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1 IntroductionAs feature sizes shrink to 0:5 micron and less, we enter the era of deep-submicron VLSIdesigns. According to the interconnect scaling theory[3], the interconnect resistance israpidly increased proportional to the square of the scaling factor, such that the inter-connect resistance becomes comparable to gate on-resistance. Meanwhile, as the gatedelays and gate sizes are scaled down, the interconnect delays become more dominant.As the circuit switching speed approaches to 200MHZ, the wiring con�gurations ofcritical nets and clock nets have to be carefully designed for correct timing. For thetiming issues of deep-submicron designs, interconnect optimization is becoming just asimportant as device optimization.Most existing placement and routing tools handle the design net-by-net, but timingrequirements are expressed in the form of logic paths. Usually delay upper boundsare provided for logic paths based on the required clock frequency and critical paththroughput speeds. In order to make use of existing place&route tools, delay bound ofeach logic path is divided into multiple bounds for pairs of source-to-sink logic cells onthis path. Hauge, Nair and Yo�a [22] proposed the zero-slack algorithm that computesthe maximal allowable delays for individual source-to-sink connections, based on entirelogic path delay requirement. These maximal allowable delays for individual source-to-sink connections are then conveyed to place&route procedures. Works on delay boundgeneration can also be found in [31, 42, 18]. This delay-bounded net-by-net layoutstrategy has been used in the placement step in Cadence's Gate-Ensemble system [10]and Mentor Graphics's AutoCell system [42]. This paper provides the related workwhich can be used in the delay-bounded net-by-net routing.1.1 Survey of Previous WorkTiming-driven placement algorithms have been proposed in [25, 38, 37, 15, 16, 9, 19].Timing-driven routing algorithms were developed in recent years, since the traditionalminimum Steiner routing tree may violate the timing requirements, especially for highperformance layouts in deep submicrons or MCM substrates. Even if the placementhas been timing-driven, the exact path delays are determined only after the routingtrees are constructed. 1



People construct routing trees that trade-o� the tree cost and the radius (the longestsource-to-sink path length). One early related work is done by Ho, Lee, Chang andWong[23] which investigated the complexity and NP-hardness of �nding a bounded-diameter spanning tree or a bounded-diameter Steiner tree in a graph. Cohoon andRandall [11] proposed a heuristic which simultaneously considered the cost and theradius. Cong, Kahng, Robins, Sarrafzadeh and Wong [12] proposed a generalizedformulation using a parameter � to trade-o� the radius and cost. They [12] proposeda provably good algorithm that can always generate a tree in which the path lengthis bounded by (1 + �)R (R is the source-to-sink radius) and the wiring cost is withina factor 2(1 + (2=�)) of the optimal Steiner tree. A similar approach is also proposedby Awerbuch, Baratz and Peleg [2]. Lim, Cheng and Wu [30] proposed a modi�edversion of Prim's minimum spanning tree algorithm to control the radius for individualsource-sinks connections. The radius-cost trade-o� tree can be viewed as the oneconstructed between the minimum spanning tree (MST) (or minimum Steiner tree)and the shortest-path tree (SPT); Alpert, Hu, Huang and Kahng proposed a algorithm[1] which makes this MST-SPT combination in the tree construction. Cong, Leung andZhou [13] optimized special Steiner arborescences called A-trees to make the MST-SPTtrade o�.An important problem needed to be addressed is how to turn the delay bounds tothe path length bounds or radius, since the delay of a RC tree depends on the topologyof the tree. In deep submicron ICs, interconnect behaves distributed RC delays, andthe path length is not accurate for the delay estimation [40].Recently, minimal RC delay routing trees have also been investigated, which hasthree interesting variants: (1) minimizing the delay from the source to an identi�edcritical sink or a set of critical sinks; and (2) minimizing the maximal source-to-sinkdelay; (3) minimizing the maximal delay slack. Boese, Kahng, McCoy and Robins haveproposed several methods [5, 6, 7] to minimize the delays at identi�ed critical sinks; i.e.the optimal tree minimizes the linear combination of sink delays f = Pki=1 �i � d(si),where �i (�i � 0) is the the criticality of the sink si. They revealed the good �delityof using Elmore delay model[17] to guide a minimal delay routing tree compared tobeing guided by SPICE simulation. They proposed two branch and bound algorithmsBB-SORT-C and BB-SORT. BB-SORT-C constructs the optimal critical sink tree to2



minimize the linear combination of sink delays, and the optimality is proved basedon the observation [6] that the Hanan grid contains all Steiner points of the optimalcritical sink tree. BB-SORT constructs the near-optimal tree that minimizes the max-imal Elmore delay of the routing tree. Although BB-SORT-C and BB-SORT haveexponential time complexity, they provides the optimal or near-optimal solutions forthe empirical analysis of other heuristics. Boese, Kahng and Robins also proposedtwo heuristics [5, 7, 6] for the minimum Elmore delay Steiner trees: SERT and SERT-C. SERT is a modi�ed Prim's algorithm when adding sinks to the tree it minimizesthe maximal Elmore delay of the routing tree. SERT-C is a modi�cation of SERTthat minimizes the delay at a single critical sink. While Hong, Xue, Kuh, Cheng andHuang [24] proposed a modi�ed Dreyfus-Wagner Steiner tree algorithm for minimizingthe maximal path delay, Prasitjutrakul and Kubitz [33] proposed a routing algorithmfor the minimization of the delay slacks (i.e., di�erences between the real delays and thegiven delay bounds) at sinks. Prasitjutrakul and Kubitz's algorithm will be describedin more details in Section 4.The major di�culty in the critical sink delay minimization is how to choose theaccurate criticality for each critical sink to satisfy the delay bounds of multiple criticalpaths. Designers have to depend on intuition and perform design iterations. In typicaldeep submicron designs, more than 60 percent of the paths in a timing-critical designare critical [39].1.2 Contribution of Our WorkInstead of using criticalities or radius for sinks, we use precise delay upper boundswhich can be obtained from delay-bound-generators[22, 32] for meeting the logic pathdelay requirement. Most of previous timing-driven routing algorithms focus on theminimization of source-sink delays, except for [12] which provides the cost boundedwithin a factor 2(1+ (2=�)) of the optimal solution. Delay issues should be consideredin conjunction with the cost minimization. In deep submicron technologies, moreand more functional blocks will be integrated into a chip. Interconnections, betweenfunctional blocks within a chip or chip-to-chip in a MCM, are not only timing critical,but also span a large area of layout that incurs high cost. This paper works on the3



delay bounded minimum Steiner tree that minimizes the cost of the routing tree underconstraints of variable delay bounds for individual source-sink connections. The costfunction can include not only the total wire length, but also the congestion and routingarea. This work can also be applied on the delay balanced clock routing with theminimum wire length. Instead of zero skew routing, the clock net is routed as adelay bounded tree with a tolerable skew [44]. Taking advantage of the less stringentrequirement of tolerable skew, we can signi�cantly decrease the total wire length of theclock tree.This paper presents a new algorithm that constructs a routing tree satisfying the de-lay bounds, while minimizing the cost of the tree. Although the model of delay-boundedminimum Steiner tree has been discussed in previous publications, we generalize theformulation of the problem to more realistic timing-driven layout. The major noveltiesof our algorithm, which we call Delay Bounded Minimum Steiner Tree (DBMST)approach, can be summarized as follows:1. It accepts the delay bounds directly (not the path length bound or radius orsink criticality) in the tree construction. Furthermore, for sinks on di�erent logicpaths, the algorithm takes variable delay bounds.2. Instead of using a single pass as in most previous algorithms, it iteratively min-imizes the cost of the routing tree. The delay bounds are guaranteed based onfeasible search optimization.3. In order to �nd a feasible solution satisfying delay bounds as much as possible,the initial tree is constructed as a delay bounded tree that maximizes the delayslacks at sinks. We propose a new algorithm that constructs a maximum-delay-slack tree driven by the global information of delay slacks.The remaining of this paper is organized as follows. Section 2 de�nes the delaybounded minimum Steiner tree problem. Section 3 outlines the entire optimizationprocess of DBMST approach. Section 4 states a new max-delay-slack tree algorithm.Section 5 describes the cost reduction technique under delay bound constraints. Section6 analyzes the complexity. Section 7 addresses DBMST's performance by simulation.Finally, Section 8 provides our conclusions.4
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Figure 1: Delay Constrained Netlist in Logic Circuit2 Problem FormulationIn a logic circuit, a signal is sent from a source cell to a set of sink cells. To maintainthe delay requirement of the critical paths and prevent non-critical paths to becomecritical paths, each connection from the source cell to a sink cell is assigned a delayupper bound [42, 32]. As illustrated in Fig. 1(b), a routing netlist for signal B is createdwith delay bounds (D1; D2; D3; D4) from source s to sinks (t1; t2; t3; t4). Formally, thefollowing function for the delay bound is assigned to each sink:Delay-Bound Function (DBF): a real-valued function which assigns an upper boundDi to the delay along the path from the source s to sink ti. Di can be di�erent fromDj for two sinks i 6= j.In order to satisfy DBF and minimize the cost of the routing, the routing topol-ogy that we are interested in constructing is a delay-bounded minimum Steiner tree(DBMST) and the minimization problem can be formally described as follows:DBMST Problem: Given a routing graph G = (V;E) with a edge-cost function, apath-delay function, a source s, a set of sinks S, and a DBF, then construct a treespanning S [ fsg, such that the cost function of the tree is minimized while DBF issatis�ed.The routing graph G can be any type, where the source and sinks are located,such as Hanan grid [21] or channel intersection graph [14] (See Fig. 2). Based on agraph with only rectilinear edges (e.g. Hanan grid or channel intersection graph), we5
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Figure 2: Routing Graphcan obtain rectilinear DBMST 1. The edge-cost function usually represents the wiringlength or the routing congestion of channels. The cost function of the tree is the sumof costs of edges in this tree.The path-delay function evaluates the delay in the routing tree from the source toa sink. Our algorithm itself can be accomplished using any form of delay model as thepath delay function. In the experiments, we use the Elmore delay model [17, 35] toevaluate the path delays of the routing tree 2. Appendix 1 shows the detailed modeland Elmore delay calculation of the routing tree we take for the simulation in Section7. The DBMST problem based on minimizing the sum of edge costs of the routingtree can be reduced to a minimum Steiner tree problem with the delay bound set to1, which is known to be an NP-complete problem [20]; only heuristics are of practicalinterest for its solution. DBMST is a new heuristic designed to solve the DBMSTproblem (in later this paper, we refer to DBMST as the proposed approach if not1As claimed again, the proposed algorithm can be applied on any type of weighted graphes, for example,the Delaunay triangulation or the communication network.2Elmore delay model has been used in timing-driven routing algorithms [7, 6] and zero skew clock routingalgorithms [40]. A variant of the Elmore delay model, combining with an RC line delay model [36], has alsobeen used in other timing-driven routing algorithms [33, 24]. Boese, Khang, Mccoy and Robins [5] shows thegood �delity of using Elmore delay model[17] to guide a optimum delay routing tree compared to a optimumtree guided by SPICE simulation. 6



speci�ed).3 Overview of DBMST ApproachThe approach and optimization technique adopted here are based on an order thatsatis�es the delay bounds �rst, then improves the routing tree for the cost minimization.Hence, tree cost minimization is proceeded upon that the tree performance (delayrequirement) has already been satis�ed. Once reasonable delay bounds are set, DBMSToutputs routing result in the correct timing and near-minimum cost.DBMST uses the feasible search optimization technique to construct a Steienr tree,that minimizes the cost within a feasible region of delay bounded trees . Feasible searchoptimization is a very e�cient method for constrained optimization problems, whichhave been widely applied in engineering �elds 3. Here, a feasible region Rf consists ofrouting trees that satisfy delay bounds given by the DBF. The basic idea is illustratedin Fig. 3, starting from an initial tree T0 that is a delay-bounded Steiner tree, thetechnique examines a sequence of trees T1; T2; : : : ; and terminates at a delay-boundedSteiner tree Tn with the least cost.DBMST consists of two major steps; a skeleton 
owchart is shown in Fig. 3(b). Step1 constructs T0, then Step 2 transforms the current tree Ti to Tj , where cost(Ti) >cost(Tj). The delay slack at each sink is the deduction of the real delay from the delaybound. In order to let T0 be in the feasible region as a delay bounded tree, we maximizethe delay slack when constructing T0; T0 is a maximal-delay-slack tree.In some cases, the delay bounds given by DBF may be too tight, i.e., they cannotbe met even in T0. Ensuring the correct timing, delay violations at the routing stageare back-annotated to the stages of placement or logic synthesis, measures being takenas to update the locations of sinks or the source or enlarge the delay bounds of speci�csinks. This back-annotation procedure is indicated in Fig. 3(b). The rest of this paperassumes that DBF gives delay bounds that can be met by T0.3Brayton, Hachtel and Sangiovanni-Vincentelli [8] gives a good survey of feasible search optimizationmethods. 7
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Figure 3: Basic Approach Used in DBMST4 Max-Delay-Slack Tree (MDST) as Initial DBMSTIn order to get the initial feasible solution T0 that satis�es delay bounds as can aspossible, T0 is constructed as a max-delay-slack tree. In addition, leaving the largestdelay slack budget in T0 will help the cost reduction in the later tree improvement.For a sink ti, slack s(i) = D(i) � d(i), where D(i) is the delay bound speci�edby DBF and d(i) the actual delay. Ensuring the feasible search optimization, T0 isconstructed such that the following two conditions are satis�ed.1. s(i) � 0, for each sink ti2. min(s(1); s(2); : : : ; s(n)) is maximizedThe second condition indicates T0 as a max-delay-slack tree. Obviously, a max-delay-slack tree helps T0 to satisfy the �rst condition that sinks have non-negativeslacks. If a max-delay-slack tree still cannot guarantee the non-negative slacks, thenthe result of the placement or logic synthesis has to be modi�ed to improve the routingenvironment, as shown in Fig. 3(b). Max-delay-slack tree is hard to be solved in theoptimal solution since it is a NP-complete problem; we show the NP-completeness proofin Appendix II. Prasitjutrakul and Kubitz[33] proposed a heuristic of constructing a8



max-delay-slack tree by adding sinks once at a time, and the order of sink connectionsis according to the location closeness to the tree, that the nearest sink to the treeis connected �rst. The connection from the partial tree to a sink is accomplished byusing A� search to minimize the slacks of connected sinks. It is acknowledged by Boese,Kahng and Robins[7] that this heuristic using the enforced order of sink connectionsprobably loses the optimality. A small example is shown in Fig. 4, where we takeequal delay bounds for two sinks t1 and t2. In Prasitjutrakul-Kubitz's algorithm, t2 isconnected to the source s prio to t1, since t2 is closer to the source. In the new proposedalgorithm, the routing order is directly based on the slack values; for maximizing theminimum delay slack, tight slack sinks are optimized �rst. So, t2 is connected �rstsince it has the smaller slack value (For illustration, we assume equal delay bound fort1 and t2). As shown in Fig. 4, T2 has larger minimum delay slack than T1's.
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Figure 4: Routing Order Distinction of Two AlgorithmsNatural order of sink connections should be related to delay slacks, not the simplephysical closeness, since sinks have variable delay bounds and our goal is to maximizethe minimum delay slack. In the following, we propose a new max-slack-tree algorithmthat connects sinks according to the global information of delay slacks.At a stage of the tree construction, we classify sinks into two groups: the connectedsinks on the tree, and the free or unconnected sinks. We de�ne a weighted bipartitegraph G = (Vl; Vr; E); vertices in Vl represent nodes on the routing tree, and verticesin Vr represent free sinks (See Fig. 5). Each edge in E represents the shortest path9



from a node on the tree to a free sink. We call this bipartite graph as path slack graph.
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Figure 5: Bipartite Graph Model of Path Candidates to Free SinksWeight of an edge in the bipartite graph G represents the minimum delay slackof the resulted routing tree, when we connect the free sink to a speci�c node on thetree with the shortest path. This edge weight is used to evaluate the optimality of theresulted tree by connecting a free sink to a speci�c node on the tree. Without loss ofthe generality, let t1; t2; : : : ; tk be connected sinks and n1 a node in tree T . We connectn1 to a free sink tk+1 using the shortest path, and then calculate the path delays orslacks at t1; t2; : : : ; tk; tk+1 in T . We assign the weight W (n1; tk+1) in the path slackgraph as W (n1; tk+1) = min(s(1); s(2); : : : ; s(k); s(k+ 1)) (1)where s(1); s(2); : : : ; s(k + 1) are slacks at sinks t1; t2; : : : ; tk+1. A special case isW (n1; tk+1) = �1, when no path exists between n1 and tk+1 due to the layout block-age.With the help of the path slack graph G = (Vl; Vr; E;W ), we can determine thenext connection of free sinks with the best path. This is achieved in two steps.1. Mapping: we map each free sink in Vr to a node in Vl via the edge with thelargest weight of all adjacent edges connected to this free sink in G, and we de�nethe largest weight as the mapping weight of this free sink.10



2. Critical mapping: we select a mapping with the least weight.The mapping step determines the best path for each free sink once added to thetree. Recall that we have assigned the weight of an edge in G as the minimum delayslack of the resulted tree, when the free sink (in Vr) is connected to a speci�c treenode (in Vl). So, the mapping step chooses the connection pattern of a free sink in theobjective that maximizes the minimum delay slack of the resulted tree (including allconnected sinks). In a short, this step determines the best branching point on the treeto connect the free sink. As shown in Fig. 6(a), we obtain the mapping result of freesinks for the example shown in Fig. 5. A shortest path is preferred from the branchingpoint connected to the free sink, since the shortest path adds the minimum additionalcapacitive load to already connected sinks such that the increase of delays at theseconnected sinks are minimized (see Fig. 5(a)). In addition, comparing to longer pathsfrom the same branching point on the tree, a shortest path always minimizes the delayto the chosen free sink. If multiple shortest paths exist, the path that passes throughthe minimum number of other sinks is always selected.The critical mapping step determines which free sink is connected to the tree next.The critical mapping at one stage of tree growing is the mapping with the least weight.The free sink of the critical mapping is called critical free sink. In other word, thecritical free sink is selected of all free sinks that will results in the smallest delayslack of the tree if this critical free sink is connected. As illustrated in Fig. 6(b),t4 to n1 mapping is the critical mapping, since it has the least mapping weight, i.e.w(t4; n1) = min(w(t3; n3); w(t4; n1); w(t5; n1)), and t4 is the critical free sink. Theresulted tree by the critical mapping is shown in Fig. 6(d).The algorithm always picks up the critical free sink next connected to the tree, usingthe path decided by the critical mapping. The reasons are as follows. As we know, fora sequential router (everytime a destination is connected), early stage connections havemore 
exibility to maximize the delay slacks of sinks, and later connections have lessfreedom or optimization space due to the existence of connected sinks. Furthermore,the optimality of the routing tree depends heavily on the maximization of delay slacksof critical sinks.The algorithm starts from the source, and at each stage a critical free sink isconnected to the routing tree using the critical mapping. An example is illustrated in11
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Fig. 14(b), where T0 is constructed using the algorithm presented above; and terminalsare marked in the sequence of connections to the tree (i.e. t1 is connected before t2,etc.).The high-level pseudo code of the max-delay-slack tree algorithm are described inFig. 7.INPUT :G(V;E) = graph, s = source,S = set of sinks, n = number of sinks,DB = set of delay bounds for sinks.OUTPUT :A max-delay-slack Steiner tree spanning S [ fsg.PROCEDURE MDST (G(V;E), s, S, DB, n) fi = 0;T = fsg, Vl = fsg, Vr = S;while (i < n) fUpdate the weighted bipartite graph G = (Vl; Vr; E)Vl = set of nodes on the tree, E(Vl; Vr) = set of shortest paths between Vl and Vr,W (E) = set of weights of E (related to delay slacks);Map each free sink in Vr to the tree node in Vl with the largest weight;t� = critical sink in Vr with the least mapping weight;Connect t� by the critical mapping;T = T + t�, Vr = Vr � t�, i = i+ 1;gg Figure 7: Max-Delay-Slack Tree Algorithm DescriptionIn order to reduce the computational cost, we make a incremental update of thebipartite path slack graph G once a new free sink is connected. The incremental updateof G is accomplished in following three steps:(a) Add on G new nodes of the tree T ;(b) Update connection paths from nodes of the tree to free sinks;(c) Update weights of edges in G.The key step of the incremental update is step (b). Step (a) is done by listing newnodes on the left side of G; these new nodes are just added to T . On the right side13



of G, the free sink is deleted that has just been connected to T (See Fig. 8(b)). Step(c) is done by recalculating the minimum slack of the routing tree once a free sink isconnected to a speci�c node on T . Note weight = �1 if no connection path existsdue to the layout blockage. In order to save the computational time, in Step (b), wewant to maintain the previous connection paths (shortest paths) from the nodes on Tto free sinks as much as possible, i.e. to avoid the redundant calculations of shortestpaths.
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Figure 9: Correctness Check of Previous Connection Path (p)when for a large size routing grid caused by the increase of the sink number and layoutsize.5 Iterative Cut-and-Link for ImprovedDBMSTDBMST performs continuous delay-bounded transformation of the routing tree start-ing from T0. The algorithm terminates when the tree cost can no longer be furtherdecreased by the transformation. For the feasible search optimization, at each trans-formation from Tk to Tk+1, the following conditions are satis�ed.1. To maintain the solution in the feasible region, we keep Tk+1 delay-bounded.2. To transform the tree in the right search direction, i.e. we make a maximal costreduction (steepest-gradient) at each transformation.5.1 Delay Bounded Cut-and-LinkCut-and-link is the key operation in the tree transformation, that the tree is cut to twosubtrees by deleting one path in the tree, then a path previously not in the tree areadded to link the tree again. Once a round of cut-and-link is done, Tk is transformedinto Tk+1. The cost of a path is the sum of costs of edges on this path. The new pathshould be selected with the cost no larger than the previous one, and maintain Tk+115



as a delay bounded tree. As shown in Fig. 10, from Tk to Tk+1, the path ps is replacedby a new path ut2, resulting in the total wire length reduced from 240 to 220.
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(a) (b)Figure 10: Example of Tree Transformation. (a) Tk; (b) Tk is cut to two subtrees T a andT b by deleting path ps. (c) T a and T b are linked again by a new path ut2. TK+1 is a delaybounded tree.The objective of DBMST is to maintain Tk+1 2 Rb as a delay bounded tree, whiledecreasing the tree cost as much as possible at each step. We select a path in thetree, and exchanged by a new path not in the tree with the lowest cost. To guar-antee delay bounds, the new path is realized by a delay bounded shortest path. Theconceptualization is shown in Fig. 11(a).We derive a collapsed version of Tk as called deducted tree T 0k, in order to determinethe paths in Tk to be possibly switched. We de�ne a chain node as a Steiner node (notsinks and source) in the tree that connects exactly two tree edges. Shown in 11(b), Ais a chain node with degree 2, while B is not. By removing all chain nodes and mergingadjacent edges, Tk is deducted to T 0k. Each edge in T 0k represents a path in Tk.Once a path q in Tk is removed, Tk is cut into two subtrees: Tk�q = T a+T b, whereT a spans Sa [ fsg and T b spans Sb, S = Sa [ Sb. Note our de�nition on the path tobe deleted (a edge in the deducted tree T 0k) will never produce the subtrees with somepending Steiner nodes. A delay bounded shortest path is found to reconnect T a andTb as a delay bounded tree; while the new tree has less cost than Tk. The algorithmhow to �nd the delay bounded shortest path between two subtrees are described later.16
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uij = 8<: 1 if tree T a [ T b [ pij satis�es delay bounds at sinks;0 else. (3)
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Figure 12: Delay-Cost Product MatrixHence, we get the product Cij = uijcij , as shown in Fig. 12(b). All non-zeroproduct items in the matrix represent the delay bounded paths between T a and T b;using these paths to reconnect T a and T b will result in a delay bounded tree. We selecta item (nr; ns) with the least cost of all non-zero product items in the matrix. Thecorresponding shortest path p�rs between nar in T a and nbs in T b is the delay boundedshortest path between T a and T b.If the cost of p�rs is larger than the deleted path q (highest cost path in Tk), then qis put back to the tree. So, the path cost of the delay bounded shortest path is alwaysno more than the cost of the just deleted one. Tree cost is monotonically reducedduring the iterative cut-and-link process.In order to reduce the computational time, instead of obtaining all pairs of shortestpaths at one time, we incrementally construct the shortest paths between T a and T b.Simultaneously, we evaluate the delay bound of the newly created paths incrementally.This incremental construction of the �rst shortest path, second shortest path, thirdshortest path and so forth between T a and T b uses the principle of the k-shortest pathalgorithm in [28]. 18



The nice property of using the above incremental shortest path construction, is thatonce a shortest path is found satisfying DBF, the path is de�nitely the delay boundedshortest path between T a and T b. De�ne k as the number of shortest paths constructedin the incremental constructions before we �nd the delay bounded one. We found inexperiments that usually the k is very small once we obtain a delay bounded shortestpath. Three reasons make the k small to get a delay bounded shortest path: (a) we stopthe incremental shortest path construction, immediately when we detect the currentshortest path resulting in a delay bounded tree; (b) we stop the construction once thecurrent shortest path has larger cost than the deleted path from T ; (c) in most cases,a shorter path between T a and T b helps the delay bound satisfaction of the entire tree.These above reasons make the delay bounded shortest path is found at early stage ofthe incremental shortest path construction. The k-shortest paths can be constructed inO(kn2) [28] for n grids in the routing graph. On the other hand, if we statically obtainall pairs of shortest paths between T a and T b, the time complexity will be O(jT jn2)where jT j is the size of the routing tree.We show the high-level description of the DBMST algorithm in Fig. 13. To maxi-mize the cost reduction, the stop criterion of DBMST is devised such that the algorithmterminates when none of cut-and-link paths results in the positive cost reduction. Theconvergency is guaranteed by the monotonical cost reduction of tree transformations.Fig. 14 illustrates steps of constructing a routing tree with the requirement ofvariable delay bounds. We obtain the result using 0.3um CMOS technology given inSection 7. The tree in Fig. 14(h) is constructed by DBMST, and the tree in Fig.14(e) by a minimum Steiner tree heuristic proposed by Kou, Markowsky and Berman(KMB) [27]. We show the �rst �ve stages of tree transformation (T0; T1; T2; T3; T4; T5)in Fig. 14. As shown in Fig. 15(a), the tree constructed by DBMST satisfy delaybounds at sinks, while KMB has no knowledge of path delay bounds so as to fail at 5sinks. DBMST reduces the cost by 8% compared to KMB, although KMB algorithmhas achieved near-optimum cost Steiner tree [27] 4. The signi�cance of DBMST is thatit accomplishes the routing not only satisfying the required delay bounds but also closeto the minimum cost.4KMB algorithm is proved [27] to construct a Steiner tree with a tight cost CKMB � 2(1 � 1jSj )Copt,where Copt is the cost of the optimum Steiner tree, and jSj the number of sinks.19



INPUT:G(V;E) = graph, s = source,S = set of sinks,DB = set of delay bounds for sinks,OUTPUT:A delay bounded Steiner tree spanning S [ fsg.PROCEDURE DBMST(G(V;E), s, S, DB) fk = 0;T0 = max-delay-slack tree spanning S [ fsg that maximizes delay slacks of sinks;(using algorithm described in the next section);do fBestGain = �1;Derive the deducted tree T 0k from Tk;for (Each path p in Tk (each edge in T 0k)) fq = delay bounded shortest path corresponding to p;g = gain if p is switched to q;if (BestGain < g)BestGain = g;gif (BestGain > 0) f(p; q) = pair of cut-and-link paths with the gain equal to BestGain;Remove p from tree Tk, making Tk � p equal to two subtrees T a and T b;Tk+1 = q + T a + T b;k = k + 1;gg while (BestGain > 0);g Figure 13: DBMST Description20
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Figure 15: Comparison of DBMST and KMB on Delay Satisfaction and Cost5.2 CorrectnessDBMST is now shown to be correct in timing.Theorem 1 DBMST outputs a delay-bounded Steiner tree, once T0 is a delay boundedtree.Proof: When Tk is transformed to Tk+1, we always construct the new path to maintainTk+1 delay bounded. In the worst case, the path q that just deleted from Tk, will befound again as a delay-bounded shortest path, and Tk+1 = Tk is still delay bounded.2Furthermore, DBMST is shown in the right search direction in the feasible search costminimization process.Lemma 1: Once a delay-bounded path is found between T a and T b, it is the shortestone.Proof: This lemma follows from the fact that we evaluate shortest paths between twosubtrees in the increasing order of path costs. Note that the path just deleted itself isone of delay bounded paths, and in the worst case it is identi�ed as the shortest one.2Lemma 2: Delay bounded cut-and-link operation always results in non-negative costreduction.Proof: Based on Lemma 1, the delay bounded shortest path between T a and T b is22



never larger than the cost c of the deleted path. So, gain g = c� c� � 0. 2Since we select the maximal gain of cut-and-link paths at each tree transformation,based on Lemma 2, we have theorem 2.Theorem 2: DBMST decreases the tree cost monotonically in the steepest gradientsearch direction.5.3 Cost OptimalityConstructing a delay bounded minimum Steiner tree is a NP-complete problem inthe aspect of the cost minimization. DBMST is a good heuristic for delay boundedminimum Steiner tree problem, not only it satis�es the variable delay bounds duringthe entire construction process (Appendix 2 shows that constructing a tree satisfyingdelay bound constraints itself is a NP-complete problem), but also turns the tree outwith reasonable small cost.In all experiments we have done so far, DBMST always achieves the cost less thanthe known minimum Steiner tree heuristic proposed by Kou, Markowsky and Berman(KMB), which has no delay bounds. KMB algorithm has a tight bound of the costto the optimum Steiner tree [27], i.e. CKMB � 2(1� 1jSj)Copt 5, where CKMB is thecost of the Steiner tree constructed by KMB algorithm, Copt the cost of the optimumSteiner tree, and jSj the number of sinks.We can improve DBMST in the cost minimization by the following techniques(a) Search the tree con�gurations out of the feasible search region for increasing theopportunity of obtaining the global optimum; (b) Hill-climb the local minimum byback-tracking to some earlier stage tree con�gurations, and try transforming the treein a di�erent search direction instead of the maximum gain steepest-gradient direction(for example, selecting the tree oriented from the cut-and-link with the second maximalgain). We explain the �rst technique using the group migration principle as follows.Always limiting the search in the feasible region (Rb) de�nitely looses some oppor-tunity of tracing the best search path to the global optimum solution. The opportunity5Empirical analysis shows that DBMST achieves less cost than KMB algorithm which further obtainssmaller cost bound than the bounded radius routing tree algorithm in [12] that achieves a factor of 2(1+(2=�))of the optimum Steiner tree. 23
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Figure 16: m-Cut-and-Linkof global optimum solution is increased if we increase the space of the feasible searchregion.De�ne a pseudo feasible region R0b expanded from Rb. For a sink ti, slack s(i) =D(i)� d(i), where D(i) is the delay bound, and d(i) the actual delay. The minimumslack s� = min(s1; s2; : : : ; sjSj) for jSj sinks 2 S. For guaranteeing the delay bounds,trees in Rb have to be s� � 0. We expand Rb to R0b such that trees are allowed withs� � ��, where �� is a relaxed negative slack.Transforming from Tk to Tk+1, we allow tentative search path out of Rb but withinthe pseudo feasible region R0b to achieve more cost reduction. In other word, inter-mediate tree con�gurations bridged between Tk and Tk+1 are allowed exceeding therequired delay bounds although the �nal Tk+1 should be delay bounded located inRb. This strategy is illustrated in Fig. 16(a), which is done by the principle of groupmigration that chooses the best solution in a sequence of cut-and-link trees instead ofone step of cut-and-link 6. We call m-cut-and-link. From Tk to Tk+1, we tentativelycut-and-link m(m > 1) times of paths, and accept the �rst m�th cut-and-link treetransformations (m� � m) that obtains the minimum transition cost c�k;k+1.Once we cannot �nd a solution (new delay bounded tree con�guration) in Rb, thesearch space is expanded to R0b. At each stage of m times of tentative cut-and-link,6Group migration technique [26] was used in the bi-partition problem of circuits.24



we �rst try to �nd a cut-and-link in Rb with the maximal gain. If no cut-and-link isallowable in Rb due to the delay bound requirement, we continue to �nd a cut-and-linkin R0b with the maximal gain using the same algorithm as in Section 4:2. The cut-and-link in R0b is accomplished such that the routing tree is allowed to have a relaxednegative minimum slack, i.e. s� � �� (� � 0); when we decide the delay boundedshortest path p between two subtrees T a and T b, p is the shortest one that makes therouting tree T = T a + T b + p with the smallest slacks� � ��.A transition cost ck;k+1 from Tk to Tk+1 is de�ned as follows, where Ck+1 and Ckare costs of Tk+1 and Tk.ck;k+1 = 8<: Ck+1 � Ck if Tk+1 is a delay bounded tree 2 Rb;+1 else Tk+1 2 R0b. (4)Based on Lemma 2, if Tk+1 is a delay bounded tree, always ck;k+1 � 0. Based on(4), if Tk+1 not satisfying the delay bounds but still with s� � �� (in R0b), alwaysck;k+1 = +1 (positive). As shown in Fig. 16(b), the �rst step of cut-and-link haspositive ck;k+1 (the delay bounds are not satis�ed), but we still proceed to the followingm� 1 cut-and-link trees, and select m� cut-and-link tree transformations as the resultof Tk+1; Tk+1 has less cost than Tk since c�k;k+1 < 0. If a sequence of m cut-and-linktrees results in positive (+1) transition cost at every time, as shown in Fig. 16(c),then Tk+1 = Tk, because no new delay bounded Tk+1 can be constructed by thesecut-and-link trees.Relaxing the exact delay bounds in the search of intermediate tree con�gurations,or allowing local search in a expanded pseudo feasible region R0b, probably providesmore opportunity to execute further cut-and-link for more cost reduction. The �-nal tree selected in m-cut-and-link is always a delay bounded tree that is retainedin feasible search region Rb, that is a starting point for continuing cut-and-link treetransformations.6 ComplexityWe analyze the time complexities of two major stages of DBMST: constructing T0 andlater optimization process. 25



At each stage of constructing the max-slack-tree (initial T0), in order to build thebipartite graph, we iterate each node on the routing tree T and �nd the shortest pathtree in O(n2), where n = jV j. Since m sinks are connected, the total computationaltime of T0 is O(mjT0jn2), where jT0j is the number of nodes in the output tree. Thedynamic update of the bipartite path slack graph can further reduce the computationaltime. Once updating the bipartite graph, the times of re-computing shortest paths isproportional to the size jP �j (number of nodes) of the new path p� added to the tree,instead of proportional to entire jT j. During the entire period connecting m sinks, thesum of sizes jP �j of new paths is exactly equal to the size of the output T0 (every timea new path is added to T0). So, the overall time complexity of T0 construction, by thedynamic updating of the bipartite path slack graph, is O(jT0jn2).The computation of the tree transformation in feasible search optimization is domi-nated by computing the delay bounded shortest path which can be done in O(kn2) [28]when using incremental construction of pairs of shortest paths, where k is the numberof shortest paths constructed for �nding the delay bounded shortest path. Usually k isa very small number (close to 1 or 2), once a delay bounded shortest path is found (seethe analysis in Section 4). In order to obtain the path switching using the maximalgain of the cost reduction, we iterate paths in tree T . So, a tree transformation in theoptimization is accomplished in O(kjT jn2), where jT j is the edge number of the tree.7 Experimental resultsDBMST has been implemented in C++. In our experiments, the cost of solutions ofDBMST is evaluated and is compared to the cost of solutions obtained by the KMBalgorithm [27], the KMB algorithm followed by iterations of cut-and-link improvement,and the minimum-delay SERT algorithm of Boese and Kahng et al [7]. The experimentsare performed on random circuits. The random circuits were constructed by uniformlysampling locations of sinks from a rectangular region. The Manhattan distance betweenthe points is used as the cost function, and the Elmore delay as the delay model forthe circuits.The technology parameters for the delay model are given in Table 1. The valuesfor the 1�m CMOS are obtained from MOSIS. The values for the 0.5 and 0.3 �m26



CMOSs are extrapulated from the 1�m CMOS using scaling formulas [3]. That is, asthe feature size scales by a factor S, the resistance per unit length scales as S2, thecapacitance per unit length remains constant, and the gate capacitance is decreasedby 1=S. The thin-�lm MCM values are from AT&T Microeletronics Division.chip size Rb (m
=�m) Cb (fF=�m) Rd (
) Ct (pF )1 �m CMOS 10 � 10 mm2 30 0.02 100 0.020.5 �m CMOS 20 � 20 mm2 120 0.02 100 0.010.3 �m CMOS 40 � 40 mm2 480 0.02 100 0.005MCM 100 � 100 mm2 8 0.06 25 0.2Table 1: The technology parameters used in the experiments.The experimental results for di�erent size nets and technologies are shown in Fig. 17and Fig. 18. The curve labeled min-delay corresponds to the cost of the minimum-delay tree algorithm of Kahng et al. [6, 7]. The kmb curve is produced by the KMBalgorithm, and kmb+ curve is produced by applying the path-switching technique indbmst to the result of the KMB algorithm. Finally, the dbmst curve corresponds tothe solution of DBMST. These notations are listed in Table 2 for reference.MDST proposed heuristic of max-delay-slack tree, as the initial DBMSTmdst curve or result of MDSTDBMST proposed heuristic of delay bounded minimum Steiner tree,that improves the tree by iterative delay bounded cut-and-linkdbmst curve or result of DBMSTKMB heuristic of minimum Steiner tree [27]kmb curve or result of KMBKMB+ heuristic of improving KMB, followed by iterative cut-and-link improvementkmb+ curve or result of KMB+MIN-DELAY heuristic of minimum Elmore delay Steiner tree (SERT)[7]min-delay curve or result of MIN-DELAYTable 2: List of NotationsFor the sake of comparing the cost with the minimum delay tree, the delay bound isset to be the same for all the sinks, and it is the maximum delay of the solution of theKMB algorithm. The purpose here is show that if the delay bound is as loose as thatof the KMB algorithm, the cost of DBMST is as small as that of the KMB algorithm,27



while the delay bound is satis�ed at all times. A tighter delay bound trades o� theminimum cost achievable by DBMST.
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Table 3 shows the cost decrease percentage due to the iterative cut-and-link. Thecost percent decrease from kmb to kmb+ is about 8:5%, that suggests the iterativecut-and-link technique can be signi�cantly applied on any Steiner tree constructed bysome heuristic for the further improvement. The signi�cance of iterative cut-and-linktechnique on the cost reduction of DBMST is even more, shown in Table 3, that thecost reduction from intial MDST to DBMST is about 60:5%. Although the delaybounds are set as constraints of path switching, DBMST achieves less cost than KMBfor all testing examples, and is very close to the cost of KMB+. On average in Table4, DBMST has only 1:5% more cost than KMB+ on testing examples. Meanwhile,the cost of the minimum-delay tree is almost twice as large; thus not taking advantageof the available delay slack will lead to unnecessarily costly results. Table 4 showsthe relative costs of the DBMST and minimum-delay trees with respect to the KMB+trees for the di�erent technologies. kmb ! kmb+ mdst ! dbmst1 �m CMOS 8.7% 57%0.5 �m CMOS 8.3% 69%0.3 �m CMOS 8.7% 64%MCM 8.7% 52%Table 3: Cost Percent Decrease by Iterative Cut-and-Link.Results in Table 4 shows that as the feature size becomes smaller accompaniedwith the enlarged chip size, the ratio of the cost of the minimum-delay tree to theminimum-cost tree increases; therefore, the cost issue become more dominant as thefeature size decreases with the current technology trend. The cost and performanceis also more signi�cant for nets with large spans and heavy loads. This is of practicalimportance in routing clock trees driven by the tolerable skew so as to minimize thecost penalty. For DBMST as shown in Table 4, cost ratio remains almostly constantto the minimum-cost tree.As an indication of the computational demand of DBMST, its execution time ona SUN Sparc1+ is shown in Fig. 19. It was observed during the experiments thatfor larger size nets, the construction of the initial feasible maximum-delay-slack treedominates the execution time. Nevertheless, the execution time is rather fast and makes29



kmb+ dbmst min-delay1 �m CMOS 1 1.02 1.940.5 �m CMOS 1 1.02 2.090.3 �m CMOS 1 1.01 2.18MCM 1 1.01 1.98Table 4: The Relative Costs Normalized with Respect to kmb+.DBMST very practical. Test examples covering up to 40 sinks provide the availibilityof DBMST used in the clock routing by tolerable skew bounded.
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Figure 19: CPU Time of dbmst and Initial mdst on Test Circuits. The data is measured ona SUN Sparc1+.8 Conclusions and Further workWe have presented a delay bounded minimum Steiner tree construction algorithm. Itaccepts variable delay bounds for individual source-sink connections, and minimizesthe cost of the tree within the constraint of the delay bounds. The methodology andoptimization technique is adopted based on a natural order that satis�es the delaybounds �rst, then improve the routing tree for the cost minimization. Once reasonable30



delay bounds are set, this algorithm outputs routing result in the correct timing andnear-minimum cost. This algorithm is especially attractive to the layout design whenthe interconnect resistance approaches to the gate on-resistance in deep-submicronVLSIs or on the substrate of thin-�lm multi-chip modules.We will investigate the further application of this algorithm on the routing of timingcritical nets, such as the clock net routing. Once we set a tolerable skew, we intend toroute the low levels of the clock tree with delay-bounded minimum Steiner tree for thereduction of the total wire length.The correctness of the proposed routing algorithm is independent of the delay modelused, although, the optimality in the electrical performance and cost of the resultedtree is related to the delay model. High order (at least second-order) delay models[34, 29] are necessary for the high-frequency interconnect, especially on the substratesof multichip modules or boards once the transmission line e�ects are noticed.9 AcknowledgementThis work was supported partially by National Science Foundation Presidential YoungInvestigator Award under Grant MIP-9009945. We would like to thank Kenneth Boeseand Prof. Andrew Kahng at UC Los Angeles for providing their source code [7].References[1] C.J. Alpert, T.C. Hu, J.H. Huang, and A.B. Kahng. A direct combination of theprim and dijkstra constructions for improved performance-driven global routing.Proceedings of IEEE Intl. Symposium on Circuits and Systems, 1993.[2] B. Awerbuch, A. Baratz, and D. Peleg. Cost-sensetive analysis of communicationprotocols. In Proc. ACM Symp. on Principles of Distributed Computing, pages177{187, 1990.[3] H. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-WesleyPublishing Company, 1987.[4] J. Benkoski and A. J. Strojwas. The role of timing veri�cation in layout synthesis.In Proc. of 29th Design Automation Conf., pages 612{619, 1992.31
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APPENDIX IIn VLSI chips, a RC tree is usually used to model the equivalent circuit Of ainterconnect tree. Models of basic elements of the tree are shown in Fig. 20. We modelan edge (wire) of the routing tree as a distributed RC line. For an edge ei with lengthli, the line resistance is ri = rsli and line capacitance ci = csli, where rs is unit lengthresistance and cs the unit length capacitance. If wires on di�erent metal layers, a viais modeled as a distributed RC line. Source driver has an on-line resistance Rd 7 andan output capacitance Cd, and each sink (terminal) has a load capacitance. Fig. 21combines electrical elements together for the model of a routing tree, with no via inthe same layer routing.In the experiments, we use Elmore delay as the evaluation of the RC delay from thesource to sinks. Elmore delay is the �rst-order approximation of the response of a stepvoltage input[17, 35]. Formally, the delay d(s; t) from source s to a sink t is calculatedas follows: d(s; t) = Rd(Cd + C0) + Xei2path(s;t)ri(ci=2 + Ci) (5)where ei is the edge from node ni to its parent, C0 the total capacitance of sinksand edges of the routing tree T , and Ci the total capacitance of sinks and edges in thesubtree of T rooted at ni.The correctness of the routing algorithm proposed in this paper is independent ofthe delay model used (although, the optimality in the electrical performance and costof the routing tree is related to the delay model). In a short, the algorithm can beaccomplished using any form of delay model as the path delay function. High order (atleast second-order) delay model [34, 29] is necessary for the high-frequency interconnect,especially on the substrates of multichip modules or boards once the transmission linee�ects are noticed.7The on-line resistance for a CMOS inverter is the half-approximation of PMOS transistor and NMOStransistor. 35
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APEENDIX IITheorem: Given a graph G = (V;E), with the path delay function, a source s, sinkset S, and a delay-bound function, �nding the maximum delay slack tree problem isNP-complete.Proof: The problem is in NP, since a \guess" can list a set of edges that form the tree,and in deterministic time, it is possible to check:1. the edges do form a tree2. the nodes of S are all coveredThe problem is NP-hard. Assume there exists a deterministic polynomial timealgorithm A for the problem. Boese and Kahng [6, 7] formulated the minimum delaytree problem on an identi�ed critical sink. Then given a minimum delay tree problem,we can construct a max-delay-slack tree problem as follows. Let the delay bound beD for the critical sink and 1 for other sinks. A solution given by A is exactly thesolution for the minimum delay tree on the identi�ed critical sink. Thus, the optimalmax-delay-slack tree problem is NP-complete, since the corresponding critical sinkminimum delay tree problem is NP-complete [6].
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