UNIVERSITY OF CALIFORNIA
SaANTAa CRUZ

Analysis and Transformation of Logic Programs

A dissertation submitted in partial satisfaction
of the requirements for the degree of

DocTor oF PHILOSOPHY
in
COMPUTER AND INFORMATION SCIENCES
by
Kjell Erik Post
December 1994

The dissertation of Kjell Erik Post is
approved:

Allen Van Gelder

Charles E. McDowell

Wayne Dai

Dean of Graduate Studies and Research

Copyright © by
Kjell Erik Post
1994

iii

Contents
Abstract viii
1. Introduction 1
1.1 The Translation Process o 3
1.2 Background and Prior Worko oo 3
1.2.1 Parsing L 3
1.2.2 Analysis oL e 5
1.2.3 Transformations L o 8
1.3 Summary of Contributions o oo 9
2. Preliminaries 11
2.1 Context Free Grammars 0ot i 11
2.1.1 Derivations and Parse Trees 12
2.1.2 LR Parsing and Parser Generation 13
2.2 Logic Programming L 16
221 Syntax 16
2.2.2 Substitutions and Unification 18
2.2.3 Procedural Semanticso oL 19
224 Cuts . . oL e 21
225 Modes L 21
2.2.6 Definite Clause Grammars oo 22
3. The Parser Generator DDGEN 25
3.1 Introduction and Background L Lo 25
3.1.1 Definitions oL 27

3.1.2 Background and Prior Work Lo 27

v

3.1.3 Summary of Contributions
3.2 Deferred Decision Parsing L
3.3 Local Operator Declarations,
3.4 Ambiguities at Run Time and Induced Grammars
3.5 Application to Definite Clause Grammars
3.6 Implementation L L L e

. Parsing Prolog

4.1 Introduction oL e
4.2 The Structure of Prolog o oL
4.3 Subtleties of Prolog Syntax L L.
4.4 Rectifying Prolog
4.5 The Prolog Grammar
4.6 Implementation and Results o L oo

. Bottom-Up Evaluation of Attribute Grammars

5.1 Introduction and Background Lo
5.1.1 Related Work o
5.1.2 Summary of Contributions

5.2 Definitionso

5.3 Transformation Methods oo
5.3.1 Method 1: Synthesized Functions
5.3.2 Method 2: Coroutines

. Mutual Exclusion Analysis
6.1 Introduction e
6.1.1 Related Work

6.1.2 Summary of Contributions,

47

47

48

49

52

53

56

57

57

58

60

60

66

67

70

73

6.2

6.3

6.4

6.5

6.6

Definitionso
6.2.1 Rule/Goal Graphs
Deriving Mutual Exclusion 0 0oL
6.3.1 Algorithm for Propagating Mutual Exclusion
6.3.2 Termination and Complexity
6.3.3 Correctness Lo
6.3.4 Description of prop L Lo
A Larger Example 0o
Limitationso

Coding Style and the Use of Cuts

7. Epilogue

7.1 Concluding Remarks
7.2 TFuture Work e
References

Index

94

94

95

98

104

vi

List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Overview of the translation process

The LR parser o 0 e
Parse table and execution trace for an LR parser
Structure of logic programs Lo e
Algorithm for computing an answer substitution
The effect of a cut o

SLD-tree o o e e e e e

Standard Parser Generator and Deferred Decision Parser Generator

An example run-time operator table L.
Subset grammar for Prolog terms L oL
Deferred decision parsing example o 0oL
Skeleton for induced grammar oL oL oL
Sorted operator tableo oL o

Grammar subset for ML operator expressions

Prolog syntax for encoding fixity and associativity

Prolog grammar L Lo

Attribute grammar definition for binary numbers oL
Dependency graphs for productions oo 000
Parse tree and dependencies for “10.1”7
Dependencies for grammar symbolso o o000
Strong composite graphs. oL o o Lo
Definition of procedure body(a) oL

Attribute grammar using synthesized functions

14

15

17

20

21

24

30

5.8

6.1

6.2

6.3

6.4

6.5

vii

Attribute grammar using coroutines 71
Propagation of mutual exclusion 79
Proof scenario land 2 L o 85
Parsing program Lo 88
Part of the rule/goal graph for the parsing program 89

Execution trace for the parsing program 90

Analysis and Transformation of Logic Programs

Kjell Erik Post

ABSTRACT

Logic programming is based on the idea that inference can be viewed as a computation.
The fact that both programs and their specifications can be expressed in the same language
makes logic programming very useful for program development.

But it is also known that clarity and efficiency are two rather incompatible demands to
put on a programming language. It is thus important to develop techniques for systemat-
ically transforming clear but inefficient programs into efficient (although probably rather
opaque) final programs. This thesis contains some contributions that hopefully bring us
closer to this goal.

Before transformation can take place the input program must be parsed and analyzed to
extract properties that are not explicit in the program itself. Parsing is an area of computer
science well understood, but with the advent of modern languages, like Prolog and ML, the
programmer was able to introduce and change operator symbols. On one hand, operator
symbols made the code more readable but it also complicated the parsing job; standard
parsing techniques cannot accommodate dynamic grammars. In the first part of this thesis
we present an LR parsing methodology, called “deferred decision parsing”, that handles
dynamic operator declarations, that is, operators that are declared at run time. It uses a
parser generator much like Yacc. Shift/reduce conflicts that involve dynamic operators are
resolved at parse time rather than at parser construction time.

As an example of our parser generator we present a grammar for Prolog, a language that
has been in use for almost twenty years but still lacks a precise formal syntactic definition.

The parser generator can also serve as a replacement implementation for Definite Clause
Grammars, a novel parsing feature of Prolog. However, an LR parser does not normally

support inherited attributes. In the next part of the thesis we present two transformation

methods for (strong) non-circular attribute grammars that allows them to be evaluated
within the environment of an LR parser. Our methods represent a compromise in that
attribute evaluation is normally performed on the fly except when, in some evaluation rule,
the referenced attributes are unavailable, and the execution of the rule has to be postponed.
Suspension and resumption points for these evaluation rules can either be determined
statically (method 1) or dynamically (method 2). For both methods we guarantee that
resumption takes place as soon as possible.

In the final part of the thesis we present a technique to detect that pairs of rules in a
logic program are “mutually exclusive”. In contrast to previous work our algorithm derives
mutual exclusion by looking not only at built-in, but also user-defined predicates. This
technique has applications to optimization of the execution of programs containing these
rules. Additionally, the programmer is less dependent on non-logical language features,

such as Prolog’s “cut”, thus creating more opportunities for parallel execution strategies.

Keywords: Logic Programming, Program Transformation, Dataflow Analysis, Parser

Generators, Attribute Grammars, Dataflow Analysis, Prolog.

Till min far, Tore Post,

och farfar, Ernst Post.

xi

Acknowledgments

I would first like to express my gratitude towards my advisor Allen Van Gelder, who has
supervised and supported this research through all these years. Allen’s work is characterized
by a great deal of integrity and an unusual strike of balance between theory and practice.

Allen, Charlie McDowell, and Wayne Dai read drafts and gave comments on my the-
sis. Richard O’Keefe and Roger Scowen has given valuable input on the syntax of Prolog.
Manuel Bermudez provided a very nice exposition on LALR(1) parser generation. Lawrence
Byrd suggested that LR parsing methodology could be applied to Definite Clause Gram-
mars. Michel Mauny and Pierre Weiss of INRIA supplied production rules for CAML Light.
The chapter on mutual exclusion has benefited from discussion with Saumya Debray, Peter
Van Roy, and Ola Petersson. 1 am also indebted to the reviewers on the ILPS’93 and 94
committees for their input on the accepted papers.

I wish to thank the staff, faculty, and grad students at UCSC that I've had the pleasure
to meet and work with during these years. In particular I would like to mention Tom
Affinito, Sgren Sge and his wife Jeanette, Richard Snyder and his wife Kathleen, and our
administrative assistant Lynne Sheehan.

The list of my other friends outside UCSC is too long to include here, but Hans Nilsson,
Caj Svensson, Torbjorn Naslund, Ojvind Bernander, and Sven Moen have turned out to be
very dependable.

Finally a couple of people who have made life-lasting impressions on me: Are Waerland,
Joel Robbins, Julius Creel, and Alan Goldhamer. These people have taught me that health
can only result from healthful living.

This research was supported in part by NSF grants CCR-8958590, IRI-8902287, and
1RI-9102513, by equipment donations from Sun Microsystems, Inc., and software donations

from Quintus Computer Systems, Inc.

Santa Cruz, 1994

Kjell Post

1. Introduction

In the last twenty years, we have witnessed a growing popularity in the use of the logic
programming languages. Originating from such fields as Artificial Intelligence, Automated
Theorem-Proving, and Formal Language Theory, logic programming initially received lim-
ited attention outside Furope but later gained considerable momentum when the Japanese
in 1982 announced that they had chosen logic programming as their vehicle for their Fifth
Generation Computer Systems Project FGCS [MO81], also known as the “computer science
Pearl Harbor”. Today, logic programming is part of college curriculums around the world
and thousands of “real” applications have been written in Prolog. Although Prolog is the
predominant logic programming language, a number of different dialects have evolved for
such areas as parallel programming [Tic91], constraint solving [BC93], and process control
[AVW93].

As opposed to imperative programming languages such as C, Pascal, and Ada — where
the programmer explicitly specifies the flow of the computation — a logic programmer first
describes the logical structure of the problem, by declaring facts and rules about objects
and their relationships, and then obtains the answers by posing questions to an inference
machine. This is generally believed to simplify the programming task since the details of
how the answers should be computed are left to the system.

What are some of the other benefits of this “declarative style”? First of all, as the
name almost implies, declarative programs can be written more concisely, in a notation
closer to mathematics or formal logic. A rule in a logic program is something that can be
understood by itself — there are no scope rules and side effects to consider. In addition,
programming is usually done on a higher level as these languages typically have facilities
such as backtracking, more advanced data structures, automatic memory management,
allow the creation and passing of procedures, etc, in effect leading to both shorter programs
and an increase in productivity. Additionally, the logical properties of the language makes

it easier to reason formally about programs and correctly implement various analysis and

transformation tools, such as termination detectors, partial evaluators, etc. Finally, the
separation of control from programs and the absence of destructive assignment statements
is helpful in the detection of implicit parallelism, thus perhaps making it possible to harness
the power of tomorrow’s multi-processor machines.

However, on today’s single-processor machines, imperative languages are still considered
more efficient. This is a consequence of the close correspondence between the underlying
hardware, its instruction set, and the statements found in imperative languages: variables
are merely abstractions of memory cells, assignment copies data between them, and the
control constructs have a natural translation to the test-and-jump instructions.

Logic programming systems, on the other hand, are theorem provers and programs are
written in some subset of first order logic. Therefore, the “semantic gap” between a logic
programming language and the hardware is much wider than for an imperative language.
While waiting for a more suitable architecture, improved execution efficiency for logic
programs has been accomplished partly by relying on the programmer for supplying control
information, but also increasingly by using optimizing compilers. Today, the majority of
implementations for logic programming are for the language Prolog, invented in 1972 by
Kowalski and Colmerauer [Kow74, Kow79]. The success of Prolog as a useful programming
language is mostly due to D. H. D. Warren and his work on the WAM [War77, War83], an

abstract machine for Prolog execution with a relatively easy translation to today’s hardware.

Since then, compilers have improved in many ways: they produce better code, generate
better diagnostics, and partly relieve the programmer from supplying extra-logical infor-
mation. Still, the goal of logic programming, namely that the control component of the
execution should be under the sole responsibility of the system, is still far away. This the-
sis makes some contributions towards this goal. In the remainder of this chapter we will
examine the translation process of the compiler in more detail, give background on prior

work in the various stages, and then summarize the work presented in this thesis.

1.1 The Translation Process

A convenient way to extend, improve, or implement a language is to follow the organi-
zation in fig. 1.1. Here we implement a logic programming language by using an existing
and efficient Prolog implementation as our target machine. The benefits from this approach
should be obvious:

o We avoid the messy details of the underlying machine.

e There is no need to understand or modify the existing compiler.

o All the collected knowledge that has been put into the compiler can be used with
impunity.

In fig. 1.1 we mention some typical applications that fit into this framework. As these
methods become more understood and widespread they are likely to find their way into
commercial implementations. For instance, early Prolog compilers were quite naive in their
execution of tail-recursive procedures and depended on the programmer to insert control
information, so called “cut” symbols, into the code to prevent the stack from exploding.
Today, tail recursion optimization [War86] is part of every serious Prolog system.

In the next section we give an overview of the different stages in the translation process

and summarize relevant work in those areas.

1.2 Background and Prior Work

The previous section presented a framework for the translation process which we now
examine in more detail by summarizing some important research results. In order to keep
the presentation available to a wider audience the discussion in the following two sections

will be kept on a fairly high level, saving the technical details for the remaining chapters.

1.2.1 Parsing

The problem of parsing the input, that is, recognizing and structuring the input, is a

necessary task for any translator. Fortunately, this area is well understood and numerous so

Logic Program Example Tools

Parsing Parser Generator

Mode Analysis
Analysis Termination Analysis
Type Derivation

Transformations Partial Evaluators

Compiler Quintus Prolog

Figure 1.1: Overview of the translation process.

called parser generators [Joh75, ASUR5, AJ74, FJ88, Udd’8, HKR90, Hor90] are available
to the language designer, who rarely needs to write a parser by hand. Instead, specifications
in the form of production rules, with embedded code or “action” routines, are fed into a
parser generator which then generates the parser. The capabilities of parser generators are
limited to LR(1) languages, which is usually considered sufficiently large, and a static input
grammar, possibly augmented with associativity and precedence declarations for operators
such as “4+” and “#”.

With the advent of programming languages like Prolog [SS86, CM81], and newer lan-
guages such as ML [MTH90] and Haskell [HW90], programmers were allowed to define
operators at run time. Although operator expressions are only “syntactic sugar”, that is,
there is always an equivalent prefix form, Prolog’s syntax is generally perceived as being
easier to read than LISP’s prefix notation. However, user-defined operators seriously com-

plicate the parsing job and to solve these problems, numerous ad hoc parsers have been

developed. In chapter 3 we examine the Deferred Decision Parser Generator, designed
specifically to handle languages with so called dynamic operators while retaining all the
benefits of standard parser generators.

Our parser generator also serves as an efficient implementation for Definite Clause

Grammars, a novel parsing technique in the logic programming community.

1.2.2 Analysis

After the program has been parsed, the translator may enter an analysis stage to extract
useful information which may used to optimize the program, provide some form of diagnosis,
or compensate for some deficiency in the target language. Because nearly all interesting
program properties are undecidable, analyzers either answer “yes, the property holds”, or
“the property might hold, but I can not tell”. The following (incomplete) list mentions
some analysis methods for logic programming that have been developed throughout the
years, primarily for the language Prolog;:

Mode analysis Probably the most well-known form of analysis is Mode analysis [Deb89,
DWSS8, Mel81]. A mode for an argument of a procedure is an adornment, akin to a type
declaration, describing how the argument will be bound at the point of invocation.
Since procedures compute relations, there is in general no notion of input and output
in logic programming. In reality however, the programmer often has an intended
direction in mind, something which the compiler can capitalize on when translating
the procedure to native code. For instance, if a unification goal X = Y is called
with X being a variable, the call to the expensive unification routine can be replaced
by a simple assignment; similarly, if both X and Y are ground (that is, contain no
variables), the unification can be replaced by a test for equality. Mode analysis is often
assumed for other analysis tools, in particular the mutual exclusion test described in

chapter 6. Modes are also described in chapter 2.

Type derivation Experience with languages such as ML have lead people to incorporate

type derivation and type checking into logic programming as well [Pfe92]. As opposed

to type systems in older languages, such as Pascal, the types of arguments are derived
automatically, with minimal assistance from the programmer. Type errors, appearing
as inconsistencies in the derivation, can help the programmer find subtle bugs at
compile-time, rather than at run-time (by chance). Type information can also guide
the compiler in replacing costly operations with cheaper ones, as well as assist in other

forms of transformations.

Occur check The so called occur check [Pla84, Bee88] in unification, that is, verifying
that the substitution that makes two terms equal does not contain a circular binding,
is usually omitted in Prolog systems for efficiency reasons. This may lead to infinite
loops or even incorrect answers. Therefore, a static analyzer might be used to verify,

at compile-time, that circular bindings cannot be created.

Termination Standard Prolog systems employ a depth-first search rule which is efficient
but not complete — the system may follow a part of the search tree that is infinitely
long, “disappear” in an equally long loop, and fail to deliver some remaining answers.
To deal with this “flaw”, researchers have designed criteria for which termination is
guaranteed [Soh93, P1i90, UVGS88, BS’9b, SVGI1, Ped91]. Again, this illustrates how
a deficiency in the language, introduced for efficiency reasons, can be compensated by
a static analysis check. The price that is paid, however, is that the analyzer may be

overly pessimistic and “reject” a program that does not loop.

Functional computations The concept of “backtracking” is a very powerful concept in
logic programming and may be used as a “generate-and-test” construct, to guess a
solution to a problem, test it, and, if the test fails, guess again, until no more guesses
can be made. In this manner, all solutions to the problem can be generated. In many
situations the first guess is also the only guess and the programmer does not want the
system to create the state information for finding the next solution. Traditionally, this
is done with the use of a “cut” symbol which cancels certain backtracking activities
that would occur in the future. Static analysis can be used to infer these functional

computations and insert cut symbols automatically [DW89]. The conservative nature

of the analyzer guarantees that no solutions are left out because of an inadvertent cut.

Mutual exclusion This form of analysis also deals with restricting backtracking activi-
ties, but in a different way: procedures in logic programs, defined by several clauses,
sometimes are mutually exclusive to each other, meaning that the success of a clause
precludes the success of another, thereby making it possible to discard the backtrack-
ing information intended for the other clause. Existing algorithms [Mel85, DW8&9,
VR90, ST85] detect mutual exclusion by looking only at built-in predicates, such as
“<” and “>7. In contrast, the algorithm presented in chapter 6 [Pos94] also examines

user-defined predicates.

Parallelizers On multi-processor machines it is of course desirable to keep all processors
occupied. Logic programs typically have fewer side-effects than their imperative

counterparts, and may therefore have more opportunities for parallelization [Tic91,

PN91, CWY91, HBSS].

Abstract Interpretation Many analysis methods can be captured in the framework of
abstract interpretation [CC92, CC77, Jan90, BJCDS&7, Bru9l, Mel87, MS88]. In
essence, a property of a program can sometimes be deduced by running an “abstract”
form of the program, where operations and data values in the original, “concrete”,
program have been replaced by corresponding abstract values. Abstract values are
chosen so that execution is guaranteed to terminate and so that the abstract value
represents some useful information. For instance, integers may be captured by the

abstract values {neg,0, pos}. In the program, we subsequently replace for instance

[A Wl
* *

the concrete multiplication with the abstract multiplication which operates
on abstract values, e.g. “neg * pos = neg.” With this technique it might be possible
to detect whether a variable contains a negative value at a certain program point,
although, in practically all situations a “don’t know”-element has to be part of the
abstract set of values, something which the reader may verify by trying to define the

abstract addition operation.

1.2.3 Transformations

A translator typically performs two different kinds of transformations. Initially, if the
source language represents a superset of the target language, the translator has to “shoe-
horn” its input by replacing features of the input language by equivalent code in the target
language. For imperative languages, this technique has been used in the implementation
of for instance RATFOR and C++. In the field of logic programming, the promising
new language Goedel is implemented on top of Prolog, and the so called “magic set”
transformation [Ram91, BR91, MSU86] has been used to implement a bottom-up search
using the top-down search method of Prolog.

A second reason for transformation is optimization, replacing parts of the program by
semantically equivalent code that is more efficient, in some respect, usually time or space.
Optimization methods in logic programming are normally targeted at the two “expensive”
features of the language, unification and backtracking, as can be witnessed by the analysis
methods listed in the previous section.

A well-known and very general optimization technique is partial evaluation [LS91]
whereby a program is in some sense “specialized” with respect to its input. In logic pro-
gramming, partial evaluation has a particularly easy formulation. For instance, take the

procedure sort, defined as follows
sort(Ly, Ly) < permute(Ly, L), ordered(Ls).

This says that Lo is a sorted version of Ly if Lo is a permutation of Ly, and Ls is ordered.
Now let’s assume that sort appears in the body of another procedure that finds the smallest
element X in a list L'

smallest(L, X)) — sort(L,[X|T]).
Then we may replace the “call” to sort with its body

smallest(L, X') — permute(L,[X|T]), ordered([X |T]).

!Here we use the Prolog notation [X|7] which represents a list whose first element is X and whose tail

is 1.

Partial evaluation for Prolog is in general more difficult due to the presence of extra-
logical features and side effects, although successful partial evaluators have been built, for
instance the MIXTUS system [Sah93].

Some other transformation methods in logic programming are: various means of imple-
menting negation [Kun87], the replacement of lists with so called “difference lists” [SS86]
(which can be concatenated in constant time), and the automatic insertion of control di-
rectives which can be done for instance when information on functional computations and

mutual exclusion is available.

1.3 Summary of Contributions

The results presented in this thesis fit directly into the various stages for the framework
that we have just presented.

In chapter 3 we present a parsing technique called deferred decision parsing, which
was developed to solve the problem of parsing languages with dynamic operators, that is,
languages where the programmer can change the properties of operator symbols as the
program is being parsed. This technique has been built into a parser generator called
DDGEN, which generates deferred decision parsers in a manner similar to Yacc.

As a realistic example we examine in chapter 4 the syntax of Prolog, a language riddled
by numerous syntactical complications and ambiguities. We suggest reasonable restrictions
to make the language deterministic and give a concise and readable grammar to be used
with the parser generator.

The parser generator also serves another important purpose, namely as an efficient
implementation for Definite Clause Grammars. Conventional implementations based on
backtracking parsers can require exponential time. In contrast, our implementation has
the advantage that the token stream need not be completely acquired beforehand, and the
parsing, being deterministic, is linear time.

On the other hand, syntax definitions usually have attributes and evaluation rules as-

sociated with them to convey context-sensitive information. Conventional implementations

10

parse top-down and are thus able to handle some inherited attributes, representing “input”
to the production that is currently being recognized, something which a bottom-up parser
does not normally support. To rectify this situation, we have developed two transformation
techniques, presented in chapter 5, that allow a bottom-up parser to emulate the evaluation
of arbitrary (non-circular) attribute definitions.

Finally in chapter 6 we present an analysis method for logic programs to find mutually
exclusive rules. A very common situation in the definition of a procedure is that its defining
rules are mutually exclusive to each other; this may happen for instance when one rule is
defined for X = 0 and another for X > 0. This presents an optimization opportunity: if
the system succeeds in proving the goal that excludes the other rule, it does not have to
remember to come back to the second clause if the first one fails. This type of analysis has
been conducted before but always restricted to looking only at primitive test goals, such
as arithmetic relational operators. Our method generalizes previous work by propagating
information in the call graph and is thus able to derive mutual exclusion between user-

defined procedures.

11

2. Preliminaries

In order to set the stage for the following chapters, we first review some notation and
concepts on parsing and logic programming. For a more extensive treatment we refer the
reader to [ASU85H, AJ74, FJ88] for context-free grammars and parsing, and [L1o87, Apt90,
CM81, SS86] for logic programming. A unifying presentation of these two fields can also be
found in [DM93].

2.1 Context Free Grammars

A context-free grammar is a four-tuple G = (Vn, Vy, S, P). The finite disjoint sets of

nonterminals Vi and terminals Vr form the vocabulary V = Vy U Vr.

The set P C Viy X V* consists of m productions where the p-th production is

XpO — XplXp2 . X

- Apng

where n, > 0, X0 € Vv, Xp; €V for1 <j < mn,.

S € Vi is the start symbol, which does not appear on the right side of any production.
It is normally the left side of the first production.

The word token is used synonymously with terminal symbol. As a notational convention,
terminal symbols appear in typewriter style, like id. Although there is no typographical
convention for nonterminal symbols, we will often use upper-case letters such as A, B,C, N,
and 5, or lower-case italic names, such as expr. Either way, nonterminals can always be
distinguished because of their appearance in some production’s left-hand side. An arbitrary
grammar symbol (terminal or nonterminal) is represented by the letter X, lower-case greek
letters a, 3, represent strings of grammar symbols, whereas a string of only terminal
symbols is denoted w. The notation A — ay | as | ... | @, is shorthand for the productions
A—a,A—ay,..., A — a,.

The length of a string « is written |a| and is simply the number of grammar symbols in

the string. There is one special symbol, namely the empty string ¢, that has zero length.

12
2.1.1 Derivations and Parse Trees

Given a string of grammar symbols, a production can be seen as a rewriting rule in which
the nonterminal on the left is replaced by the string on the right side of the production.
A rewriting step can be written abstractly as aAf = ay3 , if A — « is a production.
The transitive closure of this relation is written with the symbol = . If a = f, we say
a derives [3.

If S = a, then ais a sentential form. A sentence is a sentential form without nonterminal
symbols. The language generated by a grammar G can now be described as the set of all

sentences derived from 9

LG ={w|S 2w}

(where w is a string of terminal symbols).

We assume that all grammars contains no useless productions and that every nontermi-
nal symbol is accessible from the start symbol and can generate a string without nonterminal
symbols.

Example 2.1.1: The context-free grammar ({Z, N, B},{.,0,1}, 5, P), where P is given by

the productions below, describes binary numbers and generates sentences such as “10.1” i

. 5 — N.N
2. N —- NB
3. N — ¢

4. B — 0

5 B —= 1

Example 2.1.2: (continued) A derivation from the grammar in example 2.1.1 is
§2 NNZNBNZNBBN 2 BBNZ1B.N2£10.N 2 10.NB £ 10.B 2 10.1

The numbers above the arrows indicate the production used in the derivation I

If in each derivation step the leftmost (rightmost) nonterminal is rewritten, the derivation

is called leftmost (rightmost). The derivation in example 2.1.2 is a leftmost derivation.

13

A parse tree is a graphical representation of a derivation where the root is labeled by
the start symbol and the fringe of the tree corresponds to a sentential form. A grammar

that produces two or more parse trees for a sentence is called ambiguous.

Example 2.1.3: (continued) The (only) parse tree for the sentence “10.1” is shown below Il

S
N—" \
N/ \ N
Y \ v \
N B B N B
I .
£ 1 0 € 1

2.1.2 LR Parsing and Parser Generation

A parser is a recognizer for a given context-free grammar G. It accepts as its input a
string of terminal symbols w and verifies whether w € L(G) or not. The output can be
a parse tree, showing the productions that were used in the process of verifying the input
string.

The type of parsers described in this thesis are LR parsers, also called shift-reduce or
bottom-up parsers, because they recognize the parse tree bottom-up by reading (shifting)
terminals and — when the complete right-hand side of a production is available — reducing
the right-hand side to its left-hand side. If the parser is successful in reducing its input to
the start symbol, the input is syntactically correct. This process is called a reverse rightmost

derivation because it traces out a rightmost derivation in reverse.

Example 2.1.4: (continued) The read and reduce steps taken when recognizing “10.1”
are as follows: reduce N — ¢; read 1; reduce B — 1; reduce N — N B; read O0; reduce
B — 0; reduce N — N B; read .; reduce N — ¢; read 1; reduce B — 1; reduce N — N B;

reduce S — N . N |

In a general setting, knowing when to read or reduce is not always easy. In addition, the LR

parser must also reject erroneous input, and know when to accept (announce that the input

14

push(Stack, So) (initial state)
read(X))
repeat
S = top(Stack)
case parse_table(S, X) of
shift 5"
push(Stack, X)
push(Stack, 5")
read(X)
reduce A — 7:
pop |v| state/symbol pairs from Stack
parse_table(top(Stack), A) now contains shift S’
push(Stack, A)
push(Stack, S”)
error:
abort
until parse_table(S, X') = accept

Figure 2.1: The LR parser.

was correct). Such knowledge is stored in a parse table whose construction requires a rather
complicated analysis of the production rules (not described here, but see [BL89, AJ74]).
The parse table encodes a state machine where a state S may have zero or more outgoing
arcs, each labeled by some distinct grammar symbol X. Hence, the parse table can be
implemented with an array parse_table(.S, X'). Each entry contains one of the four actions:

shift —to a new state and read a new terminal; reduce — by a certain production; accept,
or error. With the help of an auxiliary stack of previous states, the parser has enough
information to parse the input string without actually storing the symbols in the “next”
right-hand side, although for clarity we will put them on the stack as well when we show
the steps taken by the parser. The algorithm for the LR parser is shown in fig. 2.1.

An LR parser generator is a program that generates the parse table and the parser
(which is always the same) for a given grammar. The construction of the parse table
imposes certain restrictions on the grammar. For example, there exist grammars for which
an input string has more than one parse tree, that is, the string can be parsed in more

than one way. Such grammars are ambiguous and give rise to multiple entries, called

15

Parse Table
0 1 . eof § N B

0|r/3 /3 /3 1/3 s/1 s/2

1 acc

2 |s/4 s/5 s/3 /6

3(r/3 /3 /3 /3 s/7

4 |1 r/4 r/4 r/4 t/4

51r/5 /5 /5 /b

6 |r/2 r/2 r/2 1/2

7 |s/4 s/b r/1 /6

FExecution Trace

Stack Input | Action
0 10 . 1 eof | reduce N — ¢
0N 2 10 .1 eof | shift 5
ON215 0 . 1 eof | reduce B — 1
ON2B6 0 . 1 eof | reduce N— N B
0N 2 0 . 1 eof | shift 4
0ON204 . 1 eof | reduce B — 0
ON2B6 . 1 eof | reduce N— N B
0N 2 . 1 eof | shift 3
ON2.3 1 eof | reduce N — ¢
ON2.3NT 1 eof | shift 5
ON2.3NT715 eof | reduce B — 1
ON2.3NT7BG6 eof | reduce N — N B
ON2.3N7 eof | reduce S — N . N
0S1 eof | accept

Figure 2.2: Parse table and execution trace for an LR parser. In the parse table,
state numbers appear in the left column and grammar symbols along the top row.
The symbol eof symbolizes the end-of-file marker which terminates the input.
The abbreviation “r/n” means reduce by production n (cf. example 2.1.1), “s/m”
denotes shift to state m, and “acc” stands for accept; all empty entries are error
entries.

shift [reduce, or reduce/reduce conflicts, in the parse table. A parse table with conflicts
must be rejected by the parser generator, unless the conflicts can be resolved by some other
policy (cf. chapter 3).

Example 2.1.5: (continued) A parse table for the binary number grammar is shown in

fig. 2.2 along with an execution trace of the LR parser for the input string “10.1” |

A semantic action is simply a piece of code attached to a production. Semantic actions

16

are executed when the corresponding production has been recognized. In an LR parser, this
can be arranged simply by calling a routine action(n) in the reduce case in fig. 2.1, where

n is the recognized production.

2.2 Logic Programming

This section provides a short description of the syntax and semantics of logic programs.
The syntactical aspects of Prolog are presented in more detail in chapter 3, so at this
point we confine ourselves to an informal overview. We also omit the so called declarative
semantics of logic programs, and instead describe the procedural semantics which are needed

to understand the material on mutual exclusion in chapter 6.

2.2.1 Syntax

A logic program is a collection of Horn clauses (see fig. 2.3). A clause is a sentence of

the form
AOHAl,AQ,...An. (RZO)
which is to be understood as the statement
“for all Xq,..., Xy, Agif Ay and Ay and ... and A,”

where Xq,..., X} are the variables occurring in the clause. If n > 0 we refer to the clause

as a rule, otherwise, if n = 0, we call it a fact and write it as
Ag.

without the implication sign. When actual Prolog code is shown, clauses are usually set in
typewriter style, and the implication sign is written “:=".

A set of clauses with the same predicate name p and arity n collectively defines the
procedure p/n .

The head Ag and the subgoals Ay, ..., A, are literals of the form p(t1,...,t,), where

p is a predicate symbol and the t; are terms, consisting of either constants, variables or

compound terms.

17

— program — — clause C;
Cl AOHAl,...,A]‘,...,An
s
: literal A; ——
Com p(tl,...,ti,...,tk)

term t;
constant variable compound
0742,... X,Y,... f(tl,...,tk)

Figure 2.3: Structure of logic programs.

A constant is either a number or an atom. An atom is uniquely identified by its name,
which is a sequence of characters, either alphanumeric starting with a lower case letter,

“_r e« U]7 ete, or any sequence of characters

or some special symbol like “+47,
delimited by single quotes.

A variable is any sequence of alphanumeric characters (including underscore), starting
with either a capital letter, or an underscore.

A compound term has the form f(#1,...,%;) and represents a function symbol (functor)
applied to its arguments t1,...,t;. A functor f of arity k is often written f/k to make its
arity apparent.

A common data structure in logic programming is the list which is either empty, rep-
resented by the constant [|], or a compound term with the functor “.” (*dot”) and two
arguments representing the head and the tail of the list. Thus .(a,.(b,.(¢,[]))) is a list
with three elements a,b, and ¢. The recursive structure of lists can be hidden by using
special syntax, writing them more conveniently as [a, b, ¢]. Also, the special notation [X|Y],

equivalent to .(X,Y), is useful when the tail of the list is a variable.

Clauses, literals, and terms are called, collectively, expressions.

18

Example 2.2.1: The following clauses collectively define the relation merge(Xs, Ys, Zs)
which is true when Zs is an ordered merge of the elements in Xs and Ys.
[], Vs, Ys).

(
merge(Xs, [], Xs).
([X|Xs], [V| Ys],[X|Zs]) — X < Y, merge(Xs, [Y|Ys], Zs).
merge([X|Xs],[Y| Ys],[Y|Zs]) — X > Y, merge([X|Xs], Vs, Zs). 1

Queries (or goals) are given in the form of a conjunction of conditions
— B,Bs,....B,. (n>0)

which is to be understood as the question
“does there there exist Xy,..., Xy such that B; and B, ...and B,?”

where X7i,..., X are the variables in By,..., B,. The resolution engine, presented in
section 2.2.3, either constructs a substitution Xy /t1,..., Xi/ti (see section 2.2.2) or fails,

depending on whether the query is a theorem that follows from the program or not.

Example 2.2.2: (continued) The query
— merge([2,5,7],[1,3,9], Zs)

results in the substitution Zs/[1,2,3,5,7,9]1

2.2.2 Substitutions and Unification
Formally, a substitution is a finite mapping from variables to terms, and is written as
b= {Xl/tlv .. 7Xk/tk}

Each pair X;/t; is called a binding. We assume that all variables X; are distinct and
that X; # t;,¢ = 1...k. The substitution given by the empty set is called the identity

substitution and is denoted €.

! Although this symbol is unfortunate in that it can be confused with the empty string ¢, I have followed
standard terminology as best as I could, but made them look slightly different. The risk of confusion is

minimal however, since they never appear together in the material to come.

19

A substitution # can be applied to an expression F. The result, £, is called an instance
of F, and is obtained by simultaneously replacing each variable X; in F by the term ¢;. An

instance is ground if it contains no variables.

Substitutions can also be composed. If

6 = {Xl/tl,. . .,Xk/tk}

and
o={Yi/uy,....Y/un}

the composition fo is obtained from the set

{Xl/tlgv .- '7Xk/tkgvyl/u17 .- 7Ym/um}

by removing all bindings X;/¢;0 for which X; = ¢;0 and also all bindings Y;/u; for which
Y, e {Xq,..., Xi}.

We say that a substitution 6 is more general than a substitution o if for some substitution
1 we have o = 0n.

Two expressions ¢ and F, are said to be unifiable if there exists a substitution 8 such
that 10 = Fy0. If so, 8 is called a unifier. There exists a unification algorithm [Rob65]
that for any two expressions produces their most general unifier (mgu) if they are unifiable
and otherwise reports that the two expressions are not unifiable.

Example 2.2.3: Consider expressions Fq = p(X, X), Ez = p(Y, f(Y)), and Es = p(a,a).
Since Y appears in f(Y), Eo does not unify with Fy; neither does FE, unify with Fs.

However, E7 and E3 have a (most general) unifier {X/a} Il

2.2.3 Procedural Semantics

In order to compute an answer substitution for a goal G : «— By,..., B, the logic

programming system tries to prove the negation of G by a process called SLD-derivation®.

?Since @ itself stands for VX (=B1V...V-B,), proving the negation amounts to showing 3X(B1A...ABy).

20

InpuT: A goal G: «— By,...,B;,..., B, and a set of program clauses C1,...,C,,.
OuTPUT: An answer substitution # with bindings for the variables in G.
METHOD:
7:=0
Go =G
f:=¢
repeat
select a literal B; from G/
Ji=J+1
if there is a clause C': B «— Ay,..., Ay such that B; and B unify then
rename all variables in C' to avoid name conflicts
8; := mgu(B;, B)
Gji=«—(By,....Bi_1, Ay, ., Ag, Biya, ..., By)b,
0 := 00,
else
G = fail
until (G] =0av G]‘ = fail)

Figure 2.4: Algorithm for computing an answer substitution.

An SLD-derivation is a sequence of transformation steps where, informally, in each step
a literal in the current goal is replaced by the body of a clause whose head unifies with the
selected literal. If the derivation produces the empty goal O in a finite number of steps
the derivation is called a refutation and the composition of all the unifiers gives the answer
substitution. The derivation is said to fail if, along the derivation, the selected literal has
no matching clause.

The complete algorithm is given in fig. 2.4. From the description it is clear that there
is room for some nondeterminism at each derivation step. In Prolog, the selected literal
is always the leftmost literal in the goal and clauses with matching heads are tried in
textual order. The possibility of several matching heads gives rise to an SLD-tree — see
fig. 2.6 for an example. In Prolog, the tree is explored depth-first; when a fail-node is
discovered, backtracking takes place whereby the system restores its state to the closest

previous branching point where a new choice for a matching clause can be made.

21

G: HBl,..., n
H(Al,...,. Ak,BQ,...,B)0

Figure 2.5: The effect of a cut: the remaining branches are pruned.

2.2.4 Cuts

The cut is a control facility found in Prolog. It is written as “!”

and may be used as a
literal in the body of a clause. The cut always succeeds when selected, but as a side effect
it will cancel certain backtracking activities.

In fig. 2.5 we illustrate the effects of a cut. Here we assume that the leftmost literal in
the current goal is selected, as in Prolog. The invoked clause contains a cut symbol. If the
cut is later selected, all the remaining branches to the right will be “cut off”, that is, if the
system backtracks to the cut, it will skip all remaining subtrees of (G and instead resume
the search above G.

A cut that prunes away success nodes from the SLD-tree is said to be red. A red cut
is harmful because it prevents correct answer substitutions from being derived. If there is
no answer in the pruned part, the cut is green. Green cuts improve the efficiency of the
execution and can be used to sidestep an infinitely large subtree. However, it is not always

easy to tell whether a cut is red or green; a small modification to a clause can suddenly make

a green cut turn red, change the meaning of the program, and confuse the programmer.

2.2.5 Modes

In a logic program there is no obvious flow of computation — a procedure can for

instance be invoked with ground arguments to confirm a solution, or the arguments can be

22

partially bound, so that the procedure will attempt to generate a solution.

It is often the case, however, that the programmer designs a procedure to be invoked in
a particular way. He may then opt to give a mode declaration for the procedure, specifying
how each argument will be bound when the procedure is called. For our purposes we
represent mode information for a procedure p/n with an n-tuple over the elements {c,d},
where ¢ (“constant”) represent all ground terms, and d (“don’t know”) stands for all terms.
The mode for a procedure is sometimes given as a superscript, as in appendc’c’d. Some
researchers use the notation {b,f} instead of {c,d} and speak of mode information as
“adornments”. Mode information may also be inferred statically from a global analysis of
the program, but, as with all interesting program properties, a mode inference program

may not always give exact information.

2.2.6 Definite Clause Grammars

A Definite Clause Grammar (DCG) is a language specification, similar to a context free
grammar, that is automatically translated into clauses in a logic programming language.
In principle, each production rule is compiled into a clause and the parser inherits the
deficiencies of the search mechanism used in the SLD-derivation. In the case of Prolog, this

translation method gives rise to a top-down, backtracking parser.

Example 2.2.4: Consider again the productions in example 2.1.1. A simple translation to

clauses follows below.

S(Xo,Xg) — n(Xo,Xl),Xl = [/./|X2],R(X2,X3).

3

(X0, Xo)-
(Xo,XQ) — n(Xo,Xl), b(Xl,XQ).

3

<~

(X07X1) — Xo - [0|X1]
b(Xo,Xl) — Xo = [1|X1]
Here, the variables X; hold the input so that the first argument of a clause represents the

part of the input that is left to parse upon entering the clause, and the second argument is

what is left when leaving the clause.

23

As a Prolog program, these procedures can be used to refute goals like — s([1,0,".”,1],[]).
It should be noted however, that if the two clauses for n are interchanged, the Prolog system

will enter an infinite loop [

24

— merge([1,3],[2,4], L).

X1/1,01/13], . X1o/1, Ura/[3],
L/[1|W] . L/[1[Wys]
<2 menge([3], (2,41, W), 1> 2 merge([L, 3], [4], 1)
02 =€ 013 =c
— merge([3], 2, Jail
X3/37U3/[]7 X5/37U5/[]7
03 =< Y3/2,V3/[4], Ys/2,Vs/[4],
W1/[3[W3] W1 /[2[Ws]

— 3 < 2, merge([],[2,4], Ws). < 3 > 2, merge([3],[4], Ws).

04 =€ 06 =€
fail — merge([3], [4], W5).
Xe/3, U/, . X10/3, Uro/[)
0r = Yz/4,V7/[], T 010 =4 Yio/4,Vio/[],
Ws/[3[Wr2]), Ws /[4[W1o]
— 3 < 4, merge([], [4], Wr). — 3 >4, merge([3],]], W1o)-
08 =€ 011 =€
— merge([], [4], W7) fail

Figure 2.6: SLD-tree for the query — merge([1,3],[2,4], L). The underlined part in
each node represents the selected literal. The answer substitution for a refutation
is given by the composition of unifiers along the success branches, in this case

01050506070500 = {. ... L/[L|12[3I[4]), ..} = {- ... L/[1,2.3,4],...}.

25

3. The Parser Generator DDGEN

Allowing the programmer to define operators in a language makes for more readable code
but also complicates the job of parsing; standard parsing techniques cannot accommodate
dynamic grammars. In this chapter we present an LR parsing methodology, called deferred
decision parsing, that handles dynamic operator declarations, that is, operators that are
declared at run time, are applicable only within a program or context, and are not in the
underlying language or grammar. It uses a parser generator that takes production rules as
input, and generates a table-driven LR parser, much like Yacc. Shift/reduce conflicts that
involve dynamic operators are resolved at parse time rather than at table construction time.

For an operator-rich language, this technique reduces the size of the grammar needed
and parse table produced. The added cost to the parser is minimal. Ambiguous operator
constructs can either be detected by the parser as input is being read or avoided altogether
by enforcing reasonable restrictions on operator declarations. We have been able to describe
the syntax of Prolog, a language known for its liberal use of operators, and Standard ML,
which supports local declarations of operators.

Definite Clause Grammars (DCGs), a novel parsing feature of Prolog, can be translated
into efficient code by our parser generator. The implementation has the advantage that
the token stream need not be completely acquired beforehand, and the parsing, being
deterministic, is linear time. Conventional implementations based on backtracking parsers

can require exponential time.

3.1 Introduction and Background

Syntax often has a profound effect on the usability of a language. Although both Prolog
and LISP are conceptually rooted in recursive functions, Prolog’s operator-based syntax is
generally perceived as being easier to read than LISP’s prefix notation. Prolog introduced

two innovations in the use of operators:

26

1. Users could define new operators at run time with great flexibility®.

2. Expressions using operators were semantically equivalent to prefix form expressions;
they were a convenience rather than a necessity.

Notably, new functional programming languages, such as ML [MTH90] and Haskell [HW90],

are following Prolog’s lead in the use of operators. Proper use of operators can make a

program easier to read but also complicates the job of parsing the language.

Example 3.1.1: The following Prolog rules make extensive use of operators to improve
readability.
X requires Y :- X calls Y.
X requires Y :- X calls Z, Z requires Y.
“._»

Here, “:=” and “,” are supplied as standard operators, while “requires” and “calls”

have programmer definitions (not shown) il

Languages that support dynamic operators have some or all of the following syntactic

features:

1. The name of an operator can be any legal identifier or symbol. Perhaps, even “built-

[44 W ”
*

in” operators like “47, “—”, and can be redefined.

2. The syntactic properties of an operator can be changed by the user during parsing of
input.
3. Operators can act as arguments to other operators. For example, if “v”, “A” and

“x” are infix operators, the sentence “v X A” may be proper.

4. Operators can be overloaded, in that a single identifier can be used as the name of
two or more syntactically different operators. A familiar example is “—”, which can
be prefix or infix.

This chapter addresses problems in parsing such languages, presents a solution based on

a generalization of LR parsing and describes a parser generator for this family of languages.

After reviewing some definitions, we give some background on the problem, and then

summarize the contributions. Later sections discuss several of the issues in detail.

!Some earlier languages permitted very limited definitions of new operators; see section 3.1.2.

27

3.1.1 Definitions

We briefly review some standard definitions concerning operators, and specify particular
terminology used in this chapter. An operator is normally a unary or binary function whose
identifier can appear before, after, or between its arguments, depending on whether its fixity
is prefix, postfix, or infix. An identifier that has been declared to be operators of different
fixities is said to be an overloaded operator. We shall also have occasion to consider nullary
operators, which take no arguments. More general operator notations, some of which take
more than two arguments, are not considered here. Besides fixity, operators have two other
properties, precedence and associativity, which govern their use in the language.

An operator’s precedence, or scope, is represented by a positive integer. Here we use
the Prolog convention, which is that the larger precedence number means the wider “scope”
and the weaker binding strength. This is the reverse of many languages, hence the synonym
scope serves as a reminder. Thus “4” normally has a larger precedence number than “x”
by this convention.

An operator’s associativity is one of left, right, or non. For our purposes, an expression is
a term whose principal function is an operator. The precedence of an expression is that of its
principal operator. A left (right) associative operator is permitted to have an expression of
equal precedence as its left (right) argument. Otherwise, arguments of operators must have
lower precedence (remembering Prolog’s order). Non-expression terms have precedence 0;

this includes parenthesized expressions, if they are defined in the grammar.

3.1.2 Background and Prior Work

Most parsing techniques assume a static grammar and fixed operator priorities. Excel-
lent methods have been developed for generating efficient LL parsers and LR parsers from
specifications in the form of production rules, sometimes augmented with associativity and
precedence declarations for infix operators [AJ74, ASUS5, BL89, FJ88, Joh75]. Parser

generation methods enjoy several significant advantages over “hand coding”:

28

1. The language syntax can be presented in a readable, nonprocedural form, similar to

production rules.
2. Embedded semantic actions can be triggered by parsing situations.

3. For most programming languages, the tokenizer may be separated from the grammar,

both in code and in specification.

4. Parsing runs in linear time and normally uses sublinear stack space.

The price that is paid is that only the class of LR(1) languages can be treated, but this is
normally a sufficiently large class in practice.

Earley’s algorithm [Ear70] is a general context-free parser. It can handle any grammar
but is more expensive than the LR-style techniques because the configuration states of the
LR(0) automaton are computed and manipulated as the parse proceeds. Parsing an input
string of length n may require O(n?) time (although LR(k) grammars only take linear time),
O(n?) space, and an input-buffer of size n. Tomita’s algorithm [Tom86] improves on Earley’s
algorithm by precompiling the grammar into a parse table, possibly with multiple entries.
Still, the language is fixed during the parse and it would not be possible to introduce or
change properties of operators on the fly.

Incremental parser generators [HKR90, Hor90] can be viewed as an application of
Tomita’s parsing method. They can handle modifications to the input grammar at the
expense of recomputing parts of the parse table and having the LR(0) automaton available
at run time. Garbage collection also becomes an issue.

To our knowledge these methods have never been applied to parse languages with
dynamically declared operators.

Operator precedence parsing is another method with applications to dynamic operators
[LdR81] but it can not handle overloaded operators.

Permitting user-defined operators was part of the design of several early procedural
languages, such as Algol-68 [vW76] and EL1 [HTSW74], but these designs avoided most
of the technical difficulties by placing severe restrictions on the definable operators. First,

infix operators were limited to 7 to 10 precedence levels. By comparison, C has 15 built-in

29

precedence levels, and Prolog permits 1200. More significantly, prefix operators always took
precedence over infix, preventing certain combinations from being interpreted naturally.
(C defines some infix to take precedence over some prefix, and Prolog permits this in
user definitions.) For example, no declarations in the EL1 or Algol-68 framework permit
(not X=Y) to be parsed as (not (X=Y)). Scant details of the parsing methods can be found
in the literature, but it appears that one implementation of EL1 used LR parsing with a
mechanism for changing the token of an identifier that had been dynamically declared as
an operator “based on local context” before the token reached the parser [HTSW74]. Our
approach generalizes this technique, postponing the decision until after the parser has seen
the token, and even until after additional tokens have been read.

Languages have been designed to allow other forms of user-defined syntax besides
unary and binary operators. Among them, EL1 included “bracket-fix operators” and other
dynamic syntax; in some cases a new parser would be generated [HTSW74]. More recently,
Peyton Jones [Jon86] describes a technique for parsing programs that involves user-defined
distfix operators, for instance if-then-else-fi, but without support for precedence and
associativity declarations.

With the advent of languages that permit dynamic operators, numerous ad hoc parsers
have been developed. The tokenizer is often embedded in these parsers with attendant
complications. It is frequently difficult to tell precisely what language they parse; the

parser code literally defines the language.

Example 3.1.2: Using standard operator precedences, prefix “—” binds less tightly than
infix “+” in popular versions of Prolog. However, (- 3 * 4) was found to parse as
((-3) * 4) whereas (- X * 4) was found to parse as (- (X * 4)). Numerous other

anomalies can be demonstrated ||
Indeed, written descriptions of the “Edinburgh syntax” for Prolog are acknowledged to

be approximations, and the “ultimate definition” seems to be the public domain parser

read.pl.

30

Sentences Op Decls
Sentences

Standard Deferred l
Op Decls Decision
Parser — Parser Rules — Parser
Rules Parser
Generator
Generator i

Parse Tree

Figure 3.1: Standard Parser Generator and Deferred Decision Parser Generator.
3.1.3 Summary of Contributions

A method called deferred decision parsing has been developed with the objective of
building upon the techniques of LR parsing and parser generation, and enjoying their
advantages mentioned above, while extending the methodology to incorporate dynamic
operators. The method is an extension of earlier work by Kerr [Ker89]. It supports all four
features that were listed above as being needed by languages with dynamic operators. The
resulting parsers are deterministic, and suffer only a small time penalty when compared to
LR parsing without dynamic operators. They use substantially less time and space than
Earley’s algorithm.

In “standard” LR parser generation, as done by Yacc and similar tools, shift/reduce
conflicts, as evidenced by multiple entries in the initial parse table, are resolved by consulting
declarations concerning (static) operator precedence and associativity [Joh75]. If the process
is successful, the final parse table becomes deterministic.

The main idea of deferred decision parsing is that shift/reduce conflicts involving dy-
namic operators are left unresolved when the parser is generated. At run time the current
declarations concerning operator precedence and associativity are consulted to resolve an
ambiguity when it actually arises (fig. 3.1). Another important extension is the ability to
handle a wider range of fixities, as well as overloading, compared to standard LR parser
generators. These extensions are needed to parse several newer languages.

The parser generator, implemented in a standard dialect of Prolog, processes DCG-style

31

input consisting of production rules, normally with embedded semantic actions. The output
is Prolog source code for the parser, with appropriate calls to a scanner and an operator
module.

The operator module provides a standard interface to the dynamic operator table used by
the parser. Thus, the language designer decides what language constructs denote operator
declarations; when such constructs are recognized during parsing, the associated semantic
actions may interact with the operator module. Procedures are provided to query the state
of the operator table and to update it. Interaction with the operator module is shown in
the example in fig. 3.7.

We assume that the grammar is designed in such a way that semantic actions that update
dynamic operators cannot occur while a dynamic operator is in the parser stack; otherwise
a grammatical monstrosity might be created. In other words, it should be impossible for
a dynamic operator to appear in a parse tree as an ancestor of a symbol whose semantic
action can change the operator table. Such designs are straightforward and natural, so we
see no need for a special mechanism to enforce this constraint. For example, if dynamic
operator properties can be changed upon reducing a “sentence”, then the grammar should
not permit dynamic operators between “sentences”, for that would place a dynamic operator
above “sentence” in some parse trees.

Standard operator-conflict situations are easily handled by a run-time resolution module.
However, Prolog offers very general operator-declaration capabilities, which in theory can
introduce significant difficulties with overloaded operators. (Actually, these complicated
situations rarely arise in practice, as users refrain from defining an operator structure that
they cannot understand themselves.) In Edinburgh Prolog [BBP*82] for instance, the user
can define a symbol as an operator of all three fixities and then use the symbol as an
operator, or as an operand (nullary operator), or as the functor of a compound term. As
the Prolog standardization committee recognized in a 1990 report [Sco90],

“These possibilities provide multiple opportunities for ambiguity and the

draft standard has therefore defined restrictions on the syntax so that a) ex-

32

pressions can still be parsed from left to right without needing significant back-
tracking or look-ahead...”
A preliminary report on this work showed that many of the proposed restrictions were
unnecessary. The ISO committee has subsequently relaxed most of the restrictions, but at
the expense of more complex rules for terms [Sco92].

The modular design of our system permits different conflict resolution strategies and
operator-restriction policies to be “plugged in”, and thus may serve as a valuable tool for
investigating languages that are well-defined, yet have very flexible operator capabilities.

So-called Definite Clause Grammars (DCGs) are a syntactic variant of Prolog, in
which statements are written in a production-rule style, with embedded semantic actions
[BBP*82]. This style permits input-driven programs to be developed quickly and concisely.
Our parser generator provides a foundation for DCG compilation that overcomes some
of the deficiencies of existing implementations. These deficiencies include the need to have
acquired the entire input string before parsing begins, and the fact that backtracking occurs,
even in deterministic grammars.

Our point of view is to regard the DCG as a translation scheme in which the arguments
of predicates appearing as nonterminals in the DCG are attributes; semantic actions may
manipulate these attributes. Essentially, a parser is a DCG in which all attributes are
synthesized, and each nonterminal has a parse tree as its only attribute. Synthesis of at-
tributes is accomplished naturally in LR parsing, as semantic actions are executed after the
associated production has been reduced. Another research direction has been to correctly

handle inherited attributes. This work is discussed in chapter 5.

3.2 Deferred Decision Parsing

The parser generator Yacc disambiguates conflicts in grammars by consulting program-
mer-supplied information about precedence and associativity of certain tokens, which nor-
mally function as infix operators. Deferred decision parsing postpones the resolution of

conflicts involving dynamic operators until run time.

33

Prefix Infix Postfix
Name || Prec | Assoc | Prec | Assoc | Prec | Assoc
+ 300 right 500 left
- 300 right 500 left
* 400 left
/ 400 left
! 300 left

Figure 3.2: An example run-time operator table.

term(T) — atom(T)

term(T) — var(T)

term(T) — (' term(T)"Y

term(T) — op(Name) term(T}) {T =..[Name, 1] }
term(T) — term(T1) op(Name) term(Ty) { T = .. [Name,Ty,T5] }
term(T) — term(Ty) op(Name) {T =..[Name, 1] }
term(T) — op(Name)

Figure 3.3: Subset grammar for Prolog terms.

As a running example we will use a grammar for a subset of Prolog terms with operators
of all three fixities. At run time the name of each operator, together with its precedence,
fixity, and associativity, is stored in the current operator table (see fig. 3.2 for an example).
The parser has access to the current operator table and is responsible for converting tokens
from the scanner so that an identifier with an entry in the current operator table is translated
to the appropriate dynamic operator token.

The token names for dynamic operators, which should not be confused with the operator
names, are declared to the parser generator (cf. example in section 3.3), and appear in the
production rules of the grammar. When a production rule contains a dynamic operator
token there can be at most one grammar symbol on either side of the dynamic operator, and
its position determines the intended fixity. Apart from this, there are no other restrictions
on the productions. Normally a single token is sufficient for all dynamic operators. This
example uses the single token op for prefix, infix, and postfix operators.

Figure 3.3 shows the subset grammar for Prolog terms. The LR(0) collection for this

34

grammar has 11 states of which 4 have shift/reduce conflicts.

Rather than trying to resolve each shift/reduce conflict at table construction time we
will delay the decisions and turn them into a new kind of action, called resolve, which takes
two arguments: (1) the state to enter if the conflict is resolved in favor of a shift, and (2) the
rule by which to reduce if a reduction is selected. Recall that the user (language designer)
declares what tokens constitute dynamic operators (op in this example). Only the conflicts
involving two dynamic operators are expected to be resolved at run time. All other conflicts
are reported as usual. Conflicts between an operator and a non-operator symbol can always
be resolved at table construction time due to the requirement that operators have positive
precedence and non-expression terms have precedence 0.

The parser driver for deferred decision parsing is similar to a standard LR parser, except
for one difference: instead of directly accessing entries in the parse table, references to parse
table entries are mediated through a procedure parse_action(S, X), where S is the current
state of the parser and X is the look-ahead token. It returns an action which may be one

of shift, reduce, accept, or error. The rule for parse_action is

If parse_table(5, X) = resolve(5', A — a op,)
then return do_resolve(A — a opy 5, X)

else return parse_table(S, X)

The procedure do_resolve, which is called to resolve the shift/reduce conflict, has access
to the rule that is candidate for reduction, and the look-ahead token. The resolution is
done by the policy that is used at table-construction time by Yacc [AJU75, ASU85]|, with
extensions to cover cases that cannot be declared in Yacc (cf. section 3.4). The details,
for those conversant with the operation of the LR parser, are as follows. The shift/reduce
conflict corresponding to the resolve action requires a decision when a op, 3 is on top of
the stack (top rightmost), and the look-ahead token is opg, where a and 3 each consist of
zero or one grammar symbols. (Recall that one of the requirements for turning the conflict
into a resolve action was that op, and opg had to be declared as dynamic operators.) The

choices are to reduce, using production A — a op, [, or shift the look-ahead token opg.

35

When operators are overloaded, there may be several choices to consider. Even if oper-
ators are not overloaded by run-time declarations, there may be the implicit overloading of
the declared operator and the nullary operator. The ambiguities that arise from overloading
pose serious difficulties in parser design. OQur parser treats the nullary operator as having
scope equal to the maximum of its declared scopes plus a small “delta”. This treatment
guarantees a deterministic grammar if there is no declared overloading (cf. section 3.4) and
retains the flexibility of allowing operators to appear as terms.

The overloading of the operators op, and opg could lead to multiple interpretations
of the input string as there are several declarations to consider. In practice one doesn’t
have to consider all combinations of the declarations; a Prolog grammar, for instance, does
not generate sentential forms with two adjacent expressions, so there are only certain fixity

combinations worth considering:

Form of aw op4 § | Possible fixity combinations (op 4,0pg)

aFfe,fF£e (infix, infix), (infix, postfix)

aFfe f=c¢ (infix, prefix), (infix, null), (postfix, infix), (postfix, postfix)
a=¢,fF#c¢ (prefix, infix), (prefix, postfix)

a=¢ f=¢ (prefix, prefix), (prefix, null), (null, infix), (null, postfix)

Hence, for a Prolog grammar there are at most four overloading combinations. If the
grammar allows adjacent expressions there are at most 16 combinations to consider; this
happens when both operators have declarations for all fixities.

The rules below are evaluated for each fixity combination; the resulting actions are
collected into a set. The parser will enter an error state if the set of possible actions is
either empty — signifying a precedence error — or contains both shift and reduce actions
— indicating ambiguous input, in which case the two possible interpretations of the input
string are reported to the user. If there is a unique action, we have successfully resolved

the conflict.

36

1. If op, and opg have equal scope, then
(a) If op, is right-associative, shift®.
(b) If opg is left-associative, reduce.
2. If op, is either infix or prefix with wider scope than opg, shift.
3. If opy is either infix or postfix with wider scope than op,, reduce.

Example 3.2.1: We examine the deferred decision parser as it reads -X+Y*Z!, using the
operators in fig. 3.2. Figure 3.4 shows the steps involved. At step 4, state 5 contains the
shift [reduce conflict {term — term e op(+) term,term — op(-) term e} for terminal op.
The operator in the redex, “-”, and the look-ahead operator “+” are overloaded as level
300 prefix right-associative, level 500 infix left-associative and, implicitly, as level 500 + &
nullary. Due to the form of the redex, only the prefix form of “-” and infix form of “+”
are considered. Since “-” has narrower scope than “+” and 8 = term # ¢ we satisfy the
requirements for the third rule above and reduce.

At step 8, state 7 contains the shift /reduce conflict {term — term e op(*) term, term —
term op(+) term e}. The operator in the redex, “+” is overloaded as before while the look-
ahead operator “*” is level 400 infix left-associative and level 400 + ¢ nullary. This time,
the form of the redex tells us to consider the infix versions of both operators, and since infix
“+” has wider scope than infix “+#” we have a match for the second rule and shift.

At step 11, state 7 contains the shift/reduce conflict {term — term e op(!),term —
term op(+) term e}. The operator in the redex, “x”. is still level 400 infix left-associative
and level 40046 nullary while the look-ahead operator “!” is level 300 postfix left-associative
and level 300 4+ ¢ nullary. The nullary versions are not considered due to the form of the

redex. Again the operator in the redex is infix with wider scope than the look-ahead

operator, matching the third rule, so we shift again Il

2 Shift is chosen over reduce in situations where the inputis 1 R 2 L 3. (R and L have the same precedence,
but are declared right-associative and left-associative, respectively.) This is parsed as 1 R (2 L 3), which

conform with all Prolog systems that we are aware of, as well as the most recent ISO draft[Sco92].

37

Stack Input | Action
110 op(-) var(X) op(+) var(Y) op(*) var(Z) op(!) eof | shift3
210 o0p(-) 3 var(X) op(+) var(Y) op(*) var(Z) op(!) eof | shift4d
310o0p(-) 3var(X) 4 op(+) var(Y) op(*) var(Z) op(!) eof | reduce term — var(X)
410 op(-) 3 term 5 op(+) var(Y) op(x) var(Z) op(!) eof | resolve(6,term — op(-) term)
510 term 10 op(+) var(Y) op(*) var(Z) op(!) eof | shift6
6|0 term 10 op(+) 6 var(Y) op(*) var(Z) op(!) eof | shift4d
710 term 10 op(+) 6 var(Y) 4 op(#) var(Z) op(!) eof | reduce term — var(Y)
810 term 10 op(+) 6 term 7 op(*) var(Z) op(!) eof | resolve(6,term — term op(+) term)
910 term 10 op(+) 6 term 7 op(*) 6 var(Z) op(!) eof | shift4
10| 0 term 10 op(+) 6 term 7 op(*) 6 var(Z) 4 op(!) eof | reduce term — var(Z)
11| 0 term 10 op(+) 6 term 7 op(*) 6 term 7 op(!) eof | resolve(6,term — term op(*) term)
12| 0 term 10 op(+) 6 term 7 op(*) 6 term 7 op(!) 6 eof | reduce term — term op(!)
13 |0 term 10 op(+) 6 term 7 op(*) 6 term 7 eof | reduce term — term op(*) term
14| 0 term 10 op(+) 6 term 7 eof | reduce term — term op(+) term
1510 term 10 eof | accept

Figure 3.4: Deferred decision parsing example.

3.3 Local Operator Declarations

The advantage of resolving operator conflicts at run time is that the programmer can
change the syntactic properties of operators on the fly. When parsing a language with
dynamic operators it is the responsibility of the language designer to initialize the operator
table with the predefined operators in the language, before parsing commences, and to
provide semantic actions to update the table as operator declarations are recognized.

ML is a language with infix operators only, but these can be declared locally in blocks,
with accompanying scope rules [MTH90]. Thus in the following example

let infix 5 * ; infix 4 + in
1+2%3 + let infix 3 * in 1+42%3 end + 1+2%3
end
only the middle use of * would have an unusually low precedence, yielding the answer 23.

To understand how the operator scope rules of ML can be implemented, we study fig. 3.7

38

“::=” is used instead of “—" in the

which shows an input specification for DDGEN. Here,
grammar rules.

The line dynop_token(atom(Name), op(Name)) declares op as a dynamic operator; if
the scanner returns atom(Name) and Name is present in the current operator table, the token
is converted to op(Name).

When the parser encounters a let-expression, the operators whose names are shadowed
by local declarations are saved in 01dList. Each operator declaration returns information
about the operator it shadows, or null if there was no declaration with the same name
in an outer scope. The old operators are re-instantiated when we reach the end of the
let-expressions.

Calls to the operator table module can be seen in the Prolog rules at the bottom: the
first two rules, m1_dcl_op and ml _rem op, declares and removes an operator in the current
operator table, respectively, and returns the old properties. The last rule, ml_rest_op is

called to re-instantiate old operators.

3.4 Ambiguities at Run Time and Induced Grammars

Because the language changes dynamically as new operators are being declared, it is
important to understand exactly what language is being parsed. The algorithm below
constructs the induced grammar, given the input grammar and an operator table. As
mentioned earlier, we assume that operator declarations remain constant while a construct
involving dynamic operators is being reduced. Thus it makes sense to talk about the induced
grammar with which that construct is parsed, even though a later part of the input may be
parsed by a different induced grammar.

The induced grammar is obtained by replacing productions containing dynamic oper-
ators with a set of productions constituting a precedence grammar. It should be pointed
out that the induced grammar is not actually constructed by the parser. The goal of the
deferred decision parser is to recognize exactly the strings in the language generated by the

induced grammar.

39

Algorithm 3.4.1: Induced grammar construction.

InpuT: A dynamic operator grammar and the current operator table.

OvutpuT: The induced grammar, defined below.

METHOD: Sort the operator table by precedence so it can be divided into k slots, where

all operators in slot 2 € 1...k have the same precedence p;, and so that slot k holds

the operators of widest scope. For simplicity, assume that there is only one dynamic

operator, op. Now apply the following steps:

1. For each nonterminal A in the dynamic operator grammar:

(a)

Partition the productions defining A into five sets corresponding to the use
of an operator in the right hand side (prefix, infix, postfix, operand (nullary),
or no operator at all):

yre = {A — op C} I, ={A — B op C}

5t = {A — B op} I, = {A — op}

Wem ={A =7 | op &7}
Build a precedence grammar consisting of k + 1 layers (fig. 3.5). This will
serve as a skeleton for the induced grammar. The ¢-th layer (0 < ¢ < k)
holds productions for nonterminal A; which corresponds to operators with
precedence p;. The 0-th layer defines the sentential forms with 0 precedence,

provided that there are any in the dynamic operator grammar.
Foreel...k:

Take each operator into account by adding productions to either A%, Al or
Afv, depending on the associativity of the operator being right, left, or none.
i. First the prefix operators: If I, # (), add productions Afv — 0 A;_q,
for all prefix, non-associative operators o with precedence p;, and AF —

o AP for all prefix, right-associative operators o with precedence p;.
ii. Next the infix operators: If II;, # @, add productions A{J — A{J 0o A;_q,

for all infix, left-associative operators o with precedence p;, and Afv —

A;_1 o A;_q, for all infix, non-associative operators o with precedence

40

A— A

k: Ak—>AE,AEHA%,A%HA?,AgﬁAk_l

in | Ay — ARCAR AL AL AN AN oA

Lo | Ay — AR AR AL AL o AN AN — A,

0: | Ag — v, forall A — v in I,

Figure 3.5: Skeleton for induced grammar. The production AY — Aq is included

only if ., # 0.

pi, and AF — A,y o AF for all infix, right-associative operators o with
precedence p;.

iii. Then the postfix: If 1,5, # 0, add productions A{J — A{J o, for
all postfix, left-associative operators o with precedence p;, and Afv —

A;_1 o, for all postfix, non-associative operators o with precedence p;.

iv. Finally, let nullary operators have the maximum of its declared prece-
dences: If I1,,,;; # (0, then for all operators o in the operator table, add
the production A, — o where p is the highest indexed slot in the operator

table containing o.

2. The nonterminals and terminals of the induced grammar are given in the stan-
dard way: a grammar symbol which appears on some left hand side is a non-
terminal; all other symbols are terminals. Additionally, the dynamic operator

grammar and the induced grammar share their start symbols [

Example 3.4.1: Consider the Prolog term grammar and the operator table in fig. 3.2.

Sorting the table gives us three precedence levels (fig. 3.6). The induced grammar is shown

N

below (term;' omitted for brevity). The induced grammar is deterministic (as verified by

Yacc).

41

FN) [L

terms — 2+’ | | terms

L L 5> L ,_»

terms — termyz ’+’ termy | termsy termg | termg

termy — x> | /7 | term¥

term¥ — termd x> termy | terml /0 termy | termy
) R

term; — 1| termy

termP — o+ termf | =0 termf | term¥

term¥ — termi 20 | termg

termg — atom | var | ’(’ terms ’)’ |

Although the above example produced a deterministic grammar, unrestricted overload-

ing can produce an ambiguous grammar. However, certain reasonable restrictions on op-

erator declarations and overloading guarantee determinacy (with one look-ahead token) in

the deferred decision parser:

1

2.

. All declarations for the same symbol have the same precedence.

If a symbol’s infix associativity is non, then (if declared) its prefix and postfix asso-

clativities must be non.

. If a symbol’s infix associativity is left, then (if declared) its prefix associativity must
be non and its postfix associativity must be left.

. If a symbol’s infix associativity is right, then (if declared) its prefix associativity must

be right and there must be no postfix declaration for this symbol.

Theorem 3.4.1: The above restrictions guarantee determinacy.

Proof: The proofis carried out in three steps. We begin by excluding declared overloading

altogether and assigning nullary operators the maximum of its declared scopes plus “delta”.

This leads to deterministic induced grammars, even if operators are used as operands. The

reason for this, briefly, is that since overloading is absent, an operator symbol with declared

precedence p; will be confined to only one layer ¢ in the induced grammar. Thus, any

possible ambiguity must arise from the implicit overloading of the declared operator and

the nullary operator, or possibly the use of a derivation A4; = aAS. Assuming o and 3 are

42

non-empty strings not containing operator symbols, we end up with a skeleton grammar
for layer ¢ as shown below. (Prolog syntax is used to describe the different combinations of
fixities and associativities; cf. fig. 4.1.)

A; — fx | fy | xfx | xfy | yfx | xf | y£f AR
AR — £y AR | B xfy AR | A
Al — AP yfx B | AF y£ | AN
AN~ fxB|BxfxB|Bxf|B

B — atom | var | *(° A; ?)’

As verified by Yace, this grammar is deterministic. By induction on the parse tree it then
follows that the induced grammar, consisting of all layers, is also deterministic.

Since the previous policy turned out to guarantee deterministic grammars, we now try
to relax the requirements on overloading and instead insist on the following two conditions:

1. All declarations for the same symbol must have the same precedence.

2. No symbol must be overloaded to be both left and right associative.
Nullary operators are treated as before. The skeleton layer in the induced grammar now
takes the following appearance:

A; — fx | fy | non | right | left | xf | yf | AF

AR — £y AF | B right AF | right AF | Al
A — AL yf | AF left B | AP left | AV
AN — fx B| B xf|Bnon B|left B| B right | non B | B non | B

B — atom | var | *(° A; ?)’

In this grammar non signifies an overloaded operator that is actually declared to be fx,
xfx, and xf. Likewise, right is overloaded as fy, xfy, and xf; left as fx, yfx, and
yf. The induced grammar fragment is ambiguous, as witnessed by the sentential form
B right left B:

1. AR = B right AR = B right AL = B right AN = B right left B

2. AR = Al = Al left B = AN left B = B right left B

43

Slot | Prec | (o, Fix, Assoc)
1 300 | (—, pre, right), (4, pre, right), (!, post, left)
2 400 | (*, in, left), (/, in, left)
3 500 | (—, in, left), (+, in, left)

Figure 3.6: Sorted operator table.

Thus we need something stronger. Working backwards, we can remove the production
AN — B right to make the grammar deterministic again, which leads to the policy just

presented |

The recent ISO draft proposes a different set of restrictions to avoid ambiguities [Sco92].
Probably neither solution is the final word. We hope our parser generator can be a useful

tool to explore design alternatives.

3.5 Application to Definite Clause Grammars

The Definite Clause Grammars found in Prolog were originally designed for parsing
highly ambiguous grammars with short sentences, natural languages being the primary
example. Since Prolog employs a top-down backtracking execution style, the evaluation of
DCGs will resemble the behavior of a top-down parser with backtracking.

In compiler theory, interest is commonly focused on deterministic languages. The benefit
of Prolog as a compiler tool has been observed by Cohen and Hickey [CH87]. However,
there are several reasons why a top-down backtracking parser is unsuitable for recognizing
sentences such as programming language constructs.

e A left-recursive production, such as £ — F — T, will send the parser into an infinite

loop, even though the grammar is not ambiguous. There are techniques for eliminating
left recursion, but they enlarge the grammar, sometimes significantly [ASUS5]. Also,

there is no clearcut way to transform the semantic actions correctly.

44

e Unless the parser is predictive [ASUS5] it may spend considerable time on backtrack-

ing.

o A backtracking parser requires the whole input stream of tokens to be present during

parsing.

e Backtracking may be undesirable in a compiler where semantic actions are not idem-

potent, for example in the generation of object code.

Deterministic bottom-up parsers, on the other hand, run in linear time, require no
input buffering, and handle left-recursive productions as well as right-recursive. They do not
normally support ambiguous grammars. Nilsson [Nil86] has implemented a nondeterministic
bottom-up evaluator for DCGs by letting the parser backtrack over conflicting entries in
the parse table.

Our approach is to view Definite Clause Grammars as attribute grammars , which have
been studied extensively in connection with deterministic translation schemes [ASU85]. In
terms of argument modes of DCG goals, synthesized attributes correspond to “output”
arguments, while inherited attributes correspond to “input” arguments. S-attributed
definitions, that is, syntax-directed definitions with only synthesized attributes, can be
evaluated by a bottom-up parser as the input is being parsed. The L-attributed definitions
allow certain inherited attributes as well, thus forming a proper superset of the S-attributed
definitions. Implementation techniques for L-attributed definitions based on grammar
modifications or post-traversals of the parse tree are known [ASU85]. In chapter 5 we
demonstrate how inherited attributes in a bottom-up parser can be handled either by
associating a function from inherited to synthesized attributes with nonterminals, or by

using coroutine facilities in the language.

3.6 Implementation

We have implemented the deferred decision parser generator in a standard dialect of
Prolog. However, there is nothing about the method that prevents it from being incor-

porated into any standard LR parser generator. There are three issues that need to be

45

considered:
1. The user has to be able to declare dynamic operators, like tokens are declared in Yacc
using }token.
2. shift/reduce conflicts have to be turned into resolve actions. This can be done as
a post-processing pass on the parse table using the item sets (y.output for Yacc).
Recall that only conflicts involving dynamic operators are candidates — all other

conflicts have to be reported as usual.

3. The parser accesses parse table entries through the procedure parse_action.

46

parse(File, Exp) :-

open(File, read, Stream),

clear_op, % clear the operator table
init_scanner(Stream, InitScanState),
parse(InitScanState, Exp),
close(Stream).

dynop_token(atom(Name), op(Name)).

exp(E) ::= atexplist(E).
exp(E) ::= exp(E1), op(I), exp(E2), { E = app(I,E1,E2) }.
atexplist(E) ::= atexp(E).
atexplist(E) ::= atexplist(E1l), atexp(E2), { E = app(E1,E2) }.
atexp(C) ::= number(C).
atexp(V) ::= atom(V).
atexp(E) = let, { begin_block }, dec, in, exp(E), end, { end_block }.
dec ::= dec, ’;’, dec.
dec ::= infix, number(D), id(I),

{ D9 is 9-D, declare_op(I, infix, left, D9) }.
dec ::= infixr, number(D), id(I),

{ D9 is 9-D, declare_op(I, infix, right, D9) }.
dec ::= nonfix, id(I),

{ remove_op(I) }.
id(N) = atom(N).
id(N) ::= op(N).

% Interface to the Operator Module: declare, remove and restore operators.
ml_dcl_op(Name, Fix, Assoc, Prec, 01d) :-

(query_op(Name, F, A, P) -> 01d = old(Name, F, A, P) ; 0ld = null),
declare_op(Name, Fix, Assoc, Prec).

ml_rem_op(Name, 01d) :-
(query_op(Name, F, A, P) -> 01d = old(Name, F, A, P) ; 0ld = null),

ml_rest_
ml_rest_
ml_rest_

remove_op(Name, infix).
op(L1).

op([null|T]) :- ml_rest_op(T).
op([old(Name,F,A,P)|T]) :- declare_op(WName,F,A,P), ml_rest_op(T).

Figure 3.7: Grammar subset for ML operator expressions.

47

4. Parsing Prolog

In this chapter we study the syntactical properties of Prolog, a programming language
that has been in use for more than fifteen years but still lacks a precise and readable formal
syntactic definition. The lack of a definition can be attributed to some subtle points in
Prolog’s syntax that are not immediately obvious to the casual user.

The use of the deferred decision parsing method, presented in chapter 3 avoids the prob-
lems of earlier work and the restrictions presented in the more recent ISO proposal. We
present a context-free grammar for a variant of Prolog consisting of only 19 productions.
Besides being completely deterministic, it has the advantage of being presented in a read-
able, non-procedural form. The parser itself enjoys all the benefits of a standard LR parser,

such as linear running time and complete separation from the tokenizer.

4.1 Introduction

At first, Prolog looks deceptively easy to parse. But study it more closely and you
will soon discover small problems, like the significance of whitespace, or more challenging
problems, like operator expressions requiring arbitrarily long look-ahead, and eventually
some really difficult problems, namely ambiguous operator expressions.

Back in 1984, when the first efforts on a standardization of Prolog began, it was said
that syntactical differences between Prolog versions could be trivially overcome, due to the
availability of the DEC-10 Prolog parser read.pl[O’K84]. Almost ten years later we find
that two of the most widely used Prolog systems are based on read.pl, but because of
changes and bug-fixes disagree on some inputs. Because of the opacity of the parser, a
350-line program with backtracking and its share of cuts, it’s very hard for a user to know
exactly what the recognized language is.

Reference manuals typically offer a very ambiguous description of the language, acknowl-
edged to be merely an approximation. The truth of the matter is, that we have yet to find

a description of Prolog’s syntax that is deterministic and readable, both by humans and

48

machines. Let us first make it clear that there is no, and never will be, a deterministic
grammar for Prolog, as the language itself is ambiguous. The ISO Prolog standardization
committee has recognized the multiple opportunities for ambiguity in operator expressions.
Their draft standard has therefore defined restrictions on the syntax so that expressions can
be parsed from left to right without needing significant backtracking or look-ahead. But,
as we shall demonstrate, it is possible to relax these restrictions, not in the language per se,
but on operator declarations, and obtain a deterministic grammar without sacrificing the

expressive power of Prolog.

4.2 The Structure of Prolog

The part of the Prolog system that handles lexical and syntactical analysis is called the
reader. There are at least four lexical categories in Prolog; variables, atoms, numbers, and
punctuation symbols. A variable is any sequence of alphanumeric characters (including
underscore), starting with either a capital letter, or an underscore. An atom is uniquely
identified by its name, which is a sequence of characters, either alphanumeric starting with
a lower case letter, or any of +-*/\"<>=¢":.7?0#$&, or one of !, ;, [1, {}, or any sequence
of characters delimited by single quotes. A number can be either an integer or float, and
many implementations include facilities for representing numbers in different bases. Lastly,
punctuation symbols include parenthesis, brackets, and a few others.

In contrast to many other programming languages, there are relatively few syntactic
categories in Prolog. The most important of these are constants, terms, and compound
terms, as reviewed in chapter 2.

A compound term in the form f(aq,...,a,) is said to be written in standard syntax. If
compound terms were written in standard syntax only, Prolog would be a trivial language
to parse, but a difficult one to read. To make Prolog more readable, unary and binary
functors can be declared as operators of a given fixity — prefix, postfix, or infix — to allow
the functor to appear before, after, or between its arguments. The predicate op/3 is used

to declare an operator:

49

Associativity

Fixity | left non right

prefix fx fy
infix yfx xfx xfy
postfix | yf xf

Figure 4.1: Prolog syntax for encoding fixity and associativity.

:- op(precedence, type, name).
The third argument gives the name of the operator. The first argument is an integer
denoting the operator’s precedence. If the precedence is 0, the operator is “undefined”,
that is, removed from the list of declared operators. There is also an upper limit on the
precedence, usually set to 1200. The second argument to op/3, the type, encodes both
the fixity and the associativity of the operator (fig. 4.1). In this notation, £ represents the
operator being defined, x represents a term with precedence less than £, and y a term with

precedence less than or equal to £.

4.3 Subtleties of Prolog Syntax

In this section we discuss some matters relating to Prolog that might not be obvious to
the casual user. The rules stated here apply to the family of Prolog implementations that
adhere to the so called “Edinburgh syntax” [BBP*82]. Since whitespace is important in
some examples, we will use the symbol LI to indicate any sequence of one or more whitespace
characters.

1. Compound terms written in standard syntax have precedence 0.

2. Compound terms written in operator notation have the same precedence as the
principal functor.

3. If a prefix-declared operator acts as a term, its precedence is unchanged. Any other
operator acting as a term is assigned precedence 0.

4. A quoted atom of the form ’char-sequence’ is interchangable with char-sequence, if

char-sequence itself is a legal atom.

50

5. Arguments to a functor must have precedence less than 1000.
6. There cannot be a space between a functor and its argument list.

7. If the argument to a prefix operator is a parenthesized term, there must be a space

between the operator and the opening parenthesis.

From the first two rules we can for instance conclude that +(X,Y) has precedence 0
(rule 1) but X+Y has precedence 500 (rule 2), the usual precedence of +. As mentioned
before, (X+Y) has precedence 0.

Rule 3 implies that + + constitutes a precedence-based error because + has a prefix,
non-associative declaration, and thus the right + has precedence 500, which is too much for
the left +. The motivation for this rule is obscure. It does not appear to make Prolog any
easier to use, and it certainly complicates the parsing process. In fact, SICSTUS Prolog,
who used to implement this rule, have now discarded it [CWAT91].

Rule 4 simply tells us that for instance >a+’ and a+ are not interchangeable because a+
is not a legal atom. More importantly however is the fact that the comma operator , (a
standard operator in every Prolog implementation) is not the same as the quoted comma
>,?. The reason is simple: the comma is not a legal atom and hence must be quoted to
become legal.

Rule 5 is a consequence of the fact that the comma operator is an infix operator of
precedence 1000. Thus, £(X:-Y) is illegal, since :- has precedence 1200. Such a term
must be written as £((X:-Y)) or as £(:-(X,Y)). The comma is not only used to separate
arguments in compound terms; it is also used as a delimiter in compound goals, tuples,
(...) and {...}, and lists [...]. Have you ever tried to change the properties of the
comma operator? Your Prolog system will probably let you, but if it is based on the DEC-
10 Prolog parser, which has all the uses of comma just mentioned hardcoded into it, your
declaration will be ignored.

The last two rules (6 and 7) are related to each other: since a prefix operator applied
to a parenthesized term looks a lot like a compound term it was apparently decided that

prefix operators must be followed by a space, while functors must not. An example should

51

clarify this. Consider the standard prefix operator \+, which represents logical negation.
The goal \+,(£(X),g(Y)) succeeds only if either £(X) or g(Y) fails. What would happen
if we omitted the space and wrote \+(£(X),g(Y))? This would not be flagged as a syntax
error. Instead, it would be interpreted as the functor \+ applied to the two arguments
£(X) and g(Y). Unless the programmer had defined rules for a predicate \+ of arity 2 —
which is rather unlikely — the goal \+(£(X),g(Y¥)) would either generate a warning, or
automatically fail, regardless of the success of £(X) and g(¥), and the programmer will be
very confused.

Let us elaborate on rule 3 a little bit more. As we shall see, allowing an operator to act

as a term complicates parsing tremendously.
Example 4.3.1: Consider the following operator declarations:

:- op(200, fx, uw).

op(400, yfx, bl).

op(500, yfx, b2).

op(300, yfx, b3).
The table below shows some terms involving these operators, and their corresponding parses
written in standard syntax. Notice that in all cases, we are using the fact that the infix

operators b1, b2, and b3 have precedence 0 when used as terms.

Term Parse

u bil. u(bl)

u bl b2. b1(u,b2)

u bl b2 b3. b2(u(b1),b3)
u bl b2 b3 a. | b1(u,b3(b2,a))

Notice that once the operator u has been parsed, any predictive parser would need to know
if u should be treated as a term, or if the look-ahead symbol b1 should be its argument.
At least four elements of look-ahead are required to determine the correct action for the
operator declarations given here. This example can be easily extended to create a situation

in which the required look-ahead is arbitrarily large |

52

Example 4.3.2: Declare the following operators:

:- op(700, xf, #).

:- op(600, xf, @).

:- op(500, xfy, @).
Will Prolog parse a @ # as @(a,#) or #(@(a))? Both parses are acceptable, although the
DEC-10 Prolog parser read.pl would give you the first answer. It used to be that a well-
known Prolog interpreter, whose reader was based on read.pl, returned the second answer.

More recently they have decided to go back to the first answer again il

4.4 Rectifying Prolog

In the previous section we examined a few syntactical curiosities of Prolog. Some of
them make the language difficult to parse and tricky to use. We can eliminate the problems
by making the following changes:

1. Any quoted symbol is treated as an atom, which prevents it from being used as an

operator.

2. If a symbol that is defined as a prefix operator is to act as a functor, it must be

quoted.

3. If an operator is parsed as a term, that term is assigned a precedence equal to the
maximum of its declared precedences plus a small “delta”.
The first condition removes the significance of whitespace, which makes parsing a lot
easier, and regularizes syntax for the user. The third condition guarantees some results on
deterministic grammars (see chapter 3) and also retains the flexibility of allowing operators
to appear as terms.

It should be mentioned that the precedence and/or parsing of certain terms changes
under condition 2. In standard Prolog, the term -(X) has precedence 0, since it is parsed
as a functor applied to an argument. Under our system, -(X) has the same precedence as
the - operator, because it is seen as an operator acting on a parenthesized term. We would

have to write this as ’-? (X) to enforce the functor interpretation. Also, a term like *(3,4),

53

where * is defined as an infix operator only, would yield the interpretation >*°(*,°(3,4)).
A final example is -3 vs. -(3). In standard Prolog, these are not equal but in our system
they are.

We would like to point out that even though condition 2 simplifies parsing and helps
the user by avoiding the tricky problems demonstrated with \+ previously, it is not hard to

implement it in the traditional way, as we will show later.

4.5 The Prolog Grammar

Let us now turn to our proposed grammar. Fig. 4.2 shows the input to our parser
generator DDGEN. The scanner we use is rdtok.pl[0’K90] with a minor modification:
rather than acquiring the whole list of tokens before parsing commences we get the next
token each time we perform a shift.

The first two lines declares op as a dynamic operator; if atom(Name) is returned from
the scanner and Name is present in the current operator table, the token is converted to
op(Name). The comma is not considered a legal atom in Prolog, so we must also announce
that it too can be an operator (line 2).

A Prolog program consists of a sequence of sentences (line 3 and 4). The keyword
empty denotes an empty right hand side. FEach sentence is a Prolog term, usually an
operator expression with :- as the principal functor, terminated by a full-stop token “.”.
The Prolog system will normally look at each sentence as it has been read, and perform
some sort of action, for instance verifying that the head of a procedure is not a number or a
variable, or taking care of goals like :- op(500,yfx,+). The call to action/1 serves that
purpose.

The bulk of the grammar describes the term, which can be either a compound term, a
prefix, infix, or postfix operator expression, a nullary operator, a variable, name, number,
or string, a tuple (either with parenthesis or curly-brackets), a cons expression, or list

expression.

54

Each term carries two synthesized attributes. The first one, T, holds the abstract syntax
tree for the term while the second attribute annotates the tree in the following way: if the
operator at the root of T is not a comma, the annotation is n, meaning “no comma”. If the
operator is a comma, however, the annotation is c(C1,C2) where C1 and C2 are annotations
for the left and right subtrees of T. There are two good reasons for doing this: The first one
is we don’t have to describe argument sequences for compound terms, element sequences
for lists, element sequences for tuples, and goal sequences for compound goals. The second
benefit is that the comma operator is not hardcoded into the grammar and its properties
can be changed by the programmer. Now, we don’t necessarily advocate changing it, we’re
merely pointing out the uniform treatment that follows. If the language designer wishes to
prevent the user from tampering with the comma operator, it is easy to add such a test
before calling the operator module.

To convert a term to a list of arguments we use comma2list(Annotation, Tree,
ArgList) where Annotation and Tree are input arguments, and ArgList is the output.

comma2list(n, T, [T]).
comma2list(c(C1,C2), (T1,T2), L) :-
comma2list(C1, T1, L1),
append(L1, L2, L),
comma2list(C2, T2, L2).
This, in combination with the univ operator =.., makes it easy to build the syntax tree.

The semantic action for variables, T = >$VAR’ (T1) takes advantage of the fact that the
standard procedures write/1 and writeq/1 prints >$VAR’ (Var) simply as Var. This comes
in handy when the abstract syntax tree needs to be written since variables are represented
as var (Name) by the scanner, where Name is a quoted atom containing the variable’s name.
We use writeq/1 to make sure that what is printed can be re-read by read/1.

If the language designer wishes to implement rules 6 and 7, mentioned in section 4.3, it
can done in the following way. The scanner already maintains a state structure containing,

among other things, the next character in the input stream. This character can be passed

55

dynop_token(atom(Name), op(Name)).
dynop_token(’,’, op(’,’)).

sentences ::= term(T,_), { action(T) }, ’, sentences.
sentences ::= empty.
term(T,n) ::= name(Name), ’(’, term(T1,C), ’)’,

{ comma2list(C,T1,A), T =.. [Namel|A] }.
term(T,n) ::= op(Name), term(T1,_), { T =.. [Name,T1] }.
term(T,C) ::= term(T1,Cl), op(Name), term(T2,C2),

{T-=.. [Name,T1,T2], (Name = ’,’> -> C = c(C1,C2); C = n) }.
term(T,n) ::= term(T1,_), op(Name), { T =.. [Name,T1] }.
term(T,n) ::= op(T).
term(T,n) ::= var(T1), { T = *$VAR’(T1) }.
term(T,n) = name(T).
term(T,n) = number(T).
term(T,n) ::= string(T).
term(T,n) ::= °(C’, term(T,_), ’)’.
term(T,n) ::= *{’, term(T1,_), *}’, { T =.. [°{}’,T1] I}.
term(T,n) ::= ’[?, term(T1,C), ’|’, term(T2,_), ’]1°’,

{ comma2list(C,T1,A), append(A,T2,T) }.
term(T,n) ::= ’[’, term(T1,C), ’]1’, { comma2list(C,T1,T) }.
name (T) = atom(T).
name(T) = qatom(T).
name([]) = [, 1.
name({}) = {7, ’}.

Figure 4.2: Prolog grammar.

back to to the parser as an extra argument to the token just read, for instance atom(£,’ (’).
It should also be propagated up as a third synthesized attribute for terms so that (1) the
production for compound terms can verify that there is a left parenthesis following, and
(2) the production for prefix operators can verify that there is a whitespace following.
Furthermore, an atom returned from the scanner must not be converted to a dynamic

operator if the atom is followed by a left parenthesis.

56

4.6 Implementation and Results

The grammar was given to our parser generator and had no conflicts, apart from the
shift [reduce conflicts involving the dynamic operators that are deferred until parse time. We
have tested the parser by reading several large programs, among them the parser generator
itself and the grammar just described, and writing the terms back out again to another
file. By recompiling the output we were able to compare it against the original binary,
thus allowing us to quickly test the parser without having to worry about whitespace and

renamed variables.

57

5. Bottom-Up Evaluation of Attribute Grammars

We describe two transformation methods for (strong) non-circular attribute grammars
that allows them to be evaluated within the S-attributed environment of an LR parser.

Traditionally the language designer, in order to get the evaluation done in one pass, has
been confined to various restrictions of attribute definitions. If a larger class of attribute
grammars was required, the entire dependency graph had to be saved for a post-parse
traversal.

Our methods represent a compromise in that attribute evaluation is normally performed
on the fly except when, in some evaluation rule, the referenced attributes are unavailable,
and the execution of the rule has to be postponed. Suspension and resumption points
for these evaluation rules can either be determined statically (method 1) or dynamically
(method 2). For both methods, we guarantee that resumption takes place as soon as
possible.

For the language designer it is now possible to continue using the one-pass model, but
with the added option of being able to express “complicated” dependencies seamlessly, only
paying for the extra power where it is used. The methods presented here can be used as
a preprocessor to any parser generator that supports synthesized attributes, for instance

Yacc.

5.1 Introduction and Background

An attribute grammar [Knu68] extends a context-free grammar by attaching attributes
to each grammar symbol and by associating evaluation rules to each production, specifying
how an attribute value may be computed in terms of other attribute occurrences in the same
production. Among other things, attribute grammars have proved themselves useful in the
specification of programming languages, thanks to their ability to convey context-sensitive

information.

58

A context-free grammar defines a parse tree for each legal input sentence. In the tree,
attributes can be thought of as extra fields attached to each node. Evaluation rules then
define the value of an attribute in a node in terms of other attributes in child or parent
nodes, a dependency we may depict with an arc to the referenced node. The evaluation
problem, that is, the process of assigning a value to each attribute in the tree, can then be
completed if the overall dependency graph has a partial order in which each attribute and
its defining rule may be visited.

In practice, parsing is done in one pass, either top-down or bottom-up, so that the parse
tree does not have to be created explicitly. Likewise, attribute evaluation can also be done
“on-the-fly” if a sufficient set of restrictions is imposed on the evaluation rules; for instance,
if every attribute depends only on attribute values at the children of the node, then the
computed attribute value is called “synthesized” and a bottom-up parser may perform the
attribute evaluation as it is parsing the input. Such a subclass is called an S-attributed
grammar. Top-down parsers, in addition, are also capable of handling some “inherited”
attributes (where an attribute depends on attribute values in ancestor nodes) thus defining
the larger subclass called L-attributed grammars. It is not true, however, that a top-down
parser, such as an LL(1) parser is a more powerful specification tool than an bottom-up,
LR(1) parser [Bro74].

Besides the obvious time and space savings obtained from the one-pass model, attribute

values can also be used to solve parsing conflicts, or assist in error recovery.

5.1.1 Related Work

Prior work in this area can be divided into one-pass evaluators, post-parsing evaluators,
and compromises thereof.

Top-down parsers have a simple correspondence to L-attributed evaluation [ASUS5].
Evaluation of inherited attributes in a bottom-up parser is more difficult but can for instance
be arranged by the insertion of so called “copy symbols” [Wat77]. One-pass evaluation

methods are surveyed by op den Akker et al [od AMT91]. Inherent in their design is the

59

assumption that dependencies are no more complicated than that the attribute values of
the “working frontier” of the parse tree can be kept on a stack so that evaluation can be
done in some left-to-right fashion [Boc76]. Therefore, these methods are restricted to the
L-attributed grammars.

Post-parsing evaluators save the entire parse tree, or its dependency graph, and are thus
capable of handling any non-circular grammar by executing the evaluation rules according
to the order of the graph. An interesting variation on this method is described by Mayoh
[May81]. He shows that attribute grammars can be reformulated as sets of recursive
functions, taking the parse tree as an argument. Related ideas have appeared earlier by
Kennedy and Warren [KW76], and later by Courcelle et al [CFZ82]. Our first method
differs in that the functions, which are passed as synthesized attributes, are created while
parsing, and only when the evaluation rules contains non-S-attributed constructs.

Another related method is given in [JM80] where attribute grammars are analyzed to
find out which attributes can be computed during an LR parse. The remaining attributes,
called “unknown”, are saved for a post-parsing evaluation phase. In contrast, our methods
are more “eager” because computation of unknown attributes is not necessarily put off until
after the parse.

The functional parser generator FPG [Udd88] generates parsers for Lazy ML, a func-
tional programming language with lazy evaluation. Due to the demand-driven nature of
this evaluation method, attribute evaluation comes “for free” and works for all non-circular
grammars. OQur second method is similar in the respect that resumption of suspended eval-
uation rules is done automatically by the runtime system, but we use a coroutine construct
to explicitly suspend rules. Thus, on the spectrum of labor division, our first method re-
quires explicit suspension and resumption, but assumes nothing of the runtime system; our
second method requires explicit suspension, but relies on a coroutine construct to “wake
up” procedure calls; and FPG, finally, is completely transparent, but leaves all the work for

the lazy evaluator.

60
5.1.2 Summary of Contributions

In this chapter we present two transformation methods that let a bottom-up parser
simulate the evaluation of strongly non-circular grammars and non-circular grammars,
respectively. These two subclasses are for all practical purposes large enough and superior
to the subclasses developed for traditional one-pass evaluation, such as the commonly used
L-attributed grammars.

The common theme for our methods is that evaluation of attributes is conducted bottom-
up; when an evaluation rule needs (inherited) attributes, its execution is postponed until
the referenced attributes are available. Because of this, the language designer has the full
power of (strong) non-circular grammars at hand but does not have to pay the price for
“complicated” dependencies in the evaluation rules, except in those parts of the grammar
where they are used.

The first method, based on the ideas by Mayoh [May81], and Kennedy and Warren
[KWT76], postpones evaluation rules by passing them to the ancestor node as synthesized
attributes. In addition to the algorithm we give a theorem to guarantee that attribute
evaluation is not unnecessarily delayed and that the transformation is safe.

The second method is influenced by ideas in [Udd88] and also by comments from the
reviewers of [PVGK93]. While the method is conceptually easier to explain and implement,
it assumes that the host language has a coroutine construct to delay the evaluation of a

procedure call until a specific condition has been met.

5.2 Definitions

We recall the definition of a context-free grammar from chapter 2 as a four-tuple
G = (Vn,Vr, S, P) where the set P C Vx x V* consists of m productions and the p-th
productions is

XpO — XplXp2 . 'Xpnp

61

1. Z(?J) — N(rl,ll,vl) .N(Tg,lg,?]g) {UOIU1+?}3,T1:O,T3:—13}

2. N(ro,lo,vo) — N(r1,l,v1) B(ro,vg) {vo=v1+ve,lo=0L+1,rg=1r9,r1 =10+ 1}
3. N(ro,lo,v) € {vo =0,lp =0}

4. B(rg,v9) — {vo =0}

5. B(rg,vg) — {vg =270}

Figure 5.1: Attribute grammar definition for binary numbers.

With each symbol grammar symbol X € V we associate a finite set A(X) of attributes,
partitioned into two disjoint sets, the synthesized attributes S(X) and the inherited at-
tributes I(X). Terminal symbols have no inherited attributes. We define the set of at-
tributes of a production p as A(p) = {A(Xpr) | 0 < k < n,}. When we wish to be explicit
about the occurrence of an attribute a € A(X,;) we sometimes write ay, or even a,.

Evaluation rules are statements in some language, attached to productions, specifying
how an attribute a,; may be computed in terms of other attributes. We associate therefore
a goal g, with each attribute a,;. The goal is usually of the form a,; = ... where the right
hand side contains references to other attributes, although Prolog specifies the direction of
computation through so called modes. A rule is said to be in normal form if either k = 0
and apr € S(Xp0), or k> 0 and ay, € 1(Xpp).

An attribute grammar consists of a context-free grammar, a domain of attribute values

and a set of evaluation rules.

Example 5.2.1: Fig. 5.1 shows an attribute grammar definition for binary numbers. When
attribute grammars are written in normal form one can always deduce whether an attribute
occurrence is synthesized or inherited by looking for their defining rule — only synthesized
attributes in the left-hand side and inherited attributes in the right-hand side have rules.

In this example, the synthesized attributes [and v stands for “length” and “value”,
respectively. The inherited attribute » denotes the bit radix to which each binary digit is
scaled.

To find the value of a binary number then, one may first proceed bottom-up to compute

all I’s, then down again, assigning values to the r’s, and finally up again, adding up the v’s ||

62

Z(vg) — N(ry,li,v1) . N(r3,13,03)
L J YY)
N(ro,lo,v0) — N(r1,l1,v1) B(re,v2)

L N ‘JU jU

N(To, lo, ?Jo) — £

B(rg,v9) — 0

B(rg,v9) — 1

U

Figure 5.2: Dependency graphs for productions.

For a production p, a dependency graph D(p) contains a set of vertices A(p) and an arc
a’ — a only if attribute a depends directly on the value of attribute a’ by the evaluation

rule of p. We say that @ is a predecessor to a and a' € pred(a).

Example 5.2.2: The evaluation rules in fig. 5.1 induce dependencies in the productions as

shown in fig. 5.2 11

The dependency graph D(T') for a parse tree T is formed by pasting together smaller
graphs corresponding to the dependency graphs for the productions used in the deriva-
tion. In general, if T is a parse tree with root node X,o, D(1") is obtained from D(p)
and D(T1),...,D(T,,) by identifying the vertices for attributes of X,; in D(p) with the
corresponding vertices for the attributes in D(7}), 1 < j < n,,.

Example 5.2.3: The parse tree for the string “10.1” have the dependencies shown in
fig. 5.3 11

We will also have the need to consider dependency relations on attributes of grammar

symbols. Terminal symbols carry only synthesized attributes, so their relation is by default

empty. For a parse tree T" and its root X € Vy, the dependencies among the attributes in X

63

Z(v)
/
N(r,lw) . N(r,lw)
N V2%
N(r,lw) B(r,v) N(rlw) | | B(ro)
4
N(rlp) | | B(rw) 0 € 1
3 1

Figure 5.3: Parse tree and dependencies for “10.1”.

Figure 5.4: Dependencies for grammar symbols.

can be specified as the transitive closure of D(T') restricted to the attributes of X, that is,
F(X) = D(T)*|4cx)- Although there may be an infinite number of parse trees associated
with X, the fact that A(X) is finite implies that the set of all F'(X), henceforth denoted
F(X),is also finite.

Example 5.2.4: For the attribute grammar in fig. 5.1 the symbols have the dependencies
as shown in fig. 5.4
A composite graph

D(p)E(Xp1), - F(Xpn,)]

64

N

Z(vg) — N(rml) . N(rs,l3,v3)
L J Y

o ™y
N(T07107UO) - N(Tlvllvvl) B(T27v2)

U L ‘JU jU

N(To, lo, ?Jo) — £

B(rg,v9) — 0

B(rg,v9) — 1

)

Figure 5.5: Strong composite graphs.

for a production p is obtained from D(p) by adding an arc to @’ from @ whenever there is
an arc to ¢’ from a in F(X,;), 1 <j < n,.

A strong composite graph

D(p)[F(Xp1)s -+, F(Xpn,)]

is formed by adding arcs from F(X,;), defined as the union of the graphs in F(X,;).

Example 5.2.5: The strong composite graphs for the productions in fig. 5.1 are shown in
fig. 5.511

Attribute grammars can be characterized by means of their expressive power. The

following is an incomplete list, starting with the strongest form.

1. An attribute grammar is non-circular if, for all productions p, there are no cycles in
any of the graphs D(p)[F(Xp1), ..., F(Xpy,)] for F(Xp1) € F(Xp1), ..., F(Xpy,) €
F(Xpny)-

An algorithm for verifying that an attribute grammar is non-circular was first given

in [Knu71]. The problem has been shown to have exponential complexity [JORT75].

65

2. An attribute grammar is strongly non-circular if, for all productions p, there are no
cycles in p’s strong composite graph.
An algorithm for strong non-circularity testing was (accidentally) first given in

[Knu68]. Strong non-circularity can be verified in polynomial time [CFZ82].

3. An attribute grammar is L-attributed if it is strongly non-circular and the inherited
attributes of X,; depend only on the attributes in I(X,0) U A(Xp1)U---U A(Xp;—1).

4. An attribute grammar is S-attributed if it does not contain inherited attributes at all.
Attribute grammars with circular definitions are usually considered bogus as there is no

place to start the evaluation.

Example 5.2.6: The following artificial example demonstrates an attribute grammar that

is non-circular, but not strongly non-circular.

1. S—>E(a1,b1,cl,d1) {dl :al,blzcl}
2. E(ao,bo,CO,do) — 0 {(10 = bo,Co = 0}
3. E(ao,bo,CO,do) — 1 {(10 = 1760 = do}

Notice that neither parse tree below has circular dependencies, but together they in-
troduce a loop among the attributes in F(F), hence the example above is not strongly

non-circular.

FE(a,b,c,d) FE(a,b,c,d)
\/ N4
0] 1

66

5.8 Transformation Methods

Evaluators can broadly be divided into two classes: those who perform evaluation on-
the-fly — either by imposing restrictions as above or by being “oblivious” to the rules, like
Yacc — and those who construct the dependency graph for the parse tree to perform a
post-parsing evaluation stage.

By default, LR-parsers that perform on-the-fly evaluation are limited to S-attributed
grammars due to the fact that the parse tree is built bottom-up and the “input” to the
production, I(X,q), is supplied “from above” thus being unavailable when the production
is reduced.

We will consider two transformation methods that enable LR-parsers to handle strong
non-circular grammars (method 1) and non-circular grammars (method 2), respectively.
Our methods represent a compromise between keeping all attribute information on the parse
stack and building the dependency graph for the entire parse tree. Whenever possible, our
methods will compute an attribute value as soon as all its predecessors become available.
Ideally, all attribute values for a production would be computed at the time it is reduced,
but the abovementioned problems with the absent inherited attributes sometimes forces us
to postpone some of the evaluation, until the inherited attributes are available.

The set of attributes in a production p that can be computed at reduction time, denoted
Ready(p), is inductively defined as the smallest subset of A(p) that satisfies

o If a,i,k > 0, has no predecessor in the strong composite graph for p then a, is in

Ready(p).

o If a,r & 1(X,0) and all its predecessors are in Ready(p), then a,j is also in Ready(p).

For a synthesized attribute a of X let
Use(X,a)={d' |d € I(X) N d —a€eF(X)}

that is, the set of inherited attributes of X that determines a. (Notice that strong non-

circularity is used.)

67

5.3.1 Method 1: Synthesized Functions

In this section we present the first method for evaluating a strongly non-circular attribute

grammar within a bottom-up (S-attributed) environment.

Algorithm 5.3.1: INPUT: a set of productions with attributes and rules:
XPO(SO7 IO) - p1(517 Il) . 'Xpnp(snp7 Inp) {Gp}

where 5; = 5(X,;) and I; = I(X,;) respectively, and G, is a set of goals ¢,x, that computes
attributes aypy.

OuTPUT: a set of productions with new attributes and rules:

po(50) = Xpi(S1) - Xy, (57,) {G}

where [5] = [5%| for 0 < j < n,, and G, is the new rule.

METHOD: The general idea behind the transformation is that, since the the “input” to
the production, Iy, is not available when p is reduced, any attribute depending on Iy, in
particular the “output” of the production, Sy, can in general not be computed until the
ancestor in the parse tree supplies the input. In accordance with this input-output view,
we can then return, in place of Sy, a set of functions that returns the synthesized attribute
they replace, given the inherited attributes on which they depend.

Productions are processed individually as follows: Let C(p) be the strong composite
graph for p. If the graph has a cycle, the algorithm must halt and announce that the
attribute grammar is not strongly non-circular.

Otherwise, new attributes are introduced: if X,; is a terminal symbol, the lexical
analyzer provides the synthesized attributes Sj, so naturally 5; = S;. However, for a
nonterminal Xz, Sy is replaced by a equal-sized set of of synthesized functions 5. Each
function f,4, € 5} corresponds to the synthesized attribute a € S} it replaces. The old
synthesized attributes a € Sy in the right side of the production can then be computed by

defining new goals ¢pkq : @ = fpra(args), where args are the attributes in Use(X, a).

68

procedure preds(a)
begin
if ¢ is marked “unknown” then
mark a as “known”
for each o’ such that o' — a € C(p), preds(a’)
output (gpka)
end
end

procedure body(a)

begin
for each ¢’ € A(p), mark ¢’ as “unknown”
for each ' € Iy U Ready(p), mark o’ as “known”
preds(a)

end

Figure 5.6: Definition of procedure body(a).

It remains to describe how G, is built. While G, had no implicit ordering of the goals
but rather served as a specification, G; is a sequence of goals computing the attributes of
Ready(p), followed by a set of function definitions, one for each synthesized attribute in
So. Initially, G; is empty. First visit each attribute @ in Ready(p) in some linear order
imposed by C(p) and append gpr, to G;. Then append for each synthesized attribute
a € S a definition “f,pq(args) = a where body(a)” of the corresponding fyr, € S, where
args are the attributes in Use(Xy, a) and body(a) is a (possibly empty) sequence of goals

that ultimately computes a (fig. 5.6).

Example 5.3.1: Fig. 5.7 shows the result of applying algorithm 5.3.1 to the attribute
grammar in fig. 5.1, based on the strong composite graphs in fig. 5.5.

The reader may notice that the output from the system is no longer a value (namely that
of the binary string) but rather a function of no arguments, returning that value. While
most authors assume that the start symbol has no inherited attributes we have not felt the
need to impose such a restriction; if the returned function is not desirable, one may omit

its construction for the start symbol as a special case [l

69

. Z(fiow) = N(fiie, firw) - N(fass fize) { 71 = 0,0 = fiu(),lz = fizi(),v1 = fire(r1),
r3 = —l3,v3 = f13v(v3)7
vo = v1 + 3, fiou() = vo }

2’. N(fao1; faou) = N(fori, farw) B(f220) {11 = fou().lo =l + 1, foor() = 1,
F20u(r0) = vo where (71 = 19 + 1,
v1 = foru(r1),

T2 = To,
Vg = f22u(7‘2),
vg = v1 + vg) }
3" N(fs00 fa00) — € { faoi() = lp where Iy = 0,
faou(ro) = vo where vg =0 }
4. B(faou) — 0 { faou(r0) = vo where vg =0 }
5. B(fso0) — 1 { fs0u(T0) = vo where vy = 27 }

Figure 5.7: Attribute grammar for binary numbers using synthesized functions.

Correctness

An important theorem follows immediately from the definitions of body(a) and Ready(p).

Theorem 5.3.1: When all predecessors of an attribute a have been computed, a is also

computed as soon as the current production is reduced.

Proof: The theorem has two sides.

e First we must show that no undefined attribute value is referenced in the computation
of a. If a € Ready(p) then this part follows from the fact that all predecessors of
are also in Ready(p) and must have been computed before a, since they are computed
in the order of C(p). If a is computed inside the body of a function, this part follows
from the definition of body(a) which ensures that the goals for all predecessors of a

have been generated before a’s goal.

e Secondly we must show that the computation of an attribute isn’t unnecessarily
“frozen” by being enclosed and passed up inside a function. For this part we notice
that the only attributes computed inside a function are those who transitively depend
on the unavailable I(X,0); the other attributes (that can be computed) are captured
by the definition of Ready(p) 1

70
Implementation

We have implemented algorithm 5.3.1in Prolog as a front-end to our LR parser generator
DDGEN, which in itself generates Prolog parsers [PVGK93]. Together, they serve as a
replacement for the traditional implementation of Definite Clause Grammars, namely top-
down parsing with backtracking.

In Prolog, synthesized functions can be implemented either by passing goals and using
call for application, or by creating new predicates with assert. In an imperative setting,
like C with Yacc, the synthesized functions can be implemented with pointers to “closures”,
structures with a function pointer and a set of attribute variables holding bindings that
have already been made when the function is passed up. Closures have to be allocated
dynamically but their space can be reclaimed immediately after the function has been

applied.

5.3.2 Method 2: Coroutines

The second method is easier to explain and implement, but requires a coroutine construct
in the language. For the purposes of this exposition we will use the rather self-explanatory
predicate when(Cond, Goal) from SICSTUS Prolog [CWAT91]. When executed, this predi-
cate blocks the execution of Goal until Cond is true. The idea of the transformation is that

evaluation rules are “frozen” until their referenced attributes are available.

Algorithm 5.3.2: INPUT: a set of productions with attributes and rules:

XPO(SO7 IO) - p1(517 Il) . 'Xpnp(snp7 Inp) {Gp}

where the notation is the same as in the previous algorithm.

OutpuT: The same productions, but with new rules G;.

METHOD: For each goal gk, € G, add the new goal “when(C, gpra)” to G}, where C'is
the condition that tests whether all referenced attributes in g, have been computed Il
Example 5.3.2: The result of applying the algorithm to our running example (fig. 5.1)

can be seen in fig. 5.8.

71

1. Z(vg) — N(r1,l1,v1) . N(rs,l3,v3) {when((nonvar(vy), nonvar(vs)),vo = v1 + v3),
T = 0,
when(nonvar(ls),rs = —l3)}
2. N(rg,lo,v0) — N(r1,l1,v1) B(re,v2) {when((nonvar(vy), nonvar(vy)), vo = v1 + v2),
when(nonvar(ly),lo =1; + 1),
(

when(nonvar(rg),ry = 1),
)

when(nonvar(rg),r =19+ 1)}
3. N(To,lo,vo) — £ {?Jo = 0,[0 = 0}
4’. B(rg,v9) — 0 {vog =0}
5. B(rg,v) — 1 {when(nonvar(rg),vo = 2"°)}

Figure 5.8: Attribute Grammar for binary numbers using coroutines.

Although the evaluation rules are supposed to be written in some generic programming
language, we have used the Prolog test predicate nonvar/1 to block some of the evaluation

rules until their referenced attributes become bound |

Correctness

We notice that theorem 5.3.1 also holds for this algorithm. In addition to the previous
algorithm, this method also handles grammars that are non-circular. One might actually
use a circular attribute definition and end up with a set of goals, suspended and waiting for

some (external) agent to bind a variable to get the evaluation rolling.

Implementation

The only implementation issue for the second method is the extraction of referenced
variables in a goal. For an imperative or functional language, where assignments are
used almost exclusively in the evaluation rules, the referenced variables are simply all the
variables in the right-hand side of the assignment.

For a relational language however, we depend on mode declarations (cf. section 2.2.5).
The referenced attributes in a goal are then simply the variables appearing in c-moded

argument positions. As an example, suppose the procedure lookup(Name, Value, Table) is

72

used in a goal with a mode declaration (c,d,c). We can then deduce that Name and Table

are referenced attributes, while Value is the computed attribute.

73

6. Mutual Exclusion Analysis

A technique to detect that pairs of rules are “mutually exclusive” in a logic program is
described. In contrast to previous work our algorithm derives mutual exclusion by looking
not only on built-in, but also user-defined predicates. This technique has applications
to optimization of the execution of programs containing these rules. Additionally, the
programmer is less dependent on non-logical language features, such as Prolog’s “cut”, thus

creating more opportunities for parallel execution strategies.

6.1 Introduction

When a relation is defined by several rules in a logic program, there is sometimes the
opportunity to realize that if tuples of a certain pattern are derived by one of these rules,
no tuples of that pattern can be derived by other rules. This presents an optimization
opportunity.

The problem of “mutual exclusion”, or disjointness, of rules has certain similarities
to constraint inference, but is actually quite a different problem. Both may study order
constraints, such as X > Y, but constraint inference attempts to use properties of “>7,
such as transitivity, to infer additional constraints. However, in mutual exclusion detection,
the basic fact available is that, for a given pair (X,Y) it is not possible that both (X >
Y) and (Y > X) hold: they are mutually exclusive. In addition, patterns of mutual
exclusion can occur without regard to any ordering concept. For example, we might have
tokentype(X, number) and tokentype(X, identifier) that are known or given as disjoint on
their first argument.

Let us mention a few applications of mutual exclusion detection.

1. In a top-down execution strategy with sideways information passing, if a tuple for

some subgoal® qc"'d(X, ..., 7Z) is derived using one rule for ¢ and it is known that all

!We use the notation that superscripts ¢ and d denote “constant” (ground) and “don’t know”-arguments

at the time the subgoal ¢ i1s “called.”

74

rules for ¢ are mutually exclusive on their first arguments, then none of the remaining

rules need to be tried with this value of X.

Detection of mutual exclusion is particularly useful when a goal matches two or more
rules with recursive definitions — if a recursive invocation happens when other rules
have yet to be tried, the execution engine must save backtracking information in
case the selected rule fails. But if the rules are mutually exclusive to each other,
such information can be discarded if the success of all subgoals appearing before
the recursive call contradicts the other rules. This creates more opportunities for
tail recursion optimization [War86] and will also prevent the execution engine from

wasting time on the other rules, in case all solutions are asked for.

. In a bottom-up execution strategy the union of relations from mutually exclusive rules

is a disjoint union; duplicates cannot occur.

. In a logic language that contains the non-logical “cut” operation, which is explicit
in Prolog, and implicit in some others, there is a distinction drawn between “green”
cuts and “red” cuts. Recall that “cut” in Prolog is a directive to the execution
engine to cancel certain backtracking activities that would normally have occurred
in the future. A cut is said to be “green” if the cancelled backtracking could not
have produced any additional solution tuples (for reasons known to or believed by
the programmer), otherwise it is “red”. Red cuts are often considered bad style for
much the same reason as “go to”s in a procedural language. Mutual exclusion analysis
can provide a sufficient condition for cuts to be “green”. In a reasonably expressive
language (say SQL) the question is undecidable (by essentially the same arguments
that show undecidability of “domain independence”).

. The detection of functionality [DWR89] represents an important space and time sav-
ing optimization for Prolog-like languages. Various forms of functionality have been
considered; the algorithm by Debray and Warren defines functionality as when “all
alternatives produce the same result, which therefore need not be computed repeat-

edly” [DW89]. With this information at hand, the execution engine does not need

75

to waste time on, or save state information for finding alternative solutions. Debray
and Warren demonstrate that a predicate is functional by showing that each individ-
ual clause is functional, and that the clauses are pairwise mutually exclusive. The
latter requirement is not a necessary, but sufficient condition. Information produced
by the methods outlined in this chapter can therefore improve the precision of their

algorithm.

5. In a parallel execution strategy with or-parallelism, a set of processors working on

mutually exclusive rules can be relieved of their duties as soon as one of them succeeds.

Also, in the Andorra model [HB88], goals with only one matching clause are executed

before other goals. Static analysis has been used to detect such properties of goals
[CWY91, PN91].

After discussing related work and establishing some required terminology, we illustrate

the ideas of our technique by means of a small example before describing the full algorithm.

A larger example concludes the chapter.

6.1.1 Related Work

The idea of recognizing mutual exclusion in Prolog programs has been considered by
Hickey and Mudambi [HM89], Debray and Warren [DW89], and Van Roy [VR90]. Their
methods works on the level of primitives, that is, only built-in predicates such as arithmetic
comparisons and unifications are examined. In contrast to earlier work, our algorithm also
examines user-defined predicates, even those with recursive definitions.

Several methods for static or dynamic inference of determinacy in the parallel language
Andorra have been proposed [PN91, CWY91, KT91]. In the Andorra model, a goal is
determinate if it has at most one matching rule; thus the effort has been directed into
checking whether two or more rules can satisfy a goal invocation. Whether our method,
which is based not only on the information in the head of the rule, but also the presence
of mutually exclusive subgoals in the bodies, can be useful for this purpose, remains to be

explored.

76

A related topic, that of detecting functionality?, has been investigated by Debray and
Warren [DW89], Sawamura and Takeshima [ST85], and Mellish [Mel85]. A functional
predicate is one where all alternatives produce the same result. The notion is related
to mutual exclusion, but is not the same, as the following two rules demonstrate.

son(X,Y) — male(X), father(X,Y).

son(X,Y) — female(X), mother(X,Y).
A goal “— son(carl,Y)” could potentially have several solutions for ¥ — one for each of
Carl’s sons — although only the first clause is applicable. Therefore son is determinate,
but not functional.

Various methods for constraint inference in logical rules have been proposed [UV(GS8S,
BS89a, BS89b, KKR90, Las90, SVGI1, VGI1, BSI1], but to our knowledge none have
been implemented. The performance of our algorithm could be enhanced in practice if such
an inference system were available, by simple rule transformations: whenever a constraint
¢(X,Y) is inferred to hold for the head of a rule, append it explicitly as an additional

subgoal. Then run our algorithm as described on the resulting set of rules.

6.1.2 Summary of Contributions

A new technique for recognizing mutual exclusion among rules in logic programs is
presented. While in general the problem is undecidable, a conservative analysis works on
many programs, such as databases, natural language parsers, or any type of program where
predicates operating on a certain domain divide it into equivalence classes.

Previous researchers have considered what we call primitive mutual exclusion, that is,
the analyzer only looks at built-in predicates such as “=" or “>”. In contrast, our work
facilitates a notation for propagating mutual exclusion information to user-defined predi-
cates, even when they have recursive definitions. (Without recursion, a simple unfolding

strategy would reduce the problem back to recognizing primitive mutual exclusion.)

2Sometimes called determinacy by some authors. We reserve this term for goals that have mutually

exclusive rules.

7

Output from the analysis can be used to optimize various execution strategies. For
instance, if all rules of a goal are mutually exclusive to each other, a top-down interpreter
may at a certain point be able to commit to the rule it is working on. In languages
where recursion is the only looping construct, such information could mean the difference

of executing in constant space as opposed to space being linear with time.

6.2 Definitions

Following the standard terminology of [L1087] some additional terms are defined for this
chapter.

The position of a term ¢ in an atom A is given by the relation A .t where P is a
sequence of numbers that “spells” the argument path to ¢ in A (“Dewey notation”). The
head of a sequence 7 is denoted hd(10). As an example, if A is the atom p(X,¢(X,Y))
we have both 4 —— X and A % X. The relation “—” is transitive: if A N t1 and
t 2, to, it follows that A f1ez ta.

The projection operation “x” from relational algebra is extended in the following man-
ner. If ¥ = (¢1,...,%) is a tuple of paths, and A is an atom with a relation R then
Ty(R) = (t1,...,1;) where A iR t;. Sometimes it is convenient to have a relation or a
tuple conform to the scheme of another relation; we use the customary notation wp(S5)
to mean the projection of $ onto R’s columns, and p[5] for the components of u in the
attributes of 5.

The notation “R|[.S” means that the relations R and S are disjoint.

Variables appearing in c-moded argument positions of rule heads are of particular
interest to us. We restrict the “——"-relation to such ground variables as follows: if

(61,...,0,) is the mode tuple for a predicate p and p L X, then p »—¢—>c X holds iff

Sha(v) = ©

78

6.2.1 Rule/Goal Graphs

The input program is stored in a data structure called rule/goal graph. A rule/goal
graph is basically a call graph for the program where rules and goals have been made
explicit. Starting with the program’s goal rule, which we can assume to be of the form
“— B” for simplicity, we create a start goal node for B. If there is a rule A — By,..., B,
such that A = B#, then §(A — By,...,B,) constitutes a rule node and becomes a child
of B. The rule node itself becomes the parent of n goal nodes, one for each subgoal in the
body of the rule.

Goals are considered equal up to renaming of variables; if a goal already has a node in
the graph we don’t expand it further but rather create a cyclic edge to the variant subgoal.
It is helpful to think of the rule/goal graph as a directed acyclic graph with some occasional
backarcs. The “leafs” in the graph then corresponds to goals for built-in procedures such

as “=", “>7 true, or extensional database (EDB) predicates.

6.3 Deriving Mutual Exclusion

Two nodes in the rule/goal graph are said to be mutually exclusive if the relations they
represent are disjoint. It is convenient to think of mutual exclusion not only between two
rules, but also between a rule and a goal, or between two goals. Thus, mutual exclusion is
a symmetric binary relation that can be represented by an edge between two nodes in the
rule/goal graph.

In fig. 6.1 we see the rule/goal graph for a program and its goal, along with some mode
information. Ultimately we are interested in deriving a mutual exclusion between all rules
of maz (fig. 6.1c) to show that it is determinate.

Underlying the mutual exclusion between two intermediate nodes is always some initial
mutual exclusion between two built-in goals. When variables appear in the built-in goals
it is essential to show that the variables in the second goal would have been bound in the

same way as in the first goal, before we exclude the second goal.

79
1
max(X,Y,7)

2 3
maz(X,Y,Y) — maz(X,Y, X)«
X<Y X>Y

max(X,Y,7)

maz(X,Y,Y) — maz(X,Y, X)—
X<V X>Y

=
~—

e
>
A
s

:01

1
max(X,Y,7)

2 3
maz(X,Y,Y) — maz(X,Y,X) —
X<V X>Y

4 5
X§9
(¢)

Figure 6.1: Propagation of mutual exclusion (denoted by thick edges) in the
rule/goal graph for the program {maz(X,Y,Y) — X < Y, max(X,Y, X) —
X > Y } and the goal “— maz®®4(X,Y, 7).

In general we do not have to ensure that all variables in the built-in goals become bound;
only certain variable positions are critical for establishing mutual exclusion. For instance,
only X needs to be ground to make the subgoals (X = [0|T]) and (X = [1]|7]) mutually
exclusive. If we think of the nodes as representing relations, we can state what the critical
positions are by projecting on the interesting columns. For instance, the requirement for the

initial edge between node 4 and 5 in fig. 6.1ais m1 2(<4)||71,2(>5). (Relations are subscripted

80

according to the nodes they appear in.) This states that the first and second column in the
respective relations are necessary to demonstrate the mutual exclusion. Another edge, not
shown in fig. 6.1 to simplify the exposition, is from node 5 to itself, with the requirement
T1,2(>5)||m2,1(>5). This simply states that “>” is anti-symmetric.

We will now illustrate how the mutual exclusion between <, and mazs can be derived,
based on the existing mutual exclusion of <4 and >5. It is convenient to think of this step
as trying to lift the edge in fig. 6.1a along its right side. The intuition behind this move is
that a node » may be mutually exclusive with a rule node if n is mutually exclusive with
at least one of the subgoals of the rule. (The other case, showing mutual exclusion between
a node n and a goal node requires that n is mutually exclusive with all rules for the goal.)

We must now keep track of what happens to the variables X and Y as the goal >5
is “sucked up” into its parent rule. Notice first that only the first and second argument
positions of mazs are specified as having ground mode. If the variables in the goal of mazs
are to be ground, they must pass through e-moded argument positions in the head. In this
case, both variables do appear in c-moded positions of the head: mazs(X,Y, X) »—1—>c X
and mazs(X,Y, X) 2~ Y both hold. The condition for mutual exclusion between relations

<4 and mazs can be now be stated as follows
m12(La)l[T12(mazs) — m12(<4q)||712(>5).

Since the right hand side is already given, the conclusion follows immediately.

In the next step the algorithm would try to lift the right side of the edge in fig. 6.1b
and show the mutual exclusion between <, and maxzq. This fails however, since <, is not
mutually exclusive with all the rules of mazy (in particular mazs!). Not being able to make
any more progress on the right side of the edge, it is time to start working on the left side.
The rules maz, and mazs are candidates for mutual exclusion because node mazs is already
mutually exclusive with <4, one of maxz,’s subgoals. The variables in the goal appear in

c-moded positions in the head of the rule, thus

T12(mazsy)||m 2(maxs) — 1 2(<q)||712(mazs).

81

Again, the conclusion follows immediately, and, as we shall see in the next section, that
is always the case. To find out if mazx is determinate we could now ask the question: is
there a fixed set of argument positions that differentiates all rules of maz, that is, is there
a ¥ such that my(maz;)||mw(mazs)? The answer is yes, since ¥ = (1, 2) has been shown to
do so.

While we hope that this small example has illustrated the principles of our method, the
scenario is generally more complicated because of the ways variables in the built-in goals
are aliased as we work our way up the graph. In the next section we state the full algorithm

and discuss its complexity.

6.3.1 Algorithm for Propagating Mutual Exclusion

A set NEEDS_PROCESSING is used to hold triples of the form (z, y, u), representing mutual
exclusion between z and y. Since rules may have several goals serving as mutual exclusion
witnesses, we maintain a third element uw which is the node used in the process of adding
the edge from x to y. Without it, some opportunities may be missed because an incorrect
assumption was made about what the distinguishing goal was.

After the rule/goal graph has been built, “leaf” nodes are scanned and used to access
a table with requirements for mutual exclusion between built-in goals. When applicable,
these requirements are added as initial axioms to a database MUTEX_FACTS. For instance,
one entry in the table might read “for two goals (V < m) and (W > n) (where m and n
are integers) the axiom 71 (V < m)||71(W > n) can be added if m < n.”

Finally, for each pair (z,y) of leaf nodes that lead to an initial axiom, the triple (z,y,-)
is added to the set NEEDS_PROCESSING.

The main algorithm consists of picking an edge and trying to lift it up along one of its

sides.

82

while NEEDS_PROCESSING # () do
let (x,y,v) be an element of NEEDS_PROCESSING;
if not lift_right(x,y) then lift_right(y,z);
NEEDS_PROCESSING := NEEDS_PROCESSING — {(z,¥,v)};

end.

In the function lift_right(z,y), we will use the function parents(y) to mean the set of
immediate predecessors of a node. (As the name implies, parents(y) does not return v if
there is a backarc from v to y.) Since goal nodes can have more than one parent, lifting
the right side of an edge can in general be done in more than one way, the effect being
that the current edge of NEEDS_PROCESSING is replaced with zero or more new edges. If
no mutually exclusive edges are derived between z and any parent of y, lift_right returns
false to indicate that no more progress can be made on this side and that it is time to start

lifting the other side.

function lift_right(z,y)
progress = false;
for all p € parents(y)
if (x,p,y) ¢ NEEDS_PROCESSING then
progress = (progress or try(z,p,y));
end;
return progress;
end;
The function try(z,p,y) attempts to derive mutual exclusion between nodes z and p,
based on the existing mutual exclusion of # and y, where p is a parent of y.
When p is a rule node, only one of its goals needs to be mutually exclusive with z. That
goal is y. If the critical argument positions of y can be propagated to the head of p we can
safely establish a mutual exclusion between z and p. We use the relation prop(V,, ¥,) for

propagating the critical argument positions of y (denoted ¥,) to the corresponding positions

83

in p (denoted ¥,). The definition of the prop relation, being rather technical, is given later
(cf. definition 6.3.2).

The other case, when p is a goal node, requires that x is mutually exclusive with all
rules py,...pr of p. In the relational view, since p is the union of all the p; relations, the
same column numbers used to differentiate x and p must be used to differentiate z from all

p;’s. Hence, a fixed set of argument positions ¥, is used for this purpose.

function try(z,p,y)
if p is a rule node (with y as one of its goals) then
FACTS := {7y, (7)||7y,(p) such that Ty, (z)||7y,(y) & prop(¥,,¥,)};
else (p is a goal node with rules py,...,px)
FACTS := {7y, (7)||7y,(p) such that 7y, (2)||7y,(p1) &---& 7o, (2)|[7w,(Pr)};
if [racTs| > 0 then
NEEDS_PROCESSING := NEEDS_PROCESSING + {(z,p,y)};
add FACTS to MUTEX_FACTS;
return irue;
else return false;

end;

When the algorithm has traversed the entire rule/goal graph, queries about mutual
exclusion between nodes can be answered using MUTEX_FACTS. As an example, to find out
if a goal ¢ is determinate, that is, whether all its rules are pairwise mutually exclusive, we
can use the following function.

function determinate(g)
(g is a goal with rules rq,...,7%)
for all pairs (r;,r;)
if there is no ¥, such that (7y(7;)||7w,(r;)) € MUTEX_FACTS then
return false;
return irue;

end;

84
6.3.2 Termination and Complexity

Two properties of the algorithm guarantee termination.

1. The current mutual-exclusion edge, represented by the triple (z,y,v), is always re-

placed by zero or more new edges.

2. New mutual-exclusion edges have at least one node closer to the root of the rule/goal

graph, and such edges are not propagated across backarcs.

To derive an upper bound on the time complexity of the algorithm we observe that no
triple (x,y,v) is processed more than once. With n nodes in the rule/goal graph there
can be at most n® such triples. However, the time to process one triple depends on how
many arguments appear in the relevant nodes, as mutual exclusion is checked for various
permutations of those arguments. Assuming the number of arguments in any relation never
exceeds some predefined constant, the time per triple can be considered O(1). In conclusion,
our algorithm is guaranteed to terminate in so-called semi-polynomial time (O(n?)), i.e.,
polynomial in the size of the rule/goal graph and exponential in the maximum arity of any

relation in the program.

6.3.3 Correctness

As already pointed out, the mutual exclusion detection problem is, in general, unsolvable
(cf. [HMS89] for an example) and hence no complete algorithm exists. Soundness can be
verified by making sure that the function try does not derive a mutual exclusion between two
nodes when in fact they are not mutually exclusive. In the proof, we study variable binding
relations. These are relations whose attributes corresponds to the variables appearing in a
node, and whose values represent possible bindings for the variables. For a precise definition
of variable bindings, see [UlI89, page 748].

Example 6.3.1: If node n contains the goal p(f(X),¢g(h(Y), X)), and is described by the

relation

{(f(a), g(h(c),a)), (f(f(a)),g(h(d), f(a)))},

then the variable bindings are V,, = {(a,¢),(f(a),d)} with the scheme {X,Y} I

85

Figure 6.2: Proof scenario 1 and 2.

Definition 6.3.1: In arule p’ < pq,...,p,, the variable bindings V' for p’ can be described
in terms of a natural join between the variable bindings V; for the subgoals in the body:
Vi=Vi M. XV, (cf. [UL8Y, page 751]) |

Lemma 6.3.1: If R = Ry X ---X R, then 7p,(R) C R;.

Proof: Assume by contradiction that there is a p in R such that u[R;] is not in R;. This
implies that p’s attributes didn’t agree with R;. However, this can’t be true for otherwise

w would not have been in R in the first place I
Theorem 6.3.2: MUTEX_FACTS is sound.
Proof: By induction on the height of the rule/goal-graph, modulo backarcs.

Basis. The base case is two “leaf” nodes, & and y, representing built-in goals. In this
case, it is assumed that the initial axioms describing the mutual exclusion between built-in
goals are correct. These axioms are statements of the form g, (V)||7w, (V).

InpucTION. Consider facts added by the function try(z,p,y) where p is a parent of y.
The rest of this proof proceeds in two separate cases, fig. 6.2, situations (1) and (2):

1. p is a rule node, with node y as one of its subgoals. The inductive hypothesis is

that mg, (Vo)||7e,(Vy), i€, 1o, (Vo) N 7y, (Vy) = 0. By definition 6.3.1 we have

Vp=---XV, X.... From lemma 6.3.1 it follows that 7y, (V,) C V,. Thus, with the

86

inductive hypothesis, 7y, (V)Nmy, (7v,(Vp)) = 0. Since the variables in y must appear
in the head of the rule we can simplify to g, (Vo)Ny, (Vy) = 0, i.c., To,(Ve)||7Tw,(Vy),
which is what we wanted to show.

2. p is a goal node with rule nodes y1,...,y;r. Again, the inductive hypothesis is that
Ty, (Ve)|[7e,(Vy,) is correct for ¢ = 1...k. (Note that ¥, is applied to all rules.)
As before, the inductive hypothesis may also be stated as 7y, (V:) N 7g,(Vy,) = 0,
i = 1...k Hence, mg,(Ve) N (U;7e,(Vy,)) = 0. Since projection distributes over
union, 7y, (Vy) N7y, (U; Vi) = 0. It remains to show that mg (U, Vy,) = 7, (Vp).
Intuitively, the left hand side of this conjecture represents a set of values found by
reaching inside the V,,’s and the question is, can these values also be found inside V,,?
Observe that, by construction, the rule heads in y; ...y, are various instances of the
goal in node p. Therefore, the same value held by a variable Y in some rule head may
also be found in some variable Z in the goal node (although the value might be more
“embedded”), provided, of course, that ¥ is found in the same position in each and
every rule head (hence ¥,). More formally, let 8; be the unifier between the goal node
and rule head 4. If Z/t; € 6; and t; =~ Y, i =1...k, then T, (Vi) = Tpgu, (2) 1

6.3.4 Description of prop

We now turn to the specification of prop, used by the function try in section 6.3.1. The
problem we face is to keep track of certain variable positions for two disjoint built-in goals,
and make sure that when they both can be invoked from two different rules, only one of
them can succeed since the variables will be bound to the same value (whatever that value
is). The relation prop is the sole mechanism used for describing how the path to these
values change as we move from one node to another in the rule/goal-graph.

In the proof we have already outlined a way to keep track of values within variables.
Variable bindings were introduced in the proof simply because it was easier to describe how
variable values, rather than full relations, are propagated from subgoals to the head of the

rule (definition 6.3.1).

87

To determine the position of a value inside a literal we only need to append the variable’s
position in the literal to the values position in the variable. The reader may verify that the
following definition of prop captures the above ideas.

Definition 6.3.2: Let H «— G4,...,Gk be a rule where a the position @ of some G; needs

to be propagated to a corresponding position ¢’ in H.
pTOp(¢,¢/) — ¢ = pT, Gz '_p_> X, ’U(IT(X), H l—p—>c)(7 ¢/ = p/T_

To simplify the notation we will “lift” prop to work on tuples of paths, prop(¥, V'), with
the obvious component-wise meaning I
Example 6.3.2: Consider the rules

¢(f(X,9(Y))) =Y >0.

pUV, Z) = q(f(X, Z)).
The original critical position for “Y > 0”7 is “1” which corresponds to Y. When propagated
to the head of ¢, Y’s position becomes “1.2.17, hence prop(1,1.2.1) holds for ¢’s rule. As
we try to follow the path “1.2.1”7 in the subgoal of p (a more general atom than ¢’s head)
we run into Z after “1.2”. Mapping “1.2” to the head of p gives us “3” (Z’s position in the
head) so the critical argument position is now “3” appended with the trailing “1”. Hence

prop(1.2.1,3.1) holds for p’s rule il

6.4 A Larger Example

The program in fig. 6.3 implements a parser for a small natural language. All queries
are assumed to be ground. In the program, the rules for np2 specify two ways to form a
noun phrase. Being able to follow only one branch at a time, a top-down interpreter would
pick the first rule and save backtracking information on the stack so that it can go back
and try the second rule, in case the first one fails. Once the interpreter has managed to
solve adj it is possible to discard the backtracking information just created, since adj and
noun are mutually exclusive in their first argument. No system today, that we are aware

of, recognizes this opportunity.

88

s(L) — np(L,R),vp(R,_)
np(L,R) «— det(L,T),np2(T, R).
np(L, R) — np2(L, R).

np2(L, R) — adj(L,T),np2(T, R).
np2(L, R) — noun(L, R).
vp(L, R) — verb(L, R).

op(L, R) — verb(L,T),np(T, R).

det([the|R], R).
det([a|R], R).
adj([new|R], R).
noun([code|R], R
noun([bugs|R], R
verb([has|R], R).

).
).

Figure 6.3: Parsing program.

Since np2 is recursive, a top-down interpreter that doesn’t recognize the mutual ex-
clusion would generate an amount of backtracking information that is proportional to the
number of adjectives in the input string. This information stays around until the user is
satisfied with the answer, and quits. If all solutions are asked for, the interpreter would
start a series of meaningless attempts on the second rule for np2, which we know will fail.

We will now trace the execution of our algorithm for the parsing program, and
see how the mutual exclusion between the two rules of np2 is derived. The rule/goal
graph for the interesting part of the program can be seen in fig. 6.4. Initially, all
leaf nodes (16, 22, and 20) are mutually exclusive with each other, provided that the
variable I is bound. Stated in terms of our axioms, we start with the initial mMU-
TEX_FACTS = {m1(16)||m1(22), 71(16)||71(20), 71(22)||71(20)} and NEEDS_PROCESSING set
to {(16,22,.),(16,20,_),(22,20,_)}.

The table in fig. 6.5 shows the edges picked from the NEEDS_PROCESSING set, along with
the new mutual exclusion facts added, and how they were derived. After the execution,
we can query the function determinate with the goals nounig and np2i2. In both cases,

the answer is true. For the entire program, the algorithm would also discover that np is

89

13
an(L,R) N = np2(L,R) —
adj(L,T), | noun(L, R)
np2(T, R). T
1 Y
adj(L,T) noun(L, R)
15 21 S
adj(L,T) — noun(L,R) —| |noun(L,R)
L = [new|T]. L = [code|R]. bugs|R

Figure 6.4: Part of the rule/goal graph for the parsing program.

determinate.

6.5 Limitations

At the moment, we are not even trying to derive mutual exclusion if a local variable of
a test goal, which does not occur in a bound argument of the head of the rule, would be
involved. The following program illustrates why this is unsound, in general.
q(b). q(c). r(a,b). s(a,c).
POX) = (Y), (X, V),
POX) — (Y), s(X, V),
Assume that p is called with its argument ground. Even though the relations for r and s

are disjoint, and are only called with ground arguments, it is not correct to say that the two

90

(z,y,v) New TFacts Derived From
(16,22,.) | m1(16)||m1(21) | m1(16)||71(22)
(16,20,_) | m1(16)||71(19) | 71 (16)||71(20)
(22,20,.) | m1(22)||71(19) | m1(22)||71(20)

(16,21,22) | m1(16)||71(18) | 71(16)]|71(21)
(16,19,20) | m1(19)||71(15) | 71(19)]|71(16)
(22,19,20) | m1(19)||71(21) | 71(19)]|m1(22)
(16,18,21) | m1(16)||71(27) | 71(16)]|71(18)
(19,15,16) | m1(19)||71(14) | 71(19)]|71(15)
(16,27,18) | m(27)||71(15) | 71(27)]|71(16)
(19,14,15) | m1(19)||71(13) | 71(19)]|71(14)
(27,15,16) | m(27)||71(14) | 71(27)]|71(15)
(27,14,15) | m(27)||71(13) | 71(27)]|71(14)

Figure 6.5: Execution trace for the parsing program.

rules for p are mutually exclusive. For instance, in a top-down execution, the local variable
Y may get rebound upon backtracking into g.
However, there are other situations where, by detection of functionality (cf. sect 6.1.1),
one can safely conclude that a local variable cannot be bound to more than one value.
The rather coarse description of arguments into modes {e¢,d} are for practical purposes
too rigid to be useful. As an example, for the two goals (X = [0|T]) and (X = [1]|7T]) it is
too restrictive to demand that X should be c-moded considering the number of programs

that deal with partially instantiated data structures.

6.6 Coding Style and the Use of Cuts

The lack of proper analysis and optimization tools in Prolog compilers have forced
programmers to explicitly insert “cuts” in their clauses to prevent the search engine from
saving backtracking information.

In this section we study some typical uses of cuts that has been gathered from textbooks
and software libraries. Traditionally, one can identify three uses of cuts [CM81].

1. “If you get this far, you have picked the correct rule for this goal.”

2. “If you get to here, you should stop trying to satisfy this goal.”

91

3. “If you get to here, you have found the only solution to this problem, and there is no

point in ever looking for alternatives.”
The second use of the cut is often in combination with fail and is employed when the entire
predicate needs to fail. The third use of the cut is used with the previously mentioned
functional computations [DW89]; one will often find this type of cut at the very end of a
clause. In this chapter, we are naturally interested with the first usage, where the cut is
usually found at the beginning of the clause, possibly after some test goals.
Example 6.6.1: A very common task for Prolog predicates is to iterate over the elements
in a list, as seen in the typical append predicate.

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
Because of a feature called clause indexing (which most Prolog systems implement, see for
instance [CWA™T91]) it is not necessary to insert a cut into the first clause. Clause indexing
works by letting the interpreter examine the principal functor of the first argument to select
the right clause. Clause indexing does not work for other argument positions, or when the

first argument of two clauses do not unify, but their principal functor are the same [

Example 6.6.2: Another common idiom in Prolog is to iterate over the integers, such as
in computing n!.

fact(0, 1) := V.

fact(N, F) :- N > 0, N1 is N-1, fact(N1, F1), F is Nx*F1.
Here, clause indexing is not enough to figure out that the two cases N=0 and N>0 are mutually

exclusive. The cut symbol in the first clause is therefore common [I

Example 6.6.3: In a few instances, user-defined predicates are used as tests in clauses.
The following example, taken from a scanner, is an example of where our algorithm is
indispensable to avoid the insertion of cuts.
tokenize([C|Cs], int(Num)) :-
digit(C), !,

Acc is C-48,

92

tokenize_int(Cs, Acc, Num).

tokenize([C|Cs], id(Name)) :-
letter(C), !,
tokenize_id(Cs, [C], Name).
Other examples requiring our algorithm are databases, parsers, and the problem of the

Dutch national flag in [0’K90], where colors can be red, white, or blue i

For the type of mutual exclusion detection discussed here, where the cut is placed early in
the clause body, after some initial tests, the author has estimated that about 95% of all
programs can be handled by previous algorithms [HM89, DW89, VR90]. For the remaining
5% it seems that our algorithm does the job — the limitations mentioned in section 6.5 is
not an issue in practice.

Rather, the author has found another problem, namely that many programmers find it
convenient to define two or more clauses with overlapping cases, so that the clauses provide
the same answer when backtracking takes place.

Example 6.6.4: Consider the problem of finding the largest number in a list. Naively, one
might define this predicate as follows.

max([X], X).

max([X|T], X) :- max(T, Y), X > Y.

max([X|T], Y) :- max(T, Y), X =< Y.
The clauses are not pairwise mutually exclusive, since [X] unifies with [X|T]. Also, this
predicate does not lend itself to tail recursion optimization. If the predicate had been written
in the following way, we would have been able to discover that the clauses for maxz /3 are
mutually exclusive. In addition, all recursive calls are now tail recursive.

max([H|T], M) :- max(T, H, M).

max([H|T], A, M) :- H > A, max(T, H, M).

max([H|T], A, M) :- H =< A, max(T, A, M).

max([], M, M).

93

Example 6.6.5: Another example of “bad” coding style is the translation of switch-

statements from imperative programming languages.

eval (X+Y, Env,
eval (X-Y, Env,
eval (XxY, Env,
eval (X/Y, Env,
eval(Var, Env,

With clause indexing,

Val)
Val)
Val)
Val)

Val)

lookup(Var, Val, Env).

it is not possible to specify that the last pattern should be anything

except a term whose principal functor is one of +, —, %, or /. Hence programmers tend

to put cuts in all the preceding clauses. Rewriting the code to make it possible for our

algorithm to discover the mutual exclusion is clumsy at best:

eval (X+Y, Env,
eval (X-Y, Env,
eval (XxY, Env,
eval (X/Y, Env,
eval(Var, Env,

Var \== _+

- -3

lookup(Var, Val,

Val)
Val)
Val)
Val)

Val)

Var

\== -, Var == * Var == _/_’

- -3

A better solution, in the author’s opinion, is to change the representation so that variables

are not represented as just Prolog variables

eval (X+Y, Env,
eval (X-Y, Env,
eval (XxY, Env,
eval (X/Y, Env,

eval (var (Var),

Val)
Val)
Val)

Val)

Env, Val) :- lookup(Var, Val, Env).

Now, even clause indexing suffices to avoid the cuts, plus each clause can be understood in

isolation.

94

7. Epilogue

In this thesis we have covered some analysis and transformation methods that have
been developed with an eye towards the new high-level programming languages and tools,
specifically in the logic programming field. Here we summarize the contributions, discuss

some limitations, and give research ideas for future work.

7.1 Concluding Remarks

In chapter 3 we addressed some of the problems in parsing languages with dynamic
operators, identified the shortcomings of the current parsing methods, and finally proposed
a new parsing technique, deferred decision parsing, that postpones resolving shift/reduce
conflicts involving operators to run time.

This technique has been built into an LR style parser-generator that produces determin-
istic, efficient, and table-driven parsers. Prototype parsers for Prolog (cf. chapter 4) and
Standard ML have successfully been generated. Reasonably liberal operator overloading is
supported.

We have also pointed out some of the drawbacks of using a top-down parser for tradi-
tional parsing tasks, such as in compiler construction, and argued that a bottom-up parser
is a much better replacement.

More work needs to be done to categorize exactly what types of languages can be
parsed with the deferred decision method. Another area that hasn’t been addressed is error

handling and recovery from errors.

In chapter 4 we covered the syntactical problems with Prolog, suggested some minor
changes to make the language easier to parse and use, and also gave a grammar that we

think is superior in maintenance, readability and size compared to previous methods.

In chapter 5 we presented two transformation methods for (strong) non-circular attribute

grammars that allows them to be evaluated in the S-attributed environment of an LR-parser.

95

They represent a compromise between the one-pass and post-parse evaluation methods
in that evaluation of certain “complicated” rules are sometimes postponed. Possible research
directions include a similar setting for LL parsers, and perhaps a way to control the execution

ordering of certain rules.

Finally, in chapter 6 a new conservative approximation technique for the undecidable
problem of recognizing mutual exclusion among rules in logic programs was presented.
The information is derived statically (at compile-time), and may aid in both time and
space optimizations during execution. Additionally, the programmer is less dependent on
non-logical language features, such as Prolog’s “cut”, thus creating more opportunities for

parallel execution strategies.

7.2 Future Work

Here we mention some possible research directions that have arisen during the course of
the author’s work on this thesis.

Covered clauses A helpful diagnostic tool to detect the opposite of mutually exclusive
rules, namely covering clauses, would reassure the programmer that he has handled
all “input cases”. For instance, given the procedure merge:

merge(Xs, [1, Xs).

merge([], Ys, Ys).

merge([X|Xs], [YIYs], [XI|Zs]) :- X < Y, merge(Xs, [Y|Ys], Zs).

merge([X|Xs], [YIYs], [YIZs]) :- X >= Y, merge([X|Xs], Ys, Zs).
we would like to be informed that we have handled all four combinations of the two
input arguments being either the empty list or non-empty. Sometimes the programmer
omits a rule on purpose, as in the following definition of member (X, Xs), which is true
when X is a member of the list Xs.

member (X, [XI_1).

member (X, [_|Xs]) :- member(X, Xs).

96

Obviously no X can be member of the empty list, but we think it would be better if
the programmer explicitly said so with a fail clause:

member(X, []) :- fail.

member (X, [XI_1).

member (X, [_|Xs]) :- member(X, Xs).
Type information for arguments seems to be an essential key in detecting whether
clauses in a rule covers all input, although it is not clear what the requirements for

this type system should be.

Better Mode Information Many analysis programs rely on mode information, either
supplied by the programmer or inferred by a mode analyzer. However, the mode
systems currently in use are too crude. At best, an argument can be described as
ground, partially instantiated, or as a variable. In many applications, this is not
enough. For instance, in the mutual exclusion analyzer presented in chapter 6, it is
too restrictive to demand that X should be e-moded for the two goals (X = [0]|7])
and (X = [1|T]). What is needed is some sort of type system that describes how a

data structure is (partially) instantiated.

Mutual Exclusion The algorithm in chapter 6 can be improved by analyzing propagation
of bindings from head variables to local variables. As mentioned in section 6.1.1

and 6.5, constraint inference methods and detection of functionality can be applied.

In this thesis I have not been specific on how mutual exclusion information can be used
to optimize programs. In [DW89] there is a section on choice points that should be
studied by anyone who undertakes an implementation. Specifically, the savecp/ cutto-
primitives must be used rather than ordinary cuts to eliminate other clauses, for

otherwise choice points created by subgoals leading up to the cut gets killed too.

Even though not all clauses in a procedure are pairwise mutually exclusive, it is
sometimes possible to prune away some clauses with a given test. Whether this
optimization has any value is an open question. Remember that a driving force behind

our research was to guarantee proper tail recursion by not leaving choice points behind

97

for eliminated clauses. If not all remaining clauses can be eliminated, it doesn’t really
matter whether there are two or fifty left to try — most Prolog interpreters create

only one choice point anyway.
Further analysis and improvement of the mutual exclusion algorithm may lead to a
description in terms of abstract interpretation [CC92, CC77, Jan90, BJCDS87, Bru9l].

Since our method mimics a bottom-up execution, the integration with [MS88] seems

most probable.

98

References

[AJ74] A. V. Aho and S. C. Johnson. LR parsing. Computing Surveys, June 1974.

[AJUT5] A.V.Aho,S. C. Johnson, and J. D. Ullman. Deterministic Parsing of Ambiguous
Grammars. Communications of the ACM, 18(8):441-52, 1975.

[Apt90] K. R. Apt. Logic Programming. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 495-574. MIT Press/FElsevier, 1990.

[ASUR5] A.V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques, and
Tools. Addison Wesley, ISBN 0-201-10088-6, 1985.

[AVW93] J. Armstrong, R. Virding, and M. Williams. Concurrent Programming in Erlang.
Prentice Hall, 1993.

[BBP*82] D. L. Bowen, L. Byrd, F. C. N. Pereira, L. M. Pereira, and D. H. D. Warren.
DECsystem-10 Prolog User’s Manual, 1982.

[BCI3] F. Benhamou and A. Colmerauer. Constraint Logic Programming — Selected
Research. MIT Press, 1993.

[Bee88] J. Beer. The Occur-Check Problem Revisited. The Journal of Logic Program-
ming, 5(3):243-262, September 1988.

[BJCDR7] M. Bruynooghe, G. Janssens, A. Callebaut, and B. Demoen. Abstract Interpre-
tation: Towards the Global Optimization of Prolog Programs. In Proceedings
of the 1987 Symposium on Logic Programming, pages 192-204, San Francisco,
August - September 1987. IEEE, Computer Society Press.

[BL89] M. E. Bermudez and G. Logothetis. Simple Computation of LALR(1) Lookahead
Sets. Information Processing Letters, 31:233-238, 1989.

[Boc76] G. V. Bochmann. Semantic Evaluation from Left to Right. Communications of
the ACM, 19(2):55-62, February 1976.

[BRI1] C. Beeri and R. Ramakrishnan. On the Power of Magic. The Journal of Logic
Programming, 10(1,2,3 and 4):225-300, 1991.

[Bro74] B. M. Brosgol. Deterministic Translation Grammars. PhD thesis, Harvard
University, Cambridge, Massachusetts, 1974. TR 3-74.

[Bru91] M. Bruynooghe. A Framework for the Abstract Interpretation of Logic Programs.
The Journal of Logic Programming, 10(1,2,3 and 4):91-124, 1991.

[BS89a] A. Brodsky and Y. Sagiv. Inference of Monotonicity Constraints in Datalog
Programs. In Eighth ACM Symposium on Principles of Database Systems, pages
190-199, 1989.

[BS89b] A. Brodsky and Y. Sagiv. On Termination of Datalog Programs. In First
International Conference on Deductive and Object-Oriented Databases, pages
95-112, Kyoto, Japan, 1989.

[BS91] A. Brodsky and Y. Sagiv. Inference of inequality constraints in logic programs.

In Tenth ACM Symposium on Principles of Database Systems, 1991.

[CCT7]

[CCY2]

[CFZ82]

[CHST]
[CMS81]

[CWAT91]

[CWYO1]

[Deb89)]
[DMY3]
[DW8S]
[DW89]
[Ear70]
[F88]

[HBSS]

[HKR9O]
[HMS9)
[Hor90]

[HTSW74]

99

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Conference Record of the 4th ACM Symposium on Principles of Programming
Languages, 1977.

P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. The Journal of Logic Programming, 13(1, 2, 3 and 4):103-179, 1992.
B. Courcelle and P. Franchi-Zannettacci. Attribute Grammars and Recursive
Program Schemes (I and II). Theoretical Computer Science, 17(2 and 3):163-191
and 235-257, 1982.

J. Cohen and T. J. Hickey. Parsing and Compiling Using Prolog. ACM
Transactions on Programming Languages and Systems, 9(2), 1987.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer Verlag,
1981.

M. Carlsson, J. Widén, J. Andersson, 5. Andersson, K. Boortz, H. Nilsson, and
T. Sjoland. SICStus Prolog User’s Manual. Technical report, Swedish Institute
of Computer Science, Oct 1991.

V. Santos Costa, D. H. D. Warren, and R. Yang. The Andorra-I Preprocessor:
Supporting Full Prologon the Basic Andorra Model. In International Conference
on Logic Programming, pages 443—-456. MIT Press, 1991.

S. K. Debray. Static Inference of Modes and Data Dependencies in Logic
Programs. ACM TOPLAS, 11(3):418-450, July 1989.

P. Deransart and J. Matluszynski. A Grammatical View of Logic Programming.
MIT Press, 1993.

S. K. Debray and D. S. Warren. Automatic Mode Inference for Logic Programs.
The Journal of Logic Programming, 5:207-229, 1988.

S. K. Debray and D. S. Warren. Functional Computations in Logic Programs.
ACM TOPLAS, 3(3):451-481, July 1989.

J. Earley. An Efficient Context-Free Parsing Algorithm. Communications of
the ACM, 13(2), 1970.

C. N. Fischer and R. J. LeBlanc Jr. Crafting a Compiler. Benjamin-Cummings
Publishing Company, Inc, 1988.

S. Haridi and P. Brand. Andorra Prolog — An integration of Prolog and Com-
mitted Choice Languages. In Proceedings of the 1988 International Conference
on Fifth Generation Computer Systems, Tokyo, Japan, pages 745-754, 1988.

J. Heering, P. Klint, and J. Rekers. Incremental Generation of Parsers. IFEF
Transactions on Software Engineering, 16(12):1344-1351, Dec 1990.

T. Hickey and S. Mudambi. Global Compilaton of Prolog. The Journal of Logic
Programming, 7:193-230, 1989.

R. Nigel Horspool. Incremental Generation of LR Parsers. Computer Languages,
15(4):205-223, 1990.

G. Holloway, J. Townley, J. Spitzen, and B. Wegbreit. FCL Programmer’s
Manual, 1974.

[HW90]

[Jan90]

[TMS0]

[Joh75]
[Jon86]

[JOR75]

[Ker89]

[KKR90]

[Knu6]
[Knu71]
[Kow74]
[KowT79]

[KT91]

[Kun87]

[KW76]

[Las90]
[LdR81]

[L1087]

100

P. Hudak and P. Wadler, editors. Report on the Programming Language Haskell.
Yale University, 1990.

G. Janssens. Deriving Run-Time Properties of Logic Programs by means of
Abstract Interpretation. PhD thesis, Dept of Computer Science, Katholieke
Universiteit Leuven, Belgium, 1990.

N.D. Jones and C. M. Madsen. Attribute-influenced LR parsing. In N. D. Jones,
editor, Semantics Directed Compiler Generation, 94, pages 393-407. Springer-
Verlag, 1980.

S. C. Johnsson. Yacc—Yet another compiler compiler. Technical Report CSTR
32, AT&T Bell Laboratories, Murray Hill, NJ, 1975.

S. L. Peyton Jones. Parsing Distfix Operators. Communications of the ACM,
29(2), Feb 1986.

M. Jazayeri, W. F. Ogden, and W. C. Rounds. The Intrinsically Exponential
Complexity of the Circularity Problem for Attribute Grammars. Communica-
tions of the ACM, 18:697-721, 1975.

J. Kerr. On LR Parsing of Languages with Dynamic Operators. Technical
Report UCSC-CRL-89-13, UC Santa Cruz, 1989.

P. C. Kanellakis, G. M. Kuper, and P. 7. Revesz. Constraint query languages.
In Ninth ACM Symposium on Principles of Database Systems, pages 299-313,
1990.

D. E. Knuth. Semantics of Context-Free Languages. Mathematical Systems
Theory, 2(2):127-145, 1968.

D. E. Knuth. Semantics of Context-Free Languages; Correction. Mathematical
Systems Theory, 3(1):95-96, 1971.

R. A. Kowalski. Predicate logic as a programming language. In Proceedings of
IFIP’74, pages 569-574, Amsterdam, 1974. North-Holland.

R. A. Kowalski. Algorithm = logic 4+ control. Communications of the ACM,
22:424-431, 1979.

M. Korsloot and E. Tick. Compilation Techniques for Nondeterministic Flat
Concurrent Logic Programming Languages. In International Conference on
Logic Programming, pages 457-471. MIT Press, 1991.

K. Kunen. Negation in Logic Programming. The Journal of Logic Programming,
4(4):289-308, December 1987.

K. Kennedy and S. E. Warren. Automatic generation of efficient evaluators.
In Proc. 3rd ACM Conference on Principles of Programming Languages, pages
32-49, Atlanta, Georgia, 1976.

J.-L. Lassez. Querying constraints. In Ninth ACM Symposium on Principles of
Database Systems, pages 288-298, 1990.

W.R. LaLonde and J. des Rivieres. Handling Operator Precedence in Arithmetic
Expressions with Tree Transformations. ACM TOPLAS, 3(1), 1981.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[1.591]
[May81]

[Mel81]

[Mel85]

[Mel87]

[MOS1]

[MS88]

[MSUS6]

[MTH90]
[Nil86]

[od AMT91]
[07K84]
[O"K90]

[Ped91]

[Pfe92]
[Plag4]

[P1i90]

101

J. W. Lloyd and J. C. Sheperdson. Partial Evaluation in Logic Programming.
The Journal of Logic Programming, 11(3 & 4):217-242, October /November 1991.

B. H. Mayoh. Attribute Grammars and Mathematical Semantics. SIAM J.
Comput., 10(3):503-518, 1981.

C. S. Mellish. The Automatic Generation of Mode Declarations for Logic
Programs. Technical Report DAI Research Paper 163, Department of Artificial
Intelligence, University of Edinburgh, Scotland, 1981.

C. S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of
Logic Programming, 2(1):43-66, April 1985.
C. S. Mellish. Abstract Interpretation of Prolog Programs. In S. Abramsky

and C. Hankin, editors, Abstract Interpretation of Declarative Languages, pages
181-198. Ellis Horword, Chichester, U.K., 1987.

T. Moto-Oka. Challenge for Knowledge Information Processing Systems (Pre-
liminary Report on Fifth Generation Computer Systems). In International
Conference on Fifth Generation Computer Systems, Tokyo, pages 1-85, 1981.
K. Marriott and H. Sgndergaard. Bottom-up Abstract Interpretation of Logic
Programs. In R. A. Kowalski and K. A. Bowen, editors, Proceedings of the
Fifth International Conference and Symposium on Logic Programming, pages
733-748, Seattle, 1988. ALP, IEEE, The MIT Press.

F. Bancilhon D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange
ways to implement logic programs. In Fifth ACM Symposium on Principles of
Database Systems, pages 1-15, 1986.

R. Milner, M. Tofte, and R. Harper. The definition of Standard ML. MIT Press,
1990.

U. Nilsson. AID: An Alternative Implementation of DCGs. New Generation
Computing, 4:383-399, 1986.

R. op den Akker, B. Melichar, and J. Tarhio. Attribute evaluation and parsing.
In H. Alblas and B. Melichar, editors, Attribute Grammars, Applications and
Systems, pages 187-214, Prague, Czechoslovakia, June 1991. Springer-Verlag.
R. O’Keefe. Draft Proposed Standard for Prolog Evaluable Predicates. Technical
report, Department of Artificial Intelligence, University of Edinburgh, 1984.
R. O’Keefe. The Craft of Prolog. MIT Press, 1990.

K. R. Apt D. Pedreschi. Proving termination of general Prolog programs. In
Proceedings of International Conference on Theoretical Aspects of Computer
Science, Sendai, Japan, 1991.

F. Pfenning, editor. Types in Logic Programming. MIT Press, 1992.

D. A. Plaisted. The Occur-Check Problem in Prolog. In Proc. International
Symposium on Logic Programming, pages 272-280, Atlantic City, 1984. IEEE,
Computer Society Press.

L. Plimer. Termination Proofs for Logic Programs, volume 446 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, 1990.

[PN91]

[Pos94]

[PVGK93]

[Ram91]

[Rob65]
[Sah93]

[Sc090]

[Sc092]
[Soh93]
[SS86]

[STS5]

[SVGI1]
[Tic91]
[Tom86]
[Uddss]
[U1189]
[UVGSS]

VGO

102

D. Palmer and L. Naish. NUA-Prolog: An Extension to the WAM for Parallel
Andorra. In International Conference on Logic Programming, pages 429-442.
MIT Press, 1991.

K. Post. Mutually Exclusive Rules in Logic Programming. In Logic Programming
— Proceedings of the 1994 International Symposium. MIT Press, 1994. To
appear.

K. Post, A. Van Gelder, and J. Kerr. Deterministic Parsing of Languages with
Dynamic Operators. In D. Miller, editor, Logic Programming — Proceedings of
the 1993 International Symposium, pages 456-472. MIT Press, 1993.

R. Ramakrishnan. Magic Templates: A Spellbinding Approach To Logic
Programs. The Journal of Logic Programming, 11(3 & 4):189-216, Octo-
ber/November 1991.

J. A. Robinson. A machine-oriented logic based on the resolution principle. The
Journal of the ACM, 12(1):23-41, 1965.

D. Sahlin. MIXTUS: An Automatic Partial Evaluator for Full Prolog. New
Generation Computing, 12(1):7-51, 1993.

R. S. Scowen. Prolog — Budapest papers — 2 — Input/Output, Arithmetic,
Modules, etc. Technical Report ISO/IEC JTC1 SC22 WG17 N69, International
Organization for Standardization, 1990.

R. S. Scowen. Draft Prolog Standard. Technical Report ISO/IEC JTC1 SC22
WG17 N92, International Organization for Standardization, 1992.

K. Sohn. Automated Termination Analysis for Logic Programs. PhD thesis, UC
Santa Cruz, 1993.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Mas-
sachusetts, 1986.

H. Sawamura and T. Takeshima. Recursive Unsolvability of Determinacy,
Solvable Cases of Determinacy and their Applications to Prolog Optimization.
In Proceedings of the 1985 Symposium on Logic Programming, pages 200-207,
Boston, Massachusetts, 1985. IEEE, Washington D.C.

K. Sohn and A. Van Gelder. Termination detection in logic program using
argument sizes. In Tenth ACM Symposium on Principles of Database Systems,
pages 216-226, 1991.

E. Tick. Parallel Logic Programming. MIT Press, 1991.

M. Tomita. Efficient Parsing for Natural Language. Kluwer Academic Publish-
ers, Boston, Massachusetts, 1986.

G. Uddeborg. A Functional Parser Generator. Technical Report 43, Dept. of
Computer Sciences, Chalmers University of Technology, Géteborg, 1988.

J. D. Ullman. Database and Knowledge-Base Systems. Computer Science Press,
1989.

J. D. Ullman and A. Van Gelder. Efficient tests for top-down termination of
logical rules. Journal of the ACM, 35(2):345-373, 1988.

A. Van Gelder. Deriving constraints among argument sizes in logic programs.
Annals of Mathematics and Artificial Intelligence, 1(3):361-392, 1991.

[VRIO]
[VW76]

[War77]

[War83]
[War86]

[Wat77]

103

P. Van Roy. Can Logic Programming Fxecute as Fast as Imperative Programming?
PhD thesis, UC Berkeley, 1990.

A. van Wijngaarden, editor. Revised Report on the Algorithmic Language Algol
68. Springer-Verlag, 1976.

D. H. D. Warren. Implementing Prolog - Compiling Predicate Logic Programs.
Technical Report DAI Research Paper 39 and 40, Department of Artificial
Intelligence, University of Edinburgh, Scotland, 1977.

D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report Tech.
Note 309, SRI International, Menlo Park, CA, 1983.

D. H. D. Warren. Optimizing Tail Recursion in Prolog. In Logic Programming
and its Applications, pages 77-90. Ablex Publishing, N.J., 1986.

D. A. Watt. The Parsing Problem for Affix Grammars. Acta Informatica, 8:1-20,
1977.

104

Index
A(p): 61 C: 28
Abstract interpretation: 7, 97 c (constant mode): 22, 71, 73, 77
accept action: 14 C(p): 67
Action Circular definitions: 65, 71
accept: 14 Clause: 16
error: 14 Clause indexing: 91
reduce: 14, 35 Colmerauer, A.: 2
Semantic: 15 “,7: 50, h4
shift: 14, 35 Comma operator: 50, 54
Adornments: 22 comma2list: 54
ag: 61 Composite graph: 63
Algol-68: 28-29 Composition: 19
Ambiguity in operator expressions: 48 Compound term: 16, 48
Ambiguous grammar: 13-14, 41 Conflict: 32
Analysis: 5 reduce/reduce: 14
Andorra: 75 shift/reduce: 14, 34
Answer substitution: 19 Constant: 16
Computation of: 20 Constraint inference: 73, 76
app: 61 Context-free grammar: 11
Argument path: 77 Copy symbols: 58
Artificial Intelligence: 1 Coroutine: 70
Associativity: 27 Covering clauses: 95
Atom: 17, 48 Critical positions: 79
Attribute Cut: 6, 21, 90
Inherited: 44 Green: 21, 74
Synthesized: 44 Red: 21, 74
Attribute grammar: 44, 57, 61 cutto: 96
Non-circular: 64 C++: 8
Strongly non-circular: 65
Attributes: 61 d (don’t-know mode): 22, 73
Of a production: 61 D(p)[...]: 63
Automated Theorem-Proving: 1 D(T): 62
DCG: 5,9, 22, 32
b (bound mode): 22 DDGEN: 30, 70

Backarc: 78, 82
Backtracking: 6, 20, 44, 74, 87
Binary numbers: 12

Debray, S.: 74-76
Declarative style: 1
Deferred decision parsing: 30, 32

Binding: 18 Definite Clause Grammar: 5, 9, 22, 32,
body(a): 68 43. 70

Bottom-up execution strategy: 74 5. 35 ’

Bottom-up parsers: 13, 44 Dependency graph: 62

0 (empty goal): 20 Derivation

Bracket-fix operators: 29 Loftmost: 12

105

Reverse rightmost: 13 Function symbol: 17
Rightmost: 12 Functional computations: 6
SLD: 19 Functionality: 74, 76, 90

Derives: 12 Functor: 17

=: 12

=12 Goal

Determinacy: 76 Empty: 20

Determinate: 83 Evaluation: 61

determinate(g): 83 Logic programming: 18

Dewey notation: 77 Goal node: 78

Difference lists: 9 Goedel: 8

Disjoint: 73, 77 Grammar

Distfix: 29 Non-circular: 60

“” (dot): 17 Strongly non-circular: 60

Dutch national flag: 92 Green cut: 21, 74

Dynamic operators: 26, 32 Ground: 19

Earley’s algorithm: 28 Haskell: 4, 26

EDB: 78 hd: 77

Edinburgh syntax: 29, 49 Head

EL1: 28-29 Of a clause: 16

Empty goal: 20 Of a list: 17

Empty list: 17 Of a sequence: 77

Empty string: 11 Hickey, T.J: 75

eof: 15 Horn clauses: 16

¢ (identity substitution): 18
¢ (empty string): 11
Equivalence classes: 76
error action: 14
Evaluation problem: 58
Evaluation rules: 61
Evaluation, postponed: 66

Identity substitution: 18

Imperative programming languages: 1
—: 16

:-: 16

Implicit overloading: 35

Incremental parser generators: 28

Evaluator Induced grammar: 38
On-the-fly: 66 Infix: 27
One-pass: 58 Inherited attribute: 10, 44, 61

Post-parsing: 58 Instance, of an expression: 19

Expression: 17, 27

Extensional database: 78 Kerr, J.: 30

Kowalski, R.: 2

f (free mode): 22 —
Fact: 16 L-attributed: 65

Failed SLD-derivation: 20 L—attr%buted definitions: 44
FGCS: 1 L-attributed grammars: 58

Fixity: 27, 48 Language: 12

Formal Language Theory: 1 iazy i;[’il‘uationi 59
FPG: 59 azy : 59

Left-recursive production: 43
Leftmost derivation: 12
Length: 11
Lexical categories in Prolog: 48
lift_right(z,y): 82
LISP: 25
List: 17
Empty: 17
Literal: 16
Selected: 20
Local operators: 37
Local variable: 89
Logic program
Procedural semantics: 19
Syntax: 16
Logic programming: 16
Look-ahead: 51
Look-ahead token: 34
LR parser: 13-14
Fxecution trace: 15

LR(1): 28

Magic set: 8

Mellish, C.S: 76

MIXTUS: 9

ML: 4-5, 26, 37

Mode: 5, 22, 72, 90, 96

Most general unifier: 19

w[S]: 77

Mudambi, S.: 75

MUTEX_FACTS: 81

Mutual exclusion: 7, 10, 73, 78, 97
Primitive: 76

NEEDS_PROCESSING: 81

Negation: 9

Nilsson, U.: 44

Non-circular attribute grammar: 60, 64
Nonterminals: 11

nonvar(X): 71

Normal form, of evaluation rule: 61
Nullary operator: 27, 35

Number: 48

106

Occur check: 6
On-the-fly evaluation: 66
One-pass evaluators: 58
op/3: 48
Operator: 4, 27, 48

Dynamic: 26

Local: 37

univ: 54
Operator module: 31
Operator precedence parsing: 28
Operator table: 33
Optimization: 8
Or-parallelism: 75
Overloaded operator: 27, 31
Overloading: 26, 35
Overloading policy: 41

p/n: 16
Parallelization: 7
parents(y): 82
Parse table: 14
Parse tree: 13, 62
parse_action: 34, 45
Parser: 13

Bottom-up: 44

Top-down: 43
Parser generator: 4, 14, 27
Parsing: 3
Partial evaluation: 8
Pascal: 6
Peyton Jones, S.L.: 29
7 (projection): 77
FR(S)l 77
Position, in a term: 77
Tt
el 77
Post-parsing evaluators: 58
Postfix: 27
Postponed evaluation: 66
Precedence: 27
Predecessor: 62
—: 62
Predicate symbol: 16
Predictive: 44
Prefix: 27

107

Prefix operator: 50 Sequence
Primitive mutual exclusion: 76 W 77
Procedural semantics: 19 Head of: 77
Procedure: 16 shift: 35
Productions: 11 shift action: 14
Projection: 77 shift-reduce parser: 13
Prolog: 25-26, 29, 35, 43, 47 shift /reduce conflict: 15, 34
Prolog grammar: 55 SICSTUS Prolog: 70
Prolog standardization committee: 31 SLD-derivation: 19
Prolog term: 53 Failed: 20
prop(p,¢'): 86 SLD-tree: 20, 24
¥ (argument path): 77 Standard syntax: 48
Punctuation symbols: 48 Start symbol: 11
Strings: 11
Query: 18 Strong composite graph: 64
Strong non-circular grammars: 60
RATFOR: 8 Strongly non-circular attribute grammar:
gly g
rdtok.pl: 53 65
read.pl: 47 Subgoals: 16
Reader: 48

Substitution: 18

Applying: 19

Identity: 18

More general: 19
Switch-statements: 93
Synthesized attribute: 44, 61
Synthesized functions: 67, 70

Ready(p): 66

Red cut: 21, 74

reduce: 35

reduce action: 14
reduce/reduce conflict: 15
Referenced variables: 71
Refutation: 20

resolve: 34, 45 Tail
Reverse rightmost derivation: 13 Of a list: 17
Right-recursive production: 44 Tail recursion optimization: 3, 74
—: 11 Takeshima, T.: 76
Rightmost derivation: 12 Term: 16
Rule: 16 Position in: 77
Rule node: 78 Terminals: 11
Rule/goal graph: 78 Termination analysis: 6
6 (substitution): 18

S-attributed: 65
S-attributed definitions: 44
S-attributed grammar: 58

Token: 11
htoken: 45
Tomita’s algorithm: 28

savecp: 96 Top-down execution strategy: 73
Sawamura, H.: 76 Top-down parser: 43
Scope: 27

Transformations: 8
Translation process: 3-4

try(z,p,y): 83
Type: 49

Selected literal: 20
Semantic action: 15
Sentence: 12, 53

Sentential form: 12

Type checking: 5
Type derivation: 5
Type system: 96

Undecidable program properties: 5, 76

Unfolding: 76
Unifiable: 19
Unifier: 19

Most general: 19
=.. (univ): 54
Use(X,a): 66

Van Roy, P.: 75
Variable: 16, 48
Variable binding relations: 84
Vocabulary : 11

WAM: 2

Warren, D.H.D: 2
Warren, D.S: 75
Warren, D.S.: 74, 76
when(Cond, Goal): 70
Whitespace: 49

y.output: 45
Yacc: 30, 32, 45, 66, 70

[X|77: 8
[] (empty list): 17

\+: 51
|| (disjoint): 77

LL|77: 11

108

