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Estimation of Distributed Parameters
by Multiresolution Optimization

Kopr Amakawa

ABSTRACT

This dissertation proposes, develops and evaluates multiresolution optimization
methods for estimation of distributed parameters of mathematical models. The
methods are based on the assumption that the distributed parameters are continuous
almost everywhere in the defined field.

The main idea in employing multiresolution optimization is to give priority to
large-scale characteristics of the parameter distribution over smaller-scale ones in
the estimation process. This allows the overall structure of the distribution to be
found more quickly, which results in rapid approach of the estimation to the true
distribution. This in turn allows more reliable search for the details.

The multiresolution optimization method consists of a local search method and a
multiresolution scheme that controls the resolution of the search. This dissertation
employs the conjugate gradient method as a local search method, and the discrete
Fourier transform and the Haar wavelet transform as a multiresolution scheme. Since
the coefficients of these transforms are inherently sorted in frequency or scale, mul-
tiresolution estimation can be realized by estimating the transform coefficients with
some controlled weights and inversely transforming the coefficients back to the pa-
rameter distribution. Two methods of controlling the resolution are devised. One
is the “step scheme” in which the threshold frequency for a low-pass filter steps up
every time the search converges. The other method is the “weight scheme” in which
fixed weights are assigned so that the coefficients of low frequencies get larger weights

than the coefficients of higher frequencies.



This dissertation gives a proof that estimating the transform coefficients in either
scheme is equivalent to directly estimating the desired parameter distribution by
using the gradient that is filtered by the transform. In other words, we can realize
a multiresolution optimization by simply filtering the gradient in a multiresolution
manner to control the resolution of the search direction.

The developed methods are evaluated in simulation of the so-called electrical
impedance tomography, which is one of many potential applications. It is shown
that the multiresolution optimization yields better estimates more rapidly than the

conventional single-resolution method.

Keywords: multiresolution optimization, parameter estimation, distributed pa-
rameter, Fourier transform, Haar wavelet transform, filtering gradient, electrical

impedance tomography
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1. Introduction

Numerical simulation by the computer has become a powerful tool for investigating
various phenomena that can be described by mathematical models. In the ordinary
simulation, the user first sets the values of the model parameters and then calculates
the corresponding results on a mathematical model. The direction of the information
flow is from cause to effect in this case, because the parameter values are the cause
of the simulated phenomenon which is the effect. The reverse process that seeks for
a probable cause of a given effect on a given mathematical model is the parameter
estimation problem in which the unknown model parameter values are to be estimated
from a given phenomenon.

Such estimation problems, especially for distributed parameters, are found in var-
ious areas. For instance, one may want to get information about the internal mecha-
nism of a physical system by measuring its externally observable states because it is
difficult or impossible to directly measure the interior. In this case, the distributed
parameter that represents the interior of the system has to be estimated from certain
quantities measured on the exterior. Some examples of this type are image recon-
struction problems in ultrasound, light scattering, impedance, diffuse tomography
and biomagnetism [3, 12, 24, 35]. In another case, one may want to determine the
aspects of a system, which are in themselves difficult to measure directly, by inferring
these aspects from other more accessible quantities which may actually be in the same
physical position. An example of this type is estimation of the diffusion coefficient
distribution of a heart muscle tissue from its electrical activities [1].

This dissertation deals with such estimation problems for parameters distributed
over a multi-dimensional field. Assumed as a basic property of the problems is that the

parameter is continuous almost everywhere in the field. In other words, a parameter



element is expected to have a value close to its neighbors’ in most of the regions in

the field.

1.1 Parameter Estimation by Numerical Optimization

Numerical optimization techniques are often employed to solve parameter esti-
mation problems, especially when the mathematical model of the phenomenon is
nonlinear [34, 37]. The common framework of these techniques is to optimize the
unknown parameter distribution so that the simulated results of the phenomenon
approach the given data.

Calculating the resulting state of the model variables based on given parameter
values is called the direct problem or the forward problem. The direct problem can be

expressed as:

V= G(r, V) (1.1)

G/() : function based on the mathematical model
r : model parameter(s)
V' : final state of variables

V. : initial state of variables

If the final state of variables does not depend on their initial state, we can write:
V :=G(r) (1.2)

The parameter r of the problems studied in this dissertation is distributed over a
multi-dimensional field, continuous almost everywhere, and may be constant or time-
varying. For simplicity, we refer to r as if a single distributed parameter is being

estimated; in fact, more than one is possible.



Estimating the distributed parameter # from the given final state V' of the vari-
ables, and possibly the given initial state V., is an inverse problem. When the math-
ematical model is nonlinear, solving (1.1) with respect to r is often impossible. With
a numerical optimization technique, however, we can estimate the parameter = by
optimizing it so that the variable V' calculated by (1.1) becomes close to a given V.
Let V' denote the calculated, and V denote the given target. Then, we estimate

by minimizing the cost H(V, ‘A/) that represents the error between V' and V.

1 Input target state \% (and possibly initial state V)
2 Set initial guess of r
3 Repeat until cost is minimized:

3.1 V:=dq(r,V,)

3.2 cost:= H(V,‘A/)

3.3 Adjust r

4 Output »

Figure 1.1: General estimation algorithm

Figure 1.1 shows the general estimation algorithm that uses optimization. In the
repeat loop 3, line 3.1 solves the direct problem based on the present », line 3.2
calculates the cost, and line 3.3 adjusts = so that eventually, after some number of
iterations, a (local) minimum of the cost is reached. At this point, estimation of the
distributed parameter # terminates.

The performance of the algorithm in terms of computation time and estimation
accuracy 1s dependent mostly on line 3.3. There are various methods to “adjust” .
These can be classified into two primary categories: local search methods that look
for a better # in the vicinity of the present v, and global search methods that explore

much wider regions than the vicinity of the present ».



1.2 Local Search Methods

Among various local optimization techniques, efficient and therefore often used
are the conjugate gradient method and the quasi-Newton family [2, 25, 30, 37]. The
conjugate gradient method may be more suitable if the distributed parameter to be
estimated has a large number of elements, because it requires less memory than the
quasi-Newton family and yet its convergence speed is comparable as follows. With NV
unknown elements of the parameter, the conjugate gradient method needs memory
of size O(N), while the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, which
is a typical quasi-Newton method, requires O(N?). This difference becomes quite
serious as N gets larger. However, both methods reach a minimum in O(N) time
when the cost is quadratic with respect to the unknowns. In many cases, the cost
function is more complicated, but the quadratic approximation which is the basis of
these methods is still useful because a smooth function becomes almost quadratic
near a minimum.

The limitation of these methods is that they can perform only a local search, not
a global one. Since they determine the next point of the search to lower the cost at
every iteration, the search path is always downhill on the cost surface. Therefore, if
there exist multiple valleys of the cost, these methods can find only a local minimum
(the bottom of the current valley), not the global minimum (the lowest point of all
the valleys), unless the user is lucky enough to happen to set the initial guess in the

right valley.

1.3 Global Search Methods

The limitation of local search methods comes from the fact that the search is

always downhill on the cost surface, which makes it impossible to investigate other



valleys that might exist. Therefore, one way of realizing a global search is to allow
somewhat random moves, including uphill (cost-increasing) ones, in a certain con-
trolled manner to visit various valleys. The following two methods, which are the
only general global optimization methods to date other than a brute force search,
take this approach.

Simulated annealing [8, 20, 39], which was invented from analogy to physical
annealing in which a material is heated to a high temperature and slowly cooled
down until it rests in the most stable phase, allows cost-increasing moves with a
probability controlled by the so-called temperature. The temperature is initially set
high and gradually decreased based on a certain annealing schedule. Accordingly, the
probability of accepting uphill moves is initially high and gradually decreased.

Genetic algorithms [7, 8,10, 11, 43] also perform global minimization by somewhat
random moves, but in a totally different way. The search starts with a population
of random chromosomes (candidates of the best estimate of the parameters) and im-
proves the population by creating new offspring by genetic operations. Typical genetic
operations are crossover that exchanges parts of two chromosomes, and mutation that
randomly modifies parts of a chromosome. The offspring created by such operations
can be better than their parents, either in the same cost valley or in a different
one. Even if some are worse than their parents, they might be on the way to better
(deeper) valleys, although the worst chromosomes in the population are discarded.
Genetic algorithms were invented from analogy to evolution in nature where random
mutations in genes over many generations produce optimizations in the species.

These two global optimization methods are applied to many kinds of problems,
often successfully. There is, however, a major difficulty in using them. Their opti-
mization performance depends on settings of the control parameters that control the
search behavior itself. The user often has to optimize the control parameters of the al-

gorithm before successfully getting a good estimate of the desired model parameters.



In the case of simulated annealing, decreasing the temperature too fast may cause
inaccurate parameter estimation, whereas decreasing it too slowly results in waste of
computation. Similarly, in the case of a genetic algorithm, the population size, i.e. the
number of chromosomes, and other control parameters determine the accuracy and
efficiency of the estimation [11]. Another problem with genetic algorithms is that a
vast amount of memory may be needed because many estimates (chromosomes) have

to be stored.

1.4 Proposed Method: Multiresolution Local Search

This dissertation proposes, develops and tests multiresolution local search meth-
ods. The motivation is to develop a method that can perform a global, or nearly
global, search in a deterministic manner as opposed to the stochastic approaches
found in conventional global search methods. Using a deterministic process elimi-
nates the need for control parameters for stochastic behavior used in conventional
global search methods, and their attendant problems. As a result, it is hoped that
the search behavior will be more predictable and the method will be easier to use.

Conducting a local search in a multiresolution manner may be a good answer,
provided that the parameter to be estimated is continuous almost everywhere in its
defined field. The basic idea is to first estimate the large-scale characteristics of
the parameter distribution and gradually move on to the smaller-scale ones. Such
a method can be realized by combining a conventional local search method with a
multiresolution scheme. Intuitive reasons behind this approach are the following:

1. An estimate of a parameter distribution can be considered good if its large-

scale characteristics agree with those of the true distribution but its small-scale

ones (details) do not. On the other hand, an estimate with wrong large-scale



characteristics and some correct small-scale ones cannot be a good one. In this

sense, large-scale characteristics should be given priority in the estimation.

2. In most estimation problems of distributed parameters, parameter values in
any region of the defined field depend on, and are affected by, those in the
other region. Consequently, for the estimate of any region to become good,
the estimate of the other region has to be good, too. In other words, attempts
to estimate the details may be useless or even harmful unless the larger-scale

characteristics are already close to those of the true distribution.

3. If the distributed parameter is continuous almost everywhere in its defined
field, its values at neighboring points may be close to one another. Then,
we can restrict the degrees of freedom among neighboring parameter elements
without losing much information of the parameter distribution. Restricting
the degrees of freedom in this case is equivalent to suppressing the small-scale

characteristics. It also leads to a smaller dimension of the search space.

4. In a local search method like the conjugate gradient method, the number of
iterations needed to reach an optimum is roughly proportional to the dimension
of the search space. Therefore, a search can be faster with a smaller dimension
of the search space.

It was found that there were other researchers who conceived the same idea of using
multiresolution optimization for parameter estimation [4, 23]. They used the Haar
wavelet [5, 6, 31] as a multiresolution scheme combined with a quasi-Newton method
(the BFGS algorithm) to estimate a distributed parameter of elliptic and parabolic
models. It was shown that the multiresolution algorithm performed better than
an ordinary single-resolution method. Their results were quite promising, although
the models tested were only one-dimensional and the number of elements of the

distributed parameter was limited to 32.



This dissertation develops methods that use the discrete Fourier transform [21,
30, 40] as well as the Haar wavelet transform for a multi-dimensional field. The
major differences between the two transforms are: (1) the Haar wavelet transform
has compact support, i.e., the effect of each coefficient of the transform is limited
to a certain region of the field, whereas each coefficient of the Fourier transform has
influence on the whole field, (2) the Fourier transform is smooth because it is based
on sinusoidal waves, whereas the Haar wavelet transform is discontinuous, (3) the
Fourier transform is more flexible in terms of the positions of the highs and the lows
of a distribution at low resolution than the wavelet transform, because in the wavelet
transform each coefficient is assigned to a fixed region, and (4) the number of different
resolution levels that can be taken is much greater with the Fourier transform than
with the wavelet transform, because the resolution goes up linearly in the Fourier
transform and exponentially in the wavelet transform.

There are various ways of controlling resolution. In this dissertation, two methods
are tested. One method uses a step scheme where the threshold frequency of a low-
pass filter that cuts off the higher-frequency coefficients is moved one step higher each
time the search converges. The other method uses a weight scheme that assigns larger
weights to the coefficients of lower frequencies so that the search is guided more by
the low-frequency information than by the high-frequency information.

The original idea of multiresolution optimization is to estimate the coefficients of
the transform of the desired distributed parameter rather than the parameter itself.
The reason is that the coefficients of the transform are inherently sorted by resolution
and hence easy to manipulate in a multiresolution manner. However, this dissertation
shows that the same results can be obtained by directly estimating the parameter
using the gradient that is filtered by the transform. In other words, it is shown that
a multiresolution search can be performed by simply filtering the gradient for a local

search.



Performance of the developed methods is evaluated in the so-called electrical

impedance tomography [16, 17, 22, 24, 26, 28, 29, 38, 41, 42, 44, 45], which is one of

many application areas. The parameter to be estimated in the test problem of this

dissertation is distributed over a large number (4096) of discretized nodes in a two-

dimensional field. Since the number of unknowns is the dimension of the search space,

estimation is expected to be difficult enough with this many unknown elements.

1.5

Contributions of This Dissertation

I would like to claim that the following are the contributions of this dissertation

to advancement of the research area:

1.

Developed the methods of multiresolution optimization that are based on the

discrete Fourier transform for a multi-dimensional field.

Extended the multiresolution optimization method that is based on the Haar

wavelet transform to be used for a multi-dimensional field.

Devised two schemes of controlling resolution, the “step scheme” and the
“weight scheme”, and investigated their performance.

Proved that multiresolution optimization can be simplified to filtering the gra-
dient via the transform in a multiresolution manner.

Showed a generalized view of utilizing the so-called back-propagation algorithm
for calculating the gradient.

Devised a practical method for calculating the gradient with a small amount of
memory for a convergence-type forward solution scheme.

Examined fundamental differences between the Fourier transform and the

wavelet transforms from the parameter estimation point of view.
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2. Globalizing a Local Search by Multiresolution

2.1 General Framework

Multiresolution estimation of a distributed parameter can be realized by using a
transform between the raw parameter field and the corresponding field in a frequency
or scale domain. Instead of estimating the parameter field, we estimate the coefficients
of such a transform. Then, since each coefficient of the transform corresponds to
a specific frequency or scale, it is easy to control the resolution in estimating the
parameter distribution.

Let 7 be a transform from the parameter field into the coefficient field in a

frequency or scale domain, and 7! be its inverse transform. That is:

R = T(r)
r = T YR)
r : distributed parameter

R : coefficients of the transform
Since the transform 7 performs a one-to-one mapping between the coefficients R and
the parameter v, we can indirectly estimate r by estimating R. And in estimating
R, we can manipulate the resolution by utilizing the frequency or scale information
inherently associated with R.

In this dissertation, the discrete Fourier transform and the Haar wavelet transform
are used as 7, and the conjugate gradient method is used for a local search. In the
Fourier transform, it is “frequency” that is associated with each coefficient, and in
the wavelet transform, it is “scale”. The resolution goes up as the frequency increases

or the scale decreases. In this sense, we consider “low frequency” and “large scale”,
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or “high frequency” and “small scale”, interchangeable to simplify explanations that

apply to both the Fourier transform and the wavelet transform.

As a method of manipulating the resolution, two schemes are devised as follows.

2.1.1 Step Scheme

One way of giving priority to low-resolution components over high-resolution
components is to first estimate only the low-frequency coefficients of the transform
and gradually move on to the higher-frequency coefficients. It is realized by neglecting
the coefficients whose frequencies are higher than a certain threshold and stepping up
the threshold every time the estimation converges. We call this approach the “step

scheme”.

1 Input target state \% (and possibly initial state V)
2 Set initial guess of parameter r and transform it by R := 7 (r)
3 Repeat from the lowest to the highest frequency threshold:
3.1 Repeat until the advancing criterion is met:
311 r:=7T 'R)
3.1.2 V.=G(r)
3.1.3 cost:= H(V,‘A/)
3.1.4 Adjust the elements of R below the threshold

4 Output »

Figure 2.1: Step scheme of multiresolution estimation

The general framework of the step scheme is shown in Figure 2.1. Since we
estimate the coefficients R instead of the distributed parameter =, the framework of
the estimation algorithm Figure 1.1 in page 3 is modified. Line 3.1.1 transforms the

present estimate of the coefficients R into the distributed parameter =, line 3.1.2
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solves the direct problem, line 3.1.3 calculates the cost, and line 3.1.4 adjusts the
elements of R whose frequencies are lower than the threshold.

We have to consider a criterion for advancing the frequency threshold in the step
scheme. There are various ways for this, and the best way may be different for
different estimation problems. Here, under an assumption, one criterion is presented.

The assumption is that the shape of the cost curve against the number of local
search iterations is approximately similar in all the frequency steps, after being
appropriately scaled and shifted. In other words, we assume that Hj, the cost with

frequency limit L, can be roughly described by the following equation:
HL(tL) = GLH*(bLtL) + Cy, (21)

where 5, is the number of local search iterations with frequency limit L, H, is the
template curve assumed to be valid for all the frequency limits, and ay,, b;, and ¢, are
constants for L. Then, H}, the derivative of Hj with respect to ty, is expressed by

H!, the derivative of H., as follows:
H/L(tL) = aLbLHL(bLtL) (22)

Hj is always negative, since the cost Hy, is always reduced in a local search.

We want to determine a frequency threshold advancing criterion that has the
same strictness for all the frequency steps. This means that advancement should
occur at the same point on the standardized curve H,. Let such a point be H*(:I;adv).
Then, from (2.1), we get bLt%dV = 224V for frequency limit L, where t%dv is t7, at the

adv

advancing point. Using (2.2) for both ¢, = %%V and {1, = 0, we get

H(BY) = apbpH(«*) (2.3)

Hi(0) = agbyH'(0) (2.4)

from which the following criterion is obtained:
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Hy () L)
Hy(0) ~ HI0)

—C (2.5)

where C' is a constant for all L. Therefore, the search with frequency limit L should
advance to the next frequency step (unless L is the highest frequency) when the

following condition is satisfied:
H(lr)
HE(0)

There may be a problem with this criterion, however. That is, cost curves in

<C (2.6)

reality are not perfectly similar and may sometimes come to the steepest point after
several iterations. Then, using the actual steepest slope rather than the initial slope
may make the criterion more consistent throughout all the frequency steps. Therefore,

it may be often better to replace the criterion (2.6) with the following:

H(tr)
e (2.7)

For evaluation of each slope Hj , it is better to use values of cost Hj, that are two or
more iterations apart rather than consecutive ones. The reason is that the descent of
the cost fluctuates. Using cost values some iterations apart has an averaging effect and
prevents premature advancement of frequency when the descent of the cost happens
to be small at one iteration.

If the number of coefficients to be estimated is Nj, with frequency limit L and the
cost function is quadratic with respect to them, it takes O(Np,) local search iterations
to converge in the conjugate gradient method [25, 30]. Although the cost function in
general is more complicated than quadratic, O( Nz ) might still be useful as a rough

estimate of the number of local search iterations required in the step L.

2.1.2 Weight Scheme

Another way of giving priority to low-resolution components is to attenuate the

adjustments of the transform coefficients according to their frequencies. This can be
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realized by assigning certain constant weights to the coefficients such that the weight

decreases as the frequency goes up. We call this method the “weight scheme”.

1 Input target state \% (and possibly initial state V)
2 Set initial guess of parameter r and transform it by R := 7 (r)

Assign weights to coefficients according to frequencies

- W

Repeat until convergence:

4.1 »:=7'R)

4.2 V:=dG(r)

4.3 cost:= H(V, ﬁ)

4.4 Adjust R using the weights

5 Output r

Figure 2.2: Weight scheme of multiresolution estimation

Figure 2.2 shows the general framework of the weight scheme. It has no loop
on frequency unlike the step scheme, since the weights are constant throughout the
estimation. Line 3 assigns the weights to the coefficients of the transform. The loop
in line 4 is an ordinary local search method for the coefficients R except that the

adjustment of each coefficient is multiplied by its assigned weight in line 4.4.

2.1.3 Estimating Transform Coefficients vs. Filtering the

Gradient

So far, we have considered algorithms that indirectly estimate the desired param-
eter via estimating the transform coefficients. However, if the employed local search
method determines search directions based on the gradient, we can devise another

kind of multiresolution algorithm that directly estimates the distributed parameter.
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The key here is to filter the gradient so that the search direction is controlled in
a multiresolution manner. In other words, it is possible to guide the search in a

multiresolution manner by manipulating the resolution of the gradient.

Filtering the gradient Vg H can be performed by using a transform 7 as follows:
vty = 7-'\OW(T (Vr H))) (2.8)

where W() represents multiplying the transform coefficients by certain weights and
VgtH is the resulting filtered gradient. Namely, the original gradient is transformed
into the frequency or scale domain, multiplied by certain weights based on the fre-
quencies or scales, and then transformed back into the original domain to make the
filtered gradient.

Figure 2.3 shows the step scheme that uses the filtered gradient. The loop in line
3 sets the frequency threshold the same way as in the indirect algorithm Figure 2.1,
page 11. Line 8.1 sets the low-pass filter, which is the filter defined by (2.8) with
weight = 1 for the coefficients below the threshold and weight = 0 for the others. Line
3.2.3 gets the filtered gradient using the filter, and line 3.2.4 adjusts the estimate
using the filtered gradient.

Figure 2.4 is the weight scheme using the filtered gradient. It is the same as an
ordinary single-resolution local search except that the gradient is filtered. Line 3 sets
the filter defined by (2.8) with appropriate weights, line 4.3 gets the filtered gradient,
and line 4.4 adjusts the estimate using the filtered gradient.

It will be shown later in Sections 2.3.3 and 2.4.3 that, as long as a local search is
performed by the conjugate gradient method, the direct estimation of the parameter
using the filtered gradient is equivalent to the indirect estimation via estimating
the transform coefficients. Hence, the direct estimation with the filtered gradient is
neither superior nor inferior to the indirect estimation in terms of the performance.

However, the direct estimation is conceptually simpler and thus easier to implement.
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Input target state vV (and possibly initial state V)
Set initial guess of parameter r
Repeat from the lowest to the highest frequency threshold:
3.1 Set the low-pass filter for the gradient using the threshold
3.2 Repeat until the advancing criterion is met:
3.2.1 V:.=G(r)
3.2.2 cost:= H(V,‘A/)
3.2.3 Get V{;@tH by filtering the gradient V¢ H
3.2.4 Adjust r based on V{;@tH

Output »

Figure 2.3: Step scheme using filtered gradient

1 Input target state vV (and possibly initial state V)
Set initial guess of parameter r

Set the filter for the gradient using the frequency weights

_ W W

Repeat until convergence:

4.1 V:=dG(r)

4.2 cost:= H(V, ‘A/)

4.3 Get VgtH by filtering the gradient V¢ H
4.4 Adjust r based on V{;@tH

5 Output r

Figure 2.4: Weight scheme using filtered gradient
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Furthermore, it can possibly open up new ways of multiresolution optimization by

introducing various types of filters for the gradient.

2.2 The Conjugate Gradient Method

This dissertation employs the conjugate gradient method [14, 25, 30, 37] for local
search. The reason is that this method is suitable for estimating a large number
of unknowns because its required storage is smaller than that of the quasi-Newton
family, which is another powerful method, and yet its convergence speed is comparable
(see Section 1.2). In the following, the method is explained for two cases. In the first
ordinary case, the parameters to be estimated are real numbers. We extend the

method to the second case, where the parameters are complex numbers.

2.2.1 When Parameters are Real

The conjugate gradient method is based on the assumption that the real function

to be minimized, the cost H in our case, is approximately quadratic as follows:

1
H(x) ~ 5;13TA;13 —blz +c (2.9)

where @ = [z, 79, -, zn]T € RY is a column vector of N real unknowns (R : the
set of real numbers), A is an N x N symmetric positive definite matrix, b is a column
vector of N real constants, and ¢ is a real scalar constant. This can be considered as
an approximation of any smooth function, because the effects of the terms of degree
3 and higher become smaller as a minimum is approached.

Let us imagine the N-dimensional search space where each of the N coordinates
represents one of the NV elements of the unknown @. That is, any one point in the
search space determines the values of all the elements of @, thus representing a specific

€.
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Let «; be the j-th point in the search space visited by the conjugate gradient
method. The next point ;41 is determined by searching for a minimum in the

direction d; from the present point &;. Namely, the relation between x; and x;; is:
Ljit1 = T; + O'jd]‘ (210)

such that a real scalar o; minimizes the function value H(@,;41). This is called a “line
search” or a “line minimization”.

The direction d; of the line minimization is initially (when j = 0) the negative
gradient at the initial point @¢. In the following cycles it is the present negative
gradient deflected toward the previous search direction d;_; as follows. Let g; be the
gradient at x;:

g; =VaH(z)) (2.11)

Then, the search direction d; for the j-th line minimization is determined by:

- ifj=0
a-] 7 / (2.12)
—g;+7dj—1 ity >1

The real coefficient 7; that determines the amount of influence of the previous search

direction on the present one is usually calculated by either of the two formulas below:

7,'% g] (Fletcher-Reeves)
g]—l g]—l
T (9,-9,) 9 (2.13)
i —9j- j P
919, (Polak-Ribiere)

where @ - y denotes the inner product of the vectors. The Polak-Ribiere formula is

said to be usually superior to the Fletcher-Reeves formula [30].

2.2.2 When Parameters are Complex

Let us consider the case where the cost H is a function of complex numbers. This

consideration is necessary for estimating the Fourier coefficients, which are complex
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in general. We convert such a complex problem into a real problem by using the fact
that a complex number consists of two real numbers, the real part and the imaginary
part.

Let the cost H be a real-valued function of a distributed parameter @ that has N
unknown complex elements, namely I/ : C¥ — R (C : the set of complex numbers).

The parameter vector & consists of the real part £ and the imaginary part & such

that

r=xp+tixs (i = /1) (2.14)

where

zr = Re(z)c RV

Ty Im(a:) € RN

In this way, an N-component complex vector @ is decomposed into two N-component
real vectors & and @;. Let us create a 2N-component real column vector from the

two real column vectors & and x; as follows:

xr
e 2| " (2.15)

Ty

That is, the upper half of &g is £r and the lower half is 2, thus &z; € R?*V.

The cost function H can be considered to take either the original complex vector
@ or its converted real version ®r;. The former is viewed as a function of N complex

numbers and the latter as a function of 2/NV real numbers:
H(x): V=R
H(QZR[) . RQN — R

From (2.15), the gradient of the real version Vg ., H consists of the gradient with

respect to @ and the gradient with respect to @ as follows:
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Ve,

Ve, H= (2.16)

Ve, H
Since H, #r and x; are all real, both Vg, H and Vg, H must be real. Therefore,

using the chain rule for partial differentiation, we get the following:

wen=li] = vl
([
()
= Re(VaH) (2.17)
wen=[iz] - w(ia])
(2 ])

- (4]
—Im(VgH) (2.18)
oM

Here, we treated Vy H (y = x,@p or 1) as an N-component column vector, — as

0

an N-component row vector, and a—w as an N X N matrix. Putting (2.17) and (2.18)
Yy

into (2.16), we finally get the following relation between the gradient of the complex

version Vg H and the gradient of the real version Vg, H.

—Im(VgH)

Ve, H = (2.19)

Note that the sign of the imaginary part of the complex gradient must be reversed.
The following is the conjugate gradient method for @xpr;, based on the method
shown in Section 2.2.1. At each iteration j > 0, the next estimate TR, 1s deter-

mined from the present estimate TR, by line minimization in the direction dRI],:
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wRIj-I—l = wR[j + UdeIj (220)

where o, is a real scalar that minimizes H(a:RI],_H). The line-search direction dRIJ, is

determined by
—9rj, it j=0
dry; = 0 - (2.21)
_gRI]‘ + TdeIj—l lfj >1
where Iri; = VwRIH(QZR[j). The real coefficient 7; is calculated as follows:
9rr1; " 9RI;
9r1;_y "9RI;_4

(Fletcher-Reeves)
(2.22)

= (gRIj _gRIj_l) "9Rri;

9Rr1;_y "9RI;_4

(Polak-Ribiere)

From the above, we can obtain the equivalent expressions for the original complex
parameter @ as follows. At each iteration j > 0, the next estimate ;41 is determined

from the present estimate &; by line minimization in the direction d;:
Ljit1 = T; + O'jd]‘ (223)

where o, is a real scalar that minimizes H(@;41). The line-search direction d; is

determined as follows:

- ifj=0
4= 7 / (2.24)
—gj—|-7']‘d]‘_1 1fj21

Here, g; is the complex conjugate of the gradient at @;:
g;, =Val(z)) (2.25)

because, as (2.19) shows, Vg, H is equivalent to Re(Vg H) — i Im(VgH) = Vg H.

The real coeflicient 7; is calculated as follows:
9;,°9;
91951

Re((gj —9;.1) '9]‘)
9,19,

(Fletcher-Reeves)
(2.26)

T]‘:

(Polak-Ribiere)
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where the inner product of two complex column vectors & and y is defined by
x-y 2 z'y (2.27)

where & is the complex conjugate of .
Note that (2.24), (2.25) and (2.26) can be used even if the parameter @ is real,

because in that case they become equivalent to (2.12), (2.11) and (2.13).

2.3 The Discrete Fourier Transform

This section introduces the discrete Fourier transform (DFT) as one of the trans-
forms for multiresolution optimization. First, the DFT for a one-dimensional field,
and then the general n-dimensional DFT are shown. Finally, it will be shown that,
coupled with the conjugate gradient method, estimating the coefficients of the DFT

of a distributed parameter is equivalent to directly estimating the parameter using

the gradient filtered by the DFT.

2.3.1 For One-dimensional Field

A one-dimensional distributed parameter can be represented by an array of values
of the parameter sampled at equal intervals. Let » = (rg,rq,---,7rn_1) be such
an array that represents a one-dimensional distributed parameter sampled at N
discretized points. Let each element r; be a complex number for a general case.

The one-dimensional DFT transforms the N complex elements of the parameter
r into another set of N complex numbers in the frequency domain called the Fourier
coefficients. Let R = (Ro, R1,---, Ry—-1) be the Fourier coefficients of the parameter

r.

One definition of the one-dimensional DFT from = to R is the following [21] :
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1 N-1 12mky
Rk:ﬁzrje_Tk (k=0,---,N—1) (2.28)
=0

The corresponding inverse DF'T, which reconstructs the distributed parameter » from

the Fourier coefficients R, is defined by:
ri= 3 Ree R (j=0,-,N—1) (2.29)

With this set of definitions, the coefficient Ry for the frequency zero is equal to the
average of the parameter elements r;.

There are other definitions of the DFT and the inverse DFT than the above. They
differ in the constant before the summation 3 and/or the sign of the exponent of e.
Any such definition can be used as long as the transform and the inverse transform
are self-consistent. The following definitions in which the inverse DFT, instead of the

DFT, has the constant 1/N seem to be used in most of the literature, e.g. [19, 40].

N-1 o

Ry = S re (k=0,---,N—1) (2.30)
7=0
1 N-1 2wk

ry = = RkeT (] :07"'7N_ 1) (231)
N k=0

The only difference from the previous definitions (2.28) and (2.29) is that the magni-

tudes of the Fourier coefficients R are greater by the factor of N.

The sign of the exponent of e can be reversed as the following [18, 30].

N-1 ks

R ST (k=0 N 1) (232
7=0
1 N-1 2wk

ho= S R (=0 N (2.33)
Nk:O

The effect is simply that the parameter distribution is looked at in the reverse order
as shown below. Since the Fourier transform implicitly assumes periodicity, one more

element ry can be defined as vy = ro. The reversed array of {r;} is {r’} defined by

ri =ry_j for j =0,---, N. Then, using the relation:
ei2]7:7k] _ e(i2]7'\r]k] —i27Tk) _ e_i27'rk(]\17\7—])
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we can rewrite (2.32) that is about the array {r;} into an expression about the reversed

array {r’} as follows:

R, = rie N

N .
= > rje ¥ (h=N—j)
h=
(since 1y = 1) (2.34)

The result is exactly the DFT for the reversed array {r}} as defined by (2.30).
Therefore, flipping the sign of the exponent of e in the DFT definition simply has the
effect of reading the array {r;} backward in the order: ry — ry_q4 — -+ — ry.
Actually, we can define either one of the two transforms below as the DFT and the
other as the inverse DF'T between complex arrays {z;} and {y} (j,k=0,---,N—1)

as long as real constants a and 3 have the relation: a3 = 1/N.

e = ay aew (k=0,--,N—1) (2.35)

ro= BY e F (j =0, ,N—1) (2.36)

For example, if (2.35) is chosen as the DFT and (2.36) as the inverse DFT, the array
{x;} becomes the distributed parameter r and the array {y;} becomes the Fourier
coefficients R.

In any definitions above, the Fourier coefficient of the lowest frequency (zero) is
Ry. The coefficient of the highest frequency, called the Nyquist critical frequency, is

2mwky 2wk

R%, for which e~~~ = ¢~ (or e = e”k) in the DFT takes a value +1 and —1

alternately as j (or k) changes. The rest of the Fourier coefficients are in the order

shown in Table 2.1.
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Fourier coefficients | relative frequency

Ry 0
Rl and RN—I 1
R2 and RN_2 2
Rk and RN—k k

N _

R§—2 and R%-I—Q 3 2
N _

R%—l and R%-I—l 5 1
N
Ry Bl

Table 2.1: Fourier coefficients and frequency

We have considered a general case in which the distributed parameter r is complex.
However, the parameter very often has only real values, i.e. the imaginary part of each
parameter element is zero. In this case, the following theorem holds.

Theorem 2.1: If all the elements of the distributed parameter v = (ro,r1, -+, "N-1)
are real, the corresponding Fourier coefficients R = (Ro, Ry, -+, Ry-1) are such that
Ry and R% are real, and Ry and Ry_y (k=1,---, % — 1) are the complex conjugate

2

of each other.

Proof: Let the DFT defined by (2.35). It would be similar if a different definition

1s used. The Fourier coeflicients Ry and Ry_; are as follows:

N-1 .
_ 12mky
R, = « rie” N
=0
N-1
= « r: (cos 225 _  gip 2Tk
= J N N
=0
N-1 _2n(N—k)j
Ry_p = « rje N



i2rkj
= « rie N
7=0
N-1 4 4
= « r; (cos%—l—isin%)
7=0
Since all the parameter elements r; (j = 0,---, N — 1) are real,
N-1 4
Re(Ry) = « Z r;COS % = Re(Rn_i)
7=0
N-1 4
Im(R,) = -« Z r;sin % = —Im(Ry_k)
=0
Therefore,
N
Ry = Rn_g (kzl,---,;)

From this, Ry is the complex conjugate of itself, so it must be real. Also, Ry is real
2

because:

Using the theorem above, we can obtain the following.
Theorem 2.2: For an array of N real numbers v = (ro,r1,---,rn-1), @ pair of
Fourier coefficients Ry and Ry_j, (k=1,---, %—1) form a real-valued cosine (or sine)
wave of relative frequency k in the inverse DFT, determining the wave’s amplitude
and initial phase.

Proof: Let the inverse DFT be defined by (2.36), that is:

2wk

N-1
T]‘:ﬂZRkeT (]:077N_1)
k=0
(The proof goes similarly if (2.35) is taken as the inverse DFT.) This is equivalent to

the following:

N
?—1

rj =8| Ro+Ry(=1)" + > (Rkeﬁﬁ” + RN_WW)

k=1

(2.37)
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Let us define a variable ¢ as follows:

R, R
CoOsSpy = 7|6R( - |k)
sinme = | R( - |k)

where |R| = \/(Re(Rk))2 + (Im(Ry))2. Using this ¢ and the fact Rxy_x = R}, from

Theorem 2.1 because 7 is real, we get the following:

12wk 27j(N—k) 2wk _2myk
Rpe ¥ + Ry_pe” ¥ = Rpe ¥ + Ry_pe” ¥
2wk 12wk

= Rpe N 4+ Rpe w

2wk 12wk

= Rpe ¥ + Rpe v

= QRG(Rke%)
= 2Re((Re(Rx) + ilm(Ry))(cos 2 + i sin 27E))

= 2 (Re(Rk) cos 2mE Im(Ry) sin M)

N N
_ 2wk : s 2wk
= 2|Ry| (cos ( cos =T — sin p sin R )

= 2|Ry|cos (% + c,o)

Therefore, coupled with a real constant 3 in (2.37), the pair Ry and Ry_j constitute
a real-valued cosine wave of relative frequency k whose amplitude is 23| Ry.| and initial

phase (at j =0) is . |

The Fourier coefficient Ry, one of the two that are left out of Theorem 2.2, can
be viewed as representing a real cosine wave of frequency zero, and the other one
R% as a real cosine wave of the Nyquist critical frequency, whose initial phase is
either 0 or m. So, Theorem 2.2 tells that estimating the Fourier coefficients R of
the real distributed parameter r is equivalent to estimating the amplitude and the
initial phase of the cosine wave at each frequency. Therefore, if the step scheme is

employed, the multiresolution estimation with the Fourier transform goes as shown
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Figure 2.5: Multiresolution estimation with Fourier transform

in Figure 2.5. In each step, the amplitude and the initial phase of every cosine wave

up to a certain frequency limit are estimated. If the weight scheme is taken, it simply

estimates the amplitude and the initial phase of every cosine wave at all frequencies

with certain weights. Since the initial phase of each cosine wave is allowed to take

any value (except for the wave at the highest frequency), positions of the highs and

the lows are flexible with the Fourier transform. This is one of the differences from

wavelet transforms.
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2.3.2 For n-dimensional Field

Now, let us consider the DFT for an n-dimensional field (n > 1). A parameter
r distributed in an n-dimensional field can be described by an n-dimensional array
{ri jsin} where j,, is an integer from 0 to N, — 1. The n-dimensional DFT is

defined by combining n one-dimensional DFTs [30]. With real constants « and 3

1

~N, -~ the general forms of the n-dimensional DFT and

having the relation af =
the n-dimensional inverse DFT between two n-dimensional complex arrays {xj,..j, }

and {yr, .k, } (Jm,km =0,---, Ny, — 1) are the following:

N1_1 Nn_l _i27'rk1]1 _i27'rkn]n

Yky ook, = ozZ---ijl...jne Mo ...e T M (2.38)

J1=0 Jn=0
(ko =0,---, N, — 1)

Ni—-1 — ) )
1 Nn—1 2wy kq 27 inkn

Tjyjp = I¢] Z Z Ykyookp€ M1 -cc€ N (239)

k1=0 kn=0

(jm:()7...7]\/'m_1)

As in the one-dimensional case, one can pick either one of (2.38) and (2.39) as the
n-dimensional DFT and the other as the corresponding n-dimensional inverse DFT.

The n-dimensional DFT and the inverse DFT, including the one-dimensional case,
are efficiently computed by the n-dimensional fast Fourier transform (FFT) routines,

if each N,,, the number of discretized points along the m-th axis, is a power of 2.

For simplicity, we write:

R = DFT(r) (2.40)

r = DFTY(R) (2.41)

as the DFT and the inverse DFT, respectively, between a distributed parameter =
and its Fourier coefficients R. Although the dimension of the DFT and the inverse
DFT is not specified in this notation, it is assumed to be the same as the dimension

of the field over which the parameter # is distributed.
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Note that, from (2.38) and (2.39), both DFT() and DFT~'() are linear such that

DFT(ClT‘l + CQT‘Q) = ClDFT(T‘l) + CQDFT(T‘Q) (242)

DFT_1(01R1 + CQRQ) == ClDFT_l(Rl) + CQDFT_I(RQ) (243)

with any complex numbers ¢; and c;.

2.3.3 Filtering the Gradient

In Section 2.1.3, we considered the following two methods of multiresolution
parameter estimation:
1. Indirect estimation of the parameter by estimating the coefficients of the trans-

form.

2. Direct estimation of the parameter using the gradient filtered by the transform.
In this section, it is shown that the two methods above are actually equivalent if
the transform is the DFT and a local search is performed by the conjugate gradient

method.

First, we prove a lemma for proving the next theorem. For simplicity, the following

notation is used:

12

Wy = 3 (2.44)

Lemma 2.1: Let j and m be integers such that 0 < j,m < N — 1. Then,

Ne1 N ifj=m
ST W = (2.45)
=0 0 ifj#£m
Proof: If j =m,
Neno N-1
Z WN(]_m) — Z 1 — N
k=0 k=0
If j #m, j—missuch that j—m #0and —(N —1) <j—m < N —1, which yields
the following:

27(j—m)

W = S
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Therefore, we can use the sum of the geometric series:

N-1o N-1 4 L1 — (W](Vj—m))N
L
k=0 k=0 N
Since
(W)™ = () 2 e g
we get:
N-1 4
ST WM = (2.46)
k=0

Using this lemma, we prove the theorem below.

Theorem 2.3: Let a, b, ¢ and d be n-dimensional complex arrays in CNVXNn,

That is, for example, a consists of NyNy -+ N,, elements ay, ...ty (K = 0, -+, Npyy—1).
Let A, B, C and D be the coefficient arrays of the n-dimensional DFTs of a, b, ¢
and d, respectively. (A, B,C, D € CNv**Nn ) Then, the following relation for inner

products holds:
A-B a-b
C-D c-d

(2.47)

Namely, ratios of inner products are unchanged by the DFT or the inverse DF'T.

Proof: Let us take the following definition of the inner product of two arrays:

Np—1 Np—1

xr-y é Z Z Thoyekoy, Ykoo ko, (2.48)

k1=0 kn=0
where &,y € CM1 X *Nn and 7 is the complex conjugate of z. The proof goes similarly

if a different definition is employed.

Let the n-dimensional DFT be defined by (2.38). That is, the Fourier coefficient

array A, for example, is defined as the following:

Np—1 Np—1

Appty =@ 3 o0 3 ajg, Wt W (k= 0,44 Ny — 1) (2.49)

n

71=0 Jn=0
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where « is a real constant. The proof goes similarly if the n-dimensional DFT 1is
defined by (2.39). Then, the inner product of two DFT coefficient arrays, e.g. A and

B, can be calculated as follows:

Np—1 Np—1

A-B = Z Z Ak1~~~kan1~~~kn
k1=0 kn=0
N1—1 Nn—l N1 1 Nn_l
_ k171 —knin
S SRS S SESE ST eI
k1=0 kn=0 J1=0 Jn=0

Ni—-1 Np—-1
( S by, WA --W&f"m")]

m1=0 mp=0

Ni-1 N1 [ [Ni=1  Np—1 4 4
— o2 Z Z [(Z Z 5j1~~~jnW]]\€711]1"'WJI\€fzjn)

k1=0 kn=0 J1=0 Jn=0

Ni—1 Np—1

m1=0 mp=0

A product of summations can be converted to summations of products as follows:

(%:%;%Jn) (;;ymlmn) Z Z; -%xﬁ...jnyml...mn

In

Therefore,

Np—1 Np—1N;—-1 Np—1Nj—1 Np—1

(2.50) = a? Z Z Z Z Z Z
k1=0 kn=0 j1=0 In=0 m1=0 mp=0
Ty b e WA+ WP W R
2N1—1 Np—1N;—1 Np—1Nj—1 Np—1
k1=0 kn=0 71=0 In=0 m1=0 mp=0

Wkl (j1—m1) . Wkn(jn—mn)

Ay oen Oy ooy,
Ni—1N;—1  Np—1N,-1

S YD IRED DS

71=0 m1=0 In=0 mp=0

Np—1 Np—1 k fon )
- . i 1 ]1 ml . nljn—Mn
@jy o by Yoo W W

k1=0 kn=0

Np—1 Np—1
aﬁ...jnbml...mn( Wt~ m) (Z W tn= m) (2.51)

kl =0 kn=0
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Lemma 2.1 tells that the following conversion is valid:
N-1 Hm)
ZZQ?]m Z WN] = NZQ?”
jom k=0 J
Applying this relation to (2.51) gives

Np—1 Np—1

(2.51) = Oé2N1 - N, Z .. Z Ejl"'jnbjl"'jn
J1=0 Jn=0
= o’Ny---N,a-b

Connecting (2.50) through (2.52) yields
A-B=ao’N,---N,a-b

Similarly, we get

C-D=ao’N,---N,ec-d

Therefore,

i
oy
Q

o~

Q
>
o

&

(2.52)

(2.53)

(2.54)

(2.55)

Now that the tools are ready, let us consider the equivalence of the two kinds

of procedures introduced in Section 2.1.3. One procedure indirectly estimates the

desired parameter by estimating the coefficients of the transform, and the other

directly estimates the parameter by using the gradient filtered by the transform.

Let us name the former COEF gt and the latter FILT g1 , which are described

below.

COEFppt : Estimate the Fourier coefficients R to indirectly estimate the real

parameter # = DFT™!'(R) by using the weighted gradient V

follows:

VHH = W(VRpH)

W H defined as

(2.56)
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FILT g7 : Directly estimate the real parameter r using the frequency-filtered gra-
dient V{;@tH defined as follows:

VIt H 2 DET ' W(DFT(VeH))) (2.57)

In (2.56) and (2.57), W(X ) multiplies each element of X by a certain real weight
determined by the element’s associated frequency. This W() is essential for controlling
the resolution. In the step scheme, each weight is either 1 or 0 as a low-pass filter. In
the weight scheme, the weights form a smooth attenuator.

In (2.57), the real-valued gradient Vp H is transformed to the Fourier coefficient
space, multiplied by certain real weights determined by frequency, and then trans-
formed back to the parameter space to make the filtered gradient V{,ltH. Since, in
W(), the transform coefficients that represent the same frequency are multiplied by
the same real weight, the filtered gradient VgtH remains real.

Note that, as shown later by (3.19) in page 71, there is the following relation

between the gradients in the two domains:
VRpH =DFT™ ' (VeH) (2.58)

Theorem 2.4: COEFppt1 and FILTppT produce identical estimates v; of the real-
valued parameter v on every local-search iteration j > 0, provided that (1) a local
search is performed by the same type of the conjugate gradient method, i.e. either the
Fletcher-Reeves or the Polak-Ribiere shown in (2.26), (2) they start with the same
initial guess ro, (3) the same W() is employed, and (4) each line minimization is
exact and no numerical errors are involved.

Proof: First, we clarify some relations we are going to use. The weighting process
W() multiplies real weights. Therefore, it is transparent in taking complex conjugate

as follows:

W(X) = W(X) (2.59)
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From the definitions (2.38) and (2.39), if Y is real, the complex conjugate of the
inverse DFT of Y is equal to the DFT of Y multiplied by a positive real constant as

follows:

DFT™Y(Y) = +vDFT(Y) for real Y (2.60)

where ~ is a positive real constant. For example, v = #/a, if we define the DFT as

(2.38) and the inverse DFT as (2.39).

We use the following notation.

In COEFppT
R : the estimate of the Fourier coeflicients
d® : the line search direction in the Fourier coefficient space

r . the estimate of the real parameter (rc = DFT_I(RC))

In FILTDFT
¥ the estimate of the real parameter
d” . the line search direction in the parameter space

It a subscript is attached to any of these, e.g. ch, then it means the value on the

j-th line minimization. Also, we define gjc and g]F that are used as g; of Section 2.2

as follows:
gfﬁV%cH(ch) = W(VpeH(RY))
= W(V e H(RY)) (2.61)
g EVILHET) = DFT'OW(DFT(VerH(rD)))) (2.62)

where VRcH(RjC) is the complex gradient with respect to the Fourier coefficients
RY and V- H(TJF) is the real gradient with respect to the parameter estimate »%.

We prove ¢ = #f along with djc = ’yDFT(d]F) for all § > 0 by induction on j,

J J

the number of line minimizations.
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1. When j = 0, the two procedures start with the same initial guess of the

parameter:

ry =rl (2.63)

and the line-search directions dg and dOF are as follows:

d5 = —g§ (2.64)

& = —gf (2.65)

There is the following relation between g§ and gl

g5 = W(Vp-H(EY)

= W(DFT™" (VpcH(rl)))  (use (2.58))
= W (DFT (Ve H(rf) (use (2.60))

= W (DFT (VTFH(Tg) 5 F)

(since ry = rg
= ~DFT(g}) use (2.62)) (2.66)
Putting (2.64) and (2.65) into (2.66), we get:

dS = ADFT(d) (2.67)

2. Suppose the following relations hold for a certain j >0 :

r¢ = o (2.68)
di = ADFT(d}) (2.69)

From (2.23) in page 21, ch_l_l and r]F_I_l are determined by line minimization in

the directions djc and d]F, respectively, as follows:

Rl = Rj+o7d] (270)
ri, o= i+ a]Fd]F (2.71)
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Using (2.70),
r’,, = DFTY(RY,)
= DFT YR +07d)

= DFTY(R{)+ o“DFT'(dS)

_ ¢, C —1/4C
= 7 +0;DFT™(d) (2.72)
From (2.69),
—1/4C i3
With this and (2.68), (2.72) becomes the following:
i =7l +yofdl (2.74)

Comparing the right-hand sides of (2.74) and (2.71), we can see that both are
the same line minimization in the direction d]F from r]F. Therefore, they reach

the same point, which results in of ’yajc. Thus, the left-hand sides of (2.74)

j =

and (2.71) are equal to each other:

i =rh (2.75)

From (2.24) in page 21, the next search directions djc_l_l and d]F_I_1 are determined

as follows:
dS,, = —g5, +75.d (2.76)
divy = gt Tiad] (2.77)

where real coefficients Tﬁ_l and 7']4F_|_1 are calculated by either the Fletcher-Reeves
formula or the Polak-Ribiere formula shown in (2.26), page 21. With (2.75),

the following is obtained in a manner similar to (2.66).

95 = WI(VReH(R,))
= W (DFT (VprH(rl,,)))

DT (2.78)
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Similarly, with (2.68), we get:
g5 =DFT(g]) (2.79)

Using (2.78), (2.79), and Theorem 2.3 in page 31, we get the following relations.

If the Fletcher-Reeves formula is used,
e _ 9]‘0+1 ‘9]‘0+1
a 95 - 95
DFT(Q?-H) ) DFT(gﬂ-l)
DFT(g]F) . DFT(gJF)
9]F+1 ‘9]F+1
97 97
= 1 (2.80)

It the Polak-Ribiere formula is used,

c Re((g%, — 95) - 951
g5 - g%
Re((DFT(gl,,) — DFT(g})) - DFT(g%,))
DFT(gF) - DFT(gF)
R (DFT(gfﬂ — gf) ' DFT(Q}FH))
= € T 13
DFT(Q; ) - DFT(Q; )
= Re((girl —FQJF)F g]F+1)
g9; " 9;

= Re (TJF_I_I)
= 7—],F+1 (2.81)
We have established Tﬁ_l = 7']4F_|_1 with both formulas. Using this relation along

with (2.69), (2.76), (2.77) and (2.78), we get:

C' C C C'
di,, = —9i+7nd;
— —\DFT(g",,) + /1,7 DFT(d!)
= VDFT(_QJFH + TJF-|-1dJF)

= ADFT(d},)) (2.82)
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Therefore, as (2.75) and (2.82) show, if rjc = r]F and djc = ’yDFT(d]F) hold for
a certain j > 0, these relations also hold for j + 1.
From 1. and 2. above, r¢ = r]F holds for all 5 > 0. |

J

2.4 The Haar Wavelet Transform

This section introduces the Haar wavelet transform as another transform for
multiresolution optimization. First, the Haar wavelet transform for a one-dimensional
field, and then the transform for a general n-dimensional field are shown. Finally,
it will be shown that, coupled with the conjugate gradient method, estimating the
coefficients of the Haar wavelet transform of a distributed parameter is equivalent
to directly estimating the parameter using the gradient filtered by the Haar wavelet

transform.

2.4.1 For One-dimensional Field

The Haar wavelet transform uses the Haar basis (or the Haar scaling function)

#(x) and the Haar wavelet ¢(x) defined as the following:

t ap(x)
¢() 1

0 1 t

1k

Figure 2.6: The Haar basis
Figure 2.7: The Haar wavelet

1 ifo<z<l
o) = (2.83)

0 otherwise
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1 if0§x<%

We define functions qb;w(x) and ;/)5\4(:1;) from ¢(x) and ¢ (x) as follows:

o) («)
v (@)

From (2.83) and (2.84), we can easily see:

1
o (x) =

0

1
() =

0

—1 ifl<z<i (2.84)
0 otherwise
£ 62 —j) (2.85)
£ My —j) (2.86)
) J+1
= <z<i—-—
2M 2M (2.87)
otherwise
2 27+ 1
if oM+1 =TS Mt
27+ 1 27 +2 9. 88
-1 if S <z S (2.88)
otherwise

As M increases by 1, the scale of quw(x) and ;/)5\4(:1;) is halved. From (2.87) and (2.88),

we get the two-scale relations of qb;w(x) and ;/)5\4(:1;) as follows:

¢3! (x)
¥} ()

Inverting these relations yields:
M
¢2j (51/')

45]2\?4-1(1')

= M)+ o(e) (25
= M) - () (290)
{6V @)+ 0l @) (291)
(617 @) — (@) (292)

Now, let 7(x) be a one-dimensional function defined in 0 < x < 1, and let ¥"9(z)

be the function representing r(z) in resolution 2M. We can express r":°(z) with the

scaling function ¢ () as follows:
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2M_q

TM’O(J}): ;J Ry’oﬁby(l’) (2.93)

With the relations (2.91) and (2.92), (2.93) becomes the following:

rM’O(:L')
S M0 M0
= (sz’ %(@"’R%#l %ﬂ(@)
7=0
et o Lo M-1 o Lo M—1
= (sz 5(@ ) F T () Ry 5(@ (@) =T (51?)))
7=0
| M0 MO \ M L, wmo M0\ M
- (SORYO + BY )6 )+ S(RY® = Rl (@) (2:08)
7=0

Let us define another function rM’l(:L') as follows:

2M 1
Py = 3 R (2) (2.95)
7=0
From the definitions (2.93) and (2.95),
M-l
POy M ) = 3T (BT T @) + RY TV ) (2.96)
7=0

Therefore, comparing (2.94) and (2.96), we get the relation

TM’O(J}) _ TM_I’O(J}) T TM_I’I(J}) (297)
with
1
R}10 S (R + Byjiy) (0<j<2Mt—1) (2.98)
1
R = (R = Ryl (0<j<2M=t ) (2.99)

In other words, the function r*~11(z) is the difference between r™:%(z) and rM=10(z)
which are the representations of r(x) in the two resolutions. Inverting the relations

(2.98) and (2.99) yields

R%,o — RM-1O Ry—lvl (0<j<2Mt ) (2.100)

J

R = RMTMWO_RMM (0<j<2Mt 1) (2.101)

J
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The relations (2.98) and (2.99) can be combined into one equation as follows:
1 .
RV =2 % (—1)*RMY (s€{0,1}, 0<j<2M~1 — 1)  (2.102)
i€{25,2j+1}

This is the two-scale decomposition relation for decomposing the fine representation

M-1,0

M-1,1
g .

RM? into the coarse representation R and the difference information R

K3

Similarly, the relations (2.100) and (2.101) can be combined into the following:
R = 3 (—1)FRyY (i €{2j,2j +1}, 0<j <21 — 1) (2.103)
s€{0,1}

This is the two-scale reconstruction relation for reconstructing the fine representation

)

0 . . . M-1,1
and the difference information Rj .

ng,o from the coarse representation Rﬁu_l
The two-scale decomposition and reconstruction relations (2.102) and (2.103) have
factors % and 1, respectively, in front of the summations, but these factors can be
different with different definitions of qb;w () and ;/)jw (). The general formulas can be
written the following way. The general two-scale decomposition relation is
RM=a 5 (-1)=RM° (s € {0,1}, 0 <5 <2M~L1 _1)  (2.104)
i€{25,2+1}
where « is a real constant. The general two-scale reconstruction relation is
RMP=p 5 (~1)y°RM'* (1€{27,2§ +1}, 0<j<2M~1 1)  (2.105)
se{0,1}
where (3 is a real constant. We show below that (2.104) and (2.105) are self-consistent
as long as o and 3 have the relation: o3 = 27! for the one-dimensional case.

We defined r™°(z) in (2.93) as the function representing r(z) in resolution 2M.

Here, we assume that the highest resolution for such representation is 2™ with some

integer My > 0. Then, we newly define qb;w(x) and ;/)5\4(:1;) as follows:

MM g(2M g ) (2.106)

o

s

=
(1>

pM(z) & MMy My — j) (2.107)
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These are designed so that, at the highest resolution 20 the factor M= bhecomes
unity and the array RM* = {Réwo’o, RO .. 2M0 1} defined by (2.93) are actually
the sampled values of r(z) at 2o points of equal intervals. The two-scale relations

based on these new definitions are:

M a) = BN (a) + oM (0) (2.108)
W) = B(e(e) — oM () (2.100)
and
M) = 55 (@) + 0l @) (2.110)
M) = 55 (6 ) = 0 (@) (2.111)

Then, rM:°(z) (M < My) becomes the following (cf. (2.94)):

TM’O(J})
2M 1 e
7=0
2M—1
= T (RO )+ RO ()
]:
i M0 M0
=X (A e+ )+ R ) - )
_ 1 _
= Z_) ( (R + Ry )M (@) + %(3%70 — Ry )M 1(:1;)) (2.112)
Comparing (2.112) with (2.96) yields
_ 1 . _
BRI = SR+ Ba) (0<j<2Y'—1)  (2113)
_ 1 : _
RYML = 25(1%%0 R (0<j<2M-1_ ) (2.114)
in order to have the relation (2.97). From (2.113) and (2.114), we get
Ry = B(RYMTM 4 RYTMY (0<j<2Mt_) (2.115)

= B(RYM - RYUY (0<j<2M=t_q) (2.116)

R2j—|—1 J
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HMO—I HMO—Q Hl HO

RMoo ., RgMe-10 .. __ R __, ROO
N N N N

RMo-1.1 R RY!

Figure 2.8: One-dimensional Haar wavelet transform

Hity—1 Hatp—2 My Hy!

RMoo  __ RgMo-10 . RW __  ROO
N AN AN AN

RMo—1.1 R RY!

Figure 2.9: One-dimensional inverse Haar wavelet transform

The two-scale decomposition relations (2.113) and (2.114) and the two-scale recon-
struction relations (2.115) and (2.116) become (2.104) and (2.105), respectively, with
af =271,

Let us define Hys_1 as the two-scale decomposition process defined by (2.104), and
its inverse Hy;_, as the two-scale reconstruction process defined by (2.105). Namely,

Har-1

—

RM,O RM_LO,RM_LI (2117)

«—

-1
Hir-

Then, the one-dimensional Haar wavelet transform is calculated as shown in Fig-
ure 2.8. The initial coefficient array R is set to the one-dimensional distributed
parameter ¥ = {rg,rq, - - ,T(QMO_I)}, thus RM® = . In each step, the array RM?°
with 2™ elements is decomposed by Ha/_; into the two arrays RM =10 and RM~-11
each of which has 2¥~1 elements. The array RM~1°, the coarse representation of r,
is further decomposed in the next step, and the difference information R =1 is kept

as a part of the final array R. The decomposition process continues until R*° and
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step 0 stepl step 2 step 3

unknown distribution

/ estimate
M \V/\//\/A\n i MWT‘ /\A\A ; AQW Wv& / % m*nj
i v Y| % VY va

\/\—\f v
T T T T
2 2

-~ ~ ~

| | | | | | |
s s

I_/ | — I_/ | —
- S

|—I|—‘_I | —

N Y,

Figure 2.10: Multiresolution estimation with Haar wavelet transform

R"*" are produced.

The final array R, which we call the coefficients of the Haar wavelet transform,

consists of R®? and all the difference information {RM’1}05M5M0—1- Thus,
A
RE{R" {R"Yocnicr, 1} (2.118)

Figure 2.9 is the one-dimensional inverse Haar wavelet transform that is the reverse
process of Figure 2.8.

Figure 2.10 shows the step scheme of multiresolution estimation with the one-
dimensional Haar wavelet transform. In step 0, the array R%°, which has only one
element, is estimated. In step 1, both array R%? and array R are estimated. In this

figure, it might look unnecessary to include the first array R%° in the search in step 1



46

because it is already estimated in step 0. In reality, however, it is necessary because
the mathematical model on which the cost is calculated is a nonlinear process. In
step 2, R*, R%' and R"' are estimated, and so on. In general, step M estimates
R"° and the difference information R%',---, RM~M to reconstruct the parameter

distribution in resolution 2M.

2.4.2 For n-dimensional Field

Although Daubechies [6] shows construction of the two-dimensional wavelet trans-
form, higher-dimensional wavelet transforms are referred to as simply “analogous”.
In this section, we define a general n-dimensional Haar wavelet transform “analogous”
to her two-dimensional wavelet structure.

It is assumed that the parameter r has the same number N of real elements in
each of the n coordinates, thus r € R™", and that N = 2M° with some integer
My > 0. It turns out that the transform coefficient array R fits in the same shape
as the parameter v, so R € R™". Therefore, both r and R can be viewed as an
n-dimensional cube with edges of length N = 2Mo,

An n-dimensional field has n coordinates (x1,---,x,), and each coordinate can
take either the one-dimensional scaling function ¢() (2.83) to produce the “average”
or the one-dimensional wavelet ¢() (2.84) to produce the difference information at
a time. Hence, there are 2" ways of obtaining information at each resolution. We
create one scaling function ®(xq,---,2,) and 2" — 1 wavelets U *»(zq, -+ x,) for

the n-dimensional Haar wavelet transform as follows:

Oz, 2,) 2 f[lqb(xt) (2.119)
o (g 2,) 2 ﬁ(&shoqﬁ(ajt)—l—&hﬁ/)(xt)) (2.120)

o
Il
—
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where s;---s, for the wavelet W*r*n(xq,--- x,) is such that s, € {0,1} (m =

1.--

Y

©,n), 81+ 8, # 0---0(all zero), and §; ; is Kronecker’s delta such that 6, ; = 1 if
t =7 and ¢;,; = 0 if ¢« # j. In this notation, sy ---s, can be viewed as n “switches”:
if s,, = 0, the scaling function ¢(x,,) is taken, and if s,, = 1, the wavelet ¢ (x,,) is
taken.

For the one-dimensional Haar wavelet transform, we defined RM* as the coefficient
array that corresponds to ¢(), and RM1 as the coeflicient array that corresponds to
(). In an analogous manner, for the n-dimensional Haar wavelet transform, we define
RM?Y as the coefficient array that corresponds to ®(), and RM*1"*" (s -5, £ 0---0)
as the coefficient array that corresponds to W**n(). For convenience, we allow
$1--- 5, to be all zeros when appropriate and define RM%° = RM®  Then, the

two-scale decomposition relation is defined as

M—1,515n &

11, 0n

a 3 (=)= e g0 (0 <ip <2M71 1) (2.121)

J1y e dn —
. ]1}7"'7]7:74
Jm 6{22m722m+1}

in which « is a real constant. The two-scale reconstruction relation is defined as

RN . =5 (—1) 2z Jese QM Lonoan (Jm € {20, 20,, +1})  (2.122)

J1dn 11,00
1750
sm€q{0,1}
in which 3 is a real constant.

Let Ha—1 denote the two-scale decomposition process defined by (2.121) and

H; ., denote the two-scale reconstruction process defined by (2.122). Namely,

Har—
RM,O - RM_LO, {RM—I,slmsn} {01} (2123)
ﬁ 5150700
Hora

The array on the left-hand side of (2.123) has (2M)" = 2" elements. Each of the 2"

arrays on the right-hand side has 2™ =1 clements, the total being 27.24M=1) = nM



Haty—1 Hnr—2 Hy Ho
RMeO RMo-10 e RY R°
N\ N\ N\ N\
Mo—1,515n 1,51+5n 0,51++8n
{RMom iy {RVm o} {R>
sm€{0,1} sm€q{0,1} sm€{0,1}
81++:5n#0---0 515700 s1-85n 700

Figure 2.11: n-dimensional Haar wavelet transform

-1 -1 -1 -1
HMO—I HM0—2 H; H,
RMoO RMo—1,0 — i ' RO R"°
AN AN AN AN
{RMO—lemsn} {Rl,slmsn} {RO,slmsn}
sm€q{0,1} sm€q{0,1} sm€q{0,1}
515700 515700 515700

Figure 2.12: n-dimensional inverse Haar wavelet transform

Therefore, the amount of data is conserved through the two-scale decomposition and
reconstruction processes of (2.123).

Figure 2.11 shows the calculation of the n-dimensional Haar wavelet transform.
The initial array R is set to the n-dimensional distributed parameter ». In each
step, Har—1 decomposes R into RM =1 which is the coarse representation of 7, and
2" — 1 arrays {RM~1e1sny smefo1} » which have the difference information between

51-59 200

RMO and RM~1° The final array R, which we call the coeflicients of the Haar wavelet

transform, consists of R% and all the difference information {RM’Sl"'S"}OSMSMO_l )

sm€{0,1}
5150700
Thus,
A Grees
R={R° {R™*""*"Yocrrcrsy—1 (2.124)
sm€q{0,1}
51++5nF#0-+-0

The n-dimensional inverse Haar wavelet transform is the reconstruction process

shown in Figure 2.12.
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As the following theorem shows, the two-scale decomposition and reconstruction
n (2.123), and as a result the transform and the inverse transform in Figures 2.11
and 2.12, are inverse to each other, as long as real constants o and 3 in (2.121) and

(2.122) have the relation: aff = 27".

Theorem 2.5: The two-scale Haar reconstruction defined by (2.122) and the two-

scale Haar decomposition defined by (2.121) are inverse to each other with ofp = 27",

Proof: Let RM® be decomposed by (2.121) and reconstructed back by (2.122). Let
Q™?° denote the reconstructed array. In other words, we examine the relation between

RMO and QM?° defined by
QU0 = Ml (Hyr1(RM)) (2.12)
From (2.121), RM? is decomposed as

RM 1,51 5n é o Z (_1)Zt 1kt5tRM0 (0 <1, < 2M_1 — 1) (2126)

11, 0n k1 ,eckn — —
ki, kn
km E{Qim,Q’im+1}

From (2.122), the reconstruction of QM? is performed as

QY =5 Z D) 2emrdes R ZLmen (e (9, 20, £1)) (2.127)

smE{O 1}

Substituting (2.126) into (2.127) yields the following (j,, € {2¢m, 20, + 1}):

Qs = 8 X (hZ=ila 3 (SRR

kl 7...7kn
smE{O 1} Em €{2m, 2im+1}

= af Y R (mnZmbitos (2.128)

k1, kn 51,80
Em €{20m,20m+1} sm€{0,1}

If jo # ko for some integer a (1 < a < n), then (j, + k,) is odd since j,, k, €

{2i4,21, + 1}, and the following results.
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S ()Xt (2.129)
. v (Jetke)se
. s Z?=1(jt+kt)5t
= ) ( > (e (1) T
s1,...,1a_é,fg_|i1}7...ysn saE{O,l}
Z?:l(jt+kt)5t Z?=1(jt+kt)5t
D (G e G
sm€q{0,1}
= 0 (2.130)
Therefore,
_ 27 if 3, = k, for all ¢
T ()Tl S (2.131)
16{02} 0 otherwise

Applying this to (2.128), we get the following:

QM . =2"apRMN? (2.132)

J1yedn

Therefore, with «f = 27", the reconstructed array Q™ is equal to the original array
RMP that is:

RMO = 13! (Har— (RM™)) (2.133)

for any RMO.

Now, let us consider the opposite way. Take any n-dimensional array S € R,

(M-1)

The array S can be partitioned into 2" arrays each of which has 27 elements,

. 9n(M-1)

since the total number of elements is 27 = 2"M_ Let each “small” array be

RM~1515n guch that

S ={RY sy oy (2.134)

Now we calculate a set of arrays {TM_I’Sl"'S"}SmE{OJ} as follows:

{TM 1oy erony = Hami (Ml ({RY 100 croy)) (2.135)
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From the definition of the two-scale reconstruction (2.122),

=0 Z D b ML e 10k, 2k + 1)) (2.136)

dy,
dme{o 1}

From the definition of the two-scale decomposition (2.121),

M—1,51-5n " st M, —
Tklv"'}knl =« Z (—1)Zt=1] Rﬁ,?',jn (0 <k, < oM-1 _ 1) (2137)
Ity

ij{ka,ka-l—l}

Substituting (2.136) into (2.137) yields the following:

s D D (il LD DI CS SRR v
J1,Idn dy,dn
G €{2hm 2k +1} dm€{0,1}

= aof Z Ry ST ()2 Al [ (9 938)

. J1:dn
dme{o 1} Jm €{2km,2km+1}

If s, # d, for some integer a (1 < a < n), then (s, + d,) = 1 since s,,d, € {0,1},

and the following results:

Z (—1)2:;1 Je(st+de) (2139)
Jm E{élk;.,;ézm{_l}
= Z ((—1)ja(5a+da) ) (_1)Z§;ijt(5t+dt))

. J1dn
Jm E{ka,ka-l—l}

] n:, -|—d
- X ( SRS t>)
1 da—10Jat10dn jae{zka72ka+1}

ij{ka,ka-I—l}

vt gt (setdr) Yt Je(setdy)
=T (R )

J1r 5 da—1Jat1dn
jm E{ka,zkm-l—l}

= 0 (2.140)
Therefore,

no 2" it sy = d; for all ¢
T (—D) et - e (2.141)

S d1ean 0 otherwise
Jm E{ka,zkm+1}
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Applying this to (2.138) yields:

P 212)
With af = 27", we get:
TM_1751"'571 — RM_1751"'5" (2143)

for all s,, € {0,1}. Then, from (2.134) and (2.135), we get:
S = Hy-1(Hy_,(S)) (2.144)

Therefore, the two-scale decomposition Hys—1() and the two-scale reconstruction

Hjyi4() are inverse to each other. |

Regardless of the dimension of the field, we use the following notation for the Haar
wavelet transform and the inverse transform between a distributed parameter # and

its Haar wavelet coeflicients R.

R = Haar(r) (2.145)

r = Haar™'(R) (2.146)

The dimension of the transforms Haar() and Haar_l() is assumed to be the same as

that of the field over which the parameter 7 is distributed.

As seen from (2.121) and (2.122), Haar() and Haar™'() are linear operators such
that

Haar(cirq + cor2) = ¢ Haar(ry) 4+ coHaar(ry) (2.147)

Haar™'(c; Ry + coRy) = ¢ Haar ' (Ry) + coHaar ™' (Ry) (2.148)

with any real numbers ¢; and ¢,.
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2.4.3 Filtering the Gradient

In this section, we prove that the two methods of estimation considered in Sec-

tion 2.1.3, namely the indirect estimation of the parameter by estimating the coeffi-

cients of the transform and the direct estimation of the parameter using the gradient

filtered by the transform, are actually equivalent with the Haar wavelet transform.

We start with a lemma used for proving the next theorem.

Lemma 2.2: Let AM° and BM° be n-dimensional real arrays each of which is

decomposed by the two-scale decomposition Hy—1 defined by (2.123) and (2.121).

Then,

HM_I(AM,O) . HM_I(BM,O) _ 2na2AM,O . BM,O

Proof:

HM_I(AM,O) . HM_I(BM,O)

_ Z AM—1751"'5n . BM—l,sl...sn

51,780

sm€q{0,1}
o M151 Sn M151 Sn
= 2 Z Aj By T

SmG{O 1} 0<2m<2M 1

- X 2| X (~)Zemade gl

J1,
Sme{o 1}0<2m<2M 1 ]m€{22m,22m+1}

a Z (_1)2 ktstBMO

17 7kn
k1, kn
km E{Qim72im+1}

— oﬂ Z Z Z Z ( )Zt ] ]t+kt)StA%07]nB1]§\14f,7kn

J1,dn k1, kn
SmG{O 1}0<2m<2M 1 ]m€{22m,22m+1} km€{22m,22m—|—1}

= o 2 2 > ALLB

i1, k1, kn
0<2m<2M 1 Jme{zzm,zzmﬂ} km€{22m,22m—|—1}

Z (_1)2?:1(jt+kt)5t

(2.149)
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The last summation Z (—1)Z?=1(jt+kt)5t is calculated as follows. When j, = k; for
all t (1 <t < n),all (j; + k) are even, and therefore (—1)Zt=1(jt+kt)5t = 1 regardless

of whether each s; is 0 or 1. Therefore, Z (—1)Z?=1(jt+kt)st = 2",
When j; # k; for some ¢, suppose t = h is such ¢, namely j, # kj. The summation

can be rewritten with a summation with respect to all s, (1 < m < n) except s, and

a summation with respect to sj as follows:

81,580 81, 8h—1,Sh41:sn \sp=0
sm€{0,1} sme{0,1}

1
Z (_1)Zt=1(ﬁ+kt)5t = Z (Z (—1)Zt=1(ﬁ+kt)5f) (2.150)
Since jn, kp € {200, 20, + 1}, (Jn + k) is odd from jp # k. So, (jn + kn)sp is even
when s, = 0 and odd when s, = 1. Hence,
1 n .
3 (1) lirkhas — (2.151)

ShZO

Therefore, > (—1)Z?=1(jt+kt)5t = 0 when j; # k; for some {.
From these results, we have to count only the cases where j; = k; for all ¢ in

(2.149) as follows:

M,0 M,0
(2149) = 2"a® ) > AL B
i1, 00 J1dn
0<im <2M =1 jp €20, 20m+1}

n M,0 M,0
= 2"’ Z Ai1,~~~,inBi1,~~~,in
= 2"a*AMY. MY (2.152)
Connecting (2.149) and (2.152) gives

Har_1(AMO) - Hyr o (BMO) = 2"a? AMO . pMO (2.153)
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Theorem 2.6: Let a, b, ¢ and d be n-dimensional real arrays in R™", where N =
2Mo- for a certain integer My > 0. That is, a for example has N elements each of
which is agypy.k, (kj = 0,--- N —1). Let A, B, C and D be the coefficient arrays
of the n-dimensional Haar wavelet transform of a, b, ¢ and d, respectively. Then, if

a = =23, the following relation of inner products holds:

A-B_a-b
C-D e¢-d

(2.154)

In other words, ratios of inner products are unchanged by the Haar wavelet transform
and its inverse transform.

Proof: Let A’y (Mo —1 > M > 0) denote the collection of the coefficient arrays
that result after a series of two-scale decomposition steps Hag—1, Hazy—2, - -, Har. S0,

A’y consists of AM and the collection of {AT#15n) smefony from K = My—1to

§1++-8n 00
K = M as follows:
A/M é 14]\4,07 {AI(751...Sn}M<I(<M0—1 (2155)
5m€{071} T
§1++-8n£0--0

In particular, A’y is the collection of arrays after all the decomposition steps, which
is the result of the Haar wavelet transform. Thus, A’g = A. We perform the proof

by induction on M for the following:

A/M'B/M a-b
= 2.1
Cv Dy cd (2.156)

1. When M = My — 1, A’p,_1 is the resulting arrays after the first two-scale

decomposition Haz—1. Thus, using Lemma 2.2, we get the following:
A/Mo—l ) B/Mo—l = HMo—l(AMmO) ) HMO—l(BMmO)
= 2"a?AMo0 . gl (2.157)
Since the initial coefficients are set such that AM° = @ and B™° = b, the

following results:

A'yo1 - Bly,_1 =2"0*a - b (2.158)
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The same relation applies to ¢ and d. Thus, (2.156) holds for M = M, — 1.

2. Suppose (2.156) holds for a certain M (Mg —1 > M > 0). Referring to the

definition (2.155), A’p—1 can be rewritten as follows:

/ — M— 10 K,s15n
Ay, = JA AR <k <My -1
sm€{0,1}
515 #£0---0
M-1,0 M—1,51+8n K,s15n
= A ’ {A ! } 9 {A v }M<IX<M0 1
Sme{ovl} Sme{o 1}
515700 515 #£0---0
M,0 K,s1+5n
= SHm-1(AY7), {A7 " ek <1 (2.159)
sm€{0,1}
515 #£0---0
Therefore,
A’ B’
M-1" M-1

= {Hu_i(AMO), {Als S M<K <Mo—1
sm€{0,1}
515 #£0---0

Har—1(BY0), {B™* " Yy ckc<nty-1
sm€q{0,1}
515700

_ HM_I(AM,O) . HM_I(BM,O)

K,s1+s K,s1+s

+ {A"e "}M<A<M0 1 ABYTT <k <My—1
sm€q{0,1} sm€q{0,1}
515 #£0---0 515700

_ HM_I(AM,O) . HM_I(BM,O) . AM,O . BM,O

MO K,s1+s K,s1+s
+JA {Ansr {"}}M<A<M0 1 ¢ B {Bfer {"}M<A<M0 1
sm€10,1 sm€40,1
515700 515 #£0---0

= HM—l(AM’O)-HM_l(BM’O) _ AMoO, BM’O—I-A’M By

= (2"a* — 1)AM’0 .BMY 1 Ay, - By (from Lemma 2.2)  (2.160)
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Hence, with the similar relation for C’'p;_y - D'py_q, we get:

14/]\4_1 X B/M—l B (2n0é2 _ 1)AM’O . BM’O T A/M . B/M
C/M_l X D/M—l - (2”0(2 . 1)CM’O . DM’O T C/M X D/M
Al ° B/ n
- b
- ¢ p (from the inductive hypothesis) (2.161)
c .

From 1. and 2. above, (2.156) holds for all M (Mo —1 > M > 0). In particular,
(2.156) with M = 0 is equivalent to

i
oy
Q

o~

= — (2.162)

Q
>
o

&

Now, let us consider the equivalence of the two kinds of procedures introduced in
Section 2.1.3 with the Haar wavelet transform. One procedure indirectly estimates
the desired parameter by estimating the coefficients of the transform, and the other
procedure directly estimates the parameter by using the gradient filtered by the
transform. We call the former COEFy,,, and the latter FILTy,,, , which are
described below.

COEFy,, ¢ Estimate the Haar wavelet coefficients R to indirectly estimate the
parameter # = Haar™'(R) by using the weighted gradient V%H defined as

follows:

VRH EW(V gH) (2.163)

FILT .., : Directly estimate the parameter r using the scale-filtered gradient
V{;@tH defined as follows:

VA H 2 Haar™'(W(Haar(Ve H))) (2.164)
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In (2.163) and (2.164), W(X ) multiplies each element of X by a certain real weight
determined by the element’s associated scale. This W() is essential for controlling
the resolution. In the step scheme, each weight is either 1 or 0 as a low-pass filter. In
the weight scheme, the weights form a smooth attenuator.

In (2.164), the gradient V¢ H is transformed to the Haar wavelet coefficient space,
multiplied by certain real weights determined by scale, and then transformed back to
the parameter space to make the filtered gradient V{,ltH.

Note that, as shown later by (3.24), page 73, there is the following relation between

the gradients in the two domains:
VRpH = Haar(Ve H) (2.165)

Theorem 2.7: COEFyy,,, and FILT,,, produce identical estimates v; of the real-
valued parameter v on every local-search iteration j > 0, provided that (1) a local
search is performed by the same type of the conjugate gradient method, i.e. either
the Fletcher-Reeves or the Polak-Ribiere shown in (2.13), (2) they start with the
same initial guess ro, (3) the same W() is employed, (4) a = 8 = 272 for Haar()
and Haar™", and (5) each line minimization is exact and no numerical errors are

involved.

Proof: We use the following notation.

In COEF4.r
R : the estimate of the Haar wavelet coefficients
d® : the line search direction in the Haar wavelet coefficient space
r% . the estimate of the parameter (rc = Haar_l(Rc))
In FILT 1.,
F

" . the estimate of the parameter

d” . the line search direction in the parameter space



It a subscript is attached to any of these, e.g. ch, it means the value on the j-th line

minimization. Also, we define gjc and g]F that are used as g, of Section 2.2 as follows:

1>

c
g; R

1>

g7

Ve H(R]) = W(V pe H(RY))

VL H(r!) = Haar ™ (W (Haar(Vypr H(rF))))

(2.166)

(2.167)

where VRC H(ch) is the gradient with respect to the Haar wavelet coefficients R

and VTFH(TJF) is the gradient with respect to the parameter estimate »%".

We prove r¢ = r]F along with djc = Haar(d]F) for all 7 > 0 by induction on j, the

;=

number of line minimizations.

1. When j = 0, the two procedures start with the same initial guess of the

parameter:

c_ _F
g =Ty

and the line-search directions dg and dOF are as follows:

dy

dy

—g§

—gt

There is the following relation between g5 and gZ":

95

= W (Haar (VTCH(T(?)))
= W (Haar (VrFH(ToF)))

— Haar(g})

W(V pe H(RS))

(use (2.165))

(since r§ = rk)

(use (2.167))

Putting (2.169) and (2.170) into (2.171), we get

dS = Haar(d})

(2.168)

(2.169)

(2.170)

(2.171)

(2.172)
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2. Suppose the following relations hold for a certain j >0 :

c F
c F
d;, = Haar(dj ) (2.174)

From (2.10) in page 18, RJ‘C-I—I and r]F_I_l are determined by line minimization in

the directions djc and d]F, respectively, as follows:

R{, R + o5df (2.175)
iy = vl 4oldl (2.176)
Using (2.175),
rjc_l_l = Haar_l(R]C_I_l)

= Haar_l(RjC + chdjc)

-1 C C -1/ 3C
= Haar (Rj )+ o; Haar (dj )

rjc + U]CHaar_l(djO) (2.177)

From (2.174),
Haar_l(djc) =d! (2.178)

J

With this and (2.173), (2.177) becomes the following:

rly =rl+ofdl (2.179)

= j

Comparing the right-hand sides of (2.179) and (2.176), we can see that both are
the same line minimization in the direction d]F from r]F. Therefore, they reach
the same point, which results in U]F = U]C. Thus, the left-hand sides of (2.179)

and (2.176) are equal to each other:

i =rh (2.180)



61

From (2.12) in page 18, the next search directions djc_l_l and d]F_I_1 are determined

as follows:

dS,, = —g5, +75.d (2.181)
di,, = —gh +70,d (2.182)

where real coefficients T]g_l and 7']4F_|_1 are calculated by either the Fletcher-Reeves
formula or the Polak-Ribiere formula shown in (2.13), page 18. The following

is obtained with (2.180) in a manner similar to (2.171).

9in = W(VRCH(R]C“))
_ W(Haar (VTFH(”}FH)))

= Haar(gl,,) (2.183)
Similarly, with (2.173), we get:
g5 = Haar(g}) (2.184)

Using (2.183), (2.184), and Theorem 2.6 in page 55, we get the following

relations. If the Fletcher-Reeves formula is used,

O = 9]‘04-1 '9]‘0+1
a 995
Haar(g]F_I_l) . Haar(g]F_I_l)
Haar(g!') - Haar(g})
9]F+1 ‘9]F+1
g9; 97
= rf (2.185)

Ti+1

It the Polak-Ribiere formula is used,

o _ 9 —97) 90

a 95 - 95

(Haar(g7,,) — Haar(g})) - Haar(g]},)
Haar(g"") - Haar(g!")
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Haar(g¥\, — g7) - Haar(g,)
Haar(g]F) . Haar(g]F)
(95 —9%) -9ty
97 97
- (2.186)

We have established Tﬁ_l = 7']4F_|_1 for both formulas. Using this relation along

with (2.174), (2.181), (2.182) and (2.183), we get:

diy = —gin Friads
= —Haar(g]F_I_l) + Tﬁ_IHaar(d]F)
= H.EL.ELI’(—g]F_I_1 + T]F_l_ld]F)

= Haar(d]F_I_l) (2.187)

Therefore, as (2.180) and (2.187) show, if rjc = r]F and djc = Haar(d]F) hold
for a certain j > 0, these relations also hold for j + 1.
From 1. and 2. above, »¢ r]F holds for all 5 > 0. |

j =
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3. Calculation of the Gradient

The conjugate gradient method needs the gradient of the cost with respect to the
distributed parameter to be estimated. Each element of the gradient is the partial
derivative of the cost with respect to an element of the distributed parameter. If
we use a simple numerical differentiation to get each of them, we have to solve the
forward problem on two slightly different values of a parameter element to get one
partial derivative, and the computation time would be of the order of the number of
parameter elements multiplied by the computation time for the forward solution. It
is prohibitive to calculate the gradient this way if there are many parameter elements.

Fortunately, we can utilize the so-called back propagation to calculate the gradient
very efficiently. Its computation time is only of the same order of the forward

calculation time.

3.1 The Back-Propagation Algorithm

The back-propagation algorithm [14, 15, 33, 32] is a scheme for solving learning
problems of artificial neural networks where a cost function that represents learning
errors is to be minimized. Although the scheme is sometimes viewed as including the
gradient descent method, which is the simplest method of minimization, the essence
of back propagation is its efficient way of calculating the gradient of the cost function.
So it can be employed to calculate gradients for other methods of minimization such
as the conjugate gradient method.

Back propagation is simply a hierarchical application of the chain rule for partial
differentiation. The chain rule for partial differentiation is the following: it you want
the partial derivative of a certain function H with respect to a variable x, find all the

intermediate functions y; that directly depend on x, and then calculate as follows:
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cost H
calculated / \ target
VT<T> | | vV
| v |
1 parameter r(®)
| V(D |

T

VO |

Figure 3.1: Layers of forward calculation

OH  ~ 0H dy,
dr ZJ: dy; Ox (3:1)

- . . y; .
In most cases, it is easy to obtain the analytic form of Y5 hecause y; directly depends
x

on x. Therefore, if we know the value of each ——, we can easily calculate the desired

i OH

derivative by (3.1). Back propagation obtains the value of each £ by repeatedly
Y;
applying (3.1) in a hierarchical manner. We present the details below.

Suppose we have T hierarchical layers of calculation for solving a forward problem
as shown in Figure 3.1. In the ¢-th layer, a set of variables V¥ is calculated from the
variables in the (¢ — 1)-th layer VY with a distributed parameter »( (1<t <.
In the case of an artificial neural network, V® would be a set of the outputs of
neurons in the #-th layer and 7 would be the connection weights from the (¢ —1)-th

layer to the t-th layer. In the case of a mathematical model, such as a set of partial
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differential equations, that is solved by an iteration method, “layer ¢” denotes the
t-th iteration of the forward calculation. Although the parameter » may be constant
through all the forward calculation layers, it is treated here as independent in each
layer t.

Let Vj(t) denote each element of V) and r,(f) each element of r®. If V) and »®
are multi-dimensional, this notation of elements can be viewed as the j-th and k-th
elements in a certain one-dimensional array representation of the multi-dimensional
objects.

The cost H is calculated by comparing V1) the variables on the top layer T', with
some target values V. Let us assume that there are o sets of conditions on which

the closeness of the two is to be evaluated, and the cost is the sum of the closeness

for all the sets of conditions = 0,---, uo — 1 as follows:
mo—1 N
2y 3 v Vi) (3.2)
w=0 j

where f() is a certain function and x|, is the value of z on the condition u.
We want to calculate the gradient of the cost H with respect to each parameter
r® in the t-th layer, which is a set of partial derivatives:
OH
Vr(t)H = {W} (33)
ar:
7 Jally

Each of the partial derivatives is calculated by the chain rule as follows:

OH 'S ! oH | v
=> > —ul —w (3.4)
67“4 u=0 k 6Vk 4 8 j u

(t)
2k
ort)

J

Let us assume that n (3.4) is available in analytic form. This is usually the

I
() (t)

case, because the relation between Vi’ and r;” is described by the given mathematical

model. Then, calculating (3.4) reduces to calculating , which is performed

H
Vk(t)
from the top layer (f = T') toward the bottom layer in the following way.
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Itt=1T, Vk(t) is on the top layer and therefore directly related to the cost H as

defined in (3.2). From that definition we get:

oH

av@| ~ S
k

Vi) (3.5)
14

where f’() is the derivative of the function f(). For example, if we set f(z,%)
1(x — %)% in (3.2) and define the cost H as

1 Mo 1
HEZ Z SV, ‘ ‘ )2 (3.6)
n
w=0 j
then,
OH ~
@ ~ Vk(T)‘M Bl Vk‘u (3.7)
oV,
(t) - . .. OH
Ift < T, V.’ is not directly related to the cost H, hence the derivative W
kol

is not immediately available. However, Vk(t) is used to get Vftﬂ) on the layer above

it in the forward calculation and their relation is defined by the given model. From
(t+1)

that relation, ]7(15) is obtained in analytic form. Therefore, using the chain rule
k

again, the derivative of H with respect to Vk(t) is calculated from the derivatives with
respect to Vk(H_l) as follows:

gy ity
J
avk(t)

8[—]
8

_y OH

av Ty (3.8)
J n

OH
In other words, the derivatives W are “back-propagated” from the top layer t =T
J

through the bottom layer ¢t = 1.

With all these derivatives ready, we can calculate all the elements of the desired

gradient by (3.4). Let us summarize the process of calculation:

OH
1. Put W on the top layer into analytic form by differentiating H.
k
()
2. Put % into analytic form by differentiating the given mathematical model.

ar]‘
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(7)

3. Calculate each value of on the top layer by putting the value of V,

H
T8
on condition p into the analytic form obtained in 1.

4. Calculate each value of on the lower layers by back-propagating as in

(t)

Vi p
(3.8).

(t)

5. Calculate each value of % on all the layers by putting the value of Vk(t)

‘ p

m
into the analytic form obtained in 2.
v ol
90 v
obtain the gradient.

6. Put calculated in 5. and calculated in 3. and 4. into (3.4) to

I

(t)

As seen in the summary above, all the values V) ‘u have to be stored during the
forward calculation on condition p to be used by the back-propagation process. The
time complexity of back propagation is of the same order of the computation time
required for the forward solution, because back propagation requires only one sweep
of calculation from the top layer to the bottom layer.

Literature of artificial neural networks usually defines and uses the “delta value” 6
as the partial derivative of the cost with respect to the input of a function representing
V. This is fine with most neural networks, because such a function usually has only

J

one input, e.g. the sum of several signals. However, this assumption may not work in

(t)

the case of parameter estimation, because the variable V"’ can be a function of two or
more inputs [1]. Viewing back propagation in a general manner as above eliminates
such unnecessary restrictions and allows us to use the technique for general parameter

estimation problems.

3.2 When the Parameter is Constant

In the previous section, we treated the distributed parameter as independent in

each layer. But, in many problems, the parameter to be estimated should be constant
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through all the forward calculation layers. We consider such a case here.

The gradient to be obtained is with respect to some constant distributed parameter

r = {r;} as follows (cf. (3.3)):
oH
VeH =1 — 3.9
"’ {97“1‘ }allj )

We can view the case in the following way: each layer’s distributed parameter r(*) is
independent per se of the other layers’ parameters as in the previous section, but the

parameters of all the layers happen to have the same distribution # such that:

P = (1<t<T) (3.10)

(t)

In other words, each element r;” is a function of r; and that function happens to be

the identity function. Then,

ort)
— =1 3.11
aT]‘ ( )
Using this relation and the chain rule, we can get the desired partial derivative as
follows:
oH ZT: oH ort)
aT]‘ N =1 ar;t) aT]
T
OH
= 0 (3.12)
t=1 aT]
Intuitively, this relation is obvious because I is the effect of changing r; by a unit
r
amount, which is equivalent to the effect of changing all r;t) fromt=1tot=1T by

OH
()

ar]‘

Therefore, we can get the gradient (3.9) by first calculating all the partial deriva-

the same amount, which in turn is the sum of all the partial derivatives

tives 0 using the method in Section 3.1 and then summing them up as in (3.12).

Ty
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3.3 For Converging Forward Calculation

In Section 3.1 we assumed that the number of layers T' is fixed. However, if
the forward problem is solved in such a way that the iteration continues until V)
converges within some tolerance, the number of layers T' can be very large. Then,
it may be impossible to store all the values V® from ¢t = 1 to ¢ = T as required
for back propagation. We consider such a problem in this section. In this case, the
distributed parameter should be constant throughout the forward iterations, because
otherwise “convergence” would be meaningless.

The key to solving this problem is the fact that a converged solution does not
depend on the initial values of the variables. At least we assume so within a certain
range of values, since otherwise there would be no reason to employ such convergence
calculation. This means the same solution will result from any initial values if they
are within some distance from the solution. Then, we can certainly reach the same
solution if we use the solution itself as the initial values! We can view it in a different
way: if we start the forward iteration with some initial values and let it continue even
after it converges, the converged values will stay the same (within some tolerance)
throughout the further iterations.

Based on this observation, let us imagine the case in which the forward iteration
starts with its solution as the initial values and continues running forever. After
an infinite number of iterations, we stop the calculation and use back propagation
to obtain the gradient. Let the final layer of calculation be numbered T" as in the
previous sections, and we have an infinite number of layers from t = —oco to t = T
Then, each element of the gradient can be calculated the same way as in (3.12) as

follows:

OH T oH
o, 2

(3.13)
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This infinite series has to be convergent for the gradient to exist. Therefore, in actual
calculation, we can start summing O] at t = T toward the negative ¢ direction and

r
stop when the change of the summation becomes smaller than a certain threshold.

In this method, one does not have to actually perform an infinite number of
iterations in the forward calculation. We only imagined such calculation to derive the
method of getting the gradient. The actual process is the following:

1. Run the forward calculation to get the converged forward solution V",

2. Use VW in place of V¥ for every layer ¢ in back propagation described in

Section 3.1.

oH

3. Sum W for layer ¢ from the top layer downwards as in (3.13) until the
r
J

summation converges.
This method has to store only one set of variables V"V, Therefore, it is extremely
memory-efficient compared with the ordinary way that must store V® of all the

layers.

3.4 The Gradient for Fourier Coefficients

When a local search method such as the conjugate gradient method is to estimate
the Fourier coefficients R which are complex in general, it needs W, the complex
conjugate of the gradient, as shown in Section 2.2.2. This Vﬂﬁ is obtained simply
by flipping the signs of the imaginary parts of the gradient V pH. Therefore, in this
section, we consider how to calculate the gradient with respect to the Fourier coet-
ficients, assuming that we already have the gradient with respect to the distributed
parameter to be estimated. Namely, we consider the relation between the gradient
Vi H with respect to a distributed parameter » and the gradient V p I with respect
to the Fourier coefficients R = DFT(r).
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Let us take (2.38) and (2.39) as the definitions of the n-dimensional DFT and the
inverse DFT, respectively. Namely, we have the following relations between the n-

dimensional distributed parameter r = {r;,...;, }o<j,.<n,.—1 and its Fourier coefficients
R = {Rk1~~~kn}0§km§Nm—1 .

Np—1 Np—1 _i2mk1 gy _ 27kngn

Rk1~~~kn = « Z Z Tjojn€ M ---e Dn (3.14)

J1=0 Jn=0
(kp =0,---, N, — 1)

Ni—-1 — ) )
1 Nn—1 2wy kp 27 inkn

Tifetn = ﬂ Z Z Rkl...kne Noo...e Nn (315)

k1=0 kn=0

(jm:()7...7]\/'m_1)

where o and [ are real constants such that af = m Differentiating (3.15)

with respect to a Fourier coefficient Ry, ..k, gives

8rj1...jN 271k 27 inkn

— Ny n 1
TRy, C ©" (3:16)

Each Fourier coefficient Ry, .., is related to all the parameter elementsr;,...;,. There-
fore, using the chain rule for partial differentiation and (3.16), an element of the

gradient V pH is expressed as follows:

oOH B Nil Nil oOH 87“]‘1...]‘”
6Rk1kn N j1=0 jn=0 87“]‘1...]‘” 6Rk1kn
Ni—1  Np-1 . ‘
1 7 OH 2wy Ky 27 jn kn
— 5y % R (3.17)
j1=0 jn=0 87“]‘1...]‘”
. . . L OH
The resulting expression is exactly the inverse DFT of the derivative . So, we
i gn
can write
OH OH
—— =DFT (= 3.18
OR ( ar ) ( )

or using the gradient notation,

VRpH =DFT™ ' (VeH) (3.19)
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Conversely,

VrH = DFT(V g H) (3.20)

It is interesting to see that these relations of gradients are the opposite of the

relations of points in the two spaces shown in (2.40) and (2.41), page 29.

3.5 The Gradient for Haar Wavelet Coeflicients

In this section, we consider the relation between the gradient V¢ H with respect to
the distributed parameter r and the gradient V g H with respect to the Haar wavelet
coefficients R.

As the two-scale reconstruction relation (2.122) in page 47 shows, RMP e the
representation of # in the M-th resolution from the coarsest (0-th), and RM~Lsion,
i.e. the Haar wavelet coefficients at the (M — 1)-th resolution, are directly related

to each other. Let us apply the chain rule for partial differentiation to them as the

following: o
D DI Lo 3.21)
oR; v P oR; . OR; "
Jm€{2im,2im+1}
From (2.122), we get:
M,0
agﬁ% = B(—1) 2= I (Jm € {20, 20 +1}) (3.22)

11, n

Substituting (3.22) into (3.21) gives:

oH o
ST P ST (=)

Zlv"'yin . J1,dn j17"'7jn
]m€{22m722m+1}

_on (3.23)

If we choose 3 = a = 27 %, (3.23) is exactly the two-scale decomposition relation

H n
for % (cf. (2.121), page 47). Therefore, if « = 3 = 272, we have the following

relations between the two gradients:
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Haar(Ve H)

Haar™* (VRH)

(3.24)

(3.25)
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4. Application: Electrical Impedance

Tomography

In this chapter, we evaluate the multiresolution parameter estimation methods
developed in the previous chapters in simulation of the so-called electrical impedance
tomography [16, 17, 22, 24, 26, 28, 29, 38, 41, 42, 44, 45]. It is a highly nonlinear,
ill-posed problem and therefore challenging to an estimation algorithm. We will see
how well the multiresolution methods perform on this problem compared with the

conventional single-resolution estimation.

4.1 Model

Electrical impedance tomography (EIT) is the problem of reconstructing the inter-
nal resistivity distribution of an object by injecting electrical current and measuring
the relations between the current and the voltage on the exterior of the object. If
there is no source or sink of electrical current in the interior of the object, the current
is conserved everywhere inside the object. This yields the following elliptic partial

differential equation that sets the divergence of current density to be zero:

div (gradv) =V (%VV) =0 (4.1)

7

r: resistivity (e.g. in [ - m])
V : voltage (e.g. in [V])
This is the equation that applies to every internal point of the object. In the two-

dimensional case, (4.1) becomes the following:

0 10V 0 10V

e o) Yooy =0 (42
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Let us consider a two-dimensional rectangular field and let (¢, 7) denote the grid
point at i-th a position and j-th y position. (4.2) is converted into a difference

equation in the finite difference method (FDM). The current density in a direction

10V

——— between grid points (¢,7) and (41, j) is converted into the following difference
r Ox

expression by using the average r of the two.

r oz Tig1,; i by
where h; is the grid spacing in « direction. If the grid point (¢,7) is on the boundary
and the grid point (¢4 1, 7) is outside the boundary, the current density between the
two points is determined by the injected current .J;; (e.g. in [A]) as the boundary

condition:
LoV Jig
rox hy

(4.4)

where h,, is the grid spacing in y direction. The right-hand side of (4.4) includes unit
]

hy -1

that of the left-hand side. Here, the sign of the injected current .J; ; is defined to be

so its dimension is consistent with

depth in the implicit z direction such as

positive if the current flows into the object.

In order to express equations for both internal grid points and those on the

boundary at the same time, I will use the following notation:

expression A
(4.5)

expression B

where expression A is taken whenever A is valid (i.e. no points in expression A are
outside the boundary), otherwise expression B is taken (i.e. if one or more points
in expression A are outside the boundary). Using this notation, (4.3) and (4.4) are

combined together as follows:

2 Vi -Vig
l@V o ) ha mig1 i (4.6)
r Oz Jij

hy



76

Similarly, the current density between (i — 1,7) and (¢,7) is:

2 Vij-Vioi
18‘/ o ) ha rijtrioyg (4.7)
r Oz _Jiy
hy

From (4.6) and (4.7), the finite difference approximation below is obtained:

2 Vig1 Vi 2 Vij-Vioi
g la_v o~ i ho i1, 47 _ he TigtTio1 g (4 8)
Jx'r dx s Jig iy
hy hy

Expressions for y direction are made similarly. Then, (4.2), multiplied by grid spacings

hyhy, 1s converted into the following finite difference form:

2hy Vig15-Vi; 2hy Vi1 5-Vi; 2hg Vij41-Vi, 2hg Vig—1-Vij
ho Tig1,547i + ho rio1 47 + hy rigt1+riy + hy ri5—147i; =0
Jij Jij Jij Jij

(4.9)
If (¢,7) is a corner of the boundary, the injected current .J; ; is taken twice in (4.9).
To compensate for this, we assume from now on that the values of J; ; at the corners

are halved before this equation and those below are used.

4.2 Forward Solution

Numerical methods to solve elliptic difference equations such as (4.9) are classified
into direct methods and iterative methods [9, 13, 27, 30, 36]. Direct methods directly
solve the finite difference equations of the matrix form Av = b with respect to the
column vector v. A serious problem with direct methods is that a large amount of
memory is required. For example, in a two-dimensional problem with N, x N, grid
points, the size of the matrix A is (N, N,) by (N, N, ). Therefore, if all of its elements
are to be stored, it takes storage of size O((N,N,)?). Although there are methods
that utilize the fact that the matrix A is a sparse matrix whose elements are non-zero

only in a band 2N, + 1 elements wide, their storage requirements are still large, e.g.
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O(NZ2N,) with a typical method for sparse matrices [27]. For this reason, we choose
an iterative method here that only needs memory of size O(N,N,).
A two-dimensional difference equation in general regarding a variable V' can be

written in the following form:
a“Vij+d" Vi i+ " Ve + Vi + a Vil = by (4.10)

¢ is the coefficient for the center (z,7) of the five points, a® for the east

where «
neighbor (z 4+ 1,7), a" for the west neighbor (: — 1,7), @® for the south neighbor
(2,7 + 1), and @” for the north neighbor (7,7 — 1).

In the Jacobi-iterative method, (4.10) is iteratively solved with respect to V;; as

the following:
o [y = (VAT + "V VIR MV (4.11)

where V) denotes V at the t-th iteration. This method has the so-called two-cyclic
property, which means there are two independent series of simultaneous computation.
The Jacobi-iterative method is not often used in practice, since its convergence is

slow.

The Successive Over-Relazation (SOR) method is the following:

— [ty = (VL) + "V + VD + VL) 4 (- w0 n§Y

(4.12)
where w is the over-relaxation parameter (1 < w < 2) for accelerating convergence.
In (4.12), it is assumed that the grid points are calculated in the increasing order
of ¢ and j. Thus, the point (¢,7) is calculated on the new values of points (¢ — 1, )
and (7,5 — 1). Because of this, the SOR does not have the two-cyclic property of

the Jacobi-iterative method. However, this updating scheme also makes it difficult to

vectorize/parallelize the SOR.
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More suitable for massively parallel computers and vectorized supercomputers

than the SOR is the Futrapolated Jacobi-iterative (EJ) method [27] as follows:

VI = 0 oy = (V) + VD @V + V)] + (- v

(4.13)

where 6 is the extrapolation parameter (1 < 6 < 2). Although, due to the two-cyclic

property, the EJ method needs twice as many iterations for convergence as the SOR
does, the method is easily parallelized /vectorized.

We employ the EJ method because it is suitable for parallel processing and easy

to implement. Let us first trace how a difference equation is converted into the EJ

formula. The difference equation (4.10) is solved with respect to V;; as follows:
S L R N ST e VLI A
‘/2,] — CLO [bz,] (Cl ‘/Z—I—l,] —I' a ‘/2—1,] —I' a ‘/Z,]-l—l —I' a ‘/2,]—1)] (414)

If this equation is converted into an iteration formula as it is, it would become the

Jacobi-iterative method (4.11). We use a new variable XY in place of VZ(;) in (4.11)

]

to avoid confusion as follows:

1 _ _ _ _
X = = [y = (@PVEY + @™V + VI + M VDY) (4.15)
Then, extrapolating VZ(;) using this XZ»(;) and the two-iteration old value VZ»S_Q) yields:
) _ (t) (t—2)
Vig =0Xij + (1 =0)V; (4.16)

which is equivalent to the EJ formula in (4.13).
Now, according to the observation above, we convert our difference equation (4.9)

into the EJ formula. For simplicity, we use the following notation:



A
Eij = Pimo (= Wita,)
A
Wi, = ﬁﬁ (= Ei1)
N
Sij = k2 = Nijn1
3J . :y T17]+12+T17] ( 7]+ ) (4‘17)
Nij = Boows (= Sij-1)
E; W, i Ni
C;, 2 L Ly L J
0 0 0 0
Then, the difference equation (4.9) is rewritten as below:
Eij(Viga; — Vi) N Wei(Vier; = Vig)
Jij Jij
Sig(Vigen — Vi Nij(Vigor = Vi
4 iV i) 4 iV i) _ 0 (4.18)
Jij Jij
which is equivalent to:
Ei Vi, Wiy Vier, SigVien NiVijs
CoiVi, = J il J il iV n iV (4.19)
Jii Jii Jij Jij
This is solved with respect to V; ; as follows:
Ei,]‘/i-l-l,] Wi,]‘/i—l,] Si,]‘/i,]-l-l Ni,]‘/i,]—l
Vi, = Cis + Cis +3 G + Chs (4.20)
Ji,] Ji,j Ji,] Jiv]
Ci,] Ci,j Ci,] Civ]

We change this equation into an iteration form and use a new variable X;; in place

of Vi ; (cf. (4.15)):

()3 (t=1) ()3 (t=1) ()3 (t=1) ()3 (t=1)
i | [ g [ ) (e
t & C' C: C}
Xi( ) — i, + i + ¥ + 4J (421)
J Jij Jij Jij Jij
C(t) C(.t) C(t) C(t)
t,J 2,3 2,7 3%

i (%) i (%) i (%) i (%) :
Cij Cij Cij Cis



A 1
Wi, = wiiy,, = whd = vk (4.23)
027]
we can simplify (4.21) to the following:
o [ V[l v ][ ] el v
J (t) J: . () J: . (t) J: . (t) J: .
Wyp; ;7 Wyw; ;i Wys; ;7 WyN; ;i
(4.24)

The newly defined variables w) above can be viewed as “connection weights” as if

(t)

in a neural network from V.=V or .J; ; to XZt] Finally, we get the EJ formula similar

to (4.16) as follows:

ox 1 (1— o)y if (1,7) # (i, j
where (i¢, jo) is the ground position at which the voltage must be always zero. The

(t)

forward calculation repeats (4.25) until the voltage solution V;,

converges.

4.3 Obtaining the Gradient

We have to calculate Vi H, the gradient of the cost H with respect to the resistiv-
ity distribution . Since the forward calculation (4.25) is a convergence calculation,
we follow the method developed in Section 3.3. Namely, each element of the gradient

Vi H is calculated as the sum of an infinite series of partial derivatives as follows:

oH T oH
ari,j - t:z_:oo 67“2(»? (426)

The summation in (4.26) starts at the top layer ¢t = T and goes down toward
the negative ¢ direction until it converges. In this section, we obtain the form for

OH

calculating each W of (4.26) by back propagation.
7"2'7]‘

As shown in (4.24), rl(»f) directly affects X(tj) and also its neighbors x® o x®

7, i+1,7 i—1,7

XZ»(;)H and X}?_l through the “connection weights” w("). So, using the chain rule for

partial differentiation, we can write:
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oxy ax{ |
_aH = oH aX(t) + aﬁz(gu or EI;) + aXaz(];I)U 87“5?
O ax® T(t) " ’
ort!) ax{) arl" 0 0
o 9X{4 o OX{) (4:27)
i ax o <Jf> i ax | ar?f])
0 0
H 0X
This way, calculating W is reduced to calculating %, 8—(2;)7 and the effects of
ru i 9y
ox® - ax®
) on the neighbors auY ], L ], ete.
bl o) (t)
T or; ;
H
Let us first get i(( 5 As shown in (4.25), only V( ) is directly affected by XZ»(;).
]
Therefore,
OH e o
OH  OH av“) 0 @ it (i.) # (ic, ja)
YRl av ox T _ ! ovh (4.28)
b 0 if (,7) = (ia,Ja)
H
We have to get aV( o) for (4.28). VZ(;) directly affects not only X+ of the neighbors
ij

(see (4.24)) but also two layers higher V( ) (see (4.25)). Therefore, using the chain

rule again,
SH aXffilj) o OXIAY
oH ax(F v i ax( aV“)
® o
V. 0 0
51 aXft;;ll) oH Xz(t]-l-—ll) o1+
n ax(H ) v n ax(H) v i OH Vi (4.29)
ovird gy
0 0 ] ]

If the layer (¢ + 2) does not exist, i.e., when T'> ¢ > T — 1 (T: top layer), the last
term of (4.29) is ignored. From (4.25),

OH OH vty , 0t 130
3 CRE AR ¢ SR Al (4-50)

where e is one of the four positions: (i +1,j), (¢ —1,7), (¢,7+1), or (¢,j —1). From

(4.24), with ¢ and j changed appropriately, we get the following:
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aXzE,IJ _ () ox{7Y _ () X! (1) gx D

{3 i—1,7 {& 7]—I—l = w(’ 7,7—1 _ k(;‘-l-l)
a‘/%] 41,7 a‘/lf;) 1—1,7 8‘67] 7,741 a‘/ZE;) ig—1
(4.31)
And from (4.25),
gy it?
=110 (4.32)
v,
Substituting (4.30), (4.31) and (4.32) into (4.29) yields:
w(t-l—l) oH w(H—l) oH
oH _ Wit1, 8‘@:’; N BEi1 gV t-I—l
oV
.7 0 0
w(t+1) oH w(t+1) oH
Nij1 (t4+1) Sij—1 (t4+1) aH
+ Tovii by OVijir |+ (1= 0)— (4.33)
0 0 oV

H
—aV»(?) at t =T (the top layer) are given by the cost function

27]
as shown in (3.5), and they are back-propagated to determine those in lower layers

by (4.33).

The partial derivatives

X ()
The other partial derivatives % for (4.27) are obtained as follows. Since rl(t])

arm

is involved only in the “connection weights” w® and not in V=Y nor Jijin (4.24),

we get the following:

ox() aw(t)] ox!" oy
aXZ.(? e <t> £ e <t>‘ > <t>
i — z,] 4,7
ort) ax(®) awgg. + ox(0 aw()
i PR OO OO
anEm arw dw W ar i
aX(t) aw(t) aX(t) aw(t)
<t> <t> <t> <t>
i,J ¥ "
X(t) aw(t) + aXz(t]) aw(t)
ow W ar “j aw't) arg?
(2%} 2
0] (t)
ACeY awEi,J VAR
=+, 4, (®) =17 aT(t)
= O + O
J: L g2
] 57 (t) J aT(t)



(t) (£)

(t_})awfiy (t pa%(w)d

Z7]+ t ] — t

4 arw 4 arw
G, oy,

J. . L3%] J L2%]
1,7 ) (t) 1,7 ) (t)
2,7 3

(4.34)

x@
“t1J which is the effect of r(tj) on the east neighbor’s X,

i7

The partial derivative —

i
is obtained by adding 1 to i for everything but r{) in (4.34) as follows:
(t) ()
ow ow
(t=1) " " Fipr,; (t=1)"Wip 5
aXi(j.)Lj B Vita ) Vi o)
0 ) + ®
67“”' Tt JEi41,5 Tt IWit1,g
’ 41,7 8T(t) 41,7 ar(t)
2,7 3
(1) PvE), (1) PN,
e IV Tty
L1 T (0 1,j-175, 00
+ Fuwlt) ! + auwt) !
T — 2o T —2Nitty
+1,g aT(t) +1,7 aT(t)
2,7 3

(4.35)

Similarly, the partial derivatives of X of the west, south and north neighbors with

respect to rl(t]) are obtained as below:

t) (t)
(t=1) "B, (t=1) Wi
ox, Vii 5 ~24 510
O W0 T ot
aTiJ J 1 JEz—l,] J 1. JWi_le
T 1o
(0 (£)
A TAG
t—1,7 t =1,7—= ¢
1,541 37“5]) Lj-175 EJ)
+ " + (&
JS;_ . JN;_ ,
Jz—l,] aT(t)lj Ji—l,] 8T(‘t)lj
2,7 3%}
Q) (t)
() y=1) PBiy (t=1) Wi 41
IXi Lt a0 It )
0 = (0 T oul)
or; ; J: - B j41 AN EE Y
) 7,74+1 argtj) 2,7+1 8Tgtj)
() (£)
V(?—l)awsiuﬂ V(?—l)awNi,JH
L2 T 00 i PNG)
+ 0" + pu®”
J: i1 IS5 g 41 J: 1 YING 41
S e
(1) (t)
dw a
(t-1) e, (t-1) 9w, _,
ox® Vim0 Visiisi—50
1,7 1 87’ 87’
o - oul) T ou®)
ari]‘ JE; 51 J . IWij—1
? 27]_1 Bl (t) 27]_1 aT(t)
3%

(4.36)

(4.37)



(t-1) 0]
. Vs g1
L e (1—1) )
,J P oi— g1
Ji 'l + wIm2 gl
J—1 v,y—1 ) 7,
aT(.t) J anN' 4
The . 0,9 i,j—1 ij—1 ( 38
potal drvtivs 225 o |
@) are obtai
i ned as follows:
dult)
o = . (EEZ) "
*J ar: — 1 t
sufy) A\ o (QET _ Bl ac)
7, : ( Y R IV B
LT g \om e oy
tJ ar: . — (t v
aw(t) "4 Oz(‘,t]) - % SWM) Wi(t) ac(t)
Sy (t ™\ ol b i
2% optt . — (t) ’ ¥
o (t) Tz,] OEZ) ﬁ (% . ﬁ ac(t) (4 39)
aT(Z)’J = ] (Nz‘(tj) g \ 9 Cz(‘tj) T(tj) .
1,9 87«“) (7t — 1 8N(t) ) 3%
i ol a1 ; (t)
ouf? (68) = (o -
by o () T\ T e
ar, = — 7 ’ %J
(:;J arlt) C(-tI-)L] — 1 aE™®
awW‘ 2,7 i+1,5 C(t) it1,) E(t) ac(t)
il = (t) +1 FROEE i1,y Z it
37() = _9_ W, i b o (t)u
3% ] () ¥ . i+, art
gl e oo = 1 aw i
W ’ i1, 0] i1,y W(t) )
41,5 C (t — 41 aCc”
aT(t)’ = 3 S(fl-)l 1,5 87”) o) J l-(l-tl)J
tL ’ . ar
aw(t)ﬂ 8753 O(‘tl')lj — (1 as(fl_)l S(t)-l-m (Tw
Ny i, t t+1,9 > t
5 1(-1—)1,] — ] (N(t) J Oi+)17] aT(tJ) — O’(-i-)l,] aci‘g')l,] ) (440)
T4 - it1 v s PO
¥ ] [©) ¥ . +1,5 Ty
o) " ’(‘?w) = o NG N 2l0)
9 ‘t) = ~ () = ’ 41, 7
(:5” arl") ( On — 1 ) v
% v s o =1 EEZ act®
WO b = 0 Wi(i)1 i—1,5 argfj) 20 J l(_tl)J
%5 aT(t) O] 2J . ) i—1,5 aTi
aw(t) 2,7 o — 1 oW () »J
S i1, ot i=1,j w2 ac(®
PO = O st =1, ar(t) =0 5 90
Tiv] 9 (t) t=1,y »J P21, aT(t)
At L (,t)l = (1 (as(t)l e ( 63
Ny bl ot -1y _ Zic1 actt)
B = N o, \ ol T, a’iﬂ) (4.41)
% a ‘t) 2 _ i—1,7 ”;
(t " Ol('t—)1 - (tl aNz(i)1 N !
o) ! o2, P) O G actt
z(ytj)+1 . 5 ) ) i o0 5 (_tl)J
oy = 5D i,g+1 _ . 1,5 9T
auwtt) T (t) = 1 agtt)
Wi, 7 341 6] (g4l O 500
RETI ; o — i 41 96
3 (t) = Bl W(t) J+1 2] . C(t) J+1
i Lo | S J o oY
St 0] c® = 1 wt) (t) i
S t,+1 ot ig+l w: ac
11 (t i41 96
PO = i st 6341 ar(t) 6] g+l
Lt - 7 g+l ©J C; 3,00
7 PO 41 °T
St RERNGY = 1 55t @ ¥
Ni 41 i,+1 G i+l Sij+1 a0t (4
el () = 2] (t) i,3+1 2] Et) O(Vt) ig+1 42)
] W 6g+1 »J P41 aT(t)
e (t) = 1 an ( ¥
’ i,3+1 ) i+l Nit) 50
6,5+1 G, Et) - O(’tJ)H 6,41
2J b aTEtJ)




8”%37]_1 _ Gl Ez(‘,t])_1 1 aEz(‘,tJ)—1 Ez(‘,t])—1 805?—1
ol T el \dL ) T L el el e
mi (e s,
ol T e\, ) T AL el T L e
T o8\ S a0t
A N VA N I
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Lol — (4.53)

4.4 Implementation

The estimation methods for EIT (electrical impedance tomography) using the
multiresolution optimization as well as the conventional single-resolution optimization
were implemented in MPL (the MasPar Programming Language) on the MasPar MP-
2204 massively parallel computer that has 64 x 64 = 4096 parallel processors.

The Polak-Ribiere formula shown in (2.13), page 18, and (2.26), page 21, is
chosen for the conjugate gradient method. Back propagation is executed once per
line minimization to obtain the gradient to determine the line search direction. The
line minimization algorithm in the conjugate gradient method is based on so-called
Brent’s method [30] that uses the parabolic interpolation for searching a minimum
whenever appropriate and the golden section search otherwise.

All the parameters and the variables are calculated in double precision. The
stopping criterion for a forward voltage solution is set as small as 107'% for the
relative change to the maximum magnitude of voltage values in order to conduct
the experiments as accurately as possible. The stopping criterion for the gradient
calculation in the back-propagation algorithm is set to 107!° for the relative change.
The stopping criterion for line minimization is set to 1072 for the bracket width
relative to the initial bracket at the start of each line minimization. The extrapolation
parameter § in the EJ (extrapolated Jacobi-iterative) method (4.25) is chosen to be
6 = 1.99 based on the preliminary experiments.

During each line minimization, a number of distributions of the parameter have
to be evaluated until a line minimum is reached. Each such evaluation involves the

forward convergence calculation to obtain a voltage solution. To expedite the forward
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convergence calculation, the old voltage solutions are interpolated/extrapolated on
the minimization line by a parabolic fit to obtain as good an initial voltage distribution
as possible for the forward calculation. Still, each line minimization takes about 2
CPU-minutes on the MasPar MP-2204.

All the graphs of the experimental results in this chapter are processed by the
tool “gnuplot” in UNIX. The pictures of the resistivity distributions are prepared by
using MATLAB™ of the MathWorks, Inc.

4.5 Experiments

4.5.1 Experimental Conditions

In EIT (electrical impedance tomography), measurement methods can be par-
titioned into two classes. One class injects electrical current to the medium and
measures the resulting voltage on the boundary. The other class applies voltage and
measures the resulting current on the boundary. The former (current injection) gen-
erally allows more accurate measurements than the latter (voltage input method)
because the contact impedance between the electrodes and the object surface is neg-
ligible for a current source [41]. We choose here the current injection method used
by most EIT research groups. In all of the following experiments, voltage/current
measurements are computer-simulated ones.

If the medium is a disk and its resistivity distribution is homogeneous, injecting
currents that vary as a cosine curve along the boundary gives a perfectly uniform
current distribution and hence maximizes distinguishability [41]. In our case, although
the medium is a square and the resistivity distribution is not homogeneous, cosine-

varying currents are used as approximately best current patterns.
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boundary node No.

Figure 4.1: Node numbering Figure 4.2: Current directions

current pattern No.

injected current

252(=0)
boundary node No.

Figure 4.3: Injection current patterns

Since the field is a square with 64 x 64 = 4096 discretized nodes, the number of
nodes along the boundary is 63 x 4 = 252. We assume that current injection and
voltage measurement are performed on all the boundary nodes except one grounded

node as the voltage reference. Therefore, one measurement obtains 251 voltage values,
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and determining 4096 values of the resistivity requires 4096/251 =~ 16.3 or more
measurements on different current patterns.

We choose 18 current patterns as follows. The boundary nodes are numbered b
from 0 to 251 as shown in Figure 4.1. The peak current position bpe,k for current

pattern p is determined as follows:

14p o< p<9
bpeak = (4'54)
4p+7 if9§,u<18

Each current pattern is determined so that the peak current 1 is assigned to the
boundary node b = by, and the currents at the rest of the nodes shape a cosine
curve as the following:

(4.55)

b—b
Jp = cos (271'7( peak))

252

where Jj, is the injection current at boundary node b. Figure 4.2 shows the current
flow directions of all the 18 patterns, where the tail of each arrow is at the peak
current node. The node 90 degrees clockwise from the peak-current node byeqy is
grounded as the voltage reference (zero volt). Figure 4.3 shows the current patterns,
in which the black dots show the grounded nodes.

Figures 4.4 and 4.5 show the two patterns of true resistivity distributions that are
used for the experiments. In both patterns, the darkest regions are 0.2 in resistivity
value, the lightest regions 1.0, and the background is 0.5. In Figure 4.4 which we
call “Pattern A”, the upper and lower disks are 0.3, and the left and right disks
0.7. In “Pattern B”, Figure 4.5, all the disks are either 0.2 or 1.0. The same gray-
level mapping will be used for displaying the estimated resistivity distributions in the
experiments below.

The experiments are performed in two stages. The first stage simulates the actual
measurements by solving the forward problem on the true resistivity distribution

(either Pattern A or Pattern B) to obtain the voltage values on the boundary for
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10 20 30 40 50 60 10 20 30 40 50 60

Figure 4.4: Pattern A Figure 4.5: Pattern B

each of the 18 injection current patterns. Then, the second stage feeds the simulated
voltage data to the estimation program to be evaluated and executes the program to

reconstruct the true resistivity distribution.

The cost is calculated by (3.6) in page 66 only on the boundary nodes to simulate
the actual EIT that can perform measurements only on the surface of the object.

Thus, voltage values of the internal nodes are neglected. As a result, the derivatives

OH
@ of (3.7) in page 66 are calculated only on the boundary nodes, and those

v,

derivatives of the internal nodes are always zero.

In the step scheme using the two-dimensional DFT, each of the transform coeffi-
cients has two frequencies associated with it; the frequency in the horizontal direction
and the frequency in the vertical direction. In the experiments, the frequency limit
in each resolution step is set such that both of the two frequency values have to be
smaller than or equal to the limit in order for the coefficient to be activated in the
search. In the weight scheme with the two-dimensional DFT, the frequency value

used to determine the weight is the higher of the two frequencies associated with each
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transform coeflicient.

4.5.2 Conventional Single-resolution Method

Figure 4.6 (a) shows the history of the cost in the estimation process. The
horizontal axis is the number of line minimizations in the conjugate gradient method,
and the vertical axis is the cost. Since the conjugate gradient method always proceeds
in a cost-decreasing direction, the cost always goes down as more line minimizations
are performed.

Figure 4.6 (b) shows the history of the distance to the true distribution. The

distance is defined as follows:

distance 2 \I f: f:(rm —7;)? (4.56)
i=0 j=0
where r; ; is an element (¢,7) of the estimated parameter distribution =, and #; ; is
the corresponding element of the true parameter distribution # that is either Pattern
A or Pattern B of Figures 4.4 and 4.5. Of course, the estimation program cannot
know the true distribution #. Hence, the distance is calculated outside the estimation
process.

We can see in Figure 4.6 (b) that the progress in approaching the true distribution
almost stops around 100 line minimizations for Pattern A, and the distance even
increases for Pattern B. It is not actually caused by being caught in a local minimum,
since the cost keeps decreasing as seen in Figure 4.6 (a). It is just that the search
takes a path that rapidly decreases the cost but is not really directed toward the true
minimum in this single-resolution estimation.

Figure 4.6 (c) shows the relation between the distance and the cost. The vertical
axis is the cost raised to the power 0.05. The value 0.05 is chosen only so that the

graph curves can be easily compared, and the number itself does not have any special
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(a) after 20 line minimizations (b) after 100 line minimizations

10 20 30 40 50 60 10 20 30 40 50 60

(c) after 500 line minimizations (d) after 5000 line minimizations

Figure 4.7: Single-resolution method (Pattern A)
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(a) after 20 line minimizations (b) after 100 line minimizations

10 20 30 40 50 60 10 20 30 40 50 60

(c) after 500 line minimizations (d) after 5000 line minimizations

Figure 4.8: Single-resolution method (Pattern B)
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meaning. In these cost-versus-distance graphs, the search history starts at the upper
right and goes toward the lower left if the distance decreases. If the search were
perfect, it would reach the origin of the cost-versus-distance graph, because the cost
should be zero with the distance being zero (¥ = #) in these simulated experiments.
In this sense, the more the graph is directed toward the origin, the better the search
performance is. As seen in Figure 4.6 (c), the performance of the single-resolution
estimation is poor, since the graph is going almost only downwards, not toward the
origin, for both Pattern A and Pattern B. In other words, the single-resolution method
is only good at reducing the cost, and poor at approaching the true distribution.
Figures 4.7 and 4.8 show the progress of the estimated resistivity distribution
r for Pattern A and Pattern B, respectively. Comparing these pictures with the
true distributions Figures 4.4 and 4.5, we can easily see that the estimation results
are poor. For Pattern A (Figure 4.7), only regions near the external boundary are
somewhat close to the true distribution, and the inner regions do not even show traces
of the pattern. This is understandable because the measurements are performed only
on the external boundary and thus the information about the inner part may be
diluted in the measured data. The results for Pattern B (Figure 4.8) are even worse.

The estimated pattern is not close to the true one at all.

4.5.3 Step Scheme with the Fourier Transform

Figure 4.9 shows the estimation history of the step scheme that uses the Fourier
transform. The numbers shown in the graphs are the values of €' in the advancing
criterion (2.7) in page 13. In (a), the cost goes down in a similar manner as in the
single-resolution case Figure 4.6. For both Pattern A and Pattern B, the greater the
advancing criterion constant is, the more quickly the cost decreases. This may be

because the search can advance to a greater degree of freedom more quickly with
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(a) frequency < 1 (b) frequency < 2
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(c) frequency < 4 (d) at 1000 line minimizations

Figure 4.10: Fourier step scheme (Pattern A, advance=0.1)
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(a) frequency < 1 (b) frequency < 2
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(c) frequency < 4 (d) at 1000 line minimizations

Figure 4.11: Fourier step scheme (Pattern B, advance=0.1)
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a greater advancing constant. The levels of the cost curves, especially for Pattern
A, are a little higher than those of the single-resolution method after around 100
line minimizations. The distance curves in Figure 4.9 (b), however, are much lower
than in the single-resolution method, which means the distributions estimated by the
Fourier step scheme are much better than those by the conventional single-resolution
method. The 4+ marks in the (b) graphs show the positions of the advancing points
on the horizontal axis. We can see the distance curves descend stepwise each time
the advancing occurs. The greater the advance setting C' is, the earlier the advancing
occurs. Since the field has 64 x 64 discretized points, the highest frequency is 32, and
there are 33 frequency steps from zero to the highest frequency (see Table 2.1, page
25). We can see that if the advancing constant is too small (0.01), the distance may
increase at some point in the estimation, although the cost goes down smoothly. If
the advancing constant is too large (0.5), the distance does not reduce well. In the
cost-versus-distance graphs (c), the curves go farther toward the origin than in the
single-resolution case.

Figure 4.10 shows the distributions estimated by the Fourier step scheme on
Pattern A. The picture (a) is estimated with the frequency limit 1, (b) with 2, and (c)
with 4, respectively. It is seen that as the frequency limit increases, the more detailed
structure of the distribution shows up. The picture (c¢), which is only after 26 line
minimizations performed, already shows the structure of the true distribution more
clearly than the estimate of the single-resolution method after 5000 line minimizations
(Figure 4.7, page 93). The picture (d) is the estimate at 1000 line minimizations
with the frequency limit being 32, i.e., with the full frequency range. It is still vague
compared with the true one (Figure 4.4, page 90), but is much better than the estimate
of the single-resolution method (Figure 4.7).

Figure 4.11 shows the estimated distributions on Pattern B. The pictures (a),

(b) and (c) have the same frequency limits as in Figure 4.10. The picture (d)
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is at 1000 line minimizations and its frequency limit is still 23.  Although it is
lower than the full frequency, the estimate is as good as the one with the full
frequency, since the distance curve is almost flat around 1000 line minimizations
as seen in Figure 4.9 (b). Comparing with the true distribution Figure 4.5 in page
90, we can see that some regions are wrong. For example, the dark regions around
(horizontal,vertical)= (35, 10) and (35,50) in the estimate should not be there. But
overall, the estimate is much closer to the true distribution than the estimate by the

single-resolution method, Figure 4.8, page 94.

4.5.4 Weight Scheme with the Fourier Transform

Figure 4.12 shows the estimation history of the weight scheme with the DFT.
I used the following formula to determine the weight for each of the transform

coefficients,

1

—_ 4.
(frequency)fr (4:57)

weight =

where “frequency” is the higher of the two frequencies associated with each coefficient
as discussed in Section 4.5.1. The lowest frequency = 0 was changed to 0.5 for this
formula. The real constant Pr can be any positive number for enhancing the relative
sensitivity of the search to low-frequency information. The greater the value of Pp is,
the more prioritized the low-frequency information is relative to the higher-frequency
information. In this experiment, Pr was chosen to be 1, 2, or 3.

Figure 4.12 (a) shows the history of the cost. For both Pattern A and Pattern B,
the cost descent is slower with a greater magnitude of the constant Pr. However, as
Figure 4.12 (b) shows, the effect of the magnitude of Pr on the descent of the distance
is different. Especially for Pattern B, the distance goes down faster with Pr = 2 or 3
than with Pr = 1. For both Pattern A and Pattern B, the distance descent is not as

quick as in the Fourier step scheme Figure 4.9 (b), page 96. It is interesting, though,
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(a) after 30 line minimizations (b) after 100 line minimizations
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(c) after 300 line minimizations (d) after 1000 line minimizations

Figure 4.13: Fourier weight scheme (Pattern A, weight=freq™?)
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(a) after 30 line minimizations (b) after 100 line minimizations
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(c) after 300 line minimizations (d) after 1000 line minimizations

Figure 4.14: Fourier weight scheme (Pattern B, weight=freq™?)
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that the distance keeps reducing after 1000 line minimizations with Pr = 2 and 3,
and for Pattern B it is getting even better than the smallest distance achieved with
the Fourier step scheme. Figure 4.12 (c) shows this tendency more clearly. With Pg
of a greater magnitude, the curve goes more toward the left, although the difference
between Pr = 2 and Pr = 3 is slight.

Figure 4.13 shows the progress of the estimated distribution for Pattern A with
Pr = 2. As the distance history showed, the progress speed is not as fast as in the
Fourier step scheme. The estimated distribution looks somewhere between that by
the single-resolution method and that by the Fourier step scheme. Figure 4.14 shows
the estimates for Pattern B with the same Pr = 2. The estimate after 1000 line
minimizations (d) is more blurred but has less wrong ghost image than the counterpart
in the Fourier step scheme Figure 4.11 (d), page 98. In this sense, the Fourier weight
scheme may be a slow-and-steady method, while the Fourier step scheme is rather

quick but somewhat unstable.

4.5.5 Step Scheme with the Haar Wavelet Transform

The estimation history with the Haar step scheme is shown in Figure 4.15. The
settings are similar to those for the Fourier step scheme except that a smaller value
of the constant for the advancing criterion seems suitable. The cost history (a) is
not very different from that of the Fourier step scheme, Figure 4.9, page 96. The
distance curves (b), however, are descending more slowly and their convergence levels
are higher than with the Fourier step scheme. As will be discussed in Chapter 5, a
probable cause for this is that there are much fewer resolution steps with the Haar
wavelet transform than with the Fourier transform as the 4+ marks show in the graphs.
Accordingly, the cost-versus-distance curves (c¢) start descending straight down earlier

than in the Fourier step scheme.
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(a) resolution < 2 (b) resolution < 4
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(¢) resolution < 8 (d) at 1000 line minimizations

Figure 4.16: Haar step scheme (Pattern A, advance=0.01)
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(a) resolution < 2 (b) resolution < 4
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(¢) resolution < 8 (d) at 1000 line minimizations

Figure 4.17: Haar step scheme (Pattern B, advance=0.1)
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Figures 4.16 and 4.17 show the estimation progress for Pattern A and Pattern
B, respectively. As the resolution increases, the more details are estimated, but the
overall quality is worse than in the Fourier step scheme, Figures 4.10 and 4.11, pages
97 and 98. The pictures (d) for both patterns are at 1000 line minimizations with
the full resolution, but the patterns of earlier estimates still remain. The cause for
this is probably twofold. One is that each wavelet coefficient influences only a certain
local area. Therefore, if the search is insensitive to some coefficients above a certain
resolution, the areas for which those coefficients are responsible remain unchanged,
showing the old patterns. This does not happen with the Fourier transform, because
each Fourier coefficient influences the whole field. The other probable cause is that
the Haar wavelet is discontinuous. Hence, the borders of the local regions are clearly

seernl.

4.5.6 Weight Scheme with the Haar Wavelet Transform

Figure 4.18 shows the estimation history of the weight scheme using the Haar
wavelet transform. The following formula similar to (4.57) in page 100 was used to

determine the weight for each coefficient of the Haar wavelet transform.

1

(resolution)Fr

(4.58)

weight =

The real constant Py was chosen to be 1, 2, or 3. In Figure 4.18 (a), the speed
of the cost descent is slower than in the Haar step scheme, Figure 4.15, page 105.
On the other hand, in Figure 4.18 (b), the distance for Pattern B after about 100
line minimizations is smaller than that in the Haar step scheme, although it is not
as small as the distance in the final stage of the Fourier step scheme or the Fourier
weight scheme. Accordingly, the cost-versus-distance curves in (c) are better than

those of the Haar step scheme especially for Pattern B.
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Figure 4.18: History of Haar weight scheme
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(a) after 30 line minimizations (b) after 100 line minimizations
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Figure 4.19: Haar weight scheme (Pattern A, weight=res™?)
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(c) after 300 line minimizations (d) after 1000 line minimizations

Figure 4.20: Haar weight scheme (Pattern B, weight=res™?)
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Figures 4.19 and 4.20 show the estimated distributions for Pattern A and Pattern

B, respectively.

4.5.7 Comparison among Best Results

Figure 4.21 shows the history curves of all the estimation methods with the best
advancing constants or weights that are previously shown. In the distance graphs
(b), the methods are in the following order from the smallest distance at 1000 line
minimizations for Pattern A: the Fourier step scheme, the Haar step scheme, the
Fourier weight scheme, the Haar weight scheme, and the single-resolution method.
For Pattern B, the order is the following: the Fourier step scheme and the Fourier
weight scheme are about the same, and then the Haar weight scheme, the Haar step
scheme, and finally the single-resolution method.

In the cost-versus-distance graphs Figure 4.21 (¢), the methods are in the following
order from the leftmost curve (the closest path to the global minimum) for Pattern
A: the Fourier step scheme, the Fourier weight scheme, the Haar step scheme, the
Haar weight scheme, and the single resolution. For Pattern B, the order is as follows:
the Fourier weight scheme and the Fourier step scheme are about the same, then the
Haar weight scheme, the Haar step scheme, and finally the single resolution.

Figure 4.22 shows the estimated distributions of all the methods at 1000 line
minimizations for Pattern A. The settings are the same as in Figure 4.21. The
estimate by the Fourier step scheme (c) looks closest to the true distribution (a),
although it is still vague. Figure 4.23 shows the estimated distributions at 1000 line
minimizations for Pattern B. The estimate by the Fourier step scheme (¢) and also
the one by the Fourier weight scheme (d) look closest to the true distribution (a). The
estimate by the conventional single-resolution method (b) does not show the basic

structure of the true distribution at all.
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Figure 4.22: Comparison for Pattern A
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5. Discussion

5.1 Multiresolution vs. Single-resolution

The cost-versus-distance graphs in the previous chapter show that the curves of the
multiresolution estimation tend to proceed more toward the global minimum (at which
both the cost and the distance to the true distribution are zero) than do the curves of
the single-resolution estimation. Since the single-resolution optimization successfully
decreases the cost but not the distance to the true distribution, the direction of the raw
gradient may be very different from the direction toward the global minimum (the true
distribution). Therefore, the shape of the cost surface is probably like a rain gutter
shown in Figure 5.1 as a three-dimensional approximation. We can see, at least in the
problem of electrical impedance tomography, that the single-resolution optimization
goes down the hill almost straight to the bottom of the gutter and loses the height

needed to slide down to the global minimum, while the multiresolution optimization

cost

global minimum

y

Figure 5.1: Search paths
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leads closer to the global minimum. This fact tells that the low-resolution components
of the gradient, which are enhanced in the multiresolution search, point more correctly
to the global minimum than the high-resolution components do.

How to best utilize the multiresolution information, including the choice between
the step scheme and the weight scheme, the advancing criterion for the step scheme,

other types of filters for the gradient, etc., remains to be studied in the future.

5.2 Causes of Difficulties

The estimated resistivity distributions in the experiments of the previous chapter
did not show enough details of the true distributions even with the multiresolution
optimization. It might be because the image reconstruction of electrical impedance
tomography is such a highly nonlinear, ill-posed problem [29] that even an excellent
estimation algorithm has trouble with it. For example, two or more different re-
sistivity distributions can produce very similar voltage distributions on the external
boundary [41]. This means that there can be local minima that are almost as good
as the global minimum in terms of the cost.

It is also possible that the existence of discontinuities in the true resistivity distri-
butions (Pattern A and Pattern B) disturbed the estimation. Such “discontinuities”
in a discretized field are not really discontinuous, because the grid width over which
the value jumps is only finitely small. Besides, both the discrete Fourier transform
and the discrete Haar wavelet transform can handle such a field with jumps flaw-
lessly except for errors in the floating-point calculation. Nevertheless, such jumps
might make the estimation difficult for the multiresolution optimization, since they
contribute to larger magnitudes of the high-frequency components near the Nyquist
critical frequency. Examining such effects of the frequency distributions on the search

behavior can be an interesting and important topic for the future work.
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Figure 5.2: Wavelet transform vs. Fourier transform

5.3 Fourier Transform vs. Wavelet Transform

One of the fundamental differences between the Fourier transform and the wavelet
transform lies in the way the frequency goes up as the resolution step proceeds. We
call the number of pairs of the highs and the lows the “frequency” here, although each
wave of the Haar wavelet transform is non-sinusoidal and hence has higher frequency
components in itself. Figure 5.2 shows the difference between the two transforms in
the one-dimensional case. In both transforms, the lowest frequency is zero and the
highest is N/2, where N is the number of the discretized elements. In the wavelet
transform, the frequency goes up exponentially as the resolution step proceeds, and

the number of the corresponding coefficients is equal to the frequency. Thus, there are
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Figure 5.3: Multiresolution steps and frequency

lg N+1 (Ig = log,) resolution steps in the wavelet transform. In the Fourier transform,
however, the frequency goes up linearly, and the number of the coefficients is two for
each frequency (except for the lowest and the highest frequencies each of which has
only one coefficient). As a result, the Fourier transform has N/2+ 1 resolution steps.
Therefore, the relation between the frequency and the multiresolution step in the
one-dimensional step scheme is as shown in Figure 5.3.

This means that the transition of the resolutions is smoother with the Fourier
transform than with the wavelet transform. In another aspect, as the resolution step
proceeds in the step scheme, exponentially many new coefficients are introduced in
the search with the wavelet transform, whereas a constant number of (or linearly
many in the two-dimensional case) new coefficients are introduced with the Fourier
transform. As a result, the multiresolution optimization with the Fourier transform

may proceed more smoothly than that with the wavelet transform. This may explain
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why the method with the Fourier transform performed better, if slightly, than the
method with the wavelet transform in the experiments.

The wavelet transform is said to be better than the Fourier transform in applica-
tions other than parameter estimation, such as image compression [30]. The reason
is that each wavelet coefficient represents localized information, while each Fourier
coefficient represents information of the whole field. For the multiresolution estima-
tion, however, the Fourier transform may be more suitable than the wavelet transform

because of the smoother transition of resolutions.

5.4 Conditions for Multiresolution Optimization to Work

The original idea of multiresolution optimization is to consider a transform be-
tween the desired parameter r in the given field and the coefficients R of the transform
in the frequency or scale domain, and then minimize the cost H with respect to the
transform coefficients R rather than the parameter . The reason is that we can ma-
nipulate the coefficients R in a multiresolution manner because, in the R field, the
information is inherently sorted out in frequency or scale, whereas we cannot perform
such a manipulation in the original field of the parameter . Even in the method
that directly optimizes the parameter r by using the filtered gradient, we can view
the process in the above way, since, as we proved, the direct optimization using the
filtered gradient is equivalent to the optimization of the transform coefficients.

Then, a serious question arises: “What if the parameters to be estimated are
the transform coefficients R in the first place?” If we were to solve this estimation
problem in another transformed domain, it would form an endless cycle. Let us take
the Fourier transform as an example. As we saw in Section 2.3.1, the discrete Fourier
transform and the inverse transform are virtually interchangeable. This means that,

whether we use one or the other, the transformation process extracts and arranges
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the information in the virtually same manner. Therefore, if we were to estimate the
Fourier coefficients R of some array =, and we tried to solve the estimation problem
by manipulating the Fourier coefficients R’ of the desired Fourier coefficients R,
it would be the same as manipulating the array r, because the “new” coefficients
R = DFT(R) is virtually equivalent to the array » = DFT™'(R) in terms of the
information contents. Thus, if we viewed the transform coefficients as the parameters
to be estimated in the first place by the multiresolution optimization, it would form
an endless cycle between the two domains, returning to the virtually same domain
every two transforms.

It is obvious from the above argument that the multiresolution optimization does
not always work. On the other hand, it is also obvious that it works in some cases
as shown in the previous chapter. So, the next question is under what conditions the
multiresolution optimization works. It should be a topic for the future work, since
there is no clear answer to it yet. However, one possible answer may lie in the way the
distributed parameter influences the cost as follows. Let us refer to Figure 2.1 in page
11. With most mathematical models described by partial differential equations for the
forward problem V' := G(r), each element of the distributed parameter r influences
the elements of the variables V' spatially close to it more than the elements of V'
far from it. Hence, each element of the parameter r influences the cost H somewhat
locally, since the cost H is calculated on V. On the other hand, the effect of the
transform coefficients R on the cost H is not so local. In particular, with the Fourier
transform, the effect is not local at all, since each element of R influences the whole
field of the parameter  that leads to the cost H. Therefore, it might be correct to
say that the multiresolution optimization works if the original distributed parameter
to be estimated has somewhat local relationship with the cost to be minimized. We

need to study further about this matter.
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6. Conclusions

Multiresolution optimization methods for estimation of distributed parameters
were developed in this dissertation. The basic idea was to give priority to low-
resolution information over high-resolution information in the estimation process,
assuming that the parameter distribution was continuous almost everywhere in the
defined field. It was expected that the large-scale structure of the distribution would
be found rapidly due to the enhanced low-resolution information, which would in turn
help expedite the estimation of the details of the distribution.

The conjugate gradient method was employed for a local search, and the discrete
Fourier transform and the Haar wavelet transform for a multidimensional field were
used for manipulating the information in a multiresolution manner. Two schemes,
the step scheme and the weight scheme, were devised as a way of manipulating the
multiresolution information.

The original method was designed to indirectly estimate the desired parameter
by estimating the transform coefficients with either the step scheme or the weight
scheme. Later, it was proved that the same results can be obtained by directly
estimating the desired parameter using the gradient that is filtered via the transform
in either scheme.

The developed methods were evaluated in simulation of electrical impedance to-
mography. The multiresolution methods showed superior performance to the con-
ventional single-resolution method in estimating the resistivity distributions for both
of the two test patterns. The results of the multiresolution optimization with the
Fourier transform were better than those with the Haar wavelet transform.

In addition to the multiresolution methods, efficient ways of calculating the gra-

dient were developed. The framework was based on the general view of the back-
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propagation algorithm. In particular, an extremely memory-efficient method to ob-

tain the gradient in a convergence-type forward problem was devised.

6.1 Future Work

The following subjects were proposed for the future work:

1. How to best utilize the multiresolution information, such as the choice between
the step scheme and the weight scheme, the advancing criterion for the step
scheme, other types of filters for the gradient, etc.

2. Effects of the frequency distribution of the parameter, especially of the high-
end frequencies that correspond to discontinuities, on the search behavior of the
multiresolution optimization.

3. The conditions for the multiresolution optimization to work, especially in terms
of the relationship between the parameter to be estimated and the cost to be

minimized.
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