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2 1. Introduction1 IntroductionConceptual structures, a graph-based information processing methodology representingknowledge as sets of concept nodes and relation nodes [12], has been extensively researchedover the last 10 years and is now being incorporated into a variety of applications aswell as into ANSI standards. One of the methodology's key operations is testing forgeneralization; one graph is a generalization of another if it is in some way embedded in theother graph. In conceptual structures concept nodes match if the node in the subgraph issubsumed by that in the supergraph as speci�ed in a separately maintained concept-typehierarchy. The graph embedded in the supergraph is called a projection of the subgraph.A knowledge base of conceptual structures can be organized into a partial order based onthe subgraph relation, forming a generalization hierarchy. Locating a conceptual structurein the generalization hierarchy (or determining where it would be placed if it were to beinserted) identi�es immediate generalizations and specializations as adjacent graphs in thepartial order, thereby classifying as well as retrieving or inserting the structure.Testing for projections is the most time consuming portion of classifying a conceptualstructure into a database of graphs. Classi�cation speed is crucial for systems that musthandle a large number of queries or inference operations, particularly for anticipated knowl-edge bases of hundreds of thousands of structures. Speed improvements can be achievedby reducing the number of necessary projection tests, and by reducing the time requiredfor each projection. Techniques such as multilevel indexed search, as incorporated into thePEIRCE Workbench and recently into KL-ONE, tremendously speed structure retrieval byminimizing the number of projection tests required and in the future by re-using matchinginformation across graphs in the generalization hierarchy. We now believe that even withthese techniques parallel processing will be necessary for future large-scale applications.This paper presents a revised algorithm for reducing the time of projection tests throughparallel processing.For the purposes of this paper we will consider projection as equivalent to subgraphisomorphism (SI). Negation and nested contexts introduce important di�erences betweenSI and projection, but the operations of SI remain central. Other di�erences are alreadyincorporated into our SI algorithm. Although having exponential time in the worst case,subgraph isomorphism has an empirical expected-case time of O(n4) bit operations (wheren is the number of nodes in the larger of the two graphs) using the SI re�nement algorithmdeveloped by Ullmann [13]. The polynomial expected-case time means that parallelizationcan provide a substantial speedup. Our new algorithm exploits both the parallelism ofmultiple processors and the parallelism of the multiple bits in a processor's data word.1.1 Prior ParallelizationsSeveral others have proposed or implemented parallel algorithms for subgraph isomor-phism; here we summarize those most relevant to our current work. Ullmann's originalimplementation used the bit-parallelism in the data word of a conventional serial processorto achieve O(n3) empirical time on graph isomorphism [13]. Implementations by Willettet al. on a data-parallel processor empirically show O(n2) time using n2 single-bit pro-cessors, demonstrating an e�cient parallelization of SI with substantial time improvement[14]. Lendaris has used an inherently parallel neural network approach to processing concep-tual structures (CS), including join, simplify, and projection [5, 6]. His results demonstrate



2. Background 3neural networks performing important �ltering of candidate graphs which must then be fur-ther processed for projection. Our own prior work focuses on the computationally e�cientapproach of using multi-level indexed search to extensively prune the number of graphsto be tested then speeding each test through parallel processing. Our prior paper ([4])discusses modi�cations to Ullmann's SI re�nement algorithm to accommodate the speci�crequirements and improve performance in projection tests on CS, analyses the advantagesof a parallelized multilevel indexed search over exhaustive comparison to all graphs in theknowledge base for a bounded number of processors, and describes parallel compilation(encoding) of the concept-type hierarchy.1.2 This PaperThis paper extends prior parallelizations, combining bit-parallelism, parallel processing,and multi-level indexed search. In particular the new parallelization exploits multi-bitparallel processors, more typical of contemporary data-parallel machines, allowing numerousCS to be processed on a single, small parallel array. We thereby modify our prior \processorfarm" algorithm that uses multiple arrays for classi�cation in a large database into analgorithm using a single array with work-load balancing. The resulting parallelization isfaster while using fewer processors. This paper also introduces using subsumption codesto avoid the bottleneck of consulting a subsumption table rather than the less e�ectivecaching method we previously proposed. We also discuss graph storage and allocation, andpresent an algorithm for forming all SI node candidate binding lists in parallel. Additionally,this paper incorporates Levinson's recent work on a relation-based CS representation andsummarizes re�nement behavior on a parameterized synthetic data set.Section 2 summarizes Ullmann's algorithm, its application to conceptual structures,and prior parallelizations. This is followed by a brief overview of multilevel indexed searchand lattice coding. Section 3 shows that a relation-based representation of CS is readilyincorporated into SI re�nement, with performance bene�ts. Section 4 highlights the newmulti-bit parallelization and Section 5 presents the details. Revisions to the multilevelindexed search parallelization are discussed in Section 6. Parameterized simulations onsynthetic data sets are presented in Section 7 and ongoing work in hardware tailored to CSprocessing is summarized in Section 8. Section 9 summarizes the results presented in thispaper in comparison to prior parallelizations and suggests directions for future work.2 BackgroundThis section outlines the algorithms that form the basis of the parallelizations presentedin the remainder of this paper and briey summarizes our prior work. We �rst discussUllmann's serial SI re�nement algorithm and its parallelization by Willett et al., as wellas the modi�cations required to adapt the algorithm to CS. This is followed by a briefdescription of multilevel search and lattice coding as relevant to our new SI parallelization.2.1 Subgraph Isomorphism Re�nementUllmann's algorithm features a re�nement procedure to extensively prune the search treein a backtracking algorithm [13], speeding SI tests. Given two graphs Ga and Gb a SI testdetermines if Ga is a subgraph of Gb. Ullmann's re�nement algorithm represents the graphs



4 2. Backgroundand the binding between nodes as three Boolean matrices: A (the adjacency matrix of Ga),B (the adjacency matrix of Gb), andM (the `match' matrix). The adjacency matrices mustbe symmetrical1. A bit mij 2 M is 1 if node i 2 Ga is a candidate for binding to nodej 2 Gb (otherwise mij is 0). Figure 2.1 diagrams the overall structure of the algorithm.First, selected graphs are moved from main memory into the processors; those selectedcould include all graphs (exhaustive comparison) [14], those which pass �ltering criteria(single-level indexing) [14, 6], or those passing multi-level indexing (initial graph SI tests�ltering subsequent graphs) [9, 4]. Second, the match matrix M is formed. Third, thebacktracking re�nement search is performed. The re�nement procedure is called at eachbranch of a backtracking search tree (including the root), signi�cantly pruning the numberof branches explored.
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failFigure 2.1: Flow Diagram of the Re�nement Subgraph Isomorphism AlgorithmThe initial match matrix is formed by iterating over all i and j and setting mij to 1 ifthe node type of i is the same as that of j and the arity of i is less than or equal to the arityof j, otherwise mij is set to 0, thus forming the set of all possible bindings. The M matrixis then re�ned to remove candidate bindings based on the topology of the graphs. This isnot guaranteed to remove all invalid bindings. The re�nement algorithm keeps a candidatebinding mij i� 9(x) aix ^ :(9(y)mxy ^ byj). This logical criteria can be expressed by thematrix operations M 0 =M ^ A� (M � B):If at any time there is a row in M consisting of all zeros the re�nement fails, as a node inGa does not have a corresponding node in Gb. Otherwise, re�nement iterates until the Mmatrix has not changed from the prior iteration. In the latter case the backtracking portionof Ullmann's algorithm determines if M represents a valid sub-isomorphism, checking thateach row of M has exactly one 1 and that no column has more than a single 1. If so, we'redone. Otherwise the backtracking portion recursively continues the search by arbitrarilyselecting one binding for a node in Ga and calling re�nement again. The full algorithmterminates when either an isomorphism has been found or there are no more bindings totry. In the latter case no subgraph isomorphisms exist.As a simple example, consider the conceptual structures in Figure 2.2. The initialmatrices for the graphs are:1I.e. the graphs must be undirected; Ullmann shows modi�cations for directed graph isomorphism, butthey are not applicable to subgraph isomorphism [13].
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3Figure 2.2: CS Re�nement ExampleA = 0BBBB@ 0 1 0 0 01 0 1 0 00 1 0 1 00 0 1 0 10 0 0 1 0 1CCCCAB = 0BBBBBBBB@ 0 1 0 0 0 0 01 0 1 0 0 0 00 1 0 1 0 0 00 0 1 0 1 0 00 0 0 1 0 1 00 0 0 0 1 0 10 0 0 0 0 1 0 1CCCCCCCCAM0 = 0BBBB@ 0 0 1 0 0 0 10 0 0 0 0 1 00 0 0 0 1 0 00 0 0 1 0 0 00 0 1 0 0 0 1 1CCCCA :In this example, after a single iteration of re�nement the match matrix becomesM1 = 0BBBB@ 0 0 0 0 0 0 10 0 0 0 0 1 00 0 0 0 1 0 00 0 0 1 0 0 00 0 1 0 0 0 0 1CCCCA ;the algorithm immediately resolves the ambiguous mapping of animal, mapping a1 : b7 anda5 : b3 and no further work is necessary. Hughey et al. describe this and another exampleof subgraph isomorphism using Ullmann's algorithm in somewhat greater detail [4].The matrix operations are readily parallelizable with all candidate bindings (bits inthe match matrix) processed simultaneously. Willett et al. present a parallelization forthe DAP-610, an older parallel machine with 4096 single-bit processors [14]. Their codingoptimizes the matrix expressions, eliminating the transpose for one of the Boolean matrixmultiplications. They present three parallel implementations of Ullmann's algorithm. Inthe �rst, each processor stores 1 bit from each of the matrices and the parallel processorcomputes one SI test at a time. In the second, each processor stores the entire matrices andthe array performs up to 4096 SI tests simultaneously. In the third, a hybrid, graphs areprocessed using the second implementation until some number of graphs are completedafter which the remaining graphs are processed using the �rst implementation. Theirexperimental results on a small organic chemistry database show that the third methodis clearly faster. Willett et al. propose a fourth method that uses the second method,adding new graphs as earlier graphs complete processing.2.2 Subgraph Isomorphism and Conceptual StructuresWe make several modi�cations in applying SI re�nement to conceptual structures [4].First we must account for edge direction; Ullmann's algorithm is for undirected graphs andcannot be adapted to SI in DAGs. In CS, edge direction is determined by the relation typeso that we treat relations as labeled edges and check argument numbers to verify directionin the backtracking portion of the algorithm. Treating relations as labeled edges rather than



6 2. Backgroundnodes also has a major speed advantage, as empirical times are O(n4) for serial and O(n2)for Willett et al.'s parallel implementations of Ullmann's algorithm, where n is the numberof nodes. Additionally, nodes may bind if concept node of Ga is subsumed by that of Gb.Node subsumption is determined by a separate concept-type hierarchy, typically based onclass inheritance. We now initially set mij to 1 i� ai � bj and jrelations adjacent to aij �jrelations adjacent to bjj. Additional criteria and �lters, such as minimum-cycle length, canalso be applied in forming the initial match matrix.In testing projection between CS, there does not have to be a 1:1 mapping between theconcept-type nodes and relations in Ga to those in Gb. This is readily handled by relaxingthe mapping criteria applied in the backtracking portion of the algorithm.2.3 Multilevel Indexed SearchMultilevel indexed search (MIS) [9] can signi�cantly reduce the number of SI testsnecessary. As an independent survey shows Levinson and Ellis' methodology to be thefastest known structure search pruning [2], it forms the framework and motivation for ourparallelization e�orts. Rather than providing a single level of indexing as in conventionaldatabases, Levinson's Method III MIS creates a partial order over the knowledge baseusing the more-general-than relation. Objects are screened by predecessors in the posetand in turn screen successors. Smaller and simpler objects prune out more time-consumingcomparisons on larger objects. Method III empirically prunes by a factor of O(N= lg2N),where N is the number of objects in the knowledge base, and also supports conceptualclustering, generalization, and machine learning. We hypothesize that at any given point inthe execution ofMIS,O(lgN) graphs are available as candidates without risking unnecessarycomparisons. Current work on multilevel indexed search explores ways of reducing the workin performing a SI test on a given graph by exploiting binding and other information fromtests on its predecessors.2.4 Lattice CodesThe transitive links in a poset can be compiled into codes for each element, avoiding bothlink chasing and large look-up tables. As a basic example, the poset is represented as anadjacency matrix and the reexive-transitive closure of the matrix is computed. Each rowof the resulting matrix is the code for its respective element in the partial order [1]. Thesesimple codes areN bits long where N is the number of elements in the poset. More formally,the poset is plunged into a lattice and the lattice is then encoded; more advanced encodingalgorithms approach the lower bound of 
(lgN) length codes for ideal poset topologies [1,3]. Lattice codes are useful in speeding operations on a CS concept-type hierarchy and canalso be used to further prune comparisons in a Method III graph classi�cation, providedthe \query" graph is known to be in the knowledge base. In addition to reducing storage,shorter codes reduce execution time. The time to compute subsumption, greatest lowerbound, or least upper bound between two concept types or two graphs in the hierarchy isproportional to the length of the code [3].On a parallel machine, one lattice code can be simultaneously compared against numer-ous others. This permits operations such as identifying all descendents of an element, oreven the intersection or union of the descendents of several elements, in time proportionalto the length of the codes times the number of root elements. With full data parallelism



3. A Relation-Based Representation for CS 7(one processor for each item) time for these lattice-code operations are independent of thenumber of elements in the poset or the lengths of the inheritance paths.3 A Relation-Based Representation for CSLevinson's Universal Data Structure (UDS) combines the features and bene�ts of neuralnetworks, semantic networks, relational databases, and conceptual structures in a singlerepresentational framework [7]. Its relation-based representation of graphs is of particularrelevance to the new work presented in this paper. In UDS, conceptual structures aretransformed such that the relations and their adjacent concept-types in the CS becomenodes in the UDS graph. Edges in the UDS graph represent the bindings between theconcept-type arguments of their relations. Figure 3.1 shows the UDS representations of theCS shown in Figure 2.2. A node has the form [relation, arg1, arg2,... argN], representinghigher-order relations as a single node. Each node is in the UDS hierarchy, having a singlesubsumption code that can be used in forming candidate bindings in subgraph isomorphismtests.
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1  [agnt, animal, chase]Figure 3.1: UDS Relation-Based Graph RepresentationThe re�nement subgraph isomorphism algorithm can be applied directly to the UDSrepresentation without change, but with several bene�ts. For the UDS graphs of Figure3.1, the re�nement matrices are:A = � 0 11 0 �B = 0@ 0 1 01 0 10 1 0 1AM = � 1 0 00 1 0 � :The initial match matrix immediately shows the subgraph isomorphism as the agent re-lations can only bind to one another. As seen in this example, representing CS at therelational level usually reduces the number of nodes for the SI algorithm. The number ofre�nement iterations are reduced due to the greater speci�city of the nodes. Combined,these signi�cantly speed SI tests and in turn classi�cation in a database.4 The New Multi-Bit Multi-Graph ParallelizationHaving covered the background information, we now present our new parallel imple-mentation. Previous parallelizations, including our own previous work, assumed massivelyparallel machines with a single-bit processor such as the DAP-601 or the CM-2. Recentmachines feature much wider data words in each processor, typically 32 bits. Since nearlyall bit operations are independent of one another at any step of the re�nement, it is possible



8 5. Details of the Multi-Bit Re�nement Parallizationto assign as many bits to a processor as it can handle simultaneously rather than place asingle bit of each matrix in each processor. This increases speed by making much better useof the available resources and permits simultaneous comparison of many graphs even on arelatively small number of processors. This also reduces the cost of a machine by reducingthe number of processors necessary.In addition to converting from a single-bit to a multi-bit processor parallelization, ournew parallelization covers graph storage, a parallel algorithm for forming the M matchmatrices, and revises the parallelization of Method III to account for a signi�cant numberof graphs being tested on a single parallel array. As noted, recent work on UDS can bedirectly incorporated. The overall structure is the same as in Figure 2.1. We use MethodIII (or its successors) to select several graphs for testing, move them into processors, formthe M matrices, then execute the SI re�nement. In this paper we cover only re�nement indetail; the backtracking portion is assumed to be essentially the same as that of Willett etal. The following descriptions involve two assumptions for the purpose of simplifying dis-cussion. First, we assume the processors are connected in a 2-dimensional mesh topology,typical of most contemporary data parallel machines (higher dimensional topologies suchas hypercubes can readily emulate lower-dimensional meshes). Second, we assume thatthe number of bits in the processor data word is at least as large as the number of nodesin a graph. Otherwise each row of the matrices must reside in multiple processors. Theimplementation details that arise when this condition is not met can be dealt with in astraightforward manner, primarily by additional communication steps during matrix mul-tiplication.The following sections cover our modi�cation and parallelization of the re�nementportion of Ullmann's SI algorithm. Re�nement represents the bulk of execution time inSI, that in turn represents the bulk of time in Method III MIS classi�cation.5 Details of the Multi-Bit Re�nement ParallizationAdapting the SI re�nement algorithm to contemporary multi-bit processors, we combinethe features of Willett et al.'s di�erent methods and achieve additional bene�ts. In thenew parallelization, we assign an entire row of each of the matrices to a processor andexecute the re�nement algorithm for many graphs on a single-data parallel array, givinga group of processors a new graph once they have completed their prior SI test. Weexploit the bit-parallelism of b-bit processors so that a given SI test requires 1=b as manyprocessors with no slowdown. Having fewer processors and the full matrix row in a singleprocessor greatly reduces communication time. As with Willett et al.'s �rst method, havingmultiple processors per graph speeds re�nement. As with their second method, havingseveral graphs on a single parallel array minimizes wasted processors when many moreprocessors are available than are needed for a single graph comparison. Although not yetimplemented in our simulations, we propose a load-balancing approach similar to Willettet al.'s third and fourth method to avoid the poor processor utilization which would resultif the implementation were to wait until all graphs �nished before proceeding to the nextgroup of graphs, integrating the load balancing with Method III.2 Finally, speci�c to CS, we2Our proposed implementation is similar to Willett et al. 's third method in that each graph is assignedto multiple processors as in their method one.



5. Details of the Multi-Bit Re�nement Parallization 9use lattice codes of the concept-type hierarchy, performing a subsumption test on the codesin forming the M match matrix. This avoids the bottleneck of all processors consultinga single concept-type hierarchy and allows forming all rows of the match matrices of allgraphs simultaneously.5.1 Graph Storage and Assignment to ProcessorsSince only O(lg2N) graphs are actually tested, where N is the total number of graphsin the knowledge base, each processor stores a large number of graphs in o�-chip memorybut processes only a tiny fraction of them. Although during computation each processor isassigned a single row of a graph's matrices (corresponding to a single node), each processor'smemory holds the full adjacency matrix, node subsumption codes, and relation type labelsfor a complete graph. Graphs are assigned to processors for storage randomly, and the oddsof a conict in spreading the graph to nearby processors is quite small. If there is a conict,the graph can be moved to another region of the processor array or held back until thenearby processors have completed the �rst graph they were assigned.The �rst step, then, is to move the selected graphs from o�-chip memory into theprocessors' registers. The following gives a high-level description for the simpler case offorming the initial group of graphs to be processed. Here we present the case where thequery graph Gb is known to be larger than the knowledge base graphs to be tested (a test inPhase I of Levinson's Method III MIS). Although other cases are somewhat more complex,simulation shows that this data retrieval phase is only a few percent of total re�nementtime.1. Divide the array into equally sized subsections. Each section is 1 processor wide andjGbj processors tall.2. Select one graph to be tested from among those stored in each array subsection thatis in the MIS queue of graphs.3. Distribute the selected graph to the other processors in the sub-array so that eachprocessor receives one row of the A adjacency matrix, and the corresponding nodelattice code. This is done for all selected graphs simultaneously.4. Broadcast and store the rows of B in the processors, one row simultaneously for allactive knowledge base graphs.5.2 Forming the Match Matrix for Comparing Two CSFigure 5.1 gives the pseudocode for forming the M matrices. The algorithm processesall nodes in all the selected knowledge base graphs simultaneously. In addition to thisparallelism, the algorithm has the advantages that there is no communication betweenthe processors and no consultation of a central concept-type subsumption table. Nodelattice codes and relation labels for the query graph are broadcast from the controller to allprocessors.As the re�nement algorithm is called many times per SI test, and iterates several timesper call, its time dominates over that of forming theM matrix even when the latter includesadditional �lters.Even so, some criteria are better handled in the re�nement portion of the algorithmrather than in forming M . For example, one could test that the relations of each nodeare a subset of those of the query graph. A subset algorithm on a serial machine could



10 5. Details of the Multi-Bit Re�nement Parallization/***** FORM M MATRICES *****//** data in registers, each processor **/par code(n) Anode /* n-bit row of matrix A */par subsumptioncode acode /* subsumption code for Anode */par int arels /* number of Anode's edges (relation) */par code(m) Bnode /* m-bit row of matrix B */par code(m) Mrow /* corresponding row of match matrix *//** Test Candidate Bindings **/foreach nodex 2 GbMrow(nodex)  1if jarelsj 6� jbrelsj /* brels broadcast from controller */Mrow(nodex)  0else if acode 6� bcode /* bcode broadcast from controller */Mrow(nodex)  0Figure 5.1: Parallel Algorithm for Forming Candidate Binding (Match) Matrixuse hashing to test membership in the larger set, iterating over the nodes in the smallerset for time O(a) where a is the size of the smaller set (the arity of a node of Ga in ourapplication). We can not use this method on a data-parallel array and still process all nodesof all graphs simultaneously, and must instead iterate over all elements of the larger set (thearity of a node in Gb), giving time O(amAm), where am is the maximum arity of any nodein any of the database graphs and Am is the maximum arity of any node in the querygraph. In the worst case this is O(n3), asymptotically worse than the expected-case timeof parallel SI re�nement. Here it is clearly better to just check edge labels and directions inthe backtracking portion of the code once a tentative SI mapping has been found. Ratherthan performing time-consuming operations for all possible node mappings, it is better toperform those operations only on the mappings in an otherwise valid subgraph isomorphism.5.3 Multi-Bit Parallel Re�nementWith the A, B, and M matrices established in the processors, the re�nement procedureitself simply iterates the matrix operations as given in Section 2.1 until the M matrix isunchanged or contains one or more rows of all zeros. Details of the communications and bit-manipulations required in the Boolean matrix multiplications, including the transposition,are machine dependent.The allocation of one row of the matrices to a processor o�ers several advantages. Withthis layout, the \summing" portion of the Boolean vector-product is replaced by a zero-test on a single data word, avoiding time consuming inter-processor communication. This isparticularly important as each parallel multiplication requires n iterations of this operation.The layout also allows testing if any row of a matrix is all zeros or if the matrix has changedsince the last iteration in just one or two instructions. Further, with all rows of the matricesof a given graph allocated to a column of the parallel array, the Boolean matrix transposerequires only a regular, e�cient broadcast of each row of the matrix to the other processorsin the subarray, which then select the appropriate bits for their destination matrix row.



6. Implications for Classi�cation into a Database 11Since one graph can be signi�cantly larger than the other, such as the query graph Gbin this section's discussion, many processors will have rows of the B matrix but not of Aand M matrices, nor the intermediate matrices R and T . This does not signi�cantly hurtperformance, however, as all processors are active in the matrix operations during most ofthe steps.The new multi-bit implementation of SI re�nement signi�cantly complicates implemen-tation details over our prior method, however. In addition to the load balancing describedin above, it is necessary to execute the backtracking portion of Ullmann's on multiple pro-cessors in the data parallel array as in Willett et al.'s methods two through four.6 Implications for Classi�cation into a DatabaseIn addition to speeding SI tests, the multi-bit parallelization allows performing multipletests simultaneously on a single data-parallel array. By incorporating multi-level indexedsearch (MIS) we can minimize, and in some cases eliminate, unnecessary graph comparisons.6.1 Improvement in Multi-Level Indexed Over Exhaustive SearchThe multi-bit implementation strengthens our prior analysis demonstrating the advan-tage of MIS over exhaustive parallel search [4]. With b-bit processors we now need 1=bas many processors, or we can process b times as many graphs simultaneously. Updatingthe prior analysis to the multi-bit implementation is straightforward. Except under condi-tions where nested parallelism (comparing multiple graphs and parallelizing the re�nementmatrix operations) is not possible, the new MIS implementation is always faster than ex-haustive search and a factor of b faster than the single-bit implementation. Taking thenumber of processors as the space measure, MIS always has a much better space-time prod-uct than exhaustive search. If memory is used as the space measure, exhaustive search hasa space-time product a factor of lgN better as memory cost dominates over processor cost.However the million or more processors required3 is impractical for the foreseeable future.With memory cost dominating, the parallel applications have better space-time productsthan their serial equivalents.6.2 Modi�cation to Prior Multi-Level Indexed Search ParallelizationIt is, however, necessary to reconsider the approach to parallelizing MIS. Previously,a parallel array of a thousand processors could handle only one to a few graphs; with adozen or more graphs available at any stage in the MIS comparisons would be farmed outto several processor arrays [4]. This processor-farm model included implicit load balancing(each array requesting more work when it was done) and there were more graphs queued forcomparison than the available processors could handle so that a graph need not be compareduntil it was certain that the comparison was necessary. On the minus side, communicationwas heavy as the full knowledge base graph and concept-type subsumption data had tobe sent from wherever the MIS management was executing. Although having all graphson a single parallel array signi�cantly reduces communication outside the array and theuse of concept-type subsumption codes greatly reduces communication within the array,3A knowledge base with 64 K graphs averaging 16 nodes each would require a million processors forexhaustive parallel search, one with 1 M graphs averaging 32 nodes each would require 32 million processors.



12 7. Simulation Results of Re�nement Behaviorthe new implementation a�ects the implementation of the multilevel indexed search itself.With 32-bit processors, an array of 1024 processors could handle thirty 32-node graphssimultaneously, but at any given time the MIS algorithm would have identi�ed only one totwo dozen graphs requiring comparison. One must thereby choose between not using allthe processors or speculatively comparing graphs.Performing speculative graph comparisons using an earlier version of Phase I of Levin-son's Method III appears to be the better choice. In the more recent implementations ofMethod III, the queue of candidate graphs begins with only the top of the poset (gener-alization hierarchy) and candidates are added as the poset is traversed, limiting not onlythe number of SI tests but also the number of graphs \visited." By initially enqueueingall graphs smaller than the query graph and then dequeuing them if a predecessor fails theolder version guarantees a large queue of candidate graphs. Although there will be somegraph comparisons that are later determined to be unnecessary, this is expected to givea faster parallel implementation as far fewer processors would be idle. It should also bepossible to integrate the MIS dequeuing with the re�nement load balancing; if a currentlyexecuting graph is dequeued it can be abandoned and another graph started. The data par-allel array can also handle much of the queue and other MIS management. This speculativecomparison approach is currently under investigation.7 Simulation Results of Re�nement BehaviorWe have begun evaluating the new parallelization by simulating its parallel execution ona serial workstation. A probabilistic analytical model for predicting the likelihood of a bitin theM match matrix changing from 1 to 0 (and in turn the probability of a SI test failingor succeeding) based on the densities of the A, B, andM matrices would be overly complexdue to the dependencies between bits in the matrices. We have thereby run simulations ofthe re�nement procedure, emulating two data parallel machines: the proposed 16-bit MISCarchitecture [11] and the commercially available 32-bit MasPar MP-2 [10]. The simulationsuse parameterized synthetic data sets to study the e�ect of di�erent graph characteristicson re�nement behavior.Our simulations go beyond the simple case described in Section 5, allowing graphs tohave more nodes than bits in the processor data word (requiring multiple columns in thearray), and graphs with fewer than half the processors in one column of the array (allowingmultiple graphs in a single column). These add only a small number of inter-processorcommunications and additional operations.Graphs in the knowledge base are generated as random adjacency matrices A with jGajwithin a range of speci�ed sizes. The probability of any bit in an A being on is speci�edby the parameter p(A). Ones on the diagonal are disallowed, prohibiting self-cycles in thegraphs, and the resulting graph is tested to see if it is connected. If an A adjacency matrixdoes not correspond to a single connected graph, it is discarded and another is generatedrandomly. Query graphs are generated in the same way.Our results include several experiments varying parameters as shown in Table 7.1. Asbefore, jGxj is the size of a graph and p(X) indicates the probability that a bit in theadjacency matrix of graph X is one. The \mid1" experiment approximates the chemicaldatabase used by Willet et al. Both the \mid1" and \mid2" experiments have adjacencymatrix densities corresponding to 1 or 2 edges per node; the others range from 2 to 9 edgesper node. Figure 7.1 plots the portion of graphs remaining to be processed (neither failed



7. Simulation Results of Re�nement Behavior 13Experiment jGaj jGbj p(A) p(B) p(M)small 8 12 0.20 0.30 0.50mid2 16 24 0.13 0.15 0.40mid1 8{19 19{25 0.10 0.10 0.45large 24{26 30{31 0.15 0.30 0.25Table 7.1: SI Re�nement Experiment Conditionsnor unchanged) at each iteration averaged over 4 queries and Figure 7.2 plots the cumulativenumber of graphs that have failed. All the examples show similar behavior in the numberof iterations needed to complete most of the graphs, and only the \small" experiment showsa major di�erence in the total number of graphs that fail.
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mid2Figure 7.2: SI Re�nement: Cumulative Graph FailsIn the context of a MIS knowledge base, the graphs selected for comparison are morelikely to pass the SI than a random selection due to the �ltering e�ect of the multilevelindexing. This is approximated in the experiments by the large values for p(M). This isespecially appropriate for the \mid1" experiment as most atoms in an organic chemistrydatabase are either carbon or hydrogen (the latter typically ignored).Small changes to p(A) and p(B) from those of Table 7.1 have only a small e�ect onbehavior. Reducing p(M) to 0.20 results in all graphs failing within 1 or 2 iterations



14 8. A Hardware Implementation in Progresswhereas increasing p(M) to 0.60 for the \mid2" example results in as many as 17 iterationsto complete all graphs and less than 50% failing re�nement. Increasing p(M) to 0.40 for the\large" experiment results in none of the graphs failing with only 2 to 4 iterations requireduntil all M matrices stop changing. The preliminary experiments of Table 7.1, Figure 7.1and Figure 7.2 are intended to represent a middle ground of typical applications.Examining the simulation experiments individually, where processing continues until allgraphs are complete at any given time an average of 70% of the processors have completedtheir graph. Although 30% is not an unreasonable processor utilization, it indicates that theload balancing e�ect of adding new graphs as others complete is an important issue. Thesimulations indicate that a single iteration of re�nement requires some 1,000 instructionson a well-suited processor architecture whereas distributing graphs and forming the initialmatch matrix requires over 2,000 cycles. Combining these simulation results we concludethat it would be appropriate to bring in new graphs every 5 to 10 iterations of re�nementdepending on application characteristics.Thus far we have discussed re�nement iterations. As depicted in Figure 7.3, Willett etal.'s experimental data for exhaustive search in a chemical database shows that nearly all SItests are resolved in 3 to 7 calls to re�nement (each of which includes several iterations) witha few (less than 1%) requiring 20{50 calls. By bringing in new graphs during re�nementiterations, we e�ectively load balance at each call to re�nement; the housekeeping requiredby this approach remains an open question at this stage in our research.
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finishedFigure 7.3: SI Calls to Re�nement [Willett]8 A Hardware Implementation in ProgressIn the course of this work we have noted several characteristics of the algorithm that haveinuenced our design of the MISC Machine, a proposed architecture for arti�cial intelligence,including conceptual structure (CS) processing. In particular, 90% of simulated subgraphisomorphism (SI) re�nement execution time is spent in Boolean matrix multiplication.Tailoring hardware for this operation provides signi�cant speedup for a relatively minorhardware investment. A comparison of simulated SI execution on the MISC and MasParMP-2 (not presented in this report) indicate that MISC would be 40 times faster on there�nement portion. It is, however, unfair to compare projected performance of a machineutilizing VLSI technology expected to be common 5 years from now with the existingcommercially available MP-2. Adjusting MP-2 results to projected technology still gives



9. Conclusions 15MISC an order of magnitude advantage in performance at roughly the same hardwarerequirements. Although the MP-2 can be con�gured with as many as 16K processors,increasing the number of processors does not substantially improve performance as MISgreatly prunes the number of candidate graphs. Since the number of graphs that can beprocessed simultaneously without risking wasted e�ort is hypothesized to be O(lgN), thesize of a CS knowledge base is likely to be determined more by memory capacity thannumber of processors for most parallel machines, including MISC. As a result of theseobservations, we foresee a small MISC array con�gured as workstation coprocessor boardas an ideal platform for future CS applications. The workstations could be networked into adistributed system for extremely large knowledge bases, multiple-domain applications, andother division of labor.9 ConclusionsWe have developed a new parallelization of Ullmann's subgraph isomorphism re�nementalgorithm featuring multiple bits per processor and multiple graphs per processor array. Thenew algorithm incorporates graph storage and allocation, the formation of the candidatebinding matrices in parallel, and criteria speci�c to conceptual structures. It avoids thepotential bottleneck of consulting a concept-type subsumption table by using subsumptioncodes as concept-type labels. We also present a revised parallelization of multi-level indexedsearch that exploits the characteristics of the new re�nement algorithm. Analysis shows thatwith these improvements the new parallelizations provide a signi�cant speedup over priorparallelizations, make e�cient use of contemporary parallel processors, are clearly superiorover exhaustive parallel SI tests, and require only a small data parallel machine. Results ofthe re�nement algorithm's behavior on parameterized synthetic graphs are also included.A combination of empirical results and analysis show that the new method provides asigni�cant speedup over prior parallelizations.4 Ullmann's original implementation used thebit-parallelism of a single processor to achieve an empirical O(n3) expected-case time wheren � b (n is the number of nodes in the graph and b is the number of bits in the processor).Willett et al.'s �rst implementation uses n2 single-bit processors to achieve O(n2) empiricalexpected-case time; their other methods require longer time but process a large numberof graphs simultaneously. Our parallelization has O(n2) time per group of graphs beingsimultaneously processed. We hypothesize that with multi-level indexed search O(lgN)graphs can be compared simultaneously without unnecessary comparisons (where N is thetotal number of graphs in the knowledge base). In this case we would have an amortizedexpected-case time per graph of O(n2= lgN) using only O(lgNn2=b) processors. Empiricalresults on serial implementations of multi-level indexed search ([8] and others) indicate thata total of only O(lg2N) SI tests are necessary.Although it remains to be seen if these empirical expected-case behaviors and result-ing analyses hold for conceptual structure applications, the promise of fast retrieval andclassi�cation in extremely large knowledge bases with a single, small data-parallel array isexciting.Our broad goal for future work is the parallel implementation of a conceptual structuredatabase system on an existing parallel machine. Key steps along the way include an4In all cases, the space-time product of number of processors, number of bits per processor, and expected-case execution time is O(n4) indicating e�ective parallelizations.



16 9. Conclusionsupdated data-parallel implementation of the backtracking portion of Ullmann's algorithmfor multiple graphs on a single array, load balancing to keep processors busy as some SItests complete before others, and integration of the re�nement SI algorithm with multi-levelindexed search algorithms, including UDS. Work should also include further experimentswith parameterized synthetic graph data sets and characterization of graphs in speci�c CSapplications.AcknowledgmentsThanks to Robert Levinson and Richard Hughey for their many comments and sugges-tions and for their proofreading an earlier version of this report.
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