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Estimation of Distributed Parametersby Multiresolution OptimizationKoji AmakawaabstractThis dissertation proposes, develops and evaluates multiresolution optimizationmethods for estimation of distributed parameters of mathematical models. Themethods are based on the assumption that the distributed parameters are continuousalmost everywhere in the de�ned �eld.The main idea in employing multiresolution optimization is to give priority tolarge-scale characteristics of the parameter distribution over smaller-scale ones inthe estimation process. This allows the overall structure of the distribution to befound more quickly, which results in rapid approach of the estimation to the truedistribution. This in turn allows more reliable search for the details.The multiresolution optimization method consists of a local search method and amultiresolution scheme that controls the resolution of the search. This dissertationemploys the conjugate gradient method as a local search method, and the discreteFourier transform and the Haar wavelet transform as a multiresolution scheme. Sincethe coe�cients of these transforms are inherently sorted in frequency or scale, mul-tiresolution estimation can be realized by estimating the transform coe�cients withsome controlled weights and inversely transforming the coe�cients back to the pa-rameter distribution. Two methods of controlling the resolution are devised. Oneis the \step scheme" in which the threshold frequency for a low-pass �lter steps upevery time the search converges. The other method is the \weight scheme" in which�xed weights are assigned so that the coe�cients of low frequencies get larger weightsthan the coe�cients of higher frequencies.



This dissertation gives a proof that estimating the transform coe�cients in eitherscheme is equivalent to directly estimating the desired parameter distribution byusing the gradient that is �ltered by the transform. In other words, we can realizea multiresolution optimization by simply �ltering the gradient in a multiresolutionmanner to control the resolution of the search direction.The developed methods are evaluated in simulation of the so-called electricalimpedance tomography, which is one of many potential applications. It is shownthat the multiresolution optimization yields better estimates more rapidly than theconventional single-resolution method.Keywords: multiresolution optimization, parameter estimation, distributed pa-rameter, Fourier transform, Haar wavelet transform, �ltering gradient, electricalimpedance tomography
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11. IntroductionNumerical simulation by the computer has become a powerful tool for investigatingvarious phenomena that can be described by mathematical models. In the ordinarysimulation, the user �rst sets the values of the model parameters and then calculatesthe corresponding results on a mathematical model. The direction of the informationow is from cause to e�ect in this case, because the parameter values are the causeof the simulated phenomenon which is the e�ect. The reverse process that seeks fora probable cause of a given e�ect on a given mathematical model is the parameterestimation problem in which the unknown model parameter values are to be estimatedfrom a given phenomenon.Such estimation problems, especially for distributed parameters, are found in var-ious areas. For instance, one may want to get information about the internal mecha-nism of a physical system by measuring its externally observable states because it isdi�cult or impossible to directly measure the interior. In this case, the distributedparameter that represents the interior of the system has to be estimated from certainquantities measured on the exterior. Some examples of this type are image recon-struction problems in ultrasound, light scattering, impedance, di�use tomographyand biomagnetism [3, 12, 24, 35]. In another case, one may want to determine theaspects of a system, which are in themselves di�cult to measure directly, by inferringthese aspects from other more accessible quantities which may actually be in the samephysical position. An example of this type is estimation of the di�usion coe�cientdistribution of a heart muscle tissue from its electrical activities [1].This dissertation deals with such estimation problems for parameters distributedover a multi-dimensional �eld. Assumed as a basic property of the problems is that theparameter is continuous almost everywhere in the �eld. In other words, a parameter



2element is expected to have a value close to its neighbors' in most of the regions inthe �eld.1.1 Parameter Estimation by Numerical OptimizationNumerical optimization techniques are often employed to solve parameter esti-mation problems, especially when the mathematical model of the phenomenon isnonlinear [34, 37]. The common framework of these techniques is to optimize theunknown parameter distribution so that the simulated results of the phenomenonapproach the given data.Calculating the resulting state of the model variables based on given parametervalues is called the direct problem or the forward problem. The direct problem can beexpressed as: V := G(r;V0) (1:1)G() : function based on the mathematical modelr : model parameter(s)V : �nal state of variablesV0 : initial state of variablesIf the �nal state of variables does not depend on their initial state, we can write:V := G(r) (1:2)The parameter r of the problems studied in this dissertation is distributed over amulti-dimensional �eld, continuous almost everywhere, and may be constant or time-varying. For simplicity, we refer to r as if a single distributed parameter is beingestimated; in fact, more than one is possible.



3Estimating the distributed parameter r from the given �nal state V of the vari-ables, and possibly the given initial state V0, is an inverse problem. When the math-ematical model is nonlinear, solving (1.1) with respect to r is often impossible. Witha numerical optimization technique, however, we can estimate the parameter r byoptimizing it so that the variable V calculated by (1.1) becomes close to a given V .Let V denote the calculated, and cV denote the given target. Then, we estimate rby minimizing the cost H(V ;cV ) that represents the error between V and cV .1 Input target state cV (and possibly initial state V0)2 Set initial guess of r3 Repeat until cost is minimized:3.1 V := G(r;V0)3.2 cost := H(V ;cV )3.3 Adjust r4 Output rFigure 1.1: General estimation algorithmFigure 1.1 shows the general estimation algorithm that uses optimization. In therepeat loop 3, line 3.1 solves the direct problem based on the present r, line 3.2calculates the cost, and line 3.3 adjusts r so that eventually, after some number ofiterations, a (local) minimum of the cost is reached. At this point, estimation of thedistributed parameter r terminates.The performance of the algorithm in terms of computation time and estimationaccuracy is dependent mostly on line 3.3. There are various methods to \adjust" r.These can be classi�ed into two primary categories: local search methods that lookfor a better r in the vicinity of the present r, and global search methods that exploremuch wider regions than the vicinity of the present r.



41.2 Local Search MethodsAmong various local optimization techniques, e�cient and therefore often usedare the conjugate gradient method and the quasi-Newton family [2, 25, 30, 37]. Theconjugate gradient method may be more suitable if the distributed parameter to beestimated has a large number of elements, because it requires less memory than thequasi-Newton family and yet its convergence speed is comparable as follows. With Nunknown elements of the parameter, the conjugate gradient method needs memoryof size O(N), while the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, whichis a typical quasi-Newton method, requires O(N2). This di�erence becomes quiteserious as N gets larger. However, both methods reach a minimum in O(N) timewhen the cost is quadratic with respect to the unknowns. In many cases, the costfunction is more complicated, but the quadratic approximation which is the basis ofthese methods is still useful because a smooth function becomes almost quadraticnear a minimum.The limitation of these methods is that they can perform only a local search, nota global one. Since they determine the next point of the search to lower the cost atevery iteration, the search path is always downhill on the cost surface. Therefore, ifthere exist multiple valleys of the cost, these methods can �nd only a local minimum(the bottom of the current valley), not the global minimum (the lowest point of allthe valleys), unless the user is lucky enough to happen to set the initial guess in theright valley.1.3 Global Search MethodsThe limitation of local search methods comes from the fact that the search isalways downhill on the cost surface, which makes it impossible to investigate other



5valleys that might exist. Therefore, one way of realizing a global search is to allowsomewhat random moves, including uphill (cost-increasing) ones, in a certain con-trolled manner to visit various valleys. The following two methods, which are theonly general global optimization methods to date other than a brute force search,take this approach.Simulated annealing [8, 20, 39], which was invented from analogy to physicalannealing in which a material is heated to a high temperature and slowly cooleddown until it rests in the most stable phase, allows cost-increasing moves with aprobability controlled by the so-called temperature. The temperature is initially sethigh and gradually decreased based on a certain annealing schedule. Accordingly, theprobability of accepting uphill moves is initially high and gradually decreased.Genetic algorithms [7, 8, 10, 11, 43] also perform global minimization by somewhatrandom moves, but in a totally di�erent way. The search starts with a populationof random chromosomes (candidates of the best estimate of the parameters) and im-proves the population by creating new o�spring by genetic operations. Typical geneticoperations are crossover that exchanges parts of two chromosomes, and mutation thatrandomly modi�es parts of a chromosome. The o�spring created by such operationscan be better than their parents, either in the same cost valley or in a di�erentone. Even if some are worse than their parents, they might be on the way to better(deeper) valleys, although the worst chromosomes in the population are discarded.Genetic algorithms were invented from analogy to evolution in nature where randommutations in genes over many generations produce optimizations in the species.These two global optimization methods are applied to many kinds of problems,often successfully. There is, however, a major di�culty in using them. Their opti-mization performance depends on settings of the control parameters that control thesearch behavior itself. The user often has to optimize the control parameters of the al-gorithm before successfully getting a good estimate of the desired model parameters.



6In the case of simulated annealing, decreasing the temperature too fast may causeinaccurate parameter estimation, whereas decreasing it too slowly results in waste ofcomputation. Similarly, in the case of a genetic algorithm, the population size, i.e. thenumber of chromosomes, and other control parameters determine the accuracy ande�ciency of the estimation [11]. Another problem with genetic algorithms is that avast amount of memory may be needed because many estimates (chromosomes) haveto be stored.1.4 Proposed Method: Multiresolution Local SearchThis dissertation proposes, develops and tests multiresolution local search meth-ods. The motivation is to develop a method that can perform a global, or nearlyglobal, search in a deterministic manner as opposed to the stochastic approachesfound in conventional global search methods. Using a deterministic process elimi-nates the need for control parameters for stochastic behavior used in conventionalglobal search methods, and their attendant problems. As a result, it is hoped thatthe search behavior will be more predictable and the method will be easier to use.Conducting a local search in a multiresolution manner may be a good answer,provided that the parameter to be estimated is continuous almost everywhere in itsde�ned �eld. The basic idea is to �rst estimate the large-scale characteristics ofthe parameter distribution and gradually move on to the smaller-scale ones. Sucha method can be realized by combining a conventional local search method with amultiresolution scheme. Intuitive reasons behind this approach are the following:1. An estimate of a parameter distribution can be considered good if its large-scale characteristics agree with those of the true distribution but its small-scaleones (details) do not. On the other hand, an estimate with wrong large-scale



7characteristics and some correct small-scale ones cannot be a good one. In thissense, large-scale characteristics should be given priority in the estimation.2. In most estimation problems of distributed parameters, parameter values inany region of the de�ned �eld depend on, and are a�ected by, those in theother region. Consequently, for the estimate of any region to become good,the estimate of the other region has to be good, too. In other words, attemptsto estimate the details may be useless or even harmful unless the larger-scalecharacteristics are already close to those of the true distribution.3. If the distributed parameter is continuous almost everywhere in its de�ned�eld, its values at neighboring points may be close to one another. Then,we can restrict the degrees of freedom among neighboring parameter elementswithout losing much information of the parameter distribution. Restrictingthe degrees of freedom in this case is equivalent to suppressing the small-scalecharacteristics. It also leads to a smaller dimension of the search space.4. In a local search method like the conjugate gradient method, the number ofiterations needed to reach an optimum is roughly proportional to the dimensionof the search space. Therefore, a search can be faster with a smaller dimensionof the search space.It was found that there were other researchers who conceived the same idea of usingmultiresolution optimization for parameter estimation [4, 23]. They used the Haarwavelet [5, 6, 31] as a multiresolution scheme combined with a quasi-Newton method(the BFGS algorithm) to estimate a distributed parameter of elliptic and parabolicmodels. It was shown that the multiresolution algorithm performed better thanan ordinary single-resolution method. Their results were quite promising, althoughthe models tested were only one-dimensional and the number of elements of thedistributed parameter was limited to 32.



8This dissertation develops methods that use the discrete Fourier transform [21,30, 40] as well as the Haar wavelet transform for a multi-dimensional �eld. Themajor di�erences between the two transforms are: (1) the Haar wavelet transformhas compact support, i.e., the e�ect of each coe�cient of the transform is limitedto a certain region of the �eld, whereas each coe�cient of the Fourier transform hasinuence on the whole �eld, (2) the Fourier transform is smooth because it is basedon sinusoidal waves, whereas the Haar wavelet transform is discontinuous, (3) theFourier transform is more exible in terms of the positions of the highs and the lowsof a distribution at low resolution than the wavelet transform, because in the wavelettransform each coe�cient is assigned to a �xed region, and (4) the number of di�erentresolution levels that can be taken is much greater with the Fourier transform thanwith the wavelet transform, because the resolution goes up linearly in the Fouriertransform and exponentially in the wavelet transform.There are various ways of controlling resolution. In this dissertation, two methodsare tested. One method uses a step scheme where the threshold frequency of a low-pass �lter that cuts o� the higher-frequency coe�cients is moved one step higher eachtime the search converges. The other method uses a weight scheme that assigns largerweights to the coe�cients of lower frequencies so that the search is guided more bythe low-frequency information than by the high-frequency information.The original idea of multiresolution optimization is to estimate the coe�cients ofthe transform of the desired distributed parameter rather than the parameter itself.The reason is that the coe�cients of the transform are inherently sorted by resolutionand hence easy to manipulate in a multiresolution manner. However, this dissertationshows that the same results can be obtained by directly estimating the parameterusing the gradient that is �ltered by the transform. In other words, it is shown thata multiresolution search can be performed by simply �ltering the gradient for a localsearch.



9Performance of the developed methods is evaluated in the so-called electricalimpedance tomography [16, 17, 22, 24, 26, 28, 29, 38, 41, 42, 44, 45], which is one ofmany application areas. The parameter to be estimated in the test problem of thisdissertation is distributed over a large number (4096) of discretized nodes in a two-dimensional �eld. Since the number of unknowns is the dimension of the search space,estimation is expected to be di�cult enough with this many unknown elements.1.5 Contributions of This DissertationI would like to claim that the following are the contributions of this dissertationto advancement of the research area:1. Developed the methods of multiresolution optimization that are based on thediscrete Fourier transform for a multi-dimensional �eld.2. Extended the multiresolution optimization method that is based on the Haarwavelet transform to be used for a multi-dimensional �eld.3. Devised two schemes of controlling resolution, the \step scheme" and the\weight scheme", and investigated their performance.4. Proved that multiresolution optimization can be simpli�ed to �ltering the gra-dient via the transform in a multiresolution manner.5. Showed a generalized view of utilizing the so-called back-propagation algorithmfor calculating the gradient.6. Devised a practical method for calculating the gradient with a small amount ofmemory for a convergence-type forward solution scheme.7. Examined fundamental di�erences between the Fourier transform and thewavelet transforms from the parameter estimation point of view.



102. Globalizing a Local Search by Multiresolution2.1 General FrameworkMultiresolution estimation of a distributed parameter can be realized by using atransform between the raw parameter �eld and the corresponding �eld in a frequencyor scale domain. Instead of estimating the parameter �eld, we estimate the coe�cientsof such a transform. Then, since each coe�cient of the transform corresponds toa speci�c frequency or scale, it is easy to control the resolution in estimating theparameter distribution.Let T be a transform from the parameter �eld into the coe�cient �eld in afrequency or scale domain, and T �1 be its inverse transform. That is:R = T (r)r = T �1(R)r : distributed parameterR : coe�cients of the transformSince the transform T performs a one-to-one mapping between the coe�cients R andthe parameter r, we can indirectly estimate r by estimating R. And in estimatingR, we can manipulate the resolution by utilizing the frequency or scale informationinherently associated with R.In this dissertation, the discrete Fourier transform and the Haar wavelet transformare used as T , and the conjugate gradient method is used for a local search. In theFourier transform, it is \frequency" that is associated with each coe�cient, and inthe wavelet transform, it is \scale". The resolution goes up as the frequency increasesor the scale decreases. In this sense, we consider \low frequency" and \large scale",



11or \high frequency" and \small scale", interchangeable to simplify explanations thatapply to both the Fourier transform and the wavelet transform.As a method of manipulating the resolution, two schemes are devised as follows.2.1.1 Step SchemeOne way of giving priority to low-resolution components over high-resolutioncomponents is to �rst estimate only the low-frequency coe�cients of the transformand gradually move on to the higher-frequency coe�cients. It is realized by neglectingthe coe�cients whose frequencies are higher than a certain threshold and stepping upthe threshold every time the estimation converges. We call this approach the \stepscheme".1 Input target state cV (and possibly initial state V0)2 Set initial guess of parameter r and transform it by R := T (r)3 Repeat from the lowest to the highest frequency threshold:3.1 Repeat until the advancing criterion is met:3.1.1 r := T �1(R)3.1.2 V := G(r)3.1.3 cost := H(V ;cV )3.1.4 Adjust the elements of R below the threshold4 Output rFigure 2.1: Step scheme of multiresolution estimationThe general framework of the step scheme is shown in Figure 2.1. Since weestimate the coe�cients R instead of the distributed parameter r, the framework ofthe estimation algorithm Figure 1.1 in page 3 is modi�ed. Line 3.1.1 transforms thepresent estimate of the coe�cients R into the distributed parameter r, line 3.1.2



12solves the direct problem, line 3.1.3 calculates the cost, and line 3.1.4 adjusts theelements of R whose frequencies are lower than the threshold.We have to consider a criterion for advancing the frequency threshold in the stepscheme. There are various ways for this, and the best way may be di�erent fordi�erent estimation problems. Here, under an assumption, one criterion is presented.The assumption is that the shape of the cost curve against the number of localsearch iterations is approximately similar in all the frequency steps, after beingappropriately scaled and shifted. In other words, we assume that HL, the cost withfrequency limit L, can be roughly described by the following equation:HL(tL) = aLH�(bLtL) + cL (2:1)where tL is the number of local search iterations with frequency limit L, H� is thetemplate curve assumed to be valid for all the frequency limits, and aL, bL and cL areconstants for L. Then, H 0L, the derivative of HL with respect to tL, is expressed byH 0�, the derivative of H�, as follows:H 0L(tL) = aLbLH 0�(bLtL) (2:2)H 0L is always negative, since the cost HL is always reduced in a local search.We want to determine a frequency threshold advancing criterion that has thesame strictness for all the frequency steps. This means that advancement shouldoccur at the same point on the standardized curve H�. Let such a point be H�(xadv).Then, from (2.1), we get bLtadvL = xadv for frequency limit L, where tadvL is tL at theadvancing point. Using (2.2) for both tL = tadvL and tL = 0, we getH 0L(tadvL ) = aLbLH 0�(xadv) (2.3)H 0L(0) = aLbLH 0�(0) (2.4)from which the following criterion is obtained:



13H 0L(tadvL )H 0L(0) = H 0�(xadv)H 0�(0) = C (2:5)where C is a constant for all L. Therefore, the search with frequency limit L shouldadvance to the next frequency step (unless L is the highest frequency) when thefollowing condition is satis�ed: H 0L(tL)H 0L(0) � C (2:6)There may be a problem with this criterion, however. That is, cost curves inreality are not perfectly similar and may sometimes come to the steepest point afterseveral iterations. Then, using the actual steepest slope rather than the initial slopemaymake the criterion more consistent throughout all the frequency steps. Therefore,it may be often better to replace the criterion (2.6) with the following:H 0L(tL)min(H 0L) � C (2:7)For evaluation of each slope H 0L, it is better to use values of cost HL that are two ormore iterations apart rather than consecutive ones. The reason is that the descent ofthe cost uctuates. Using cost values some iterations apart has an averaging e�ect andprevents premature advancement of frequency when the descent of the cost happensto be small at one iteration.If the number of coe�cients to be estimated is NL with frequency limit L and thecost function is quadratic with respect to them, it takes O(NL) local search iterationsto converge in the conjugate gradient method [25, 30]. Although the cost function ingeneral is more complicated than quadratic, O(NL) might still be useful as a roughestimate of the number of local search iterations required in the step L.2.1.2 Weight SchemeAnother way of giving priority to low-resolution components is to attenuate theadjustments of the transform coe�cients according to their frequencies. This can be



14realized by assigning certain constant weights to the coe�cients such that the weightdecreases as the frequency goes up. We call this method the \weight scheme".1 Input target state cV (and possibly initial state V0)2 Set initial guess of parameter r and transform it by R := T (r)3 Assign weights to coe�cients according to frequencies4 Repeat until convergence:4.1 r := T �1(R)4.2 V := G(r)4.3 cost := H(V ;cV )4.4 Adjust R using the weights5 Output rFigure 2.2: Weight scheme of multiresolution estimationFigure 2.2 shows the general framework of the weight scheme. It has no loopon frequency unlike the step scheme, since the weights are constant throughout theestimation. Line 3 assigns the weights to the coe�cients of the transform. The loopin line 4 is an ordinary local search method for the coe�cients R except that theadjustment of each coe�cient is multiplied by its assigned weight in line 4.4.2.1.3 Estimating Transform Coe�cients vs. Filtering theGradientSo far, we have considered algorithms that indirectly estimate the desired param-eter via estimating the transform coe�cients. However, if the employed local searchmethod determines search directions based on the gradient, we can devise anotherkind of multiresolution algorithm that directly estimates the distributed parameter.



15The key here is to �lter the gradient so that the search direction is controlled ina multiresolution manner. In other words, it is possible to guide the search in amultiresolution manner by manipulating the resolution of the gradient.Filtering the gradient rrH can be performed by using a transform T as follows:rtr H = T �1(W(T (rrH))) (2:8)where W() represents multiplying the transform coe�cients by certain weights andrtr H is the resulting �ltered gradient. Namely, the original gradient is transformedinto the frequency or scale domain, multiplied by certain weights based on the fre-quencies or scales, and then transformed back into the original domain to make the�ltered gradient.Figure 2.3 shows the step scheme that uses the �ltered gradient. The loop in line3 sets the frequency threshold the same way as in the indirect algorithm Figure 2.1,page 11. Line 3.1 sets the low-pass �lter, which is the �lter de�ned by (2.8) withweight = 1 for the coe�cients below the threshold and weight = 0 for the others. Line3.2.3 gets the �ltered gradient using the �lter, and line 3.2.4 adjusts the estimateusing the �ltered gradient.Figure 2.4 is the weight scheme using the �ltered gradient. It is the same as anordinary single-resolution local search except that the gradient is �ltered. Line 3 setsthe �lter de�ned by (2.8) with appropriate weights, line 4.3 gets the �ltered gradient,and line 4.4 adjusts the estimate using the �ltered gradient.It will be shown later in Sections 2.3.3 and 2.4.3 that, as long as a local search isperformed by the conjugate gradient method, the direct estimation of the parameterusing the �ltered gradient is equivalent to the indirect estimation via estimatingthe transform coe�cients. Hence, the direct estimation with the �ltered gradient isneither superior nor inferior to the indirect estimation in terms of the performance.However, the direct estimation is conceptually simpler and thus easier to implement.



161 Input target state cV (and possibly initial state V0)2 Set initial guess of parameter r3 Repeat from the lowest to the highest frequency threshold:3.1 Set the low-pass �lter for the gradient using the threshold3.2 Repeat until the advancing criterion is met:3.2.1 V := G(r)3.2.2 cost := H(V ;cV )3.2.3 Get rtr H by �ltering the gradient rrH3.2.4 Adjust r based on rtr H4 Output rFigure 2.3: Step scheme using �ltered gradient1 Input target state cV (and possibly initial state V0)2 Set initial guess of parameter r3 Set the �lter for the gradient using the frequency weights4 Repeat until convergence:4.1 V := G(r)4.2 cost := H(V ;cV )4.3 Get rtr H by �ltering the gradient rrH4.4 Adjust r based on rtr H5 Output rFigure 2.4: Weight scheme using �ltered gradient



17Furthermore, it can possibly open up new ways of multiresolution optimization byintroducing various types of �lters for the gradient.2.2 The Conjugate Gradient MethodThis dissertation employs the conjugate gradient method [14, 25, 30, 37] for localsearch. The reason is that this method is suitable for estimating a large numberof unknowns because its required storage is smaller than that of the quasi-Newtonfamily, which is another powerful method, and yet its convergence speed is comparable(see Section 1.2). In the following, the method is explained for two cases. In the �rstordinary case, the parameters to be estimated are real numbers. We extend themethod to the second case, where the parameters are complex numbers.2.2.1 When Parameters are RealThe conjugate gradient method is based on the assumption that the real functionto be minimized, the cost H in our case, is approximately quadratic as follows:H(x) � 12xTAx � bTx+ c (2:9)where x = [x1; x2; � � � ; xN ]T 2 RN is a column vector of N real unknowns (R : theset of real numbers), A is an N�N symmetric positive de�nite matrix, b is a columnvector of N real constants, and c is a real scalar constant. This can be considered asan approximation of any smooth function, because the e�ects of the terms of degree3 and higher become smaller as a minimum is approached.Let us imagine the N -dimensional search space where each of the N coordinatesrepresents one of the N elements of the unknown x. That is, any one point in thesearch space determines the values of all the elements of x, thus representing a speci�cx.



18Let xj be the j-th point in the search space visited by the conjugate gradientmethod. The next point xj+1 is determined by searching for a minimum in thedirection dj from the present point xj. Namely, the relation between xj and xj+1 is:xj+1 = xj + �jdj (2:10)such that a real scalar �j minimizes the function value H(xj+1). This is called a \linesearch" or a \line minimization".The direction dj of the line minimization is initially (when j = 0) the negativegradient at the initial point x0. In the following cycles it is the present negativegradient deected toward the previous search direction dj�1 as follows. Let gj be thegradient at xj: gj � rxH(xj) (2:11)Then, the search direction dj for the j-th line minimization is determined by:dj = 8><>: �g0 if j = 0�gj + �jdj�1 if j � 1 (2:12)The real coe�cient �j that determines the amount of inuence of the previous searchdirection on the present one is usually calculated by either of the two formulas below:�j = 8>>><>>>: gj � gjgj�1 � gj�1 (Fletcher-Reeves)(gj � gj�1) � gjgj�1 � gj�1 (Polak-Ribiere) (2:13)where x � y denotes the inner product of the vectors. The Polak-Ribiere formula issaid to be usually superior to the Fletcher-Reeves formula [30].2.2.2 When Parameters are ComplexLet us consider the case where the cost H is a function of complex numbers. Thisconsideration is necessary for estimating the Fourier coe�cients, which are complex



19in general. We convert such a complex problem into a real problem by using the factthat a complex number consists of two real numbers, the real part and the imaginarypart.Let the cost H be a real-valued function of a distributed parameter x that has Nunknown complex elements, namely H : CN ! R (C : the set of complex numbers).The parameter vector x consists of the real part xR and the imaginary part xI suchthat x = xR + ixI (i = p�1) (2:14)where xR � Re(x) 2 RNxI � Im(x) 2 RNIn this way, an N -component complex vector x is decomposed into two N -componentreal vectors xR and xI . Let us create a 2N -component real column vector from thetwo real column vectors xR and xI as follows:xRI 4= 264 xRxI 375 (2:15)That is, the upper half of xRI is xR and the lower half is xI , thus xRI 2 R2N .The cost function H can be considered to take either the original complex vectorx or its converted real version xRI . The former is viewed as a function of N complexnumbers and the latter as a function of 2N real numbers:H(x) : CN !RH(xRI) : R2N !RFrom (2.15), the gradient of the real version rxRIH consists of the gradient withrespect to xR and the gradient with respect to xI as follows:



20rxRIH � 264 rxRHrxIH 375 (2:16)Since H, xR and xI are all real, both rxRH and rxIH must be real. Therefore,using the chain rule for partial di�erentiation, we get the following:rxRH � " @H@xR#T = Re0@"@H@x @x@xR#T1A= Re0@"@H@x � 1#T1A= Re0@"@H@x #T1A� Re(rxH) (2.17)rxIH � " @H@xI #T = Re0@"@H@x @x@xI #T1A= Re0@"@H@x � i#T1A= �Im0@"@H@x #T1A� �Im(rxH) (2.18)Here, we treated ryH (y � x;xR or xI) as an N -component column vector, @H@y asan N -component row vector, and @x@y as an N �N matrix. Putting (2.17) and (2.18)into (2.16), we �nally get the following relation between the gradient of the complexversion rxH and the gradient of the real version rxRIH.rxRIH = 264 Re(rxH)�Im(rxH) 375 (2:19)Note that the sign of the imaginary part of the complex gradient must be reversed.The following is the conjugate gradient method for xRI , based on the methodshown in Section 2.2.1. At each iteration j � 0, the next estimate xRIj+1 is deter-mined from the present estimate xRIj by line minimization in the direction dRIj :



21xRIj+1 = xRIj + �jdRIj (2:20)where �j is a real scalar that minimizes H(xRIj+1). The line-search direction dRIj isdetermined by dRIj = 8><>: �gRI0 if j = 0�gRIj + �jdRIj�1 if j � 1 (2:21)where gRIj � rxRIH(xRIj ). The real coe�cient �j is calculated as follows:�j = 8>>><>>>: gRIj � gRIjgRIj�1 � gRIj�1 (Fletcher-Reeves)(gRIj � gRIj�1) � gRIjgRIj�1 � gRIj�1 (Polak-Ribiere) (2:22)From the above, we can obtain the equivalent expressions for the original complexparameter x as follows. At each iteration j � 0, the next estimate xj+1 is determinedfrom the present estimate xj by line minimization in the direction dj:xj+1 = xj + �jdj (2:23)where �j is a real scalar that minimizes H(xj+1). The line-search direction dj isdetermined as follows: dj = 8><>: �g0 if j = 0�gj + �jdj�1 if j � 1 (2:24)Here, gj is the complex conjugate of the gradient at xj:gj � rxH(xj) (2:25)because, as (2.19) shows, rxRIH is equivalent to Re(rxH) � i Im(rxH) � rxH.The real coe�cient �j is calculated as follows:�j = 8>>><>>>: gj � gjgj�1 � gj�1 (Fletcher-Reeves)Re�(gj � gj�1) � gj�gj�1 � gj�1 (Polak-Ribiere) (2:26)



22where the inner product of two complex column vectors x and y is de�ned byx � y 4= xTy (2:27)where x is the complex conjugate of x.Note that (2.24), (2.25) and (2.26) can be used even if the parameter x is real,because in that case they become equivalent to (2.12), (2.11) and (2.13).2.3 The Discrete Fourier TransformThis section introduces the discrete Fourier transform (DFT) as one of the trans-forms for multiresolution optimization. First, the DFT for a one-dimensional �eld,and then the general n-dimensional DFT are shown. Finally, it will be shown that,coupled with the conjugate gradient method, estimating the coe�cients of the DFTof a distributed parameter is equivalent to directly estimating the parameter usingthe gradient �ltered by the DFT.2.3.1 For One-dimensional FieldA one-dimensional distributed parameter can be represented by an array of valuesof the parameter sampled at equal intervals. Let r = (r0; r1; � � � ; rN�1) be suchan array that represents a one-dimensional distributed parameter sampled at Ndiscretized points. Let each element rj be a complex number for a general case.The one-dimensional DFT transforms the N complex elements of the parameterr into another set of N complex numbers in the frequency domain called the Fouriercoe�cients. Let R = (R0; R1; � � � ; RN�1) be the Fourier coe�cients of the parameterr. One de�nition of the one-dimensional DFT from r to R is the following [21] :



23Rk = 1N N�1Xj=0 rje� i2�kjN (k = 0; � � � ; N � 1) (2:28)The corresponding inverse DFT, which reconstructs the distributed parameter r fromthe Fourier coe�cients R, is de�ned by:rj = N�1Xk=0 Rke i2�jkN (j = 0; � � � ; N � 1) (2:29)With this set of de�nitions, the coe�cient R0 for the frequency zero is equal to theaverage of the parameter elements rj.There are other de�nitions of the DFT and the inverse DFT than the above. Theydi�er in the constant before the summation P and/or the sign of the exponent of e.Any such de�nition can be used as long as the transform and the inverse transformare self-consistent. The following de�nitions in which the inverse DFT, instead of theDFT, has the constant 1=N seem to be used in most of the literature, e.g. [19, 40].Rk = N�1Xj=0 rje� i2�kjN (k = 0; � � � ; N � 1) (2.30)rj = 1N N�1Xk=0 Rke i2�jkN (j = 0; � � � ; N � 1) (2.31)The only di�erence from the previous de�nitions (2.28) and (2.29) is that the magni-tudes of the Fourier coe�cients R are greater by the factor of N .The sign of the exponent of e can be reversed as the following [18, 30].Rk = N�1Xj=0 rje i2�kjN (k = 0; � � � ; N � 1) (2.32)rj = 1N N�1Xk=0 Rke� i2�jkN (j = 0; � � � ; N � 1) (2.33)The e�ect is simply that the parameter distribution is looked at in the reverse orderas shown below. Since the Fourier transform implicitly assumes periodicity, one moreelement rN can be de�ned as rN = r0. The reversed array of frjg is fr0jg de�ned byr0j = rN�j for j = 0; � � � ; N . Then, using the relation:e i2�kjN = e( i2�kjN �i2�k) = e� i2�k(N�j)N



24we can rewrite (2.32) that is about the array frjg into an expression about the reversedarray fr0jg as follows:Rk = N�1Xj=0 rje i2�kjN= N�1Xj=0 r0N�je� i2�k(N�j)N= NXh=1 r0he� i2�khN (h � N � j)= N�1Xh=0 r0he� i2�khN (since r00 = r0N ) (2.34)The result is exactly the DFT for the reversed array fr0jg as de�ned by (2.30).Therefore, ipping the sign of the exponent of e in the DFT de�nition simply has thee�ect of reading the array frjg backward in the order: rN ! rN�1 ! � � � ! r1.Actually, we can de�ne either one of the two transforms below as the DFT and theother as the inverse DFT between complex arrays fxjg and fykg (j; k = 0; � � � ; N �1)as long as real constants � and � have the relation: �� = 1=N .yk = � N�1Xj=0 xje� i2�kjN (k = 0; � � � ; N � 1) (2.35)xj = � N�1Xk=0 yke i2�jkN (j = 0; � � � ; N � 1) (2.36)For example, if (2.35) is chosen as the DFT and (2.36) as the inverse DFT, the arrayfxjg becomes the distributed parameter r and the array fykg becomes the Fouriercoe�cients R.In any de�nitions above, the Fourier coe�cient of the lowest frequency (zero) isR0. The coe�cient of the highest frequency, called the Nyquist critical frequency, isRN2 , for which e� i2�kjN = e�i�j (or e i2�jkN = ei�k) in the DFT takes a value +1 and �1alternately as j (or k) changes. The rest of the Fourier coe�cients are in the ordershown in Table 2.1.



25Fourier coe�cients relative frequencyR0 0R1 and RN�1 1R2 and RN�2 2... ...Rk and RN�k k... ...RN2 �2 and RN2 +2 N2 � 2RN2 �1 and RN2 +1 N2 � 1RN2 N2Table 2.1: Fourier coe�cients and frequencyWe have considered a general case in which the distributed parameter r is complex.However, the parameter very often has only real values, i.e. the imaginary part of eachparameter element is zero. In this case, the following theorem holds.Theorem 2.1: If all the elements of the distributed parameter r = (r0; r1; � � � ; rN�1)are real, the corresponding Fourier coe�cients R = (R0; R1; � � � ; RN�1) are such thatR0 and RN2 are real, and Rk and RN�k (k = 1; � � � ; N2 � 1) are the complex conjugateof each other.Proof: Let the DFT de�ned by (2.35). It would be similar if a di�erent de�nitionis used. The Fourier coe�cients Rk and RN�k are as follows:Rk = � N�1Xj=0 rje� i2�kjN= � N�1Xj=0 rj �cos 2�kjN � i sin 2�kjN �RN�k = � N�1Xj=0 rje� i2�(N�k)jN



26= � N�1Xj=0 rje i2�kjN= � N�1Xj=0 rj �cos 2�kjN + i sin 2�kjN �Since all the parameter elements rj (j = 0; � � � ; N � 1) are real,Re(Rk) = �N�1Xj=0 rjcos 2�kjN = Re(RN�k)Im(Rk) = ��N�1Xj=0 rjsin 2�kjN = �Im(RN�k)Therefore, Rk = RN�k (k = 1; � � � ; N2 )From this, RN2 is the complex conjugate of itself, so it must be real. Also, R0 is realbecause: R0 = � N�1Xj=0 rjUsing the theorem above, we can obtain the following.Theorem 2.2: For an array of N real numbers r = (r0; r1; � � � ; rN�1), a pair ofFourier coe�cients Rk and RN�k (k = 1; � � � ; N2 �1) form a real-valued cosine (or sine)wave of relative frequency k in the inverse DFT, determining the wave's amplitudeand initial phase.Proof: Let the inverse DFT be de�ned by (2.36), that is:rj = � N�1Xk=0 Rke i2�jkN (j = 0; � � � ; N � 1)(The proof goes similarly if (2.35) is taken as the inverse DFT.) This is equivalent tothe following:rj = � 0B@R0 +RN2 (�1)j + N2 �1Xk=1 �Rke i2�jkN +RN�ke i2�j(N�k)N �1CA (2:37)



27Let us de�ne a variable ' as follows:8>>><>>>: cos' = Re(Rk)jRkjsin' = Im(Rk)jRkjwhere jRkj � q(Re(Rk))2 + (Im(Rk))2. Using this ' and the fact RN�k = Rk fromTheorem 2.1 because r is real, we get the following:Rke i2�jkN +RN�ke i2�j(N�k)N = Rke i2�jkN +RN�ke� i2�jkN= Rke i2�jkN +Rke i2�jkN= Rke i2�jkN +Rke i2�jkN= 2Re�Rke i2�jkN �= 2Re�(Re(Rk) + iIm(Rk))(cos 2�jkN + i sin 2�jkN )�= 2 �Re(Rk) cos 2�jkN � Im(Rk) sin 2�jkN �= 2jRkj �cos' cos 2�jkN � sin' sin 2�jkN �= 2jRkj cos �2�jkN + '�Therefore, coupled with a real constant � in (2.37), the pair Rk and RN�k constitutea real-valued cosine wave of relative frequency k whose amplitude is 2�jRkj and initialphase (at j = 0) is '.The Fourier coe�cient R0, one of the two that are left out of Theorem 2.2, canbe viewed as representing a real cosine wave of frequency zero, and the other oneRN2 as a real cosine wave of the Nyquist critical frequency, whose initial phase iseither 0 or �. So, Theorem 2.2 tells that estimating the Fourier coe�cients R ofthe real distributed parameter r is equivalent to estimating the amplitude and theinitial phase of the cosine wave at each frequency. Therefore, if the step scheme isemployed, the multiresolution estimation with the Fourier transform goes as shown
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Figure 2.5: Multiresolution estimation with Fourier transformin Figure 2.5. In each step, the amplitude and the initial phase of every cosine waveup to a certain frequency limit are estimated. If the weight scheme is taken, it simplyestimates the amplitude and the initial phase of every cosine wave at all frequencieswith certain weights. Since the initial phase of each cosine wave is allowed to takeany value (except for the wave at the highest frequency), positions of the highs andthe lows are exible with the Fourier transform. This is one of the di�erences fromwavelet transforms.



292.3.2 For n-dimensional FieldNow, let us consider the DFT for an n-dimensional �eld (n � 1). A parameterr distributed in an n-dimensional �eld can be described by an n-dimensional arrayfrj1j2���jng where jm is an integer from 0 to Nm � 1. The n-dimensional DFT isde�ned by combining n one-dimensional DFTs [30]. With real constants � and �having the relation �� = 1N1N2���Nn , the general forms of the n-dimensional DFT andthe n-dimensional inverse DFT between two n-dimensional complex arrays fxj1 ���jngand fyk1���kng (jm; km = 0; � � � ; Nm � 1) are the following:yk1���kn = � N1�1Xj1=0 � � � Nn�1Xjn=0 xj1���jne� i2�k1j1N1 � � � e� i2�knjnNn (2.38)(km = 0; � � � ; Nm � 1)xj1���jn = � N1�1Xk1=0 � � � Nn�1Xkn=0 yk1���kne i2�j1k1N1 � � � e i2�jnknNn (2.39)(jm = 0; � � � ; Nm � 1)As in the one-dimensional case, one can pick either one of (2.38) and (2.39) as then-dimensional DFT and the other as the corresponding n-dimensional inverse DFT.The n-dimensional DFT and the inverse DFT, including the one-dimensional case,are e�ciently computed by the n-dimensional fast Fourier transform (FFT) routines,if each Nm, the number of discretized points along the m-th axis, is a power of 2.For simplicity, we write: R = DFT(r) (2.40)r = DFT�1(R) (2.41)as the DFT and the inverse DFT, respectively, between a distributed parameter rand its Fourier coe�cients R. Although the dimension of the DFT and the inverseDFT is not speci�ed in this notation, it is assumed to be the same as the dimensionof the �eld over which the parameter r is distributed.



30Note that, from (2.38) and (2.39), both DFT() and DFT�1() are linear such thatDFT(c1r1 + c2r2) = c1DFT(r1) + c2DFT(r2) (2.42)DFT�1(c1R1 + c2R2) = c1DFT�1(R1) + c2DFT�1(R2) (2.43)with any complex numbers c1 and c2.2.3.3 Filtering the GradientIn Section 2.1.3, we considered the following two methods of multiresolutionparameter estimation:1. Indirect estimation of the parameter by estimating the coe�cients of the trans-form.2. Direct estimation of the parameter using the gradient �ltered by the transform.In this section, it is shown that the two methods above are actually equivalent ifthe transform is the DFT and a local search is performed by the conjugate gradientmethod.First, we prove a lemma for proving the next theorem. For simplicity, the followingnotation is used: WN � e i2�N (2:44)Lemma 2.1: Let j and m be integers such that 0 � j;m � N � 1. Then,N�1Xk=0 W k(j�m)N = 8><>: N if j = m0 if j 6= m (2:45)Proof: If j = m, N�1Xk=0 W k(j�m)N = N�1Xk=0 1 = NIf j 6= m, j �m is such that j �m 6= 0 and �(N � 1) � j �m � N � 1, which yieldsthe following: W (j�m)N � e i2�(j�m)N 6= 1



31Therefore, we can use the sum of the geometric series:N�1Xk=0 W k(j�m)N = N�1Xk=0 �W (j�m)N �k = 1 � �W (j�m)N �N1�W (j�m)NSince �W (j�m)N �N � �e i2�(j�m)N �N = ei2�(j�m) = 1we get: N�1Xk=0 W k(j�m)N = 0 (2:46)Using this lemma, we prove the theorem below.Theorem 2.3: Let a, b, c and d be n-dimensional complex arrays in CN1�����Nn.That is, for example, a consists of N1N2 � � �Nn elements ak1k2���kn(km = 0; � � � ; Nm�1).Let A, B, C and D be the coe�cient arrays of the n-dimensional DFTs of a, b, cand d, respectively. (A;B;C;D 2 CN1�����Nn) Then, the following relation for innerproducts holds: A �BC �D = a � bc � d (2:47)Namely, ratios of inner products are unchanged by the DFT or the inverse DFT.Proof: Let us take the following de�nition of the inner product of two arrays:x � y 4= N1�1Xk1=0 � � � Nn�1Xkn=0 xk1 ���kn yk1���kn (2:48)where x;y 2 CN1�����Nn and z is the complex conjugate of z. The proof goes similarlyif a di�erent de�nition is employed.Let the n-dimensional DFT be de�ned by (2.38). That is, the Fourier coe�cientarray A, for example, is de�ned as the following:Ak1 ���kn = � N1�1Xj1=0 � � �Nn�1Xjn=0 aj1���jnW�k1j1N1 � � �W�knjnNn (km = 0; � � � ; Nm � 1) (2:49)



32where � is a real constant. The proof goes similarly if the n-dimensional DFT isde�ned by (2.39). Then, the inner product of two DFT coe�cient arrays, e.g. A andB, can be calculated as follows:A �B � N1�1Xk1=0 � � �Nn�1Xkn=0 Ak1���knBk1���kn= N1�1Xk1=0 � � �Nn�1Xkn=0 2640@�N1�1Xj1=0 � � �Nn�1Xjn=0 aj1���jnW�k1j1N1 � � �W�knjnNn 1A� 0@� N1�1Xm1=0 � � � Nn�1Xmn=0 bm1���mnW�k1m1N1 � � �W�knmnNn 1A35= �2 N1�1Xk1=0 � � �Nn�1Xkn=0 240@N1�1Xj1=0 � � �Nn�1Xjn=0 aj1 ���jnW k1j1N1 � � �W knjnNn 1A� 0@N1�1Xm1=0 � � � Nn�1Xmn=0 bm1���mnW�k1m1N1 � � �W�knmnNn 1A35 (2.50)A product of summations can be converted to summations of products as follows:0@Xj1 � � �Xjn xj1���jn1A Xm1 � � �Xmn ym1���mn! =Xj1 � � �Xjn Xm1 � � �Xmn xj1���jnym1���mnTherefore,(2.50) = �2 N1�1Xk1=0 � � �Nn�1Xkn=0 N1�1Xj1=0 � � �Nn�1Xjn=0 N1�1Xm1=0 � � � Nn�1Xmn=0aj1���jnbm1���mnW k1j1N1 � � �W knjnNn W�k1m1N1 � � �W�knmnNn= �2 N1�1Xk1=0 � � �Nn�1Xkn=0 N1�1Xj1=0 � � �Nn�1Xjn=0 N1�1Xm1=0 � � � Nn�1Xmn=0aj1���jnbm1���mnW k1(j1�m1)N1 � � �W kn(jn�mn)Nn= �2 N1�1Xj1=0 N1�1Xm1=0 � � �Nn�1Xjn=0 Nn�1Xmn=0aj1���jnbm1���mn 0@N1�1Xk1=0 � � �Nn�1Xkn=0 W k1(j1�m1)N1 � � �W kn(jn�mn)Nn 1A= �2 N1�1Xj1=0 N1�1Xm1=0 � � �Nn�1Xjn=0 Nn�1Xmn=0aj1���jnbm1���mn 0@N1�1Xk1=0 W k1(j1�m1)N1 1A � � �0@Nn�1Xkn=0 W kn(jn�mn)Nn 1A (2.51)



33Lemma 2.1 tells that the following conversion is valid:Xj Xm x���jm��� N�1Xk=0 W k(j�m)N = NXj x���jj���Applying this relation to (2.51) gives(2.51) = �2N1 � � �Nn N1�1Xj1=0 � � �Nn�1Xjn=0 aj1���jnbj1���jn� �2N1 � � �Nna � b (2.52)Connecting (2.50) through (2.52) yieldsA �B = �2N1 � � �Nna � b (2:53)Similarly, we get C �D = �2N1 � � �Nnc � d (2:54)Therefore, A �BC �D = a � bc � d (2:55)Now that the tools are ready, let us consider the equivalence of the two kindsof procedures introduced in Section 2.1.3. One procedure indirectly estimates thedesired parameter by estimating the coe�cients of the transform, and the otherdirectly estimates the parameter by using the gradient �ltered by the transform.Let us name the former COEFDFT and the latter FILTDFT , which are describedbelow.COEFDFT : Estimate the Fourier coe�cients R to indirectly estimate the realparameter r = DFT�1(R) by using the weighted gradient rWRH de�ned asfollows: rWRH 4=W(rRH) (2:56)



34FILTDFT : Directly estimate the real parameter r using the frequency-�ltered gra-dient rtr H de�ned as follows:rtr H 4= DFT�1(W(DFT(rrH))) (2.57)In (2.56) and (2.57), W(X) multiplies each element of X by a certain real weightdetermined by the element's associated frequency. ThisW() is essential for controllingthe resolution. In the step scheme, each weight is either 1 or 0 as a low-pass �lter. Inthe weight scheme, the weights form a smooth attenuator.In (2.57), the real-valued gradient rrH is transformed to the Fourier coe�cientspace, multiplied by certain real weights determined by frequency, and then trans-formed back to the parameter space to make the �ltered gradient rtr H. Since, inW(), the transform coe�cients that represent the same frequency are multiplied bythe same real weight, the �ltered gradient rtr H remains real.Note that, as shown later by (3.19) in page 71, there is the following relationbetween the gradients in the two domains:rRH = DFT�1(rrH) (2:58)Theorem 2.4: COEFDFT and FILTDFT produce identical estimates rj of the real-valued parameter r on every local-search iteration j � 0, provided that (1) a localsearch is performed by the same type of the conjugate gradient method, i.e. either theFletcher-Reeves or the Polak-Ribiere shown in (2.26), (2) they start with the sameinitial guess r0, (3) the same W() is employed, and (4) each line minimization isexact and no numerical errors are involved.Proof: First, we clarify some relations we are going to use. The weighting processW() multiplies real weights. Therefore, it is transparent in taking complex conjugateas follows: W(X) =W(X) (2:59)



35From the de�nitions (2.38) and (2.39), if Y is real, the complex conjugate of theinverse DFT of Y is equal to the DFT of Y multiplied by a positive real constant asfollows: DFT�1(Y ) = DFT(Y ) for real Y (2:60)where  is a positive real constant. For example,  = �=�, if we de�ne the DFT as(2.38) and the inverse DFT as (2.39).We use the following notation.In COEFDFTRC : the estimate of the Fourier coe�cientsdC : the line search direction in the Fourier coe�cient spacerC : the estimate of the real parameter �rC � DFT�1(RC)�In FILTDFTrF : the estimate of the real parameterdF : the line search direction in the parameter spaceIf a subscript is attached to any of these, e.g. RCj , then it means the value on thej-th line minimization. Also, we de�ne gCj and gFj that are used as gj of Section 2.2as follows: gCj 4= rWRCH(RCj ) � W(rRCH(RCj ))= W(rRCH(RCj )) (2.61)gFj 4= rtrFH(rFj ) � DFT�1(W(DFT(rrFH(rFj )))) (2.62)where rRCH(RCj ) is the complex gradient with respect to the Fourier coe�cientsRC and rrFH(rFj ) is the real gradient with respect to the parameter estimate rF .We prove rCj = rFj along with dCj = DFT(dFj ) for all j � 0 by induction on j,the number of line minimizations.



361. When j = 0, the two procedures start with the same initial guess of theparameter: rC0 = rF0 (2:63)and the line-search directions dC0 and dF0 are as follows:dC0 = �gC0 (2.64)dF0 = �gF0 (2.65)There is the following relation between gC0 and gF0 :gC0 � W(rRCH(RC0 ))= W �DFT�1 (rrCH(rC0 ))� (use (2.58))= W �DFT �rrCH(rC0 )�� (use (2.60))= W �DFT �rrFH(rF0 )�� (since rC0 = rF0 )= DFT(gF0 ) (use (2.62)) (2.66)Putting (2.64) and (2.65) into (2.66), we get:dC0 = DFT(dF0 ) (2:67)2. Suppose the following relations hold for a certain j � 0 :rCj = rFj (2.68)dCj = DFT(dFj ) (2.69)From (2.23) in page 21, RCj+1 and rFj+1 are determined by line minimization inthe directions dCj and dFj , respectively, as follows:RCj+1 = RCj + �Cj dCj (2.70)rFj+1 = rFj + �Fj dFj (2.71)



37Using (2.70), rCj+1 � DFT�1(RCj+1)= DFT�1(RCj + �Cj dCj )= DFT�1(RCj ) + �Cj DFT�1(dCj )� rCj + �Cj DFT�1(dCj ) (2.72)From (2.69), DFT�1(dCj ) = dFj (2:73)With this and (2.68), (2.72) becomes the following:rCj+1 = rFj + �Cj dFj (2:74)Comparing the right-hand sides of (2.74) and (2.71), we can see that both arethe same line minimization in the direction dFj from rFj . Therefore, they reachthe same point, which results in �Fj = �Cj . Thus, the left-hand sides of (2.74)and (2.71) are equal to each other:rCj+1 = rFj+1 (2:75)From (2.24) in page 21, the next search directions dCj+1 and dFj+1 are determinedas follows: dCj+1 = �gCj+1 + �Cj+1dCj (2.76)dFj+1 = �gFj+1 + �Fj+1dFj (2.77)where real coe�cients �Cj+1 and �Fj+1 are calculated by either the Fletcher-Reevesformula or the Polak-Ribiere formula shown in (2.26), page 21. With (2.75),the following is obtained in a manner similar to (2.66).gCj+1 � W(rRCH(RCj+1))= W �DFT �rrFH(rFj+1)��= DFT(gFj+1) (2.78)



38Similarly, with (2.68), we get: gCj = DFT(gFj ) (2:79)Using (2.78), (2.79), and Theorem 2.3 in page 31, we get the following relations.If the Fletcher-Reeves formula is used,�Cj+1 = gCj+1 � gCj+1gCj � gCj= DFT(gFj+1) �DFT(gFj+1)DFT(gFj ) �DFT(gFj )= gFj+1 � gFj+1gFj � gFj= �Fj+1 (2.80)If the Polak-Ribiere formula is used,�Cj+1 = Re�(gCj+1 � gCj ) � gCj+1�gCj � gCj= Re�(DFT(gFj+1)�DFT(gFj )) �DFT(gFj+1)�DFT(gFj ) �DFT(gFj )= Re DFT(gFj+1 � gFj ) �DFT(gFj+1)DFT(gFj ) �DFT(gFj ) != Re (gFj+1 � gFj ) � gFj+1gFj � gFj != Re��Fj+1�= �Fj+1 (2.81)We have established �Cj+1 = �Fj+1 with both formulas. Using this relation alongwith (2.69), (2.76), (2.77) and (2.78), we get:dCj+1 = �gCj+1 + �Cj+1dCj= �DFT(gFj+1) + �Fj+1DFT(dFj )= DFT(�gFj+1 + �Fj+1dFj )= DFT(dFj+1) (2.82)



39Therefore, as (2.75) and (2.82) show, if rCj = rFj and dCj = DFT(dFj ) hold fora certain j � 0, these relations also hold for j + 1.From 1. and 2. above, rCj = rFj holds for all j � 0.2.4 The Haar Wavelet TransformThis section introduces the Haar wavelet transform as another transform formultiresolution optimization. First, the Haar wavelet transform for a one-dimensional�eld, and then the transform for a general n-dimensional �eld are shown. Finally,it will be shown that, coupled with the conjugate gradient method, estimating thecoe�cients of the Haar wavelet transform of a distributed parameter is equivalentto directly estimating the parameter using the gradient �ltered by the Haar wavelettransform.2.4.1 For One-dimensional FieldThe Haar wavelet transform uses the Haar basis (or the Haar scaling function)�(x) and the Haar wavelet  (x) de�ned as the following:-6 x�(x)10 1Figure 2.6: The Haar basis -6 x (x)10-1 12 1Figure 2.7: The Haar wavelet�(x) = 8><>: 1 if 0 � x < 10 otherwise (2.83)



40 (x) = 8>>>>><>>>>>: 1 if 0 � x < 12�1 if 12 � x < 10 otherwise (2.84)We de�ne functions �Mj (x) and  Mj (x) from �(x) and  (x) as follows:�Mj (x) 4= �(2Mx� j) (2.85) Mj (x) 4=  (2Mx� j) (2.86)From (2.83) and (2.84), we can easily see:�Mj (x) = 8>><>>: 1 if j2M � x < j + 12M0 otherwise (2.87) Mj (x) = 8>>>>>><>>>>>>: 1 if 2j2M+1 � x < 2j + 12M+1�1 if 2j + 12M+1 � x < 2j + 22M+10 otherwise (2.88)AsM increases by 1, the scale of �Mj (x) and  Mj (x) is halved. From (2.87) and (2.88),we get the two-scale relations of �Mj (x) and  Mj (x) as follows:�M�1j (x) = �M2j (x) + �M2j+1(x) (2.89) M�1j (x) = �M2j (x)� �M2j+1(x) (2.90)Inverting these relations yields:�M2j (x) = 12 ��M�1j (x) +  M�1j (x)� (2.91)�M2j+1(x) = 12 ��M�1j (x)�  M�1j (x)� (2.92)Now, let r(x) be a one-dimensional function de�ned in 0 � x < 1, and let rM;0(x)be the function representing r(x) in resolution 2M . We can express rM;0(x) with thescaling function �Mj (x) as follows:



41rM;0(x) = 2M�1Xj=0 RM;0j �Mj (x) (2:93)With the relations (2.91) and (2.92), (2.93) becomes the following:rM;0(x)= 2M�1�1Xj=0 �RM;02j �M2j (x) +RM;02j+1�M2j+1(x)�= 2M�1�1Xj=0 �RM;02j � 12(�M�1j (x) +  M�1j (x)) +RM;02j+1 � 12(�M�1j (x)�  M�1j (x))�= 2M�1�1Xj=0 �12(RM;02j +RM;02j+1)�M�1j (x) + 12(RM;02j �RM;02j+1) M�1j (x)� (2.94)Let us de�ne another function rM;1(x) as follows:rM;1(x) = 2M�1Xj=0 RM;1j  Mj (x) (2:95)From the de�nitions (2.93) and (2.95),rM�1;0(x) + rM�1;1(x) = 2M�1�1Xj=0 �RM�1;0j �M�1j (x) +RM�1;1j  M�1j (x)� (2:96)Therefore, comparing (2.94) and (2.96), we get the relationrM;0(x) = rM�1;0(x) + rM�1;1(x) (2:97)with RM�1;0j = 12(RM;02j +RM;02j+1) (0 � j � 2M�1 � 1) (2.98)RM�1;1j = 12(RM;02j �RM;02j+1) (0 � j � 2M�1 � 1) (2.99)In other words, the function rM�1;1(x) is the di�erence between rM;0(x) and rM�1;0(x)which are the representations of r(x) in the two resolutions. Inverting the relations(2.98) and (2.99) yieldsRM;02j = RM�1;0j +RM�1;1j (0 � j � 2M�1 � 1) (2.100)RM;02j+1 = RM�1;0j �RM�1;1j (0 � j � 2M�1 � 1) (2.101)



42The relations (2.98) and (2.99) can be combined into one equation as follows:RM�1;sj = 12 Xi2f2j;2j+1g(�1)isRM;0i (s 2 f0; 1g; 0 � j � 2M�1 � 1) (2:102)This is the two-scale decomposition relation for decomposing the �ne representationRM;0i into the coarse representation RM�1;0j and the di�erence information RM�1;1j .Similarly, the relations (2.100) and (2.101) can be combined into the following:RM;0i = Xs2f0;1g(�1)isRM�1;sj (i 2 f2j; 2j + 1g; 0 � j � 2M�1 � 1) (2:103)This is the two-scale reconstruction relation for reconstructing the �ne representationRM;0i from the coarse representation RM�1;0j and the di�erence information RM�1;1j .The two-scale decomposition and reconstruction relations (2.102) and (2.103) havefactors 12 and 1, respectively, in front of the summations, but these factors can bedi�erent with di�erent de�nitions of �Mj (x) and  Mj (x). The general formulas can bewritten the following way. The general two-scale decomposition relation isRM�1;sj = � Xi2f2j;2j+1g(�1)isRM;0i (s 2 f0; 1g; 0 � j � 2M�1 � 1) (2:104)where � is a real constant. The general two-scale reconstruction relation isRM;0i = � Xs2f0;1g(�1)isRM�1;sj (i 2 f2j; 2j + 1g; 0 � j � 2M�1 � 1) (2:105)where � is a real constant. We show below that (2.104) and (2.105) are self-consistentas long as � and � have the relation: �� = 2�1 for the one-dimensional case.We de�ned rM;0(x) in (2.93) as the function representing r(x) in resolution 2M .Here, we assume that the highest resolution for such representation is 2M0 with someinteger M0 � 0. Then, we newly de�ne �Mj (x) and  Mj (x) as follows:�Mj (x) 4= �M0�M�(2Mx� j) (2.106) Mj (x) 4= �M0�M (2Mx� j) (2.107)



43These are designed so that, at the highest resolution 2M0 , the factor �M0�M becomesunity and the arrayRM0;0 = fRM0;00 ; RM0;01 ; � � � ; RM0;02M0�1g de�ned by (2.93) are actuallythe sampled values of r(x) at 2M0 points of equal intervals. The two-scale relationsbased on these new de�nitions are:�M�1j (x) = �(�M2j (x) + �M2j+1(x)) (2.108) M�1j (x) = �(�M2j (x)� �M2j+1(x)) (2.109)and �M2j (x) = 12� ��M�1j (x) +  M�1j (x)� (2.110)�M2j+1(x) = 12� ��M�1j (x)�  M�1j (x)� (2.111)Then, rM;0(x) (M �M0) becomes the following (cf. (2.94)):rM;0(x)= 2M�1Xj=0 RM;0j �Mj (x)= 2M�1�1Xj=0 �RM;02j �M2j (x) +RM;02j+1�M2j+1(x)�= 2M�1�1Xj=0  RM;02j � 12� (�M�1j (x) +  M�1j (x)) +RM;02j+1 � 12� (�M�1j (x)�  M�1j (x))!= 2M�1�1Xj=0  12� (RM;02j +RM;02j+1)�M�1j (x) + 12� (RM;02j �RM;02j+1) M�1j (x)! (2.112)Comparing (2.112) with (2.96) yieldsRM�1;0j = 12� (RM;02j +RM;02j+1) (0 � j � 2M�1 � 1) (2.113)RM�1;1j = 12� (RM;02j �RM;02j+1) (0 � j � 2M�1 � 1) (2.114)in order to have the relation (2.97). From (2.113) and (2.114), we getRM;02j = �(RM�1;0j +RM�1;1j ) (0 � j � 2M�1 � 1) (2.115)RM;02j+1 = �(RM�1;0j �RM�1;1j ) (0 � j � 2M�1 � 1) (2.116)



44HM0�1 HM0�2 H1 H0RM0;0 �! RM0�1;0 �! � � � �! R1;0 �! R0;0& & & &RM0�1;1 R1;1 R0;1Figure 2.8: One-dimensional Haar wavelet transformH�1M0�1 H�1M0�2 H�11 H�10RM0;0  � RM0�1;0  � � � �  � R1;0  � R0;0- - - -RM0�1;1 R1;1 R0;1Figure 2.9: One-dimensional inverse Haar wavelet transformThe two-scale decomposition relations (2.113) and (2.114) and the two-scale recon-struction relations (2.115) and (2.116) become (2.104) and (2.105), respectively, with�� = 2�1.Let us de�neHM�1 as the two-scale decomposition process de�ned by (2.104), andits inverse H�1M�1 as the two-scale reconstruction process de�ned by (2.105). Namely,RM;0 HM�1�! �H�1M�1 RM�1;0;RM�1;1 (2:117)Then, the one-dimensional Haar wavelet transform is calculated as shown in Fig-ure 2.8. The initial coe�cient array RM0;0 is set to the one-dimensional distributedparameter r � fr0; r1; � � � ; r(2M0�1)g, thus RM0;0 = r. In each step, the array RM;0with 2M elements is decomposed by HM�1 into the two arrays RM�1;0 and RM�1;1each of which has 2M�1 elements. The array RM�1;0, the coarse representation of r,is further decomposed in the next step, and the di�erence information RM�1;1 is keptas a part of the �nal array R. The decomposition process continues until R0;0 and
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step 0 step 1 step 2 step 3

unknown distribution

estimate

Figure 2.10: Multiresolution estimation with Haar wavelet transformR0;1 are produced.The �nal array R, which we call the coe�cients of the Haar wavelet transform,consists of R0;0 and all the di�erence information fRM;1g0�M�M0�1. Thus,R 4= nR0;0; fRM;1g0�M�M0�1o (2:118)Figure 2.9 is the one-dimensional inverse Haar wavelet transform that is the reverseprocess of Figure 2.8.Figure 2.10 shows the step scheme of multiresolution estimation with the one-dimensional Haar wavelet transform. In step 0, the array R0;0, which has only oneelement, is estimated. In step 1, both array R0;0 and array R0;1 are estimated. In this�gure, it might look unnecessary to include the �rst array R0;0 in the search in step 1



46because it is already estimated in step 0. In reality, however, it is necessary becausethe mathematical model on which the cost is calculated is a nonlinear process. Instep 2, R0;0;R0;1 and R1;1 are estimated, and so on. In general, step M estimatesR0;0 and the di�erence information R0;1; � � � ;RM�1;1 to reconstruct the parameterdistribution in resolution 2M .2.4.2 For n-dimensional FieldAlthough Daubechies [6] shows construction of the two-dimensional wavelet trans-form, higher-dimensional wavelet transforms are referred to as simply \analogous".In this section, we de�ne a general n-dimensional Haar wavelet transform \analogous"to her two-dimensional wavelet structure.It is assumed that the parameter r has the same number N of real elements ineach of the n coordinates, thus r 2 RNn, and that N = 2M0 with some integerM0 � 0. It turns out that the transform coe�cient array R �ts in the same shapeas the parameter r, so R 2 RNn. Therefore, both r and R can be viewed as ann-dimensional cube with edges of length N = 2M0 .An n-dimensional �eld has n coordinates (x1; � � � ; xn), and each coordinate cantake either the one-dimensional scaling function �() (2.83) to produce the \average"or the one-dimensional wavelet  () (2.84) to produce the di�erence information ata time. Hence, there are 2n ways of obtaining information at each resolution. Wecreate one scaling function �(x1; � � � ; xn) and 2n � 1 wavelets 	s1���sn(x1; � � � ; xn) forthe n-dimensional Haar wavelet transform as follows:�(x1; � � � ; xn) 4= nYt=1�(xt) (2.119)	s1���sn(x1; � � � ; xn) 4= nYt=1 (�st;0�(xt) + �st;1 (xt)) (2.120)



47where s1 � � � sn for the wavelet 	s1���sn(x1; � � � ; xn) is such that sm 2 f0; 1g (m =1; � � � ; n), s1 � � � sn 6= 0 � � � 0(all zero), and �i;j is Kronecker's delta such that �i;j = 1 ifi = j and �i;j = 0 if i 6= j. In this notation, s1 � � � sn can be viewed as n \switches":if sm = 0, the scaling function �(xm) is taken, and if sm = 1, the wavelet  (xm) istaken.For the one-dimensional Haar wavelet transform, we de�nedRM;0 as the coe�cientarray that corresponds to �(), and RM;1 as the coe�cient array that corresponds to (). In an analogous manner, for the n-dimensional Haar wavelet transform, we de�neRM;0 as the coe�cient array that corresponds to �(), andRM;s1���sn (s1 � � � sn 6= 0 � � � 0)as the coe�cient array that corresponds to 	s1���sn(). For convenience, we allows1 � � � sn to be all zeros when appropriate and de�ne RM;0���0 � RM;0. Then, thetwo-scale decomposition relation is de�ned asRM�1;s1���sni1;���;in 4= � Xj1;���;jnjm2f2im;2im+1g(�1)Pnt=1 jtstRM;0j1;���;jn (0 � im � 2M�1 � 1) (2:121)in which � is a real constant. The two-scale reconstruction relation is de�ned asRM;0j1;���;jn = � Xs1;���;snsm2f0;1g(�1)Pnt=1 jtstRM�1;s1���sni1;���;in (jm 2 f2im; 2im + 1g) (2:122)in which � is a real constant.Let HM�1 denote the two-scale decomposition process de�ned by (2.121) andH�1M�1 denote the two-scale reconstruction process de�ned by (2.122). Namely,RM;0 HM�1�! �H�1M�1 RM�1;0; fRM�1;s1���sng sm2f0;1gs1���sn 6=0���0 (2:123)The array on the left-hand side of (2.123) has (2M )n = 2nM elements. Each of the 2narrays on the right-hand side has 2n(M�1) elements, the total being 2n �2n(M�1) = 2nM .



48HM0�1 HM0�2 H1 H0RM0;0 �! RM0�1;0 �! � � � �! R1;0 �! R0;0& & & &fRM0�1;s1���sngsm2f0;1gs1 ���sn 6=0���0 fR1;s1���sngsm2f0;1gs1���sn 6=0���0 fR0;s1���sngsm2f0;1gs1 ���sn 6=0���0Figure 2.11: n-dimensional Haar wavelet transformH�1M0�1 H�1M0�2 H�11 H�10RM0 ;0  � RM0�1;0  � � � �  � R1;0  � R0;0- - - -fRM0�1;s1 ���sngsm2f0;1gs1 ���sn 6=0���0 fR1;s1���sngsm2f0;1gs1���sn 6=0���0 fR0;s1���sngsm2f0;1gs1���sn 6=0���0Figure 2.12: n-dimensional inverse Haar wavelet transformTherefore, the amount of data is conserved through the two-scale decomposition andreconstruction processes of (2.123).Figure 2.11 shows the calculation of the n-dimensional Haar wavelet transform.The initial array RM0;0 is set to the n-dimensional distributed parameter r. In eachstep,HM�1 decomposesRM;0 intoRM�1;0, which is the coarse representation of r, and2n � 1 arrays fRM�1;s1���sng sm2f0;1gs1 ���sn 6=0���0, which have the di�erence information betweenRM;0 andRM�1;0. The �nal arrayR, which we call the coe�cients of the Haar wavelettransform, consists of R0;0 and all the di�erence information fRM;s1���sng0�M�M0�1sm2f0;1gs1���sn 6=0���0 .Thus, R 4= 8>>><>>>:R0;0; fRM;s1���sng0�M�M0�1sm2f0;1gs1���sn 6=0���0 9>>>=>>>; (2:124)The n-dimensional inverse Haar wavelet transform is the reconstruction processshown in Figure 2.12.



49As the following theorem shows, the two-scale decomposition and reconstructionin (2.123), and as a result the transform and the inverse transform in Figures 2.11and 2.12, are inverse to each other, as long as real constants � and � in (2.121) and(2.122) have the relation: �� = 2�n.Theorem 2.5: The two-scale Haar reconstruction de�ned by (2.122) and the two-scale Haar decomposition de�ned by (2.121) are inverse to each other with �� = 2�n.Proof: Let RM;0 be decomposed by (2.121) and reconstructed back by (2.122). LetQM;0 denote the reconstructed array. In other words, we examine the relation betweenRM;0 and QM;0 de�ned by QM;0 = H�1M�1(HM�1(RM;0)) (2:125)From (2.121), RM;0 is decomposed asRM�1;s1���sni1;���;in 4= � Xk1 ;���;knkm2f2im;2im+1g(�1)Pnt=1 ktstRM;0k1;���;kn (0 � im � 2M�1 � 1) (2:126)From (2.122), the reconstruction of QM;0 is performed asQM;0j1;���;jn = � Xs1;���;snsm2f0;1g(�1)Pnt=1 jtstRM�1;s1���sni1;���;in (jm 2 f2im; 2im + 1g) (2:127)Substituting (2.126) into (2.127) yields the following (jm 2 f2im; 2im + 1g):QM;0j1;���;jn = � Xs1;���;snsm2f0;1g(�1)Pnt=1 jtst 0BBB@� Xk1 ;���;knkm2f2im;2im+1g(�1)Pnh=1 khshRM;0k1;���;kn1CCCA= �� Xk1 ;���;knkm2f2im;2im+1gRM;0k1;���;kn 0BB@ Xs1;���;snsm2f0;1g(�1)Pnt=1(jt+kt)st1CCA (2.128)If ja 6= ka for some integer a (1 � a � n), then (ja + ka) is odd since ja; ka 2f2ia; 2ia + 1g, and the following results.



50Xs1;���;snsm2f0;1g(�1)Pnt=1(jt+kt)st (2.129)= Xs1;���;snsm2f0;1g (�1)(ja+ka)sa � (�1)Pnt=1t6=a(jt+kt)st!= Xs1;���;sa�1;sa+1 ;���;snsm2f0;1g 0@ Xsa2f0;1g(�1)(ja+ka)sa � (�1)Pnt=1t6=a(jt+kt)st1A= Xs1;���;sa�1;sa+1 ;���;snsm2f0;1g  (�1)Pnt=1t6=a(jt+kt)st � (�1)Pnt=1t6=a(jt+kt)st!= 0 (2.130)Therefore, Xs1;���;snsm2f0;1g(�1)Pnt=1(jt+kt)st = 8><>: 2n if jt = kt for all t0 otherwise (2:131)Applying this to (2.128), we get the following:QM;0j1;���;jn = 2n��RM;0j1;���;jn (2:132)Therefore, with �� = 2�n, the reconstructed array QM;0 is equal to the original arrayRM;0, that is: RM;0 = H�1M�1(HM�1(RM;0)) (2:133)for any RM;0.Now, let us consider the opposite way. Take any n-dimensional array S 2 R2nM .The array S can be partitioned into 2n arrays each of which has 2n(M�1) elements,since the total number of elements is 2n � 2n(M�1) = 2nM . Let each \small" array beRM�1;s1���sn such that S � fRM�1;s1���sngsm2f0;1g (2:134)Now we calculate a set of arrays fTM�1;s1���sngsm2f0;1g as follows:fTM�1;s1���sngsm2f0;1g = HM�1(H�1M�1(fRM�1;s1���sngsm2f0;1g)) (2:135)



51From the de�nition of the two-scale reconstruction (2.122),RM;0j1;���;jn = � Xd1;���;dndm2f0;1g(�1)Pnt=1 jtdtRM�1;d1���dnk1;���;kn (jm 2 f2km; 2km + 1g) (2:136)From the de�nition of the two-scale decomposition (2.121),TM�1;s1���snk1;���;kn = � Xj1;���;jnjm2f2km;2km+1g(�1)Pnt=1 jtstRM;0j1;���;jn (0 � km � 2M�1 � 1) (2:137)Substituting (2.136) into (2.137) yields the following:TM�1;s1���snk1;���;kn = � Xj1;���;jnjm2f2km;2km+1g(�1)Pnt=1 jtst 0BBB@� Xd1;���;dndm2f0;1g(�1)Pnt=1 jtdtRM�1;d1���dnk1;���;kn 1CCCA= �� Xd1;���;dndm2f0;1gRM�1;d1���dnk1;���;kn 0BBB@ Xj1;���;jnjm2f2km;2km+1g(�1)Pnt=1 jt(st+dt)1CCCA (2.138)If sa 6= da for some integer a (1 � a � n), then (sa + da) = 1 since sa; da 2 f0; 1g,and the following results:Xj1;���;jnjm2f2km;2km+1g(�1)Pnt=1 jt(st+dt) (2.139)= Xj1;���;jnjm2f2km;2km+1g (�1)ja(sa+da) � (�1)Pnt=1t6=a jt(st+dt)!= Xj1;���;ja�1 ;ja+1;���;jnjm2f2km;2km+1g 0@ Xja2f2ka;2ka+1g(�1)ja � (�1)Pnt=1t6=a jt(st+dt)1A= Xj1;���;ja�1 ;ja+1;���;jnjm2f2km;2km+1g  (�1)Pnt=1t6=a jt(st+dt) � (�1)Pnt=1t6=a jt(st+dt)!= 0 (2.140)Therefore, Xj1;���;jnjm2f2km;2km+1g(�1)Pnt=1 jt(st+dt) = 8><>: 2n if st = dt for all t0 otherwise (2:141)



52Applying this to (2.138) yields:TM�1;s1���snk1;���;kn = 2n��RM�1;s1���snk1;���;kn (2:142)With �� = 2�n, we get: TM�1;s1���sn = RM�1;s1���sn (2:143)for all sm 2 f0; 1g. Then, from (2.134) and (2.135), we get:S = HM�1(H�1M�1(S)) (2:144)Therefore, the two-scale decomposition HM�1() and the two-scale reconstructionH�1M�1() are inverse to each other.Regardless of the dimension of the �eld, we use the following notation for the Haarwavelet transform and the inverse transform between a distributed parameter r andits Haar wavelet coe�cients R. R = Haar(r) (2.145)r = Haar�1(R) (2.146)The dimension of the transforms Haar() and Haar�1() is assumed to be the same asthat of the �eld over which the parameter r is distributed.As seen from (2.121) and (2.122), Haar() and Haar�1() are linear operators suchthat Haar(c1r1 + c2r2) = c1Haar(r1) + c2Haar(r2) (2.147)Haar�1(c1R1 + c2R2) = c1Haar�1(R1) + c2Haar�1(R2) (2.148)with any real numbers c1 and c2.



532.4.3 Filtering the GradientIn this section, we prove that the two methods of estimation considered in Sec-tion 2.1.3, namely the indirect estimation of the parameter by estimating the coe�-cients of the transform and the direct estimation of the parameter using the gradient�ltered by the transform, are actually equivalent with the Haar wavelet transform.We start with a lemma used for proving the next theorem.Lemma 2.2: Let AM;0 and BM;0 be n-dimensional real arrays each of which isdecomposed by the two-scale decomposition HM�1 de�ned by (2.123) and (2.121).Then, HM�1(AM;0) � HM�1(BM;0) = 2n�2AM;0 �BM;0Proof:HM�1(AM;0) � HM�1(BM;0)= Xs1;���;snsm2f0;1gAM�1;s1���sn �BM�1;s1���sn= Xs1;���;snsm2f0;1g Xi1;���;in0�im<2M�1AM�1;s1���sni1;���;in BM�1;s1���sni1;���;in= Xs1;���;snsm2f0;1g Xi1;���;in0�im<2M�1 0BBB@� Xj1 ;���;jnjm2f2im;2im+1g(�1)Pnt=1 jtstAM;0j1;���;jn1CCCA� 0BBB@� Xk1 ;���;knkm2f2im;2im+1g(�1)Pnt=1 ktstBM;0k1;���;kn1CCCA= �2 Xs1;���;snsm2f0;1g Xi1 ;���;in0�im<2M�1 Xj1;���;jnjm2f2im;2im+1g Xk1;���;knkm2f2im;2im+1g(�1)Pnt=1(jt+kt)stAM;0j1;���;jnBM;0k1;���;kn= �2 Xi1;���;in0�im<2M�1 Xj1;���;jnjm2f2im;2im+1g Xk1 ;���;knkm2f2im;2im+1gAM;0j1;���;jnBM;0k1;���;kn Xs1;���;snsm2f0;1g(�1)Pnt=1(jt+kt)st(2.149)



54The last summation Xs1;���;snsm2f0;1g(�1)Pnt=1(jt+kt)st is calculated as follows. When jt = kt forall t (1 � t � n), all (jt + kt) are even, and therefore (�1)Pnt=1(jt+kt)st = 1 regardlessof whether each st is 0 or 1. Therefore, Xs1;���;snsm2f0;1g(�1)Pnt=1(jt+kt)st = 2n.When jt 6= kt for some t, suppose t = h is such t, namely jh 6= kh. The summationcan be rewritten with a summation with respect to all sm (1 � m � n) except sh anda summation with respect to sh as follows:Xs1;���;snsm2f0;1g(�1)Pnt=1(jt+kt)st = Xs1;���;sh�1;sh+1 ;���;snsm2f0;1g 0@ 1Xsh=0(�1)Pnt=1(jt+kt)st1A (2:150)Since jh; kh 2 f2im; 2im + 1g, (jh + kh) is odd from jh 6= kh. So, (jh + kh)sh is evenwhen sh = 0 and odd when sh = 1. Hence,1Xsh=0(�1)Pnt=1(jt+kt)st = 0 (2:151)Therefore, Xs1;���;snsm2f0;1g(�1)Pnt=1(jt+kt)st = 0 when jt 6= kt for some t.From these results, we have to count only the cases where jt = kt for all t in(2.149) as follows:(2.149) = 2n�2 Xi1;���;in0�im<2M�1 Xj1;���;jnjm2f2im;2im+1gAM;0j1;���;jnBM;0j1;���;jn= 2n�2 Xi1 ;���;in0�im<2M AM;0i1;���;inBM;0i1 ;���;in� 2n�2AM;0 �BM;0 (2.152)Connecting (2.149) and (2.152) givesHM�1(AM;0) � HM�1(BM;0) = 2n�2AM;0 �BM;0 (2:153)



55Theorem 2.6: Let a, b, c and d be n-dimensional real arrays in RNn, where N =2M0 for a certain integer M0 � 0. That is, a for example has Nn elements each ofwhich is ak1k2���kn(kj = 0; � � � ; N � 1). Let A, B, C and D be the coe�cient arraysof the n-dimensional Haar wavelet transform of a, b, c and d, respectively. Then, if� = � = 2�n2 , the following relation of inner products holds:A �BC �D = a � bc � d (2:154)In other words, ratios of inner products are unchanged by the Haar wavelet transformand its inverse transform.Proof: Let A0M (M0 � 1 � M � 0) denote the collection of the coe�cient arraysthat result after a series of two-scale decomposition steps HM0�1;HM0�2; � � � ;HM . So,A0M consists of AM;0 and the collection of fAK;s1���sng sm2f0;1gs1���sn 6=0���0 from K =M0 � 1 toK =M as follows: A0M 4= 8>>><>>>:AM;0; fAK;s1 ���sngM�K�M0�1sm2f0;1gs1���sn 6=0���0 9>>>=>>>; (2:155)In particular, A00 is the collection of arrays after all the decomposition steps, whichis the result of the Haar wavelet transform. Thus, A00 � A. We perform the proofby induction on M for the following:A0M �B0MC 0M �D0M = a � bc � d (2:156)1. When M = M0 � 1, A0M0�1 is the resulting arrays after the �rst two-scaledecomposition HM0�1. Thus, using Lemma 2.2, we get the following:A0M0�1 �B0M0�1 = HM0�1(AM0;0) � HM0�1(BM0;0)= 2n�2AM0 ;0 �BM0;0 (2.157)Since the initial coe�cients are set such that AM0;0 = a and BM0;0 = b, thefollowing results: A0M0�1 �B0M0�1 = 2n�2a � b (2:158)



56The same relation applies to c and d. Thus, (2.156) holds for M =M0 � 1.2. Suppose (2.156) holds for a certain M (M0 � 1 � M � 0). Referring to thede�nition (2.155), A0M�1 can be rewritten as follows:A0M�1 � 8>>><>>>:AM�1;0; fAK;s1���sngM�1�K�M0�1sm2f0;1gs1���sn 6=0���0 9>>>=>>>;= 8>>><>>>:AM�1;0; fAM�1;s1���sngsm2f0;1gs1���sn 6=0���0 ; fAK;s1���sngM�K�M0�1sm2f0;1gs1���sn 6=0���0 9>>>=>>>;= 8>>><>>>:HM�1(AM;0); fAK;s1���sngM�K�M0�1sm2f0;1gs1���sn 6=0���0 9>>>=>>>; (2.159)Therefore,A0M�1 �B0M�1= 8>>><>>>:HM�1(AM;0); fAK;s1���sngM�K�M0�1sm2f0;1gs1 ���sn 6=0���0 9>>>=>>>;�8>>><>>>:HM�1(BM;0); fBK;s1���sngM�K�M0�1sm2f0;1gs1���sn 6=0���0 9>>>=>>>;= HM�1(AM;0) � HM�1(BM;0)+ fAK;s1���sngM�K�M0�1sm2f0;1gs1���sn 6=0���0 � fBK;s1���sngM�K�M0�1sm2f0;1gs1���sn 6=0���0= HM�1(AM;0) � HM�1(BM;0) �AM;0 �BM;0+8>>><>>>:AM;0; fAK;s1���sngM�K�M0�1sm2f0;1gs1���sn 6=0���0 9>>>=>>>; �8>>><>>>:BM;0; fBK;s1���sngM�K�M0�1sm2f0;1gs1���sn 6=0���0 9>>>=>>>;= HM�1(AM;0) � HM�1(BM;0) �AM;0 �BM;0 +A0M �B0M= (2n�2 � 1)AM;0 �BM;0 +A0M �B0M (from Lemma 2.2) (2.160)



57Hence, with the similar relation for C 0M�1 �D0M�1, we get:A0M�1 �B0M�1C 0M�1 �D0M�1 = (2n�2 � 1)AM;0 �BM;0 +A0M �B0M(2n�2 � 1)CM;0 �DM;0 +C 0M �D0M= A0M �B0MC0M �D0M (with � = 2�n2 )= a � bc � d (from the inductive hypothesis) (2.161)From 1. and 2. above, (2.156) holds for all M (M0 � 1 � M � 0). In particular,(2.156) with M = 0 is equivalent toA �BC �D = a � bc � d (2:162)Now, let us consider the equivalence of the two kinds of procedures introduced inSection 2.1.3 with the Haar wavelet transform. One procedure indirectly estimatesthe desired parameter by estimating the coe�cients of the transform, and the otherprocedure directly estimates the parameter by using the gradient �ltered by thetransform. We call the former COEFHaar and the latter FILTHaar , which aredescribed below.COEFHaar : Estimate the Haar wavelet coe�cients R to indirectly estimate theparameter r = Haar�1(R) by using the weighted gradient rWRH de�ned asfollows: rWRH 4=W(rRH) (2:163)FILTHaar : Directly estimate the parameter r using the scale-�ltered gradientrtr H de�ned as follows:rtr H 4= Haar�1(W(Haar(rrH))) (2.164)



58In (2.163) and (2.164),W(X) multiplies each element ofX by a certain real weightdetermined by the element's associated scale. This W() is essential for controllingthe resolution. In the step scheme, each weight is either 1 or 0 as a low-pass �lter. Inthe weight scheme, the weights form a smooth attenuator.In (2.164), the gradient rrH is transformed to the Haar wavelet coe�cient space,multiplied by certain real weights determined by scale, and then transformed back tothe parameter space to make the �ltered gradient rtr H.Note that, as shown later by (3.24), page 73, there is the following relation betweenthe gradients in the two domains:rRH = Haar(rrH) (2:165)Theorem 2.7: COEFHaar and FILTHaar produce identical estimates rj of the real-valued parameter r on every local-search iteration j � 0, provided that (1) a localsearch is performed by the same type of the conjugate gradient method, i.e. eitherthe Fletcher-Reeves or the Polak-Ribiere shown in (2.13), (2) they start with thesame initial guess r0, (3) the same W() is employed, (4) � = � = 2�n2 for Haar()and Haar�1, and (5) each line minimization is exact and no numerical errors areinvolved.Proof: We use the following notation.In COEFHaarRC : the estimate of the Haar wavelet coe�cientsdC : the line search direction in the Haar wavelet coe�cient spacerC : the estimate of the parameter �rC � Haar�1(RC)�In FILTHaarrF : the estimate of the parameterdF : the line search direction in the parameter space



59If a subscript is attached to any of these, e.g. RCj , it means the value on the j-th lineminimization. Also, we de�ne gCj and gFj that are used as gj of Section 2.2 as follows:gCj 4= rWRCH(RCj ) �W(rRCH(RCj )) (2.166)gFj 4= rtrFH(rFj ) � Haar�1(W(Haar(rrFH(rFj )))) (2.167)where rRCH(RCj ) is the gradient with respect to the Haar wavelet coe�cients RCand rrFH(rFj ) is the gradient with respect to the parameter estimate rF .We prove rCj = rFj along with dCj = Haar(dFj ) for all j � 0 by induction on j, thenumber of line minimizations.1. When j = 0, the two procedures start with the same initial guess of theparameter: rC0 = rF0 (2:168)and the line-search directions dC0 and dF0 are as follows:dC0 = �gC0 (2.169)dF0 = �gF0 (2.170)There is the following relation between gC0 and gF0 :gC0 � W(rRCH(RC0 ))= W �Haar �rrCH(rC0 )�� (use (2.165))= W �Haar �rrFH(rF0 )�� (since rC0 = rF0 )= Haar(gF0 ) (use (2.167)) (2.171)Putting (2.169) and (2.170) into (2.171), we getdC0 = Haar(dF0 ) (2:172)



602. Suppose the following relations hold for a certain j � 0 :rCj = rFj (2.173)dCj = Haar(dFj ) (2.174)From (2.10) in page 18, RCj+1 and rFj+1 are determined by line minimization inthe directions dCj and dFj , respectively, as follows:RCj+1 = RCj + �Cj dCj (2.175)rFj+1 = rFj + �Fj dFj (2.176)Using (2.175), rCj+1 � Haar�1(RCj+1)= Haar�1(RCj + �Cj dCj )= Haar�1(RCj ) + �Cj Haar�1(dCj )� rCj + �Cj Haar�1(dCj ) (2.177)From (2.174), Haar�1(dCj ) = dFj (2:178)With this and (2.173), (2.177) becomes the following:rCj+1 = rFj + �Cj dFj (2:179)Comparing the right-hand sides of (2.179) and (2.176), we can see that both arethe same line minimization in the direction dFj from rFj . Therefore, they reachthe same point, which results in �Fj = �Cj . Thus, the left-hand sides of (2.179)and (2.176) are equal to each other:rCj+1 = rFj+1 (2:180)



61From (2.12) in page 18, the next search directions dCj+1 and dFj+1 are determinedas follows: dCj+1 = �gCj+1 + �Cj+1dCj (2.181)dFj+1 = �gFj+1 + �Fj+1dFj (2.182)where real coe�cients �Cj+1 and �Fj+1 are calculated by either the Fletcher-Reevesformula or the Polak-Ribiere formula shown in (2.13), page 18. The followingis obtained with (2.180) in a manner similar to (2.171).gCj+1 � W(rRCH(RCj+1))= W �Haar �rrFH(rFj+1)��= Haar(gFj+1) (2.183)Similarly, with (2.173), we get: gCj = Haar(gFj ) (2:184)Using (2.183), (2.184), and Theorem 2.6 in page 55, we get the followingrelations. If the Fletcher-Reeves formula is used,�Cj+1 = gCj+1 � gCj+1gCj � gCj= Haar(gFj+1) �Haar(gFj+1)Haar(gFj ) �Haar(gFj )= gFj+1 � gFj+1gFj � gFj= �Fj+1 (2.185)If the Polak-Ribiere formula is used,�Cj+1 = (gCj+1 � gCj ) � gCj+1gCj � gCj= (Haar(gFj+1)�Haar(gFj )) �Haar(gFj+1)Haar(gFj ) �Haar(gFj )



62= Haar(gFj+1 � gFj ) �Haar(gFj+1)Haar(gFj ) �Haar(gFj )= (gFj+1 � gFj ) � gFj+1gFj � gFj= �Fj+1 (2.186)We have established �Cj+1 = �Fj+1 for both formulas. Using this relation alongwith (2.174), (2.181), (2.182) and (2.183), we get:dCj+1 = �gCj+1 + �Cj+1dCj= �Haar(gFj+1) + �Fj+1Haar(dFj )= Haar(�gFj+1 + �Fj+1dFj )= Haar(dFj+1) (2.187)Therefore, as (2.180) and (2.187) show, if rCj = rFj and dCj = Haar(dFj ) holdfor a certain j � 0, these relations also hold for j + 1.From 1. and 2. above, rCj = rFj holds for all j � 0.



633. Calculation of the GradientThe conjugate gradient method needs the gradient of the cost with respect to thedistributed parameter to be estimated. Each element of the gradient is the partialderivative of the cost with respect to an element of the distributed parameter. Ifwe use a simple numerical di�erentiation to get each of them, we have to solve theforward problem on two slightly di�erent values of a parameter element to get onepartial derivative, and the computation time would be of the order of the number ofparameter elements multiplied by the computation time for the forward solution. Itis prohibitive to calculate the gradient this way if there are many parameter elements.Fortunately, we can utilize the so-called back propagation to calculate the gradientvery e�ciently. Its computation time is only of the same order of the forwardcalculation time.3.1 The Back-Propagation AlgorithmThe back-propagation algorithm [14, 15, 33, 32] is a scheme for solving learningproblems of arti�cial neural networks where a cost function that represents learningerrors is to be minimized. Although the scheme is sometimes viewed as including thegradient descent method, which is the simplest method of minimization, the essenceof back propagation is its e�cient way of calculating the gradient of the cost function.So it can be employed to calculate gradients for other methods of minimization suchas the conjugate gradient method.Back propagation is simply a hierarchical application of the chain rule for partialdi�erentiation. The chain rule for partial di�erentiation is the following: if you wantthe partial derivative of a certain function H with respect to a variable x, �nd all theintermediate functions yj that directly depend on x, and then calculate as follows:
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V (0)6ppp6V (t�1)6parameter r(t)V (t)6ppp6V (T )calculated cVtarget���� @@@Icost H

Figure 3.1: Layers of forward calculation@H@x =Xj @H@yj @yj@x (3:1)In most cases, it is easy to obtain the analytic form of @yj@x because yj directly dependson x. Therefore, if we know the value of each @H@yj , we can easily calculate the desiredderivative by (3.1). Back propagation obtains the value of each @H@yj by repeatedlyapplying (3.1) in a hierarchical manner. We present the details below.Suppose we have T hierarchical layers of calculation for solving a forward problemas shown in Figure 3.1. In the t-th layer, a set of variables V (t) is calculated from thevariables in the (t� 1)-th layer V (t�1) with a distributed parameter r(t) (1 � t � T ).In the case of an arti�cial neural network, V (t) would be a set of the outputs ofneurons in the t-th layer and r(t) would be the connection weights from the (t� 1)-thlayer to the t-th layer. In the case of a mathematical model, such as a set of partial



65di�erential equations, that is solved by an iteration method, \layer t" denotes thet-th iteration of the forward calculation. Although the parameter r may be constantthrough all the forward calculation layers, it is treated here as independent in eachlayer t.Let V (t)j denote each element of V (t) and r(t)k each element of r(t). If V (t) and r(t)are multi-dimensional, this notation of elements can be viewed as the j-th and k-thelements in a certain one-dimensional array representation of the multi-dimensionalobjects.The cost H is calculated by comparing V (T ), the variables on the top layer T , withsome target values cV . Let us assume that there are �0 sets of conditions on whichthe closeness of the two is to be evaluated, and the cost is the sum of the closenessfor all the sets of conditions � = 0; � � � ; �0 � 1 as follows:H 4= �0�1X�=0 Xj f(V (T )j ���� ; bVj ����) (3:2)where f() is a certain function and xj� is the value of x on the condition �.We want to calculate the gradient of the cost H with respect to each parameterr(t) in the t-th layer, which is a set of partial derivatives:rr(t)H � 8<: @H@r(t)j 9=;all j (3:3)Each of the partial derivatives is calculated by the chain rule as follows:@H@r(t)j = �0�1X�=0 Xk @H@V (t)k ������ @V (t)k@r(t)j ������� (3:4)Let us assume that @V (t)k@r(t)j ������� in (3.4) is available in analytic form. This is usually thecase, because the relation between V (t)k and r(t)j is described by the given mathematicalmodel. Then, calculating (3.4) reduces to calculating @H@V (t)k ������, which is performedfrom the top layer (t = T ) toward the bottom layer in the following way.



66If t = T , V (t)k is on the top layer and therefore directly related to the cost H asde�ned in (3.2). From that de�nition we get:@H@V (T )k ������ = f 0(V (T )k ���� ; bVk����) (3:5)where f 0() is the derivative of the function f(). For example, if we set f(x; x̂) 4=12(x� x̂)2 in (3.2) and de�ne the cost H asH 4= 12 �0�1X�=0 Xj (V (T )j ���� � bVj ����)2 (3:6)then, @H@V (T )k ������ = V (T )k ���� � bVk���� (3:7)If t < T , V (t)k is not directly related to the cost H, hence the derivative @H@V (t)k ������is not immediately available. However, V (t)k is used to get V (t+1)j on the layer aboveit in the forward calculation and their relation is de�ned by the given model. Fromthat relation, @V (t+1)j@V (t)k is obtained in analytic form. Therefore, using the chain ruleagain, the derivative of H with respect to V (t)k is calculated from the derivatives withrespect to V (t+1)k as follows:@H@V (t)k ������ =Xj @H@V (t+1)j ������� @V (t+1)j@V (t)k ������� (3:8)In other words, the derivatives @H@V (t)j are \back-propagated" from the top layer t = Tthrough the bottom layer t = 1.With all these derivatives ready, we can calculate all the elements of the desiredgradient by (3.4). Let us summarize the process of calculation:1. Put @H@V (T )k on the top layer into analytic form by di�erentiating H.2. Put @V (t)k@r(t)j into analytic form by di�erentiating the given mathematical model.



673. Calculate each value of @H@V (T )k ������ on the top layer by putting the value of V (T )kon condition � into the analytic form obtained in 1.4. Calculate each value of @H@V (t)k ������ on the lower layers by back-propagating as in(3.8).5. Calculate each value of @V (t)k@r(t)j ������� on all the layers by putting the value of V (t)k ����into the analytic form obtained in 2.6. Put @V (t)k@r(t)j ������� calculated in 5. and @H@V (t)k ������ calculated in 3. and 4. into (3.4) toobtain the gradient.As seen in the summary above, all the values V (t)k ���� have to be stored during theforward calculation on condition � to be used by the back-propagation process. Thetime complexity of back propagation is of the same order of the computation timerequired for the forward solution, because back propagation requires only one sweepof calculation from the top layer to the bottom layer.Literature of arti�cial neural networks usually de�nes and uses the \delta value" �as the partial derivative of the cost with respect to the input of a function representingV (t)j . This is �ne with most neural networks, because such a function usually has onlyone input, e.g. the sum of several signals. However, this assumption may not work inthe case of parameter estimation, because the variable V (t)j can be a function of two ormore inputs [1]. Viewing back propagation in a general manner as above eliminatessuch unnecessary restrictions and allows us to use the technique for general parameterestimation problems.3.2 When the Parameter is ConstantIn the previous section, we treated the distributed parameter as independent ineach layer. But, in many problems, the parameter to be estimated should be constant



68through all the forward calculation layers. We consider such a case here.The gradient to be obtained is with respect to some constant distributed parameterr = frjg as follows (cf. (3.3)): rrH � (@H@rj )all j (3:9)We can view the case in the following way: each layer's distributed parameter r(t) isindependent per se of the other layers' parameters as in the previous section, but theparameters of all the layers happen to have the same distribution r such that:r(t) = r (1 � t � T ) (3:10)In other words, each element r(t)j is a function of rj and that function happens to bethe identity function. Then, @r(t)j@rj = 1 (3:11)Using this relation and the chain rule, we can get the desired partial derivative asfollows: @H@rj = TXt=1 @H@r(t)j @r(t)j@rj= TXt=1 @H@r(t)j (3.12)Intuitively, this relation is obvious because @H@rj is the e�ect of changing rj by a unitamount, which is equivalent to the e�ect of changing all r(t)j from t = 1 to t = T bythe same amount, which in turn is the sum of all the partial derivatives @H@r(t)j .Therefore, we can get the gradient (3.9) by �rst calculating all the partial deriva-tives @H@r(t)j using the method in Section 3.1 and then summing them up as in (3.12).



693.3 For Converging Forward CalculationIn Section 3.1 we assumed that the number of layers T is �xed. However, ifthe forward problem is solved in such a way that the iteration continues until V (t)converges within some tolerance, the number of layers T can be very large. Then,it may be impossible to store all the values V (t) from t = 1 to t = T as requiredfor back propagation. We consider such a problem in this section. In this case, thedistributed parameter should be constant throughout the forward iterations, becauseotherwise \convergence" would be meaningless.The key to solving this problem is the fact that a converged solution does notdepend on the initial values of the variables. At least we assume so within a certainrange of values, since otherwise there would be no reason to employ such convergencecalculation. This means the same solution will result from any initial values if theyare within some distance from the solution. Then, we can certainly reach the samesolution if we use the solution itself as the initial values! We can view it in a di�erentway: if we start the forward iteration with some initial values and let it continue evenafter it converges, the converged values will stay the same (within some tolerance)throughout the further iterations.Based on this observation, let us imagine the case in which the forward iterationstarts with its solution as the initial values and continues running forever. Afteran in�nite number of iterations, we stop the calculation and use back propagationto obtain the gradient. Let the �nal layer of calculation be numbered T as in theprevious sections, and we have an in�nite number of layers from t = �1 to t = T .Then, each element of the gradient can be calculated the same way as in (3.12) asfollows: @H@rj = TXt=�1 @H@r(t)j (3:13)



70This in�nite series has to be convergent for the gradient to exist. Therefore, in actualcalculation, we can start summing @H@r(t)j at t = T toward the negative t direction andstop when the change of the summation becomes smaller than a certain threshold.In this method, one does not have to actually perform an in�nite number ofiterations in the forward calculation. We only imagined such calculation to derive themethod of getting the gradient. The actual process is the following:1. Run the forward calculation to get the converged forward solution V conv.2. Use V conv in place of V (t) for every layer t in back propagation described inSection 3.1.3. Sum @H@r(t)j for layer t from the top layer downwards as in (3.13) until thesummation converges.This method has to store only one set of variables V conv. Therefore, it is extremelymemory-e�cient compared with the ordinary way that must store V (t) of all thelayers.3.4 The Gradient for Fourier Coe�cientsWhen a local search method such as the conjugate gradient method is to estimatethe Fourier coe�cients R which are complex in general, it needs rRH , the complexconjugate of the gradient, as shown in Section 2.2.2. This rRH is obtained simplyby ipping the signs of the imaginary parts of the gradient rRH. Therefore, in thissection, we consider how to calculate the gradient with respect to the Fourier coef-�cients, assuming that we already have the gradient with respect to the distributedparameter to be estimated. Namely, we consider the relation between the gradientrrH with respect to a distributed parameter r and the gradient rRH with respectto the Fourier coe�cients R = DFT(r).



71Let us take (2.38) and (2.39) as the de�nitions of the n-dimensional DFT and theinverse DFT, respectively. Namely, we have the following relations between the n-dimensional distributed parameter r = frj1���jng0�jm�Nm�1 and its Fourier coe�cientsR = fRk1���kng0�km�Nm�1 :Rk1���kn = �N1�1Xj1=0 � � �Nn�1Xjn=0 rj1���jne� i2�k1j1N1 � � � e� i2�knjnNn (3.14)(km = 0; � � � ; Nm � 1)rj1���jn = � N1�1Xk1=0 � � �Nn�1Xkn=0 Rk1���kne i2�j1k1N1 � � � e i2�jnknNn (3.15)(jm = 0; � � � ; Nm � 1)where � and � are real constants such that �� = 1N1N2���Nn . Di�erentiating (3.15)with respect to a Fourier coe�cient Rk1���kn gives@rj1���jN@Rk1���kn = �e i2�j1k1N1 � � � e i2�jnknNn (3:16)Each Fourier coe�cientRk1���kn is related to all the parameter elements rj1���jN . There-fore, using the chain rule for partial di�erentiation and (3.16), an element of thegradient rRH is expressed as follows:@H@Rk1���kn = N1�1Xj1=0 � � � Nn�1Xjn=0 @H@rj1���jn @rj1���jn@Rk1���kn= � N1�1Xj1=0 � � �Nn�1Xjn=0 @H@rj1���jn e i2�j1k1N1 � � � e i2�jnknNn (3.17)The resulting expression is exactly the inverse DFT of the derivative @H@rj1���jn . So, wecan write @H@R = DFT�1(@H@r ) (3:18)or using the gradient notation,rRH = DFT�1(rrH) (3:19)



72Conversely, rrH = DFT(rRH) (3:20)It is interesting to see that these relations of gradients are the opposite of therelations of points in the two spaces shown in (2.40) and (2.41), page 29.3.5 The Gradient for Haar Wavelet Coe�cientsIn this section, we consider the relation between the gradientrrH with respect tothe distributed parameter r and the gradient rRH with respect to the Haar waveletcoe�cients R.As the two-scale reconstruction relation (2.122) in page 47 shows, RM;0, i.e. therepresentation of r in the M -th resolution from the coarsest (0-th), and RM�1;s1���sn ,i.e. the Haar wavelet coe�cients at the (M � 1)-th resolution, are directly relatedto each other. Let us apply the chain rule for partial di�erentiation to them as thefollowing: @H@RM�1;s1���sni1;���;in = Xj1;���;jnjm2f2im;2im+1g @H@RM;0j1;���;jn @RM;0j1;���;jn@RM�1;s1���sni1;���;in (3:21)From (2.122), we get:@RM;0j1;���;jn@RM�1;s1���sni1;���;in = �(�1)Pnt=1 jtst (jm 2 f2im; 2im + 1g) (3:22)Substituting (3.22) into (3.21) gives:@H@RM�1;s1���sni1;���;in = � Xj1;���;jnjm2f2im;2im+1g(�1)Pnt=1 jtst @H@RM;0j1;���;jn (3:23)If we choose � = � = 2�n2 , (3.23) is exactly the two-scale decomposition relationfor @H@RM;0 (cf. (2.121), page 47). Therefore, if � = � = 2�n2 , we have the followingrelations between the two gradients:



73rRH = Haar(rrH) (3.24)rrH = Haar�1(rRH) (3.25)



744. Application: Electrical ImpedanceTomographyIn this chapter, we evaluate the multiresolution parameter estimation methodsdeveloped in the previous chapters in simulation of the so-called electrical impedancetomography [16, 17, 22, 24, 26, 28, 29, 38, 41, 42, 44, 45]. It is a highly nonlinear,ill-posed problem and therefore challenging to an estimation algorithm. We will seehow well the multiresolution methods perform on this problem compared with theconventional single-resolution estimation.4.1 ModelElectrical impedance tomography (EIT) is the problem of reconstructing the inter-nal resistivity distribution of an object by injecting electrical current and measuringthe relations between the current and the voltage on the exterior of the object. Ifthere is no source or sink of electrical current in the interior of the object, the currentis conserved everywhere inside the object. This yields the following elliptic partialdi�erential equation that sets the divergence of current density to be zero:div gradVr ! � r � (1rrV ) = 0 (4:1)r : resistivity (e.g. in [
 �m])V : voltage (e.g. in [V ])This is the equation that applies to every internal point of the object. In the two-dimensional case, (4.1) becomes the following:@@x(1r @V@x ) + @@y (1r @V@y ) = 0 (4:2)



75Let us consider a two-dimensional rectangular �eld and let (i; j) denote the gridpoint at i-th x position and j-th y position. (4.2) is converted into a di�erenceequation in the �nite di�erence method (FDM). The current density in x direction1r @V@x between grid points (i; j) and (i+1; j) is converted into the following di�erenceexpression by using the average r of the two.1r @V@x �= 2ri+1;j + ri;j � Vi+1;j � Vi;jhx (4:3)where hx is the grid spacing in x direction. If the grid point (i; j) is on the boundaryand the grid point (i+ 1; j) is outside the boundary, the current density between thetwo points is determined by the injected current Ji;j (e.g. in [A]) as the boundarycondition: 1r @V@x �= Ji;jhy (4:4)where hy is the grid spacing in y direction. The right-hand side of (4.4) includes unitdepth in the implicit z direction such as Ji;jhy � 1 , so its dimension is consistent withthat of the left-hand side. Here, the sign of the injected current Ji;j is de�ned to bepositive if the current ows into the object.In order to express equations for both internal grid points and those on theboundary at the same time, I will use the following notation:8><>: expression Aexpression B 9>=>; (4:5)where expression A is taken whenever A is valid (i.e. no points in expression A areoutside the boundary), otherwise expression B is taken (i.e. if one or more pointsin expression A are outside the boundary). Using this notation, (4.3) and (4.4) arecombined together as follows:1r @V@x �= 8><>: 2hx Vi+1;j�Vi;jri+1;j+ri;jJi;jhy 9>=>; (4:6)



76Similarly, the current density between (i� 1; j) and (i; j) is:1r @V@x �= 8><>: 2hx Vi;j�Vi�1;jri;j+ri�1;j�Ji;jhy 9>=>; (4:7)From (4.6) and (4.7), the �nite di�erence approximation below is obtained:@@x(1r @V@x ) �= 1hx 0B@8><>: 2hx Vi+1;j�Vi;jri+1;j+ri;jJi;jhy 9>=>;�8><>: 2hx Vi;j�Vi�1;jri;j+ri�1;j�Ji;jhy 9>=>;1CA (4:8)Expressions for y direction are made similarly. Then, (4.2), multiplied by grid spacingshxhy, is converted into the following �nite di�erence form:8><>: 2hyhx Vi+1;j�Vi;jri+1;j+ri;jJi;j 9>=>;+8><>: 2hyhx Vi�1;j�Vi;jri�1;j+ri;jJi;j 9>=>;+8><>: 2hxhy Vi;j+1�Vi;jri;j+1+ri;jJi;j 9>=>;+8><>: 2hxhy Vi;j�1�Vi;jri;j�1+ri;jJi;j 9>=>; = 0(4:9)If (i; j) is a corner of the boundary, the injected current Ji;j is taken twice in (4.9).To compensate for this, we assume from now on that the values of Ji;j at the cornersare halved before this equation and those below are used.4.2 Forward SolutionNumerical methods to solve elliptic di�erence equations such as (4.9) are classi�edinto direct methods and iterative methods [9, 13, 27, 30, 36]. Direct methods directlysolve the �nite di�erence equations of the matrix form Av = b with respect to thecolumn vector v. A serious problem with direct methods is that a large amount ofmemory is required. For example, in a two-dimensional problem with Nx � Ny gridpoints, the size of the matrixA is (NxNy) by (NxNy). Therefore, if all of its elementsare to be stored, it takes storage of size O((NxNy)2). Although there are methodsthat utilize the fact that the matrixA is a sparse matrix whose elements are non-zeroonly in a band 2Nx + 1 elements wide, their storage requirements are still large, e.g.



77O(N2xNy) with a typical method for sparse matrices [27]. For this reason, we choosean iterative method here that only needs memory of size O(NxNy).A two-dimensional di�erence equation in general regarding a variable V can bewritten in the following form:aCVi;j + aEVi+1;j + aWVi�1;j + aSVi;j+1 + aNVi;j�1 = bi;j (4:10)where aC is the coe�cient for the center (i; j) of the �ve points, aE for the eastneighbor (i + 1; j), aW for the west neighbor (i � 1; j), aS for the south neighbor(i; j + 1), and aN for the north neighbor (i; j � 1).In the Jacobi-iterative method, (4.10) is iteratively solved with respect to Vi;j asthe following:V (t)i;j = 1aC hbi;j � �aEV (t�1)i+1;j + aWV (t�1)i�1;j + aSV (t�1)i;j+1 + aNV (t�1)i;j�1 �i (4:11)where V (t) denotes V at the t-th iteration. This method has the so-called two-cyclicproperty, which means there are two independent series of simultaneous computation.The Jacobi-iterative method is not often used in practice, since its convergence isslow.The Successive Over-Relaxation (SOR) method is the following:V (t)i;j = ! 1aC hbi;j � �aEV (t�1)i+1;j + aWV (t)i�1;j + aSV (t�1)i;j+1 + aNV (t)i;j�1�i+ (1 � !)V (t�1)i;j(4:12)where ! is the over-relaxation parameter (1 < ! < 2) for accelerating convergence.In (4.12), it is assumed that the grid points are calculated in the increasing orderof i and j. Thus, the point (i; j) is calculated on the new values of points (i� 1; j)and (i; j � 1). Because of this, the SOR does not have the two-cyclic property ofthe Jacobi-iterative method. However, this updating scheme also makes it di�cult tovectorize/parallelize the SOR.



78More suitable for massively parallel computers and vectorized supercomputersthan the SOR is the Extrapolated Jacobi-iterative (EJ) method [27] as follows:V (t)i;j = � 1aC hbi;j � �aEV (t�1)i+1;j + aWV (t�1)i�1;j + aSV (t�1)i;j+1 + aNV (t�1)i;j�1 �i+ (1 � �)V (t�2)i;j(4:13)where � is the extrapolation parameter (1 < � < 2). Although, due to the two-cyclicproperty, the EJ method needs twice as many iterations for convergence as the SORdoes, the method is easily parallelized/vectorized.We employ the EJ method because it is suitable for parallel processing and easyto implement. Let us �rst trace how a di�erence equation is converted into the EJformula. The di�erence equation (4.10) is solved with respect to Vi;j as follows:Vi;j = 1aC hbi;j � �aEVi+1;j + aWVi�1;j + aSVi;j+1 + aNVi;j�1�i (4:14)If this equation is converted into an iteration formula as it is, it would become theJacobi-iterative method (4.11). We use a new variable X(t)i;j in place of V (t)i;j in (4.11)to avoid confusion as follows:X(t)i;j = 1aC hbi;j � �aEV (t�1)i+1;j + aWV (t�1)i�1;j + aSV (t�1)i;j+1 + aNV (t�1)i;j�1 �i (4:15)Then, extrapolating V (t)i;j using this X(t)i;j and the two-iteration old value V (t�2)i;j yields:V (t)i;j = �X(t)i;j + (1 � �)V (t�2)i;j (4:16)which is equivalent to the EJ formula in (4.13).Now, according to the observation above, we convert our di�erence equation (4.9)into the EJ formula. For simplicity, we use the following notation:



79Ei;j 4= hyhx 2ri+1;j+ri;j (=Wi+1;j)Wi;j 4= hyhx 2ri�1;j+ri;j (= Ei�1;j)Si;j 4= hxhy 2ri;j+1+ri;j (= Ni;j+1)Ni;j 4= hxhy 2ri;j�1+ri;j (= Si;j�1)Ci;j 4= 8><>: Ei;j0 9>=>;+8><>: Wi;j0 9>=>;+8><>: Si;j0 9>=>;+8><>: Ni;j0 9>=>;
9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>; (4:17)Then, the di�erence equation (4.9) is rewritten as below:8><>: Ei;j(Vi+1;j � Vi;j)Ji;j 9>=>;+8><>: Wi;j(Vi�1;j � Vi;j)Ji;j 9>=>;+ 8><>: Si;j(Vi;j+1 � Vi;j)Ji;j 9>=>;+8><>: Ni;j(Vi;j�1 � Vi;j)Ji;j 9>=>; = 0 (4.18)which is equivalent to:Ci;jVi;j = 8><>: Ei;jVi+1;jJi;j 9>=>;+8><>: Wi;jVi�1;jJi;j 9>=>;+8><>: Si;jVi;j+1Ji;j 9>=>;+8><>: Ni;jVi;j�1Ji;j 9>=>; (4:19)This is solved with respect to Vi;j as follows:Vi;j = 8><>: Ei;jVi+1;jCi;jJi;jCi;j 9>=>;+8><>: Wi;jVi�1;jCi;jJi;jCi;j 9>=>;+8><>: Si;jVi;j+1Ci;jJi;jCi;j 9>=>;+8><>: Ni;jVi;j�1Ci;jJi;jCi;j 9>=>; (4:20)We change this equation into an iteration form and use a new variable Xi;j in placeof Vi;j (cf. (4.15)):X(t)i;j = 8>>><>>>: E(t)i;j V (t�1)i+1;jC(t)i;jJi;jC(t)i;j 9>>>=>>>;+8>>><>>>: W (t)i;j V (t�1)i�1;jC(t)i;jJi;jC(t)i;j 9>>>=>>>;+8>>><>>>: S(t)i;j V (t�1)i;j+1C(t)i;jJi;jC(t)i;j 9>>>=>>>;+8>>><>>>: N (t)i;j V (t�1)i;j�1C(t)i;jJi;jC(t)i;j 9>>>=>>>; (4:21)Using the notation below,w(t)Ei;j 4= E(t)i;jC(t)i;j w(t)Wi;j 4= W (t)i;jC(t)i;j w(t)Si;j 4= S(t)i;jC(t)i;j w(t)Ni;j 4= N (t)i;jC(t)i;j (4:22)



80w(t)JEi;j = w(t)JWi;j = w(t)JSi;j = w(t)JNi;j 4= 1C(t)i;j (4:23)we can simplify (4.21) to the following:X(t)i;j = 8><>: w(t)Ei;jV (t�1)i+1;jw(t)JEi;jJi;j 9>=>;+8><>: w(t)Wi;jV (t�1)i�1;jw(t)JWi;jJi;j 9>=>;+8><>: w(t)Si;jV (t�1)i;j+1w(t)JSi;jJi;j 9>=>;+8><>: w(t)Ni;jV (t�1)i;j�1w(t)JNi;jJi;j 9>=>;(4:24)The newly de�ned variables w(t)��� above can be viewed as \connection weights" as ifin a neural network from V (t�1)��� or Ji;j to X(t)i;j . Finally, we get the EJ formula similarto (4.16) as follows:V (t)i;j = 8><>: �X(t)i;j + (1� �)V (t�2)i;j if (i; j) 6= (iG; jG)0 if (i; j) = (iG; jG) (4:25)where (iG; jG) is the ground position at which the voltage must be always zero. Theforward calculation repeats (4.25) until the voltage solution V (t)i;j converges.4.3 Obtaining the GradientWe have to calculaterrH, the gradient of the cost H with respect to the resistiv-ity distribution r. Since the forward calculation (4.25) is a convergence calculation,we follow the method developed in Section 3.3. Namely, each element of the gradientrrH is calculated as the sum of an in�nite series of partial derivatives as follows:@H@ri;j = TXt=�1 @H@r(t)i;j (4:26)The summation in (4.26) starts at the top layer t = T and goes down towardthe negative t direction until it converges. In this section, we obtain the form forcalculating each @H@r(t)i;j of (4.26) by back propagation.As shown in (4.24), r(t)i;j directly a�ects X(t)i;j and also its neighbors X(t)i+1;j , X(t)i�1;j ,X(t)i;j+1 and X(t)i;j�1 through the \connection weights" w(t)��� . So, using the chain rule forpartial di�erentiation, we can write:



81@H@r(t)i;j = @H@X(t)i;j @X(t)i;j@r(t)i;j +8>><>>: @H@X(t)i+1;j @X(t)i+1;j@r(t)i;j0 9>>=>>;+8>><>>: @H@X(t)i�1;j @X(t)i�1;j@r(t)i;j0 9>>=>>;+8>><>>: @H@X(t)i;j+1 @X(t)i;j+1@r(t)i;j0 9>>=>>;+8>><>>: @H@X(t)i;j�1 @X(t)i;j�1@r(t)i;j0 9>>=>>; (4:27)This way, calculating @H@r(t)i;j is reduced to calculating @H@X(t)i;j , @X(t)i;j@r(t)i;j , and the e�ects ofr(t)i;j on the neighbors @X(t)i+1;j@r(t)i;j , @X(t)i�1;j@r(t)i;j , etc.Let us �rst get @H@X(t)i;j . As shown in (4.25), only V (t)i;j is directly a�ected by X(t)i;j .Therefore,@H@X(t)i;j = @H@V (t)i;j @V (t)i;j@X(t)i;j = 8>>><>>>: � @H@V (t)i;j if (i; j) 6= (iG; jG)0 if (i; j) = (iG; jG) (4:28)We have to get @H@V (t)i;j for (4.28). V (t)i;j directly a�ects not only X(t+1)��� of the neighbors(see (4.24)) but also two layers higher V (t+2)i;j (see (4.25)). Therefore, using the chainrule again,@H@V (t)i;j = 8>><>>: @H@X(t+1)i+1;j @X(t+1)i+1;j@V (t)i;j0 9>>=>>;+8>><>>: @H@X(t+1)i�1;j @X(t+1)i�1;j@V (t)i;j0 9>>=>>;+8>><>>: @H@X(t+1)i;j+1 @X(t+1)i;j+1@V (t)i;j0 9>>=>>;+8>><>>: @H@X(t+1)i;j�1 @X(t+1)i;j�1@V (t)i;j0 9>>=>>;+ @H@V (t+2)i;j @V (t+2)i;j@V (t)i;j (4.29)If the layer (t+ 2) does not exist, i.e., when T � t � T � 1 (T : top layer), the lastterm of (4.29) is ignored. From (4.25),@H@X(t+1)� = @H@V (t+1)� @V (t+1)�@X(t+1)� = � @H@V (t+1)� (4:30)where � is one of the four positions: (i+ 1; j), (i� 1; j), (i; j +1), or (i; j � 1). From(4.24), with i and j changed appropriately, we get the following:



82@X(t+1)i+1;j@V (t)i;j = w(t+1)Wi+1;j @X(t+1)i�1;j@V (t)i;j = w(t+1)Ei�1;j @X(t+1)i;j+1@V (t)i;j = w(t+1)Ni;j+1 @X(t+1)i;j�1@V (t)i;j = w(t+1)Si;j�1(4:31)And from (4.25), @V (t+2)i;j@V (t)i;j = 1 � � (4:32)Substituting (4.30), (4.31) and (4.32) into (4.29) yields:@H@V (t)i;j = �0BBB@8>>><>>>: w(t+1)Wi+1;j @H@V (t+1)i+1;j0 9>>>=>>>;+8>>><>>>: w(t+1)Ei�1;j @H@V (t+1)i�1;j0 9>>>=>>>;+ 8>>><>>>: w(t+1)Ni;j+1 @H@V (t+1)i;j+10 9>>>=>>>;+8>>><>>>: w(t+1)Si;j�1 @H@V (t+1)i;j�10 9>>>=>>>;1CCCA+ (1 � �) @H@V (t+2)i;j (4.33)The partial derivatives @H@V (t)i;j at t = T (the top layer) are given by the cost functionas shown in (3.5), and they are back-propagated to determine those in lower layersby (4.33).The other partial derivatives @X(t)���@r(t)i;j for (4.27) are obtained as follows. Since r(t)i;jis involved only in the \connection weights" w(t)��� and not in V (t�1)��� nor Ji;j in (4.24),we get the following:@X(t)i;j@r(t)i;j = 8>>>><>>>>: @X(t)i;j@w(t)Ei;j @w(t)Ei;j@r(t)i;j@X(t)i;j@w(t)JEi;j @w(t)JEi;j@r(t)i;j 9>>>>=>>>>;+8>>>><>>>>: @X(t)i;j@w(t)Wi;j @w(t)Wi;j@r(t)i;j@X(t)i;j@w(t)JWi;j @w(t)JWi;j@r(t)i;j 9>>>>=>>>>;+8>>>><>>>>: @X(t)i;j@w(t)Si;j @w(t)Si;j@r(t)i;j@X(t)i;j@w(t)JSi;j @w(t)JSi;j@r(t)i;j 9>>>>=>>>>;+8>>>><>>>>: @X(t)i;j@w(t)Ni;j @w(t)Ni;j@r(t)i;j@X(t)i;j@w(t)JNi;j @w(t)JNi;j@r(t)i;j 9>>>>=>>>>;= 8>>><>>>: V (t�1)i+1;j @w(t)Ei;j@r(t)i;jJi;j @w(t)JEi;j@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i�1;j @w(t)Wi;j@r(t)i;jJi;j @w(t)JWi;j@r(t)i;j 9>>>=>>>;



83+8>>><>>>: V (t�1)i;j+1 @w(t)Si;j@r(t)i;jJi;j @w(t)JSi;j@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i;j�1 @w(t)Ni;j@r(t)i;jJi;j @w(t)JNi;j@r(t)i;j 9>>>=>>>; (4.34)The partial derivative @X(t)i+1;j@r(t)i;j , which is the e�ect of r(t)i;j on the east neighbor's X(t),is obtained by adding 1 to i for everything but r(t) in (4.34) as follows:@X(t)i+1;j@r(t)i;j = 8>>><>>>: V (t�1)i+2;j @w(t)Ei+1;j@r(t)i;jJi+1;j @w(t)JEi+1;j@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i;j @w(t)Wi+1;j@r(t)i;jJi+1;j @w(t)JWi+1;j@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i+1;j+1 @w(t)Si+1;j@r(t)i;jJi+1;j @w(t)JSi+1;j@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i+1;j�1 @w(t)Ni+1;j@r(t)i;jJi+1;j @w(t)JNi+1;j@r(t)i;j 9>>>=>>>; (4.35)Similarly, the partial derivatives of X(t) of the west, south and north neighbors withrespect to r(t)i;j are obtained as below:@X(t)i�1;j@r(t)i;j = 8>>><>>>: V (t�1)i;j @w(t)Ei�1;j@r(t)i;jJi�1;j @w(t)JEi�1;j@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i�2;j @w(t)Wi�1;j@r(t)i;jJi�1;j @w(t)JWi�1;j@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i�1;j+1 @w(t)Si�1;j@r(t)i;jJi�1;j @w(t)JSi�1;j@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i�1;j�1 @w(t)Ni�1;j@r(t)i;jJi�1;j @w(t)JNi�1;j@r(t)i;j 9>>>=>>>; (4.36)@X(t)i;j+1@r(t)i;j = 8>>><>>>: V (t�1)i+1;j+1 @w(t)Ei;j+1@r(t)i;jJi;j+1 @w(t)JEi;j+1@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i�1;j+1 @w(t)Wi;j+1@r(t)i;jJi;j+1 @w(t)JWi;j+1@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i;j+2 @w(t)Si;j+1@r(t)i;jJi;j+1 @w(t)JSi;j+1@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i;j @w(t)Ni;j+1@r(t)i;jJi;j+1 @w(t)JNi;j+1@r(t)i;j 9>>>=>>>; (4.37)@X(t)i;j�1@r(t)i;j = 8>>><>>>: V (t�1)i+1;j�1 @w(t)Ei;j�1@r(t)i;jJi;j�1 @w(t)JEi;j�1@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i�1;j�1 @w(t)Wi;j�1@r(t)i;jJi;j�1 @w(t)JWi;j�1@r(t)i;j 9>>>=>>>;



84+8>>><>>>: V (t�1)i;j @w(t)Si;j�1@r(t)i;jJi;j�1 @w(t)JSi;j�1@r(t)i;j 9>>>=>>>;+8>>><>>>: V (t�1)i;j�2 @w(t)Ni;j�1@r(t)i;jJi;j�1 @w(t)JNi;j�1@r(t)i;j 9>>>=>>>; (4.38)The partial derivatives @w(t)���@r(t)i;j are obtained as follows:@w(t)Ei;j@r(t)i;j � @@r(t)i;j  E(t)i;jC(t)i;j ! = 1C(t)i;j  @E(t)i;j@r(t)i;j � E(t)i;jC(t)i;j @C(t)i;j@r(t)i;j !@w(t)Wi;j@r(t)i;j � @@r(t)i;j  W (t)i;jC(t)i;j ! = 1C(t)i;j  @W (t)i;j@r(t)i;j � W (t)i;jC(t)i;j @C(t)i;j@r(t)i;j !@w(t)Si;j@r(t)i;j � @@r(t)i;j  S(t)i;jC(t)i;j ! = 1C(t)i;j  @S(t)i;j@r(t)i;j � S(t)i;jC(t)i;j @C(t)i;j@r(t)i;j !@w(t)Ni;j@r(t)i;j � @@r(t)i;j  N (t)i;jC(t)i;j ! = 1C(t)i;j  @N (t)i;j@r(t)i;j � N (t)i;jC(t)i;j @C(t)i;j@r(t)i;j ! 9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>; (4:39)@w(t)Ei+1;j@r(t)i;j � @@r(t)i;j  E(t)i+1;jC(t)i+1;j ! = 1C(t)i+1;j  @E(t)i+1;j@r(t)i;j � E(t)i+1;jC(t)i+1;j @C(t)i+1;j@r(t)i;j !@w(t)Wi+1;j@r(t)i;j � @@r(t)i;j  W (t)i+1;jC(t)i+1;j ! = 1C(t)i+1;j  @W (t)i+1;j@r(t)i;j � W (t)i+1;jC(t)i+1;j @C(t)i+1;j@r(t)i;j !@w(t)Si+1;j@r(t)i;j � @@r(t)i;j  S(t)i+1;jC(t)i+1;j! = 1C(t)i+1;j  @S(t)i+1;j@r(t)i;j � S(t)i+1;jC(t)i+1;j @C(t)i+1;j@r(t)i;j !@w(t)Ni+1;j@r(t)i;j � @@r(t)i;j  N (t)i+1;jC(t)i+1;j ! = 1C(t)i+1;j  @N (t)i+1;j@r(t)i;j � N (t)i+1;jC(t)i+1;j @C(t)i+1;j@r(t)i;j ! 9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>; (4:40)@w(t)Ei�1;j@r(t)i;j � @@r(t)i;j  E(t)i�1;jC(t)i�1;j! = 1C(t)i�1;j  @E(t)i�1;j@r(t)i;j � E(t)i�1;jC(t)i�1;j @C(t)i�1;j@r(t)i;j !@w(t)Wi�1;j@r(t)i;j � @@r(t)i;j  W (t)i�1;jC(t)i�1;j ! = 1C(t)i�1;j  @W (t)i�1;j@r(t)i;j � W (t)i�1;jC(t)i�1;j @C(t)i�1;j@r(t)i;j !@w(t)Si�1;j@r(t)i;j � @@r(t)i;j  S(t)i�1;jC(t)i�1;j! = 1C(t)i�1;j  @S(t)i�1;j@r(t)i;j � S(t)i�1;jC(t)i�1;j @C(t)i�1;j@r(t)i;j !@w(t)Ni�1;j@r(t)i;j � @@r(t)i;j  N (t)i�1;jC(t)i�1;j ! = 1C(t)i�1;j  @N (t)i�1;j@r(t)i;j � N (t)i�1;jC(t)i�1;j @C(t)i�1;j@r(t)i;j ! 9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>; (4:41)@w(t)Ei;j+1@r(t)i;j � @@r(t)i;j  E(t)i;j+1C(t)i;j+1! = 1C(t)i;j+1  @E(t)i;j+1@r(t)i;j � E(t)i;j+1C(t)i;j+1 @C(t)i;j+1@r(t)i;j !@w(t)Wi;j+1@r(t)i;j � @@r(t)i;j  W (t)i;j+1C(t)i;j+1 ! = 1C(t)i;j+1  @W (t)i;j+1@r(t)i;j � W (t)i;j+1C(t)i;j+1 @C(t)i;j+1@r(t)i;j !@w(t)Si;j+1@r(t)i;j � @@r(t)i;j  S(t)i;j+1C(t)i;j+1! = 1C(t)i;j+1  @S(t)i;j+1@r(t)i;j � S(t)i;j+1C(t)i;j+1 @C(t)i;j+1@r(t)i;j !@w(t)Ni;j+1@r(t)i;j � @@r(t)i;j  N (t)i;j+1C(t)i;j+1 ! = 1C(t)i;j+1  @N (t)i;j+1@r(t)i;j � N (t)i;j+1C(t)i;j+1 @C(t)i;j+1@r(t)i;j ! 9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>; (4:42)



85@w(t)Ei;j�1@r(t)i;j � @@r(t)i;j  E(t)i;j�1C(t)i;j�1! = 1C(t)i;j�1  @E(t)i;j�1@r(t)i;j � E(t)i;j�1C(t)i;j�1 @C(t)i;j�1@r(t)i;j !@w(t)Wi;j�1@r(t)i;j � @@r(t)i;j  W (t)i;j�1C(t)i;j�1 ! = 1C(t)i;j�1  @W (t)i;j�1@r(t)i;j � W (t)i;j�1C(t)i;j�1 @C(t)i;j�1@r(t)i;j !@w(t)Si;j�1@r(t)i;j � @@r(t)i;j  S(t)i;j�1C(t)i;j�1! = 1C(t)i;j�1  @S(t)i;j�1@r(t)i;j � S(t)i;j�1C(t)i;j�1 @C(t)i;j�1@r(t)i;j !@w(t)Ni;j�1@r(t)i;j � @@r(t)i;j  N (t)i;j�1C(t)i;j�1 ! = 1C(t)i;j�1  @N (t)i;j�1@r(t)i;j � N (t)i;j�1C(t)i;j�1 @C(t)i;j�1@r(t)i;j ! 9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>; (4:43)From (4.17), we get the following:@E(t)i;j@r(t)i;j = � hx2hy (E(t)i;j )2 @W (t)i;j@r(t)i;j = � hx2hy (W (t)i;j )2@S(t)i;j@r(t)i;j = � hy2hx (S(t)i;j )2 @N (t)i;j@r(t)i;j = � hy2hx (N (t)i;j )2 9>>>>>>=>>>>>>; (4:44)@C(t)i;j@r(t)i;j = �8><>: hx2hy (E(t)i;j )20 9>=>;�8><>: hx2hy (W (t)i;j )20 9>=>;�8><>: hy2hx (S(t)i;j )20 9>=>;�8><>: hy2hx (N (t)i;j )20 9>=>;(4:45)@E(t)i+1;j@r(t)i;j = 0 @W (t)i+1;j@r(t)i;j = � hx2hy (E(t)i;j )2 @S(t)i+1;j@r(t)i;j = 0 @N (t)i+1;j@r(t)i;j = 0 (4:46)@C(t)i+1;j@r(t)i;j = �8><>: hx2hy (E(t)i;j )20 9>=>; (4:47)@E(t)i�1;j@r(t)i;j = � hx2hy (W (t)i;j )2 @W (t)i�1;j@r(t)i;j = 0 @S(t)i�1;j@r(t)i;j = 0 @N (t)i�1;j@r(t)i;j = 0 (4:48)@C(t)i�1;j@r(t)i;j = �8><>: hx2hy (W (t)i;j )20 9>=>; (4:49)@E(t)i;j+1@r(t)i;j = 0 @W (t)i;j+1@r(t)i;j = 0 @S(t)i;j+1@r(t)i;j = 0 @N (t)i;j+1@r(t)i;j = � hy2hx (S(t)i;j )2 (4:50)@C(t)i;j+1@r(t)i;j = �8><>: hy2hx (S(t)i;j )20 9>=>; (4:51)@E(t)i;j�1@r(t)i;j = 0 @W (t)i;j�1@r(t)i;j = 0 @S(t)i;j�1@r(t)i;j = � hy2hx (N (t)i;j )2 @N (t)i;j�1@r(t)i;j = 0 (4:52)



86@C(t)i;j�1@r(t)i;j = �8><>: hy2hx (N (t)i;j )20 9>=>; (4:53)4.4 ImplementationThe estimation methods for EIT (electrical impedance tomography) using themultiresolution optimization as well as the conventional single-resolution optimizationwere implemented in MPL (the MasPar Programming Language) on the MasPar MP-2204 massively parallel computer that has 64 � 64 = 4096 parallel processors.The Polak-Ribiere formula shown in (2.13), page 18, and (2.26), page 21, ischosen for the conjugate gradient method. Back propagation is executed once perline minimization to obtain the gradient to determine the line search direction. Theline minimization algorithm in the conjugate gradient method is based on so-calledBrent's method [30] that uses the parabolic interpolation for searching a minimumwhenever appropriate and the golden section search otherwise.All the parameters and the variables are calculated in double precision. Thestopping criterion for a forward voltage solution is set as small as 10�12 for therelative change to the maximum magnitude of voltage values in order to conductthe experiments as accurately as possible. The stopping criterion for the gradientcalculation in the back-propagation algorithm is set to 10�10 for the relative change.The stopping criterion for line minimization is set to 10�3 for the bracket widthrelative to the initial bracket at the start of each line minimization. The extrapolationparameter � in the EJ (extrapolated Jacobi-iterative) method (4.25) is chosen to be� = 1:99 based on the preliminary experiments.During each line minimization, a number of distributions of the parameter haveto be evaluated until a line minimum is reached. Each such evaluation involves theforward convergence calculation to obtain a voltage solution. To expedite the forward



87convergence calculation, the old voltage solutions are interpolated/extrapolated onthe minimization line by a parabolic �t to obtain as good an initial voltage distributionas possible for the forward calculation. Still, each line minimization takes about 2CPU-minutes on the MasPar MP-2204.All the graphs of the experimental results in this chapter are processed by thetool \gnuplot" in UNIX. The pictures of the resistivity distributions are prepared byusing MATLABTM of the MathWorks, Inc.4.5 Experiments4.5.1 Experimental ConditionsIn EIT (electrical impedance tomography), measurement methods can be par-titioned into two classes. One class injects electrical current to the medium andmeasures the resulting voltage on the boundary. The other class applies voltage andmeasures the resulting current on the boundary. The former (current injection) gen-erally allows more accurate measurements than the latter (voltage input method)because the contact impedance between the electrodes and the object surface is neg-ligible for a current source [41]. We choose here the current injection method usedby most EIT research groups. In all of the following experiments, voltage/currentmeasurements are computer-simulated ones.If the medium is a disk and its resistivity distribution is homogeneous, injectingcurrents that vary as a cosine curve along the boundary gives a perfectly uniformcurrent distribution and hence maximizes distinguishability [41]. In our case, althoughthe medium is a square and the resistivity distribution is not homogeneous, cosine-varying currents are used as approximately best current patterns.
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89and determining 4096 values of the resistivity requires 4096=251 � 16:3 or moremeasurements on di�erent current patterns.We choose 18 current patterns as follows. The boundary nodes are numbered bfrom 0 to 251 as shown in Figure 4.1. The peak current position bpeak for currentpattern � is determined as follows:bpeak = 8><>: 14� if 0 � � < 914� + 7 if 9 � � < 18 (4:54)Each current pattern is determined so that the peak current 1 is assigned to theboundary node b = bpeak and the currents at the rest of the nodes shape a cosinecurve as the following: Jb = cos 2� (b� bpeak)252 ! (4:55)where Jb is the injection current at boundary node b. Figure 4.2 shows the currentow directions of all the 18 patterns, where the tail of each arrow is at the peakcurrent node. The node 90 degrees clockwise from the peak-current node bpeak isgrounded as the voltage reference (zero volt). Figure 4.3 shows the current patterns,in which the black dots show the grounded nodes.Figures 4.4 and 4.5 show the two patterns of true resistivity distributions that areused for the experiments. In both patterns, the darkest regions are 0.2 in resistivityvalue, the lightest regions 1.0, and the background is 0.5. In Figure 4.4 which wecall \Pattern A", the upper and lower disks are 0.3, and the left and right disks0.7. In \Pattern B", Figure 4.5, all the disks are either 0.2 or 1.0. The same gray-level mapping will be used for displaying the estimated resistivity distributions in theexperiments below.The experiments are performed in two stages. The �rst stage simulates the actualmeasurements by solving the forward problem on the true resistivity distribution(either Pattern A or Pattern B) to obtain the voltage values on the boundary for
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60 Figure 4.5: Pattern Beach of the 18 injection current patterns. Then, the second stage feeds the simulatedvoltage data to the estimation program to be evaluated and executes the program toreconstruct the true resistivity distribution.The cost is calculated by (3.6) in page 66 only on the boundary nodes to simulatethe actual EIT that can perform measurements only on the surface of the object.Thus, voltage values of the internal nodes are neglected. As a result, the derivatives@H@V (T )��� ������ of (3.7) in page 66 are calculated only on the boundary nodes, and thosederivatives of the internal nodes are always zero.In the step scheme using the two-dimensional DFT, each of the transform coe�-cients has two frequencies associated with it; the frequency in the horizontal directionand the frequency in the vertical direction. In the experiments, the frequency limitin each resolution step is set such that both of the two frequency values have to besmaller than or equal to the limit in order for the coe�cient to be activated in thesearch. In the weight scheme with the two-dimensional DFT, the frequency valueused to determine the weight is the higher of the two frequencies associated with each



91transform coe�cient.4.5.2 Conventional Single-resolution MethodFigure 4.6 (a) shows the history of the cost in the estimation process. Thehorizontal axis is the number of line minimizations in the conjugate gradient method,and the vertical axis is the cost. Since the conjugate gradient method always proceedsin a cost-decreasing direction, the cost always goes down as more line minimizationsare performed.Figure 4.6 (b) shows the history of the distance to the true distribution. Thedistance is de�ned as follows:distance 4= vuut 63Xi=0 63Xj=0(ri;j � r̂i;j)2 (4:56)where ri;j is an element (i; j) of the estimated parameter distribution r, and r̂i;j isthe corresponding element of the true parameter distribution r̂ that is either PatternA or Pattern B of Figures 4.4 and 4.5. Of course, the estimation program cannotknow the true distribution r̂. Hence, the distance is calculated outside the estimationprocess.We can see in Figure 4.6 (b) that the progress in approaching the true distributionalmost stops around 100 line minimizations for Pattern A, and the distance evenincreases for Pattern B. It is not actually caused by being caught in a local minimum,since the cost keeps decreasing as seen in Figure 4.6 (a). It is just that the searchtakes a path that rapidly decreases the cost but is not really directed toward the trueminimum in this single-resolution estimation.Figure 4.6 (c) shows the relation between the distance and the cost. The verticalaxis is the cost raised to the power 0.05. The value 0.05 is chosen only so that thegraph curves can be easily compared, and the number itself does not have any special
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95meaning. In these cost-versus-distance graphs, the search history starts at the upperright and goes toward the lower left if the distance decreases. If the search wereperfect, it would reach the origin of the cost-versus-distance graph, because the costshould be zero with the distance being zero (r = r̂) in these simulated experiments.In this sense, the more the graph is directed toward the origin, the better the searchperformance is. As seen in Figure 4.6 (c), the performance of the single-resolutionestimation is poor, since the graph is going almost only downwards, not toward theorigin, for both Pattern A and Pattern B. In other words, the single-resolution methodis only good at reducing the cost, and poor at approaching the true distribution.Figures 4.7 and 4.8 show the progress of the estimated resistivity distributionr for Pattern A and Pattern B, respectively. Comparing these pictures with thetrue distributions Figures 4.4 and 4.5, we can easily see that the estimation resultsare poor. For Pattern A (Figure 4.7), only regions near the external boundary aresomewhat close to the true distribution, and the inner regions do not even show tracesof the pattern. This is understandable because the measurements are performed onlyon the external boundary and thus the information about the inner part may bediluted in the measured data. The results for Pattern B (Figure 4.8) are even worse.The estimated pattern is not close to the true one at all.4.5.3 Step Scheme with the Fourier TransformFigure 4.9 shows the estimation history of the step scheme that uses the Fouriertransform. The numbers shown in the graphs are the values of C in the advancingcriterion (2.7) in page 13. In (a), the cost goes down in a similar manner as in thesingle-resolution case Figure 4.6. For both Pattern A and Pattern B, the greater theadvancing criterion constant is, the more quickly the cost decreases. This may bebecause the search can advance to a greater degree of freedom more quickly with
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99a greater advancing constant. The levels of the cost curves, especially for PatternA, are a little higher than those of the single-resolution method after around 100line minimizations. The distance curves in Figure 4.9 (b), however, are much lowerthan in the single-resolution method, which means the distributions estimated by theFourier step scheme are much better than those by the conventional single-resolutionmethod. The + marks in the (b) graphs show the positions of the advancing pointson the horizontal axis. We can see the distance curves descend stepwise each timethe advancing occurs. The greater the advance setting C is, the earlier the advancingoccurs. Since the �eld has 64�64 discretized points, the highest frequency is 32, andthere are 33 frequency steps from zero to the highest frequency (see Table 2.1, page25). We can see that if the advancing constant is too small (0.01), the distance mayincrease at some point in the estimation, although the cost goes down smoothly. Ifthe advancing constant is too large (0.5), the distance does not reduce well. In thecost-versus-distance graphs (c), the curves go farther toward the origin than in thesingle-resolution case.Figure 4.10 shows the distributions estimated by the Fourier step scheme onPattern A. The picture (a) is estimated with the frequency limit 1, (b) with 2, and (c)with 4, respectively. It is seen that as the frequency limit increases, the more detailedstructure of the distribution shows up. The picture (c), which is only after 26 lineminimizations performed, already shows the structure of the true distribution moreclearly than the estimate of the single-resolution method after 5000 line minimizations(Figure 4.7, page 93). The picture (d) is the estimate at 1000 line minimizationswith the frequency limit being 32, i.e., with the full frequency range. It is still vaguecompared with the true one (Figure 4.4, page 90), but is much better than the estimateof the single-resolution method (Figure 4.7).Figure 4.11 shows the estimated distributions on Pattern B. The pictures (a),(b) and (c) have the same frequency limits as in Figure 4.10. The picture (d)



100is at 1000 line minimizations and its frequency limit is still 23. Although it islower than the full frequency, the estimate is as good as the one with the fullfrequency, since the distance curve is almost at around 1000 line minimizationsas seen in Figure 4.9 (b). Comparing with the true distribution Figure 4.5 in page90, we can see that some regions are wrong. For example, the dark regions around(horizontal,vertical)= (35; 10) and (35; 50) in the estimate should not be there. Butoverall, the estimate is much closer to the true distribution than the estimate by thesingle-resolution method, Figure 4.8, page 94.4.5.4 Weight Scheme with the Fourier TransformFigure 4.12 shows the estimation history of the weight scheme with the DFT.I used the following formula to determine the weight for each of the transformcoe�cients, weight = 1(frequency)PF (4:57)where \frequency" is the higher of the two frequencies associated with each coe�cientas discussed in Section 4.5.1. The lowest frequency = 0 was changed to 0.5 for thisformula. The real constant PF can be any positive number for enhancing the relativesensitivity of the search to low-frequency information. The greater the value of PF is,the more prioritized the low-frequency information is relative to the higher-frequencyinformation. In this experiment, PF was chosen to be 1, 2, or 3.Figure 4.12 (a) shows the history of the cost. For both Pattern A and Pattern B,the cost descent is slower with a greater magnitude of the constant PF . However, asFigure 4.12 (b) shows, the e�ect of the magnitude of PF on the descent of the distanceis di�erent. Especially for Pattern B, the distance goes down faster with PF = 2 or 3than with PF = 1. For both Pattern A and Pattern B, the distance descent is not asquick as in the Fourier step scheme Figure 4.9 (b), page 96. It is interesting, though,
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104that the distance keeps reducing after 1000 line minimizations with PF = 2 and 3,and for Pattern B it is getting even better than the smallest distance achieved withthe Fourier step scheme. Figure 4.12 (c) shows this tendency more clearly. With PFof a greater magnitude, the curve goes more toward the left, although the di�erencebetween PF = 2 and PF = 3 is slight.Figure 4.13 shows the progress of the estimated distribution for Pattern A withPF = 2. As the distance history showed, the progress speed is not as fast as in theFourier step scheme. The estimated distribution looks somewhere between that bythe single-resolution method and that by the Fourier step scheme. Figure 4.14 showsthe estimates for Pattern B with the same PF = 2. The estimate after 1000 lineminimizations (d) is more blurred but has less wrong ghost image than the counterpartin the Fourier step scheme Figure 4.11 (d), page 98. In this sense, the Fourier weightscheme may be a slow-and-steady method, while the Fourier step scheme is ratherquick but somewhat unstable.4.5.5 Step Scheme with the Haar Wavelet TransformThe estimation history with the Haar step scheme is shown in Figure 4.15. Thesettings are similar to those for the Fourier step scheme except that a smaller valueof the constant for the advancing criterion seems suitable. The cost history (a) isnot very di�erent from that of the Fourier step scheme, Figure 4.9, page 96. Thedistance curves (b), however, are descending more slowly and their convergence levelsare higher than with the Fourier step scheme. As will be discussed in Chapter 5, aprobable cause for this is that there are much fewer resolution steps with the Haarwavelet transform than with the Fourier transform as the + marks show in the graphs.Accordingly, the cost-versus-distance curves (c) start descending straight down earlierthan in the Fourier step scheme.
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(c) The cost vs. the distanceFigure 4.15: History of Haar step scheme
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108Figures 4.16 and 4.17 show the estimation progress for Pattern A and PatternB, respectively. As the resolution increases, the more details are estimated, but theoverall quality is worse than in the Fourier step scheme, Figures 4.10 and 4.11, pages97 and 98. The pictures (d) for both patterns are at 1000 line minimizations withthe full resolution, but the patterns of earlier estimates still remain. The cause forthis is probably twofold. One is that each wavelet coe�cient inuences only a certainlocal area. Therefore, if the search is insensitive to some coe�cients above a certainresolution, the areas for which those coe�cients are responsible remain unchanged,showing the old patterns. This does not happen with the Fourier transform, becauseeach Fourier coe�cient inuences the whole �eld. The other probable cause is thatthe Haar wavelet is discontinuous. Hence, the borders of the local regions are clearlyseen.4.5.6 Weight Scheme with the Haar Wavelet TransformFigure 4.18 shows the estimation history of the weight scheme using the Haarwavelet transform. The following formula similar to (4.57) in page 100 was used todetermine the weight for each coe�cient of the Haar wavelet transform.weight = 1(resolution)PH (4:58)The real constant PH was chosen to be 1, 2, or 3. In Figure 4.18 (a), the speedof the cost descent is slower than in the Haar step scheme, Figure 4.15, page 105.On the other hand, in Figure 4.18 (b), the distance for Pattern B after about 100line minimizations is smaller than that in the Haar step scheme, although it is notas small as the distance in the �nal stage of the Fourier step scheme or the Fourierweight scheme. Accordingly, the cost-versus-distance curves in (c) are better thanthose of the Haar step scheme especially for Pattern B.
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112Figures 4.19 and 4.20 show the estimated distributions for Pattern A and PatternB, respectively.4.5.7 Comparison among Best ResultsFigure 4.21 shows the history curves of all the estimation methods with the bestadvancing constants or weights that are previously shown. In the distance graphs(b), the methods are in the following order from the smallest distance at 1000 lineminimizations for Pattern A: the Fourier step scheme, the Haar step scheme, theFourier weight scheme, the Haar weight scheme, and the single-resolution method.For Pattern B, the order is the following: the Fourier step scheme and the Fourierweight scheme are about the same, and then the Haar weight scheme, the Haar stepscheme, and �nally the single-resolution method.In the cost-versus-distance graphs Figure 4.21 (c), the methods are in the followingorder from the leftmost curve (the closest path to the global minimum) for PatternA: the Fourier step scheme, the Fourier weight scheme, the Haar step scheme, theHaar weight scheme, and the single resolution. For Pattern B, the order is as follows:the Fourier weight scheme and the Fourier step scheme are about the same, then theHaar weight scheme, the Haar step scheme, and �nally the single resolution.Figure 4.22 shows the estimated distributions of all the methods at 1000 lineminimizations for Pattern A. The settings are the same as in Figure 4.21. Theestimate by the Fourier step scheme (c) looks closest to the true distribution (a),although it is still vague. Figure 4.23 shows the estimated distributions at 1000 lineminimizations for Pattern B. The estimate by the Fourier step scheme (c) and alsothe one by the Fourier weight scheme (d) look closest to the true distribution (a). Theestimate by the conventional single-resolution method (b) does not show the basicstructure of the true distribution at all.
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1165. Discussion5.1 Multiresolution vs. Single-resolutionThe cost-versus-distance graphs in the previous chapter show that the curves of themultiresolution estimation tend to proceed more toward the global minimum(at whichboth the cost and the distance to the true distribution are zero) than do the curves ofthe single-resolution estimation. Since the single-resolution optimization successfullydecreases the cost but not the distance to the true distribution, the direction of the rawgradient may be very di�erent from the direction toward the global minimum(the truedistribution). Therefore, the shape of the cost surface is probably like a rain guttershown in Figure 5.1 as a three-dimensional approximation. We can see, at least in theproblem of electrical impedance tomography, that the single-resolution optimizationgoes down the hill almost straight to the bottom of the gutter and loses the heightneeded to slide down to the global minimum, while the multiresolution optimization
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117leads closer to the global minimum. This fact tells that the low-resolution componentsof the gradient, which are enhanced in the multiresolution search, point more correctlyto the global minimum than the high-resolution components do.How to best utilize the multiresolution information, including the choice betweenthe step scheme and the weight scheme, the advancing criterion for the step scheme,other types of �lters for the gradient, etc., remains to be studied in the future.5.2 Causes of Di�cultiesThe estimated resistivity distributions in the experiments of the previous chapterdid not show enough details of the true distributions even with the multiresolutionoptimization. It might be because the image reconstruction of electrical impedancetomography is such a highly nonlinear, ill-posed problem [29] that even an excellentestimation algorithm has trouble with it. For example, two or more di�erent re-sistivity distributions can produce very similar voltage distributions on the externalboundary [41]. This means that there can be local minima that are almost as goodas the global minimum in terms of the cost.It is also possible that the existence of discontinuities in the true resistivity distri-butions (Pattern A and Pattern B) disturbed the estimation. Such \discontinuities"in a discretized �eld are not really discontinuous, because the grid width over whichthe value jumps is only �nitely small. Besides, both the discrete Fourier transformand the discrete Haar wavelet transform can handle such a �eld with jumps aw-lessly except for errors in the oating-point calculation. Nevertheless, such jumpsmight make the estimation di�cult for the multiresolution optimization, since theycontribute to larger magnitudes of the high-frequency components near the Nyquistcritical frequency. Examining such e�ects of the frequency distributions on the searchbehavior can be an interesting and important topic for the future work.
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N/2 N/2Figure 5.2: Wavelet transform vs. Fourier transform5.3 Fourier Transform vs. Wavelet TransformOne of the fundamental di�erences between the Fourier transform and the wavelettransform lies in the way the frequency goes up as the resolution step proceeds. Wecall the number of pairs of the highs and the lows the \frequency" here, although eachwave of the Haar wavelet transform is non-sinusoidal and hence has higher frequencycomponents in itself. Figure 5.2 shows the di�erence between the two transforms inthe one-dimensional case. In both transforms, the lowest frequency is zero and thehighest is N=2, where N is the number of the discretized elements. In the wavelettransform, the frequency goes up exponentially as the resolution step proceeds, andthe number of the corresponding coe�cients is equal to the frequency. Thus, there are
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multiresolution step MFigure 5.3: Multiresolution steps and frequencylgN+1 (lg � log2) resolution steps in the wavelet transform. In the Fourier transform,however, the frequency goes up linearly, and the number of the coe�cients is two foreach frequency (except for the lowest and the highest frequencies each of which hasonly one coe�cient). As a result, the Fourier transform has N=2+1 resolution steps.Therefore, the relation between the frequency and the multiresolution step in theone-dimensional step scheme is as shown in Figure 5.3.This means that the transition of the resolutions is smoother with the Fouriertransform than with the wavelet transform. In another aspect, as the resolution stepproceeds in the step scheme, exponentially many new coe�cients are introduced inthe search with the wavelet transform, whereas a constant number of (or linearlymany in the two-dimensional case) new coe�cients are introduced with the Fouriertransform. As a result, the multiresolution optimization with the Fourier transformmay proceed more smoothly than that with the wavelet transform. This may explain



120why the method with the Fourier transform performed better, if slightly, than themethod with the wavelet transform in the experiments.The wavelet transform is said to be better than the Fourier transform in applica-tions other than parameter estimation, such as image compression [30]. The reasonis that each wavelet coe�cient represents localized information, while each Fouriercoe�cient represents information of the whole �eld. For the multiresolution estima-tion, however, the Fourier transform may be more suitable than the wavelet transformbecause of the smoother transition of resolutions.5.4 Conditions for Multiresolution Optimization to WorkThe original idea of multiresolution optimization is to consider a transform be-tween the desired parameter r in the given �eld and the coe�cientsR of the transformin the frequency or scale domain, and then minimize the cost H with respect to thetransform coe�cients R rather than the parameter r. The reason is that we can ma-nipulate the coe�cients R in a multiresolution manner because, in the R �eld, theinformation is inherently sorted out in frequency or scale, whereas we cannot performsuch a manipulation in the original �eld of the parameter r. Even in the methodthat directly optimizes the parameter r by using the �ltered gradient, we can viewthe process in the above way, since, as we proved, the direct optimization using the�ltered gradient is equivalent to the optimization of the transform coe�cients.Then, a serious question arises: \What if the parameters to be estimated arethe transform coe�cients R in the �rst place?" If we were to solve this estimationproblem in another transformed domain, it would form an endless cycle. Let us takethe Fourier transform as an example. As we saw in Section 2.3.1, the discrete Fouriertransform and the inverse transform are virtually interchangeable. This means that,whether we use one or the other, the transformation process extracts and arranges



121the information in the virtually same manner. Therefore, if we were to estimate theFourier coe�cients R of some array r, and we tried to solve the estimation problemby manipulating the Fourier coe�cients R0 of the desired Fourier coe�cients R,it would be the same as manipulating the array r, because the \new" coe�cientsR0 = DFT(R) is virtually equivalent to the array r = DFT�1(R) in terms of theinformation contents. Thus, if we viewed the transform coe�cients as the parametersto be estimated in the �rst place by the multiresolution optimization, it would forman endless cycle between the two domains, returning to the virtually same domainevery two transforms.It is obvious from the above argument that the multiresolution optimization doesnot always work. On the other hand, it is also obvious that it works in some casesas shown in the previous chapter. So, the next question is under what conditions themultiresolution optimization works. It should be a topic for the future work, sincethere is no clear answer to it yet. However, one possible answer may lie in the way thedistributed parameter inuences the cost as follows. Let us refer to Figure 2.1 in page11. With most mathematicalmodels described by partial di�erential equations for theforward problem V := G(r), each element of the distributed parameter r inuencesthe elements of the variables V spatially close to it more than the elements of Vfar from it. Hence, each element of the parameter r inuences the cost H somewhatlocally, since the cost H is calculated on V . On the other hand, the e�ect of thetransform coe�cients R on the cost H is not so local. In particular, with the Fouriertransform, the e�ect is not local at all, since each element of R inuences the whole�eld of the parameter r that leads to the cost H. Therefore, it might be correct tosay that the multiresolution optimization works if the original distributed parameterto be estimated has somewhat local relationship with the cost to be minimized. Weneed to study further about this matter.



1226. ConclusionsMultiresolution optimization methods for estimation of distributed parameterswere developed in this dissertation. The basic idea was to give priority to low-resolution information over high-resolution information in the estimation process,assuming that the parameter distribution was continuous almost everywhere in thede�ned �eld. It was expected that the large-scale structure of the distribution wouldbe found rapidly due to the enhanced low-resolution information, which would in turnhelp expedite the estimation of the details of the distribution.The conjugate gradient method was employed for a local search, and the discreteFourier transform and the Haar wavelet transform for a multidimensional �eld wereused for manipulating the information in a multiresolution manner. Two schemes,the step scheme and the weight scheme, were devised as a way of manipulating themultiresolution information.The original method was designed to indirectly estimate the desired parameterby estimating the transform coe�cients with either the step scheme or the weightscheme. Later, it was proved that the same results can be obtained by directlyestimating the desired parameter using the gradient that is �ltered via the transformin either scheme.The developed methods were evaluated in simulation of electrical impedance to-mography. The multiresolution methods showed superior performance to the con-ventional single-resolution method in estimating the resistivity distributions for bothof the two test patterns. The results of the multiresolution optimization with theFourier transform were better than those with the Haar wavelet transform.In addition to the multiresolution methods, e�cient ways of calculating the gra-dient were developed. The framework was based on the general view of the back-



123propagation algorithm. In particular, an extremely memory-e�cient method to ob-tain the gradient in a convergence-type forward problem was devised.6.1 Future WorkThe following subjects were proposed for the future work:1. How to best utilize the multiresolution information, such as the choice betweenthe step scheme and the weight scheme, the advancing criterion for the stepscheme, other types of �lters for the gradient, etc.2. E�ects of the frequency distribution of the parameter, especially of the high-end frequencies that correspond to discontinuities, on the search behavior of themultiresolution optimization.3. The conditions for the multiresolution optimization to work, especially in termsof the relationship between the parameter to be estimated and the cost to beminimized.
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