
On the Worst-case Analysis ofTemporal-di�erence LearningAlgorithms�Robert E. SchapireyManfred K. WarmuthzUCSC-CRL-94-42October 27, 1994Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractWe study the worst-case behavior of a family of learning algorithms based onSutton's method of temporal di�erences. In our on-line learning framework, learningtakes place in a sequence of trials, and the goal of the learning algorithm is toestimate a discounted sum of all the reinforcements that will be received in thefuture. In this setting, we are able to prove general upper bounds on the performanceof a slightly modi�ed version of Sutton's so-called TD(�) algorithm. These boundsare stated in terms of the performance of the best linear predictor on the giventraining sequence, and are proved without making any statistical assumptions ofany kind about the process producing the learner's observed training sequence.We also prove lower bounds on the performance of any algorithm for this learningproblem, and give a similar analysis of the closely related problem of learning topredict in a model in which the learner must produce predictions for a whole batchof observations before receiving reinforcement.�A preliminary extended abstract of this paper appeared inMachine Learning: Proceedings of the EleventhInternational Conference, 1994.yAddress: AT&T Bell Laboratories, 600 Mountain Avenue, Room 2A-424, Murray Hill, NJ 07974. Emailaddress: schapire@research.att.comzAddress: Computer and Information Sciences, University of California, Santa Cruz, CA 95064. Emailaddress: manfred@cse.ucsc.edu

1 IntroductionWe study the following prediction problem: At each point in time t = 1; 2; : : :, a learningagent makes an observation about the current state of its environment, which is summarizedby a real vector xt 2 RN . After having made this observation, the learning agent receivessome kind of feedback from its environment, which is summarized by a real number rt. Thegoal of the learning agent is to learn to predict the future feedback that is likely to followgiven the current observation vector xt.For instance, rt might be the price of a stock, and xt the current market conditions. Thelearner's goal is then to predict the future price of the stock. In such a situation, we wouldlikely be interested in the price of the stock not only for tomorrow, but for some time intothe future. For instance, we might be interested in the average price of the stock over thenext year. Or, rather than cutting o� the average after a �xed amount of time, we mightask that the learner predict a weighted (or discounted) sum of the stock prices on each dayin the future, giving lesser weight to days farther in the future.In this paper, following Sutton [6], we take up the study of this latter type of predictionproblem. More precisely, we study the problem of learning to predict the discounted sumyt := 1Xk=0krt+k (1)where 2 [0; 1) is some �xed constant called the discount rate parameter.At each time step t, after receiving the instance vector xt and prior to receiving thereinforcement signal rt, we ask that the learning algorithm make a prediction ŷt of the valueof yt. We measure the performance of the learning algorithm in terms of the discrepancybetween ŷt and yt. There are many ways of measuring this discrepancy; in this paper, weuse the quadratic loss function. That is, we de�ne the loss of the learning algorithm at timet to be (ŷt � yt)2, and the loss for an entire sequence of predictions is just the sum of thelosses at each trial. Thus, the goal of the learning algorithm is to minimize its loss over asequence of observation/feedback trials.We study the worst-case behavior of a family of learning algorithms based on Sutton'smethod of temporal di�erences [6]. Speci�cally, we analyze (a slightly modi�ed version of)Sutton's so-called TD(�) algorithm in a worst-case framework that makes no statisticalassumptions of any kind. All previous analyses [2, 3, 4, 6, 7] of TD(�) have relied heavilyon stochastic assumptions about the nature of the environment that is generating the dataobserved by the learner; for instance, the learner's environment is often modeled by aMarkov process.The primary contribution of our paper is to introduce a method of worst-case analysisto the area of temporal-di�erence learning. We present upper bounds on the loss incurredby our temporal-di�erence learning algorithm (denoted by TD�(�)) which hold even whenthe sequence of observations xt and reinforcement signals rt is arbitrary.To make our bounds meaningful in such an adversarial setting, we compare the perfor-mance of the learning algorithm to the loss that would be incurred by the best predictionfunction among a family of prediction functions; in this paper, this class will always be theset of linear prediction functions. More precisely, for any vector u 2 RN , letL`(u; S) := X̀t=1(u � xt � yt)21

denote the loss of vector u on the �rst ` trials of training sequence S. That is, L`(u; S)is the loss that would be incurred by a prediction function that predicts u � xt on eachobservation vector xt.We compare the performance of our learning algorithms to the performance of the bestvector u (of bounded norm) that minimizes the loss on the given sequence. For example,we prove below that, for any training sequence S, the loss on the �rst ` trials of TD�(1) isat most1 minjjujj�UL`(u;S)�K �L`(u; S) + 2pKUXc + jjujj2X2c2� (2)where c = (1 +)=(1�). (Here, U , X and K are parameters that are used to \tune"the algorithm's \learning rate:" speci�cally, it is assumed that jjxtjj � X , and thatminfL`(u; S) : jjujj � Ug � K. Various methods are known for guessing these parameterswhen they are unknown; see, for instance, Cesa-Bianchi, Long and Warmuth's paper [1].)Thus, TD�(1) will perform reasonably well, provided that there exists some linear predictoru that gives a good �t to the training sequence.To better understand bounds such as those given in equation (2), it is often helpfulto consider the average per-trial loss that is guaranteed by the bound. Suppose for themoment, as is likely to be the case in practice, that U , X and are �xed, and that K growslinearly with the number of trials `, so that K = O(`). Then equation (2) implies that theaverage per-trial loss of TD�(1) (i.e., the total cumulative loss of TD�(1) divided by thenumber of trials `) is at most minjjujj�UL`(u;S)�K L`(u; S)` + O� 1p`�! :In other words, as the number of trials ` becomes large, the average per-trial loss ofTD�(1) rapidly approaches the average loss of the best vector u. Furthermore, the rateof convergence is given explicitly as O(1=p`).Note that the above result, like all the others presented in this paper, provides acharacterization of the learner's performance after only a �nite number of time steps.In contrast, most previous work on TD(�) has focused on its asymptotic performance.Moreover, previous researchers have focused on the convergence of the learner's hypothesisto a \true" or \optimal" model of the world. We, on the other hand, take the view thatthe learner's one and only goal is to make good predictions, and we therefore measure thelearner's performance entirely by the quality of its predictions.The upper bound given in equation (2) on the performance of TD�(1) is derived from amore general result we prove on the worst-case performance of TD�(�) for general �. Ourbounds for the special case when � = 0 or � = 1 can be stated in closed form. The prooftechniques used in this paper are similar but more general than those used by Cesa-Bianchi,Long and Warmuth [1] in their analysis of the Widrow-Ho� algorithm (corresponding tothe case that = 0).1In this paper we only use one vector norm, the L2-norm: jjujj =qPNi=1 u2i :2

Note that minfL`(u; S) : u 2 RNg is the best an arbitrary linear model can do thatknows all y1 � � �y` ahead of time. If the on-line learner were given yt at the end of trial t(i.e., if = 0), then the Widrow-Ho� algorithm would achieve a worst case bound ofminjjujj�UL`(u;S)�K �L`(u; S) + 2pKUX + jjujj2X2�(matching the bound in equation (2) with set to 0). However, in our model, the learner isgiven only the reinforcements rt, even though its goal is to accurately estimate the in�nitesum yt given in equation (1). Intuitively, as gets larger, this task becomes more di�cultsince the learner must make predictions about events farther and farther into the future.All of our worst-case loss bounds depend explicitly on and, not surprisingly, these boundstypically tend to in�nity or become vacuous as approaches 1. Thus, our bounds quantifythe price one has to pay for giving the learner successively less information.In addition to these upper bounds, we prove a general lower bound on the loss of anyalgorithm for this prediction problem. Such a lower bound may be helpful in determiningwhat kind of worst-case bounds can feasibly be proved. None of our upper bounds matchthe lower bound; it is an open question whether this remaining gap can be closed (this ispossible in certain special cases, such as when = 0).Finally, we consider a slightly di�erent, but closely related learning model in which thelearner is given a whole batch of instances at once and the task is to give a prediction for allinstances before an outcome is received for each instance in the batch. The loss in a trial tis jjŷt � ytjj2, where ŷt is the vector of predictions and yt the vector of outcomes. Again,the goal is to minimize the additional total loss summed over all trials in excess of the totalloss of the best linear predictor (of bounded norm).In this batch model all instances count equally and the exact outcome for each instanceis received at the end of each batch. A special case of this model is when the algorithm hasto make predictions on a whole batch of instances before receiving the same outcome forall of them (a case studied by Sutton [6]).We again prove worst-case bounds for this model (extending Cesa-Bianchi, Long andWarmuth's previous analysis [1] for the noise-free case). We also prove matching lowerbounds for this very general model, thus proving that our upper bounds are the optimalworst-case bounds.The paper is outlined as follows. Section 2 describes the on-line model for temporaldi�erence learning. Section 3 gives Sutton's original temporal di�erence learning algorithmTD(�) and introduces our new algorithm TD�(�). Section 4 contains the worst-case lossbounds for the new algorithm, followed by Section 5 containing a lower bound for the on-line model. We present contains our results for the batch model in Section 6. Finally, wediscuss the merits of the method of worst-case analysis in Section 7.2 The prediction modelIn this section, we describe our on-line learning model. Throughout the paper, N denotesthe dimension of the learning problem. Each trial t (t = 1; 2; : : :) proceeds as follows:1. The learner receives instance vector xt 2 RN .2. The learner is required to compute a prediction ŷt 2 R.3

3. The learner receives a reinforcement signal rt 2 R.The goal of the learner is to predict not merely the next reinforcement signal, but rathera discounted sum of all of the reinforcements that will be received in the future. Speci�cally,the learner is trying to make its prediction ŷt as close as possible toyt := 1Xk=0krt+kwhere 2 [0; 1) is a �xed parameter of the problem. (We will always assume that thisin�nite sum converges absolutely for all t.)Note that if we multiply yt by the constant 1 � , we obtain a weighted average of allthe future rt's. Thus it might be more natural to use the variables y0t = yt(1 �). (Forinstance, if all rt equal r, then the modi�ed variables y0t all equal r as well.) However, forthe sake of notational simplicity, we use the variables yt instead (as was done by Sutton [6]and others).The in�nite sequence of pairs of instances xt and reinforcement signals rt is called atraining sequence (usually denoted by S). The loss of the learner at trial t is (yt� ŷt)2, andthe total loss of an algorithm A on the �rst ` trials isL`(A; S) := X̀t=1(yt � ŷt)2:Similarly, the total loss of a weight vector u 2 RN on the �rst ` trials is de�ned to beL`(u; S) := X̀t=1(yt � u � xt)2:The purpose of this paper is to exhibit algorithms whose loss is guaranteed to be \nottoo much worse" than the loss of the best weight vector for the entire sequence. Thus, wewould like to show that if there exists a weight vector u that �ts the training sequence well,then the learner's predictions will also be reasonably good.3 Temporal-di�erence algorithmsWe focus now on a family of learning algorithms that are only a slight modi�cation ofthose considered by Sutton [6]. Each of these algorithms is parameterized by a real number� 2 [0; 1]. For any sequence S and t = 1; 2; � � �, letX�t := tXk=1(�)t�kxk: (3)The learning algorithm TD(�) works by maintaining a weight vector wt 2 RN . The initialweight vector w1 may be arbitrary, although in the simplest case w1 = 0. The weightvector wt is then updated to the new weight vector wt+1 using the following update rule:wt+1 := wt + �t(rt + ŷt+1 � ŷt)X�t : (4)4

Algorithm TD�(�)Parameters: discount rate 2 [0; 1)� 2 [0; 1]start vector w1 2 RNmethod of computing learning rate �tGiven: training sequence x1; r1;x2; r2; : : :Predict: ŷ1; ŷ2; : : :Procedure:get x1X�1 x1ŷ1 w1 �X�1for t = 1; 2; : : :predict ŷt (� ŷt = wt �X�t �Pt�1k=1(�)t�kŷk �)get rtget xt+1X�t+1 xt+1 + (�)X�tcompute �tŷt+1 wt � xt+1 + �t(rt � ŷt)X�t �X�t+11� �tX�t �X�t+1wt+1 wt + �t(rt + ŷt+1 � ŷt)X�tend Figure 1: Pseudocode for TD�(�).The constant �t is called the learning rate on trial t. We will discuss later how to set thelearning rates using prior knowledge about the training sequence.In Sutton's original presentation of TD(�), and in most of the subsequent work on thealgorithm, the prediction at each step is simply ŷt = wt � xt. We, however, have found thata variant on this prediction rule leads to a simpler analysis, and, moreover, we were unableto obtain worst-case loss bounds for the original algorithm TD(�) as strong as the boundswe prove for the new algorithm.Our variant of TD(�) uses the same update (4) for the weight vector as the originalalgorithm, but predicts as follows:ŷt := wt � xt + t�1Xk=1(�)t�k(wt � xk � ŷk)= wt �X�t � t�1Xk=1(�)t�kŷk : (5)This new algorithm, which we call TD�(�), is summarized in Figure 1.The rule (4) for updating wt+1 has wt+1 implicit in ŷt+1, so at �rst it seems impossibleto do this update rule. However, by multiplying equation (4) by X�t+1, one can �rst solvefor ŷt+1 and then compute wt+1. Speci�cally, this gives a solution for ŷt+1 of5

(wt + �t(rt � ŷt)X�t) �X�t+1 �Ptk=1(�)t+1�kŷk1� �tX�t �X�t+1= (wt + �t(rt � ŷt)X�t) �X�t+1 � (�)wt �X�t1� �tX�t �X�t+1= wt � xt+1 + �t(rt � ŷt)X�t �X�t+11� �tX�t �X�t+1where, in the �rst equality, we assume inductively that equation (5) holds at trial t. Thus,we can solve successfully for ŷt+1 provided that �tX�t �X�t+1 6= 1, as will be the case forall the values of �t we consider. Also, note that ŷt+1 is computed after the instance xt+1 isreceived but before the reinforcement rt+1 is available (see Figure 1 for details).Note that for the prediction ŷt = wt � xt of TD(�),rwt(yt � ŷt)2 = �2�t(yt � ŷt)xt� �2�t(rt + ŷt+1 � ŷt)xt:(Since yt = rt + yt+1 is not available to the learner, it is approximated by rt + ŷt+1.)Thus with the prediction rule of TD(�) the update rule (4) is not gradient descent for allchoices of �. Curiously, with the new prediction rule (5) of TD�(�) the update rule (4) usedby both algorithms is gradient descent,2 since if ŷt is set according to the new predictionrule then rwt(yt � ŷt)2 = �2�t(yt � ŷt)X�t� �2�t(rt + ŷt+1 � ŷt)X�t :We can also motivate the term �Pt�1k=1(�)t�kŷk in the prediction rule of TD�(�) givenin equation (5): In this paper, we are comparing the total loss of the algorithm with thetotal loss of the best linear predictor, so both algorithms TD(�) and TD�(�) try to matchthe yt's with an on-line linear model. In particular, if yt = w � xt (that is, the yt's are alinear function of the xt's) and the initial weight vector is the \correct" weight vector w,then the algorithms should always predict correctly (so that ŷt = yt) and the weight vectorwt of the algorithms should remain unchanged. Using the fact that rt = w �xt� w �xt+1,it is easy to prove by induction that both algorithms have this property.Thus, in sum, the prediction rule ŷt = wt �X�t + ct is motivated by gradient descent,where ct is any term that does not depend on the weight vector wt. The exact value for ctis derived using the fact that, in the case described above, we want ŷt = yt for all t.4 Upper bounds for TD�(�)In proving our upper bounds, be begin with a very general lemma concerning theperformance of TD�(�). We then apply the lemma to derive an analysis of some specialcases of interest.Lemma 1: Let 2 [0; 1), � 2 [0; 1], and let S be an arbitrary training sequence such thatjjX�t jj � X for all trials t. Let u be any weight vector, and let ` > 0.2The factor of two in front of �t can be absorbed into �t.6

If we execute TD�(�) on S with initial vector w1 and learning rates �t = � where0 < �X2 < 1, thenL`(TD�(�); S)� inf (bL`(u; S) + jju�w1jj2Cb : b > 0; Cb > 0)where Cb equals2� � �2X2(1 + 2)� �2b 1 + � � �1� ��2!�2 ������ � �2b ����� � � �1� �� �� 2 ����� � � �2b ! (� �)� �2X2����� :Proof For 1 � t � `, we let et = yt� ŷt, and eu;t = yt� u �xt. We further de�ne e`+1 = 0.Note that the loss of the algorithm at trial t is et2 and the loss of u is eu;t2. Since, for t < `,rt + ŷt+1 � ŷt = rt + ŷt+1 � (rt + yt+1) + yt � ŷt= et � et+1;we can write equation (4), the update of our algorithm, conveniently aswt+1 = wt + �(et � et+1)X�t : (6)To simplify the proof, we also de�new`+1 = w` + �e`X�̀so that equation (6) holds for all t � `. (In fact, this de�nition of w`+1 di�ers from thevector that would actually be computed by TD�(�). This is not a problem, however, sincewe are here only interested in the behavior of the algorithm on the �rst ` trials which areuna�ected by this change.)We use the function progrt to measure how much \closer" the algorithm gets to u duringtrial t as measured by the distance function jj � jj2:progrt = jju�wtjj2 � jju�wt+1jj2:Let �wt = wt+1 �wt for t � `. We have thatjj�wtjj2 = �2(et � et+1)2jjX�t jj2� �2X2(et � et+1)2and that �wt � (wt � u) = �(et � et+1)(wt �X�t � u �X�t)= �(et � et+1) tXk=1(�)t�k(ŷk � u � xk)= �(et � et+1) tXk=1(�)t�k(eu;k � ek)7

where the second equality follows from equations (3) and (5), and the last equality fromthe fact that ŷk � u � xk = ŷk � yk + yk � u � xk= eu;k � ek :Since �progrt = 2�wt � (wt � u) + jj�wtjj2, we have that�jjw1 � ujj2 � jjw`+1 � ujj2 � jjw1� ujj2= �X̀t=1 progrt� 2�X̀t=1 "(et � et+1) tXk=1(�)t�k(eu;k � ek)#+ �2X2X̀t=1 (et � et+1)2:(7)This can be written more concisely using matrix notation as follows: Let Zk be the `� `matrix whose entry (i; j) is de�ned to be 1 if j = i+ k and 0 otherwise. (For instance, Z0is the identity matrix.) Let D = Z0 � Z1, and letV = `�1Xt=0(�)tZt:Finally, let e (respectively, eu) be the length ` vector whose tth element is et (respectively,eu;t). Then the last expression in equation (7) is equal to�2X2eTDTDe+ 2�eTDTVT (eu � e): (8)This can be seen by noting that, by a straightforward computation, the tth element of Deis et � et+1, and the tth element of VT (eu � e) istXk=1(�)t�k(eu;k � ek):Using the fact that 2pTq � jjpjj2 + jjqjj2 for any pair of vectors p;q, we can upperbound equation (8), for any b > 0, by�2X2eTDTDe � 2�eTDTVTe+ �2b eTDTVTVDe+ beuTeu (9)(where we use p = (�=pb) VDe and q = pb eu). De�ningM = �2X2DTD� �(VD+DTVT) + �2b DTVTVD;and noting that eTDTVTe = eTVDe, we can write equation (9) simply aseTMe+ beuTeu:Note that M is symmetric. It is known that in this casemaxe6=0 eTMeeTe = �(M) (10)8

where �(M) is the largest eigenvalue of M. Thus, for all vectors e, eTMe � �(M)eTe. Itfollows from equation (7) that�jjw1 � ujj2 � bX̀t=1 eu;t2 + �(M)X̀t=1 et2so ��(M)X̀t=1 et2 � jjw1 � ujj2 + bX̀t=1 eu;t2:In the appendix, we complete the proof by arguing that �(M) � �Cb.Having proved Lemma 1 in gory generality, we are now ready to apply it to some specialcases to obtain bounds that are far more palatable. We begin by considering the case that� = 0. Note that TD(0) and TD�(0) are identical.Theorem 2: Let 0 � < 1, and let S be any sequence of instances/reinforcements.Assume that we know a bound X for which jjxtjj � X.If TD�(0) uses any start vector w1 and learning rates �t = � = 1=(X2+1), we have forall ` > 0 and for all u 2 RN :L`(TD�(0); S)� (1 +X2)(L`(u; S) + jjw1� ujj2)1� 2 : (11)Assume further that we know bounds K and U such that for some u we have L`(u; S) � Kand jjw1 � ujj � U . Then for the learning rate�t = � = UXpK +X2Uwe have that L`(TD�(0); S)�L`(u; S) + 2UXpK +X2jjw1 � ujj21� 2 : (12)Proof When � = 0, Cb simpli�es to2� � �2�X2 + 1b� (1 + 2)� 2 ����� � �2�X2 + 1b����� :To minimize the loss bound given in Lemma 1, we need to maximize Cb with respect to �.It can be shown that, in this case, Cb is maximized, for �xed b, when� = 1X2 + 1=b: (13)The �rst bound (equation (11)) is then obtained by choosing b = 1.If bounds K and U are known as stated in the theorem, an optimal choice for b can bederived by plugging the choice for � given in equation (13) into the bound in Lemma 1, andreplacing L`(u; S) by K and jju�w1jj2 by U . This gives(bK + U)(X2+ 1=b)1� 29

which is minimized when b = U=(XpK). Plugging this choice of b into the bound ofLemma 1 (and setting � as in equation (13)) gives the bound�UL`(u; S)=XpK + jju�w1jj2��X2 +XpK=U�1� 2= L`(u; S) + L`(u; S)XU=pK + jju�w1jj2XpK=U + jju�w1jj2X21� 2� L`(u; S) + 2XUpK + jju�w1jj2X21� 2 :Next, we consider the case that � = 1.Theorem 3: Let 0 � < 1, ` > 0 and let S be any sequence of instances/reinforcements.Assume that we know a bound X for which jjX1t jj � X, and that we know bounds K and Usuch that for some u we have L`(u; S) � K and jjw1 � ujj � U . Then if TD�(1) uses anystart vector w1 and learning rates�t = � = UUX2(1 +)2+X(1+)pK;then L`(TD�(1); S)� L`(u; S) + 2pK(1 +)UX + (1 +)2jjw1 � ujj2X2:Proof When � = 1, Cb = 2� � �2X2(1 + 2)� �2b :This is maximized, with respect to �, when� = 1X2(1 + 2) + 1=b:Proceeding as in Theorem 2, we see that the best choice for b isb = U(1 +)XpK :Plugging into the bound in Lemma 1 completes the theorem.The bound in equation (2) is obtained from Theorem 3 by setting w1 = 0, and notingthat jjX1t jj � tXk=1 t�kjjxkjj � maxfjjxkjj : 1 � k � tg1� by the triangle inequality. Note that the bounds in equations (2) and (12) are incomparablein the sense that, depending on the values of the quantities involved, either bound can bebetter than the other. This suggests that TD�(0) may or may not be better than TD�(1)depending on the particular problem at hand; the bounds we have derived quantify thosesituations in which each will perform better than the other.10

0 0.2 0.4 0.6 0.8 1

10

20

30

40

50

60

a 0 0.2 0.4 0.6 0.8 1

40

60

80

100

120

b
0 0.2 0.4 0.6 0.8 1

350

400

450

500

550

600

650

c 0 0.2 0.4 0.6 0.8 1

3500

4000

4500

5000

5500

6000

6500

dFigure 2: The loss bound given in Lemma 1 as a function of � when � is chosenso as to minimize the bound.Ultimately, we hope to extend our analysis to facilitate the optimal choice of � > 0 and� 2 [0; 1]. In the meantime, we can numerically �nd the choices of � and � that minimizethe worst-case bound given in Lemma 1. Figure 2 shows graphs of the worst-case boundgiven in Lemma 1 as a function of � when � is chosen so as to minimize our worst-casebound and for �xed settings of the other parameters. More speci�cally, in all the graphswe have assumed jjw1 � ujj = 1, and jjxtjj � 1 (which implies that jjX�t jj � 1=(1 � �)).We have also �xed = 0:7. Figures 2a, b, c and d assume that L`(u; S) equals 3, 30, 300and 3000, respectively, and each curve shows the upper bound on L`(TD�(�); S) given inLemma 1. The solid line in each �gure shows the lower bound obtained in Section 5. In each�gure the x-axis crosses the y-axis at the value of L`(u; S). Note that the gap between thelower bound and L`(u; S) grows as �(qL`(u; S)) when all other variables are kept constant.(This is not visible from the �gures because the scaling of the �gures varies.) The �gureswere produced using Mathematica.As the �gures clearly indicate, the higher the loss L`(u; S), the higher should be ourchoice for �. It is interesting that in some intermediate cases, an intermediate value for �in (0; 1) is the best choice. 11

5 A lower boundWe next prove a lower bound on the performance of any learning algorithm in the modelthat we have been considering.Theorem 4: Let 2 [0; 1], X > 0, K � 0, U � 0 and ` a positive integer. For everyalgorithm A, there exists a sequence S such that the following hold:1. jjxtjj � X,2. K = minfL`(u; S) : jjujj � Ug, and3. L`(A; S) � (pK + UXp�`)2where �` :=P`�1k=0 2k.Proof The main idea of the proof is to construct a training sequence in which the learningalgorithm A receives essentially no information until trial `, at which time the adversarycan force the learner to incur signi�cant loss relative to the best linear predictor.Without loss of generality, we prove the result in the one-dimensional case3 (i.e., N = 1),so we write the instance xt simply as xt. The sequence S is de�ned as follows: We letxt = `�tX for t � `, and xt = 0 for t > ` (thus satisfying part 1). The reinforcementgiven is rt = 0 if t 6= `, and r` = sz where z = UX +pK=�` and s 2 f�1;+1g is chosenadversarially after A has made predictions ŷ1; : : : ; ŷ` on the �rst ` trials. Thenyt = 1Xk=0 krt+k = (`�tsz if t � `0 otherwise.To see that part 2 holds, let u = u be any vector (scalar, really, since N = 1) withjuj � U . Then L`(u; S) = X̀t=1(uxt � yt)2= X̀t=1 2(`�t)(uX � sz)2= (uX � sz)2�`:Since juj � U , it can be seen that this is minimized when u = sU , in which case L`(u; S) = Kby z's de�nition.Finally, consider the loss of A on this sequence:L`(A; S) = X̀t=1(ŷt � yt)2 = X̀t=1(ŷt � s`�tz)2:For any real numbers p and q, we have (p � q)2 + (p + q)2 = 2(p2 + q2) � 2q2. Thus, ifs 2 f�1;+1g is chosen uniformly at random, then A's expected loss will be12 X̀t=1(ŷt � `�tz)2 + X̀t=1(ŷt + `�tz)2! � X̀t=1(`�tz)2 = z2�` = (pK + UXp�`)2:3If N > 1, we can reduce to the one-dimensional case by zeroing all but one of the components of xt.12

It follows that for the choice of s 2 f�1;+1g that maximizes A's loss, we will have thatL`(A; S) � (pK + UXp�`)2 as claimed.When K = 0, Theorem 4 gives a lower bound of U2X2=�` which approaches U2X2=(1�2) as ` becomes large. This lower bound matches the second bound of Theorem 2 in thecorresponding case. Thus, in the \noise-free" case that there exists a vector u that perfectlymatches the data (i.e., minfL`(u; S) : jjujj � Ug = 0), this shows that TD�(0) is \optimal"in the sense that its worst-case performance is best possible.6 Algorithm for the batch modelIn the usual supervised learning setting, the on-line learning precedes as follows: In eachtrial t � 1 the learner receives an instance xt 2 RN . Then, after producing a prediction ŷtit gets a reinforcement yt and incurs loss (ŷt � yt)2.A classical algorithm for this problem is the Widrow-Ho� algorithm. It keeps a linearhypothesis represented by the vector wt and predicts with ŷt = wt � xt. The weight vectoris updated using gradient descent:wt+1 := wt � 2�t(wt � xt � yt)xt:Note that 2(wt � xt � yt)xt is the gradient of the loss (wt � xt � yt)2 with respect to wt.There is a straightforward generalization of the above scenario when more than oneinstance is received in each trial t. In this generalization, which was previously analyzed inthe noise-free case by Cesa-Bianchi, Long and Warmuth [1], the learner does the followingin each trial:1. receives a real-valued matrix Mt with N columns;2. predicts with ŷt =Mtwt;3. gets reinforcement yt, a real column vector whose dimension is the number of rows ofMt;4. incurs loss jjMtwt � ytjj2;5. updates its linear hypothesis wt using the rulewt+1 := wt � 2�tMTt (Mtwt � yt):The rows of the matrix Mt can be viewed as a batch of instances received at trial t. Thealgorithm has to predict on all instances received in trial t before it gets the reinforcementvector yt which contains one reinforcement per row. For each instance, the algorithm ischarged for the usual square loss, and the loss in trial t is summed over all instances receivedin that trial.We call the algorithm described above WHM. Note that the Widrow-Ho� algorithmis a special case of WHM in which each matrix Mt contains exactly one row. Also, theupdate is standard gradient descent in that 2MTt (Mtwt � yt) is the gradient of the lossjjMtwt � ytjj2 with respect to wt.To model a particular reinforcement learning problem, we have the freedom to makeup the matrices Mt and reinforcements yt to suit our purpose. For example, for the caseconsidered by Sutton [6] in which the goal is to predict a single outcome following a sequenceof observations, we letMt contain the instances of a run and set yt = (zt; � � � ; zt)T , where zt13

is the reinforcement received for the tth run. (In this case, Sutton shows that the Widrow-Ho� algorithm is actually equivalent to a version of TD(1) in which updates are not madeto the weight vector wt until the �nal outcome is received.)An example is a pair (Mt;yt), and, as before, we use S to denote a sequence of examples.We write L`(A; S) to denote the total loss of algorithm A on sequence S:L`(A; S) := X̀t=1(ŷt � yt)2;where ŷt is the prediction of A in the tth trial, and ` is the total length of the sequence.Similarly, the total loss of a weight vector u 2 RN is de�ned asL`(u; S) := X̀t=1(Mtu � yt)2:The proof of the following lemma and theorem are a straightforward generalization ofthe worst-case analysis of the Widrow-Ho� algorithm given by Cesa-Bianchi, Long andWarmuth [1]. In the proof, we de�ne, jjMjj, the norm of any matrix M, asjjMjj = maxjjxjj=1 jjMxjj:For comparison to the results in the �rst part of this paper, it is useful to note thatjjMjj � Xpm where m is the number of rows of M, and X is an upper bound on thenorm of each row of M.For any vector x, we write x2 to denote xTx.Lemma 5: Let (M;y) be an arbitrary example such that jjMjj � M . Let s and u be anyweight vectors.For any b > 0, if we execute the matrix algorithm on this example with initial vector sand the learning rate � = 12(jjMjj2+ 1=b);then jjMs� yjj2 � (M2b+ 1)jjMu� yjj2+ (M2 + 1=b)(jju� sjj2 � jju�wjj2); (14)where w = s � 2�MT(Ms � y) denotes the weight vector of the algorithm WHM afterupdating its weight vector s.Proof Let e := y�Ms and eu := y �Mu. Then inequality (14) holds iff := jju�wjj2 � jju� sjj2 + 2�e2 � beu2 � 0:Since w = s+ 2�MTe, f can be rewritten asf = �4�(u� s)TMTe+ 4�2jjMTejj2 + 2�e2 � beu2= �4�(e� eu)Te+ 4�2jjMTejj2 + 2�e2� beu2= �2�e2 + 4�euTe+ 4�2jjMTejj2 � beu2:Since 2euTe � b2�eu2 + 2�b e2 we can upper bound f bye2(�2� + 4�2(jjMjj2+ 1=b)) = 0:14

Theorem 6: Let S be any sequence of examples and let M be the largest norm jjMtjj.If the matrix algorithm WHM uses any start vector s and learning rates�t = 12(jjMtjj2 +M2) ;then we have for any vector u the boundL`(WHM; S) � 2(L`(u; S) +M2jjs� ujj2): (15)Assume further that we know bounds K and U such that for some u we have L`(u; S) � Kand jjs� ujj � U . Then for the learning rates�t = U2(jjMtjj2U +MpK)we have L`(WHM; S) � L`(u; S) + 2MUpK +M2jjs� ujj2: (16)Proof By summing the inequality of Lemma 5 over all runs of S we getL`(WHM; S) � (bM2 + 1)L`(u; S) + (M2 + 1=b)(jju� sjj2 � jju�w0jj2);where w0 is the weight vector to M after the last reinforcement of S is processed. Sincejju�w0jj2 � 0, we haveL`(WHM; S) � (bM2 + 1)L`(u; S) + (M2 + 1=b)jju� sjj2:Setting b = 1=M2 gives (15). Using the assumptions that L`(u; S) � K and jjs� ujj � U ,we get L`(WHM; S) � L`(u; S) +M2jjs� ujj2 + bKM2 + U2=b: (17)The part of the right hand side that depends on b is bKM2+U2=b which is minimized whenb = U=(MpK). Using this value of b in (17) gives (16).In the special case that K = 0, setting �t = 1=jjMtjj2 gives a bound ofL`(WHM; S) � L`(u; S) +M2jjs� ujj2:Note that to prove this, b = 1 is used. The bound for K = 0 was previously provedby Cesa-Bianchi, Long and Warmuth [1]. An alternate proof of the above theorem viaa reduction from the corresponding theorem for the original Widrow-Ho� algorithm wasrecently provided by Kivinen and Warmuth [5].The following lower bound shows that the bounds of the above theorem are best possible.Theorem 7: Let N;m � 1, K;U � 0 and M > 0. For every prediction algorithm A thereexists a sequence S consisting of a single example (M;y) such that the following hold:1. M is an m�N matrix and jjMjj =M ;2. K = minfL`(u; S) : jjujj � Ug; and3. L`(A; S) � K + 2UMpK + U2M2. 15

Proof As in the proof of Theorem 4, we prove the result in the case that N = 1, withoutlose of generality. Thus, M is actually a column vector in Rm.Let each component of M be equal to M=pm so that jjM jj = M . Let each componentof y be equal sz where z = (MU +pK)=pm and s 2 f�1;+1g is chosen adversarially afterA has made its prediction ŷ = (ŷ1; : : : ; ŷm)T .To see that part 2 holds, let u = u be a vector (scalar, really). ThenL`(u; S) = jjM� yjj2 = m(Mu=pm� sz)2which is minimized when u = sU for juj � U . In this case, L`(u; S) = K.Finally, by choosing s adversarially to maximize algorithm A's loss, we haveL`(A; S) = maxs2f�1;+1g mXi=1(ŷi � sz)2� 12 mXi=1 �(ŷi � z)2 + (ŷi + z)2�� mXi=1 z2 = K + 2MUpK +M2U2:7 DiscussionThe primary contribution of this paper is the analysis of some simple temporal-di�erencealgorithms using a worst-case approach. This method of analysis di�ers dramatically fromthe statistical approach that has been used in the past for such problems, and our approachhas some important advantages.First, the results that are obtained using the worst-case approach are quite robust.Obviously, any analysis of any learning algorithm is valid only when the assumed conditionsactually hold in the real world. By making the most minimal of assumptions | and, inparticular, by making no assumptions at all about the stochastic nature of the world | wehope to be able to provide analyses that are as robust and broadly applicable as possible.Statistical methods for analyzing on-line learning algorithms are only necessary whenworst-case bounds cannot be obtained. In this paper, we demonstrated that temporal-di�erence learning algorithms with simple linear models are highly amenable to worst-caseanalysis. Although one might expect such a pessimistic approach to give rather weak results,we have found, somewhat surprisingly, that very strong bounds can often be proved evenin the worst case.Worst-case bounds for on-line linear learning algorithms can be very tight even onarti�cial data [5]. Good experimental performance of a particular algorithm might be seenas weak evidence for showing that the algorithm is good since every algorithm performswell on some data, particularly when the data is arti�cial. However, if we have a worst-casebound for a particular algorithm, then we can use experimental data to show how muchworse the competitors can perform relative to the worst-case bound of the algorithm inquestion. 16

Another strength of the worst-case approach is its emphasis on the actual performanceof the learning algorithm on the actually observed data. Breaking with more traditionalapproaches, we do not analyze how well the learning algorithm performs in expectation, orhow well it performs asymptotically as the amount of training data becomes in�nite, or howwell the algorithm estimates the underlying parameters of some assumed stochastic model.Rather, we focus on the quality of the learner's predictions as measured against the �nitesequence of data that it actually observes.Finally, our method of analysis seems to be more �ne-grained than previous approaches.As a result, the worst-case approach may help to resolve a number of open issues in temporal-di�erence learning, such as the following:� Which learning rules are best for which problems? We use the total worst-case loss asour criterion. Minimizing this criterion led us to discover the modi�ed learning ruleTD�(�). Unlike the original TD(�), this rule has a gradient descent interpretation forgeneral �. Our method can also be used to derive worst-case bounds for the originalrule, but we were unable to obtain bounds for TD(�) stronger than those given forTD�(�). It will be curious to see how the two rules compare experimentally.Also, the results in Section 4 provide explicit worst-case bounds on the performanceof TD�(0) and TD�(1). These bounds show that one of the two algorithms may ormay not be better than the other depending on the values of the parameters X , K,etc. Thus, using a priori knowledge we may have about a particular learning problem,we can use these bounds to guide us in deciding which algorithm to use.� How should a learning algorithm's parameters be tuned? For instance, we have shownhow the learning rate � should be chosen for TD�(0) and TD�(1) using knowledgewhich may be available about a particular problem. For the choice of �, Suttonshowed experimentally that, in some cases, the learner's hypothesis got closest to thetarget when � is chosen in (0; 1) and that there is clearly one optimal choice. Sofar, our worst-case bounds for TD�(�) are not in closed form when � 2 (0; 1), but,numerically, we have found that our results are entirely consistent with Sutton's inthis regard.� How does the performance of a learning algorithm depend on various parameters of theproblem? For instance, our bounds show explicitly how the performance of TD�(�)degrades as approaches 1. Furthermore, the lower bounds that can sometimes beproved (such as in Section 5) help us to understand what performance is best possibleas a function of these parameters.Open problems. There remain many open research problems in this area. The �rstof these is to reduce the bound given in Lemma 1 to closed form to facilitate the optimalchoice of � 2 [0; 1]. However, as clearly indicated by Figure 2, even when � and � are chosenso as to minimize this bound, there remains a signi�cant gap between the upper boundsproved in Section 4 and the lower bound proved in Section 5. This may be a weakness ofour analysis, or this may be an indication that an algorithm better than either TD(�) orTD�(�) is waiting to be discovered.As described in Section 3, TD�(�) can be motivated using gradient descent. Rulesof this kind can alternatively be derived within a framework described by Kivinen andWarmuth [5]. Moreover, by modifying one of the parameters of their framework, they showthat rules having a qualitatively di�erent avor can be derived. In particular, they analyzesuch an algorithm, which they call EG, for the same problem that we are considering in17

the special case that = 0. Although the bounds they obtain are generally incomparablewith the bounds derived for gradient-descent algorithms, these new algorithms have greatadvantages in some very important cases. It is straightforward to generalize their updaterule for > 0, but the analysis of the resulting update rule is an open problem (althoughwe have made some preliminary progress in this direction).Lastly, Sutton's TD(�) algorithm can be viewed as a special case of Watkin's \Q-learning" algorithm [7]. This algorithm is meant to handle a setting in which the learnerhas a set of actions to choose from, and attempts to choose its actions so as to maximize itstotal payo�. A very interesting open problem is the extension of the worst-case approachto such a setting in which the learner has partial control over its environment and over thefeedback that it receives.AcknowledgementsWe are very grateful to Rich Sutton for his continued feedback and guidance.Manfred Warmuth acknowledges the support of NSF grant IRI-9123692 and AT&T BellLaboratories. This research was primarily conducted while visiting AT&T Bell Laboratories.References[1] Nicol�o Cesa-Bianchi, Philip M. Long, and Manfred K. Warmuth. Worst-case quadraticloss bounds for a generalization of the Widrow-Ho� rule. In Proceedings of the SixthAnnual ACM Conference on Computational Learning Theory, pages 429{438, July 1993.[2] PeterDayan. The convergence ofTD(�) for general�. MachineLearning, 8(3/4):341{362,May 1992.[3] Peter Dayan and Terrence J. Sejnowski. TD(�) converges with probability 1. MachineLearning, 14(3):295{301, 1994.[4] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence ofstochastic iterative dynamic programming algorithms. Technical Report 9307, MITComputational Cognitive Science, July 1993.[5] Jyrki Kivinen andManfredK.Warmuth. Additive versus exponentiated gradient updatesfor learning linear functions. Technical ReportUCSC-CRL-94-16, University ofCaliforniaSanta Cruz, Computer Research Laboratory, 1994.[6] Richard S. Sutton. Learning to predict by the methods of temporal di�erences. MachineLearning, 3:9{44, 1988.[7] C. J. C. H.Watkins. Learning from delayed rewards. PhD thesis, University of Cambridge,England, 1989.AppendixIn this technical appendix, we complete the proof of Lemma 1 by bounding �(M), thelargest eigenvalue of the matrix M.Let I be the `� ` identity matrix, and, for i; j � 0, de�neSi = Zi + ZTi ;Ri = ZTi Zi;Pij = ZTi Zj + ZTj Zi:18

Since Zi is the zero matrix for i � `, we can rewrite V more conveniently asV =Xi�0(�)iZi:By direct but tedious computations, we have thatDTD = I� S1 + 2R1;and VD = I+ �1� 1��Xi�1(�)iZisince ZiZ1 = Zi+1 for i � 0. Also,DTVTVD = I+ �1� 1��2 24Xi�1(�)2iRi + Xj>i�1(�)i+jPij35+�1� 1��Xi�1(�)iSi:Thus, M can be written as: �2X2 � 2� + �2b ! I+ ��2X2 + � � �2b !(1� �)!S1 + �2X22R1+�1� 1�� �2b � �!Xi�2(�)iSi + �2b �1� 1��2 24Xi�1(�)2iRi + Xj>i�1(�)i+jPij35 :It is known that �(A+ B) � �(A) + �(B) for real, symmetric matrices A and B. Further,it can be shown (for instance, using equation (10)) that�(I) = 1;�(Ri) � 1;�(�Si) � 2;�(Pij) � 2:Applying these bounds gives that�(M) � �2X2 � 2� + �2b + 2 ����� � � �2b !(1� �)� �2X2�����+ �2X22�2�1� 1�� ������2b � ������Xi�2(�)i+ �2b �1� 1��2 24Xi�1(�)2i+ 2 Xj>i�1(�)i+j35= �Cb: 19

