(s) and S31(s), the representations of
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the R(f), L(f), C(f) and G(f) must first be found. A curve-fitting method is then adapted to
find the coefficients of the polynomials which model the parasitics. At first, the linear fit is run
on each data set to obtain two coeflicients as the initial assignment for the successive curve-fitting
steps. Then the problem of finding the coeflicients of the polynomials are transformed into one
of the least-square error estimation. The Levenberg-Marquardt method [20] is used to solve this
least-square error estimation problem. This method is chosen because it combines the best features
of both the Taylor series expansion and the gradient methods. It can find the best solution even it
is outside of the circle of convergence like gradient methods and the rate of convergence is as fast

as the Taylor series methods.

The two coefficients found in the linear fit is passed on to the Levenberg-Marquardt method as
an initial guess. The Levenberg-Marquardt method then iterates to find the best fit coeflicients for
the curves of R(f), L(f), C(f) and G(f). This method stops when the results converges or the
number of iteration exceeds a preset limit. For all of the experiments, this curve-fitting method
shows better results than the one-pass least-square fit and the singular-value decomposition fit

methods.

If one defines:

T = 5= s ol (2.6
AW = Zint)- 7

= gai-si—l—o(sq) (2.7)
Bl = Zin()+ % S

Zbi - 5"+ o(s7), (2.8)

whereas 7%(s) = (R(s)+sL(s))(G(s) +5C(s)), 7 = G(s)+5C(s), and Z(s)y(s) = R(s)+sL(s),
there is no square root involved in the evaluation of the approximations of the T'(s), A(s), and B(s)
complex functions. The approximation of the R(s), L(s), G(s), and C(s) real functions are known
through curve-fitting. The coefficients of the T'(s), A(s), and B(s) complex functions can be found

through simple polynomial operations.
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If one further defines:

q
T(s) = to—l—Zti-sl—l—o(sq)
=1

to + Ty(s)+ o(s?).

(2.9)

where the constant term is separated from the rest of function. The separation will make the finding

of the coefficients in Equation (2.14) and (2.15) much easier. The expansions of 27, cosh(v(s)) and
w are shown in Equation (2.10) and (2.11):

y(s

sinh(1(s)) _ & 7%i(s) _ & Ti(s)
v(s) Z::O (2i4+ 1)~ ; (20 + 1)!
Z_:vi -8 4 o(s?)

(2.10)

(2.11)

Based on Equations (2.7), (2.8), (2.10), and (2.11), Equations (2.4) and (2.5) can be rewritten as:

It can be shown that:

where

B A(s)-V(s)
Sul(s) = U(s) + BZ(S) V(s)
S21(s) e

U(s)+ B(s)-V(s)

U(s) = 2% Zq: Br - qu(s) + o(s?)

k=0

Vi(is) = Z oL -qu(s) + o(s?),
k=0

o CF ik
Br = Zﬁ'to

k=0 :

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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o = i 7Cf ik (2.17)
= . 0 .
= (204 1)!

and {o is the separated constant term in Equation (2.9). Although the summation of both aj and
[1 are an infinity series, in reality, the inverse of the factorial is a fast converging series and they
can be truncated at a certain point without introducing much error. The coefficients of U(s) and

V(s) are:

U = Z Br Z Ljy gy oLy (2'18)

k=1 ji+je+-+ip=t

v, = Z ap Z ti <ty ot (2.19)

k=1 ptjet-+irg=1t

Since the coefficients of the polynomial 7'(s) are known from Equation (2.6), the coefficients of U(s)
and V(s) can then be computed.

If one defines:

511(8) = D/(S) (220)
Sau(s) = %((j)) (2.21)

Comparing Equations (2.12), (2.13), (2.20), and (2.21), one finds:

C(s) = Z: ci-st Fo(s) = A(s) - V(s) (2.22)
D(s) = Z: d; - '+ o(s?)

= U(s)+ B(s)-V(s) (2.23)
C'(s) = 2Z. (2.24)

It can be shown that the coefficients of C'(s) and D(s) are:

k= Z a;v; (2.25)
=k
dr = wup+ Z bﬂ]j. (2.26)
iti=k
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If the moments of S11(s) and S31(s) are m; and n;, one can write:

q

Si1(s) = Z:mZ -s' + o(s7) (2.27)
So1(s) = Z:m -5t 4 o(s7). (2.28)

From Equation (2.20) and (2.28), one can derive:

> mid; = ey (2.29)

itj=k
If one denotes:
(4 0 0 0
di  dy 0 0
Dy = | dy dy do ... 0 (2.30)
| dy dyq dy do |
T
My = [mo mi my - - - my ] (2.31)
T
Cy = [Co [GTES T cq] ) (2.32)

where T’ represents the transpose of the vector, one can rewrite D,M, = C, i.e. M, = Dq_qu.
Thus the moments m; of the S11(s) function can be found through simple backward substitutions.

Similarly, if one denotes:

T
Ny = [ ng My Mg - - Ny ] (2.33)
, T
cl o= [ 22 0 0 - - - 0 ] : (2.34)
where T' again represents the transpose of the vector, one can rewrite D,N, = C, ie. N, =

Dq_lCé, and the moments n; of the S3;(s) function can again be found through simple backward

substitutions.
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material, the distance of the coupled lines which are in parallel, the rate of change of the input

waveforms, as well as the line impedances.

Previous researches which used scattering parameter for the analysis of the coupled transmission
lines include those of the general convolution by Winklestein et al. [26], the full-wave analysis by
Cooke et al. [9] and the time domain transient simulation by Schutt-Aine et al. [24]. While
Schutt-Aine et al. demonstrated a greater accuracy improvement in simulating the circuits that
included non-linear drivers and terminations, their method involved costly matrix computation for
converting the frequency domain scattering parameter matrix representation into the time domain
transmission/reflection matrix representation [24]. Cooke et al. illustrated an ability to simulate
frequency dependent modal propagation, but a time consuming full-wave analysis was required [9].
Recently, a novel frequency domain simulator using scattering parameter based macromodels has
been presented by Liao et al [18] [19]. Based on the scattering parameter based macromodel, Pade
technique or Exponentially Decayed Polynomial Function (EDPF) can be used to approximate
transfer functions of the coupled interconnects. In the following section, we are going to try to
overcome some of these shortcomings by deriving the S-parameter macromodel for the frequency-
dependent coupled transmission lines.

Based upon the assumption of quasi-TEM wave propagation, the distributions of voltages
and currents in a n coupled lossy transmission-line system can be described by the generalized

Telegraphist’s equations [7]:

3Véz’t) — L) 8i(§t’t) ~ R(fi(x, 1) (2.35)
di(z,t) av(z,t)
o ~C(f)—5 "~ = G(f)v(x,1), (2.36)

where 0 < 2 < [. v(z,t) and i(z,?) are column vectors defining the voltages distributions vy(x,1)
and currents distributions ix(2,t) on the conductors k = 1,2,3,...,n. The L(f) and C(f) are the n
by n symmetric matrices of the frequency-dependent per-unit-length inductance and capacitance
of the n conductor system. The R(f) = diag(Ri(f)), K = 1l..n is the diagonal matrix of
the frequency-dependent per-unit-length resistance of the n conductors. The G(f) is the n by
n symmetric matrix of the frequency-dependent per-unit-length conductance of the n conductor
system [24].

It is very important to accurately model the frequency dependence of the parasitics for the case
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of the coupled transmission lines. There are off-diagonal elements in the R(f), L(f), C(f) and
G(f) matrices describing the mutual coupling effects which do not exist in the case of the single
transmission line. The mutual inductance L;;( f), where 7 # j, increases as frequency increases due
to more coupling between lines at higher frequency. The mutual capacitance C;;(f), where ¢ # 7,
stays constant as the Cy(f). Both the R;(f) and R;;(f), where 7 # j, increase as the frequency

rises.

There are two major methods to find the time domain transient response waveforms of a
coupled transmission line system. One method is to find the impulse response of the linear
coupled transmission line system and then use either the convolution or the waveform relaxation
to find the time domain waveforms. However, this method suffers from both the large memory
requirement and the long computation time that are required. The other method is a modal wave
propagation decoupling method which is preferred over the first method because it models the
physical phenomenon of n fundamental mode of the wave propagation that exists in the n» multi-
conductor transmission line system. By decoupling the modal waves, the simulator is only required
to memorize a period of the waveforms equal to the time-of-flight of each decoupled transmission
line, which is much shorter when compared to the duration of the impulse response. Furthermore,
with the help of the S-parameter macromodel, the recursive convolution can be applied with a
significantly shorter computation time. After successfully decoupling of the coupled transmission
lines system, the computation of the scattering parameter macromodel of the entire system becomes
the computation of the decoupling networks and that of the decoupled transmission lines with
frequency-dependent losses. The macromodel of the later is already available and is presented in
Section 2.1.

To incorporate the macromodel of the frequency-dependent decoupling networks into the S-
parameter macromodel simulator presents a very difficult challenge. This process requires the
finding of a frequency-dependent transformation matrix in order to decouple the system. It is a
complex process and requires the eigenvalues at each frequency point prior to diagonalization. The

resulting matrix elements are characterized by the tabulated S-parameter data.
Taking the Laplace transform of the Equation (2.35) and (2.36), they can be rewritten as:

IV (z,s)

2 = —ZI(xz,s) (2.37)
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Iz, s)
Oz

= -YV(z,s), (2.38)

where Z = R 4+ jwL, and Y = G 4 jwC. Throughout this paper, the following assumptions
reported by Blazeck et al. are used [4]. The assumptions are: the modes of propagation must be
TEM or quasi-TEM, and the lines are of uniform cross-section throughout their length; that is, R,

L, C, and G are assumed to be constant with respect to the spatial variable x.

Solving Equation (2.37) and (2.38), one has:

*V(z,s)

502 = ZYV(z,s)=T*V(z,s) (2.39)
% = YZI(z,s) = (TH)T1(z,s), (2.40)

where T indicates transpose and T is defined as I'? = ZY [4]. The existence of eigenvectors that

diagonalize T'?, and thus T, is also assumed throughout this paper [4]. Define
I' = XAX™H (2.41)

where X is the eigenvectors of I'; therefore, they are also the eigenvectors of I'?, and A is the

diagonal matrix of the eigenvalues of I'. It can be shown that [25] [10]

L/fg(x’s) = —AZpIn(z,s) (2.42)

X

OIrrg(x, s) AYmVi(z, ), (2.43)
X

where V(z,8) = XV(z,s), I(z,s) = (XT) " I (z,s). The modal impedance matrix Zy, and
modal admittance matrix Yy, are related to the eigenvector matrix X and the impedance matrix

Z by
Zm = (Ym) ' = A7 XZ(XT)~L (2.44)

With the eigenvector matrix X, the original coupled transmission lines can be decoupled into two
congruence transformer and a set of n decoupled transmission lines [7]. The task of finding the

macromodel of the frequency-dependent coupled transmission lines becomes that of finding the
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macromodel representations of the congruence transformers and the frequency-dependent single
transmission lines [25]. The macromodel of the single transmission line that is characterized with
frequency-dependent losses has already been developed in Section 2.1. The remaining task is to

find the macromodel representation of a frequency-dependent congruence transformer.

Bayard first outlined the transformation, A'ZA, and called it “translator” [2]. Hazony is the
first one to name the transformation “congruence transformer” in his book [15]. Chang used the
congruence transformer to decouple both the lossless [5] and lossy coupled transmission lines [7].
Chang’s method for the analysis of coupled transmission lines relies on simultaneously diagonalizing
all the matrices using a special conditioned matrix.

It is known that the modal eigenvectors of two symmetrical coupled transmission lines are
frequency independent constant vectors even the lines are characterized by the frequency-dependent
parasitics [13]. It can be shown that the decoupling networks can be constructed from the constant

eigenvectors:

(2.45)

>

I
S-S

>

V2

These two vectors correspond to the odd and even mode of propagation that exists in the symmet-

rical coupled transmission lines.

For asymmetrical coupled dual transmission lines and for coupled transmission lines with more
than two conductors which are characterized with the frequency-dependent parasitic, the model
structure of the lines becomes frequency-dependent [13], and finding the moments of the model

structure will pose an even greater challenge.

It can be shown that for the coupled lossy transmission line systems, the congruence transformer
matrix is the eigenvector matrix of the complex matrix I' [4]. The existence of such eigenvector
matrix X that simultaneously diagonalize the complex matrices T', I'?, ZY, and YZ is assumed
throughout this paper. This assumption is also adopted by Gordon et al. [13], Blazeck et al. [4]
and Schutt-Aine et al. [24].

Gordon et al. suggested that the frequency-dependent congruence transformer can be found by
performing the congruence decoupling at each frequency point, and by checking the orthogonality

of all the eigenvectors for all the frequency points [13]. If the eigenvectors were not orthogonal
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to each other, column swapping must be performed so that for all the congruence transformation
matrices at all the frequency points are orthogonal to any other one. During this process, the R(f),
L(f), C(f) and G(f) matrices have been diagonalized to be: diag(R(f)), diag(L(f)), diag(C(f))
and diag(G(f)) eigenvalue matrices. The 7 — th diagonal eigenvalues of each frequency points
constitute the parasitic of the decouple frequency-dependent single transmission line. Thus these
diagonal eigenvalue matrices can be used to form the macromodels using a method outlined in the
Section 2.1.

Once the tabulated S-parameter data for the congruence transformation have been found,
a curve-fitting using Levenberg-Marquardt method [20] is used to find the coefficients for the
construction of the congruence transformer: X (f).

One has derived the scattering parameter matrix S(s) of the congruence transformer X(f) to

be [25]:

—[XTHA A XD = X () 2X(H + (X ()~

, (2.46)
—[X(F) + (XTI = (X))

where the sub-matrix X (f) is found using curve-fitting the tabulated congruence transformation

data.

Similar to the process stated in an earlier paper [25], the macromodels of the two congruence
transformers and the n decoupled transmission lines are passed onto the S-parameter macromodel

based simulator to perform the transient analysis.

3 Experimental Results

The data in the first two examples as well as the fourth example presented here are obtained from
Dr. J. C. Liao of Intel Corporation. The data in the third example is obtained from the user manual
of Dr. Raji Mittra’s "mtltda” simulator. Figure 3.1 (b) only shows the simulation result which takes
frequency-dependent losses into consideration. Figure 3.2 shows the different simulation results
between taking and not taking the frequency-dependent losses into consideration. The discrepancy
in simulation waveforms confirms that one needs to include frequency-dependent losses in circuit
simulation. Figure 3.3 and Figure 3.4 show the comparison between the S-parameter macromodel

based simulator and a time-domain circuit simulator. Although the S-parameter macromodel based
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simulator does not have the accuracy demonstrated by the time-domain simulator, it provides more
than thirty times speedup in Example 4. This kind of efficiency lands it in the application of

performance-driven layout synthesis.

3.1 Example 1

This is a single transmission line characterized with frequency-dependent losses. The frequency

dependence of the per-unit-length inductance and resistance are given in Table 3.1. The per-unit-

| Frequency [[ L (nH/cm) | R (ohm/cm) ||

10 kHz 4.070 5.000
100 MHz 4.069 5.000
250 MHz 4.064 5.000
500 MHz 4.050 5.150
750 MHz 4.032 5.310

1 GHz 4.012 5.520

2 GHz 3.904 6.750

4 GHz 3.789 8.960

6 GHz 3.724 10.85

8 GHz 3.645 12.35

Table 3.1: The Frequency-Dependent Per-Unit-Length Inductance and Resis-
tance.

length capacitance is 1.460pF/cm and the per-unit-length conductance is assumed to be zero. The
driving signal is 100-MHz, 50% duty-cycle pulse with 0.5ns rise/fall time. The Far-end waveforms
are simulated with time-of-flight extracted [16]. The circuit schematic is shown in 3.1 (a) with the

component values. The simulation waveforms of this example are shown in Figure 3.1 (b).

3.2 Example 2

This is an example with two coupled transmission lines characterized with frequency-dependent
losses. The frequency-dependent per-unit-length inductance and resistance are given in Table 3.2.

The per-unit-length capacitance matrix is a constant matrix which does not vary with frequency:

1.637pF/em  —0.177pF/em

(3.1)
—0.177pF/em  1.637pF/em
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e using the frequency-independent macromodel.

e using the frequency-dependent macromodel.

The per-unit-length parasitic of the lossy macromodel are taken from the DC values of the
frequency-dependent model. The frequency-independent macromodel is created using the DC val-
ues of the frequency-dependent model at all the frequency points. The results show that the out-
put waveforms of the frequency-independent macromodel match that of the lossy macromodel as
expected. The results also indicate that the output waveforms of the frequency-dependent macro-
model differ from that of the lossy and frequency-independent model because of the frequency-
dependent natural of the per-unit-length parasitic. This prompts the importance of taking

frequency-dependent losses into consideration when doing circuit simulation.

3.3 Example 3

This is an example of two cascade sections of two coupled transmission lines, one section is
characterized with frequency-dependent losses, and the other is characterized only with lossless
model. The frequency-dependent per-unit-length inductance and resistance of the first section are

given in Table 3.3. The frequency-dependent per-unit-length capacitance matrix of the first section
|| Frequency || Li1 Los (nH/cm) | Lia Loy (nH/cm) | R11 Ras (ohm/cm) | Ri2 Roy (ohm/cm) ||

DC 5.150 0.995 0.6406 0.1283
20 MHz 4.777 0.943 0.6829 0.1325
50 MHz 4.511 0.818 0.7793 0.1736
100 MHz 4.354 0.818 1.0147 0.2359
200 MHz 4.022 0.688 1.2572 0.2609
500 MHz 3.601 0.588 2.1743 0.4284

1 GHz 3.409 0.580 3.6886 0.6957

Table 3.3: The Frequency-Dependent Per-Unit-Length Inductance, Mutual In-
ductance, and Resistance.

is given in Table 3.4. The per-unit-length conductance is assumed to be zero.

The second section is characterized as a lossless coupled transmission lines. The per-unit-length

inductance and capacitance matrices are as follows:

5.105nH /em  —0.995nH [em
—0.995nH /em  5.105nH [em
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|| Frequency || Cy1 Caa (pF/em) | Ci2 Co1 (pF/em) ||

DC 0.862 —0.140
20 MHz 0.752 —0.159
50 MHz 0.756 —0.140
100 MHz 0.754 —0.153
200 MHz 0.786 —0.147
500 MHz 0.768 —0.142

1 GHz 0.766 —0.146

Table 3.4: The Frequency-Dependent Per-Unit-Length Capacitance Matrix.

c - 0.862pF/em  —0.140pF/cm (3.2)
—0.140pF/em  0.862pF/cm
The driving signal is 100-MHz, 50% duty-cycle pulse with 0.5ns rise/fall time. The Far-end
waveforms are simulated with time-of-flight extracted [16]. The circuit schematic is shown in
3.3 (a) with the component values. The simulation waveforms of this example are shown in Figure
3.3 (b), (¢), (d) and (e).
For all of the figures, there are two output waveforms, they are:

e the output waveform of the frequency-dependent macromodel.

e the output waveform obtained from Dr. Mittra’s "mtltda” simulator.

The results show that the output waveforms of the frequency-dependent macromodel match the
one produced by Dr. Mittra’s "mtltda” simulator as expected. The seemly differences that were
shown on the sense line waveforms are due to the lower number of order chosen and the Pade
approximation error. Please note, however, the amplitude of the waveforms on the sense line are
only one to two hundred millivolts. These waveforms, although different in large, have the same
amplitude magnitude and tracking each other closely. Both simulators use 12 seconds on a SUN
Sparcl+ workstation. However, the second data point for R(f) and L(f) is taken at 20M Hz. As
evident in the data that includes skin effects, there are some information lost in this simplification.
If one includes these informations, the time-domain simulator will needs much longer simulation

time.
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3.4 Example 4

This is an example with three coupled transmission lines characterized with frequency-dependent
losses. The per-unit-length inductance, resistance, and capacitance are not given in order to
conserve space. The per-unit-length conductance is assumed to be zero. The driving signal is
200-MHz, 50% duty-cycle pulse with 0.5ns rise/fall time. The Far-end waveforms are simulated
with time-of-flight extracted [16]. The circuit schematic is shown in 3.4 (a) with the component

values. The simulation waveforms of this example are shown in Figure 3.4 (b), (¢), (d) and (e).
Similar to Example 3, for all of the figures, there are two output waveforms, they are:

e the output waveform of the frequency-dependent macromodel.

e the output waveform obtained from Dr. Mittra’s "mtltda” simulator.

Again, all the results show that the output waveforms of the frequency-dependent macromodel
match the one produced by Dr. Mittra’s "mtltda” simulator as expected. The seemly differences
that were shown on the sense line waveforms are due to the lower number of order chosen and the
Pade approximation error. In this particular example, increase the order of Pade approximation
does not increase accuracy, one must turn to other method such as Complex-Frequency-Hopping

(CFH) or Pade-via-Lancsoz (PVL) to solve this accuracy problem.

The S-parameter macromodel based simulator takes 9.23 seconds on the SUN Sparcl+ workstation.
The time-domain simulators takes 288 seconds on the same machine. This is due to the fact that
the second data point is taking at 1M H z instead at 20M Hz. In order to use the time-domain
simulator, the actual data taking at 10K Hz and 100K H z are thrown away.

4 Conclusions

The task of designing interconnect networks for today’s high performance digital systems re-
quires an accurate and a more efficient transient analysis which takes the frequency-dependent
losses into consideration. The contribution of this paper is to develop the two novel macromod-
els for both the single and coupled transmission lines characterized with the frequency-dependent
parasitic functions R(f), L(f), C(f), and G(f) data in order to perform an accurate and a more

efficient transient simulation. These two novel macromodels provides a moderate accuracy and a
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huge speedup in simulation. This trade-off between accuracy and efficiency has to be made in order
to play what-if scenario for a performance-driven layout synthesis which thousands of simulations
must be executed to obtain timing and amplitude information. The S-parameter macromodel sim-
ulator with enough accuracy yet does not take a long time to simulate is well suitable for this kind

of layout synthesis application.
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