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Abstract

This paper presents a delay-bounded minimum Steiner tree algorithm. The delay
bounds, given as inputs to the algorithm, can be different for each individual source-
sink connection. The approach is based on feasible search optimization that satisfies
the delay bounds first, then improves the routing tree for the cost minimization. Itera-
tive cut-and-link tree transformation constrained by delay bounds provides an efficient
technique to reduce the cost. Once reasonable delay bounds are set, this algorithm
constructs Steiner trees with the correct timing, and by experiments the costs are al-
ways less than the trees obtained by a well-known, provably near-optimal Steiner-tree
heuristic within the factor 2(1 — |1?|) of the optimal Steiner tree for || sinks. In order
to satisfy given delay bounds, we also propose a new algorithm to construct a maximal-
delay-slack tree based on the global information of sink delay slacks. The use of our
algorithm is especially attractive for deep-submicron VLSI layout or MCM substrate
layout where the interconnect resistance is comparable to the driver on-resistance,
when the minimal delay tree may have an unacceptably high cost while the traditional
minimum Steiner tree fails the delay requirements.

Steiner tree, minimum Steiner tree, delay-bounded minimum Steiner tree, rout-
ing, delay-bounded routing, layout, timing-driven layout, shortest path, feasible search

optimization



1 Introduction

As feature sizes shrink to 0.5 micron and less, we enter the era of deep-submicron VLSI
designs. According to the interconnect scaling theory[3], the interconnect resistance is
rapidly increased proportional to the square of the scaling factor, such that the inter-
connect resistance becomes comparable to gate on-resistance. Meanwhile, as the gate
delays and gate sizes are scaled down, the interconnect delays become more dominant.
As the circuit switching speed approaches to 200MHZ, the wiring configurations of
critical nets and clock nets have to be carefully designed for correct timing. For the
timing issues of deep-submicron designs, interconnect optimization is becoming just as
important as device optimization.

Most existing placement and routing tools handle the design net-by-net, but timing
requirements are expressed in the form of logic paths. Usually delay upper bounds
are provided for logic paths based on the required clock frequency and critical path
throughput speeds. In order to make use of existing place&route tools, delay bound of
each logic path is divided into multiple bounds for pairs of source-to-sink logic cells on
this path. Hauge, Nair and Yoffa [22] proposed the zero-slack algorithm that computes
the maximal allowable delays for individual source-to-sink connections, based on entire
logic path delay requirement. These maximal allowable delays for individual source-to-
sink connections are then conveyed to place&route procedures. Works on delay bound
generation can also be found in [31, 42, 18]. This delay-bounded net-by-net layout
strategy has been used in the placement step in Cadence’s Gate-Ensemble system [10]
and Mentor Graphics’s AutoCell system [42]. This paper provides the related work

which can be used in the delay-bounded net-by-net routing.

1.1 Survey of Previous Work

Timing-driven placement algorithms have been proposed in [25, 38, 37, 15, 16, 9, 19].
Timing-driven routing algorithms were developed in recent years, since the traditional
minimum Steiner routing tree may violate the timing requirements, especially for high
performance layouts in deep submicrons or MCM substrates. Even if the placement
has been timing-driven, the exact path delays are determined only after the routing

trees are constructed.



People construct routing trees that trade-off the tree cost and the radius (the longest
source-to-sink path length). One early related work is done by Ho, Lee, Chang and
Wong[23] which investigated the complexity and NP-hardness of finding a bounded-
diameter spanning tree or a bounded-diameter Steiner tree in a graph. Cohoon and
Randall [11] proposed a heuristic which simultaneously considered the cost and the
radius. Cong, Kahng, Robins, Sarrafzadeh and Wong [12] proposed a generalized
formulation using a parameter € to trade-off the radius and cost. They [12] proposed
a provably good algorithm that can always generate a tree in which the path length
is bounded by (14 €)R (R is the source-to-sink radius) and the wiring cost is within
a factor 2(1 + (2/€)) of the optimal Steiner tree. A similar approach is also proposed
by Awerbuch, Baratz and Peleg [2]. Lim, Cheng and Wu [30] proposed a modified
version of Prim’s minimum spanning tree algorithm to control the radius for individual
source-sinks connections. The radius-cost trade-off tree can be viewed as the one
constructed between the minimum spanning tree (MST) (or minimum Steiner tree)
and the shortest-path tree (SPT); Alpert, Hu, Huang and Kahng proposed a algorithm
[1] which makes this MST-SPT combination in the tree construction. Cong, Leung and
Zhou [13] optimized special Steiner arborescences called A-trees to make the MST-SPT
trade off.

An important problem needed to be addressed is how to turn the delay bounds to
the path length bounds or radius, since the delay of a RC tree depends on the topology
of the tree. In deep submicron ICs, interconnect behaves distributed RC delays, and
the path length is not accurate for the delay estimation [40].

Recently, minimal RC delay routing trees have also been investigated, which has
three interesting variants: (1) minimizing the delay from the source to an identified
critical sink or a set of critical sinks; and (2) minimizing the maximal source-to-sink
delay; (3) minimizing the maximal delay slack. Boese, Kahng, McCoy and Robins have
proposed several methods [5, 6, 7] to minimize the delays at identified critical sinks; i.e.
the optimal tree minimizes the linear combination of sink delays f = Zle a; - d(s;),
where a; (a; > 0) is the the criticality of the sink s;. They revealed the good fidelity
of using Elmore delay model[17] to guide a minimal delay routing tree compared to
being guided by SPICE simulation. They proposed two branch and bound algorithms
BB-SORT-C and BB-SORT. BB-SORT-C constructs the optimal critical sink tree to



minimize the linear combination of sink delays, and the optimality is proved based
on the observation [6] that the Hanan grid contains all Steiner points of the optimal
critical sink tree. BB-SORT constructs the near-optimal tree that minimizes the max-
imal Elmore delay of the routing tree. Although BB-SORT-C and BB-SORT have
exponential time complexity, they provides the optimal or near-optimal solutions for
the empirical analysis of other heuristics. Boese, Kahng and Robins also proposed
two heuristics [5, 7, 6] for the minimum Elmore delay Steiner trees: SERT and SERT-
C. SERT is a modified Prim’s algorithm when adding sinks to the tree it minimizes
the maximal Elmore delay of the routing tree. SERT-C is a modification of SERT
that minimizes the delay at a single critical sink. While Hong, Xue, Kuh, Cheng and
Huang [24] proposed a modified Dreyfus-Wagner Steiner tree algorithm for minimizing
the maximal path delay, Prasitjutrakul and Kubitz [33] proposed a routing algorithm
for the minimization of the delay slacks (i.e., differences between the real delays and the
given delay bounds) at sinks. Prasitjutrakul and Kubitz’s algorithm will be described
in more details in Section 4.

The major difficulty in the critical sink delay minimization is how to choose the
accurate criticality for each critical sink to satisfy the delay bounds of multiple critical
paths. Designers have to depend on intuition and perform design iterations. In typical
deep submicron designs, more than 60 percent of the paths in a timing-critical design

are critical [39].

1.2 Contribution of Our Work

Instead of using criticalities or radius for sinks, we use precise delay upper bounds
which can be obtained from delay-bound-generators[22, 32] for meeting the logic path
delay requirement. Most of previous timing-driven routing algorithms focus on the
minimization of source-sink delays, except for [12] which provides the cost bounded
within a factor 2(1 4 (2/€)) of the optimal solution. Delay issues should be considered
in conjunction with the cost minimization. In deep submicron technologies, more
and more functional blocks will be integrated into a chip. Interconnections, between
functional blocks within a chip or chip-to-chip in a MCM, are not only timing critical,

but also span a large area of layout that incurs high cost. This paper works on the



delay bounded minimum Steiner tree that minimizes the cost of the routing tree under
constraints of variable delay bounds for individual source-sink connections. The cost
function can include not only the total wire length, but also the congestion and routing
area. This work can also be applied on the delay balanced clock routing with the
minimum wire length. Instead of zero skew routing, the clock net is routed as a
delay bounded tree with a tolerable skew [44]. Taking advantage of the less stringent
requirement of tolerable skew, we can significantly decrease the total wire length of the
clock tree.

This paper presents a new algorithm that constructs a routing tree satisfying the de-
lay bounds, while minimizing the cost of the tree. Although the model of delay-bounded
minimum Steiner tree has been discussed in previous publications, we generalize the
formulation of the problem to more realistic timing-driven layout. The major novelties
of our algorithm, which we call Delay Bounded Minimum Steiner Tree (DBMST)

approach, can be summarized as follows:

1. It accepts the delay bounds directly (not the path length bound or radius or
sink criticality) in the tree construction. Furthermore, for sinks on different logic

paths, the algorithm takes variable delay bounds.

2. Instead of using a single pass as in most previous algorithms, it iteratively min-
imizes the cost of the routing tree. The delay bounds are guaranteed based on

feasible search optimization.

3. In order to find a feasible solution satisfying delay bounds as much as possible,
the initial tree is constructed as a delay bounded tree that maximizes the delay
slacks at sinks. We propose a new algorithm that constructs a maximum-delay-

slack tree driven by the global information of delay slacks.

The remaining of this paper is organized as follows. Section 2 defines the delay
bounded minimum Steiner tree problem. Section 3 outlines the entire optimization
process of DBMST approach. Section 4 states a new max-delay-slack tree algorithm.
Section 5 describes the cost reduction technique under delay bound constraints. Section
6 analyzes the complexity. Section 7 addresses DBMST’s performance by simulation.

Finally, Section 8 provides our conclusions.









specified).

3 Overview of DBMST Approach

The approach and optimization technique adopted here are based on an order that
satisfies the delay bounds first, then improves the routing tree for the cost minimization.
Hence, tree cost minimization is proceeded upon that the tree performance (delay
requirement) has already been satisfied. Once reasonable delay bounds are set, DBMST
outputs routing result in the correct timing and near-minimum cost.

DBMST uses the feasible search optimization technique to construct a Steienr tree,
that minimizes the cost within a feasible region of delay bounded trees . Feasible search
optimization is a very efficient method for constrained optimization problems, which
have been widely applied in engineering fields ®. Here, a feasible region Ry consists of
routing trees that satisfy delay bounds given by the DBF. The basic idea is illustrated
in Fig. 3, starting from an initial tree Ty that is a delay-bounded Steiner tree, the
technique examines a sequence of trees 17,75, ..., and terminates at a delay-bounded
Steiner tree T, with the least cost.

DBMST consists of two major steps; a skeleton flowchart is shown in Fig. 3(b). Step
1 constructs Ty, then Step 2 transforms the current tree T; to 1}, where cost(T;) >
cost(T;). The delay slack at each sink is the deduction of the real delay from the delay
bound. In order to let Ty be in the feasible region as a delay bounded tree, we maximize
the delay slack when constructing 7Tp; Tp is a maximal-delay-slack tree.

In some cases, the delay bounds given by DBF may be too tight, i.e., they cannot
be met even in Ty. Ensuring the correct timing, delay violations at the routing stage
are back-annotated to the stages of placement or logic synthesis, measures being taken
as to update the locations of sinks or the source or enlarge the delay bounds of specific
sinks. This back-annotation procedure is indicated in Fig. 3(b). The rest of this paper
assumes that DBF gives delay bounds that can be met by Tp.

3Brayton, Hachtel and Sangiovanni-Vincentelli [8] gives a good survey of feasible search optimization
methods.












2. Critical mapping: we select a mapping with the least weight.

The mapping step determines the best path for each free sink once added to the
tree. Recall that we have assigned the weight of an edge in G as the minimum delay
slack of the resulted tree, when the free sink (in V,) is connected to a specific tree
node (in V). So, the mapping step chooses the connection pattern of a free sink in the
objective that maximizes the minimum delay slack of the resulted tree (including all
connected sinks). In a short, this step determines the best branching point on the tree
to connect the free sink. As shown in Fig. 6(a), we obtain the mapping result of free
sinks for the example shown in Fig. 5. A shortest path is preferred from the branching
point connected to the free sink, since the shortest path adds the minimum additional
capacitive load to already connected sinks such that the increase of delays at these
connected sinks are minimized (see Fig. 5(a)). In addition, comparing to longer paths
from the same branching point on the tree, a shortest path always minimizes the delay
to the chosen free sink. If multiple shortest paths exist, the path that passes through
the minimum number of other sinks is always selected.

The critical mapping step determines which free sink is connected to the tree next.
The critical mapping at one stage of tree growing is the mapping with the least weight.
The free sink of the critical mapping is called critical free sink. In other word, the
critical free sink is selected of all free sinks that will results in the smallest delay
slack of the tree if this critical free sink is connected. As illustrated in Fig. 6(b),
t4 to ny mapping is the critical mapping, since it has the least mapping weight, i.e.
w(ty,ny) = min(w(ts, nz), w(ts, ny), w(ts,n1)), and t4 is the critical free sink. The
resulted tree by the critical mapping is shown in Fig. 6(d).

The algorithm always picks up the critical free sink next connected to the tree, using
the path decided by the critical mapping. The reasons are as follows. As we know, for
a sequential router (everytime a destination is connected), early stage connections have
more flexibility to maximize the delay slacks of sinks, and later connections have less
freedom or optimization space due to the existence of connected sinks. Furthermore,
the optimality of the routing tree depends heavily on the maximization of delay slacks
of critical sinks.

The algorithm starts from the source, and at each stage a critical free sink is

connected to the routing tree using the critical mapping. An example is illustrated in
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Fig. 14(b), where Tg is constructed using the algorithm presented above; and terminals
are marked in the sequence of connections to the tree (i.e. #; is connected before ¢,
etc.).

The high-level pseudo code of the max-delay-slack tree algorithm are described in
Fig. 7.

INPUT :
G(V, E) = graph, s = source,
S = set of sinks, n = number of sinks,
DB = set of delay bounds for sinks.
ouTPUT :
A max-delay-slack Steiner tree spanning S U {s}.
PROCEDURE MDST (G(V,E), s, S, DB, n) {
1 = 0;
T={s}, Vi={s}, V., =5;
while (z <n) {
Update the weighted bipartite graph G = (W, V,, F)
Vi, = set of nodes on the tree, F(V},V,) = set of shortest paths between V; and V;,
W(E) = set of weights of F (related to delay slacks);
Map each free sink in V, to the tree node in V; with the largest weight;
t* = critical sink in V, with the least mapping weight;
Connect t* by the critical mapping;
T=T+4+tV,=V, =t i =14+ 1;

Figure 7: Max-Delay-Slack Tree Algorithm Description

In order to reduce the computational cost, we make a incremental update of the
bipartite path slack graph G once a new free sink is connected. The incremental update

of G is accomplished in following three steps:

(a) Add on G new nodes of the tree T’;
(b) Update connection paths from nodes of the tree to free sinks;

(c) Update weights of edges in .

The key step of the incremental update is step (b). Step (a) is done by listing new
nodes on the left side of G; these new nodes are just added to T. On the right side
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The nice property of using the above incremental shortest path construction, is that
once a shortest path is found satisfying DBF, the path is definitely the delay bounded
shortest path between T® and T°. Define k as the number of shortest paths constructed
in the incremental constructions before we find the delay bounded one. We found in
experiments that usually the k is very small once we obtain a delay bounded shortest
path. Three reasons make the &k small to get a delay bounded shortest path: (a) we stop
the incremental shortest path construction, immediately when we detect the current
shortest path resulting in a delay bounded tree; (b) we stop the construction once the
current shortest path has larger cost than the deleted path from 7’ (¢) in most cases,
a shorter path between T¢ and T° helps the delay bound satisfaction of the entire tree.
These above reasons make the delay bounded shortest path is found at early stage of
the incremental shortest path construction. The k-shortest paths can be constructed in
O(kn?) [28] for n grids in the routing graph. On the other hand, if we statically obtain
all pairs of shortest paths between 7% and T°, the time complexity will be O(|T|n?)
where |T'| is the size of the routing tree.

We show the high-level description of the DBMST algorithm in Fig. 13. To maxi-
mize the cost reduction, the stop criterion of DBMST is devised such that the algorithm
terminates when none of cut-and-link paths results in the positive cost reduction. The
convergency is guaranteed by the monotonical cost reduction of tree transformations.

Fig. 14 illustrates steps of constructing a routing tree with the requirement of
variable delay bounds. We obtain the result using 0.3um CMOS technology given in
Section 7. The tree in Fig. 14(h) is constructed by DBMST, and the tree in Fig.
14(e) by a minimum Steiner tree heuristic proposed by Kou, Markowsky and Berman
(KMB) [27]. We show the first five stages of tree transformation (1o, 11, T3, 15,14, T5)
in Fig. 14. As shown in Fig. 15(a), the tree constructed by DBMST satisfy delay
bounds at sinks, while KMB has no knowledge of path delay bounds so as to fail at 5
sinks. DBMST reduces the cost by 8% compared to KMB, although KMB algorithm
has achieved near-optimum cost Steiner tree [27] . The significance of DBMST is that
it accomplishes the routing not only satisfying the required delay bounds but also close

to the minimum cost.

1KMB algorithm is proved [27] to construct a Steiner tree with a tight cost Cxyp < 2(1 — ﬁ)C’om,

where C,py is the cost of the optimum Steiner tree, and |S| the number of sinks.
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INPUT:
G(V, E) = graph, s = source,
S = set of sinks,
DB = set of delay bounds for sinks,
OUTPUT:
A delay bounded Steiner tree spanning S U {s}.
PROCEDURE DBMST(G(V, E), s, S, DB) {
k=0;
To = max-delay-slack tree spanning S U {s} that maximizes delay slacks of sinks;
(using algorithm described in the next section);
do {
BestGain = —o0;
Derive the deducted tree T} from Tj;
for (Each path p in Ty (each edge in T})) {
g = delay bounded shortest path corresponding to p;
g = gain if p is switched to ¢;
if (BestGain < g)
BestGain = g;

}
if (BestGain > 0) {

(p,q) = pair of cut-and-link paths with the gain equal to BestGain;
Remove p from tree T}, making T}, — p equal to two subtrees T'* and 1";
Thpn =g+ T+ 1T
k=k+1;
}
} while (BestGain > 0);

Figure 13: DBMST Description
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never larger than the cost ¢ of the deleted path. So, gain g =¢—¢*>0. 0O

Since we select the maximal gain of cut-and-link paths at each tree transformation,
based on Lemma 2, we have theorem 2.
Theorem 2: DBMST decreases the tree cost monotonically in the steepest gradient

search direction.

5.3 Cost Optimality

Constructing a delay bounded minimum Steiner tree is a NP-complete problem in
the aspect of the cost minimization. DBMST is a good heuristic for delay bounded
minimum Steiner tree problem, not only it satisfies the variable delay bounds during
the entire construction process (Appendix 2 shows that constructing a tree satisfying
delay bound constraints itself is a NP-complete problem), but also turns the tree out
with reasonable small cost.

In all experiments we have done so far, DBMST always achieves the cost less than
the known minimum Steiner tree heuristic proposed by Kou, Markowsky and Berman
(KMB), which has no delay bounds. KMB algorithm has a tight bound of the cost
to the optimum Steiner tree [27], i.e. Cxyp < 2(1 — |1?|)Copt ® where C'gasp is the
cost of the Steiner tree constructed by KMB algorithm, C,,; the cost of the optimum
Steiner tree, and || the number of sinks.

We can improve DBMST in the cost minimization by the following techniques
(a) Search the tree configurations out of the feasible search region for increasing the
opportunity of obtaining the global optimum; (b) Hill-climb the local minimum by
back-tracking to some earlier stage tree configurations, and try transforming the tree
in a different search direction instead of the maximum gain steepest-gradient direction
(for example, selecting the tree oriented from the cut-and-link with the second maximal
gain). We explain the first technique using the group migration principle as follows.

Always limiting the search in the feasible region (R;) definitely looses some oppor-

tunity of tracing the best search path to the global optimum solution. The opportunity

SEmpirical analysis shows that DBMST achieves less cost than KMB algorithm which further obtains
smaller cost bound than the bounded radius routing tree algorithm in [12] that achieves a factor of 2(14(2/¢))
of the optimum Steiner tree.
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we first try to find a cut-and-link in R; with the maximal gain. If no cut-and-link is
allowable in R; due to the delay bound requirement, we continue to find a cut-and-link
in R} with the maximal gain using the same algorithm as in Section 4.2. The cut-
and-link in R} is accomplished such that the routing tree is allowed to have a relaxed
negative minimum slack, i.e. s > —¢ (6 < 0); when we decide the delay bounded
shortest path p between two subtrees 7% and T°, p is the shortest one that makes the
routing tree T =T + T+ p with the smallest slacks* > —é.

A transition cost cj 41 from T to Ty4q is defined as follows, where (41 and C,

are costs of Ty4q and Tj.

(4)

Cpe1 — Oy if Tyyq is a delay bounded tree € Ry;
Ckk+1 =
+1 else Ty11 € Ry,

Based on Lemma 2, if T4, is a delay bounded tree, always cj x41 < 0. Based on
(4), if Tp41 not satisfying the delay bounds but still with s* > —é (in R}), always
¢k k1 = +1 (positive). As shown in Fig. 16(b), the first step of cut-and-link has
positive ¢g 41 (the delay bounds are not satisfied), but we still proceed to the following
m — 1 cut-and-link trees, and select m* cut-and-link tree transformations as the result
of Tyy1; Tky1 has less cost than Tj since Cz,k-u < 0. If a sequence of m cut-and-link
trees results in positive (41) transition cost at every time, as shown in Fig. 16(c),
then Tyy1 = Ty, because no new delay bounded Tj41 can be constructed by these
cut-and-link trees.

Relaxing the exact delay bounds in the search of intermediate tree configurations,
or allowing local search in a expanded pseudo feasible region Rj, probably provides
more opportunity to execute further cut-and-link for more cost reduction. The fi-
nal tree selected in m-cut-and-link is always a delay bounded tree that is retained
in feasible search region Ry, that is a starting point for continuing cut-and-link tree

transformations.

6 Complexity

We analyze the time complexities of two major stages of DBMST: constructing Ty and

later optimization process.
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At each stage of constructing the max-slack-tree (initial 7p), in order to build the
bipartite graph, we iterate each node on the routing tree T and find the shortest path
tree in O(n?), where n = |V|. Since m sinks are connected, the total computational
time of Ty is O(m|Tp|n?), where |Tp| is the number of nodes in the output tree. The
dynamic update of the bipartite path slack graph can further reduce the computational
time. Once updating the bipartite graph, the times of re-computing shortest paths is
proportional to the size | P*| (number of nodes) of the new path p* added to the tree,
instead of proportional to entire |T'|. During the entire period connecting m sinks, the
sum of sizes | P*| of new paths is exactly equal to the size of the output T (every time
a new path is added to Tp). So, the overall time complexity of T construction, by the
dynamic updating of the bipartite path slack graph, is O(|Tp|n?).

The computation of the tree transformation in feasible search optimization is domi-
nated by computing the delay bounded shortest path which can be done in O(kn?) [28]
when using incremental construction of pairs of shortest paths, where k is the number
of shortest paths constructed for finding the delay bounded shortest path. Usually k is
a very small number (close to 1 or 2), once a delay bounded shortest path is found (see
the analysis in Section 4). In order to obtain the path switching using the maximal
gain of the cost reduction, we iterate paths in tree T'. So, a tree transformation in the

optimization is accomplished in O(k|T|n?), where |T| is the edge number of the tree.

7 Experimental results

DBMST has been implemented in C+4. In our experiments, the cost of solutions of
DBMST is evaluated and is compared to the cost of solutions obtained by the KMB
algorithm [27], the KMB algorithm followed by iterations of cut-and-link improvement,
and the minimum-delay SERT algorithm of Boese and Kahng et al [7]. The experiments
are performed on random circuits. The random circuits were constructed by uniformly
sampling locations of sinks from a rectangular region. The Manhattan distance between
the points is used as the cost function, and the Elmore delay as the delay model for
the circuits.

The technology parameters for the delay model are given in Table 1. The values

for the 1uym CMOS are obtained from MOSIS. The values for the 0.5 and 0.3 pm
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CMOSs are extrapulated from the 1uym CMOS using scaling formulas [3]. That is, as
the feature size scales by a factor S, the resistance per unit length scales as S2, the

capacitance per unit length remains constant, and the gate capacitance is decreased

by 1/5. The thin-film MCM values are from AT&T Microeletronics Division.

chip size Ry (mQfpm) | Cy (fF/um) | Rq () | Cy (pF)
1 pm CMOS 10 x 10 mm? 30 0.02 100 0.02
0.5 pm CMOS 20 x 20 mm? 120 0.02 100 0.01
0.3 pm CMOS 40 x 40 mm? 480 0.02 100 0.005
MCM 100 x 100 mm? 8 0.06 25 0.2

Table 1: The technology parameters used in the experiments.

The experimental results for different size nets and technologies are shown in Fig. 17
and Fig. 18. The curve labeled min-delay corresponds to the cost of the minimum-
delay tree algorithm of Kahng et al. [6, 7]. The kmb curve is produced by the KMB
algorithm, and kmb+ curve is produced by applying the path-switching technique in
dbmst to the result of the KMB algorithm. Finally, the dbmst curve corresponds to

the solution of DBMST. These notations are listed in Table 2 for reference.

MDST proposed heuristic of max-delay-slack tree; as the initial DBMST
mdst curve or result of MDST

DBMST proposed heuristic of delay bounded minimum Steiner tree,

that improves the tree by iterative delay bounded cut-and-link
dbmst curve or result of DBMST
KMB heuristic of minimum Steiner tree [27]
kmb curve or result of KMB
KMB+ heuristic of improving KMB, followed by iterative cut-and-link improvement
kmb+ curve or result of KMB+
MIN-DELAY | heuristic of minimum Elmore delay Steiner tree (SERT)[7]
min-delay | curve or result of MIN-DELAY

Table 2: List of Notations

For the sake of comparing the cost with the minimum delay tree, the delay bound is

set to be the same for all the sinks, and it is the maximum delay of the solution of the
KMB algorithm. The purpose here is show that if the delay bound is as loose as that
of the KMB algorithm, the cost of DBMST is as small as that of the KMB algorithm,
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Cost

Cost

while the delay bound is satisfied at all times. A tighter delay bound trades off the
minimum cost achievable by DBMST.

90000 : 200000 :
min-delay +— min-delay +—
mdst —+-- mdst —+--
80000 kmb &= | 180000 ’
160000
70000 4
140000
60000 4
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2000 F E o0 T
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Number of sinks Number of sinks
(a) (b)
Figure 17: Comparison of costs. (a) 1lpm CMOS. (b) 0.5 pm CMOS.
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b= 80000
350000 mst -
kmb+ -&-
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300000 4
60000
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i
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10 15 20 % 30 3% 4 10 15 20 % 30 3% 4
Number of sinks Number of sinks
(a) (b)

Figure 18: Comparison of costs. (a) 0.3uym CMOS. (b) thin-film MCM.

Iterative cut-and-link technique is shown to be very efficient to reduce the cost.
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Table 3 shows the cost decrease percentage due to the iterative cut-and-link. The
cost percent decrease from kmb to kmb+ is about 8.5%, that suggests the iterative
cut-and-link technique can be significantly applied on any Steiner tree constructed by
some heuristic for the further improvement. The significance of iterative cut-and-link
technique on the cost reduction of DBMST is even more, shown in Table 3, that the
cost reduction from intial MDST to DBMST is about 60.5%. Although the delay
bounds are set as constraints of path switching, DBMST achieves less cost than KMB
for all testing examples, and is very close to the cost of KMB+. On average in Table
4, DBMST has only 1.5% more cost than K M B+ on testing examples. Meanwhile,
the cost of the minimum-delay tree is almost twice as large; thus not taking advantage
of the available delay slack will lead to unnecessarily costly results. Table 4 shows
the relative costs of the DBMST and minimum-delay trees with respect to the KMB+

trees for the different technologies.

kmb — kmb+ | mdst — dbmst
1 pm CMOS 8.7% 57%
0.5 pm CMOS 8.3% 69%
0.3 pm CMOS 8.7% 64%
MCM 8.7% 52%

Table 3: Cost Percent Decrease by Iterative Cut-and-Link.

Results in Table 4 shows that as the feature size becomes smaller accompanied
with the enlarged chip size, the ratio of the cost of the minimum-delay tree to the
minimum-cost tree increases; therefore, the cost issue become more dominant as the
feature size decreases with the current technology trend. The cost and performance
is also more significant for nets with large spans and heavy loads. This is of practical
importance in routing clock trees driven by the tolerable skew so as to minimize the
cost penalty. For DBMST as shown in Table 4, cost ratio remains almostly constant
to the minimum-cost tree.

As an indication of the computational demand of DBMST, its execution time on
a SUN Sparcl+ is shown in Fig. 19. It was observed during the experiments that
for larger size nets, the construction of the initial feasible maximum-delay-slack tree

dominates the execution time. Nevertheless, the execution time is rather fast and makes
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kmb+ | dbmst | min-delay
1 pm CMOS 1 1.02 1.94
0.5 pm CMOS 1 1.02 2.09
0.3 pm CMOS 1 1.01 2.18
MCM 1 1.01 1.98

Table 4: The Relative Costs Normalized with Respect to kmb+.

DBMST very practical. Test examples covering up to 40 sinks provide the availibility
of DBMST used in the clock routing by tolerable skew bounded.

20000 T T T T T

dbmst -—
mdst —+--

18000 -

16000

14000 |

12000 -

10000 |-

Total time (sec)

8000

6000

4000

2000

0 7 | | |
10 15 20 25 30 35 40
Number of sinks

Figure 19: CPU Time of dbmst and Initial mdst on Test Circuits. The data is measured on
a SUN Sparcl+.

8 Conclusions and Further work

We have presented a delay bounded minimum Steiner tree construction algorithm. It
accepts variable delay bounds for individual source-sink connections, and minimizes
the cost of the tree within the constraint of the delay bounds. The methodology and
optimization technique is adopted based on a natural order that satisfies the delay

bounds first, then improve the routing tree for the cost minimization. Once reasonable
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delay bounds are set, this algorithm outputs routing result in the correct timing and
near-minimum cost. This algorithm is especially attractive to the layout design when
the interconnect resistance approaches to the gate on-resistance in deep-submicron
VLSIs or on the substrate of thin-film multi-chip modules.

We will investigate the further application of this algorithm on the routing of timing
critical nets, such as the clock net routing. Once we set a tolerable skew, we intend to
route the low levels of the clock tree with delay-bounded minimum Steiner tree for the
reduction of the total wire length.

The correctness of the proposed routing algorithm is independent of the delay model
used, although, the optimality in the electrical performance and cost of the resulted
tree is related to the delay model. High order (at least second-order) delay models
[34, 29] are necessary for the high-frequency interconnect, especially on the substrates

of multichip modules or boards once the transmission line effects are noticed.
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APPENDIX 1

In VLSI chips, a RC tree is usually used to model the equivalent circuit Of a
interconnect tree. Models of basic elements of the tree are shown in Fig. 20. We model
an edge (wire) of the routing tree as a distributed RC line. For an edge e; with length
l;, the line resistance is r; = rgl; and line capacitance ¢; = ¢,l;, where 7 is unit length
resistance and ¢; the unit length capacitance. If wires on different metal layers, a via
is modeled as a distributed RC line. Source driver has an on-line resistance Ry * and
an output capacitance Cy, and each sink (terminal) has a load capacitance. Fig. 21
combines electrical elements together for the model of a routing tree, with no via in
the same layer routing.

In the experiments, we use Elmore delay as the evaluation of the RC delay from the
source to sinks. Elmore delay is the first-order approximation of the response of a step
voltage input[17, 35]. Formally, the delay d(s,t) from source s to a sink ¢ is calculated

as follows:

d(s,t) = Ry(Ca+ Co)+ > rilei/2+ Cy) (5)

eiEpath(s,t)

where e; is the edge from node n; to its parent, Cy the total capacitance of sinks
and edges of the routing tree 7', and C; the total capacitance of sinks and edges in the
subtree of T rooted at n;.

The correctness of the routing algorithm proposed in this paper is independent of
the delay model used (although, the optimality in the electrical performance and cost
of the routing tree is related to the delay model). In a short, the algorithm can be
accomplished using any form of delay model as the path delay function. High order (at
least second-order) delay model [34, 29] is necessary for the high-frequency interconnect,
especially on the substrates of multichip modules or boards once the transmission line

effects are noticed.

"The on-line resistance for a CMOS inverter is the half-approximation of PMOS transistor and NMOS
transistor.
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APEENDIX II

Theorem: Given a graph G = (V, F), with the path delay function, a source s, sink
set S, and a delay-bound function, finding the maximum delay slack tree problem is
NP-complete.

Proof: The problem is in NP, since a “guess” can list a set of edges that form the tree,

and in deterministic time, it is possible to check:

1. the edges do form a tree

2. the nodes of S are all covered

The problem is NP-hard. Assume there exists a deterministic polynomial time
algorithm A for the problem. Boese and Kahng [6, 7] formulated the minimum delay
tree problem on an identified critical sink. Then given a minimum delay tree problem,
we can construct a max-delay-slack tree problem as follows. Let the delay bound be
D for the critical sink and oo for other sinks. A solution given by A is exactly the
solution for the minimum delay tree on the identified critical sink. Thus, the optimal
max-delay-slack tree problem is NP-complete, since the corresponding critical sink

minimum delay tree problem is NP-complete [6].
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