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2 1. Introduction1 IntroductionFor most of the Computer-Aided Design software, they usually ask for an optimization aspart of their heuristic algorithm. The most common optimization problem encountered is theminimization of the maximum of all the observable outputs, which is often referred to as the Min-Max optimization problem. Because the Min-Max optimization problem is generally a nonlinearprogramming problem, it is not only hard to solve but also takes a long computation time. OneAlternative to solve the Min-Max optimization problem and to obtain a good solution in a relativeshort period of time is to transform the original Min-Max optimization problem into a Least-Square Estimation (LSE) problem, which is not only very easy to solve but also has a number ofwell de�ned methods for solving it. It can be shown that the target function of the original Min-Max optimization problem and that of the transformed LSE problem linearly bound each other.Although these two problems have di�erent objective functions, optimizing the transformed problemcan produces a solution to the original Min-Max problem. By optimizing the LSE problem, onetries to minimize a target function which is the Root-Mean-Square (RMS) value of a given function.In this way, one obtains a solution function which is a set of values of a given function. By thede�nition of the LSE problem, when evaluating the Root-Mean-Square value of all the values of asolution function, the RMS value is at its minimum. The solution to the original Min-Max problemis found from the maximum value of the solution function of the LSE problem. However, this doesnot mean that solving the LSE problem can lead to the exact solution to the original Min-Maxproblem, it mealy states that solving the LSE problem gives one possible solution to the originalMin-Max problem. The term: \linearly bound each other" means after one obtains the solutionfunction of the LSE problem, one can translate the maximum value of the solution function at handto a solution of the original Min-Max problem. It dose not say anything about the quality of thissolution compared with other methods of solving the same original Min-Max problem.As illustrate in Section 2, for any single observable output Min-Max problem, the maximumvalue of the solution function of the LSE problem is the same as the solution of the original Min-Max problem. However, for multiple observable outputs Min-Max problem, the Root-Mean-Squarevalue of the solution function of the LSE problem linearly bounds the solution of the original Min-Max problem with a range. The solution to the original Min-Max problem can still be found.



1. Introduction 3However, because of this range, one cannot be sure about the quality of the solution of the originalMin-Max problem. Worst of all, for Min-Max problems with large number of observable outputs,the solution of the original Min-Max problem is bounded by a huge range, between one and severaltens multiplies the solution of the LSE problem. For example, if a Min-Max problem has 1000observable output variables, then the solution of the Min-Max problem can lie between one and31:62 multiplies the Root-Mean-Square value of the transformed LSE problem, since the square rootof 1000 is 31:62. The drawback of this huge range is that it gives rise to such a huge uncertainty intransferring the maximum value of the solution function of the LSE problem back to the Min-Maxsolution. This renders the idea of the transformation and solving it through x LSE optimizationmuch less useful.Previous researches that utilizes the transformation include those of Zhu et al. [5] and Wanget al. [3]. Both of these researches lack the ability to precisely translate the maximum value of thesolution function of the LSE problem back to the original Min-Max problem.In this paper, a novel transformation is formulated, follow immediately by a proof that thistransformation indeed gives the tightest bound for the ideal case. Because of this tightest bound,the maximum value of the solution function of the LSE problem can be transformed back as thesolution of the original Min-Max problem even for the case of the multiple observable outputvariables.As demonstrated in Example 5.3 in Section 5, where the best case happens when the di�erencebetween all the values of a given function can be minimized. This makes this novel approachespecially e�ective in solving the problem of minimizing the delay of the equal path length clocktree.Section 2 presents the original Min-Max optimization problem, the transformation into one LSEproblem, and the proof of their target functions linearly bound each other. The drawback of thistype of transformation for the case of the multiple observable output variables is also discussed indetail. Section 3 presents the novel transformation into two LSE problems and the proof of thetighter linear bound between their target functions. The advantage of this novel transformation andan ideal case of the solution translation is discussed in detail in Section 3. Section 4 shows the detailsabout the implementation of the optimization of the LSE problems. Section 5 demonstrates the



4 2. Previous Work : Transform the Min-Max Problem to One Least-Square Estimation Problemusefulness of this novel transformation with three examples. Section 6 summarizes the contributionof this newly discovered tighter bound for solving the Min-Max problem through the transformationinto two LSE problems.2 Previous Work : Transform the Min-Max Problem to One Least-SquareEstimation ProblemThe Computer-Aided Design software usually requires the optimization to be a part of theheuristic algorithm. One of the optimization calls for the minimization of the maximum of all theobservable outputs. The transformation de�ned in this section closely followed that of Wang et al.[3]. However, the notations used here are much more general which can be apply to the Min-Maxoptimization problem of any positive function.2.1 Physical Example
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Figure 2.1: A Physical Design Example: This is a single-source multiple-receiverinterconnect graph. The branch widths are the variables which one can control. The timedelays for signal traveling from the source to each receiver are the variables which oneobserves.One physical design example is the minimization of the maximum delay of a interconnect graphas shown in Figure 2.1. The topology of this interconnect graph is �xed, and there are n branches inthe interconnect graph. The widths of all the branches can be varied and are called the controllable



2. Previous Work : Transform the Min-Max Problem to One Least-Square Estimation Problem 5input variables. There are a total of m outputs in this interconnect graph and are called theobservable outputs. The delay is a function controlled by the widths of all the branches and areobserved at them outputs. The optimization problem is to minimize the maximum of all the delaysobserved at the m outputs through manipulating the n widths.2.2 Problem De�nitionGiven a positive function G(W; J) whereW = fwiji = 1 : : :ng and J = fjjj = 1 : : :mg, the Min-Max problem wants minimize the maximum of all its values. The set ofW is called the controllableinput variables, and the set of J is called the observable outputs. There are n controllable inputvariables, wi, and m observable output variables, j, for this optimization problem. Denote G(W; j)to be the discrete value of G(W; J) at j. The Min-Max optimization problem is to control the w1through wn input variables so that maximum value of the G(W; J) is minimized.If one de�nes the target function of the Min-Max problem to be F (W; J), one can write:minW [F (W; J)] 4= minW �maxJ [G(W; J)]� : (2.1)This is a general nonlinear programming problem and usually takes a long computation time tosolve it.From any general optimization textbook, an easier alternative of solving this Min-Max problemis to transform it into a Least-Square Estimation (LSE) problem. In order to solve this LSEproblem, one has to minimize the RMS of the given function G(W; J). Solving the LSE problemgives a solution function whose maximum can be translated into a solution of the original Min-Maxproblem.2.3 Transformation FormulationThe detail formulation of the transformation is as follows. Let G(W; j) be the observed j � thoutput, and let the column vector�(W; J) 4= fG(W; 1); G(W; 2); : : : ; G(W; j); : : : ; G(W;m)gT ; (2.2)



6 2. Previous Work : Transform the Min-Max Problem to One Least-Square Estimation Problemrepresents the estimation vector, where T denotes the transposition operation, j 2 J and 1 � j � m,and m is the number of the outputs. The summation of all squares of the estimations �(W; J) is:�(w1; w2; : : : ; wn; 1; : : : ; m) 4= �(W; J)T�(W; J) = mXj=1[G(W; j)]2 (2.3)If one de�nes the Root-Mean-Square (RMS) of the estimation as:'(w1; w2; : : : ; wn; 1; : : : ; m) 4= s�(W; J)m =vuut mXj=1 [G(W; j)]2m ; (2.4)then new optimization problem becomes the minimization of the RMS of the given functionG(W; J). One can write the new target function of the optimization as:minW ['(W; J)] 4= minW 24vuut mXj=1 [G(W; j)]2m 35 : (2.5)The new target function (Equation (2.5)) does not correspond to the original target function(Equation (2.1)). However, it can be shown that the minimization result of the new target functionlinearly bounds the original optimization solution. As can be seen later, if the linear bound is tight,the maximum value of the optimization result of the new solution function can be translated to bethe solution of the original Min-Max problem.The following is the proof of the target functions of the transformation linearly bound eachother.Theorem 1: Given a function G(W; J), the minimum of the Root-Mean-Square (RMS) as de�nedin Equation (2.5) and the minimum of the maximum as de�ned in Equation (2.1) linearly boundeach other.Proof:Given that the largest of all the G(W; J) is equal to F (W; J), F (W; J) 4= maxJ G(W; J). For allG(W; j), G(W; j)� F (W; J), (1 � j � m), one can obtain Equation (2.6 from Equation (2.5)'(W; J) 4=vuut mXj=1 [G(W; j)]2m �vuut mXj=1 [maxJ G(W; J)]2m = maxJ G(W; J) = F (W; J): (2.6)



2. Previous Work : Transform the Min-Max Problem to One Least-Square Estimation Problem 7On the other hand, we haveF (W; J) 4= maxJ [G(W; J)] = rmaxj [G(W; J)]2 �vuut mXj=1 [G(W; j)]2=vuutm � mXj=1 [G(W; j)]2m = pm �'(W; J): (2.7)From Equation (2.6) and (2.7), one has'(W; J) � F (W; J) � pm �'(W; J): (2.8)This concludes the proof that '(W; J) and F (W; j) linearly bound each other.2.4 Physical MeaningGiven a positive function G(W; J) which one wants to optimize, where W = fwiji = 1 : : :ng andJ = fjjj = 1 : : :mg, one can de�ne a mappingM from J = fjjj = 1 : : :mg to J 0 = nj0jj 0 = 1m : : :1o,and plot the function G(W; J) in Figure 2.2, where each G(W; j) assumes a discrete value between

0 1j / m1 / m

J

G(W,J)

Figure 2.2: A Positive Function: This is a positive function G(W; J) with j mappedbetween 1m and 1.j�1m and jm . The area under G(W; J) is:



8 2. Previous Work : Transform the Min-Max Problem to One Least-Square Estimation ProblemAreaG(W;J) = Z 10 G(W; J)dj: (2.9)De�ne the maximum, minimum, average, and RMS value of the function G(W; J) to be maxJ [G(W; J)]],minJ [G(W; J)]], avgj [G(W; J)]], and qPmj=1 [G(W;j)]2m respectively. Plot the four values w.r.t. the
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Figure 2.3: Relationship between the Maximum, Minimum, Average and RMSvalues: The four lower dashed lines represent these four values. The topmost dashed linerepresents the value of the square root of m times RMS.function G(W; J) in Figure 2.3, one can see the relation between these four values. The areas underthe rectangles of these four values are:Areamax = Z 10 �maxJ [G(W; J)]�dj = maxJ [G(W; J)] ; (2.10)Areamin = Z 10 �minJ [G(W; J)]�dj = minJ [G(W; J)] ; (2.11)Areaavg = Z 10 [avgJ [G(W; J)]]dj = avgJ [G(W; J)] ; (2.12)AreaRMS = Z 10 vuut mXj=1 [G(W; j)]2m dj = RMSJ [G(W; J)] : (2.13)From Figure 2.3, one can tell that AreaRMS � Areamax. From the linear bound, one hasAreamax � pm � AreaRMS. In Figure 2.3, this is represented by the biggest rectangle. Pleasenote that it is not drawn to the scale, so the actual size of the area which equals to pm �AreaRMScould be much larger. The term \linearly bound each other" means that the Areamax = F lies in



2. Previous Work : Transform the Min-Max Problem to One Least-Square Estimation Problem 9between the AreaRMS = ' and the pm �AreaRMS = pm �'. By minimizing the area of AreaRMS,one also brings down the area of pm �AreaRMS , since the area of Areamax lies in between them,so it is also minimized. However, for the multiple output observable output variable case shownin the �gure, the range between the AreaRMS and pm � AreaRMS can be quite large. This givesrise to the uncertainty about the minimization of the original target function when one attemptsto optimize the LSE problem.2.5 Practical ConsiderationsWhen applied to a case of the single observable output, m = 1, Equation (2.8) becomes' � F � p1'. This means the two target functions are equal, so minimizing one is the sameas minimizing the other. So the solution of the LSE problem, ', can be taken as the solution ofthe Min-Max Problem. However, for a case of the multiple observable output variable, Equation(2.8) is ' � F � pm'. This means the target function of the LSE problem, ', linearly bounds thesolution of the original Min-Max problem, F , with a range. This means the two target functions arenot the same, so minimizing one does not guarantee the minimization of the other. This range isde�ned as from ' to pm'. For example, if a Min-Max problem has 1000 observable outputs whichis common for a global clock distribution net, then the solution of the original Min-Max problem isbounded between one and p1000 = 31:62 multiplies the target function of the LSE problem. Thishuge range give rise to one's hesitation about the quality of the solution to the Min-Max problem. This is the drawback when one tries to use the transformation to solve the Min-Max problem onthe case of the multiple observable output. The huge linear bound range and the uncertainty in thesolution translation renders the idea of the transformation and solving through LSE optimizationmuch less useful.In Section 3, a novel transformation approach is presented. This novel transformation can beshown to have a tighter linear bound than that of Equation (2.8) and, in the best case, can makethe solution translation of the case of the multiple observable output identical to that of the caseof the single observable output.



103. Novel Transformation of the Min-Max Problem into Two Least-Square Estimation Problems3 Novel Transformation of the Min-Max Problem into Two Least-SquareEstimation ProblemsThe transformation presented in Section 2 changes the target function of the Min-Max problemto the RMS of a di�erent LSE problem. The above transformation works only because theminimization the RMS of the di�erent LSE problem is identical to the minimization of the originalproblem. In the case of the multiple observable output variable, the minimization of the LSEproblem cannot be proved to be identical to the minimization of the Min-Max problem. Thisprevents the use of the transformation as a method of solving the original Min-Max problem.In this Section, a novel transformation which gives a tighter linear bound so that it works evenin the case of the multiple observable output is presented. This novel transformation transformsthe original Min-Max problem into two LSE problem. One of the LSE problem is the minimizationof the RMS of the given function. This LSE problem is the same as the one presented to in Section2. The second LSE problem is the minimization of the RMS of the di�erence between an arbitraryconstant and the given function G(W; J). Solving these two LSE problems together gives two targetfunction values and one solution function. The maximum value of the solution function of the twoLSE problem can be translated into a solution of the original Min-Max problem. The solution tothe second LSE problem only serves as an assurance that when minimizing the �rst LSE problem,one is indeed minimizing the original Min-Max problem.3.1 Problem De�nitionThe problem de�nition is identical to the one that presented in Section 3.1. Given a positivefunction G(W; J) where W = fwiji = 1 : : :ng and J = fjjj = 1 : : :mg, one can de�ne the targetfunction of the Min-Max problem to be F (W; J), and write:minW [F (W; J)] 4= minW �maxJ [G(W; J)]� : (3.1)3.2 Novel Transformation FormulationThe detail formulation of the novel approach is as follows.



3. Novel Transformation of the Min-Max Problem into Two Least-Square Estimation Problems11The transformed optimization problem consists of two LSE problem. The �rst one is the mini-mization of the RMS of the given function G(W; J). The second LSE problem is the minimizationof the RMS of the di�erence between an arbitrary constant c and the given function G(W; J).For this new LSE problem, one has to create a new Min-Max problem. De�ne a new function�(W; J) 4= [maxJ [c�G(W; J)]], where c is an arbitrary constant which remains the same duringthe entire LSE optimization process. The choice of c a�ects the outcome of the the solution trans-lation a great deal and will be discussed in detail in Section 3.4. De�ne the target function of thenew Min-Max problem to be �(W; J), one can write:minW [�(W; J)] 4= minW �maxJ [c� G(W; J)]� : (3.2)Denote G(W; j) to be the discrete value of G(W; J) at j. De�ne the estimation vector forthe �rst LSE problem to be �(W; J) 4= fG(W; 1); G(W; 2); : : : ; G(W; j); : : : ; G(W;m)gT, where Tdenotes the transposition operation, j 2 J and 1 � j � m, and m is the number of the observableoutputs. De�ne the summation of all squares of the �rst estimations, �(W; J), to be:�(w1; w2; : : : ; wn; 1; : : : ; m) 4= �(W; J)T�(W; J) = mXj=1[G(W; j)]2 (3.3)De�ne the Root-Mean-Square (RMS) of the �rst estimation as:'(w1; w2; : : : ; wn; 1; : : : ; m) 4= s�(W; J)m =vuut mXj=1 [G(W; j)]2m (3.4)Similarly, denote �(W; j) to be the discrete value of �(W; J) at j. De�ne the estimation vectorfor the second LSE problem to be:
(W; J) 4= fc�G(W; 1); c�G(W; 2); : : : ; c�G(W; j); : : : ; c� G(W;m)gT ; (3.5)where T denotes the transposition operation. De�ne The summation of all squares of the secondestimations, 	(W; J; c), to be:



123. Novel Transformation of the Min-Max Problem into Two Least-Square Estimation Problems	(w1; w2; : : : ; wn; 1; : : : ; m; c) 4= 
(W; J)T
(W; J) = mXj=1[c� G(W; j)]2 (3.6)De�ne the Root-Mean-Square (RMS) of the second estimation as: (w1; w2; : : : ; wn; 1; : : : ; m; c) 4= s	(W; J; c)m =vuut mXj=1 [c�G(W; j)]2m (3.7)The transformed optimization problem consists of two LSE problem. The �rst one is the mini-mization of the RMS of the given function G(W; J). The second LSE problem is the minimizationof the RMS of the di�erence between an arbitrary constant c and the given function G(W; J). Onecan write the new target function of the �rst optimization as:minW ['(W; J)] 4= minW 24vuut mXj=1 [G(W; j)]2m 35 : (3.8)Likewise, one can write the new target function of the second optimization as:minW [ (W; J; c)] 4= minW 24vuut mXj=1 [c�G(W; j)]2m 35 : (3.9)The two new target functions (Equation (3.8)) and (Equation (3.9)) do not correspond to theoriginal target function (Equation (3.1)). However, it can be shown that the linear combination ofthe minimization results of the two new target functions linearly bound the original optimizationsolution. As can be seen in Section 3.4, if the linear bound is the tightest for the idea case, theoptimization result of the maximum value of the solution function of the two LSE optimization canbe translated to be the solution of the original Min-Max problem.The following is the proof of the target functions of the transformation linearly bound eachother. From Theorem 1, one has:'(W; J) � F (W; J) � pm �'(W; J): (3.10)Similarly, for the new Min-Max problem and the new transformed LSE problem, one can prove



3. Novel Transformation of the Min-Max Problem into Two Least-Square Estimation Problems13their target functions linearly bound each other.Theorem 2: Given a function �(W; J), the minimum of the Root-Mean-Square (RMS) de�ned inEquation (3.7) and the minimum of the maximum de�ned in Equation (3.2) linearly bound eachother.Proof:Given that the largest of all the �(W; J) is H(W; J). H(W; J) 4= maxJ �(W; J). For all �(W; j),�(W; j)� H(W; J), (1 � j � m). From Equation (3.7), one has: (W; J; c) 4=vuut mXj=1 [c�G(W; j)]2m �vuut mXj=1 maxJ [c�G(W; J)]2m = maxJ �(W; J) = H(W; J): (3.11)On the other hand, H(W; J) is de�ned asH(W; J) 4= maxJ [c�G(W; J)] = rmaxj [c� G(W; J)]2 �vuut mXj=1 [c� G(W; j)]2=vuutm � mXj=1 [c�G(W; j)]2m = pm �  (W; J; c): (3.12)From Equation (3.11) and (3.12), one has (W; J; c)� H(W; J) � pm � (W; J; c): (3.13)This concludes the proof that  (W; J; c) and H(W; j) linearly bound each other.From the solution of the two LSE problem, one can transform them back to a solution of theoriginal Min-Max problem.Theorem 3: Given a function G(W; J), the minimum of the Root-Mean-Square (RMS) as de�nedin Equation (3.4), and the sum of the minimum of the RMS as de�ned in Equation (3.4) and sqrtmmultiplies the minimum of the RMS as de�ned in Equation (3.7) linearly bound the target functionof the Min-Max problem de�ned in Equation (3.1). i. e.'(W; J) � F (W; J) � '(W; J) +pm �  (W; J; c): (3.14)



143. Novel Transformation of the Min-Max Problem into Two Least-Square Estimation ProblemsProof:From the Theorem 1, one has: '(W; J) � F (W; J): (3.15)The second half of the equation is:F (W; J) � '(W; J) +pm �  (W; J; c): (3.16)Substitute the de�nitions of ' and  into the above equation, one has:maxj [G(W; J)] �vuut mXj=1 [G(W; j)]2m +pm �vuut mXj=1 [c�G(W; j)]2m ; (3.17)or maxj [G(W; J)] �vuut mXj=1 [G(W; j)]2m +vuut mXj=1[c� G(W; j)]2; (3.18)The remaining of the proof of the theorem is by �rst establishing the extreme value is in factthe global minimum, and later prove that this extreme value is equal to the left hand side of theEquation (3.18). If the global minimum is indeed equal to the left hand side of the Equation(3.18), then this Equation (3.18) holds for all value of c. Throughout the proof, because the case ofthe multiple outputs is analyzed here, it is assumed that there are at least two observable outputvariables.It is apparent from Equation (3.14), the choice of c determines how tight the bound will be. It canbe shown that the c, which makes  (W; J; c) assumes the smallest value, gives the tightest bound.In order to �nd such a constant c, one takes the partial derivative of the upper bound functionw.r.t. c, one has:@@c �'(W; J) +pm � (W; J; c)�= @@c'(W; J) +pm � @@c (W; J; c) = 0 +pm � @@c (W; J; c):(3.19)



3. Novel Transformation of the Min-Max Problem into Two Least-Square Estimation Problems15Setting the partial derivative equal to zero and solve, one can �nd the minimum of the right handside of Equation (3.18). From the de�nition: (W; J; c) 4=vuut mXj=1 [c� G(W; j)]2m : (3.20)In order to �nd the extreme value of  (W; J; c) w.r.t. c, one sets the �rst partial derivative of (W; J; c) w.r.t. c equal to zero and solve. To �nd out the whether it si a global minimum of globalmaximum, one needs to �nd out the sign of the second partial derivative of  (W; J; c) w.r.t. c.Take the �rst and second partial derivative of  (W; J; c) w.r.t. c, one has:@ @c = Pmj=1 2�[c�G(W;J)]mqPmj=1 [c�G(W;j)]2m = 0; (3.21)@2 @c2 = Pmj=1 2m�qPmj=1 [c�G(W;j)]2m �3 : (3.22)Solving for @ @c = 0, one has: mXj=1 2 � [c�G(W; J)]m = 0: (3.23)In order for the above equation to be true, the value of c must bec = avgj [G(W; J)] : (3.24)To �nd out whether this extreme value of  (W; J; c) is a minimum or a maximum, one looks at thesign of @2 @c2 . Simplify @2 @c2 , one has:@2 @c2 = Pmj=1 2m�qPmj=1 [c�G(W;j)]2m �3 = 2�qPmj=1 [c�G(W;j)]2m �3 (3.25)Because [c�G(W; j)]2 is always greater than or equal to zero, so @2 @c2 > 0, which means  (W; J; c)is a concave upward function, and its value at c = avgj [G(W; J)] is a global minimum.



163. Novel Transformation of the Min-Max Problem into Two Least-Square Estimation ProblemsThe following three cases list all the possible values of the choice of constant c:� Case I: c � avgj [G(W; J)]� Case II: c � maxj [G(W; J)] � avgj [G(W; J)]� Case III: maxj [G(W; J)]� c > avgj [G(W; J)]Because c = avgj [G(W; J)] is a global minimum, one only need to �nd out the extreme value ofthe right hand side of Equation (3.18) in Case I.Let avgj [G(W; J)] 4= Pmj=1G(W; j)m : (3.26)Assume c � avgj [G(W; J)]. It is known that Root-Mean-Square of a function is greater than orequal to the Mean of the function, that is:vuut mXj=1 [c� G(W; j)]2m � Pmj=1G(W; j)m = avgj [G(W; J)] : (3.27)So vuut mXj=1 [c�G(W; j)]2m +vuut mXj=1[c�G(W; j)]2 � Pmj=1G(W; j)m +vuut mXj=1[c�G(W; j)]2: (3.28)Since c � avgj [G(W; J)], thusmaxj [G(W; J)]� c � maxj [G(W; J)]� avgj [G(W; J)] ;vuut mXj=1[c� G(W; j)]2 � maxj [G(W; J)]� c;vuut mXj=1[c� G(W; j)]2 � maxj [G(W; J)]� avgj [G(W; J)] :Rearrange, one has:vuut mXj=1[c�G(W; j)]2+ avgj [G(W; J)] � maxj [G(W; J)] : (3.29)



3. Novel Transformation of the Min-Max Problem into Two Least-Square Estimation Problems17From Equation (3.28) and (3.29), if c � avgj [G(W; J)], one has:vuut mXj=1 [c� G(W; j)]2m +vuut mXj=1[c� G(W; j)]2 � maxj [G(W; J)] : (3.30)From Equations (3.30), one can write:'(W; J) +pm �  (W; J; c) =vuut mXj=1 [G(W; j)]2m +pm �vuut mXj=1 [c� G(W; j)]2m� maxj [G(W; J)] = F (W; J) (3.31)So for c � avgj [G(W; J)], the minimum of '(W; J) +pm � (W; J; c) is equal to maxj [G(W; J)] =F (W; J), so F (W; J) � '(W; J) +pm �  (W; J; c): (3.32)From Equations (3.15) and (3.32), one has '(W; J) � F (W; J) � '(W; J) +pm �  (W; J; c).3.3 Physical MeaningGiven the same positive function G(W; J) where W = fwiji = 1 : : :ng and J = fjjj = 1 : : :mg,the Min-Max problem wants to minimize the maximum of all its values. The physical meaningof the novel transformation is not only to minimize the RMS of the given function G(W; J) butalso to minimize the di�erence between the given function G(W; J) and an arbitrary constant c.Preferably, the constant c equals to the average of the �nal results of the function G(W; J). Plot thefunction G(W; J) after optimization in Figure 3.1, one can see the di�erence between each G(W; j)and the constant c has also been minimized. Plot the constant c, the maximum, minimum, average,and RMS value of the function G(W; J) in Figure 3.2, one can tell the relative relations betweenthem. Because the upper bound is now AreaRMS+pm � , it is much tighter than the range shownin Figure 2.3. This �gure gives the insight into why one choose this new linear bound over the oldone. Looking at Figure 3.2, one can see that Areamax = F lies between the AreaRMS = ' and theAreaRMS = ' plus the area of some other function. One wants the area of some other function to
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Figure 3.1: A Positive Function: This is a positive function G(W; J) after the opti-mization with j mapped between 1m and 1.
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Figure 3.2: Relationship between the Maximum, Minimum, Average and RMSvalues: The four lower dashed lines represent these four values. The topmost dashed linerepresents the value of square root of m multiplies RMS. The constant c is arbitrarychosen and can assume other value as well, here it is drawn only for reference. The upperbound is not drawn to the scale.be as small as possible. It turns out that by adding the area of H(W; J) = maxJ [c�G(W; J)], onecan cover the area Areamax = F . This is plotted in Figure 3.3. This Figure also shows that byminimizing the area H(W; J) = maxJ [c� G(W; J)], the new linear bound becomes tighter.
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Upper Bound = RMS + H(W,J) G(W,J) + H(W,J)
for reference only

Figure 3.3: Relationship of the New Linear Bound: The upper dashed line representsthe area that is the summation of the RMS of the function and the square root of mmultiplies the RMS of the di�erences between the function and an arbitrary constant c.3.4 Practical ConsiderationsThe constant c chosen must stay the same throughout the LSE optimization process. However,the �rst choice of c may not be the best choice. One way of improving the situation is to iterativelyre�ne the constant c. First pick a constant c which is approximate the solution value of theoriginal Min-Max problem, then after the LSE optimization is done, compute a new constantc = avgj [G(W; J)] and repeat the LSE optimization again. Iterate several times of the LSEoptimization process until the value of the function  (W; J; c) is su�ciently small and then takethe maximum value of the solution function of the two LSE optimization as the solution to theMin-Max problem.Generally speaking, the function  (W; J; c) is two to three order magnitude smaller than'(W; J). This makes the linear bound '(W; J) � F (W; J) � '(W; J) + pm �  (W; J; c) muchtighter than the linear bound '(W; J) � F (W; J) � pm � '(W; J) as presented in Section 2. Thistighter bound assures the equivalence in minimization of the two di�erent kinds of optimizationin the case of the multiple observable output variable. For the best case, when the constant cchosen is avgj [G(W; J)], the function  (W; J; c) = 0. So that '(W; J) � F (W; J) � '(W; J) +



20 4. Implementation and Practical Considerationpm � (W; J; c) = '(W; J)+pm � 0 = '(W; J), which means '(W; J) is equal to F (W; J). Becausethe above ideal case makes the two target function equal to one another, so the minimization ofthe LSE problem is indeed identical to the minimization of the original Min-Max problem. Thisis the tightest linear bound possible which makes the translation of the solution in the case of themultiple observable output variable exactly the same as that of the case of the single observableoutput variable.4 Implementation and Practical ConsiderationThe Levenberg-Marquardt method is used to solve the Least-Square Estimation problem [2].Theorems 1, 2, and 3 show the consistency between the minimization of the original problemand the minimization of the transformed Least-Square Estimation problem. Consider the physicalexample in Figure 2.1, starting with an arbitrary initial solution of width assignment W (0) =fw1(0); w2(0); : : : ; wn(0)gT , the next width assignmentW , which according to Levenberg-Marquardt,is optimized according to the following formula:W (k+1) = W (k) � (JTJ + ��)�1JT 264 �jW (k)
jW (k) 375 (4.1)where k is the number of iteration, �jW (k) the column vector of delays from the source to all thereceivers at the k�th iteration, and 
jW (k) the column vector of damping ratio errors from the sourceto all the receivers at the k � th iteration. The �jW (k) is de�ned in Equation (2.2) and the 
jW (k)is de�ned in Equation (3.5). J is the 2m�n sensitivity matrix, JT is the transposition matrix of Jwhere the (i; j)th element JT (i; j) = J(j; i), � is a diagonal matrix in which the values of its diagonalelements are the same as the diagonal elements of JTJ , and � is the Lagrange Multiplier properlyselected to speed up the convergence of the optimization process [2]. JT 264 �jW (k)
jW (k) 375 represents thegradient around the current width assignmentW (k). To obtain the sensitivity matrix J , the (i; j)thelement is de�ned as:



5. Experimental Results 21J(i; j) = 8><>: @�[i]@wj ; if 1 � i � m@
[i�m]@wj ; if m+ 1 � i � 2m : (4.2)The partial derivatives are computed using a central di�erence method. The optimization continuesuntil the maximum delay cannot be further improved, or the iteration number exceeds a preset limit.The convergence to the optimal values of Levenberg-Marquardt method is proved in [2].5 Experimental ResultsThe examples that were tested are constructed with High Performance MCM process technolo-gies published by Frye [1]. The important parameters of the MCM process are listed in Table 5.1.In the case of the uniform width, all of the widths are equal to 25�m for all of the examples tested.All the drivers are modeled with a step input voltage source in series with the parallel combinationof a 12
 resistor and a 4:3pF capacitor. All the receivers in Examples 5.1 and 5.3 are modeledusing a 2:5pF capacitor. All the receivers in Example 5.2 are modeled using a 4:5pF capacitor.HIGH PERFORMANCE MCM-DThickness of Dielectric (�m) 5"rel 3:2Thickness of Metal (�m) 2:5R (
=�m) for typical edge width 2:4L (nH=�m) for typical edge width 2:9C (pF=�m) for typical edge width 1:39lower bound metal line width (�m) 10typical metal line width (�m) 25upper bound metal line width (�m) 50Table 5.1: The High Performance MCM technologies process parameters.Maximum Lower Maximum Upper PercentPath Delay Bound Path Delay Bound Improvement(Uniform) ' (Optimal) pm'(nS) (nS) (nS) (nS) (%)Example 5.1 0:9874 0:5833 0:7182 1:4288 27:26Example 5.2 0:9354 0:6266 0:8245 1:2532 11:85Example 5.3 1:2308 0:8510 0:8533 2:0841 30:67Table 5.2: Comparison between the Uniform Width Design and the OptimalDesign.



22 5. Experimental ResultsMaximum Lower Maximum Upper PercentPath Delay Bound Path Delay Bound Improvement(Uniform) ' (Optimal) '+pm (nS) (nS) (nS) (nS) (%)Example 5.1 0:9874 0:5777 0:7135 0:7777 27:74Example 5.2 0:9354 0:6287 0:7826 0:9812 19:44Example 5.3 1:2308 0:8320 0:8339 0:8418 32:25Table 5.3: Comparison between the Uniform Width Design and the NovelOptimal Design. It is evident from the comparison of these two tables that not onlythe upper bounds of the linear bound are improved but also the quality of the solutionsto the original Min-Max problem.5.1 Example 5.1: A Tree Network
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(a) (b)Figure 5.1: A Tree Network and the Simulation Waveforms of the Receiver 3:The topology is shown in (a). The output waveforms for the optimal, the old optimaland uniform cases of the receiver 3 with the maximum path delay are shown in (b). Theoptimal design is better than both the old optimal design and the uniform width designbecause its maximum path delay is the smallest among the three designs.Example 5.1 is a tree network shown in Zhou's MCMC paper [4]. Figure 5.1 (a) shows thetopology, lengths, and widths of the optimal design for all of the edges. The optimal designperformance is compared with both the case of the uniform width and the case of the old optimaldesign [3]. The per-unit-length R, C, and L of the uniform width design are listed in Table 5.1. Thesimulation waveforms of the receiver 3 with the maximum path delay for three di�erent designs,



5. Experimental Results 23namely the optimal design, the old optimal design, and the uniform width design are shown in Figure5.1 (b). The maximum path delays, their respective bounds, and their percentage of improvementsare listed in Tables 5.2 and 5.3.5.2 Example 5.2: A Network with a Loop
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(a) (b)Figure 5.2: A Network with a Loop and the Simulation Waveforms of theReceiver 4: The topology is shown in (a). The output waveforms for the optimal,the old optimal and the uniform cases of the receiver 4 with the maximum path delaysare shown in (b). The optimal design is better than both the old optimal design and theuniform width design because its maximum path delay is the smallest among the threedesigns.Example 5.2 is a network with a loop. Figure 5.2 shows the topology, lengths, and widths of theoptimal design for all of the edges. The simulation waveforms of the receiver 4 with the maximumpath delay for three di�erent designs, namely the optimal design, for old optimal design, and foruniform width design are shown in Figure 5.2 (b). The maximum path delays, their respectivebounds, and their percentage of improvements are listed in Tables 5.2 and 5.3. The novel optimaldesign was even shown to have less overshoot compared to the old optimal design which tries tominimize overshoot by minimizing the maximum of all the damping ratio errors together with theminimization of the maximum of all the delays.



24 6. Concluding Remarks5.3 Example 5.3: A Clock Tree NetworkExample 5.3 is a clock tree network shown in Zhu's ICCAD paper [5]. Figure 5.3 (a) shows thetopology, lengths, and widths of the optimal design for all of the edges. All of the the simulationwaveforms of the optimal design are shown in 5.3 (b), those of the old optimal design are shownin 5.3 (c), and those of the uniform width design are shown in Figure 5.3 (d). The maximum pathdelays, their respective bounds, and their percentage of improvements are listed in Tables 5.2 and5.3.The old optimization method presented by Wang et al. [3] does improve the performance of thisclock tree by reducing the maximum path delay and skew through minimizing the delays andthe damping ratio errors. Although the skew has been reduced to 96pS, there is still room forimprovement. This novel optimization method minimizes the RMS of all the delays and the RMSof all the di�erences between the delays and an arbitrary constant. The resulting skew is reducedto only 4:4pS. This method not only guarantees the quality of the solution to the Min-Max delayproblem but also implies the minimization of the skew. The results clearly show that this noveloptimization method is most suitable to be used in the case when the di�erences between all theobservable output variables can be minimized. The minimization of the maximum path delay of theequal-path-length clock tree such as H clock tree is an application with this kind of characteristic.6 Concluding RemarksThe Min-Max optimization problem is often required in most of the Computer-Aided Designsoftware, it is generally a nonlinear programming problem which is di�cult to solve. An Alternativeis to transform the Min-Max problem into one LSE problem and solve the LSE problem instead.However, this method has a big drawback when it comes to deal with the case of multiple observablevariables because the quality of the solution of the Min-Max problem cannot be guaranteed becausethe uncertainty introduced by the loose linear bound.This paper describes a novel approach which transform the original problem into two LSEproblems. A tighter linear bound can be found through this novel approach. For large number ofobservable output variables, the novel tighter bound can be two to three order of magnitude tighterthan the old one. In the best case where the choice of the constant c makes the target function
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(c) (d)Figure 5.3: A Clock Tree Network and its Simulation Waveforms: The topology isshown in (a). The output waveforms of the uniform width design are shown in (b), Thoseof the old optimal design are shown in (c), and those of the novel optimal design are shownin (d). The skew for the old optimization method is 96pS and for the novel optimizationmethod is 4:4pS. The optimal design is better than both the old optimal design and theuniform width design because its maximum path delay is the smallest among the threedesigns.



26 Referencesof the second LSE problem equals to zero. This tightest linear bound makes the quality of thesolution for the multiple observable output case is as good as the single observable output case.For all of the examples tested, the optimization of the two LSE problems gives a better solutionto the original Min-Max problem as indicated in Section 5. Table 5.2 also demonstrates that therespective maximum value of a given function is indeed within its respective linear bound. Thebest example shown in the Example 5.3 where the target function of the second LSE problem isevaluated to be near zero, so the minimization of the two transformed LSE problem is identical tothe minimization of the original Min-Max problem. This leads to the conclusion that this novelapproach is best suitable to be used in the equal-path-length clock tree delay optimization.References[1] Robert C. Frye. Physical scaling and interconnection delays in multichip module. IEEE Trans.on CHMT, 17(1):30{37, Feb. 1994.[2] D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journalof Society of Indust. Appl. Math., 11:431{441, 1963.[3] JimmyWang andWayneDai. Optimal design of self-damped lossy transmission lines formultichipmodules. In Proc. of IEEE ICCD-94, October 1994.[4] D. Zhou, F. Tsui, J. S. Cong, and D. S. . A distributed-RLC model for MCM layout. In Proc.of IEEE Multi-Chip Module Conference MCMC-93, pages 191{197, 1993.[5] Qing Zhu and Wayne Dai. Optimal sizing of high speed clock networks based on distributed RCand lossy transmission line models. In IEEE/ACMInternational Conference on Computer-AidedDesign, 1993.


