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ABSTRACT

This paper describes a novel approach to find a tighter bound of the transformation of
the Min-Max problems into the one of Least-Square Estimation. It is well known that the
above transformation of one problem to the other can lead to the proof that their target
functions linearly bound each other. However, this linear bound is not a tight one. In
this paper, we prove that if we transform the Min-Max problem into two Least-Square
Estimation problems, where one minimizes the Root-Mean-Square (RMS) of the original
function and the other one minimizes the RMS of the difference between the original function
and an arbitrary constant, one can obtain a tighter bound between their target functions.
The tighter bound given by this novel approach depends on the outcome of the second
Least-Square Estimation problem, so there is a great incentive to choose the arbitrary
constant which gives the smallest RMS of the second Least-Square Estimation problem.
For a problem with a large number of variables, this novel tighter bound can be two to
three order tighter than the old one.
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2 1. Introduction

1 Introduction

For most of the Computer-Aided Design software, they usually ask for an optimization as
part of their heuristic algorithm. The most common optimization problem encountered is the
minimization of the maximum of all the observable outputs, which is often referred to as the Min-
Max optimization problem. Because the Min-Max optimization problem is generally a nonlinear
programming problem, it is not only hard to solve but also takes a long computation time. One
Alternative to solve the Min-Max optimization problem and to obtain a good solution in a relative
short period of time is to transform the original Min-Max optimization problem into a Least-
Square Estimation (LSE) problem, which is not only very easy to solve but also has a number of
well defined methods for solving it. It can be shown that the target function of the original Min-
Max optimization problem and that of the transformed LSE problem linearly bound each other.
Although these two problems have different objective functions, optimizing the transformed problem
can produces a solution to the original Min-Max problem. By optimizing the LSE problem, one
tries to minimize a target function which is the Root-Mean-Square (RMS) value of a given function.
In this way, one obtains a solution function which is a set of values of a given function. By the
definition of the LSE problem, when evaluating the Root-Mean-Square value of all the values of a
solution function, the RMS value is at its minimum. The solution to the original Min-Max problem
is found from the maximum value of the solution function of the LSE problem. However, this does
not mean that solving the LSE problem can lead to the exact solution to the original Min-Max
problem, it mealy states that solving the LSE problem gives one possible solution to the original
Min-Max problem. The term: “linearly bound each other” means after one obtains the solution
function of the LSE problem, one can translate the maximum value of the solution function at hand
to a solution of the original Min-Max problem. It dose not say anything about the quality of this
solution compared with other methods of solving the same original Min-Max problem.

As illustrate in Section 2, for any single observable output Min-Max problem, the maximum
value of the solution function of the LSE problem is the same as the solution of the original Min-
Max problem. However, for multiple observable outputs Min-Max problem, the Root-Mean-Square
value of the solution function of the LSE problem linearly bounds the solution of the original Min-

Max problem with a range. The solution to the original Min-Max problem can still be found.
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However, because of this range, one cannot be sure about the quality of the solution of the original
Min-Max problem. Worst of all, for Min-Max problems with large number of observable outputs,
the solution of the original Min-Max problem is bounded by a huge range, between one and several
tens multiplies the solution of the LSE problem. For example, if a Min-Max problem has 1000
observable output variables, then the solution of the Min-Max problem can lie between one and
31.62 multiplies the Root-Mean-Square value of the transformed LSE problem, since the square root
of 1000 is 31.62. The drawback of this huge range is that it gives rise to such a huge uncertainty in
transferring the maximum value of the solution function of the LSE problem back to the Min-Max
solution. This renders the idea of the transformation and solving it through x LSE optimization

much less useful.

Previous researches that utilizes the transformation include those of Zhu et al. [5] and Wang
et al. [3]. Both of these researches lack the ability to precisely translate the maximum value of the
solution function of the LSE problem back to the original Min-Max problem.

In this paper, a novel transformation is formulated, follow immediately by a proof that this
transformation indeed gives the tightest bound for the ideal case. Because of this tightest bound,
the maximum value of the solution function of the LSE problem can be transformed back as the
solution of the original Min-Max problem even for the case of the multiple observable output

variables.

As demonstrated in Example 5.3 in Section 5, where the best case happens when the difference
between all the values of a given function can be minimized. This makes this novel approach
especially effective in solving the problem of minimizing the delay of the equal path length clock

tree.

Section 2 presents the original Min-Max optimization problem, the transformation into one LSE
problem, and the proof of their target functions linearly bound each other. The drawback of this
type of transformation for the case of the multiple observable output variables is also discussed in
detail. Section 3 presents the novel transformation into two LSE problems and the proof of the
tighter linear bound between their target functions. The advantage of this novel transformation and
an ideal case of the solution translation is discussed in detail in Section 3. Section 4 shows the details

about the implementation of the optimization of the LSE problems. Section 5 demonstrates the
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input variables. There are a total of m outputs in this interconnect graph and are called the
observable outputs. The delay is a function controlled by the widths of all the branches and are
observed at the m outputs. The optimization problem is to minimize the maximum of all the delays

observed at the m outputs through manipulating the n widths.

2.2 Problem Definition

Given a positive function G(W, J) where W = {w;|i = 1...n} and J = {j|j = 1...m}, the Min-
Max problem wants minimize the maximum of all its values. The set of W is called the controllable
input variables, and the set of J is called the observable outputs. There are n controllable input
variables, w;, and m observable output variables, 7, for this optimization problem. Denote G(W, j)
to be the discrete value of G(W,J) at j. The Min-Max optimization problem is to control the wy

through w,, input variables so that maximum value of the G(W,J) is minimized.

If one defines the target function of the Min-Max problem to be F(W,.J), one can write:
. A
mml/n[F(W’ J) = min [m}X[G(W, J)]] . (2.1)

This is a general nonlinear programming problem and usually takes a long computation time to
solve it.

From any general optimization textbook, an easier alternative of solving this Min-Max problem
is to transform it into a Least-Square Estimation (LSE) problem. In order to solve this LSE
problem, one has to minimize the RMS of the given function G(W,.J). Solving the LSE problem
gives a solution function whose maximum can be translated into a solution of the original Min-Max

problem.

2.8 Transformation Formulation

The detail formulation of the transformation is as follows. Let G(W, ) be the observed j — th

output, and let the column vector

Q(W, J) 2 {G(W, 1), G(W,2),....G(W.j).....G(W,m)7, (2.2)
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represents the estimation vector, where T" denotes the transposition operation, j € J and 1 < j < m,

and m is the number of the outputs. The summation of all squares of the estimations ®(W,.J) is:

B(wy, W, ... Wy 1,....m) 2 OW, NTOW, J) = > IG( (2.3)

=1

If one defines the Root-Mean-Square (RMS) of the estimation as:

@(wl,wg,...,wn,l,...,m)é¢w:\IiW, (2.4)

then new optimization problem becomes the minimization of the RMS of the given function

G(W,J). One can write the new target function of the optimization as:

m

. o (G751
mml/n[ e(W, J)] mml/n [\I;il . (2.5)

The new target function (Equation (2.5)) does not correspond to the original target function
(Equation (2.1)). However, it can be shown that the minimization result of the new target function
linearly bounds the original optimization solution. As can be seen later, if the linear bound is tight,
the maximum value of the optimization result of the new solution function can be translated to be
the solution of the original Min-Max problem.

The following is the proof of the target functions of the transformation linearly bound each

other.

Theorem 1: Given a function G(W,J), the minimum of the Root-Mean-Square (RMS) as defined
in Equation (2.5) and the minimum of the maximum as defined in Fquation (2.1) linearly bound
each other.

Proof:

Given that the largest of all the G(W, J) is equal to F(W,.J), F(W, J) maxy G(W, J). For all
GW,5),G(W,j)< F(W,J), (1 <j<m),one can obtain Equation (2.6 from Equation (2.5)

=1 =1

Ji w5)F Ji maXJG L)) = max G(W, J) = F(W, J). (2.6)
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between the Areapyrs = ¢ and the /m- Areapyrs = /m- . By minimizing the area of Areapass,
one also brings down the area of /m - Areapps, since the area of Ared,, . lies in between them,
s0 it is also minimized. However, for the multiple output observable output variable case shown
in the figure, the range between the Areapyrs and \/m - Areapyrs can be quite large. This gives
rise to the uncertainty about the minimization of the original target function when one attempts

to optimize the LSE problem.

2.5 Practical Considerations

When applied to a case of the single observable output, m = 1, Equation (2.8) becomes
¢ < F < \/1p. This means the two target functions are equal, so minimizing one is the same
as minimizing the other. So the solution of the LSE problem, ¢, can be taken as the solution of
the Min-Max Problem. However, for a case of the multiple observable output variable, Equation
(2.8)is ¢ < F < \/mg. This means the target function of the LSE problem, ¢, linearly bounds the
solution of the original Min-Max problem, F’, with a range. This means the two target functions are
not the same, so minimizing one does not guarantee the minimization of the other. This range is
defined as from ¢ to /m¢. For example, if a Min-Max problem has 1000 observable outputs which
is common for a global clock distribution net, then the solution of the original Min-Max problem is
bounded between one and /1000 = 31.62 multiplies the target function of the LSE problem. This
huge range give rise to one’s hesitation about the quality of the solution to the Min-Max problem
. This is the drawback when one tries to use the transformation to solve the Min-Max problem on
the case of the multiple observable output. The huge linear bound range and the uncertainty in the
solution translation renders the idea of the transformation and solving through LSE optimization

much less useful.

In Section 3, a novel transformation approach is presented. This novel transformation can be
shown to have a tighter linear bound than that of Equation (2.8) and, in the best case, can make
the solution translation of the case of the multiple observable output identical to that of the case

of the single observable output.
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3 Novel Transformation of the Min-Max Problem into Two Least-Square

Estimation Problems

The transformation presented in Section 2 changes the target function of the Min-Max problem
to the RMS of a different LSE problem. The above transformation works only because the
minimization the RMS of the different LSE problem is identical to the minimization of the original
problem. In the case of the multiple observable output variable, the minimization of the LSE
problem cannot be proved to be identical to the minimization of the Min-Max problem. This

prevents the use of the transformation as a method of solving the original Min-Max problem.

In this Section, a novel transformation which gives a tighter linear bound so that it works even
in the case of the multiple observable output is presented. This novel transformation transforms
the original Min-Max problem into two LSE problem. One of the LSE problem is the minimization
of the RMS of the given function. This LSE problem is the same as the one presented to in Section
2. The second LSE problem is the minimization of the RMS of the difference between an arbitrary
constant and the given function G(W, J). Solving these two LSE problems together gives two target
function values and one solution function. The maximum value of the solution function of the two
LSE problem can be translated into a solution of the original Min-Max problem. The solution to
the second LSE problem only serves as an assurance that when minimizing the first LSE problem,

one is indeed minimizing the original Min-Max problem.

3.1 Problem Definition

The problem definition is identical to the one that presented in Section 3.1. Given a positive
function G(W,J) where W = {ws|i =1...n} and J = {j|j=1...m}, one can define the target
function of the Min-Max problem to be F(W,J), and write:

min[F(W, )] 2 min [m}X[G(W, J)]] . (3.1)

3.2 Novel Transformation Formulation

The detail formulation of the novel approach is as follows.
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The transformed optimization problem consists of two LSE problem. The first one is the mini-
mization of the RMS of the given function G(W,.J). The second LSE problem is the minimization
of the RMS of the difference between an arbitrary constant ¢ and the given function G(W,J).
For this new LSE problem, one has to create a new Min-Max problem. Define a new function
AW, J) 2 [max j[ec — G(W, J)]], where ¢ is an arbitrary constant which remains the same during
the entire LSE optimization process. The choice of ¢ affects the outcome of the the solution trans-
lation a great deal and will be discussed in detail in Section 3.4. Define the target function of the

new Min-Max problem to be A(W,.J), one can write:
mml/n[A(W J)] mml/n mth[C— G(W,J)]|. (3.2)

Denote G(W,j) to be the discrete value of G(W,.J) at j. Define the estimation vector for
the first LSE problem to be O(W,.J) 2 {GW, 1), G(W,2),....,G(W,j),....,G(W,m)}T, where T
denotes the transposition operation, 7 € J and 1 < 7 < m, and m is the number of the observable

outputs. Define the summation of all squares of the first estimations, ®(W,.J), to be:

O(wy,ws, ..., wy, 1,...,m) 2 O(W, 1\ TO(W, ) =Y [G( (3.3)

J=1

Define the Root-Mean-Square (RMS) of the first estimation as:

i=1

@(wl,wg,...,wn,l,...,m)é¢w:\liw (3.4)

Similarly, denote A(W, j) to be the discrete value of A(W,.J) at j. Define the estimation vector
for the second LSE problem to be:

QW, )2 {c = GW,1),c— G(W,2),....c— G(W,j),....c — G(W,m)}, (3.5)

where T denotes the transposition operation. Define The summation of all squares of the second

estimations, W(W, J, ¢), to be:
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U(wy, e, ..o wn, 1, ... m,c) 2 QW, NYTQW, J) )= lc— (3.6)

J=1

Define the Root-Mean-Square (RMS) of the second estimation as:

m m

The transformed optimization problem consists of two LSE problem. The first one is the mini-
mization of the RMS of the given function G(W,.J). The second LSE problem is the minimization
of the RMS of the difference between an arbitrary constant ¢ and the given function G(W,J). One

can write the new target function of the first optimization as:

min[(W, /) 2 min N f: W‘ . (3.8)

J=1

Likewise, one can write the new target function of the second optimization as:

: S W, j)P?
mmlln[zb(W J,c) mm [\l; ‘ . (3.9)

The two new target functions (Equation (3.8)) and (Equation (3.9)) do not correspond to the
original target function (Equation (3.1)). However, it can be shown that the linear combination of
the minimization results of the two new target functions linearly bound the original optimization
solution. As can be seen in Section 3.4, if the linear bound is the tightest for the idea case, the
optimization result of the maximum value of the solution function of the two LSE optimization can
be translated to be the solution of the original Min-Max problem.

The following is the proof of the target functions of the transformation linearly bound each

other. From Theorem 1, one has:
(W, J) < F(W,J) < /m-o(W, J). (3.10)

Similarly, for the new Min-Max problem and the new transformed LSE problem, one can prove
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their target functions linearly bound each other.

Theorem 2: Given a function A(W,.J), the minimum of the Root-Mean-Square (RMS) defined in
Fquation (3.7) and the minimum of the maximum defined in Fquation (3.2) linearly bound each

other.

Proof:
Given that the largest of all the A(W, J)is H(W,J). H(W, J) 2 maxy A(W, J). For all A(W, 7),
AW, )< HW,J), (1 <j<m). From Equation (3.7), one has:

m m

i=1 i=1

(W, J,¢) 2 J s e CVIF J y maxsle = GNP _ max AW, J) = H(W,.J). (3.11)

On the other hand, H (W, J) is defined as

HW,J)2 max(e = G(W, J)] = | fmax[e - G(W, J) < J fj [c — G(W, )2

7=1
= \Im f: le = G;W’j)]z =/m - (W, ], c). (3.12)
7=1
From Equation (3.11) and (3.12), one has
(W, J,e) < HW,J) < vm- (W, J, c). (3.13)

This concludes the proof that (W, J,¢) and H(W,j) linearly bound each other. []

From the solution of the two LSE problem, one can transform them back to a solution of the

original Min-Max problem.

Theorem 3: Given a function G(W,J), the minimum of the Root-Mean-Square (RMS) as defined
in Equation (3.4), and the sum of the minimum of the RMS as defined in Equation (3.4) and sqrtm
multiplies the minimum of the RMS as defined in Equation (3.7) linearly bound the target function
of the Min-Mazx problem defined in Equation (3.1). i. e.

(W, J) < F(W,J) < o(W,J)+ Vm - (W, J, c). (3.14)
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Proof:

From the Theorem 1, one has:

o(W,J) < F(W, J). (3.15)

The second half of the equation is:

FW,J) < (W, J)+ Vm - (W, J, c). (3.16)

Substitute the definitions of ¢ and 1 into the above equation, one has:

max [G(W, )] < iW+mJiW (3.17)

or

max [G(W, J)] gJiL \Iic— (W, 1))? (3.18)

The remaining of the proof of the theorem is by first establishing the extreme value is in fact
the global minimum, and later prove that this extreme value is equal to the left hand side of the
Equation (3.18). If the global minimum is indeed equal to the left hand side of the Equation
(3.18), then this Equation (3.18) holds for all value of ¢. Throughout the proof, because the case of
the multiple outputs is analyzed here, it is assumed that there are at least two observable output
variables.

It is apparent from Equation (3.14), the choice of ¢ determines how tight the bound will be. It can
be shown that the ¢, which makes (W, J, ¢) assumes the smallest value, gives the tightest bound.
In order to find such a constant ¢, one takes the partial derivative of the upper bound function
w.r.t. ¢, one has:

oW, )4 1 6, )] = <L o(W )V L0, o) = 0 - (10, T, ) 3.19)
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Setting the partial derivative equal to zero and solve, one can find the minimum of the right hand

side of Equation (3.18). From the definition:

m \12

W(W, J,c) Z le= GOV J)IE (3.20)
7=1

In order to find the extreme value of (W, J,¢) w.r.t. ¢, one sets the first partial derivative of

(W, J,¢) w.r.t. ¢ equal to zero and solve. To find out the whether it si a global minimum of global

maximum, one needs to find out the sign of the second partial derivative of (W, J,¢) w.r.t. c.

Take the first and second partial derivative of ¥ (W, J, ¢) w.r.t. ¢, one has:

oy Y 2:[e=G(W.J)]

Jj=1 m
— = =0, (3.21)
m [—GW ]2
dc [y, E-COTP
2 m l
oY _ 2=t = (3.22)
862 (
<\/Z] 1 m )
Solving for % = 0, one has:
"9 e —
3 e G ]_ (3.23)
i=1 mn
In order for the above equation to be true, the value of ¢ must be
c = avg; [G(W,J])]. (3.24)

To find out whether this extreme value of (W, J, ¢)is a minimum or a maximum, one looks at the

sign of 882712”. Simplify aa%f’, one has:

(3.25)

82¢_ 271% 2
(

oct (\/E i )3 (\/E =GOTT )3

Because [c — G(W, 5)]? is always greater than or equal to zero, so 88% > 0, which means (W, J, ¢)

is a concave upward function, and its value at ¢ = avg; [G(W, J)] is a global minimum.
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The following three cases list all the possible values of the choice of constant e:

o Case I: ¢ < avg; [GW, J)]
e Casell:  ¢> max; [G(W,J)]> avg; [G(W,])]

e Case Illl: max; [G(W,J)] > ¢ > avg; [G(W,])]
Because ¢ = avg; [G(W, J)] is a global minimum, one only need to find out the extreme value of

the right hand side of Equation (3.18) in Case L.

Let

avg; [G(W, J)] w (3.26)

m

>

Assume ¢ < avg; [G(W,J)]. It is known that Root-Mean-Square of a function is greater than or

equal to the Mean of the function, that is:

$- = GUVIP , T GOV-J)

b

J ol GOV J Sle—cw e » 2O, J Sle-GOVP (329

m m

= avy; [G(W, J)]. (3.27)

m

So

=1 =1 =1

Since ¢ < avg; [G(W, J)], thus

max [GIW, )] —c > max [G(W, )] — avg; [GIW, ])],
Sl GV > mas[G(W, /)]~
Sl GOVAR > max [GOV,)] — avg; [0V, )].

Rearrange, one has:

\l i[c — G(W,j)]?+ avg; [G(W, J)] > max [G(W, ])]. (3.29)

=1 /
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From Equation (3.28) and (3.29), if ¢ < avg; [G(W, J)], one has:

JE:E;ﬁKQE+ny_amumzmymmﬂﬂk (3.30)

m

J=1 J=1

From Equations (3.30), one can write:

(W) + /- 0(W. ) = iWwWiw
G

W, J)] = F(W,J) (3.31)

So for ¢ < avg; [G(W, J)], the minimum of (W, J)+ /m - (W, J,¢) is equal to max; [G(W,J)] =
F(W,J), so

FW,J) < oW, J)+vm - (W, J,c). (3.32)

From Equations (3.15) and (3.32), one has o(W,J) < F(W,J) < o(W,J)+ /m - (W, J,¢). [

3.3 Physical Meaning

Given the same positive function G(W,J) where W ={w;[i = 1...n} and J = {j|j=1...m},
the Min-Max problem wants to minimize the maximum of all its values. The physical meaning
of the novel transformation is not only to minimize the RMS of the given function G(W,J) but
also to minimize the difference between the given function G(W,J) and an arbitrary constant c.
Preferably, the constant ¢ equals to the average of the final results of the function G(W,.J). Plot the
function G(W, J) after optimization in Figure 3.1, one can see the difference between each G(W, j)
and the constant ¢ has also been minimized. Plot the constant ¢, the maximum, minimum, average,
and RMS value of the function G(W,.J) in Figure 3.2, one can tell the relative relations between
them. Because the upper bound is now Areappyss ++/m-, it is much tighter than the range shown
in Figure 2.3. This figure gives the insight into why one choose this new linear bound over the old
one. Looking at Figure 3.2, one can see that Area,, . = F' lies between the Areapys = ¢ and the

Areapns = ¢ plus the area of some other function. One wants the area of some other function to









20 4. Implementation and Practical Consideration

Ve p(W, J,e) = oW, J)+/m -0 = (W, J), which means (W, J) is equal to F(W,.J). Because
the above ideal case makes the two target function equal to one another, so the minimization of
the LSE problem is indeed identical to the minimization of the original Min-Max problem. This
is the tightest linear bound possible which makes the translation of the solution in the case of the
multiple observable output variable exactly the same as that of the case of the single observable

output variable.

4 Implementation and Practical Consideration

The Levenberg-Marquardt method is used to solve the Least-Square Estimation problem [2].
Theorems 1, 2, and 3 show the consistency between the minimization of the original problem
and the minimization of the transformed Least-Square Estimation problem. Consider the physical
example in Figure 2.1, starting with an arbitrary initial solution of width assignment W) =
{wl(o), wy (@), . .,wn(o)}T, the next width assignment W, which according to Levenberg-Marquardt,
is optimized according to the following formula:

0
W(k-l—l) — W(k) _ (JTJ n AA)_IJT |W(k) (41)

o
where k is the number of iteration, ©|yy ) the column vector of delays from the source to all the
receivers at the k—th iteration, and Q|yy(x) the column vector of damping ratio errors from the source
to all the receivers at the k — th iteration. The Ol is defined in Equation (2.2) and the Q)
is defined in Equation (3.5). J is the 2m X n sensitivity matrix, J7 is the transposition matrix of J
where the (7, j)th element JT (4, 5) = J(j,), A is a diagonal matrix in which the values of its diagonal
elements are the same as the diagonal elements of J7.J, and A is the Lagrange Multiplier properly

T ®|W(k)

selected to speed up the convergence of the optimization process [2]. J represents the

Qo
gradient around the current width assignment W), To obtain the sensitivity matrix .J, the (i,7)th

element is defined as:
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,7)= ) .
%w_]m], ifm+1<:i<2m

The partial derivatives are computed using a central difference method. The optimization continues
until the maximum delay cannot be further improved, or the iteration number exceeds a preset limit.

The convergence to the optimal values of Levenberg-Marquardt method is proved in [2].

5 Experimental Results

The examples that were tested are constructed with High Performance MCM process technolo-
gies published by Frye [1]. The important parameters of the MCM process are listed in Table 5.1.
In the case of the uniform width, all of the widths are equal to 25um for all of the examples tested.
All the drivers are modeled with a step input voltage source in series with the parallel combination
of a 12Q resistor and a 4.3pF capacitor. All the receivers in Examples 5.1 and 5.3 are modeled

using a 2.5pF capacitor. All the receivers in Example 5.2 are modeled using a 4.5pF capacitor.

HIGH PERFORMANCE MCM-D

Thickness of Dielectric (um) 5
Erel 3.2
Thickness of Metal (um) 2.5

R (©2/pm) for typical edge width 2.4
L (nH/pm) for typical edge width 2.9
C (pF/pm) for typical edge width | 1.39
lower bound metal line width (pm) 10

typical metal line width (um) 25
upper bound metal line width (wm) | 50

Table 5.1: The High Performance MCM technologies process parameters.

Maximum Lower | Maximum Upper | Percent

Path Delay | Bound | Path Delay | Bound | Improvement

(Uniform) | ¢ (Optimal) | /myp

(nS) (nS) | (S) (nS) | (%)
Example 5.1 || 0.9874 0.5833 | 0.7182 1.4288 | 27.26
Example 5.2 || 0.9354 0.6266 | 0.8245 1.2532 | 11.85
Example 5.3 || 1.2308 0.8510 | 0.8533 2.0841 | 30.67

Table 5.2: Comparison between the Uniform Width Design and the Optimal
Design.
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5.3 Example 5.3: A Clock Tree Network

Example 5.3 is a clock tree network shown in Zhu’s ICCAD paper [5]. Figure 5.3 (a) shows the
topology, lengths, and widths of the optimal design for all of the edges. All of the the simulation
waveforms of the optimal design are shown in 5.3 (b), those of the old optimal design are shown
in 5.3 (¢), and those of the uniform width design are shown in Figure 5.3 (d). The maximum path
delays, their respective bounds, and their percentage of improvements are listed in Tables 5.2 and
5.3.

The old optimization method presented by Wang et al. [3] does improve the performance of this
clock tree by reducing the maximum path delay and skew through minimizing the delays and
the damping ratio errors. Although the skew has been reduced to 96pS, there is still room for
improvement. This novel optimization method minimizes the RMS of all the delays and the RMS
of all the differences between the delays and an arbitrary constant. The resulting skew is reduced
to only 4.4pS. This method not only guarantees the quality of the solution to the Min-Max delay
problem but also implies the minimization of the skew. The results clearly show that this novel
optimization method is most suitable to be used in the case when the differences between all the
observable output variables can be minimized. The minimization of the maximum path delay of the

equal-path-length clock tree such as H clock tree is an application with this kind of characteristic.

6 Concluding Remarks

The Min-Max optimization problem is often required in most of the Computer-Aided Design
software, it is generally a nonlinear programming problem which is difficult to solve. An Alternative
is to transform the Min-Max problem into one LSE problem and solve the LSE problem instead.
However, this method has a big drawback when it comes to deal with the case of multiple observable
variables because the quality of the solution of the Min-Max problem cannot be guaranteed because

the uncertainty introduced by the loose linear bound.

This paper describes a novel approach which transform the original problem into two LSE
problems. A tighter linear bound can be found through this novel approach. For large number of
observable output variables, the novel tighter bound can be two to three order of magnitude tighter

than the old one. In the best case where the choice of the constant ¢ makes the target function
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of the second LSE problem equals to zero. This tightest linear bound makes the quality of the

solution for the multiple observable output case is as good as the single observable output case.

For all of the examples tested, the optimization of the two LSE problems gives a better solution
to the original Min-Max problem as indicated in Section 5. Table 5.2 also demonstrates that the
respective maximum value of a given function is indeed within its respective linear bound. The
best example shown in the Example 5.3 where the target function of the second LSE problem is
evaluated to be near zero, so the minimization of the two transformed LSE problem is identical to
the minimization of the original Min-Max problem. This leads to the conclusion that this novel

approach is best suitable to be used in the equal-path-length clock tree delay optimization.
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