
University of CaliforniaSanta CruzAnalysis and Transformation of Logic ProgramsA dissertation submitted in partial satisfactionof the requirements for the degree ofDoctor of PhilosophyinComputer and Information SciencesbyKjell Erik PostDecember 1994The dissertation of Kjell Erik Post isapproved:Allen Van GelderCharles E. McDowellWayne DaiDean of Graduate Studies and Research

Copyright c
 byKjell Erik Post1994

iiiContentsAbstract viii1. Introduction 11.1 The Translation Process : 31.2 Background and Prior Work : 31.2.1 Parsing : 31.2.2 Analysis : 51.2.3 Transformations : 81.3 Summary of Contributions : 92. Preliminaries 112.1 Context Free Grammars : 112.1.1 Derivations and Parse Trees : 122.1.2 LR Parsing and Parser Generation : : : : : : : : : : : : : : : : : : : 132.2 Logic Programming : 162.2.1 Syntax : 162.2.2 Substitutions and Uni�cation : 182.2.3 Procedural Semantics : 192.2.4 Cuts : 212.2.5 Modes : 212.2.6 De�nite Clause Grammars : 223. The Parser Generator DDGEN 253.1 Introduction and Background : 253.1.1 De�nitions : 273.1.2 Background and Prior Work : 27

iv3.1.3 Summary of Contributions : 303.2 Deferred Decision Parsing : 323.3 Local Operator Declarations : 373.4 Ambiguities at Run Time and Induced Grammars : : : : : : : : : : : : : : 383.5 Application to De�nite Clause Grammars : : : : : : : : : : : : : : : : : : : 433.6 Implementation : 444. Parsing Prolog 474.1 Introduction : 474.2 The Structure of Prolog : 484.3 Subtleties of Prolog Syntax : 494.4 Rectifying Prolog : 524.5 The Prolog Grammar : 534.6 Implementation and Results : 565. Bottom-Up Evaluation of Attribute Grammars 575.1 Introduction and Background : 575.1.1 Related Work : 585.1.2 Summary of Contributions : 605.2 De�nitions : 605.3 Transformation Methods : 665.3.1 Method 1: Synthesized Functions : 675.3.2 Method 2: Coroutines : 706. Mutual Exclusion Analysis 736.1 Introduction : 736.1.1 Related Work : 756.1.2 Summary of Contributions : 76

v6.2 De�nitions : 776.2.1 Rule/Goal Graphs : 786.3 Deriving Mutual Exclusion : 786.3.1 Algorithm for Propagating Mutual Exclusion : : : : : : : : : : : : : 816.3.2 Termination and Complexity : 846.3.3 Correctness : 846.3.4 Description of prop : 866.4 A Larger Example : 876.5 Limitations : 896.6 Coding Style and the Use of Cuts : 907. Epilogue 947.1 Concluding Remarks : 947.2 Future Work : 95References 98Index 104

viList of Figures1.1 Overview of the translation process : 42.1 The LR parser : 142.2 Parse table and execution trace for an LR parser : : : : : : : : : : : : : : : 152.3 Structure of logic programs : 172.4 Algorithm for computing an answer substitution : : : : : : : : : : : : : : : 202.5 The e�ect of a cut : 212.6 SLD-tree : 243.1 Standard Parser Generator and Deferred Decision Parser Generator : : : : 303.2 An example run-time operator table : 333.3 Subset grammar for Prolog terms : 333.4 Deferred decision parsing example : 373.5 Skeleton for induced grammar : 403.6 Sorted operator table : 433.7 Grammar subset for ML operator expressions : : : : : : : : : : : : : : : : : 464.1 Prolog syntax for encoding �xity and associativity : : : : : : : : : : : : : : 494.2 Prolog grammar : 555.1 Attribute grammar de�nition for binary numbers : : : : : : : : : : : : : : : 615.2 Dependency graphs for productions : 625.3 Parse tree and dependencies for \10.1" : 635.4 Dependencies for grammar symbols : 635.5 Strong composite graphs. : 645.6 De�nition of procedure body(a) : 685.7 Attribute grammar using synthesized functions : : : : : : : : : : : : : : : : 69

vii5.8 Attribute grammar using coroutines : 716.1 Propagation of mutual exclusion : 796.2 Proof scenario 1 and 2 : 856.3 Parsing program : 886.4 Part of the rule/goal graph for the parsing program : : : : : : : : : : : : : 896.5 Execution trace for the parsing program : 90

Analysis and Transformation of Logic ProgramsKjell Erik PostabstractLogic programming is based on the idea that inference can be viewed as a computation.The fact that both programs and their speci�cations can be expressed in the same languagemakes logic programming very useful for program development.But it is also known that clarity and e�ciency are two rather incompatible demands toput on a programming language. It is thus important to develop techniques for systemat-ically transforming clear but ine�cient programs into e�cient (although probably ratheropaque) �nal programs. This thesis contains some contributions that hopefully bring uscloser to this goal.Before transformation can take place the input program must be parsed and analyzed toextract properties that are not explicit in the program itself. Parsing is an area of computerscience well understood, but with the advent of modern languages, like Prolog and ML, theprogrammer was able to introduce and change operator symbols. On one hand, operatorsymbols made the code more readable but it also complicated the parsing job; standardparsing techniques cannot accommodate dynamic grammars. In the �rst part of this thesiswe present an LR parsing methodology, called \deferred decision parsing", that handlesdynamic operator declarations, that is, operators that are declared at run time. It uses aparser generator much like Yacc. Shift/reduce con
icts that involve dynamic operators areresolved at parse time rather than at parser construction time.As an example of our parser generator we present a grammar for Prolog, a language thathas been in use for almost twenty years but still lacks a precise formal syntactic de�nition.The parser generator can also serve as a replacement implementation for De�nite ClauseGrammars, a novel parsing feature of Prolog. However, an LR parser does not normallysupport inherited attributes. In the next part of the thesis we present two transformation

methods for (strong) non-circular attribute grammars that allows them to be evaluatedwithin the environment of an LR parser. Our methods represent a compromise in thatattribute evaluation is normally performed on the
y except when, in some evaluation rule,the referenced attributes are unavailable, and the execution of the rule has to be postponed.Suspension and resumption points for these evaluation rules can either be determinedstatically (method 1) or dynamically (method 2). For both methods we guarantee thatresumption takes place as soon as possible.In the �nal part of the thesis we present a technique to detect that pairs of rules in alogic program are \mutually exclusive". In contrast to previous work our algorithm derivesmutual exclusion by looking not only at built-in, but also user-de�ned predicates. Thistechnique has applications to optimization of the execution of programs containing theserules. Additionally, the programmer is less dependent on non-logical language features,such as Prolog's \cut", thus creating more opportunities for parallel execution strategies.Keywords: Logic Programming, Program Transformation, Data
ow Analysis, ParserGenerators, Attribute Grammars, Data
ow Analysis, Prolog.

x Till min far, Tore Post,och farfar, Ernst Post.

xiAcknowledgmentsI would �rst like to express my gratitude towards my advisor Allen Van Gelder, who hassupervised and supported this research through all these years. Allen's work is characterizedby a great deal of integrity and an unusual strike of balance between theory and practice.Allen, Charlie McDowell, and Wayne Dai read drafts and gave comments on my the-sis. Richard O'Keefe and Roger Scowen has given valuable input on the syntax of Prolog.Manuel Bermudez provided a very nice exposition on LALR(1) parser generation. LawrenceByrd suggested that LR parsing methodology could be applied to De�nite Clause Gram-mars. Michel Mauny and Pierre Weiss of INRIA supplied production rules for CAML Light.The chapter on mutual exclusion has bene�ted from discussion with Saumya Debray, PeterVan Roy, and Ola Petersson. I am also indebted to the reviewers on the ILPS'93 and 94committees for their input on the accepted papers.I wish to thank the sta�, faculty, and grad students at UCSC that I've had the pleasureto meet and work with during these years. In particular I would like to mention TomA�nito, S�ren S�e and his wife Jeanette, Richard Snyder and his wife Kathleen, and ouradministrative assistant Lynne Sheehan.The list of my other friends outside UCSC is too long to include here, but Hans Nilsson,Caj Svensson, Torbj�orn N�aslund, �Ojvind Bernander, and Sven Moen have turned out to bevery dependable.Finally a couple of people who have made life-lasting impressions on me: Are Waerland,Joel Robbins, Julius Creel, and Alan Goldhamer. These people have taught me that healthcan only result from healthful living.This research was supported in part by NSF grants CCR-8958590, IRI-8902287, andIRI-9102513, by equipment donations from Sun Microsystems, Inc., and software donationsfrom Quintus Computer Systems, Inc. Santa Cruz, 1994Kjell Post

11. IntroductionIn the last twenty years, we have witnessed a growing popularity in the use of the logicprogramming languages. Originating from such �elds as Arti�cial Intelligence, AutomatedTheorem-Proving , and Formal Language Theory , logic programming initially received lim-ited attention outside Europe but later gained considerable momentum when the Japanesein 1982 announced that they had chosen logic programming as their vehicle for their FifthGeneration Computer Systems Project FGCS [MO81], also known as the \computer sciencePearl Harbor". Today, logic programming is part of college curriculums around the worldand thousands of \real" applications have been written in Prolog. Although Prolog is thepredominant logic programming language, a number of di�erent dialects have evolved forsuch areas as parallel programming [Tic91], constraint solving [BC93], and process control[AVW93].As opposed to imperative programming languages such as C, Pascal, and Ada | wherethe programmer explicitly speci�es the
ow of the computation | a logic programmer �rstdescribes the logical structure of the problem, by declaring facts and rules about objectsand their relationships, and then obtains the answers by posing questions to an inferencemachine. This is generally believed to simplify the programming task since the details ofhow the answers should be computed are left to the system.What are some of the other bene�ts of this \declarative style"? First of all, as thename almost implies, declarative programs can be written more concisely, in a notationcloser to mathematics or formal logic. A rule in a logic program is something that can beunderstood by itself | there are no scope rules and side e�ects to consider. In addition,programming is usually done on a higher level as these languages typically have facilitiessuch as backtracking, more advanced data structures, automatic memory management,allow the creation and passing of procedures, etc, in e�ect leading to both shorter programsand an increase in productivity. Additionally, the logical properties of the language makesit easier to reason formally about programs and correctly implement various analysis and

2transformation tools, such as termination detectors, partial evaluators, etc. Finally, theseparation of control from programs and the absence of destructive assignment statementsis helpful in the detection of implicit parallelism, thus perhaps making it possible to harnessthe power of tomorrow's multi-processor machines.However, on today's single-processor machines, imperative languages are still consideredmore e�cient. This is a consequence of the close correspondence between the underlyinghardware, its instruction set, and the statements found in imperative languages: variablesare merely abstractions of memory cells, assignment copies data between them, and thecontrol constructs have a natural translation to the test-and-jump instructions.Logic programming systems, on the other hand, are theorem provers and programs arewritten in some subset of �rst order logic. Therefore, the \semantic gap" between a logicprogramming language and the hardware is much wider than for an imperative language.While waiting for a more suitable architecture, improved execution e�ciency for logicprograms has been accomplished partly by relying on the programmer for supplying controlinformation, but also increasingly by using optimizing compilers. Today, the majority ofimplementations for logic programming are for the language Prolog, invented in 1972 byKowalski and Colmerauer [Kow74, Kow79]. The success of Prolog as a useful programminglanguage is mostly due to D. H. D. Warren and his work on the WAM [War77, War83], anabstract machine for Prolog execution with a relatively easy translation to today's hardware.Since then, compilers have improved in many ways: they produce better code, generatebetter diagnostics, and partly relieve the programmer from supplying extra-logical infor-mation. Still, the goal of logic programming, namely that the control component of theexecution should be under the sole responsibility of the system, is still far away. This the-sis makes some contributions towards this goal. In the remainder of this chapter we willexamine the translation process of the compiler in more detail, give background on priorwork in the various stages, and then summarize the work presented in this thesis.

31.1 The Translation ProcessA convenient way to extend, improve, or implement a language is to follow the organi-zation in �g. 1.1. Here we implement a logic programming language by using an existingand e�cient Prolog implementation as our target machine. The bene�ts from this approachshould be obvious:� We avoid the messy details of the underlying machine.� There is no need to understand or modify the existing compiler.� All the collected knowledge that has been put into the compiler can be used withimpunity.In �g. 1.1 we mention some typical applications that �t into this framework. As thesemethods become more understood and widespread they are likely to �nd their way intocommercial implementations. For instance, early Prolog compilers were quite naive in theirexecution of tail-recursive procedures and depended on the programmer to insert controlinformation, so called \cut" symbols, into the code to prevent the stack from exploding.Today, tail recursion optimization [War86] is part of every serious Prolog system.In the next section we give an overview of the di�erent stages in the translation processand summarize relevant work in those areas.1.2 Background and Prior WorkThe previous section presented a framework for the translation process which we nowexamine in more detail by summarizing some important research results. In order to keepthe presentation available to a wider audience the discussion in the following two sectionswill be kept on a fairly high level, saving the technical details for the remaining chapters.1.2.1 ParsingThe problem of parsing the input, that is, recognizing and structuring the input, is anecessary task for any translator. Fortunately, this area is well understood and numerous so

4Logic ProgramParsingAnalysisTransformationsCompiler
????

Example ToolsParser GeneratorMode AnalysisTermination AnalysisType DerivationPartial EvaluatorsQuintus PrologFigure 1.1: Overview of the translation process.called parser generators [Joh75, ASU85, AJ74, FJ88, Udd88, HKR90, Hor90] are availableto the language designer, who rarely needs to write a parser by hand. Instead, speci�cationsin the form of production rules, with embedded code or \action" routines, are fed into aparser generator which then generates the parser. The capabilities of parser generators arelimited to LR(1) languages, which is usually considered su�ciently large, and a static inputgrammar, possibly augmented with associativity and precedence declarations for operatorssuch as \+" and \�".With the advent of programming languages like Prolog [SS86, CM81], and newer lan-guages such as ML [MTH90] and Haskell [HW90], programmers were allowed to de�neoperators at run time. Although operator expressions are only \syntactic sugar", that is,there is always an equivalent pre�x form, Prolog's syntax is generally perceived as beingeasier to read than LISP's pre�x notation. However, user-de�ned operators seriously com-plicate the parsing job and to solve these problems, numerous ad hoc parsers have been

5developed. In chapter 3 we examine the Deferred Decision Parser Generator, designedspeci�cally to handle languages with so called dynamic operators while retaining all thebene�ts of standard parser generators.Our parser generator also serves as an e�cient implementation for De�nite ClauseGrammars, a novel parsing technique in the logic programming community.1.2.2 AnalysisAfter the program has been parsed, the translator may enter an analysis stage to extractuseful information which may used to optimize the program, provide some form of diagnosis,or compensate for some de�ciency in the target language. Because nearly all interestingprogram properties are undecidable, analyzers either answer \yes, the property holds", or\the property might hold, but I can not tell". The following (incomplete) list mentionssome analysis methods for logic programming that have been developed throughout theyears, primarily for the language Prolog:Mode analysis Probably the most well-known form of analysis is Mode analysis [Deb89,DW88, Mel81]. A mode for an argument of a procedure is an adornment, akin to a typedeclaration, describing how the argument will be bound at the point of invocation.Since procedures compute relations, there is in general no notion of input and outputin logic programming. In reality however, the programmer often has an intendeddirection in mind, something which the compiler can capitalize on when translatingthe procedure to native code. For instance, if a uni�cation goal X = Y is calledwith X being a variable, the call to the expensive uni�cation routine can be replacedby a simple assignment; similarly, if both X and Y are ground (that is, contain novariables), the uni�cation can be replaced by a test for equality. Mode analysis is oftenassumed for other analysis tools, in particular the mutual exclusion test described inchapter 6. Modes are also described in chapter 2.Type derivation Experience with languages such as ML have lead people to incorporatetype derivation and type checking into logic programming as well [Pfe92]. As opposed

6to type systems in older languages, such as Pascal, the types of arguments are derivedautomatically, with minimal assistance from the programmer. Type errors, appearingas inconsistencies in the derivation, can help the programmer �nd subtle bugs atcompile-time, rather than at run-time (by chance). Type information can also guidethe compiler in replacing costly operations with cheaper ones, as well as assist in otherforms of transformations.Occur check The so called occur check [Pla84, Bee88] in uni�cation, that is, verifyingthat the substitution that makes two terms equal does not contain a circular binding,is usually omitted in Prolog systems for e�ciency reasons. This may lead to in�niteloops or even incorrect answers. Therefore, a static analyzer might be used to verify,at compile-time, that circular bindings cannot be created.Termination Standard Prolog systems employ a depth-�rst search rule which is e�cientbut not complete | the system may follow a part of the search tree that is in�nitelylong, \disappear" in an equally long loop, and fail to deliver some remaining answers.To deal with this \
aw", researchers have designed criteria for which termination isguaranteed [Soh93, Pl�u90, UVG88, BS89b, SVG91, Ped91]. Again, this illustrates howa de�ciency in the language, introduced for e�ciency reasons, can be compensated bya static analysis check. The price that is paid, however, is that the analyzer may beoverly pessimistic and \reject" a program that does not loop.Functional computations The concept of \backtracking" is a very powerful concept inlogic programming and may be used as a \generate-and-test" construct, to guess asolution to a problem, test it, and, if the test fails, guess again, until no more guessescan be made. In this manner, all solutions to the problem can be generated. In manysituations the �rst guess is also the only guess and the programmer does not want thesystem to create the state information for �nding the next solution. Traditionally, thisis done with the use of a \cut" symbol which cancels certain backtracking activitiesthat would occur in the future. Static analysis can be used to infer these functionalcomputations and insert cut symbols automatically [DW89]. The conservative nature

7of the analyzer guarantees that no solutions are left out because of an inadvertent cut.Mutual exclusion This form of analysis also deals with restricting backtracking activi-ties, but in a di�erent way: procedures in logic programs, de�ned by several clauses,sometimes are mutually exclusive to each other, meaning that the success of a clauseprecludes the success of another, thereby making it possible to discard the backtrack-ing information intended for the other clause. Existing algorithms [Mel85, DW89,VR90, ST85] detect mutual exclusion by looking only at built-in predicates, such as\<" and \�". In contrast, the algorithm presented in chapter 6 [Pos94] also examinesuser-de�ned predicates.Parallelizers On multi-processor machines it is of course desirable to keep all processorsoccupied. Logic programs typically have fewer side-e�ects than their imperativecounterparts, and may therefore have more opportunities for parallelization [Tic91,PN91, CWY91, HB88].Abstract Interpretation Many analysis methods can be captured in the framework ofabstract interpretation [CC92, CC77, Jan90, BJCD87, Bru91, Mel87, MS88]. Inessence, a property of a program can sometimes be deduced by running an \abstract"form of the program, where operations and data values in the original, \concrete",program have been replaced by corresponding abstract values. Abstract values arechosen so that execution is guaranteed to terminate and so that the abstract valuerepresents some useful information. For instance, integers may be captured by theabstract values fneg; 0; posg. In the program, we subsequently replace for instancethe concrete multiplication \�" with the abstract multiplication \�̂" which operateson abstract values, e.g. \neg �̂ pos = neg." With this technique it might be possibleto detect whether a variable contains a negative value at a certain program point,although, in practically all situations a \don't know"-element has to be part of theabstract set of values, something which the reader may verify by trying to de�ne theabstract addition operation.

81.2.3 TransformationsA translator typically performs two di�erent kinds of transformations. Initially, if thesource language represents a superset of the target language, the translator has to \shoe-horn" its input by replacing features of the input language by equivalent code in the targetlanguage. For imperative languages, this technique has been used in the implementationof for instance RATFOR and C++. In the �eld of logic programming, the promisingnew language Goedel is implemented on top of Prolog, and the so called \magic set"transformation [Ram91, BR91, MSU86] has been used to implement a bottom-up searchusing the top-down search method of Prolog.A second reason for transformation is optimization, replacing parts of the program bysemantically equivalent code that is more e�cient, in some respect, usually time or space.Optimization methods in logic programming are normally targeted at the two \expensive"features of the language, uni�cation and backtracking, as can be witnessed by the analysismethods listed in the previous section.A well-known and very general optimization technique is partial evaluation [LS91]whereby a program is in some sense \specialized" with respect to its input. In logic pro-gramming, partial evaluation has a particularly easy formulation. For instance, take theprocedure sort, de�ned as followssort(L1; L2) permute(L1; L2); ordered(L2):This says that L2 is a sorted version of L1 if L2 is a permutation of L1, and L2 is ordered.Now let's assume that sort appears in the body of another procedure that �nds the smallestelement X in a list L1 smallest(L;X) sort(L; [X jT]):Then we may replace the \call" to sort with its bodysmallest(L;X) permute(L; [X jT]); ordered([X jT]):1Here we use the Prolog notation [XjT] which represents a list whose �rst element is X and whose tailis T .

9Partial evaluation for Prolog is in general more di�cult due to the presence of extra-logical features and side e�ects, although successful partial evaluators have been built, forinstance the MIXTUS system [Sah93].Some other transformation methods in logic programming are: various means of imple-menting negation [Kun87], the replacement of lists with so called \di�erence lists" [SS86](which can be concatenated in constant time), and the automatic insertion of control di-rectives which can be done for instance when information on functional computations andmutual exclusion is available.1.3 Summary of ContributionsThe results presented in this thesis �t directly into the various stages for the frameworkthat we have just presented.In chapter 3 we present a parsing technique called deferred decision parsing, whichwas developed to solve the problem of parsing languages with dynamic operators, that is,languages where the programmer can change the properties of operator symbols as theprogram is being parsed. This technique has been built into a parser generator calledDDGEN, which generates deferred decision parsers in a manner similar to Yacc.As a realistic example we examine in chapter 4 the syntax of Prolog, a language riddledby numerous syntactical complications and ambiguities. We suggest reasonable restrictionsto make the language deterministic and give a concise and readable grammar to be usedwith the parser generator.The parser generator also serves another important purpose, namely as an e�cientimplementation for De�nite Clause Grammars. Conventional implementations based onbacktracking parsers can require exponential time. In contrast, our implementation hasthe advantage that the token stream need not be completely acquired beforehand, and theparsing, being deterministic, is linear time.On the other hand, syntax de�nitions usually have attributes and evaluation rules as-sociated with them to convey context-sensitive information. Conventional implementations

10parse top-down and are thus able to handle some inherited attributes, representing \input"to the production that is currently being recognized, something which a bottom-up parserdoes not normally support. To rectify this situation, we have developed two transformationtechniques, presented in chapter 5, that allow a bottom-up parser to emulate the evaluationof arbitrary (non-circular) attribute de�nitions.Finally in chapter 6 we present an analysis method for logic programs to �nd mutuallyexclusive rules. A very common situation in the de�nition of a procedure is that its de�ningrules are mutually exclusive to each other; this may happen for instance when one rule isde�ned for X = 0 and another for X > 0. This presents an optimization opportunity: ifthe system succeeds in proving the goal that excludes the other rule, it does not have toremember to come back to the second clause if the �rst one fails. This type of analysis hasbeen conducted before but always restricted to looking only at primitive test goals, suchas arithmetic relational operators. Our method generalizes previous work by propagatinginformation in the call graph and is thus able to derive mutual exclusion between user-de�ned procedures.

112. PreliminariesIn order to set the stage for the following chapters, we �rst review some notation andconcepts on parsing and logic programming. For a more extensive treatment we refer thereader to [ASU85, AJ74, FJ88] for context-free grammars and parsing, and [Llo87, Apt90,CM81, SS86] for logic programming. A unifying presentation of these two �elds can also befound in [DM93].2.1 Context Free GrammarsA context-free grammar is a four-tuple G = hVN ; VT ; S; P i. The �nite disjoint sets ofnonterminals VN and terminals VT form the vocabulary V = VN [VT .The set P � VN � V � consists of m productions where the p-th production isXp0 ! Xp1Xp2 : : :Xpnpwhere np > 0; Xp0 2 VN ; Xpj 2 V for 1 � j � np.S 2 VN is the start symbol, which does not appear on the right side of any production.It is normally the left side of the �rst production.The word token is used synonymously with terminal symbol. As a notational convention,terminal symbols appear in typewriter style, like id. Although there is no typographicalconvention for nonterminal symbols, we will often use upper-case letters such as A;B;C;N ,and S, or lower-case italic names, such as expr. Either way, nonterminals can always bedistinguished because of their appearance in some production's left-hand side. An arbitrarygrammar symbol (terminal or nonterminal) is represented by the letter X , lower-case greekletters �; �;
 represent strings of grammar symbols, whereas a string of only terminalsymbols is denoted w. The notation A! �1 j �2 j : : : j �n is shorthand for the productionsA! �1; A! �2; : : : ; A! �n.The length of a string � is written j�j and is simply the number of grammar symbols inthe string. There is one special symbol, namely the empty string ", that has zero length.

122.1.1 Derivations and Parse TreesGiven a string of grammar symbols, a production can be seen as a rewriting rule in whichthe nonterminal on the left is replaced by the string on the right side of the production.A rewriting step can be written abstractly as �A�) �
� , if A !
 is a production.The transitive closure of this relation is written with the symbol �) . If � �) �, we say� derives �.If S �) �, then � is a sentential form. A sentence is a sentential form without nonterminalsymbols. The language generated by a grammar G can now be described as the set of allsentences derived from S: L(G) = fw j S �) wg(where w is a string of terminal symbols).We assume that all grammars contains no useless productions and that every nontermi-nal symbol is accessible from the start symbol and can generate a string without nonterminalsymbols.Example 2.1.1: The context-free grammar hfZ;N;Bg; f:; 0; 1g; S; P i, where P is given bythe productions below, describes binary numbers and generates sentences such as \10.1"1. S ! N : N2. N ! N B3. N ! "4. B ! 05. B ! 1Example 2.1.2: (continued) A derivation from the grammar in example 2.1.1 isS 1) N:N 2) NB:N 2) NBB:N 3) BB:N 5) 1B:N 4) 10:N 2) 10:NB 3) 10:B 5) 10:1The numbers above the arrows indicate the production used in the derivationIf in each derivation step the leftmost (rightmost) nonterminal is rewritten, the derivationis called leftmost (rightmost). The derivation in example 2.1.2 is a leftmost derivation.

13A parse tree is a graphical representation of a derivation where the root is labeled bythe start symbol and the fringe of the tree corresponds to a sentential form. A grammarthat produces two or more parse trees for a sentence is called ambiguous.Example 2.1.3: (continued) The (only) parse tree for the sentence \10.1" is shown below" 1 0 . " 1N B B N BN N NS�� @@ �� @@�� AAA��� QQQ2.1.2 LR Parsing and Parser GenerationA parser is a recognizer for a given context-free grammar G. It accepts as its input astring of terminal symbols w and veri�es whether w 2 L(G) or not. The output can bea parse tree, showing the productions that were used in the process of verifying the inputstring.The type of parsers described in this thesis are LR parsers, also called shift-reduce orbottom-up parsers, because they recognize the parse tree bottom-up by reading (shifting)terminals and | when the complete right-hand side of a production is available | reducingthe right-hand side to its left-hand side. If the parser is successful in reducing its input tothe start symbol, the input is syntactically correct. This process is called a reverse rightmostderivation because it traces out a rightmost derivation in reverse.Example 2.1.4: (continued) The read and reduce steps taken when recognizing \10.1"are as follows: reduce N ! "; read 1; reduce B ! 1; reduce N ! N B; read 0; reduceB ! 0; reduce N ! N B; read .; reduce N ! "; read 1; reduce B ! 1; reduce N ! N B;reduce S ! N : NIn a general setting, knowing when to read or reduce is not always easy. In addition, the LRparser must also reject erroneous input, and know when to accept (announce that the input

14push(Stack ; S0) (initial state)read(X)repeatS := top(Stack)case parse table(S;X) ofshift S 0:push(Stack ; X)push(Stack ; S 0)read(X)reduce A!
:pop j
j state/symbol pairs from Stackparse table(top(Stack); A) now contains shift S 0push(Stack ; A)push(Stack ; S 0)error :abortuntil parse table(S;X) = acceptFigure 2.1: The LR parser.was correct). Such knowledge is stored in a parse table whose construction requires a rathercomplicated analysis of the production rules (not described here, but see [BL89, AJ74]).The parse table encodes a state machine where a state S may have zero or more outgoingarcs, each labeled by some distinct grammar symbol X . Hence, the parse table can beimplemented with an array parse table(S;X). Each entry contains one of the four actions:shift { to a new state and read a new terminal; reduce { by a certain production; accept,or error. With the help of an auxiliary stack of previous states, the parser has enoughinformation to parse the input string without actually storing the symbols in the \next"right-hand side, although for clarity we will put them on the stack as well when we showthe steps taken by the parser. The algorithm for the LR parser is shown in �g. 2.1.An LR parser generator is a program that generates the parse table and the parser(which is always the same) for a given grammar. The construction of the parse tableimposes certain restrictions on the grammar. For example, there exist grammars for whichan input string has more than one parse tree, that is, the string can be parsed in morethan one way. Such grammars are ambiguous and give rise to multiple entries, called

15Parse Table0 1 . eof S N B0 r/3 r/3 r/3 r/3 s/1 s/21 acc2 s/4 s/5 s/3 s/63 r/3 r/3 r/3 r/3 s/74 r/4 r/4 r/4 r/45 r/5 r/5 r/5 r/56 r/2 r/2 r/2 r/27 s/4 s/5 r/1 s/6Execution TraceStack Input Action0 1 0 . 1 eof reduce N ! "0 N 2 1 0 . 1 eof shift 50 N 2 1 5 0 . 1 eof reduce B ! 10 N 2 B 6 0 . 1 eof reduce N ! N B0 N 2 0 . 1 eof shift 40 N 2 0 4 . 1 eof reduce B ! 00 N 2 B 6 . 1 eof reduce N ! N B0 N 2 . 1 eof shift 30 N 2 . 3 1 eof reduce N ! "0 N 2 . 3 N 7 1 eof shift 50 N 2 . 3 N 7 1 5 eof reduce B ! 10 N 2 . 3 N 7 B 6 eof reduce N ! N B0 N 2 . 3 N 7 eof reduce S ! N : N0 S 1 eof acceptFigure 2.2: Parse table and execution trace for an LR parser. In the parse table,state numbers appear in the left column and grammar symbols along the top row.The symbol eof symbolizes the end-of-�le marker which terminates the input.The abbreviation \r/n" means reduce by production n (cf. example 2.1.1), \s/m"denotes shift to state m, and \acc" stands for accept ; all empty entries are errorentries.shift/reduce, or reduce/reduce con
icts, in the parse table. A parse table with con
ictsmust be rejected by the parser generator, unless the con
icts can be resolved by some otherpolicy (cf. chapter 3).Example 2.1.5: (continued) A parse table for the binary number grammar is shown in�g. 2.2 along with an execution trace of the LR parser for the input string \10.1"A semantic action is simply a piece of code attached to a production. Semantic actions

16are executed when the corresponding production has been recognized. In an LR parser, thiscan be arranged simply by calling a routine action(n) in the reduce case in �g. 2.1, wheren is the recognized production.2.2 Logic ProgrammingThis section provides a short description of the syntax and semantics of logic programs.The syntactical aspects of Prolog are presented in more detail in chapter 3, so at thispoint we con�ne ourselves to an informal overview. We also omit the so called declarativesemantics of logic programs, and instead describe the procedural semantics which are neededto understand the material on mutual exclusion in chapter 6.2.2.1 SyntaxA logic program is a collection of Horn clauses (see �g. 2.3). A clause is a sentence ofthe form A0 A1; A2; : : :An: (n � 0)which is to be understood as the statement\for all X1; : : : ; Xk, A0 if A1 and A2 and : : : and An"where X1; : : : ; Xk are the variables occurring in the clause. If n > 0 we refer to the clauseas a rule, otherwise, if n = 0, we call it a fact and write it asA0:without the implication sign. When actual Prolog code is shown, clauses are usually set intypewriter style, and the implication sign is written \:-".A set of clauses with the same predicate name p and arity n collectively de�nes theprocedure p=n .The head A0 and the subgoals A1; : : : ; An are literals of the form p(t1; : : : ; tn), wherep is a predicate symbol and the ti are terms, consisting of either constants, variables orcompound terms.

17programC1...Ci...Cm clause CiA0 A1; : : : ; Aj ; : : : ; Anliteral Ajp(t1; : : : ; ti; : : : ; tk)term ticonstanta; 42; : : : variableX; Y; : : : compoundf(t1; : : : ; tk)Figure 2.3: Structure of logic programs.A constant is either a number or an atom. An atom is uniquely identi�ed by its name,which is a sequence of characters, either alphanumeric starting with a lower case letter,or some special symbol like \+", \�", \=", \!", \[]", etc, or any sequence of charactersdelimited by single quotes.A variable is any sequence of alphanumeric characters (including underscore), startingwith either a capital letter, or an underscore.A compound term has the form f(t1; : : : ; tk) and represents a function symbol (functor)applied to its arguments t1; : : : ; tk. A functor f of arity k is often written f=k to make itsarity apparent.A common data structure in logic programming is the list which is either empty, rep-resented by the constant [], or a compound term with the functor \." (\dot") and twoarguments representing the head and the tail of the list. Thus :(a; :(b; :(c; []))) is a listwith three elements a; b, and c. The recursive structure of lists can be hidden by usingspecial syntax, writing them more conveniently as [a; b; c]. Also, the special notation [X jY],equivalent to :(X; Y), is useful when the tail of the list is a variable.Clauses, literals, and terms are called, collectively, expressions.

18Example 2.2.1: The following clauses collectively de�ne the relation merge(Xs;Ys;Zs)which is true when Zs is an ordered merge of the elements in Xs and Ys.merge([];Ys;Ys):merge(Xs; [];Xs):merge([X jXs]; [Y jYs]; [X jZs]) X < Y;merge(Xs; [Y jYs];Zs):merge([X jXs]; [Y jYs]; [Y jZs]) X � Y;merge([X jXs];Ys;Zs):Queries (or goals) are given in the form of a conjunction of conditions B1; B2; : : : ; Bn: (n > 0)which is to be understood as the question\does there there exist X1; : : : ; Xk such that B1 and B2 : : :and Bn?"where X1; : : : ; Xk are the variables in B1; : : : ; Bn. The resolution engine, presented insection 2.2.3, either constructs a substitution X1=t1; : : : ; Xk=tk (see section 2.2.2) or fails,depending on whether the query is a theorem that follows from the program or not.Example 2.2.2: (continued) The query merge([2; 5; 7]; [1; 3; 9];Zs)results in the substitution Zs=[1; 2; 3; 5; 7; 9]2.2.2 Substitutions and Uni�cationFormally, a substitution is a �nite mapping from variables to terms, and is written as� = fX1=t1; : : : ; Xk=tkg:Each pair Xi=ti is called a binding . We assume that all variables Xi are distinct andthat Xi 6= ti; i = 1 : : :k. The substitution given by the empty set is called the identitysubstitution and is denoted �1.1Although this symbol is unfortunate in that it can be confused with the empty string ", I have followedstandard terminology as best as I could, but made them look slightly di�erent. The risk of confusion isminimal however, since they never appear together in the material to come.

19A substitution � can be applied to an expression E. The result, E�, is called an instanceof E, and is obtained by simultaneously replacing each variable Xi in E by the term ti. Aninstance is ground if it contains no variables.Substitutions can also be composed. If� = fX1=t1; : : : ; Xk=tkgand � = fY1=u1; : : : ; Ym=umgthe composition �� is obtained from the setfX1=t1�; : : :; Xk=tk�; Y1=u1; : : : ; Ym=umgby removing all bindings Xi=ti� for which Xi = ti� and also all bindings Yj=uj for whichYj 2 fX1; : : : ; Xkg.We say that a substitution � is more general than a substitution � if for some substitution� we have � = ��.Two expressions E1 and E2 are said to be uni�able if there exists a substitution � suchthat E1� = E2�. If so, � is called a uni�er. There exists a uni�cation algorithm [Rob65]that for any two expressions produces their most general uni�er (mgu) if they are uni�ableand otherwise reports that the two expressions are not uni�able.Example 2.2.3: Consider expressions E1 = p(X;X); E2 = p(Y; f(Y)), and E3 = p(a; a).Since Y appears in f(Y), E2 does not unify with E1; neither does E2 unify with E3.However, E1 and E3 have a (most general) uni�er fX=ag2.2.3 Procedural SemanticsIn order to compute an answer substitution for a goal G : B1; : : : ; Bn the logicprogramming system tries to prove the negation of G by a process called SLD-derivation2.2Since G itself stands for 8X(:B1_: : :_:Bn), proving the negation amounts to showing 9X(B1^: : :^Bn).

20Input: A goal G : B1; : : : ; Bi; : : : ; Bn and a set of program clauses C1; : : : ; Cm.Output: An answer substitution � with bindings for the variables in G.Method:j := 0G0 := G� := �repeatselect a literal Bi from Gjj := j + 1if there is a clause C : B A1; : : : ; Ak such that Bi and B unify thenrename all variables in C to avoid name con
icts�j := mgu(Bi; B)Gj := (B1; : : : ; Bi�1; A1; : : : ; Ak; Bi+1; : : : ; Bn)�j� := ��jelseGj := failuntil (Gj = 2 _Gj = fail)Figure 2.4: Algorithm for computing an answer substitution.An SLD-derivation is a sequence of transformation steps where, informally, in each stepa literal in the current goal is replaced by the body of a clause whose head uni�es with theselected literal. If the derivation produces the empty goal 2 in a �nite number of stepsthe derivation is called a refutation and the composition of all the uni�ers gives the answersubstitution. The derivation is said to fail if, along the derivation, the selected literal hasno matching clause.The complete algorithm is given in �g. 2.4. From the description it is clear that thereis room for some nondeterminism at each derivation step. In Prolog, the selected literalis always the leftmost literal in the goal and clauses with matching heads are tried intextual order. The possibility of several matching heads gives rise to an SLD-tree | see�g. 2.6 for an example. In Prolog, the tree is explored depth-�rst; when a fail-node isdiscovered, backtracking takes place whereby the system restores its state to the closestprevious branching point where a new choice for a matching clause can be made.

21G : B1; : : : ; Bn�����) @@RXXXXXXXz (A1; : : : ; !; : : : ; Ak; B2; : : : ; Bn)� : : :Figure 2.5: The e�ect of a cut: the remaining branches are pruned.2.2.4 CutsThe cut is a control facility found in Prolog. It is written as \!" and may be used as aliteral in the body of a clause. The cut always succeeds when selected, but as a side e�ectit will cancel certain backtracking activities.In �g. 2.5 we illustrate the e�ects of a cut. Here we assume that the leftmost literal inthe current goal is selected, as in Prolog. The invoked clause contains a cut symbol. If thecut is later selected, all the remaining branches to the right will be \cut o�", that is, if thesystem backtracks to the cut, it will skip all remaining subtrees of G and instead resumethe search above G.A cut that prunes away success nodes from the SLD-tree is said to be red. A red cutis harmful because it prevents correct answer substitutions from being derived. If there isno answer in the pruned part, the cut is green. Green cuts improve the e�ciency of theexecution and can be used to sidestep an in�nitely large subtree. However, it is not alwayseasy to tell whether a cut is red or green; a small modi�cation to a clause can suddenly makea green cut turn red, change the meaning of the program, and confuse the programmer.2.2.5 ModesIn a logic program there is no obvious
ow of computation | a procedure can forinstance be invoked with ground arguments to con�rm a solution, or the arguments can be

22partially bound, so that the procedure will attempt to generate a solution.It is often the case, however, that the programmer designs a procedure to be invoked ina particular way. He may then opt to give a mode declaration for the procedure, specifyinghow each argument will be bound when the procedure is called. For our purposes werepresent mode information for a procedure p=n with an n-tuple over the elements fc;dg,where c (\constant") represent all ground terms, and d (\don't know") stands for all terms.The mode for a procedure is sometimes given as a superscript, as in appendc;c;d. Someresearchers use the notation fb; fg instead of fc;dg and speak of mode information as\adornments". Mode information may also be inferred statically from a global analysis ofthe program, but, as with all interesting program properties, a mode inference programmay not always give exact information.2.2.6 De�nite Clause GrammarsA De�nite Clause Grammar (DCG) is a language speci�cation, similar to a context freegrammar, that is automatically translated into clauses in a logic programming language.In principle, each production rule is compiled into a clause and the parser inherits thede�ciencies of the search mechanism used in the SLD-derivation. In the case of Prolog, thistranslation method gives rise to a top-down, backtracking parser.Example 2.2.4: Consider again the productions in example 2.1.1. A simple translation toclauses follows below.s(X0; X3) n(X0; X1); X1 = [0:0jX2]; n(X2; X3):n(X0; X0):n(X0; X2) n(X0; X1); b(X1; X2):b(X0; X1) X0 = [0jX1]:b(X0; X1) X0 = [1jX1]:Here, the variables Xi hold the input so that the �rst argument of a clause represents thepart of the input that is left to parse upon entering the clause, and the second argument iswhat is left when leaving the clause.

23As a Prolog program, these procedures can be used to refute goals like s([1; 0;0 :0; 1]; []).It should be noted however, that if the two clauses for n are interchanged, the Prolog systemwill enter an in�nite loop

24 merge([1; 3]; [2; 4]; L).������	 QQQQQQQQQs�1 = 8><>: X1=1; U1=[3];Y1=2; V1=[4];L=[1jW1] 9>=>; �12 = 8><>: X12=1; U12=[3];Y12=2; V12=[4];L=[1jW12] 9>=>; 1 < 2;merge([3]; [2; 4];W1). 1 � 2;merge([1; 3]; [4];W12).?�13 = �fail?�2 = � merge([3]; [2; 4];W1).?QQQQQQQQQs�3 = 8><>: X3=3; U3=[];Y3=2; V3=[4];W1=[3jW3] 9>=>; �5 = 8><>: X5=3; U5=[];Y5=2; V5=[4];W1=[2jW5] 9>=>; 3 < 2;merge([]; [2; 4];W3).?�4 = � fail 3 � 2;merge([3]; [4];W5).?�6 = � merge([3]; [4];W5).������	 @@@@@@R�7 = 8><>: X7=3; U7=[];Y7=4; V7=[];W5=[3jW7] 9>=>; �10 = 8><>: X10=3; U10=[];Y10=4; V10=[];W5=[4jW10] 9>=>; 3 < 4;merge([]; [4];W7).?�8 = � merge([]; [4];W7).?�9 = fW7=[4]g 2 3 � 4;merge([3]; [];W10).?�11 = �failFigure 2.6: SLD-tree for the query merge([1; 3]; [2; 4]; L). The underlined part ineach node represents the selected literal. The answer substitution for a refutationis given by the composition of uni�ers along the success branches, in this case�1�2�5�6�7�8�9 = f: : : ; L=[1j[2j[3j[4]]]]; : : :g = f: : : ; L=[1; 2; 3; 4]; : : :g.

253. The Parser Generator DDGENAllowing the programmer to de�ne operators in a language makes for more readable codebut also complicates the job of parsing; standard parsing techniques cannot accommodatedynamic grammars. In this chapter we present an LR parsing methodology, called deferreddecision parsing, that handles dynamic operator declarations, that is, operators that aredeclared at run time, are applicable only within a program or context, and are not in theunderlying language or grammar. It uses a parser generator that takes production rules asinput, and generates a table-driven LR parser, much like Yacc. Shift/reduce con
icts thatinvolve dynamic operators are resolved at parse time rather than at table construction time.For an operator-rich language, this technique reduces the size of the grammar neededand parse table produced. The added cost to the parser is minimal. Ambiguous operatorconstructs can either be detected by the parser as input is being read or avoided altogetherby enforcing reasonable restrictions on operator declarations. We have been able to describethe syntax of Prolog, a language known for its liberal use of operators, and Standard ML,which supports local declarations of operators.De�nite Clause Grammars (DCGs), a novel parsing feature of Prolog, can be translatedinto e�cient code by our parser generator. The implementation has the advantage thatthe token stream need not be completely acquired beforehand, and the parsing, beingdeterministic, is linear time. Conventional implementations based on backtracking parserscan require exponential time.3.1 Introduction and BackgroundSyntax often has a profound e�ect on the usability of a language. Although both Prologand LISP are conceptually rooted in recursive functions, Prolog's operator-based syntax isgenerally perceived as being easier to read than LISP's pre�x notation. Prolog introducedtwo innovations in the use of operators:

261. Users could de�ne new operators at run time with great
exibility1 .2. Expressions using operators were semantically equivalent to pre�x form expressions;they were a convenience rather than a necessity.Notably, new functional programming languages, such as ML [MTH90] and Haskell [HW90],are following Prolog's lead in the use of operators. Proper use of operators can make aprogram easier to read but also complicates the job of parsing the language.Example 3.1.1: The following Prolog rules make extensive use of operators to improvereadability.X requires Y :- X calls Y.X requires Y :- X calls Z, Z requires Y.Here, \:-" and \," are supplied as standard operators, while \requires" and \calls"have programmer de�nitions (not shown)Languages that support dynamic operators have some or all of the following syntacticfeatures:1. The name of an operator can be any legal identi�er or symbol. Perhaps, even \built-in" operators like \+", \�", and \�" can be rede�ned.2. The syntactic properties of an operator can be changed by the user during parsing ofinput.3. Operators can act as arguments to other operators. For example, if _", \^", and\�" are in�x operators, the sentence _ � ^" may be proper.4. Operators can be overloaded, in that a single identi�er can be used as the name oftwo or more syntactically di�erent operators. A familiar example is \�", which canbe pre�x or in�x.This chapter addresses problems in parsing such languages, presents a solution based ona generalization of LR parsing and describes a parser generator for this family of languages.After reviewing some de�nitions, we give some background on the problem, and thensummarize the contributions. Later sections discuss several of the issues in detail.1Some earlier languages permitted very limited de�nitions of new operators; see section 3.1.2.

273.1.1 De�nitionsWe brie
y review some standard de�nitions concerning operators, and specify particularterminology used in this chapter. An operator is normally a unary or binary function whoseidenti�er can appear before, after, or between its arguments, depending on whether its �xityis pre�x, post�x, or in�x. An identi�er that has been declared to be operators of di�erent�xities is said to be an overloaded operator. We shall also have occasion to consider nullaryoperators, which take no arguments. More general operator notations, some of which takemore than two arguments, are not considered here. Besides �xity, operators have two otherproperties, precedence and associativity , which govern their use in the language.An operator's precedence, or scope, is represented by a positive integer. Here we usethe Prolog convention, which is that the larger precedence number means the wider \scope"and the weaker binding strength. This is the reverse of many languages, hence the synonymscope serves as a reminder. Thus \+" normally has a larger precedence number than \�"by this convention.An operator's associativity is one of left, right, or non. For our purposes, an expression isa term whose principal function is an operator. The precedence of an expression is that of itsprincipal operator. A left (right) associative operator is permitted to have an expression ofequal precedence as its left (right) argument. Otherwise, arguments of operators must havelower precedence (remembering Prolog's order). Non-expression terms have precedence 0;this includes parenthesized expressions, if they are de�ned in the grammar.3.1.2 Background and Prior WorkMost parsing techniques assume a static grammar and �xed operator priorities. Excel-lent methods have been developed for generating e�cient LL parsers and LR parsers fromspeci�cations in the form of production rules, sometimes augmented with associativity andprecedence declarations for in�x operators [AJ74, ASU85, BL89, FJ88, Joh75]. Parsergeneration methods enjoy several signi�cant advantages over \hand coding":

281. The language syntax can be presented in a readable, nonprocedural form, similar toproduction rules.2. Embedded semantic actions can be triggered by parsing situations.3. For most programming languages, the tokenizer may be separated from the grammar,both in code and in speci�cation.4. Parsing runs in linear time and normally uses sublinear stack space.The price that is paid is that only the class of LR(1) languages can be treated, but this isnormally a su�ciently large class in practice.Earley's algorithm [Ear70] is a general context-free parser. It can handle any grammarbut is more expensive than the LR-style techniques because the con�guration states of theLR(0) automaton are computed and manipulated as the parse proceeds. Parsing an inputstring of length n may require O(n3) time (although LR(k) grammars only take linear time),O(n2) space, and an input-bu�er of size n. Tomita's algorithm [Tom86] improves on Earley'salgorithm by precompiling the grammar into a parse table, possibly with multiple entries.Still, the language is �xed during the parse and it would not be possible to introduce orchange properties of operators on the
y.Incremental parser generators [HKR90, Hor90] can be viewed as an application ofTomita's parsing method. They can handle modi�cations to the input grammar at theexpense of recomputing parts of the parse table and having the LR(0) automaton availableat run time. Garbage collection also becomes an issue.To our knowledge these methods have never been applied to parse languages withdynamically declared operators.Operator precedence parsing is another method with applications to dynamic operators[LdR81] but it can not handle overloaded operators.Permitting user-de�ned operators was part of the design of several early procedurallanguages, such as Algol-68 [vW76] and EL1 [HTSW74], but these designs avoided mostof the technical di�culties by placing severe restrictions on the de�nable operators. First,in�x operators were limited to 7 to 10 precedence levels. By comparison, C has 15 built-in

29precedence levels, and Prolog permits 1200. More signi�cantly, pre�x operators always tookprecedence over in�x, preventing certain combinations from being interpreted naturally.(C de�nes some in�x to take precedence over some pre�x, and Prolog permits this inuser de�nitions.) For example, no declarations in the EL1 or Algol-68 framework permit(not X=Y) to be parsed as (not (X=Y)). Scant details of the parsing methods can be foundin the literature, but it appears that one implementation of EL1 used LR parsing with amechanism for changing the token of an identi�er that had been dynamically declared asan operator \based on local context" before the token reached the parser [HTSW74]. Ourapproach generalizes this technique, postponing the decision until after the parser has seenthe token, and even until after additional tokens have been read.Languages have been designed to allow other forms of user-de�ned syntax besidesunary and binary operators. Among them, EL1 included \bracket-�x operators" and otherdynamic syntax; in some cases a new parser would be generated [HTSW74]. More recently,Peyton Jones [Jon86] describes a technique for parsing programs that involves user-de�neddist�x operators, for instance if-then-else-fi, but without support for precedence andassociativity declarations.With the advent of languages that permit dynamic operators, numerous ad hoc parsershave been developed. The tokenizer is often embedded in these parsers with attendantcomplications. It is frequently di�cult to tell precisely what language they parse; theparser code literally de�nes the language.Example 3.1.2: Using standard operator precedences, pre�x \�" binds less tightly thanin�x \�" in popular versions of Prolog. However, (- 3 * 4) was found to parse as((-3) * 4) whereas (- X * 4) was found to parse as (- (X * 4)). Numerous otheranomalies can be demonstratedIndeed, written descriptions of the \Edinburgh syntax" for Prolog are acknowledged tobe approximations, and the \ultimate de�nition" seems to be the public domain parserread.pl.

30�� ��Op DeclsRules - StandardParserGenerator - Parser�� ��Sentences?�� ��Parse Tree? �� ��Rules - DeferredDecisionParserGenerator - Parser�� ��Op DeclsSentences?�� ��Parse Tree?Figure 3.1: Standard Parser Generator and Deferred Decision Parser Generator.3.1.3 Summary of ContributionsA method called deferred decision parsing has been developed with the objective ofbuilding upon the techniques of LR parsing and parser generation, and enjoying theiradvantages mentioned above, while extending the methodology to incorporate dynamicoperators. The method is an extension of earlier work by Kerr [Ker89]. It supports all fourfeatures that were listed above as being needed by languages with dynamic operators. Theresulting parsers are deterministic, and su�er only a small time penalty when compared toLR parsing without dynamic operators. They use substantially less time and space thanEarley's algorithm.In \standard" LR parser generation, as done by Yacc and similar tools, shift/reducecon
icts, as evidenced by multiple entries in the initial parse table, are resolved by consultingdeclarations concerning (static) operator precedence and associativity [Joh75]. If the processis successful, the �nal parse table becomes deterministic.The main idea of deferred decision parsing is that shift/reduce con
icts involving dy-namic operators are left unresolved when the parser is generated. At run time the currentdeclarations concerning operator precedence and associativity are consulted to resolve anambiguity when it actually arises (�g. 3.1). Another important extension is the ability tohandle a wider range of �xities, as well as overloading, compared to standard LR parsergenerators. These extensions are needed to parse several newer languages.The parser generator, implemented in a standard dialect of Prolog, processes DCG-style

31input consisting of production rules, normally with embedded semantic actions. The outputis Prolog source code for the parser, with appropriate calls to a scanner and an operatormodule.The operator module provides a standard interface to the dynamic operator table used bythe parser. Thus, the language designer decides what language constructs denote operatordeclarations; when such constructs are recognized during parsing, the associated semanticactions may interact with the operator module. Procedures are provided to query the stateof the operator table and to update it. Interaction with the operator module is shown inthe example in �g. 3.7.We assume that the grammar is designed in such a way that semantic actions that updatedynamic operators cannot occur while a dynamic operator is in the parser stack; otherwisea grammatical monstrosity might be created. In other words, it should be impossible fora dynamic operator to appear in a parse tree as an ancestor of a symbol whose semanticaction can change the operator table. Such designs are straightforward and natural, so wesee no need for a special mechanism to enforce this constraint. For example, if dynamicoperator properties can be changed upon reducing a \sentence", then the grammar shouldnot permit dynamic operators between \sentences", for that would place a dynamic operatorabove \sentence" in some parse trees.Standard operator-con
ict situations are easily handled by a run-time resolution module.However, Prolog o�ers very general operator-declaration capabilities, which in theory canintroduce signi�cant di�culties with overloaded operators. (Actually, these complicatedsituations rarely arise in practice, as users refrain from de�ning an operator structure thatthey cannot understand themselves.) In Edinburgh Prolog [BBP+82] for instance, the usercan de�ne a symbol as an operator of all three �xities and then use the symbol as anoperator, or as an operand (nullary operator), or as the functor of a compound term. Asthe Prolog standardization committee recognized in a 1990 report [Sco90],\These possibilities provide multiple opportunities for ambiguity and thedraft standard has therefore de�ned restrictions on the syntax so that a) ex-

32pressions can still be parsed from left to right without needing signi�cant back-tracking or look-ahead: : :"A preliminary report on this work showed that many of the proposed restrictions wereunnecessary. The ISO committee has subsequently relaxed most of the restrictions, but atthe expense of more complex rules for terms [Sco92].The modular design of our system permits di�erent con
ict resolution strategies andoperator-restriction policies to be \plugged in", and thus may serve as a valuable tool forinvestigating languages that are well-de�ned, yet have very
exible operator capabilities.So-called De�nite Clause Grammars (DCGs) are a syntactic variant of Prolog, inwhich statements are written in a production-rule style, with embedded semantic actions[BBP+82]. This style permits input-driven programs to be developed quickly and concisely.Our parser generator provides a foundation for DCG compilation that overcomes someof the de�ciencies of existing implementations. These de�ciencies include the need to haveacquired the entire input string before parsing begins, and the fact that backtracking occurs,even in deterministic grammars.Our point of view is to regard the DCG as a translation scheme in which the argumentsof predicates appearing as nonterminals in the DCG are attributes; semantic actions maymanipulate these attributes. Essentially, a parser is a DCG in which all attributes aresynthesized, and each nonterminal has a parse tree as its only attribute. Synthesis of at-tributes is accomplished naturally in LR parsing, as semantic actions are executed after theassociated production has been reduced. Another research direction has been to correctlyhandle inherited attributes. This work is discussed in chapter 5.3.2 Deferred Decision ParsingThe parser generator Yacc disambiguates con
icts in grammars by consulting program-mer-supplied information about precedence and associativity of certain tokens, which nor-mally function as in�x operators. Deferred decision parsing postpones the resolution ofcon
icts involving dynamic operators until run time.

33Pre�x In�x Post�xName Prec Assoc Prec Assoc Prec Assoc+ 300 right 500 left� 300 right 500 left� 400 left= 400 left! 300 leftFigure 3.2: An example run-time operator table.term(T) ! atom(T)term(T) ! var(T)term(T) ! 0(0 term(T) 0)0term(T) ! op(Name) term(T1) f T = :: [Name; T1] gterm(T) ! term(T1) op(Name) term(T2) f T = :: [Name; T1; T2] gterm(T) ! term(T1) op(Name) f T = :: [Name; T1] gterm(T) ! op(Name)Figure 3.3: Subset grammar for Prolog terms.As a running example we will use a grammar for a subset of Prolog terms with operatorsof all three �xities. At run time the name of each operator, together with its precedence,�xity, and associativity, is stored in the current operator table (see �g. 3.2 for an example).The parser has access to the current operator table and is responsible for converting tokensfrom the scanner so that an identi�er with an entry in the current operator table is translatedto the appropriate dynamic operator token.The token names for dynamic operators, which should not be confused with the operatornames, are declared to the parser generator (cf. example in section 3.3), and appear in theproduction rules of the grammar. When a production rule contains a dynamic operatortoken there can be at most one grammar symbol on either side of the dynamic operator, andits position determines the intended �xity. Apart from this, there are no other restrictionson the productions. Normally a single token is su�cient for all dynamic operators. Thisexample uses the single token op for pre�x, in�x, and post�x operators.Figure 3.3 shows the subset grammar for Prolog terms. The LR(0) collection for this

34grammar has 11 states of which 4 have shift/reduce con
icts.Rather than trying to resolve each shift/reduce con
ict at table construction time wewill delay the decisions and turn them into a new kind of action, called resolve, which takestwo arguments: (1) the state to enter if the con
ict is resolved in favor of a shift, and (2) therule by which to reduce if a reduction is selected. Recall that the user (language designer)declares what tokens constitute dynamic operators (op in this example). Only the con
ictsinvolving two dynamic operators are expected to be resolved at run time. All other con
ictsare reported as usual. Con
icts between an operator and a non-operator symbol can alwaysbe resolved at table construction time due to the requirement that operators have positiveprecedence and non-expression terms have precedence 0.The parser driver for deferred decision parsing is similar to a standard LR parser, exceptfor one di�erence: instead of directly accessing entries in the parse table, references to parsetable entries are mediated through a procedure parse action(S;X), where S is the currentstate of the parser and X is the look-ahead token. It returns an action which may be oneof shift, reduce, accept, or error. The rule for parse action isIf parse table(S;X) = resolve(S 0; A! � opA �)then return do resolve(A! � opA �;X)else return parse table(S;X)The procedure do resolve, which is called to resolve the shift/reduce con
ict, has accessto the rule that is candidate for reduction, and the look-ahead token. The resolution isdone by the policy that is used at table-construction time by Yacc [AJU75, ASU85], withextensions to cover cases that cannot be declared in Yacc (cf. section 3.4). The details,for those conversant with the operation of the LR parser, are as follows. The shift/reducecon
ict corresponding to the resolve action requires a decision when � opA � is on top ofthe stack (top rightmost), and the look-ahead token is opB , where � and � each consist ofzero or one grammar symbols. (Recall that one of the requirements for turning the con
ictinto a resolve action was that opA and opB had to be declared as dynamic operators.) Thechoices are to reduce, using production A! � opA �, or shift the look-ahead token opB .

35When operators are overloaded, there may be several choices to consider. Even if oper-ators are not overloaded by run-time declarations, there may be the implicit overloading ofthe declared operator and the nullary operator. The ambiguities that arise from overloadingpose serious di�culties in parser design. Our parser treats the nullary operator as havingscope equal to the maximum of its declared scopes plus a small \delta". This treatmentguarantees a deterministic grammar if there is no declared overloading (cf. section 3.4) andretains the
exibility of allowing operators to appear as terms.The overloading of the operators opA and opB could lead to multiple interpretationsof the input string as there are several declarations to consider. In practice one doesn'thave to consider all combinations of the declarations; a Prolog grammar, for instance, doesnot generate sentential forms with two adjacent expressions, so there are only certain �xitycombinations worth considering:Form of � opA � Possible �xity combinations (opA; opB)� 6= "; � 6= " (in�x, in�x), (in�x, post�x)� 6= "; � = " (in�x, pre�x), (in�x, null), (post�x, in�x), (post�x, post�x)� = "; � 6= " (pre�x, in�x), (pre�x, post�x)� = "; � = " (pre�x, pre�x), (pre�x, null), (null, in�x), (null, post�x)Hence, for a Prolog grammar there are at most four overloading combinations. If thegrammar allows adjacent expressions there are at most 16 combinations to consider; thishappens when both operators have declarations for all �xities.The rules below are evaluated for each �xity combination; the resulting actions arecollected into a set. The parser will enter an error state if the set of possible actions iseither empty | signifying a precedence error | or contains both shift and reduce actions| indicating ambiguous input, in which case the two possible interpretations of the inputstring are reported to the user. If there is a unique action, we have successfully resolvedthe con
ict.

361. If opA and opB have equal scope, then(a) If opA is right-associative, shift2.(b) If opB is left-associative, reduce.2. If opA is either in�x or pre�x with wider scope than opB, shift.3. If opB is either in�x or post�x with wider scope than opA, reduce.Example 3.2.1: We examine the deferred decision parser as it reads -X+Y*Z!, using theoperators in �g. 3.2. Figure 3.4 shows the steps involved. At step 4, state 5 contains theshift/reduce con
ict fterm ! term � op(+) term; term ! op(-) term �g for terminal op.The operator in the redex, \-", and the look-ahead operator \+" are overloaded as level300 pre�x right-associative, level 500 in�x left-associative and, implicitly, as level 500 + �nullary. Due to the form of the redex, only the pre�x form of \-" and in�x form of \+"are considered. Since \-" has narrower scope than \+" and � = term 6= " we satisfy therequirements for the third rule above and reduce.At step 8, state 7 contains the shift/reduce con
ict fterm ! term � op(*) term ; term !term op(+) term �g. The operator in the redex, \+", is overloaded as before while the look-ahead operator *" is level 400 in�x left-associative and level 400 + � nullary. This time,the form of the redex tells us to consider the in�x versions of both operators, and since in�x\+" has wider scope than in�x *" we have a match for the second rule and shift.At step 11, state 7 contains the shift/reduce con
ict fterm ! term � op(!); term !term op(+) term �g. The operator in the redex, *", is still level 400 in�x left-associativeand level 400+� nullary while the look-ahead operator \!" is level 300 post�x left-associativeand level 300 + � nullary. The nullary versions are not considered due to the form of theredex. Again the operator in the redex is in�x with wider scope than the look-aheadoperator, matching the third rule, so we shift again2Shift is chosen over reduce in situations where the input is 1 R 2 L 3. (R and L have the same precedence,but are declared right-associative and left-associative, respectively.) This is parsed as 1 R (2 L 3), whichconform with all Prolog systems that we are aware of, as well as the most recent ISO draft[Sco92].

37Stack1 02 0 op(-) 33 0 op(-) 3 var(X) 44 0 op(-) 3 term 55 0 term 106 0 term 10 op(+) 67 0 term 10 op(+) 6 var(Y) 48 0 term 10 op(+) 6 term 79 0 term 10 op(+) 6 term 7 op(*) 610 0 term 10 op(+) 6 term 7 op(*) 6 var(Z) 411 0 term 10 op(+) 6 term 7 op(*) 6 term 712 0 term 10 op(+) 6 term 7 op(*) 6 term 7 op(!) 613 0 term 10 op(+) 6 term 7 op(*) 6 term 714 0 term 10 op(+) 6 term 715 0 term 10
Input Actionop(-) var(X) op(+) var(Y) op(*) var(Z) op(!) eof shift 3var(X) op(+) var(Y) op(*) var(Z) op(!) eof shift 4op(+) var(Y) op(*) var(Z) op(!) eof reduce term! var(X)op(+) var(Y) op(*) var(Z) op(!) eof resolve(6,term! op(-) term)op(+) var(Y) op(*) var(Z) op(!) eof shift 6var(Y) op(*) var(Z) op(!) eof shift 4op(*) var(Z) op(!) eof reduce term! var(Y)op(*) var(Z) op(!) eof resolve(6,term! term op(+) term)var(Z) op(!) eof shift 4op(!) eof reduce term! var(Z)op(!) eof resolve(6,term! term op(*) term)eof reduce term! term op(!)eof reduce term! term op(*) termeof reduce term! term op(+) termeof acceptFigure 3.4: Deferred decision parsing example.3.3 Local Operator DeclarationsThe advantage of resolving operator con
icts at run time is that the programmer canchange the syntactic properties of operators on the
y. When parsing a language withdynamic operators it is the responsibility of the language designer to initialize the operatortable with the prede�ned operators in the language, before parsing commences, and toprovide semantic actions to update the table as operator declarations are recognized.ML is a language with in�x operators only, but these can be declared locally in blocks,with accompanying scope rules [MTH90]. Thus in the following examplelet infix 5 * ; infix 4 + in1+2*3 + let infix 3 * in 1+2*3 end + 1+2*3endonly the middle use of * would have an unusually low precedence, yielding the answer 23.To understand how the operator scope rules of ML can be implemented, we study �g. 3.7

38which shows an input speci�cation for DDGEN. Here, \::=" is used instead of \!" in thegrammar rules.The line dynop token(atom(Name), op(Name)) declares op as a dynamic operator; ifthe scanner returns atom(Name) and Name is present in the current operator table, the tokenis converted to op(Name).When the parser encounters a let-expression, the operators whose names are shadowedby local declarations are saved in OldList. Each operator declaration returns informationabout the operator it shadows, or null if there was no declaration with the same namein an outer scope. The old operators are re-instantiated when we reach the end of thelet-expressions.Calls to the operator table module can be seen in the Prolog rules at the bottom: the�rst two rules, ml dcl op and ml rem op, declares and removes an operator in the currentoperator table, respectively, and returns the old properties. The last rule, ml rest op iscalled to re-instantiate old operators.3.4 Ambiguities at Run Time and Induced GrammarsBecause the language changes dynamically as new operators are being declared, it isimportant to understand exactly what language is being parsed. The algorithm belowconstructs the induced grammar, given the input grammar and an operator table. Asmentioned earlier, we assume that operator declarations remain constant while a constructinvolving dynamic operators is being reduced. Thus it makes sense to talk about the inducedgrammar with which that construct is parsed, even though a later part of the input may beparsed by a di�erent induced grammar.The induced grammar is obtained by replacing productions containing dynamic oper-ators with a set of productions constituting a precedence grammar. It should be pointedout that the induced grammar is not actually constructed by the parser. The goal of thedeferred decision parser is to recognize exactly the strings in the language generated by theinduced grammar.

39Algorithm 3.4.1: Induced grammar construction.Input: A dynamic operator grammar and the current operator table.Output: The induced grammar, de�ned below.Method: Sort the operator table by precedence so it can be divided into k slots, whereall operators in slot i 2 1 : : :k have the same precedence pi, and so that slot k holdsthe operators of widest scope. For simplicity, assume that there is only one dynamicoperator, op. Now apply the following steps:1. For each nonterminal A in the dynamic operator grammar:(a) Partition the productions de�ning A into �ve sets corresponding to the useof an operator in the right hand side (pre�x, in�x, post�x, operand (nullary),or no operator at all):�pre = fA! op Cg �in = fA! B op Cg�post = fA! B opg �null = fA! opg�rem = fA!
 j op 62
g(b) Build a precedence grammar consisting of k + 1 layers (�g. 3.5). This willserve as a skeleton for the induced grammar. The i-th layer (0 < i � k)holds productions for nonterminal Ai which corresponds to operators withprecedence pi. The 0-th layer de�nes the sentential forms with 0 precedence,provided that there are any in the dynamic operator grammar.(c) For i 2 1 : : :k:Take each operator into account by adding productions to either ARi , ALi orANi , depending on the associativity of the operator being right, left, or none.i. First the pre�x operators: If �pre 6= ;, add productions ANi ! o Ai�1,for all pre�x, non-associative operators o with precedence pi, and ARi !o ARi , for all pre�x, right-associative operators o with precedence pi.ii. Next the in�x operators: If �in 6= ;, add productions ALi ! ALi o Ai�1,for all in�x, left-associative operators o with precedence pi, and ANi !Ai�1 o Ai�1, for all in�x, non-associative operators o with precedence

40A! Akk : Ak ! ARk , ARk ! ALk , ALk ! ANk , ANk ! Ak�1...i : Ai ! ARi , ARi ! ALi , ALi ! ANi , ANi ! Ai�1...1 : A1 ! AR1 , AR1 ! AL1 , AL1 ! AN1 , AN1 ! A00 : A0 !
, for all A!
 in �remFigure 3.5: Skeleton for induced grammar. The production AN1 ! A0 is includedonly if �rem 6= ;.pi, and ARi ! Ai�1 o ARi , for all in�x, right-associative operators o withprecedence pi.iii. Then the post�x: If �post 6= ;, add productions ALi ! ALi o, forall post�x, left-associative operators o with precedence pi, and ANi !Ai�1 o, for all post�x, non-associative operators o with precedence pi.iv. Finally, let nullary operators have the maximum of its declared prece-dences: If �null 6= ;, then for all operators o in the operator table, addthe production Ap ! o where p is the highest indexed slot in the operatortable containing o.2. The nonterminals and terminals of the induced grammar are given in the stan-dard way: a grammar symbol which appears on some left hand side is a non-terminal; all other symbols are terminals. Additionally, the dynamic operatorgrammar and the induced grammar share their start symbolsExample 3.4.1: Consider the Prolog term grammar and the operator table in �g. 3.2.Sorting the table gives us three precedence levels (�g. 3.6). The induced grammar is shownbelow (termNi omitted for brevity). The induced grammar is deterministic (as veri�ed byYacc).

41term3 ! '+' j '-' j termL3termL3 ! termL3 '+' term2 j termL3 '-' term2 j term2term2 ! '*' j '/' j termL2termL2 ! termL2 '*' term1 j termL2 '/' term1 j term1term1 ! '!' j termR1termR1 ! '+' termR1 j '-' termR1 j termL1termL1 ! termL1 '!' j term0term0 ! atom j var j '(' term3 ')'Although the above example produced a deterministic grammar, unrestricted overload-ing can produce an ambiguous grammar. However, certain reasonable restrictions on op-erator declarations and overloading guarantee determinacy (with one look-ahead token) inthe deferred decision parser:1. All declarations for the same symbol have the same precedence.2. If a symbol's in�x associativity is non, then (if declared) its pre�x and post�x asso-ciativities must be non.3. If a symbol's in�x associativity is left, then (if declared) its pre�x associativity mustbe non and its post�x associativity must be left.4. If a symbol's in�x associativity is right, then (if declared) its pre�x associativity mustbe right and there must be no post�x declaration for this symbol.Theorem 3.4.1: The above restrictions guarantee determinacy.Proof: The proof is carried out in three steps. We begin by excluding declared overloadingaltogether and assigning nullary operators the maximum of its declared scopes plus \delta".This leads to deterministic induced grammars, even if operators are used as operands. Thereason for this, brie
y, is that since overloading is absent, an operator symbol with declaredprecedence pi will be con�ned to only one layer i in the induced grammar. Thus, anypossible ambiguity must arise from the implicit overloading of the declared operator andthe nullary operator, or possibly the use of a derivation Ai �) �A�. Assuming � and � are

42non-empty strings not containing operator symbols, we end up with a skeleton grammarfor layer i as shown below. (Prolog syntax is used to describe the di�erent combinations of�xities and associativities; cf. �g. 4.1.)Ai ! fx j fy j xfx j xfy j yfx j xf j yf ARiARi ! fy ARi j B xfy ARi j ALiALi ! ALi yfx B j ALi yf j ANiANi ! fx B j B xfx B j B xf j BB ! atom j var j '(' Ai ')'As veri�ed by Yacc, this grammar is deterministic. By induction on the parse tree it thenfollows that the induced grammar, consisting of all layers, is also deterministic.Since the previous policy turned out to guarantee deterministic grammars, we now tryto relax the requirements on overloading and instead insist on the following two conditions:1. All declarations for the same symbol must have the same precedence.2. No symbol must be overloaded to be both left and right associative.Nullary operators are treated as before. The skeleton layer in the induced grammar nowtakes the following appearance:Ai ! fx j fy j non j right j left j xf j yf j ARiARi ! fy ARi j B right ARi j right ARi j ALiALi ! ALi yf j ALi left B j ALi left j ANiANi ! fx B j B xf j B non B j left B j B right j non B j B non j BB ! atom j var j '(' Ai ')'In this grammar non signi�es an overloaded operator that is actually declared to be fx,xfx, and xf. Likewise, right is overloaded as fy, xfy, and xf; left as fx, yfx, andyf. The induced grammar fragment is ambiguous, as witnessed by the sentential formB right left B:1. ARi) B right ARi) B right ALi) B right ANi) B right left B2. ARi) ALi) ALi left B) ANi left B) B right left B

43Slot Prec (o, Fix, Assoc)1 300 (�, pre, right), (+, pre, right), (!, post, left)2 400 (�, in, left), (=, in, left)3 500 (�, in, left), (+, in, left)Figure 3.6: Sorted operator table.Thus we need something stronger. Working backwards, we can remove the productionANi ! B right to make the grammar deterministic again, which leads to the policy justpresentedThe recent ISO draft proposes a di�erent set of restrictions to avoid ambiguities [Sco92].Probably neither solution is the �nal word. We hope our parser generator can be a usefultool to explore design alternatives.3.5 Application to De�nite Clause GrammarsThe De�nite Clause Grammars found in Prolog were originally designed for parsinghighly ambiguous grammars with short sentences, natural languages being the primaryexample. Since Prolog employs a top-down backtracking execution style, the evaluation ofDCGs will resemble the behavior of a top-down parser with backtracking.In compiler theory, interest is commonly focused on deterministic languages. The bene�tof Prolog as a compiler tool has been observed by Cohen and Hickey [CH87]. However,there are several reasons why a top-down backtracking parser is unsuitable for recognizingsentences such as programming language constructs.� A left-recursive production, such as E ! E � T , will send the parser into an in�niteloop, even though the grammar is not ambiguous. There are techniques for eliminatingleft recursion, but they enlarge the grammar, sometimes signi�cantly [ASU85]. Also,there is no clearcut way to transform the semantic actions correctly.

44� Unless the parser is predictive [ASU85] it may spend considerable time on backtrack-ing.� A backtracking parser requires the whole input stream of tokens to be present duringparsing.� Backtracking may be undesirable in a compiler where semantic actions are not idem-potent, for example in the generation of object code.Deterministic bottom-up parsers, on the other hand, run in linear time, require noinput bu�ering, and handle left-recursive productions as well as right-recursive. They do notnormally support ambiguous grammars. Nilsson [Nil86] has implemented a nondeterministicbottom-up evaluator for DCGs by letting the parser backtrack over con
icting entries inthe parse table.Our approach is to view De�nite Clause Grammars as attribute grammars , which havebeen studied extensively in connection with deterministic translation schemes [ASU85]. Interms of argument modes of DCG goals, synthesized attributes correspond to \output"arguments, while inherited attributes correspond to \input" arguments. S-attributedde�nitions, that is, syntax-directed de�nitions with only synthesized attributes, can beevaluated by a bottom-up parser as the input is being parsed. The L-attributed de�nitionsallow certain inherited attributes as well, thus forming a proper superset of the S-attributedde�nitions. Implementation techniques for L-attributed de�nitions based on grammarmodi�cations or post-traversals of the parse tree are known [ASU85]. In chapter 5 wedemonstrate how inherited attributes in a bottom-up parser can be handled either byassociating a function from inherited to synthesized attributes with nonterminals, or byusing coroutine facilities in the language.3.6 ImplementationWe have implemented the deferred decision parser generator in a standard dialect ofProlog. However, there is nothing about the method that prevents it from being incor-porated into any standard LR parser generator. There are three issues that need to be

45considered:1. The user has to be able to declare dynamic operators, like tokens are declared in Yaccusing %token.2. shift/reduce con
icts have to be turned into resolve actions. This can be done asa post-processing pass on the parse table using the item sets (y.output for Yacc).Recall that only con
icts involving dynamic operators are candidates | all othercon
icts have to be reported as usual.3. The parser accesses parse table entries through the procedure parse action.

46parse(File, Exp) :-open(File, read, Stream),clear_op, % clear the operator tableinit_scanner(Stream, InitScanState),parse(InitScanState, Exp),close(Stream).dynop_token(atom(Name), op(Name)).exp(E) ::= atexplist(E).exp(E) ::= exp(E1), op(I), exp(E2), { E = app(I,E1,E2) }.atexplist(E) ::= atexp(E).atexplist(E) ::= atexplist(E1), atexp(E2), { E = app(E1,E2) }.atexp(C) ::= number(C).atexp(V) ::= atom(V).atexp(E) ::= let, { begin_block }, dec, in, exp(E), end, { end_block }.dec ::= dec, ';', dec.dec ::= infix, number(D), id(I),{ D9 is 9-D, declare_op(I, infix, left, D9) }.dec ::= infixr, number(D), id(I),{ D9 is 9-D, declare_op(I, infix, right, D9) }.dec ::= nonfix, id(I),{ remove_op(I) }.id(N) ::= atom(N).id(N) ::= op(N).% Interface to the Operator Module: declare, remove and restore operators.ml_dcl_op(Name, Fix, Assoc, Prec, Old) :-(query_op(Name, F, A, P) -> Old = old(Name, F, A, P) ; Old = null),declare_op(Name, Fix, Assoc, Prec).ml_rem_op(Name, Old) :-(query_op(Name, F, A, P) -> Old = old(Name, F, A, P) ; Old = null),remove_op(Name, infix).ml_rest_op([]).ml_rest_op([null|T]) :- ml_rest_op(T).ml_rest_op([old(Name,F,A,P)|T]) :- declare_op(Name,F,A,P), ml_rest_op(T).Figure 3.7: Grammar subset for ML operator expressions.

474. Parsing PrologIn this chapter we study the syntactical properties of Prolog, a programming languagethat has been in use for more than �fteen years but still lacks a precise and readable formalsyntactic de�nition. The lack of a de�nition can be attributed to some subtle points inProlog's syntax that are not immediately obvious to the casual user.The use of the deferred decision parsing method, presented in chapter 3 avoids the prob-lems of earlier work and the restrictions presented in the more recent ISO proposal. Wepresent a context-free grammar for a variant of Prolog consisting of only 19 productions.Besides being completely deterministic, it has the advantage of being presented in a read-able, non-procedural form. The parser itself enjoys all the bene�ts of a standard LR parser,such as linear running time and complete separation from the tokenizer.4.1 IntroductionAt �rst, Prolog looks deceptively easy to parse. But study it more closely and youwill soon discover small problems, like the signi�cance of whitespace, or more challengingproblems, like operator expressions requiring arbitrarily long look-ahead, and eventuallysome really di�cult problems, namely ambiguous operator expressions.Back in 1984, when the �rst e�orts on a standardization of Prolog began, it was saidthat syntactical di�erences between Prolog versions could be trivially overcome, due to theavailability of the DEC-10 Prolog parser read.pl[O'K84]. Almost ten years later we �ndthat two of the most widely used Prolog systems are based on read.pl, but because ofchanges and bug-�xes disagree on some inputs. Because of the opacity of the parser, a350-line program with backtracking and its share of cuts, it's very hard for a user to knowexactly what the recognized language is.Reference manuals typically o�er a very ambiguous description of the language, acknowl-edged to be merely an approximation. The truth of the matter is, that we have yet to �nda description of Prolog's syntax that is deterministic and readable, both by humans and

48machines. Let us �rst make it clear that there is no, and never will be, a deterministicgrammar for Prolog, as the language itself is ambiguous. The ISO Prolog standardizationcommittee has recognized the multiple opportunities for ambiguity in operator expressions.Their draft standard has therefore de�ned restrictions on the syntax so that expressions canbe parsed from left to right without needing signi�cant backtracking or look-ahead. But,as we shall demonstrate, it is possible to relax these restrictions, not in the language per se,but on operator declarations, and obtain a deterministic grammar without sacri�cing theexpressive power of Prolog.4.2 The Structure of PrologThe part of the Prolog system that handles lexical and syntactical analysis is called thereader. There are at least four lexical categories in Prolog; variables, atoms, numbers, andpunctuation symbols. A variable is any sequence of alphanumeric characters (includingunderscore), starting with either a capital letter, or an underscore. An atom is uniquelyidenti�ed by its name, which is a sequence of characters, either alphanumeric starting witha lower case letter, or any of +-*/\^<>=`~:.?@#$&, or one of !, ;, [], {}, or any sequenceof characters delimited by single quotes. A number can be either an integer or
oat, andmany implementations include facilities for representing numbers in di�erent bases. Lastly,punctuation symbols include parenthesis, brackets, and a few others.In contrast to many other programming languages, there are relatively few syntacticcategories in Prolog. The most important of these are constants, terms, and compoundterms, as reviewed in chapter 2.A compound term in the form f(a1; : : : ; an) is said to be written in standard syntax. Ifcompound terms were written in standard syntax only, Prolog would be a trivial languageto parse, but a di�cult one to read. To make Prolog more readable, unary and binaryfunctors can be declared as operators of a given �xity | pre�x, post�x, or in�x | to allowthe functor to appear before, after, or between its arguments. The predicate op=3 is usedto declare an operator:

49AssociativityFixity left non rightpre�x fx fyin�x yfx xfx xfypost�x yf xfFigure 4.1: Prolog syntax for encoding �xity and associativity.:- op(precedence, type, name).The third argument gives the name of the operator. The �rst argument is an integerdenoting the operator's precedence. If the precedence is 0, the operator is \unde�ned",that is, removed from the list of declared operators. There is also an upper limit on theprecedence, usually set to 1200. The second argument to op=3, the type, encodes boththe �xity and the associativity of the operator (�g. 4.1). In this notation, f represents theoperator being de�ned, x represents a term with precedence less than f, and y a term withprecedence less than or equal to f.4.3 Subtleties of Prolog SyntaxIn this section we discuss some matters relating to Prolog that might not be obvious tothe casual user. The rules stated here apply to the family of Prolog implementations thatadhere to the so called \Edinburgh syntax" [BBP+82]. Since whitespace is important insome examples, we will use the symbol t to indicate any sequence of one or more whitespacecharacters.1. Compound terms written in standard syntax have precedence 0.2. Compound terms written in operator notation have the same precedence as theprincipal functor.3. If a pre�x-declared operator acts as a term, its precedence is unchanged. Any otheroperator acting as a term is assigned precedence 0.4. A quoted atom of the form 'char-sequence' is interchangable with char-sequence, ifchar-sequence itself is a legal atom.

505. Arguments to a functor must have precedence less than 1000.6. There cannot be a space between a functor and its argument list.7. If the argument to a pre�x operator is a parenthesized term, there must be a spacebetween the operator and the opening parenthesis.From the �rst two rules we can for instance conclude that +(X,Y) has precedence 0(rule 1) but X+Y has precedence 500 (rule 2), the usual precedence of +. As mentionedbefore, (X+Y) has precedence 0.Rule 3 implies that + + constitutes a precedence-based error because + has a pre�x,non-associative declaration, and thus the right + has precedence 500, which is too much forthe left +. The motivation for this rule is obscure. It does not appear to make Prolog anyeasier to use, and it certainly complicates the parsing process. In fact, SICSTUS Prolog,who used to implement this rule, have now discarded it [CWA+91].Rule 4 simply tells us that for instance 'a+' and a+ are not interchangeable because a+is not a legal atom. More importantly however is the fact that the comma operator , (astandard operator in every Prolog implementation) is not the same as the quoted comma','. The reason is simple: the comma is not a legal atom and hence must be quoted tobecome legal.Rule 5 is a consequence of the fact that the comma operator is an in�x operator ofprecedence 1000. Thus, f(X:-Y) is illegal, since :- has precedence 1200. Such a termmust be written as f((X:-Y)) or as f(:-(X,Y)). The comma is not only used to separatearguments in compound terms; it is also used as a delimiter in compound goals, tuples,(: : :) and {: : :}, and lists [: : :]. Have you ever tried to change the properties of thecomma operator? Your Prolog system will probably let you, but if it is based on the DEC-10 Prolog parser, which has all the uses of comma just mentioned hardcoded into it, yourdeclaration will be ignored.The last two rules (6 and 7) are related to each other: since a pre�x operator appliedto a parenthesized term looks a lot like a compound term it was apparently decided thatpre�x operators must be followed by a space, while functors must not. An example should

51clarify this. Consider the standard pre�x operator \+, which represents logical negation.The goal \+ (f(X),g(Y)) succeeds only if either f(X) or g(Y) fails. What would happenif we omitted the space and wrote \+(f(X),g(Y))? This would not be
agged as a syntaxerror. Instead, it would be interpreted as the functor \+ applied to the two argumentsf(X) and g(Y). Unless the programmer had de�ned rules for a predicate \+ of arity 2 |which is rather unlikely | the goal \+(f(X),g(Y)) would either generate a warning, orautomatically fail, regardless of the success of f(X) and g(Y), and the programmer will bevery confused.Let us elaborate on rule 3 a little bit more. As we shall see, allowing an operator to actas a term complicates parsing tremendously.Example 4.3.1: Consider the following operator declarations::- op(200, fx, u).:- op(400, yfx, b1).:- op(500, yfx, b2).:- op(300, yfx, b3).The table below shows some terms involving these operators, and their corresponding parseswritten in standard syntax. Notice that in all cases, we are using the fact that the in�xoperators b1, b2, and b3 have precedence 0 when used as terms.Term Parseu b1. u(b1)u b1 b2. b1(u,b2)u b1 b2 b3. b2(u(b1),b3)u b1 b2 b3 a. b1(u,b3(b2,a))Notice that once the operator u has been parsed, any predictive parser would need to knowif u should be treated as a term, or if the look-ahead symbol b1 should be its argument.At least four elements of look-ahead are required to determine the correct action for theoperator declarations given here. This example can be easily extended to create a situationin which the required look-ahead is arbitrarily large

52Example 4.3.2: Declare the following operators::- op(700, xf, #).:- op(600, xf, @).:- op(500, xfy, @).Will Prolog parse a @ # as @(a,#) or #(@(a))? Both parses are acceptable, although theDEC-10 Prolog parser read.pl would give you the �rst answer. It used to be that a well-known Prolog interpreter, whose reader was based on read.pl, returned the second answer.More recently they have decided to go back to the �rst answer again4.4 Rectifying PrologIn the previous section we examined a few syntactical curiosities of Prolog. Some ofthem make the language di�cult to parse and tricky to use. We can eliminate the problemsby making the following changes:1. Any quoted symbol is treated as an atom, which prevents it from being used as anoperator.2. If a symbol that is de�ned as a pre�x operator is to act as a functor, it must bequoted.3. If an operator is parsed as a term, that term is assigned a precedence equal to themaximum of its declared precedences plus a small \delta".The �rst condition removes the signi�cance of whitespace, which makes parsing a loteasier, and regularizes syntax for the user. The third condition guarantees some results ondeterministic grammars (see chapter 3) and also retains the
exibility of allowing operatorsto appear as terms.It should be mentioned that the precedence and/or parsing of certain terms changesunder condition 2. In standard Prolog, the term -(X) has precedence 0, since it is parsedas a functor applied to an argument. Under our system, -(X) has the same precedence asthe - operator, because it is seen as an operator acting on a parenthesized term. We wouldhave to write this as '-'(X) to enforce the functor interpretation. Also, a term like *(3,4),

53where * is de�ned as an in�x operator only, would yield the interpretation '*'(','(3,4)).A �nal example is -3 vs. -(3). In standard Prolog, these are not equal but in our systemthey are.We would like to point out that even though condition 2 simpli�es parsing and helpsthe user by avoiding the tricky problems demonstrated with \+ previously, it is not hard toimplement it in the traditional way, as we will show later.4.5 The Prolog GrammarLet us now turn to our proposed grammar. Fig. 4.2 shows the input to our parsergenerator DDGEN. The scanner we use is rdtok.pl[O'K90] with a minor modi�cation:rather than acquiring the whole list of tokens before parsing commences we get the nexttoken each time we perform a shift.The �rst two lines declares op as a dynamic operator; if atom(Name) is returned fromthe scanner and Name is present in the current operator table, the token is converted toop(Name). The comma is not considered a legal atom in Prolog, so we must also announcethat it too can be an operator (line 2).A Prolog program consists of a sequence of sentences (line 3 and 4). The keywordempty denotes an empty right hand side. Each sentence is a Prolog term, usually anoperator expression with :- as the principal functor, terminated by a full-stop token \.".The Prolog system will normally look at each sentence as it has been read, and performsome sort of action, for instance verifying that the head of a procedure is not a number or avariable, or taking care of goals like :- op(500,yfx,+). The call to action/1 serves thatpurpose.The bulk of the grammar describes the term, which can be either a compound term, apre�x, in�x, or post�x operator expression, a nullary operator, a variable, name, number,or string, a tuple (either with parenthesis or curly-brackets), a cons expression, or listexpression.

54Each term carries two synthesized attributes. The �rst one, T, holds the abstract syntaxtree for the term while the second attribute annotates the tree in the following way: if theoperator at the root of T is not a comma, the annotation is n, meaning \no comma". If theoperator is a comma, however, the annotation is c(C1,C2) where C1 and C2 are annotationsfor the left and right subtrees of T. There are two good reasons for doing this: The �rst oneis we don't have to describe argument sequences for compound terms, element sequencesfor lists, element sequences for tuples, and goal sequences for compound goals. The secondbene�t is that the comma operator is not hardcoded into the grammar and its propertiescan be changed by the programmer. Now, we don't necessarily advocate changing it, we'remerely pointing out the uniform treatment that follows. If the language designer wishes toprevent the user from tampering with the comma operator, it is easy to add such a testbefore calling the operator module.To convert a term to a list of arguments we use comma2list(Annotation, Tree,ArgList) where Annotation and Tree are input arguments, and ArgList is the output.comma2list(n, T, [T]).comma2list(c(C1,C2), (T1,T2), L) :-comma2list(C1, T1, L1),append(L1, L2, L),comma2list(C2, T2, L2).This, in combination with the univ operator =.., makes it easy to build the syntax tree.The semantic action for variables, T = '$VAR'(T1) takes advantage of the fact that thestandard procedures write/1 and writeq/1 prints '$VAR'(Var) simply as Var. This comesin handy when the abstract syntax tree needs to be written since variables are representedas var(Name) by the scanner, where Name is a quoted atom containing the variable's name.We use writeq/1 to make sure that what is printed can be re-read by read/1.If the language designer wishes to implement rules 6 and 7, mentioned in section 4.3, itcan done in the following way. The scanner already maintains a state structure containing,among other things, the next character in the input stream. This character can be passed

55dynop_token(atom(Name), op(Name)).dynop_token(',', op(',')).sentences ::= term(T,_), { action(T) }, '.', sentences.sentences ::= empty.term(T,n) ::= name(Name), '(', term(T1,C), ')',{ comma2list(C,T1,A), T =.. [Name|A] }.term(T,n) ::= op(Name), term(T1,_), { T =.. [Name,T1] }.term(T,C) ::= term(T1,C1), op(Name), term(T2,C2),{ T =.. [Name,T1,T2], (Name = ',' -> C = c(C1,C2); C = n) }.term(T,n) ::= term(T1,_), op(Name), { T =.. [Name,T1] }.term(T,n) ::= op(T).term(T,n) ::= var(T1), { T = '$VAR'(T1) }.term(T,n) ::= name(T).term(T,n) ::= number(T).term(T,n) ::= string(T).term(T,n) ::= '(', term(T,_), ')'.term(T,n) ::= '{', term(T1,_), '}', { T =.. ['{}',T1] }.term(T,n) ::= '[', term(T1,C), '|', term(T2,_), ']',{ comma2list(C,T1,A), append(A,T2,T) }.term(T,n) ::= '[', term(T1,C), ']', { comma2list(C,T1,T) }.name(T) ::= atom(T).name(T) ::= qatom(T).name([]) ::= '[', ']'.name({}) ::= '{', '}'. Figure 4.2: Prolog grammar.back to to the parser as an extra argument to the token just read, for instance atom(f,'(').It should also be propagated up as a third synthesized attribute for terms so that (1) theproduction for compound terms can verify that there is a left parenthesis following, and(2) the production for pre�x operators can verify that there is a whitespace following.Furthermore, an atom returned from the scanner must not be converted to a dynamicoperator if the atom is followed by a left parenthesis.

564.6 Implementation and ResultsThe grammar was given to our parser generator and had no con
icts, apart from theshift/reduce con
icts involving the dynamic operators that are deferred until parse time. Wehave tested the parser by reading several large programs, among them the parser generatoritself and the grammar just described, and writing the terms back out again to another�le. By recompiling the output we were able to compare it against the original binary,thus allowing us to quickly test the parser without having to worry about whitespace andrenamed variables.

575. Bottom-Up Evaluation of Attribute GrammarsWe describe two transformation methods for (strong) non-circular attribute grammarsthat allows them to be evaluated within the S-attributed environment of an LR parser.Traditionally the language designer, in order to get the evaluation done in one pass, hasbeen con�ned to various restrictions of attribute de�nitions. If a larger class of attributegrammars was required, the entire dependency graph had to be saved for a post-parsetraversal.Our methods represent a compromise in that attribute evaluation is normally performedon the
y except when, in some evaluation rule, the referenced attributes are unavailable,and the execution of the rule has to be postponed. Suspension and resumption pointsfor these evaluation rules can either be determined statically (method 1) or dynamically(method 2). For both methods, we guarantee that resumption takes place as soon aspossible.For the language designer it is now possible to continue using the one-pass model, butwith the added option of being able to express \complicated" dependencies seamlessly, onlypaying for the extra power where it is used. The methods presented here can be used asa preprocessor to any parser generator that supports synthesized attributes, for instanceYacc.5.1 Introduction and BackgroundAn attribute grammar [Knu68] extends a context-free grammar by attaching attributesto each grammar symbol and by associating evaluation rules to each production, specifyinghow an attribute value may be computed in terms of other attribute occurrences in the sameproduction. Among other things, attribute grammars have proved themselves useful in thespeci�cation of programming languages, thanks to their ability to convey context-sensitiveinformation.

58A context-free grammar de�nes a parse tree for each legal input sentence. In the tree,attributes can be thought of as extra �elds attached to each node. Evaluation rules thende�ne the value of an attribute in a node in terms of other attributes in child or parentnodes, a dependency we may depict with an arc to the referenced node. The evaluationproblem, that is, the process of assigning a value to each attribute in the tree, can then becompleted if the overall dependency graph has a partial order in which each attribute andits de�ning rule may be visited.In practice, parsing is done in one pass, either top-down or bottom-up, so that the parsetree does not have to be created explicitly. Likewise, attribute evaluation can also be done\on-the-
y" if a su�cient set of restrictions is imposed on the evaluation rules; for instance,if every attribute depends only on attribute values at the children of the node, then thecomputed attribute value is called \synthesized" and a bottom-up parser may perform theattribute evaluation as it is parsing the input. Such a subclass is called an S-attributedgrammar. Top-down parsers, in addition, are also capable of handling some \inherited"attributes (where an attribute depends on attribute values in ancestor nodes) thus de�ningthe larger subclass called L-attributed grammars. It is not true, however, that a top-downparser, such as an LL(1) parser is a more powerful speci�cation tool than an bottom-up,LR(1) parser [Bro74].Besides the obvious time and space savings obtained from the one-pass model, attributevalues can also be used to solve parsing con
icts, or assist in error recovery.5.1.1 Related WorkPrior work in this area can be divided into one-pass evaluators, post-parsing evaluators,and compromises thereof.Top-down parsers have a simple correspondence to L-attributed evaluation [ASU85].Evaluation of inherited attributes in a bottom-up parser is more di�cult but can for instancebe arranged by the insertion of so called \copy symbols" [Wat77]. One-pass evaluationmethods are surveyed by op den Akker et al [odAMT91]. Inherent in their design is the

59assumption that dependencies are no more complicated than that the attribute values ofthe \working frontier" of the parse tree can be kept on a stack so that evaluation can bedone in some left-to-right fashion [Boc76]. Therefore, these methods are restricted to theL-attributed grammars.Post-parsing evaluators save the entire parse tree, or its dependency graph, and are thuscapable of handling any non-circular grammar by executing the evaluation rules accordingto the order of the graph. An interesting variation on this method is described by Mayoh[May81]. He shows that attribute grammars can be reformulated as sets of recursivefunctions, taking the parse tree as an argument. Related ideas have appeared earlier byKennedy and Warren [KW76], and later by Courcelle et al [CFZ82]. Our �rst methoddi�ers in that the functions, which are passed as synthesized attributes, are created whileparsing, and only when the evaluation rules contains non-S-attributed constructs.Another related method is given in [JM80] where attribute grammars are analyzed to�nd out which attributes can be computed during an LR parse. The remaining attributes,called \unknown", are saved for a post-parsing evaluation phase. In contrast, our methodsare more \eager" because computation of unknown attributes is not necessarily put o� untilafter the parse.The functional parser generator FPG [Udd88] generates parsers for Lazy ML, a func-tional programming language with lazy evaluation. Due to the demand-driven nature ofthis evaluation method, attribute evaluation comes \for free" and works for all non-circulargrammars. Our second method is similar in the respect that resumption of suspended eval-uation rules is done automatically by the runtime system, but we use a coroutine constructto explicitly suspend rules. Thus, on the spectrum of labor division, our �rst method re-quires explicit suspension and resumption, but assumes nothing of the runtime system; oursecond method requires explicit suspension, but relies on a coroutine construct to \wakeup" procedure calls; and FPG, �nally, is completely transparent, but leaves all the work forthe lazy evaluator.

605.1.2 Summary of ContributionsIn this chapter we present two transformation methods that let a bottom-up parsersimulate the evaluation of strongly non-circular grammars and non-circular grammars,respectively. These two subclasses are for all practical purposes large enough and superiorto the subclasses developed for traditional one-pass evaluation, such as the commonly usedL-attributed grammars.The common theme for our methods is that evaluation of attributes is conducted bottom-up; when an evaluation rule needs (inherited) attributes, its execution is postponed untilthe referenced attributes are available. Because of this, the language designer has the fullpower of (strong) non-circular grammars at hand but does not have to pay the price for\complicated" dependencies in the evaluation rules, except in those parts of the grammarwhere they are used.The �rst method, based on the ideas by Mayoh [May81], and Kennedy and Warren[KW76], postpones evaluation rules by passing them to the ancestor node as synthesizedattributes. In addition to the algorithm we give a theorem to guarantee that attributeevaluation is not unnecessarily delayed and that the transformation is safe.The second method is in
uenced by ideas in [Udd88] and also by comments from thereviewers of [PVGK93]. While the method is conceptually easier to explain and implement,it assumes that the host language has a coroutine construct to delay the evaluation of aprocedure call until a speci�c condition has been met.5.2 De�nitionsWe recall the de�nition of a context-free grammar from chapter 2 as a four-tupleG = hVN ; VT ; S; P i where the set P � VN � V � consists of m productions and the p-thproductions is Xp0 ! Xp1Xp2 : : :Xpnp.

611. Z(v0) ! N(r1; l1; v1) : N(r3; l3; v3) fv0 = v1 + v3; r1 = 0; r3 = �l3g2. N(r0; l0; v0) ! N(r1; l1; v1) B(r2; v2) fv0 = v1 + v2; l0 = l1 + 1; r2 = r0; r1 = r0 + 1g3. N(r0; l0; v0) ! " fv0 = 0; l0 = 0g4. B(r0; v0) ! 0 fv0 = 0g5. B(r0; v0) ! 1 fv0 = 2r0gFigure 5.1: Attribute grammar de�nition for binary numbers.With each symbol grammar symbol X 2 V we associate a �nite set A(X) of attributes,partitioned into two disjoint sets, the synthesized attributes S(X) and the inherited at-tributes I(X). Terminal symbols have no inherited attributes. We de�ne the set of at-tributes of a production p as A(p) = fA(Xpk) j 0 � k � npg. When we wish to be explicitabout the occurrence of an attribute a 2 A(Xpk) we sometimes write ak , or even apk.Evaluation rules are statements in some language, attached to productions, specifyinghow an attribute apk may be computed in terms of other attributes. We associate thereforea goal gpka with each attribute apk. The goal is usually of the form apk = : : : where the righthand side contains references to other attributes, although Prolog speci�es the direction ofcomputation through so called modes. A rule is said to be in normal form if either k = 0and apk 2 S(Xp0), or k > 0 and apk 2 I(Xpk).An attribute grammar consists of a context-free grammar, a domain of attribute valuesand a set of evaluation rules.Example 5.2.1: Fig. 5.1 shows an attribute grammar de�nition for binary numbers. Whenattribute grammars are written in normal form one can always deduce whether an attributeoccurrence is synthesized or inherited by looking for their de�ning rule | only synthesizedattributes in the left-hand side and inherited attributes in the right-hand side have rules.In this example, the synthesized attributes l and v stands for \length" and \value",respectively. The inherited attribute r denotes the bit radix to which each binary digit isscaled.To �nd the value of a binary number then, one may �rst proceed bottom-up to computeall l's, then down again, assigning values to the r's, and �nally up again, adding up the v's

62Z(v0)! N(r1; l1; v1) : N(r3; l3; v3)� �6 �
	6N(r0; l0; v0)! N(r1; l1; v1) B(r2; v2)� �6 �� �6� �6� �6N(r0; l0; v0)! "B(r0; v0)! 0B(r0; v0)! 1
	6Figure 5.2: Dependency graphs for productions.For a production p, a dependency graph D(p) contains a set of vertices A(p) and an arca0 7! a only if attribute a depends directly on the value of attribute a0 by the evaluationrule of p. We say that a0 is a predecessor to a and a0 2 pred(a).Example 5.2.2: The evaluation rules in �g. 5.1 induce dependencies in the productions asshown in �g. 5.2The dependency graph D(T) for a parse tree T is formed by pasting together smallergraphs corresponding to the dependency graphs for the productions used in the deriva-tion. In general, if T is a parse tree with root node Xp0, D(T) is obtained from D(p)and D(T1); : : : ; D(Tnp) by identifying the vertices for attributes of Xpj in D(p) with thecorresponding vertices for the attributes in D(Tj), 1 � j � np.Example 5.2.3: The parse tree for the string \10.1" have the dependencies shown in�g. 5.3We will also have the need to consider dependency relations on attributes of grammarsymbols. Terminal symbols carry only synthesized attributes, so their relation is by defaultempty. For a parse tree T and its root X 2 VN , the dependencies among the attributes in X

63
"N(r,l,v) 1B(r,v)N(r,l,v) 0 " 1B(r,v) N(r,l,v) B(r,v)N(r,l,v) N(r,l,v)Z(v).

Figure 5.3: Parse tree and dependencies for \10.1".F(Z) = fZ(v)gF(N) = fN(r; l; v);N(r; l; v)gF(B) = fB(r; v); B(r; v)gF(0) = F(1) = F(:) = ;��?��?Figure 5.4: Dependencies for grammar symbols.can be speci�ed as the transitive closure of D(T) restricted to the attributes of X , that is,F (X) = D(T)+jA(X). Although there may be an in�nite number of parse trees associatedwith X , the fact that A(X) is �nite implies that the set of all F (X), henceforth denotedF(X), is also �nite.Example 5.2.4: For the attribute grammar in �g. 5.1 the symbols have the dependenciesas shown in �g. 5.4A composite graph D(p)[F (Xp1); : : : ; F (Xpnp)]

64Z(v0)! N(r1; l1; v1) : N(r3; l3; v3)� �6 �
	6� �?��?N(r0; l0; v0)! N(r1; l1; v1) B(r2; v2)� �6 �� �6� �6� �6� �? ��?N(r0; l0; v0)! "B(r0; v0)! 0B(r0; v0)! 1
	6Figure 5.5: Strong composite graphs.for a production p is obtained from D(p) by adding an arc to a0 from a whenever there isan arc to a0 from a in F (Xpj), 1 � j � np.A strong composite graph D(p)[F(Xp1); : : : ;F(Xpnp)]is formed by adding arcs from F(Xpi), de�ned as the union of the graphs in F(Xpi).Example 5.2.5: The strong composite graphs for the productions in �g. 5.1 are shown in�g. 5.5Attribute grammars can be characterized by means of their expressive power. Thefollowing is an incomplete list, starting with the strongest form.1. An attribute grammar is non-circular if, for all productions p, there are no cycles inany of the graphs D(p)[F (Xp1); : : : ; F (Xpnp)] for F (Xp1) 2 F(Xp1); : : : ; F (Xpnp) 2F(Xpnp).An algorithm for verifying that an attribute grammar is non-circular was �rst givenin [Knu71]. The problem has been shown to have exponential complexity [JOR75].

652. An attribute grammar is strongly non-circular if, for all productions p, there are nocycles in p's strong composite graph.An algorithm for strong non-circularity testing was (accidentally) �rst given in[Knu68]. Strong non-circularity can be veri�ed in polynomial time [CFZ82].3. An attribute grammar is L-attributed if it is strongly non-circular and the inheritedattributes of Xpj depend only on the attributes in I(Xp0)[A(Xp1)[� � � [A(Xpj�1).4. An attribute grammar is S-attributed if it does not contain inherited attributes at all.Attribute grammars with circular de�nitions are usually considered bogus as there is noplace to start the evaluation.Example 5.2.6: The following arti�cial example demonstrates an attribute grammar thatis non-circular, but not strongly non-circular.1. S ! E(a1; b1; c1; d1) fd1 = a1; b1 = c1g2. E(a0; b0; c0; d0)! 0 fa0 = b0; c0 = 0g3. E(a0; b0; c0; d0)! 1 fa0 = 1; c0 = d0gNotice that neither parse tree below has circular dependencies, but together they in-troduce a loop among the attributes in F(E), hence the example above is not stronglynon-circular. SE(a; b; c; d)0 SE(a; b; c; d)1

665.3 Transformation MethodsEvaluators can broadly be divided into two classes: those who perform evaluation on-the-
y | either by imposing restrictions as above or by being \oblivious" to the rules, likeYacc | and those who construct the dependency graph for the parse tree to perform apost-parsing evaluation stage.By default, LR-parsers that perform on-the-
y evaluation are limited to S-attributedgrammars due to the fact that the parse tree is built bottom-up and the \input" to theproduction, I(Xp0), is supplied \from above" thus being unavailable when the productionis reduced.We will consider two transformation methods that enable LR-parsers to handle strongnon-circular grammars (method 1) and non-circular grammars (method 2), respectively.Our methods represent a compromise between keeping all attribute information on the parsestack and building the dependency graph for the entire parse tree. Whenever possible, ourmethods will compute an attribute value as soon as all its predecessors become available.Ideally, all attribute values for a production would be computed at the time it is reduced,but the abovementioned problems with the absent inherited attributes sometimes forces usto postpone some of the evaluation, until the inherited attributes are available.The set of attributes in a production p that can be computed at reduction time, denotedReady(p), is inductively de�ned as the smallest subset of A(p) that satis�es� If apk; k > 0, has no predecessor in the strong composite graph for p then apk is inReady(p).� If apk 62 I(Xp0) and all its predecessors are in Ready(p), then apk is also in Ready(p).For a synthesized attribute a of X letUse(X; a) = fa0 j a0 2 I(X) ^ a0 7! a 2 F(X)gthat is, the set of inherited attributes of X that determines a. (Notice that strong non-circularity is used.)

675.3.1 Method 1: Synthesized FunctionsIn this section we present the �rst method for evaluating a strongly non-circular attributegrammar within a bottom-up (S-attributed) environment.Algorithm 5.3.1: Input: a set of productions with attributes and rules:Xp0(S0; I0) ! Xp1(S1; I1) : : :Xpnp(Snp ; Inp) fGpgwhere Sj = S(Xpj) and Ij = I(Xpj) respectively, and Gp is a set of goals gpka that computesattributes apk .Output: a set of productions with new attributes and rules:X 0p0(S 00) ! X 0p1(S 01) : : :X 0pnp(S 0np) fG0pgwhere jSj j = jS 0j j for 0 � j � np, and G0p is the new rule.Method: The general idea behind the transformation is that, since the the \input" tothe production, I0, is not available when p is reduced, any attribute depending on I0, inparticular the \output" of the production, S0, can in general not be computed until theancestor in the parse tree supplies the input. In accordance with this input-output view,we can then return, in place of S0, a set of functions that returns the synthesized attributethey replace, given the inherited attributes on which they depend.Productions are processed individually as follows: Let C(p) be the strong compositegraph for p. If the graph has a cycle, the algorithm must halt and announce that theattribute grammar is not strongly non-circular.Otherwise, new attributes are introduced: if Xpk is a terminal symbol, the lexicalanalyzer provides the synthesized attributes Sk, so naturally S 0k = Sk . However, for anonterminal Xpk, Sk is replaced by a equal-sized set of of synthesized functions S 0k. Eachfunction fpka 2 S 0k corresponds to the synthesized attribute a 2 Sk it replaces. The oldsynthesized attributes a 2 Sk in the right side of the production can then be computed byde�ning new goals gpka : a = fpka(args), where args are the attributes in Use(Xpk; a).

68procedure preds(a)beginif a is marked \unknown" thenmark a as \known"for each a0 such that a0 7! a 2 C(p), preds(a0)output (gpka)endendprocedure body(a)beginfor each a0 2 A(p), mark a0 as \unknown"for each a0 2 I0 [Ready(p), mark a0 as \known"preds(a)end Figure 5.6: De�nition of procedure body(a).It remains to describe how G0p is built. While Gp had no implicit ordering of the goalsbut rather served as a speci�cation, G0p is a sequence of goals computing the attributes ofReady(p), followed by a set of function de�nitions, one for each synthesized attribute inS0. Initially, G0p is empty. First visit each attribute a in Ready(p) in some linear orderimposed by C(p) and append gpka to G0p. Then append for each synthesized attributea 2 S0 a de�nition \fpka(args) = a where body(a)" of the corresponding fpka 2 S 00, whereargs are the attributes in Use(Xpk; a) and body(a) is a (possibly empty) sequence of goalsthat ultimately computes a (�g. 5.6).Example 5.3.1: Fig. 5.7 shows the result of applying algorithm 5.3.1 to the attributegrammar in �g. 5.1, based on the strong composite graphs in �g. 5.5.The reader may notice that the output from the system is no longer a value (namely thatof the binary string) but rather a function of no arguments, returning that value. Whilemost authors assume that the start symbol has no inherited attributes we have not felt theneed to impose such a restriction; if the returned function is not desirable, one may omitits construction for the start symbol as a special case

691'. Z(f10v)! N(f11l; f11v) : N(f13l; f13v) f r1 = 0; l1 = f11l(); l3 = f13l(); v1 = f11v(r1);r3 = �l3; v3 = f13v(v3);v0 = v1 + v3; f10v() = v0 g2'. N(f20l; f20v)! N(f21l; f21v) B(f22v) f l1 = f21l(); l0 = l1 + 1; f20l() = l1;f20v(r0) = v0 where (r1 = r0 + 1;v1 = f21v(r1);r2 = r0;v2 = f22v(r2);v0 = v1 + v2) g3'. N(f30l; f30v)! " f f30l() = l0 where l0 = 0;f30v(r0) = v0 where v0 = 0 g4'. B(f40v)! 0 f f40v(r0) = v0 where v0 = 0 g5'. B(f50v)! 1 f f50v(r0) = v0 where v0 = 2r0 gFigure 5.7: Attribute grammar for binary numbers using synthesized functions.CorrectnessAn important theorem follows immediately from the de�nitions of body(a) and Ready(p).Theorem 5.3.1: When all predecessors of an attribute a have been computed, a is alsocomputed as soon as the current production is reduced.Proof: The theorem has two sides.� First we must show that no unde�ned attribute value is referenced in the computationof a. If a 2 Ready(p) then this part follows from the fact that all predecessors of aare also in Ready(p) and must have been computed before a, since they are computedin the order of C(p). If a is computed inside the body of a function, this part followsfrom the de�nition of body(a) which ensures that the goals for all predecessors of ahave been generated before a's goal.� Secondly we must show that the computation of an attribute isn't unnecessarily\frozen" by being enclosed and passed up inside a function. For this part we noticethat the only attributes computed inside a function are those who transitively dependon the unavailable I(Xp0); the other attributes (that can be computed) are capturedby the de�nition of Ready(p)

70ImplementationWe have implemented algorithm 5.3.1 in Prolog as a front-end to our LR parser generatorDDGEN, which in itself generates Prolog parsers [PVGK93]. Together, they serve as areplacement for the traditional implementation of De�nite Clause Grammars, namely top-down parsing with backtracking.In Prolog, synthesized functions can be implemented either by passing goals and usingcall for application, or by creating new predicates with assert. In an imperative setting,like C with Yacc, the synthesized functions can be implemented with pointers to \closures",structures with a function pointer and a set of attribute variables holding bindings thathave already been made when the function is passed up. Closures have to be allocateddynamically but their space can be reclaimed immediately after the function has beenapplied.5.3.2 Method 2: CoroutinesThe second method is easier to explain and implement, but requires a coroutine constructin the language. For the purposes of this exposition we will use the rather self-explanatorypredicate when(Cond ;Goal) from SICSTUS Prolog [CWA+91]. When executed, this predi-cate blocks the execution of Goal until Cond is true. The idea of the transformation is thatevaluation rules are \frozen" until their referenced attributes are available.Algorithm 5.3.2: Input: a set of productions with attributes and rules:Xp0(S0; I0) ! Xp1(S1; I1) : : :Xpnp(Snp ; Inp) fGpgwhere the notation is the same as in the previous algorithm.Output: The same productions, but with new rules G0p.Method: For each goal gpka 2 Gp add the new goal \when(C; gpka)" to G0p where C isthe condition that tests whether all referenced attributes in gpka have been computedExample 5.3.2: The result of applying the algorithm to our running example (�g. 5.1)can be seen in �g. 5.8.

711'. Z(v0) ! N(r1; l1; v1) : N(r3; l3; v3) fwhen((nonvar(v1); nonvar(v3)); v0 = v1 + v3);r1 = 0;when(nonvar(l3); r3 = �l3)g2'. N(r0; l0; v0) ! N(r1; l1; v1) B(r2; v2) fwhen((nonvar(v1); nonvar(v2)); v0 = v1 + v2);when(nonvar(l1); l0 = l1 + 1);when(nonvar(r0); r2 = r0);when(nonvar(r0); r1 = r0 + 1)g3'. N(r0; l0; v0) ! " fv0 = 0; l0 = 0g4'. B(r0; v0) ! 0 fv0 = 0g5'. B(r0; v0) ! 1 fwhen(nonvar(r0); v0 = 2r0)gFigure 5.8: Attribute Grammar for binary numbers using coroutines.Although the evaluation rules are supposed to be written in some generic programminglanguage, we have used the Prolog test predicate nonvar=1 to block some of the evaluationrules until their referenced attributes become boundCorrectnessWe notice that theorem 5.3.1 also holds for this algorithm. In addition to the previousalgorithm, this method also handles grammars that are non-circular. One might actuallyuse a circular attribute de�nition and end up with a set of goals, suspended and waiting forsome (external) agent to bind a variable to get the evaluation rolling.ImplementationThe only implementation issue for the second method is the extraction of referencedvariables in a goal. For an imperative or functional language, where assignments areused almost exclusively in the evaluation rules, the referenced variables are simply all thevariables in the right-hand side of the assignment.For a relational language however, we depend on mode declarations (cf. section 2.2.5).The referenced attributes in a goal are then simply the variables appearing in c-modedargument positions. As an example, suppose the procedure lookup(Name;Value;Table) is

72used in a goal with a mode declaration (c;d; c). We can then deduce that Name and Tableare referenced attributes, while Value is the computed attribute.

736. Mutual Exclusion AnalysisA technique to detect that pairs of rules are \mutually exclusive" in a logic program isdescribed. In contrast to previous work our algorithm derives mutual exclusion by lookingnot only on built-in, but also user-de�ned predicates. This technique has applicationsto optimization of the execution of programs containing these rules. Additionally, theprogrammer is less dependent on non-logical language features, such as Prolog's \cut", thuscreating more opportunities for parallel execution strategies.6.1 IntroductionWhen a relation is de�ned by several rules in a logic program, there is sometimes theopportunity to realize that if tuples of a certain pattern are derived by one of these rules,no tuples of that pattern can be derived by other rules. This presents an optimizationopportunity.The problem of \mutual exclusion", or disjointness, of rules has certain similaritiesto constraint inference, but is actually quite a di�erent problem. Both may study orderconstraints, such as X > Y , but constraint inference attempts to use properties of \>",such as transitivity, to infer additional constraints. However, in mutual exclusion detection,the basic fact available is that, for a given pair (X; Y) it is not possible that both (X >Y) and (Y > X) hold: they are mutually exclusive. In addition, patterns of mutualexclusion can occur without regard to any ordering concept. For example, we might havetokentype(X; number) and tokentype(X; identi�er) that are known or given as disjoint ontheir �rst argument.Let us mention a few applications of mutual exclusion detection.1. In a top-down execution strategy with sideways information passing, if a tuple forsome subgoal1 qc:::d(X; : : :; Z) is derived using one rule for q and it is known that all1We use the notation that superscripts c and d denote \constant" (ground) and \don't know"-argumentsat the time the subgoal q is \called."

74rules for q are mutually exclusive on their �rst arguments, then none of the remainingrules need to be tried with this value of X .Detection of mutual exclusion is particularly useful when a goal matches two or morerules with recursive de�nitions | if a recursive invocation happens when other ruleshave yet to be tried, the execution engine must save backtracking information incase the selected rule fails. But if the rules are mutually exclusive to each other,such information can be discarded if the success of all subgoals appearing beforethe recursive call contradicts the other rules. This creates more opportunities fortail recursion optimization [War86] and will also prevent the execution engine fromwasting time on the other rules, in case all solutions are asked for.2. In a bottom-up execution strategy the union of relations from mutually exclusive rulesis a disjoint union; duplicates cannot occur.3. In a logic language that contains the non-logical \cut" operation, which is explicitin Prolog, and implicit in some others, there is a distinction drawn between \green"cuts and \red" cuts. Recall that \cut" in Prolog is a directive to the executionengine to cancel certain backtracking activities that would normally have occurredin the future. A cut is said to be \green" if the cancelled backtracking could nothave produced any additional solution tuples (for reasons known to or believed bythe programmer), otherwise it is \red". Red cuts are often considered bad style formuch the same reason as \go to"s in a procedural language. Mutual exclusion analysiscan provide a su�cient condition for cuts to be \green". In a reasonably expressivelanguage (say SQL) the question is undecidable (by essentially the same argumentsthat show undecidability of \domain independence").4. The detection of functionality [DW89] represents an important space and time sav-ing optimization for Prolog-like languages. Various forms of functionality have beenconsidered; the algorithm by Debray and Warren de�nes functionality as when \allalternatives produce the same result, which therefore need not be computed repeat-edly" [DW89]. With this information at hand, the execution engine does not need

75to waste time on, or save state information for �nding alternative solutions. Debrayand Warren demonstrate that a predicate is functional by showing that each individ-ual clause is functional, and that the clauses are pairwise mutually exclusive. Thelatter requirement is not a necessary, but su�cient condition. Information producedby the methods outlined in this chapter can therefore improve the precision of theiralgorithm.5. In a parallel execution strategy with or-parallelism, a set of processors working onmutually exclusive rules can be relieved of their duties as soon as one of them succeeds.Also, in the Andorra model [HB88], goals with only one matching clause are executedbefore other goals. Static analysis has been used to detect such properties of goals[CWY91, PN91].After discussing related work and establishing some required terminology, we illustratethe ideas of our technique by means of a small example before describing the full algorithm.A larger example concludes the chapter.6.1.1 Related WorkThe idea of recognizing mutual exclusion in Prolog programs has been considered byHickey and Mudambi [HM89], Debray and Warren [DW89], and Van Roy [VR90]. Theirmethods works on the level of primitives, that is, only built-in predicates such as arithmeticcomparisons and uni�cations are examined. In contrast to earlier work, our algorithm alsoexamines user-de�ned predicates, even those with recursive de�nitions.Several methods for static or dynamic inference of determinacy in the parallel languageAndorra have been proposed [PN91, CWY91, KT91]. In the Andorra model, a goal isdeterminate if it has at most one matching rule; thus the e�ort has been directed intochecking whether two or more rules can satisfy a goal invocation. Whether our method,which is based not only on the information in the head of the rule, but also the presenceof mutually exclusive subgoals in the bodies, can be useful for this purpose, remains to beexplored.

76A related topic, that of detecting functionality2, has been investigated by Debray andWarren [DW89], Sawamura and Takeshima [ST85], and Mellish [Mel85]. A functionalpredicate is one where all alternatives produce the same result. The notion is relatedto mutual exclusion, but is not the same, as the following two rules demonstrate.son(X; Y) male(X); father(X; Y):son(X; Y) female(X);mother(X; Y):A goal \ son(carl ; Y)" could potentially have several solutions for Y | one for each ofCarl's sons | although only the �rst clause is applicable. Therefore son is determinate,but not functional.Various methods for constraint inference in logical rules have been proposed [UVG88,BS89a, BS89b, KKR90, Las90, SVG91, VG91, BS91], but to our knowledge none havebeen implemented. The performance of our algorithm could be enhanced in practice if suchan inference system were available, by simple rule transformations: whenever a constraintc(X; Y) is inferred to hold for the head of a rule, append it explicitly as an additionalsubgoal. Then run our algorithm as described on the resulting set of rules.6.1.2 Summary of ContributionsA new technique for recognizing mutual exclusion among rules in logic programs ispresented. While in general the problem is undecidable, a conservative analysis works onmany programs, such as databases, natural language parsers, or any type of program wherepredicates operating on a certain domain divide it into equivalence classes.Previous researchers have considered what we call primitive mutual exclusion, that is,the analyzer only looks at built-in predicates such as \=" or \>". In contrast, our workfacilitates a notation for propagating mutual exclusion information to user-de�ned predi-cates, even when they have recursive de�nitions. (Without recursion, a simple unfoldingstrategy would reduce the problem back to recognizing primitive mutual exclusion.)2Sometimes called determinacy by some authors. We reserve this term for goals that have mutuallyexclusive rules.

77Output from the analysis can be used to optimize various execution strategies. Forinstance, if all rules of a goal are mutually exclusive to each other, a top-down interpretermay at a certain point be able to commit to the rule it is working on. In languageswhere recursion is the only looping construct, such information could mean the di�erenceof executing in constant space as opposed to space being linear with time.6.2 De�nitionsFollowing the standard terminology of [Llo87] some additional terms are de�ned for thischapter.The position of a term t in an atom A is given by the relation A 7�! t where is asequence of numbers that \spells" the argument path to t in A (\Dewey notation"). Thehead of a sequence is denoted hd(). As an example, if A is the atom p(X; g(X; Y))we have both A 17�! X and A 2:17�! X . The relation \7�!" is transitive: if A 17�! t1 andt1 27�! t2, it follows that A 1 27�! t2.The projection operation \�" from relational algebra is extended in the following man-ner. If 	 = h 1; : : : ; ki is a tuple of paths, and A is an atom with a relation R then�	(R) = ht1; : : : ; tki where A i7�! ti. Sometimes it is convenient to have a relation or atuple conform to the scheme of another relation; we use the customary notation �R(S)to mean the projection of S onto R's columns, and �[S] for the components of � in theattributes of S.The notation \RkS" means that the relations R and S are disjoint.Variables appearing in c-moded argument positions of rule heads are of particularinterest to us. We restrict the \7�!"-relation to such ground variables as follows: ifh�1; : : : ; �ni is the mode tuple for a predicate p and p 7�! X , then p 7�!c X holds i��hd() = c.

786.2.1 Rule/Goal GraphsThe input program is stored in a data structure called rule/goal graph. A rule/goalgraph is basically a call graph for the program where rules and goals have been madeexplicit. Starting with the program's goal rule, which we can assume to be of the form\ B" for simplicity, we create a start goal node for B. If there is a rule A B1; : : : ; Bnsuch that A = B�, then �(A B1; : : : ; Bn) constitutes a rule node and becomes a childof B. The rule node itself becomes the parent of n goal nodes, one for each subgoal in thebody of the rule.Goals are considered equal up to renaming of variables; if a goal already has a node inthe graph we don't expand it further but rather create a cyclic edge to the variant subgoal.It is helpful to think of the rule/goal graph as a directed acyclic graph with some occasionalbackarcs. The \leafs" in the graph then corresponds to goals for built-in procedures suchas \=", \>", true, or extensional database (EDB) predicates.6.3 Deriving Mutual ExclusionTwo nodes in the rule/goal graph are said to be mutually exclusive if the relations theyrepresent are disjoint. It is convenient to think of mutual exclusion not only between tworules, but also between a rule and a goal, or between two goals. Thus, mutual exclusion isa symmetric binary relation that can be represented by an edge between two nodes in therule/goal graph.In �g. 6.1 we see the rule/goal graph for a program and its goal, along with some modeinformation. Ultimately we are interested in deriving a mutual exclusion between all rulesof max (�g. 6.1c) to show that it is determinate.Underlying the mutual exclusion between two intermediate nodes is always some initialmutual exclusion between two built-in goals. When variables appear in the built-in goalsit is essential to show that the variables in the second goal would have been bound in thesame way as in the �rst goal, before we exclude the second goal.

79
(a) �� ��max (X; Y; Z)max (X; Y; Y) X � Y�� ��X � Y max (X; Y;X) X > Y�� ��X > Y����? HHHj?12 34 5
(b) �� ��max (X; Y; Z)max (X; Y; Y) X � Y�� ��X � Y max (X; Y;X) X > Y�� ��X > Y����? HHHj?12 34 5####
(c) �� ��max (X; Y; Z)max (X; Y; Y) X � Y�� ��X � Y max(X; Y;X) X > Y�� ��X > Y����? HHHj?12 34 5Figure 6.1: Propagation of mutual exclusion (denoted by thick edges) in therule/goal graph for the program fmax (X; Y; Y) X � Y;max(X; Y;X) X > Y g and the goal \ max c;c;d(X; Y; Z)."In general we do not have to ensure that all variables in the built-in goals become bound;only certain variable positions are critical for establishing mutual exclusion. For instance,only X needs to be ground to make the subgoals (X = [0jT]) and (X = [1jT]) mutuallyexclusive. If we think of the nodes as representing relations, we can state what the criticalpositions are by projecting on the interesting columns. For instance, the requirement for theinitial edge between node 4 and 5 in �g. 6.1a is �1;2(�4)k�1;2(>5). (Relations are subscripted

80according to the nodes they appear in.) This states that the �rst and second column in therespective relations are necessary to demonstrate the mutual exclusion. Another edge, notshown in �g. 6.1 to simplify the exposition, is from node 5 to itself, with the requirement�1;2(>5)k�2;1(>5). This simply states that \>" is anti-symmetric.We will now illustrate how the mutual exclusion between �4 and max 3 can be derived,based on the existing mutual exclusion of �4 and >5. It is convenient to think of this stepas trying to lift the edge in �g. 6.1a along its right side. The intuition behind this move isthat a node n may be mutually exclusive with a rule node if n is mutually exclusive withat least one of the subgoals of the rule. (The other case, showing mutual exclusion betweena node n and a goal node requires that n is mutually exclusive with all rules for the goal.)We must now keep track of what happens to the variables X and Y as the goal >5is \sucked up" into its parent rule. Notice �rst that only the �rst and second argumentpositions of max 3 are speci�ed as having ground mode. If the variables in the goal of max 3are to be ground, they must pass through c-moded argument positions in the head. In thiscase, both variables do appear in c-moded positions of the head: max 3(X; Y;X) 17�!c Xand max 3(X; Y;X) 27�!c Y both hold. The condition for mutual exclusion between relations�4 and max 3 can be now be stated as follows�1;2(�4)k�1;2(max3) �1;2(�4)k�1;2(>5):Since the right hand side is already given, the conclusion follows immediately.In the next step the algorithm would try to lift the right side of the edge in �g. 6.1band show the mutual exclusion between �4 and max 1. This fails however, since �4 is notmutually exclusive with all the rules of max 1 (in particular max 2!). Not being able to makeany more progress on the right side of the edge, it is time to start working on the left side.The rules max 2 and max 3 are candidates for mutual exclusion because node max 3 is alreadymutually exclusive with �4, one of max 2's subgoals. The variables in the goal appear inc-moded positions in the head of the rule, thus�1;2(max2)k�1;2(max3) �1;2(�4)k�1;2(max3):

81Again, the conclusion follows immediately, and, as we shall see in the next section, thatis always the case. To �nd out if max is determinate we could now ask the question: isthere a �xed set of argument positions that di�erentiates all rules of max, that is, is therea 	 such that �	(max 2)k�	(max 3)? The answer is yes, since 	 = h1; 2i has been shown todo so.While we hope that this small example has illustrated the principles of our method, thescenario is generally more complicated because of the ways variables in the built-in goalsare aliased as we work our way up the graph. In the next section we state the full algorithmand discuss its complexity.6.3.1 Algorithm for Propagating Mutual ExclusionA set needs processing is used to hold triples of the form hx; y; ui, representing mutualexclusion between x and y. Since rules may have several goals serving as mutual exclusionwitnesses, we maintain a third element u which is the node used in the process of addingthe edge from x to y. Without it, some opportunities may be missed because an incorrectassumption was made about what the distinguishing goal was.After the rule/goal graph has been built, \leaf" nodes are scanned and used to accessa table with requirements for mutual exclusion between built-in goals. When applicable,these requirements are added as initial axioms to a database mutex facts. For instance,one entry in the table might read \for two goals (V < m) and (W > n) (where m and nare integers) the axiom �1(V < m)k�1(W > n) can be added if m � n."Finally, for each pair (x; y) of leaf nodes that lead to an initial axiom, the triple hx; y; iis added to the set needs processing.The main algorithm consists of picking an edge and trying to lift it up along one of itssides.

82while needs processing 6= ; dolet hx; y; vi be an element of needs processing;if not lift right(x; y) then lift right(y; x);needs processing := needs processing � fhx; y; vig;end.In the function lift right(x; y), we will use the function parents(y) to mean the set ofimmediate predecessors of a node. (As the name implies, parents(y) does not return v ifthere is a backarc from v to y.) Since goal nodes can have more than one parent, liftingthe right side of an edge can in general be done in more than one way, the e�ect beingthat the current edge of needs processing is replaced with zero or more new edges. Ifno mutually exclusive edges are derived between x and any parent of y, lift right returnsfalse to indicate that no more progress can be made on this side and that it is time to startlifting the other side.function lift right(x; y)progress := false;for all p 2 parents(y)if hx; p; yi 62 needs processing thenprogress := (progress or try(x; p; y));end;return progress ;end;The function try(x; p; y) attempts to derive mutual exclusion between nodes x and p,based on the existing mutual exclusion of x and y, where p is a parent of y.When p is a rule node, only one of its goals needs to be mutually exclusive with x. Thatgoal is y. If the critical argument positions of y can be propagated to the head of p we cansafely establish a mutual exclusion between x and p. We use the relation prop(y;	p) forpropagating the critical argument positions of y (denoted 	y) to the corresponding positions

83in p (denoted 	p). The de�nition of the prop relation, being rather technical, is given later(cf. de�nition 6.3.2).The other case, when p is a goal node, requires that x is mutually exclusive with allrules p1; : : :pk of p. In the relational view, since p is the union of all the pi relations, thesame column numbers used to di�erentiate x and p must be used to di�erentiate x from allpi's. Hence, a �xed set of argument positions 	p is used for this purpose.function try(x; p; y)if p is a rule node (with y as one of its goals) thenfacts := f�	x(x)k�	p(p) such that �	x(x)k�	y(y) & prop(y;	p)g;else (p is a goal node with rules p1; : : : ; pk)facts := f�	x(x)k�	p(p) such that �	x(x)k�	p(p1) & � � �& �	x(x)k�	p(pk)g;if jfactsj > 0 thenneeds processing := needs processing + fhx; p; yig;add facts to mutex facts;return true;else return false;end;When the algorithm has traversed the entire rule/goal graph, queries about mutualexclusion between nodes can be answered using mutex facts. As an example, to �nd outif a goal g is determinate, that is, whether all its rules are pairwise mutually exclusive, wecan use the following function.function determinate(g)(g is a goal with rules r1; : : : ; rk)for all pairs (ri; rj)if there is no 	g such that (�	g(ri)k�	g(rj)) 2 mutex facts thenreturn false;return true;end;

846.3.2 Termination and ComplexityTwo properties of the algorithm guarantee termination.1. The current mutual-exclusion edge, represented by the triple hx; y; vi, is always re-placed by zero or more new edges.2. New mutual-exclusion edges have at least one node closer to the root of the rule/goalgraph, and such edges are not propagated across backarcs.To derive an upper bound on the time complexity of the algorithm we observe that notriple hx; y; vi is processed more than once. With n nodes in the rule/goal graph therecan be at most n3 such triples. However, the time to process one triple depends on howmany arguments appear in the relevant nodes, as mutual exclusion is checked for variouspermutations of those arguments. Assuming the number of arguments in any relation neverexceeds some prede�ned constant, the time per triple can be considered O(1). In conclusion,our algorithm is guaranteed to terminate in so-called semi-polynomial time (O(n3)), i.e.,polynomial in the size of the rule/goal graph and exponential in the maximum arity of anyrelation in the program.6.3.3 CorrectnessAs already pointed out, the mutual exclusion detection problem is, in general, unsolvable(cf. [HM89] for an example) and hence no complete algorithm exists. Soundness can beveri�ed by making sure that the function try does not derive a mutual exclusion between twonodes when in fact they are not mutually exclusive. In the proof, we study variable bindingrelations. These are relations whose attributes corresponds to the variables appearing in anode, and whose values represent possible bindings for the variables. For a precise de�nitionof variable bindings, see [Ull89, page 748].Example 6.3.1: If node n contains the goal p(f(X); g(h(Y); X)), and is described by therelation f(f(a); g(h(c); a)); (f(f(a)); g(h(d); f(a)))g;then the variable bindings are Vn = f(a; c); (f(a); d)g with the scheme fX; Y g

85
�� ��Vyy: Vpp: ?��	 @@R: : : : : : ����Vxx:(1) Vy1y1: Vyk yk :�� ��Vpp:����+ QQQQs: : : ����Vxx:(2)Figure 6.2: Proof scenario 1 and 2.De�nition 6.3.1: In a rule p0 p1; : : : ; pm the variable bindings V 0 for p0 can be describedin terms of a natural join between the variable bindings Vi for the subgoals in the body:V 0 = V1 1 � � � 1 Vm (cf. [Ull89, page 751])Lemma 6.3.1: If R = R1 1 � � � 1 Rm then �Ri(R) � Ri.Proof: Assume by contradiction that there is a � in R such that �[Ri] is not in Ri. Thisimplies that �'s attributes didn't agree with Ri. However, this can't be true for otherwise� would not have been in R in the �rst placeTheorem 6.3.2: Mutex facts is sound.Proof: By induction on the height of the rule/goal-graph, modulo backarcs.Basis. The base case is two \leaf" nodes, x and y, representing built-in goals. In thiscase, it is assumed that the initial axioms describing the mutual exclusion between built-ingoals are correct. These axioms are statements of the form �	x(Vx)k�	y(Vy).Induction. Consider facts added by the function try(x; p; y) where p is a parent of y.The rest of this proof proceeds in two separate cases, �g. 6.2, situations (1) and (2):1. p is a rule node, with node y as one of its subgoals. The inductive hypothesis isthat �	x(Vx)k�	y(Vy), i.e., �	x(Vx) \ �	y(Vy) = ;. By de�nition 6.3.1 we haveVp = � � � 1 Vy 1 � � �. From lemma 6.3.1 it follows that �Vy(Vp) � Vy. Thus, with the

86inductive hypothesis, �	x(Vx)\�	y(�Vy(Vp)) = ;. Since the variables in y must appearin the head of the rule we can simplify to �	x(Vx)\�	y(Vp) = ;, i.e., �	x(Vx)k�	y(Vp),which is what we wanted to show.2. p is a goal node with rule nodes y1; : : : ; yk. Again, the inductive hypothesis is that�	x(Vx)k�	y(Vyi) is correct for i = 1 : : :k. (Note that 	y is applied to all rules.)As before, the inductive hypothesis may also be stated as �	x(Vx) \ �	y(Vyi) = ;,i = 1 : : :k. Hence, �	x(Vx) \ (Si �	y(Vyi)) = ;. Since projection distributes overunion, �	x(Vx) \ �	y(Si Vyi) = ;. It remains to show that �	y(Si Vyi) = �	p(Vp).Intuitively, the left hand side of this conjecture represents a set of values found byreaching inside the Vyi 's and the question is, can these values also be found inside Vp?Observe that, by construction, the rule heads in y1 : : :yk are various instances of thegoal in node p. Therefore, the same value held by a variable Y in some rule head mayalso be found in some variable Z in the goal node (although the value might be more\embedded"), provided, of course, that Y is found in the same position in each andevery rule head (hence 	y). More formally, let �i be the uni�er between the goal nodeand rule head i. If Z=ti 2 �i and ti �7�! Y , i = 1 : : :k, then � y(Vyi) = ��+ y (Z)6.3.4 Description of propWe now turn to the speci�cation of prop, used by the function try in section 6.3.1. Theproblem we face is to keep track of certain variable positions for two disjoint built-in goals,and make sure that when they both can be invoked from two di�erent rules, only one ofthem can succeed since the variables will be bound to the same value (whatever that valueis). The relation prop is the sole mechanism used for describing how the path to thesevalues change as we move from one node to another in the rule/goal-graph.In the proof we have already outlined a way to keep track of values within variables.Variable bindings were introduced in the proof simply because it was easier to describe howvariable values, rather than full relations, are propagated from subgoals to the head of therule (de�nition 6.3.1).

87To determine the position of a value inside a literal we only need to append the variable'sposition in the literal to the values position in the variable. The reader may verify that thefollowing de�nition of prop captures the above ideas.De�nition 6.3.2: Let H G1; : : : ; Gk be a rule where a the position of some Gi needsto be propagated to a corresponding position 0 in H .prop(; 0) = ��; Gi �7�! X; var(X); H �07�!c X; 0 = �0�:To simplify the notation we will \lift" prop to work on tuples of paths, prop(;	0), withthe obvious component-wise meaningExample 6.3.2: Consider the rulesq(f(X; g(Y))) Y > 0:p(U; V; Z) q(f(X;Z)):The original critical position for \Y > 0" is \1" which corresponds to Y . When propagatedto the head of q, Y 's position becomes \1.2.1", hence prop(1; 1:2:1) holds for q's rule. Aswe try to follow the path \1.2.1" in the subgoal of p (a more general atom than q's head)we run into Z after \1.2". Mapping \1.2" to the head of p gives us \3" (Z's position in thehead) so the critical argument position is now \3" appended with the trailing \1". Henceprop(1:2:1; 3:1) holds for p's rule6.4 A Larger ExampleThe program in �g. 6.3 implements a parser for a small natural language. All queriesare assumed to be ground. In the program, the rules for np2 specify two ways to form anoun phrase. Being able to follow only one branch at a time, a top-down interpreter wouldpick the �rst rule and save backtracking information on the stack so that it can go backand try the second rule, in case the �rst one fails. Once the interpreter has managed tosolve adj it is possible to discard the backtracking information just created, since adj andnoun are mutually exclusive in their �rst argument. No system today, that we are awareof, recognizes this opportunity.

88s(L) np(L;R); vp(R;):np(L;R) det(L; T); np2(T;R):np(L;R) np2 (L;R):np2 (L;R) adj (L; T); np2(T;R):np2 (L;R) noun(L;R):vp(L;R) verb(L;R):vp(L;R) verb(L; T); np(T;R):det([thejR]; R):det([ajR]; R):adj ([new jR]; R):noun([codejR]; R):noun([bugsjR]; R):verb([hasjR]; R):Figure 6.3: Parsing program.Since np2 is recursive, a top-down interpreter that doesn't recognize the mutual ex-clusion would generate an amount of backtracking information that is proportional to thenumber of adjectives in the input string. This information stays around until the user issatis�ed with the answer, and quits. If all solutions are asked for, the interpreter wouldstart a series of meaningless attempts on the second rule for np2, which we know will fail.We will now trace the execution of our algorithm for the parsing program, andsee how the mutual exclusion between the two rules of np2 is derived. The rule/goalgraph for the interesting part of the program can be seen in �g. 6.4. Initially, allleaf nodes (16, 22, and 20) are mutually exclusive with each other, provided that thevariable L is bound. Stated in terms of our axioms, we start with the initial mu-tex facts = f�1(16)k�1(22); �1(16)k�1(20); �1(22)k�1(20)g and needs processing setto fh16; 22; i; h16; 20; i; h22; 20; ig.The table in �g. 6.5 shows the edges picked from the needs processing set, along withthe new mutual exclusion facts added, and how they were derived. After the execution,we can query the function determinate with the goals noun18 and np2 12. In both cases,the answer is true. For the entire program, the algorithm would also discover that np is

89
�� ��L = [new jT]16 �� ��L = [codejR]22 �� ��L = [bugsjR]20adj (L; T) L = [new jT]:15 ? noun(L;R) L = [codejR]:21 ? noun(L;R) L = [bugsjR]:19 ?�� ��adj (L; T)14 �� ��noun(L;R)18? ���	 @@@Rnp2 (L;R) adj (L; T);np2 (T;R):13 np2 (L;R) noun(L;R):27? ?

�� ��np2 (L;R)12�����+ QQQQQs?6
Figure 6.4: Part of the rule/goal graph for the parsing program.determinate.6.5 LimitationsAt the moment, we are not even trying to derive mutual exclusion if a local variable ofa test goal, which does not occur in a bound argument of the head of the rule, would beinvolved. The following program illustrates why this is unsound, in general.q(b): q(c): r(a; b): s(a; c):p(X) q(Y); r(X; Y):p(X) q(Y); s(X; Y):Assume that p is called with its argument ground. Even though the relations for r and sare disjoint, and are only called with ground arguments, it is not correct to say that the two

90hx; y; vi New Facts Derived Fromh16; 22; i �1(16)k�1(21) �1(16)k�1(22)h16; 20; i �1(16)k�1(19) �1(16)k�1(20)h22; 20; i �1(22)k�1(19) �1(22)k�1(20)h16; 21; 22i �1(16)k�1(18) �1(16)k�1(21)h16; 19; 20i �1(19)k�1(15) �1(19)k�1(16)h22; 19; 20i �1(19)k�1(21) �1(19)k�1(22)h16; 18; 21i �1(16)k�1(27) �1(16)k�1(18)h19; 15; 16i �1(19)k�1(14) �1(19)k�1(15)h16; 27; 18i �1(27)k�1(15) �1(27)k�1(16)h19; 14; 15i �1(19)k�1(13) �1(19)k�1(14)h27; 15; 16i �1(27)k�1(14) �1(27)k�1(15)h27; 14; 15i �1(27)k�1(13) �1(27)k�1(14)Figure 6.5: Execution trace for the parsing program.rules for p are mutually exclusive. For instance, in a top-down execution, the local variableY may get rebound upon backtracking into q.However, there are other situations where, by detection of functionality (cf. sect 6.1.1),one can safely conclude that a local variable cannot be bound to more than one value.The rather coarse description of arguments into modes fc;dg are for practical purposestoo rigid to be useful. As an example, for the two goals (X = [0jT]) and (X = [1jT]) it istoo restrictive to demand that X should be c-moded considering the number of programsthat deal with partially instantiated data structures.6.6 Coding Style and the Use of CutsThe lack of proper analysis and optimization tools in Prolog compilers have forcedprogrammers to explicitly insert \cuts" in their clauses to prevent the search engine fromsaving backtracking information.In this section we study some typical uses of cuts that has been gathered from textbooksand software libraries. Traditionally, one can identify three uses of cuts [CM81].1. \If you get this far, you have picked the correct rule for this goal."2. \If you get to here, you should stop trying to satisfy this goal."

913. \If you get to here, you have found the only solution to this problem, and there is nopoint in ever looking for alternatives."The second use of the cut is often in combination with fail and is employed when the entirepredicate needs to fail. The third use of the cut is used with the previously mentionedfunctional computations [DW89]; one will often �nd this type of cut at the very end of aclause. In this chapter, we are naturally interested with the �rst usage, where the cut isusually found at the beginning of the clause, possibly after some test goals.Example 6.6.1: A very common task for Prolog predicates is to iterate over the elementsin a list, as seen in the typical append predicate.append([], Ys, Ys).append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).Because of a feature called clause indexing (which most Prolog systems implement, see forinstance [CWA+91]) it is not necessary to insert a cut into the �rst clause. Clause indexingworks by letting the interpreter examine the principal functor of the �rst argument to selectthe right clause. Clause indexing does not work for other argument positions, or when the�rst argument of two clauses do not unify, but their principal functor are the sameExample 6.6.2: Another common idiom in Prolog is to iterate over the integers, such asin computing n!.fact(0, 1) :- !.fact(N, F) :- N > 0, N1 is N-1, fact(N1, F1), F is N*F1.Here, clause indexing is not enough to �gure out that the two cases N=0 and N>0 are mutuallyexclusive. The cut symbol in the �rst clause is therefore commonExample 6.6.3: In a few instances, user-de�ned predicates are used as tests in clauses.The following example, taken from a scanner, is an example of where our algorithm isindispensable to avoid the insertion of cuts.tokenize([C|Cs], int(Num)) :-digit(C), !,Acc is C-48,

92tokenize_int(Cs, Acc, Num).tokenize([C|Cs], id(Name)) :-letter(C), !,tokenize_id(Cs, [C], Name).Other examples requiring our algorithm are databases, parsers, and the problem of theDutch national
ag in [O'K90], where colors can be red, white, or blueFor the type of mutual exclusion detection discussed here, where the cut is placed early inthe clause body, after some initial tests, the author has estimated that about 95% of allprograms can be handled by previous algorithms [HM89, DW89, VR90]. For the remaining5% it seems that our algorithm does the job | the limitations mentioned in section 6.5 isnot an issue in practice.Rather, the author has found another problem, namely that many programmers �nd itconvenient to de�ne two or more clauses with overlapping cases, so that the clauses providethe same answer when backtracking takes place.Example 6.6.4: Consider the problem of �nding the largest number in a list. Naively, onemight de�ne this predicate as follows.max([X], X).max([X|T], X) :- max(T, Y), X > Y.max([X|T], Y) :- max(T, Y), X =< Y.The clauses are not pairwise mutually exclusive, since [X] uni�es with [X|T]. Also, thispredicate does not lend itself to tail recursion optimization. If the predicate had been writtenin the following way, we would have been able to discover that the clauses for max=3 aremutually exclusive. In addition, all recursive calls are now tail recursive.max([H|T], M) :- max(T, H, M).max([H|T], A, M) :- H > A, max(T, H, M).max([H|T], A, M) :- H =< A, max(T, A, M).max([], M, M).

93Example 6.6.5: Another example of \bad" coding style is the translation of switch-statements from imperative programming languages.eval(X+Y, Env, Val) :- !, ...eval(X-Y, Env, Val) :- !, ...eval(X*Y, Env, Val) :- !, ...eval(X/Y, Env, Val) :- !, ...eval(Var, Env, Val) :- lookup(Var, Val, Env).With clause indexing, it is not possible to specify that the last pattern should be anythingexcept a term whose principal functor is one of +, �, �, or =. Hence programmers tendto put cuts in all the preceding clauses. Rewriting the code to make it possible for ouralgorithm to discover the mutual exclusion is clumsy at best:eval(X+Y, Env, Val) :- ...eval(X-Y, Env, Val) :- ...eval(X*Y, Env, Val) :- ...eval(X/Y, Env, Val) :- ...eval(Var, Env, Val) :-Var \== _+_, Var \== _-_, Var \== _*_, Var \== _/_,lookup(Var, Val, Env).A better solution, in the author's opinion, is to change the representation so that variablesare not represented as just Prolog variables.eval(X+Y, Env, Val) :- ...eval(X-Y, Env, Val) :- ...eval(X*Y, Env, Val) :- ...eval(X/Y, Env, Val) :- ...eval(var(Var), Env, Val) :- lookup(Var, Val, Env).Now, even clause indexing su�ces to avoid the cuts, plus each clause can be understood inisolation.

947. EpilogueIn this thesis we have covered some analysis and transformation methods that havebeen developed with an eye towards the new high-level programming languages and tools,speci�cally in the logic programming �eld. Here we summarize the contributions, discusssome limitations, and give research ideas for future work.7.1 Concluding RemarksIn chapter 3 we addressed some of the problems in parsing languages with dynamicoperators, identi�ed the shortcomings of the current parsing methods, and �nally proposeda new parsing technique, deferred decision parsing, that postpones resolving shift/reducecon
icts involving operators to run time.This technique has been built into an LR style parser-generator that produces determin-istic, e�cient, and table-driven parsers. Prototype parsers for Prolog (cf. chapter 4) andStandard ML have successfully been generated. Reasonably liberal operator overloading issupported.We have also pointed out some of the drawbacks of using a top-down parser for tradi-tional parsing tasks, such as in compiler construction, and argued that a bottom-up parseris a much better replacement.More work needs to be done to categorize exactly what types of languages can beparsed with the deferred decision method. Another area that hasn't been addressed is errorhandling and recovery from errors.In chapter 4 we covered the syntactical problems with Prolog, suggested some minorchanges to make the language easier to parse and use, and also gave a grammar that wethink is superior in maintenance, readability and size compared to previous methods.In chapter 5 we presented two transformation methods for (strong) non-circular attributegrammars that allows them to be evaluated in the S-attributed environment of an LR-parser.

95They represent a compromise between the one-pass and post-parse evaluation methodsin that evaluation of certain \complicated" rules are sometimes postponed. Possible researchdirections include a similar setting for LL parsers, and perhaps a way to control the executionordering of certain rules.Finally, in chapter 6 a new conservative approximation technique for the undecidableproblem of recognizing mutual exclusion among rules in logic programs was presented.The information is derived statically (at compile-time), and may aid in both time andspace optimizations during execution. Additionally, the programmer is less dependent onnon-logical language features, such as Prolog's \cut", thus creating more opportunities forparallel execution strategies.7.2 Future WorkHere we mention some possible research directions that have arisen during the course ofthe author's work on this thesis.Covered clauses A helpful diagnostic tool to detect the opposite of mutually exclusiverules, namely covering clauses, would reassure the programmer that he has handledall \input cases". For instance, given the procedure merge:merge(Xs, [], Xs).merge([], Ys, Ys).merge([X|Xs], [Y|Ys], [X|Zs]) :- X < Y, merge(Xs, [Y|Ys], Zs).merge([X|Xs], [Y|Ys], [Y|Zs]) :- X >= Y, merge([X|Xs], Ys, Zs).we would like to be informed that we have handled all four combinations of the twoinput arguments being either the empty list or non-empty. Sometimes the programmeromits a rule on purpose, as in the following de�nition of member(X, Xs), which is truewhen X is a member of the list Xs.member(X, [X|_]).member(X, [_|Xs]) :- member(X, Xs).

96Obviously no X can be member of the empty list, but we think it would be better ifthe programmer explicitly said so with a fail clause:member(X, []) :- fail.member(X, [X|_]).member(X, [_|Xs]) :- member(X, Xs).Type information for arguments seems to be an essential key in detecting whetherclauses in a rule covers all input, although it is not clear what the requirements forthis type system should be.Better Mode Information Many analysis programs rely on mode information, eithersupplied by the programmer or inferred by a mode analyzer. However, the modesystems currently in use are too crude. At best, an argument can be described asground, partially instantiated, or as a variable. In many applications, this is notenough. For instance, in the mutual exclusion analyzer presented in chapter 6, it istoo restrictive to demand that X should be c-moded for the two goals (X = [0jT])and (X = [1jT]). What is needed is some sort of type system that describes how adata structure is (partially) instantiated.Mutual Exclusion The algorithm in chapter 6 can be improved by analyzing propagationof bindings from head variables to local variables. As mentioned in section 6.1.1and 6.5, constraint inference methods and detection of functionality can be applied.In this thesis I have not been speci�c on how mutual exclusion information can be usedto optimize programs. In [DW89] there is a section on choice points that should bestudied by anyone who undertakes an implementation. Speci�cally, the savecp/cutto-primitives must be used rather than ordinary cuts to eliminate other clauses, forotherwise choice points created by subgoals leading up to the cut gets killed too.Even though not all clauses in a procedure are pairwise mutually exclusive, it issometimes possible to prune away some clauses with a given test. Whether thisoptimization has any value is an open question. Remember that a driving force behindour research was to guarantee proper tail recursion by not leaving choice points behind

97for eliminated clauses. If not all remaining clauses can be eliminated, it doesn't reallymatter whether there are two or �fty left to try | most Prolog interpreters createonly one choice point anyway.Further analysis and improvement of the mutual exclusion algorithm may lead to adescription in terms of abstract interpretation [CC92, CC77, Jan90, BJCD87, Bru91].Since our method mimics a bottom-up execution, the integration with [MS88] seemsmost probable.

98References[AJ74] A. V. Aho and S. C. Johnson. LR parsing. Computing Surveys, June 1974.[AJU75] A. V. Aho, S. C. Johnson, and J. D. Ullman. Deterministic Parsing of AmbiguousGrammars. Communications of the ACM, 18(8):441{52, 1975.[Apt90] K. R. Apt. Logic Programming. In J. van Leeuwen, editor, Handbook ofTheoretical Computer Science, pages 495{574. MIT Press/Elsevier, 1990.[ASU85] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques, andTools. Addison Wesley, ISBN 0-201-10088-6, 1985.[AVW93] J. Armstrong, R. Virding, and M. Williams. ConcurrentProgramming in Erlang.Prentice Hall, 1993.[BBP+82] D. L. Bowen, L. Byrd, F. C. N. Pereira, L. M. Pereira, and D. H. D. Warren.DECsystem-10 Prolog User's Manual, 1982.[BC93] F. Benhamou and A. Colmerauer. Constraint Logic Programming | SelectedResearch. MIT Press, 1993.[Bee88] J. Beer. The Occur-Check Problem Revisited. The Journal of Logic Program-ming, 5(3):243{262, September 1988.[BJCD87] M. Bruynooghe, G. Janssens, A. Callebaut, and B. Demoen. Abstract Interpre-tation: Towards the Global Optimization of Prolog Programs. In Proceedingsof the 1987 Symposium on Logic Programming, pages 192{204, San Francisco,August - September 1987. IEEE, Computer Society Press.[BL89] M. E. Bermudez and G. Logothetis. Simple Computation of LALR(1) LookaheadSets. Information Processing Letters, 31:233{238, 1989.[Boc76] G. V. Bochmann. Semantic Evaluation from Left to Right. Communications ofthe ACM, 19(2):55{62, February 1976.[BR91] C. Beeri and R. Ramakrishnan. On the Power of Magic. The Journal of LogicProgramming, 10(1,2,3 and 4):225{300, 1991.[Bro74] B. M. Brosgol. Deterministic Translation Grammars. PhD thesis, HarvardUniversity, Cambridge, Massachusetts, 1974. TR 3-74.[Bru91] M. Bruynooghe. A Framework for the Abstract Interpretation of Logic Programs.The Journal of Logic Programming, 10(1,2,3 and 4):91{124, 1991.[BS89a] A. Brodsky and Y. Sagiv. Inference of Monotonicity Constraints in DatalogPrograms. In Eighth ACMSymposium on Principles of Database Systems, pages190{199, 1989.[BS89b] A. Brodsky and Y. Sagiv. On Termination of Datalog Programs. In FirstInternational Conference on Deductive and Object-Oriented Databases, pages95{112, Kyoto, Japan, 1989.[BS91] A. Brodsky and Y. Sagiv. Inference of inequality constraints in logic programs.In Tenth ACM Symposium on Principles of Database Systems, 1991.

99[CC77] P. Cousot and R. Cousot. Abstract Interpretation: A Uni�ed Lattice Model forStatic Analysis of Programs by Construction or Approximation of Fixpoints. InConference Record of the 4th ACM Symposium on Principles of ProgrammingLanguages, 1977.[CC92] P. Cousot and R. Cousot. Abstract interpretation and application to logicprograms. The Journal of Logic Programming, 13(1, 2, 3 and 4):103{179, 1992.[CFZ82] B. Courcelle and P. Franchi-Zannettacci. Attribute Grammars and RecursiveProgram Schemes (I and II). Theoretical Computer Science, 17(2 and 3):163{191and 235{257, 1982.[CH87] J. Cohen and T. J. Hickey. Parsing and Compiling Using Prolog. ACMTransactions on Programming Languages and Systems, 9(2), 1987.[CM81] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer Verlag,1981.[CWA+91] M. Carlsson, J. Wid�en, J. Andersson, S. Andersson, K. Boortz, H. Nilsson, andT. Sj�oland. SICStus Prolog User's Manual. Technical report, Swedish Instituteof Computer Science, Oct 1991.[CWY91] V. Santos Costa, D. H. D. Warren, and R. Yang. The Andorra-I Preprocessor:Supporting Full Prolog on the Basic Andorra Model. In InternationalConferenceon Logic Programming, pages 443{456. MIT Press, 1991.[Deb89] S. K. Debray. Static Inference of Modes and Data Dependencies in LogicPrograms. ACM TOPLAS, 11(3):418{450, July 1989.[DM93] P. Deransart and J. Ma luszy�nski. A Grammatical View of Logic Programming.MIT Press, 1993.[DW88] S. K. Debray and D. S. Warren. Automatic Mode Inference for Logic Programs.The Journal of Logic Programming, 5:207{229, 1988.[DW89] S. K. Debray and D. S. Warren. Functional Computations in Logic Programs.ACM TOPLAS, 3(3):451{481, July 1989.[Ear70] J. Earley. An E�cient Context-Free Parsing Algorithm. Communications ofthe ACM, 13(2), 1970.[FJ88] C. N. Fischer and R. J. LeBlanc Jr. Crafting a Compiler. Benjamin-CummingsPublishing Company, Inc, 1988.[HB88] S. Haridi and P. Brand. Andorra Prolog { An integration of Prolog and Com-mitted Choice Languages. In Proceedings of the 1988 International Conferenceon Fifth Generation Computer Systems, Tokyo, Japan, pages 745{754, 1988.[HKR90] J. Heering, P. Klint, and J. Rekers. Incremental Generation of Parsers. IEEETransactions on Software Engineering, 16(12):1344{1351, Dec 1990.[HM89] T. Hickey and S. Mudambi. Global Compilaton of Prolog. The Journal of LogicProgramming, 7:193{230, 1989.[Hor90] R. Nigel Horspool. Incremental Generation of LR Parsers. Computer Languages,15(4):205{223, 1990.[HTSW74] G. Holloway, J. Townley, J. Spitzen, and B. Wegbreit. ECL Programmer'sManual, 1974.

100[HW90] P. Hudak and P. Wadler, editors. Report on the Programming Language Haskell.Yale University, 1990.[Jan90] G. Janssens. Deriving Run-Time Properties of Logic Programs by means ofAbstract Interpretation. PhD thesis, Dept of Computer Science, KatholiekeUniversiteit Leuven, Belgium, 1990.[JM80] N. D. Jones and C. M. Madsen. Attribute-in
uenced LR parsing. In N. D. Jones,editor, Semantics Directed Compiler Generation, 94, pages 393{407. Springer-Verlag, 1980.[Joh75] S. C. Johnsson. Yacc|Yet another compiler compiler. Technical Report CSTR32, AT&T Bell Laboratories, Murray Hill, NJ, 1975.[Jon86] S. L. Peyton Jones. Parsing Dist�x Operators. Communications of the ACM,29(2), Feb 1986.[JOR75] M. Jazayeri, W. F. Ogden, and W. C. Rounds. The Intrinsically ExponentialComplexity of the Circularity Problem for Attribute Grammars. Communica-tions of the ACM, 18:697{721, 1975.[Ker89] J. Kerr. On LR Parsing of Languages with Dynamic Operators. TechnicalReport UCSC-CRL-89-13, UC Santa Cruz, 1989.[KKR90] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages.In Ninth ACM Symposium on Principles of Database Systems, pages 299{313,1990.[Knu68] D. E. Knuth. Semantics of Context-Free Languages. Mathematical SystemsTheory, 2(2):127{145, 1968.[Knu71] D. E. Knuth. Semantics of Context-Free Languages; Correction. MathematicalSystems Theory, 3(1):95{96, 1971.[Kow74] R. A. Kowalski. Predicate logic as a programming language. In Proceedings ofIFIP'74, pages 569{574, Amsterdam, 1974. North-Holland.[Kow79] R. A. Kowalski. Algorithm = logic + control. Communications of the ACM,22:424{431, 1979.[KT91] M. Korsloot and E. Tick. Compilation Techniques for Nondeterministic FlatConcurrent Logic Programming Languages. In International Conference onLogic Programming, pages 457{471. MIT Press, 1991.[Kun87] K. Kunen. Negation in Logic Programming. The Journal of Logic Programming,4(4):289{308, December 1987.[KW76] K. Kennedy and S. E. Warren. Automatic generation of e�cient evaluators.In Proc. 3rd ACM Conference on Principles of Programming Languages, pages32{49, Atlanta, Georgia, 1976.[Las90] J.-L. Lassez. Querying constraints. In Ninth ACM Symposium on Principles ofDatabase Systems, pages 288{298, 1990.[LdR81] W. R. LaLonde and J. des Rivieres. Handling Operator Precedence in ArithmeticExpressions with Tree Transformations. ACM TOPLAS, 3(1), 1981.[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

101[LS91] J. W. Lloyd and J. C. Sheperdson. Partial Evaluation in Logic Programming.TheJournal of LogicProgramming, 11(3 & 4):217{242,October/November 1991.[May81] B. H. Mayoh. Attribute Grammars and Mathematical Semantics. SIAM J.Comput., 10(3):503{518, 1981.[Mel81] C. S. Mellish. The Automatic Generation of Mode Declarations for LogicPrograms. Technical Report DAI Research Paper 163, Department of Arti�cialIntelligence, University of Edinburgh, Scotland, 1981.[Mel85] C. S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal ofLogic Programming, 2(1):43{66, April 1985.[Mel87] C. S. Mellish. Abstract Interpretation of Prolog Programs. In S. Abramskyand C. Hankin, editors, Abstract Interpretation of Declarative Languages, pages181{198. Ellis Horword, Chichester, U.K., 1987.[MO81] T. Moto-Oka. Challenge for Knowledge Information Processing Systems (Pre-liminary Report on Fifth Generation Computer Systems). In InternationalConference on Fifth Generation Computer Systems, Tokyo, pages 1{85, 1981.[MS88] K. Marriott and H. S�ndergaard. Bottom-up Abstract Interpretation of LogicPrograms. In R. A. Kowalski and K. A. Bowen, editors, Proceedings of theFifth International Conference and Symposium on Logic Programming, pages733{748, Seattle, 1988. ALP, IEEE, The MIT Press.[MSU86] F. Bancilhon D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strangeways to implement logic programs. In Fifth ACM Symposium on Principles ofDatabase Systems, pages 1{15, 1986.[MTH90] R. Milner, M. Tofte, and R. Harper. The de�nition of Standard ML. MIT Press,1990.[Nil86] U. Nilsson. AID: An Alternative Implementation of DCGs. New GenerationComputing, 4:383{399, 1986.[odAMT91] R. op den Akker, B. Melichar, and J. Tarhio. Attribute evaluation and parsing.In H. Alblas and B. Melichar, editors, Attribute Grammars, Applications andSystems, pages 187{214, Prague, Czechoslovakia, June 1991. Springer-Verlag.[O'K84] R. O'Keefe. DraftProposed Standard for Prolog Evaluable Predicates. Technicalreport, Department of Arti�cial Intelligence, University of Edinburgh, 1984.[O'K90] R. O'Keefe. The Craft of Prolog. MIT Press, 1990.[Ped91] K. R. Apt D. Pedreschi. Proving termination of general Prolog programs. InProceedings of International Conference on Theoretical Aspects of ComputerScience, Sendai, Japan, 1991.[Pfe92] F. Pfenning, editor. Types in Logic Programming. MIT Press, 1992.[Pla84] D. A. Plaisted. The Occur-Check Problem in Prolog. In Proc. InternationalSymposium on Logic Programming, pages 272{280, Atlantic City, 1984. IEEE,Computer Society Press.[Pl�u90] L. Pl�umer. Termination Proofs for Logic Programs, volume 446 of Lecture Notesin Arti�cial Intelligence. Springer-Verlag, 1990.

102[PN91] D. Palmer and L. Naish. NUA-Prolog: An Extension to the WAM for ParallelAndorra. In International Conference on Logic Programming, pages 429{442.MIT Press, 1991.[Pos94] K. Post. Mutually Exclusive Rules in Logic Programming. In LogicProgramming| Proceedings of the 1994 International Symposium. MIT Press, 1994. Toappear.[PVGK93] K. Post, A. Van Gelder, and J. Kerr. Deterministic Parsing of Languages withDynamic Operators. In D. Miller, editor, Logic Programming | Proceedings ofthe 1993 International Symposium, pages 456{472. MIT Press, 1993.[Ram91] R. Ramakrishnan. Magic Templates: A Spellbinding Approach To LogicPrograms. The Journal of Logic Programming, 11(3 & 4):189{216, Octo-ber/November 1991.[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle. TheJournal of the ACM, 12(1):23{41, 1965.[Sah93] D. Sahlin. MIXTUS: An Automatic Partial Evaluator for Full Prolog. NewGeneration Computing, 12(1):7{51, 1993.[Sco90] R. S. Scowen. Prolog { Budapest papers { 2 { Input/Output, Arithmetic,Modules, etc. Technical Report ISO/IEC JTC1 SC22 WG17 N69, InternationalOrganization for Standardization, 1990.[Sco92] R. S. Scowen. Draft Prolog Standard. Technical Report ISO/IEC JTC1 SC22WG17 N92, International Organization for Standardization, 1992.[Soh93] K. Sohn. Automated Termination Analysis for Logic Programs. PhD thesis, UCSanta Cruz, 1993.[SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Mas-sachusetts, 1986.[ST85] H. Sawamura and T. Takeshima. Recursive Unsolvability of Determinacy,Solvable Cases of Determinacy and their Applications to Prolog Optimization.In Proceedings of the 1985 Symposium on Logic Programming, pages 200{207,Boston, Massachusetts, 1985. IEEE, Washington D.C.[SVG91] K. Sohn and A. Van Gelder. Termination detection in logic program usingargument sizes. In Tenth ACM Symposium on Principles of Database Systems,pages 216{226, 1991.[Tic91] E. Tick. Parallel Logic Programming. MIT Press, 1991.[Tom86] M. Tomita. E�cient Parsing for Natural Language. Kluwer Academic Publish-ers, Boston, Massachusetts, 1986.[Udd88] G. Uddeborg. A Functional Parser Generator. Technical Report 43, Dept. ofComputer Sciences, Chalmers University of Technology, G�oteborg, 1988.[Ull89] J. D. Ullman. Database and Knowledge-Base Systems. Computer Science Press,1989.[UVG88] J. D. Ullman and A. Van Gelder. E�cient tests for top-down termination oflogical rules. Journal of the ACM, 35(2):345{373, 1988.[VG91] A. Van Gelder. Deriving constraints among argument sizes in logic programs.Annals of Mathematics and Arti�cial Intelligence, 1(3):361{392, 1991.

103[VR90] P. Van Roy. CanLogicProgrammingExecute asFast as ImperativeProgramming?PhD thesis, UC Berkeley, 1990.[vW76] A. van Wijngaarden, editor. Revised Report on the Algorithmic Language Algol68. Springer-Verlag, 1976.[War77] D. H. D. Warren. Implementing Prolog - Compiling Predicate Logic Programs.Technical Report DAI Research Paper 39 and 40, Department of Arti�cialIntelligence, University of Edinburgh, Scotland, 1977.[War83] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report Tech.Note 309, SRI International, Menlo Park, CA, 1983.[War86] D. H. D. Warren. Optimizing Tail Recursion in Prolog. In Logic Programmingand its Applications, pages 77{90. Ablex Publishing, N.J., 1986.[Wat77] D. A. Watt. The Parsing Problem for A�x Grammars. Acta Informatica, 8:1{20,1977.

104IndexA(p): 61Abstract interpretation: 7, 97accept action: 14Actionaccept : 14error : 14reduce: 14, 35Semantic: 15shift : 14, 35Adornments: 22ak : 61Algol-68: 28{29Ambiguity in operator expressions: 48Ambiguous grammar: 13{14, 41Analysis: 5Andorra: 75Answer substitution: 19Computation of: 20apk : 61Argument path: 77Arti�cial Intelligence: 1Associativity: 27Atom: 17, 48AttributeInherited: 44Synthesized: 44Attribute grammar: 44, 57, 61Non-circular: 64Strongly non-circular: 65Attributes: 61Of a production: 61Automated Theorem-Proving: 1b (bound mode): 22Backarc: 78, 82Backtracking: 6, 20, 44, 74, 87Binary numbers: 12Binding: 18body(a): 68Bottom-up execution strategy: 74Bottom-up parsers: 13, 442 (empty goal): 20Bracket-�x operators: 29

C: 28c (constant mode): 22, 71, 73, 77C(p): 67Circular de�nitions: 65, 71Clause: 16Clause indexing: 91Colmerauer, A.: 2\,": 50, 54Comma operator: 50, 54comma2list: 54Composite graph: 63Composition: 19Compound term: 16, 48Con
ict: 32reduce/reduce: 14shift/reduce: 14, 34Constant: 16Constraint inference: 73, 76Context-free grammar: 11Copy symbols: 58Coroutine: 70Covering clauses: 95Critical positions: 79Cut: 6, 21, 90Green: 21, 74Red: 21, 74cutto: 96C++: 8d (don't-know mode): 22, 73D(p)[: : :]: 63D(T): 62DCG: 5, 9, 22, 32DDGEN: 30, 70Debray, S.: 74{76Declarative style: 1Deferred decision parsing: 30, 32De�nite Clause Grammar: 5, 9, 22, 32,43, 70�: 35Dependency graph: 62DerivationLeftmost: 12

105Reverse rightmost: 13Rightmost: 12SLD: 19Derives: 12): 12�): 12Determinacy: 76Determinate: 83determinate(g): 83Dewey notation: 77Di�erence lists: 9Disjoint: 73, 77Dist�x: 29\:" (dot): 17Dutch national
ag: 92Dynamic operators: 26, 32Earley's algorithm: 28EDB: 78Edinburgh syntax: 29, 49EL1: 28{29Empty goal: 20Empty list: 17Empty string: 11eof: 15� (identity substitution): 18" (empty string): 11Equivalence classes: 76error action: 14Evaluation problem: 58Evaluation rules: 61Evaluation, postponed: 66EvaluatorOn-the-
y: 66One-pass: 58Post-parsing: 58Expression: 17, 27Extensional database: 78f (free mode): 22Fact: 16Failed SLD-derivation: 20FGCS: 1Fixity: 27, 48Formal Language Theory: 1FPG: 59

Function symbol: 17Functional computations: 6Functionality: 74, 76, 90Functor: 17GoalEmpty: 20Evaluation: 61Logic programming: 18Goal node: 78Goedel: 8GrammarNon-circular: 60Strongly non-circular: 60Green cut: 21, 74Ground: 19Haskell: 4, 26hd : 77HeadOf a clause: 16Of a list: 17Of a sequence: 77Hickey, T.J: 75Horn clauses: 16Identity substitution: 18Imperative programming languages: 1 : 16:-: 16Implicit overloading: 35Incremental parser generators: 28Induced grammar: 38In�x: 27Inherited attribute: 10, 44, 61Instance, of an expression: 19Kerr, J.: 30Kowalski, R.: 2L-attributed: 65L-attributed de�nitions: 44L-attributed grammars: 58Language: 12Lazy evaluation: 59Lazy ML: 59

106Left-recursive production: 43Leftmost derivation: 12Length: 11Lexical categories in Prolog: 48lift right(x; y): 82LISP: 25List: 17Empty: 17Literal: 16Selected: 20Local operators: 37Local variable: 89Logic programProcedural semantics: 19Syntax: 16Logic programming: 16Look-ahead: 51Look-ahead token: 34LR parser: 13{14Execution trace: 15LR(1): 28Magic set: 8Mellish, C.S: 76MIXTUS: 9ML: 4{5, 26, 37Mode: 5, 22, 72, 90, 96Most general uni�er: 19�[S]: 77Mudambi, S.: 75mutex facts: 81Mutual exclusion: 7, 10, 73, 78, 97Primitive: 76needs processing: 81Negation: 9Nilsson, U.: 44Non-circular attribute grammar: 60, 64Nonterminals: 11nonvar(X): 71Normal form, of evaluation rule: 61Nullary operator: 27, 35Number: 48

Occur check: 6On-the-
y evaluation: 66One-pass evaluators: 58op=3: 48Operator: 4, 27, 48Dynamic: 26Local: 37univ : 54Operator module: 31Operator precedence parsing: 28Operator table: 33Optimization: 8Or-parallelism: 75Overloaded operator: 27, 31Overloading: 26, 35Overloading policy: 41p=n: 16Parallelization: 7parents(y): 82Parse table: 14Parse tree: 13, 62parse action: 34, 45Parser: 13Bottom-up: 44Top-down: 43Parser generator: 4, 14, 27Parsing: 3Partial evaluation: 8Pascal: 6Peyton Jones, S.L.: 29� (projection): 77�R(S): 77Position, in a term: 77 7�!: 77 7�!c: 77Post-parsing evaluators: 58Post�x: 27Postponed evaluation: 66Precedence: 27Predecessor: 627!: 62Predicate symbol: 16Predictive: 44Pre�x: 27

107Pre�x operator: 50Primitive mutual exclusion: 76Procedural semantics: 19Procedure: 16Productions: 11Projection: 77Prolog: 25{26, 29, 35, 43, 47Prolog grammar: 55Prolog standardization committee: 31Prolog term: 53prop(; 0): 86 (argument path): 77Punctuation symbols: 48Query: 18RATFOR: 8rdtok.pl: 53read.pl: 47Reader: 48Ready(p): 66Red cut: 21, 74reduce: 35reduce action: 14reduce/reduce con
ict: 15Referenced variables: 71Refutation: 20resolve: 34, 45Reverse rightmost derivation: 13Right-recursive production: 44!: 11Rightmost derivation: 12Rule: 16Rule node: 78Rule/goal graph: 78S-attributed: 65S-attributed de�nitions: 44S-attributed grammar: 58savecp: 96Sawamura, H.: 76Scope: 27Selected literal: 20Semantic action: 15Sentence: 12, 53Sentential form: 12

Sequence : 77Head of: 77shift : 35shift action: 14shift-reduce parser: 13shift/reduce con
ict: 15, 34SICSTUS Prolog: 70SLD-derivation: 19Failed: 20SLD-tree: 20, 24Standard syntax: 48Start symbol: 11Strings: 11Strong composite graph: 64Strong non-circular grammars: 60Strongly non-circular attribute grammar:65Subgoals: 16Substitution: 18Applying: 19Identity: 18More general: 19Switch-statements: 93Synthesized attribute: 44, 61Synthesized functions: 67, 70Tail Of a list: 17Tail recursion optimization: 3, 74Takeshima, T.: 76Term: 16Position in: 77Terminals: 11Termination analysis: 6� (substitution): 18Token: 11%token: 45Tomita's algorithm: 28Top-down execution strategy: 73Top-down parser: 43Transformations: 8Translation process: 3{4try(x; p; y): 83Type: 49

108Type checking: 5Type derivation: 5Type system: 96Undecidable program properties: 5, 76Unfolding: 76Uni�able: 19Uni�er: 19Most general: 19=.. (univ): 54Use(X; a): 66Van Roy, P.: 75Variable: 16, 48Variable binding relations: 84Vocabulary : 11WAM: 2Warren, D.H.D: 2Warren, D.S: 75Warren, D.S.: 74, 76when(Cond ;Goal): 70Whitespace: 49y.output: 45Yacc: 30, 32, 45, 66, 70[X jT]: 8[] (empty list): 17\+: 51k (disjoint): 77\j": 11

