
Tight worst-case loss bounds forpredicting with expert adviceDavid Haussler�Jyrki KivinenyManfred K. WarmuthzUCSC-CRL-94-36November 3, 1994(Revised December 8, 1994)Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractWe consider on-line algorithms for predicting binary or continuous-valued outcomes, whenthe algorithm has available the predictions made by N experts. For a sequence of trials, wecompute total losses for both the algorithm and the experts under a loss function. At the endof the trial sequence, we compare the total loss of the algorithm to the total loss of the bestexpert, i.e., the expert with the least loss on the particular trial sequence. Vovk has introduceda simple algorithm for this prediction problem and proved that for a large class of loss functions,with binary outcomes the total loss of the algorithm exceeds the total loss of the best expert atmost by the amount c lnN , where c is a constant determined by the loss function. This upperbound does not depend on any assumptions on how the experts' predictions or the outcomes aregenerated, and the trial sequence can be arbitrarily long. We give a straightforward alternativemethod for �nding the correct value c and show by a lower bound that for this value of c, theupper bound is asymptotically tight. The lower bound is based on a probabilistic adversaryargument. The class of loss functions for which the c lnN upper bound holds includes thesquare loss, the logarithmic loss, and the Hellinger loss. We also consider another class of lossfunctions, including the absolute loss, for which we have an 
 �p` logN� lower bound, where` is the number of trials. We show that for the square and logarithmic loss functions, Vovk'salgorithm achieves the same worst-case upper bounds with continuous-valued outcomes as withbinary outcomes. For the absolute loss, we show how bounds earlier achieved for binary outcomescan be achieved with continuous-valued outcomes using a slightly more complicated algorithm.Keywords: worst-case loss bounds, on-line learning, learning theory�Supported by NSF grant IRI-9123692; e-mail haussler@cse.ucsc.edu.yFunded by the Academy of Finland; e-mail kivinen@cse.ucsc.eduzSupported by NSF grant IRI-9123692; e-mail manfred@cse.ucsc.edu.



1 IntroductionConsider an on-line prediction problem in which the prediction algorithm is to predict asequence of outcomes yt, t = 1; : : : ; `. In the usual learning approach, the algorithm is providedwith instances zt. At trial t, the algorithm sees the instance zt, must then give its predictionŷt of the outcome, and �nally sees the actual outcome yt. The algorithm is charged a loss ifits prediction di�ers from the actual outcome, and its goal is to minimize its total loss over asequence of ` trials. To make the algorithm's task feasible, some sort of relationship is assumedto exist between the instance zt and the outcome yt.The on-line prediction problem considered in this paper is somewhat di�erent from theone just described. Assume that there are N experts Ei, i = 1; : : : ; N , each trying to predictthe outcomes yt as best they can. Let xt;i be the prediction of the ith expert Ei about thetth outcome. We make no assumptions about how the experts' predictions xt;i are generated.Perhaps the experts are di�erent on-line learning algorithms that use the instances zt to predictyt, or perhaps each expert is a human with access to some private information not available tothe other experts. We give as input to our algorithm at trial t the prediction vector xt thatconsists of the predictions of the experts at that trial. The algorithm does not see the dataused by the experts to generate their predictions, and is thus entirely dependent on the qualityof the expert advice contained in the prediction vector. Therefore, to predict nearly as well asthe best expert is a reasonable goal for the algorithm.Formally, an on-line prediction algorithm is for us an algorithm that generates at trial t itsprediction ŷt based on the prediction vectors x1; : : : ;xt and the earlier outcomes y1; : : : ; yt�1.We take the predictions of both the algorithm and the experts, as well as the outcomes, to bereal numbers in [0; 1]. The performance of a learning algorithm is measured using a loss functionL, which is a mapping from [0; 1]� [0; 1] to [0;1); sometimes also the value 1 is allowed. Thesquare loss, Lsq, de�ned by Lsq(p; q) = (p� q)2, is a typical loss function. At trial t, a learningalgorithm A su�ers a loss L(yt; ŷt). Over the whole trial sequence S = ((x1; y1); : : : ; (x`; y`)),the algorithm attempts to achieve a small total loss LossL(A; S) = Pt̀=1L(yt; ŷt). Similarly,the total loss of the ith expert over the trial sequence is given by LossL(Ei; S) =Pt̀=1L(yt; xt;i).Then min1�i�N LossL(Ei; S) gives the loss of the best expert on the particular sequence S. Asexplained, we require the algorithm to predict almost as well as the best expert. Speci�cally, werequire that the additional loss LossL(A; S)�min1�i�N LossL(Ei; S) is small for all sequencesS. We do not make assumptions about how the experts' predictions are generated, or how theoutcomes yt relate to the prediction vectors xt. The only allowance we make for the algorithm isthat it can make a large loss if none of the experts is good. Our framework for on-line predictionis based on the work of Vovk [16, 17] and Cesa-Bianchi et al. [2]. Similar frameworks have alsobeen considered by Cover [6], Dawid [7], Feder et al. [9, 14, 19], and Mycielski [15]. See Chung[5] for recent related results.In this paper, we start by considering the case in which the outcomes are binary, i.e.,yt 2 f 0; 1 g for all t. The predictions ŷt of the algorithm and xt;i of the experts are still allowedto range continuously from 0 to 1. Thus, the algorithm could predict with ŷt close to 1=2 toavoid committing itself too strongly to either possible outcome yt = 0 or yt = 1. We later seehow the results can be generalized for continuous-valued outcomes yt 2 [0; 1]. Cesa-Bianchi etal. [3] have considered the case in which both the outcomes and the predictions of the expertsand the algorithm are required to be binary.It turns out that for a large class of loss functions, such as the square loss, logarithmicloss, and absolute loss, the worst-case upper bounds for the additional loss are the same both1



for binary and continuous-valued outcomes. Further, for the square and logarithmic loss, thealgorithm for binary outcomes works for continuous outcomes, as well.We are interested in what bounds for the worst-case additional loss are possible for di�erentloss functions. Vovk [16] introduced a general on-line prediction algorithm that is applicablefor all loss functions when the outcomes are binary. Vovk's analysis allows for a more generalsetting than the one we consider; for instance, the predictions may be restricted to some discreteset. For the case with continuous-valued predictions, which we consider here, Vovk proved fora large class of loss functions bounds of the formLossL(A; S)� min1�i�N LossL(Ei; S) � cL lnN ; (1:1)where cL is a positive constant determined by the loss function L. For instance, for the squareloss Vovk's algorithm achieves the bound with cL = 1=2 [16], and for logarithmic loss with cL = 1[8, 16]. Note that the bound (1.1) for the additional loss is independent of the length ` of thetrial sequence S. On the other hand, for the absolute loss Labs given by Labs(yt; ŷt) = jyt � ŷtjCesa-Bianchi et al. [2] have shown that bounds of the form (1.1) are not obtainable, but the bestpossible algorithm has a worst-case bound of the form LossL(A; S)�min1�i�N LossL(Ei; S) =� �p` logN�. Slightly weaker results for the absolute loss were obtained already by Littlestoneand Warmuth [13].In this paper, we give a simpli�ed version of Vovk's analysis in the case that the predictionscan range continuously in [0; 1]. This gives a straightforward method for obtaining the valuecL in (1.1). The value cL itself is the same as implied by Vovk's results. Further, we see thatour method gives optimal values for the constant cL. That is, we show that if cL is chosenappropriately, we have not only the upper bound (1.1) for all trial sequences S, but also forsome trial sequence S the lower boundLossL(A; S)� min1�i�N LossL(Ei; S) � (cL � o(1)) lnN ; (1:2)where o(1) is a quantity that approaches 0 as N and ` approach 1. Hence, for the class of lossfunctions that satis�es our conditions, we have an asymptotically tight bound for the worst-caseadditional loss.The conditions the loss function must satisfy for the bounds (1.1) and (1.2) to hold arenatural and can easily be seen to be satis�ed by most usual loss functions, except for theabsolute loss. We also de�ne another class of loss functions, including the absolute loss, forwhich we can prove the lower boundLossL(A; S)� min1�i�N LossL(Ei; S) = 
 �p` logN� :Hence, for the loss functions in this class, an upper bound like (1.1), with no dependence onthe length ` of the trial sequence, cannot be achieved.It is possible to construct loss functions that are in neither of our classes, and for which wethus do not know any bounds. It is an open problem to provide upper and lower bounds thatwould apply to all loss functions.The asymptotically tight loss bounds are given in Subsection 3.1 together with a discussionof the condition the loss function must satisfy for the bounds to be applicable. Subsection 3.2restates Vovk's algorithm and upper bound proof simpli�ed for our purposes. The lower boundproof, given in Subsection 3.3, is based on generating the trial sequence by a simple randomizedadversary and showing that already the expected loss of the algorithm tightly approaches the2



upper bound implied in (1.1) for the worst-case loss. Thus, in a sense we see that in ourparticular setting, the average case is almost as di�cult as the worst case. The proof techniquewith a randomized adversary was used by Cesa-Bianchi et al. [2] in the special case of theabsolute loss.Finally, in Subsection 4.1 we show that for certain loss functions, such as the square andlogarithmic loss, Vovk's algorithm achieves the same worst-case loss bound even if the outcomesare allowed to be continuous-valued. For the absolute loss, the worst-case bounds proven forbinary outcomes [16, 2] can be achieved with continuous-valued outcomes by using a slightlymore complicated algorithm, as we show in Subsection 4.2.2 On-line prediction and loss boundsWe consider the performance of an on-line learning algorithm A over a sequence S =((x1; y1); : : : ; (x`; y`)) of ` trials. The sequence S is an N -expert trial sequence if the tthprediction vector xt is in [0; 1]N for t = 1; : : : ; `. We consider both binary outcomes , withthe outcomes yt either 0 or 1, and continuous-valued outcomes , with yt any real number fromthe interval [0; 1]. At trial t, the algorithm A produces its prediction ŷt 2 [0; 1] as a function ofthe prediction vectors x1; : : : ;xt and the outcomes y1; : : : ; yt�1. The main algorithms consideredin this paper make their predictions ŷt independently of the length ` of the whole trial sequence,but in some situations we also consider how the algorithms can be �ne-tuned if ` is known inadvance.The performance of the learner at trial t is measured by L(yt; ŷt), where L is a loss functionwith the range [0;1), or sometimes [0;1]. For binary outcomes yt 2 f 0; 1 g it su�ces toconsider the functions L0 and L1 de�ned by L0(y; ŷ) = L(0; ŷ) and L1(ŷ) = L(1; ŷ).Example 2.1: The relative entropy loss Lent is de�ned by Lent(y; ŷ) = y ln ŷy + (1� y) ln 1�y1�ŷ .By the usual convention 0 ln 0 = 0, this gives L0(ŷ) = � ln(1 � ŷ) and L1(ŷ) = � ln ŷ forL = Lent. In the binary case y 2 f 0; 1 g, the relative entropy loss is better known as thelogarithmic loss .The square loss Lsq is de�ned by Lsq(y; ŷ) = (y � ŷ)2. Hence, for L = Lsq, we haveL0(ŷ) = ŷ2 and L1(ŷ) = (1� ŷ)2.The Hellinger loss LH is given by LH(y; ŷ) = 12 ��p1� y � p1� ŷ�2 + �py � pŷ�2�. Hence,for L = LH we have L0(ŷ) = 1�p1� ŷ and L1(ŷ) = 1� pŷ.The absolute loss Labs is given by Labs(y; ŷ) = jy � ŷj, and we have L0(ŷ) = ŷ andL1(ŷ) = 1� ŷ for L = Labs. 2It is worth noting some properties of the loss functions of Example 2.1, since these will beimportant later. In each case, the function L0 is increasing and L1 decreasing in [0; 1], so theloss L(y; ŷ) increases as the prediction ŷ moves away from the outcome y. The functions L0 andL1 are di�erentiable, and by the previous remark, L00(z) � 0 and L01(z) � 0 for all z. Exceptfor the absolute loss, the second derivatives L000(z) and L001(z) are positive for all z, which meansthat errors become progressively more expensive as the di�erence between the prediction andoutcome increases.Consider now a loss function L and an on-line prediction algorithm A. Let S =((x1; y1); : : : ; (x`; y`)) be an N -expert trial sequence, and let the prediction of the algorithmA at trial t of the sequence S be ŷt. We then have LossL(A; S) = Pt̀=1 L(yt; ŷt) as the loss ofthe algorithm and LossL(Ei; S) = Pt̀=1 L(yt; xt;i) as the loss of the ith expert on the sequenceS. We de�ne 3



VL;A(S) = LossL(A; S)� min1�i�N LossL(Ei; S)to be the additional loss of the algorithm, i.e., the amount by which the loss of the algorithmexceeds the loss of the best expert. We letVL;A(N; `) = supnVL;A(((x1; y1); : : : ; (x`; y`))) j xt 2 [0; 1]N; yt 2 f 0; 1 gobe the worst case amount of additional loss for A, when the outcomes in an N -expert trialof length ` are restricted to be binary. Finally, we let VL(N; `) = infA VL;A(N; `) be the bestadditional loss obtainable by an on-line prediction algorithm A. The goal of this paper is tostudy for general loss functions L what are the lowest additional losses VL;A(N; `) that can beobtained by an on-line prediction algorithm, and to generalize the results for continuous-valuedoutcomes yt 2 [0; 1]. We are particularly interested in whether VL;A(N; `) can have an upperbound that is independent on `. Such bounds have previously been proven for square loss andlogarithmic loss when the outcomes are binary. For these loss functions there are algorithmsthat satisfy VL;A(N; `) � 12 lnN and VL;A(N; `) � lnN , respectively [16, 8]. On the other hand,for the absolute loss it is known that no upper bound of this form exists, but the algorithmA that minimizes VL;A(N; `) has VL;A(N; `) = 
 �p` lnN� [2]. One of our results provides aformula from which the best possible upper bound for VL;A(N; `) can be obtained for a wideclass of loss functions L. For example, we obtain VL;A(N; `) � 2�1=2 lnN if L is the Hellingerloss.It is implicit in the de�nitions that any lower bounds for VL(N; `) hold even for algorithmsthat know the length ` of the trial sequence beforehand. Most of our upper bounds for VL;A(N; `)are achieved by an algorithm A that depends only on the loss function, not on `. The exceptionis the upper bound for the absolute loss, as will be discussed in Example 3.14.Our upper bounds for VL;A(N; `) are not based on probabilistic assumptions, but we useprobabilistic techniques in the lower bound proofs. We use E[X ] and Var[X ] to denote theexpected value and variance of a random variable X . If we want to emphasize the underlyingprobability measure P , we write Ex2P [X(x)] and Varx2P [X(x)]. The probability of an event 'according to a probability measure P is denoted by Prx2P ['(x)].We use N+ to denote the set f 1; 2; 3; : : :g of the positive integers and R to denote the setof real numbers.3 Binary outcomes3.1 Main resultsThe proofs of our upper and lower bounds require that the loss function satis�es certainconstraints. We �rst state the main result with all the necessary restrictions and then discuss themeaning of these restrictions. First, given loss functions L0 and L1 that are twice di�erentiable,we de�ne a function S by S(z) = L00(z)L001(z)� L01(z)L000(z) (3:1)and a function R by R(z) = L00(z)L01(z)2 � L01(z)L00(z)2S(z) : (3:2)We then de�ne a constant cL by cL = sup0<z<1R(z) : (3:3)4



Our main result concerns the case where cL is �nite. When cL is �nite and the loss functionsatis�es certain other conditions, we can prove an upper bound VL;A(N; `) � cL lnN and showthat the bound is asymptotically tight.Theorem 3.1: Let L be a loss function such that L0(0) = L1(1) = 0, L0 and L1 are twicedi�erentiable in (0; 1), and L00(z) > 0 and L01(z) < 0 for 0 < z < 1. Assume that the constantcL de�ned in (3.3) is �nite and S(z) de�ned in (3.1) is positive for 0 < z < 1. Then there isan on-line prediction algorithm A for whichVL;A(N; `) � cL lnN : (3:4)Further, we have VL(N; `) � (cL � o(1)) lnN ; (3:5)where o(1) denotes a quantity that approaches 0 as ` and N approach 1.The algorithm A that obtains the bound (3.4), as well as the proof of the bound, are alreadygiven by Vovk [16]. The algorithm makes its predictions independently of the length ` of thetrial sequence. We give the algorithm and a simpli�ed proof in Subsection 3.2. The lower bound(3.5) is based on a probabilistic proof that is given in Subsection 3.3. The lower bound holdsalso for algorithms that get knowledge of ` beforehand.Example 3.2: Consider the loss functions of Example 2.1. For the logarithmic loss, R(z) isidentically 1, and therefore cL = 1. For the square loss, we have R(z) = 2z � 2z2, and hencecL = 1=2. For the Hellinger loss, we have R(z) = zp1� z+(1�z)pz, and it is straightforwardto show that R(z) is maximized for z = 1=2. Hence, cL = 2�1=2. For the absolute loss, thedenominator of R(z) is identically 0, so cL =1. 2If the function R de�ned in (3.2) is unbounded in (0; 1), and hence the value cL is in�nite,we do not have good general bounds for the achievable additional losses VL;A. The special caseof absolute loss was considered by Cesa-Bianchi et al. [2]. They show that for the optimalalgorithm A we have VL;A(N; `) = � �p` lnN�. For the absolute loss, the value cL is in�nitebecause the denominator S(z) is 0 for all z. For the logarithmic loss, the square loss, andthe Hellinger loss, the value S(z) is positive for all z. As we shall soon explain, the sign ofS(z) is intimately connected with the uniqueness of the Bayes-optimal prediction in a certainprobabilistic prediction game.Let Q be a probability measure on f 0; 1 g, with Pry2Q[y = 1] = q. For a prediction z 2 [0; 1],the expected loss for probability measureQ, or for bias q, is Ey2Q[L(y; z)] = (1�q)L0(z)+qL1(z).Here we de�ne 0 � 1 = 0. For example, for the logarithmic loss we have L0(1) = 1, but theexpected loss for prediction 1 is de�ned to be 0 for bias 1. For other biases it would be in�nite.A prediction z is Bayes-optimal for bias q if it minimizes the expected loss. Note that sincewe assume L0 and L1 to be continuous in a closed interval, the expected loss always has aminimum value at some z. This holds even if we allow in�nite losses. If L0 is increasing andL1 decreasing, then the prediction 0 is Bayes-optimal for bias 0 and the prediction 1 for bias 1.If a value 0 < z < 1 is a local extremum point for the expected loss, then(1� q)L00(z) + qL01(z) = 0 : (3:6)If 1� q 6= 0 and L01(z) 6= 0, this implies q1� q = �L00(z)L01(z) : (3:7)5



More generally, if either L00(z) or L01(z) is nonzero for a given value z 2 (0; 1), then there is aunique value q 2 (0; 1) for which (3.6) holds, and hence z cannot be a Bayes-optimal predictionfor more than one bias. If (1� q)L000(z) + qL001(z) > 0 (3:8)holds in addition to (3.6), then z is a local minimum point. There may be one or more Bayes-optimal predictions for a given bias.Example 3.3: For the logarithmic and square losses, it is easy to show that z = q is the uniqueBayes-optimal prediction for bias q.For the Hellinger loss, solving (3.7) shows that the unique Bayes-optimal prediction z for abias 0 < q < 1 is given by z = 11 + �1�qq �2 :For the absolute loss, z = 0 is the unique Bayes-optimal prediction for biases q < 1=2 andz = 1 for biases q > 1=2. For the bias q = 1=2, any prediction is Bayes-optimal. 2Lemma 3.4: If S(z) > 0 for all z, then for all biases 0 � q � 1 there is a unique Bayes-optimalprediction z. If for all biases q the Bayes-optimal prediction is unique, then S(z) � 0 for all z,and there is no interval [a; b] with a < b such that S(z) = 0 for all z 2 [a; b].The proof of Lemma 3.4 is given in Subsection 3.3. In Subsection 3.3 we also prove thefollowing lower bounds, which show that if the denominator S is not always strictly positive,the gap VL;A(N; `) cannot have an upper bound that is independent of `.Theorem 3.5: Let L be a loss function such that L0 and L1 are twice di�erentiable in (0; 1),and L00(z) > 0 and L01(z) < 0 for all z. Let S be as in (3.1).1. If S(z) = 0 for some 0 < z < 1, we haveVL(N; `) = 
 �`1=2��plogN� (3:9)for all � > 0.2. If S(z) < 0 for some 0 < z < 1, or there are values a < b such that S(z) = 0 for alla � z � b, we have VL(N; `) = 
 �p` logN� : (3:10)This generalizes the results of Cesa-Bianchi et al. [2] for the absolute loss.Finally, it is possible to construct loss functions L for which the value cL is in�nite, but thedenominator S(z) is positive for all z. For such loss functions the results of this paper have noimplications whatsoever.Example 3.6: De�ne a loss function by L0(z) = (1� z)�� � 1 and L1(z) = z�� � 1 for somepositive value �. We then haveR(z) = ��+ 1 �z��(1� z) + (1� z)��z� :Therefore, R(z) approaches 1 as z approaches 0 or 1, and cL is in�nite. Hence, our resultsgive no upper bound for VL(N; `). However, the denominator S(z) is given byS(z) = �2(�+ 1)(z(1� z))���2and is hence strictly positive for 0 < z < 1. Therefore, we have no lower bound, either. Forthis loss function it is an open problem to de�ne the value VL(N; `).6



Since S(z) is positive, we know that the Bayes-optimal prediction z for each bias q is unique.Speci�cally, we have z = 11 + �1�qq �1=(�+1) ;as can be seen by a straightforward calculation. 23.2 The algorithm and the upper boundWe consider an algorithm �rst introduced by Vovk. The algorithm has two positive realvalued parameters c and �. We �rst introduce the algorithm in a somewhat open form, leavingthe parameters c and � unspeci�ed and de�ning the prediction ŷt only by giving a conditionit must satisfy. For the moment we also leave open the possibility that there is no predictionthat satis�es the condition, in which case we say that the algorithm fails. The parameter c iscan vaguely be characterized as a measure for the error allowed for the algorithm. The smallerthe value c, the tighter upper bound we get for the additional loss assuming that the algorithmdoes not fail. Hence, for applying the algorithm we need to �nd the least value c for which thealgorithm is guaranteed to never fail when the learning rate � is chosen suitably.It turns out that for a loss function L that satis�es the assumptions of Theorem 3.1, thesuitable choice is c = cL and � = 1=c. This gives a bound VL;A(N; `) � cL lnN . The mainpart of the proof is in showing that for any choice c � cL the algorithm is guaranteed not tofail for � = 1=c. We also give a more direct way of choosing a prediction ŷt that satis�es therequired conditions, provided that such a prediction exists. Examples show that the seeminglycomplicated conditions for ŷt are actually quite simple for the usual loss functions.The algorithm uses an N -dimensional weight vector wt = (wt;1; : : : ; wt;N) as its internalstate. The weight wt;i is always nonnegative and summarizes the performance of the ith expertin previous trials. At the end of the tth trial we have � lnwt;i = �LossL(Ei; St), where Stconsists of the �rst t trials of S. Note that the weights wt;i are invariant under permutations ofthe trial sequence St. The predictions ŷt of the algorithm are independent of the total length `of the trial sequence.Algoritm 3.7 (The Generic Algorithm): Let L be a loss function and c and � be anypositive constants.Initialization: Set the weights to some initial values w1;i > 0.Prediction: Let vt;i = wt;i=Wt, where Wt = PNi=1 wt;i. At the beginning of trial t, computefor y = 0 and y = 1 the value�(y) = �c ln NXi=1 vt;ie��L(y;xt;i) : (3:11)On receiving the tth input xt, predict with any value ŷt that satis�es for y = 0 and y = 1the condition L(y; ŷt) � �(y) : (3:12)It no such value ŷt exists, the algorithm fails.Update: After receiving the tth outcome yt, letwt+1;i = wt;ie��L(yt;xt;i): (3:13)7



To understand the algorithm, note that by (3.11) and (3.13) we can write �(yt) = Ut+1�Ut,where Ut = �c lnWt. Hence, we can consider �c lnWt as a potential function, and the conditionL(yt; ŷt) � �(yt) means that at each trial, the increase of the potential must be at least as largeas the loss of the algorithm. The basic idea of proving the upper bound for the loss of theGeneric Algorithm is based on relating the total potential increase U`+1 � U1 to the total lossof the best expert. The following upper bound was already given by Vovk [16].Theorem 3.8: Let L be any loss function. Let S = ((x1; y1); : : : ; (x`; y`)) be an N -expert trialsequence in which the outcomes yt 2 f 0; 1 g are binary. Assume that during this trial sequence,the Generic Algorithm 3.7 with parameters c and � does not fail but produces at each trial t aprediction ŷt. Then for all i the total loss satis�esLossL(A; S) � �c ln W`+1W1 � �c ln w1;iW1 + c�LossL(Ei; S) : (3:14)Proof The condition (3.12) for y = yt together with (3.11) and (3.13) impliesL(yt; ŷt) � �c ln Wt+1Wtand hence X̀t=1L(yt; ŷt) � �c ln W`+1W1 � �c ln w`+1;iW1for all i. Finally, by (3.13) we getw`+1;iW1 = w1;iW1 Ỳt=1 e��L(yt;xt;i) ;and the theorem follows. 2For given values c and �, we say that the loss function L is (c; �)-realizable if the condition(3.12) for y = 0 and y = 1 can always be satis�ed by a suitable choice of ŷt. To prove theupper bound of Theorem 3.1, it now su�ces to show that a loss function L that satis�es theassumptions of Theorem 3.1 is (c; 1=c)-realizable for c = cL. The result then follows fromTheorem 3.8 by setting w1;i = 1 for all i. The rest of this subsection gives our formulation ofVovk's [16] proof for these results.We �rst devolop an equivalent version of condition (3.12). Write �0 = �(0) and �1 = �(1),so the condition (3.12) for y 2 f 0; 1 g can be expressed as L0(ŷt) � �0 and L1(ŷt) � �1. Toobtain explicit bounds for ŷt from these conditions, we need to have some notion of an inversefor L0 and L1. Assume that L0 is continuous and strictly increasing and L1 is continuous andstrictly decreasing in [0; 1], which is implied by the assumptions of Theorem 3.1. Then L0has a continuous strictly increasing inverse L�10 that is de�ned in [L0(0); L0(1)], and L1 has acontinuous strictly decreasing inverse L�11 that is de�ned in [L1(1); L1(0)].Consider �rst the case with �0 2 [L0(0); L0(1)] and �1 2 [L1(1); L1(0)]. Then the valuesL�10 (�0) and L�11 (�1) are de�ned, and (3.12) for y 2 f 0; 1 g can be equivalently written asL�11 (�1) � ŷt � L�10 (�0) : (3:15)A prediction ŷt that satis�es (3.15) can be found if and only ifL�11 (�1) � L�10 (�0) : (3:16)8



If (3.16) holds, the prediction ŷt can be chosen to be an arbitrary value between the boundsL�11 (�1) and L�10 (�0). For instance their mean (L�11 (�1) + L�10 (�0))=2 is a valid choice forŷt. Consider now the possibility that the value �0 or �1 is outside of the range of L0 or L1,respectively. If, for instance, �0 is larger than L0(1), then the condition L0(ŷt) � �0 in (3.12)holds for all ŷt. Thus, the equivalence between (3.12) and (3.15) will be maintained for allnonnegative �0 if the inverse L�10 is extended in such a way that the condition ŷt � L�10 (�0)holds for all ŷt 2 [0; 1] when �0 > L0(1). Hence, we say that L�10 is a generalized inverse ofL0 if L�10 (L0(ŷ)) = ŷ for all ŷ 2 [0; 1] and L�10 (�0) � 1 whenever �0 � L0(1). Similarly, L�11is a generalized inverse of L1 if L�11 (L1(ŷ)) = ŷ for all ŷ 2 [0; 1] and L�11 (�1) � 0 whenever�1 � L1(0).For instance, if L is the square loss Lsq, we have the generalized inverses L�10 (z) = pz andL�11 (z) = 1�pz for 0 � z � 1, so (3.16) becomesp�0 +p�1 � 1 :For the relative entropy loss Lent we have L�10 (z) = 1� e�z and L�11 (z) = e�z , so we gete��0 + e��1 � 1 :For the absolute loss Labs we have L�10 (z) = z and L�11 (z) = 1� z, so we need to have�0 + �1 � 1 :Our de�nitions of generalized inverses let us show the equivalence between (3.15) and (3.12)for all values of �0 and �1.Lemma 3.9: Assume that L is a loss function such that L0(0) = L1(1) = 0, L0 is continuousand strictly increasing in [0; 1], and L1 is continuous and strictly decreasing in [0; 1]. For anygeneralized inverses L�10 and L�11 , the condition (3.15) is equivalent to (3.12) for y 2 f 0; 1 g.Proof If �0 62 [0; L0(1)], then both L0(ŷt) � �0 and ŷt � L�10 (�0) hold for all ŷt 2 [0; 1]. If�1 62 [0; L1(0)], then both L1(ŷt) � �1 and L�11 (�1) � ŷt hold for all ŷt 2 [0; 1]. Hence, wemay assume that �0 is in the range of L0 and �1 is in the range of L1. In this case (3.12) and(3.15) are equivalent because L0 is strictly increasing and L1 strictly decreasing. 2We are now ready to show that if in Algorithm 3.7 we use a value c such that c � cL, wherecL is as de�ned in (3.3), and set � = 1=c, then the algorithm never fails.Lemma 3.10: Let L be any loss function such that L0 and L1 are twice continuously di�eren-tiable, L0(0) = L1(1) = 0, and L00(z) > 0 and L01(z) < 0 hold for 0 < z < 1. Assume that thevalue cL de�ned in (3.3) is �nite, and S(z) de�ned in (3.1) is positive for all z. Then for allwt and xt such that 0 � xt;i � 1 and wt;i � 0 for 1 � i � N , condition (3.16) holds wheneverc � cL and � = 1=c.Proof For 0 � z � 1, de�ne p(z) = exp(�L0(z)=c) and q(z) = exp(�L1(z)=c), and for r inthe range of p de�ne f(r) = exp(�L1(L�10 (�c ln r))=c) : (3:17)Note that f(p(z)) = q(z). 9



First, assume that f 00(p(z)) � 0 holds for 0 � z � 1. We are later going to show that thisis in fact true if c � cL. Let ri = p(xt;i) and si = q(xt;i) = f(ri) for i = 1; : : : ; N . Then for� = 1=c we have �0 = �c ln(Pi vt;iri) and �1 = �c ln(Pi vt;isi). The assumption f 00(r) � 0implies Pi vt;isi =Pi vt;if(ri) � f(Pi vt;iri). We get�1 = �c ln NXi=1 vt;isi!� �c ln f  NXi=1 vt;iri!!= L1 L�10  �c ln NXi=1 vt;iri!!!= L1(L�10 (�0)) ;from which condition (3.16) follows since L�11 is decreasing.We now show that our assumptions on L0 and L1 imply that for c � cL, the function f hasa nonpositive second derivative in the range of q. We have f(p(z)) = q(z) and thus f 0(p(z)) =q0(z)=p0(z). Di�erentiating further, we obtain f 00(p(z))p0(z) = (q00(z)p0(z) � q0(z)p00(z))=p0(z)2.Since p0(z) = �L00(z)p(z)=c < 0, we have f 00(p(z)) � 0 if and only if q00(z)p0(z)�q0(z)p00(z) � 0.By substituting p0(z) = �L00(z)p(z)=c and p00(z) = (�L000(z)=c + (L00(z))2=c2)p(z), and usingsimilar expressions for q0(z) and q00(z), we see that f 00(p(z)) � 0 if and only if��L00(z)L01(z)2 + L01(z)L00(z)2 + c �L00(z)L001(z)� L01(z)L000(z)�� p(z)q(z)c3 � 0:Finally, since our assumptions imply L00(z)L001(z)�L01(z)L000(z) > 0, we conclude that f 00(p(z)) �0 holds if and only if c � R(z). Hence, c � cL is a necessary and su�cient condition for havingf 00(p(z)) � 0 for all z. 2Note that above argument shows that the nonpositivity of f 00(r) is also a necessary condition.If f 00(r) is positive on some interval, by placing all the values xt;i in this interval but not makingthem equal we get Pi vt;if(ri) > f(Pi vt;iri) and, hence, L�11 (�1) > L�10 (�0).In particular, we see that since the Generic Algorithm 3.7 does not fail with the paramatersc = cL and � = 1=cL, we get the upper bound claimed in Theorem 3.1 by applying Theorem 3.8with the initial weights w1;i = 1 for all i.Theorem 3.11: Let L be a loss function for which the constant cL is �nite. Let A be theGeneric Algorithm 3.7 with the parameters c = cL, � = 1=cL, and the initial weights w1;i = 1for all i. Then for all N and ` the additional loss of the algorithm satis�esVL;A(N; `) � cL lnN :We are now ready to write the Generic Algorithm 3.7 in a more explicit form for particularloss functions.Example 3.12: If L is the logarithmic loss, we have cL = 1 and can therefore take c = � = 1in the Generic Algorithm 3.7. After simple manipulations we get �0 = � ln(1 � pt) and�1 = � ln pt, where pt =Pi vt;ixt;i is the weighted average of the experts' predictions. Hence,L�10 (�0) = L�11 (�1) = pt ;and ŷt = pt is the only prediction for which (3.12) holds for y 2 f 0; 1 g with this choice of c and�. The loss bound we obtain was previously shown by De Santis et al. [8] and Vovk [16]. 210



Example 3.13: Let L be the square loss. Vovk [16] has shown that the square loss is (1=2; 2)-realizable. Here the result follows from Lemma 3.10 and Example 3.2. The note after the proofof Lemma 3.10 further implies that the square loss is not (c; 1=c)-realizable for any c < 1=2.Hence, we take c = 1=2 and � = 2 in the Generic Algorithm 3.7 for the square loss. Thecondition (3.12) for y 2 f 0; 1 g now becomes1�  � lnPNi=1 vt;ie�2(1�xt;i)22 !1=2 � ŷt �  � lnPNi=1 vt;ie�2x2t;i2 !1=2 : (3:18)By numerically substituting random values for vt and xt we see that the seemingly naturalchoice ŷt =Pi vt;ixt;i usually does not satisfy (3.18). More generally, there is no function f suchthat choosing ŷt = f (Pi vt;ixt;i) would guarantee (3.18) to hold. To see this, consider N = 2and set �rst xt = (0; 7=10) and vt = (2=7; 5=7). Then Pi vt;ixt;i = 1=2, and evaluating the left-hand side of (3.18) with these values of xt and vt yields a bound 0:52 < f(1=2). On the otherhand, we also have Pi vt;ixt;i = 1=2 when xt = (3=10; 1) and vt = (5=7; 2=7), and evaluatingthe right-hand side of (3.18) with these values gives the contradictory condition f(1=2) < 0:48.Hence, the algorithm needs more information than is provided by merely the weighted averageof the experts' predictions.It can be proved that in the more restricted case that all the experts' predictions xt;i arein f 0; 1 g, we can guarantee (3.15) for the square loss with c = 1=� � 0:41 instead of c = 0:5.This gives a slightly improved bound. However, restricting the experts to predict with binaryvalues while allowing the algorithm to predict with countinuous values does not seem a naturalsetting. 2Example 3.14: Take L to be the absolute loss. As now cL = 1, we know that the absoluteloss is not (c; 1=c)-realizable for any c. We therefore let � > 0 be arbitrary, and see for whichvalues c the absolute loss is (c; �)-realizable.By using the bound e��x � 1� (1� e��)x that holds for all x 2 [0; 1], we obtainL�10 (�0)� L�11 (�1)= �c ln NXi=1 vt;ie��xt;i �  1 + c ln NXi=1 vt;ie��(1�xt;i)!� c � ln NXi=1 vt;i(1� (1� e��)xt;i)� ln NXi=1 vt;i(1� (1� e��)(1� xt;i))!� 1= c �� ln(1� pt + pte��)� ln(pt + (1� pt)e��)�� 1where pt = Pi vt;ixt;i. By Jensen's inequality, this is positive for c � (2 ln 21+e�� )�1, and theprediction condition (3.12) for y 2 f 0; 1 g becomes1 + lnPNi=1 vt;ie��(1�xt;i)2 ln 21+e�� � ŷt � � lnPNi=1 vt;ie��xt;i2 ln 21+e�� : (3:19)Cesa-Bianchi et al. [2] have noted that (3.19) always holds if we chooseŷt = ln(1� pt + pte��)ln(1� pt + pte��) + ln((1� pt)e�� + pt) ;but does not in general hold for ŷt = pt. Hence, the weighted average of the experts' predictionprovides su�cient information for the prediction, but cannot be used directly.11



The bound obtained by applying Theorem 3.8 for the absolute loss with the choice c =�2 ln 21+e�� ��1, namely LossL(A; S) � � ln w1;iW1 + �LossL(Ei; S)2 ln 21+e�� ; (3:20)was �rst proven by Vovk [16]. We would like to choose the learning rate � in such a waythat the loss bound on the right-hand side of (3.20) is minimized. This tuning of the learningrate is discussed in detail by Cesa-Bianchi et al. [2, 3]. Here we just cite some of the basicresults. If all the initial weights w1;i are 1 and � is chosen to be ln h �p2(lnN)=`� whereh(z) = 1 + 2z + z2= ln 2, the Generic Algorithm 3.7 for absolute loss satis�esVL;A(N; `) � s` ln(N + 1)2 + log2(N + 1)2 :Note that here it is necessary to know ` before the �rst trial in order to choose the learning rate� appropriately. Similar results can be obtained by basing the choise of � on an upper boundfor the loss mini LossL(Ei; S) of the best expert instead of on `.Finally, we consider the variations of the Generic Algorithm given by Cesa-Bianchi et al.[2] for the special case of the absolute loss. Instead of the update (3.13), we write moregenerally wt+1;i = �t;iwt;i and �(y) = �c lnPNi=1 vt;i�t;i, and consider choices for the factors�t;i in addition to the choice �t;i = e��jyt�xt;ij of the Generic Algorithm. First, note that if� ln�t;i � � jyt � xt;ij, the proof of Theorem 3.8 can easily be generalized to yield the sameloss bound. Second, note that the proof given for the inequality L�11 (�1) � L�10 (�0) is validassuming �t;i � 1 � (1 � e��)xt;i. Hence, the algorithm works and gives the same worst-caseloss bound for any choice e��jyt�xt;ij � �t;i � 1� (1� e��)xt;i : (3:21)Interestingly enough, the weights obtained using �t;i = 1 � (1 � e��)xt;i have a Bayesianinterpretation [2]. 23.3 Lower boundsThis subsection contains proofs of the lower bounds for VL(N; `) stated in Theorems 3.1 and3.5 in Subsection 3.1. The lower bounds hold even for algorithms that receive ` as input begorethe �rst trial. Theorem 3.16 shows how a probability measure for the experts and outcomesleads to a lower bound for VL(N; `) for large N and `. The proof of Theorem 3.16 is basedon Lemma 3.15, which shows that we can change the order of taking expectations and goingto the limit with certain random variable sequences. The lower bound in Theorem 3.16 isin terms of certain characteristics of the probability measures, and is interesting only if theprobability measures are chosen carefully. Lemma 3.17 shows a particular way of choosing theprobability measures, when a prediction b is the unique Bayes-optimal prediction for a bias q.Lemmas 3.18 show a way to choose the probability measures in Theorem 3.16 if the Bayes-optimal prediction is not unique. Finally, we combine the results by showing that either eachprediction z can be made to be the unique Bayes-optimal prediction by choosing a suitablebias, in which case Lemma 3.17 yields a lower bound for VL(N; `) in terms of cL, or else thereis a bias for which two distinct Bayes-optimal prediction exist and Lemma 3.18 yields a lowerbound VL(N; `) = 
 �p` logN�.We begin with a technical lemma. 12



Lemma 3.15: Let P be a probability measure in X and Q a probability measure in Y . For` 2 N+ and y 2 Y , let Uy1`; : : : ; UyN` be N independent identically distributed random variablessuch that Ex2P [Uyi`(x)] = 0 and Varx2P [Uyi`(x)] = 1. Assume that there are independentidentically distributed random variables F1; : : : ; FN such that the sequence Uyi1; Uyi2; : : : convergesin distribution to Fi for all i and y. Further, let r1; r2; : : : be functions on Y such thatlim`!1 r`(y) = 1 holds with probability 1 for y drawn according to Q, and jr`(y)j � B holds forall y for some constant B. Thenlim`!1Ey2Q �r`(y)Ex2P � min1�i�N Uyi`(x)�� = E � min1�i�N Fi� :Proof Write Uy�` = min1�i�N Uyi` and F� = min1�i�N Fi. We �rst show that for all y, thesequence Uy�1; Uy�2; : : : converges in distribution to F�. For all a 2 R we havePr[F� � a] = 1� NYi=1(1� Pr[Fi � a])= 1� NYi=1(1� lim`!1Pr[Uyi` � a])= lim`!1(1� NYi=1(1� Pr[Uyi` � a]))= lim`!1Pr[Uy�` � a] ;which proves the claim.Next we see that Ex2P h��Uy�`(x)��1+pi � 2N (3:22)holds for all y when p = 0 or p = 1. To see this, �rst note that for all A � R, if Uy�`(x) 2 Athen Uyi`(x) 2 A for at least one value i. As the distribution of Uyi` does not depend on i, thisimplies Prx2P [Uy�`(x) 2 A] � N Prx2P [Uy1`(x) 2 A] if A is measurable. This impliesEx2P h��Uy�`(x)��1+pi � NEx2P h��Uy1`(x)��1+pi= N Z ��Uy1`��1+p dP� N  1 + ZjUy1`j�1 ��Uy1`��1+p dP!� N �1 + Ex2P h�Uy1`(x)�2i�= 2N :As the sequence Uy�1; Uy�2; : : : converges in distribution to F�, the bound (3.22) with p =1 guarantees [1, Corollary, p. 292] lim`!1 Ex2P �Uy�`(x)� = E [F�] for all y and, therefore,lim`!1 r`(y)Ex2P �Uy�`(x)� = E [F�] with probability 1 for y drawn from Q. The bound (3.22)with p = 0 implies ��r`(y)Ex2P �Uy�`(x)��� � 2BN , and the bounded convergence theorem [1,Thm. 16.5, p. 180] lim`!1Ey2Q �r`(y)Ex2P �Uy�`(x)�� = E [F�] ;as claimed. 2Theorem 3.16 shows how a probability measure for the experts and outcomes leads to alower bound for VL(N; `) for large N and `. 13



Theorem 3.16: Let P be a probability measure on [0; 1] and Q a probability measure onf 0; 1 g. Assume that for y = 0 and y = 1, the condition Prx2P [L(y; x) > K] = 0 holds forsome constant K. Let b be a Bayes-optimal prediction for Q. Let � = Ey2Q;x2P [L(y; x)] and�2 = Ey2Q [Varx2P [L(y; x)]]. Assume that for y = 0 and y = 1 the variance Varx2P [L(y; x)] isstrictly positive. Then for all " > 0 there is an `" such that for all ` � `" we haveVL(N; `) � `Ey2Q[L(y; b)]� `� + (aN � ")�p` lnN ; (3:23)where limN!1 aN = p2.Proof Given x 2 [0; 1]N�` and y 2 f 0; 1 g`, we de�ne an N -expert trial sequence of length ` byhx;yi = ((x1; y1); : : : ; (x`; y`)). For an on-line prediction algorithm A, consider VL;A(hx;yi) asa random variable, with x and y drawn from the product measures PN�` and Q`, respectively.The expected value of a random variable is clearly a lower bound for the supremum. Combiningthis with the linearity of expectation, we getVL;A(N; `) � Ex2PN�`Ey2Q`VL;A(hx;yi)= X̀j=1Ey2Q[L(y; ŷt)]� Ex2PN�`Ey2Q` � min1�i�N LossL(Ei; hx;yi)�� `Ey2Q[L(y; b)]� Ex2PN�`Ey2Q` � min1�i�N LossL(Ei; hx;yi)� :Since this holds for any A, we obtain (3.23) if we can prove thatEx2PN�`Ey2Q` � min1�i�N LossL(Ei; hx;yi)� � `� � (aN � ")�p` lnN : (3:24)Let q = Pry2Q[y = 1]. Then� = (1� q)Ex2P [L0(x)] + qEx2P [L1(x)]and �2 = (1� q)Varx2P [L0(x)] + qVarx2P [L1(x)] :Given a sequence y 2 f 0; 1 g1 and ` 2 N+, de�neq̂`(y) = 1̀ X̀i=1 yi :We also let �̂`(y) = (1� q̂`(y))Ex2P [L0(x)] + q̂`(y)Ex2P [L1(x)]and �̂`(y)2 = (1� q̂`(y))Varx2P [L0(x)] + q̂`(y)Varx2P [L1(x)]be the estimates obtained for � and �2 by using q̂`(y) instead of the true probability q.For x 2 [0; 1]N�1 and y 2 f 0; 1 g1, let Tyij (x) = L(yj ; xij) be the loss of expert i at trial j,if x is the sequence of experts' predictions and y the sequence of outcomes. We consider Tyij asa random variable on the domain [0; 1]N�1. We now de�ne for i = 1; : : : ; N and ` = 1; 2; : : :the random variable Si` in the domain [0; 1]N�1 � f 0; 1 g1 by Si`(x;y) = Pj̀=1 L(yj ; xij) todenote the loss of expert i in the �rst ` trials. We also de�ne for a given sequence y 2 f 0; 1 g114



the random variable Syi` by Syi`(x) = Si`(x;y) =Pj̀=1 Tyij . The underlying probability measuresfor these random variables are the product measures de�ned by P and Q, so for a �xed y therandom variables Tyij and Tyi0j0 are independent for (i; j) 6= (i0; j 0). To study the distribution ofSyi`, we de�ne a suitably normalized random variable Uyi` . Let nowUyi` = Syi` �Pj̀=1 E[Tyij ]qPj̀=1Var[Tyij ] : (3:25)Then E[Uyi` ] = 0 and Var[Uyi` ] = 1. Further, since we have assumed that Pr[jTyij j] > K) = 0, theLindeberg form of the central limit theorem implies that each sequence Uyi1; Uyi2; : : : convergesin distribution to a standard normal random variable.We now apply Lemma 3.15 to the random variables Uyi` . Then the random variables Fi inLemma 3.15 have standard normal distribution. By a standard result [10], their minimum F�has expectation E[F�] = �aNplnN , where limN!1 aN = p2. We take r`(y) = �̂`(y)=�. Thenjr`(y)j � K=�, and by the strong law of large numbers we have lim`!1 r`(y) = 1 for almost ally. Lemma 3.15 now implieslim`!1Ey2Q1 � �̂`(y)� Ex2PN�1 � min1�i�N Uyi`�� = �aNplnN : (3:26)By partitioning the summations in (3.25) into two parts according to whether yi = 0 or yi = 1,we can writeUyi` = Syi` � `((1� q̂`(y))Ex2P [L0(x)] + q̂`(y)Ex2P [L1(x)])p`((1� q̂`(y))Varx2P [L0(x)] + q̂`(y)Varx2P [L1(x)]) = Syi` � `�̂`(y)�̂`(y)p` :By substituting this into (3.26), we obtainlim`!1 Ey2Q1 hEx2PN�1 hmin1�i�N Syi`(x)� `�̂`(y)ii�p` = �aNplnN :Therefore, for all " > 0 there is a value `" such that for all ` � `" we haveEy2Q1 �Ex2PN�1 � min1�i�N Si`(x;y)� `�̂`(y)��= Ey2Q` �Ex2PN�` � min1�i�N LossL(Ei; hx;yi)��� `�� �(aN � ")�p` lnN :This implies (3.24), as desired. 2We now see how Theorem 3.16 implies a lower bound for VL(N; `) when the probabilitymeasure P for the experts is chosen suitably.Lemma 3.17: Let L be a loss function such that L0 and L1 are twice di�erentiable, andL00(z) > 0 and L01(z) < 0 hold for 0 < z < 1. Assume that b 2 (0; 1) is a Bayes-optimalprediction for bias q 2 (0; 1).1. If (1� q)L000(b) + qL001(b) > 0, thenVL(N; `) � (R(b)� o(1)) lnN ;where R(b) is as in (3.2) and o(1) denotes a quantity that approaches 0 as ` and Napproach 1. 15



2. If (1� q)L000(b) + qL001(b) = 0, then for all � > 0 we have VL(N; `) = 
 �`1=2��plnN�.Proof Let Q be the probability measure on f 0; 1 g for which Pry2Q[y = 1] = q. Let A bean arbitrary on-line prediction algorithm. For any probability measure P on [0; 1] and for any" > 0, we have by Theorem 3.16 for su�ciently large ` the boundVL;A(N; `) � `(Ey2Q[L(y; b)]� �) + (aN � ")�p` lnN ; (3:27)where limN!1 aN = p2. For some positive parameter h, de�ne P to give x = b � h withprobability 1=2 and x = b+ h with probability 1=2. We can expandL0(b� h) = L0(b)� L00(b)h+ L000(b)2 h2 + o(h2) ;where o(h2) denotes a quantity f(h) such that limh!0(f(h)=h2) = 0, and similarly for L1.We now substitute these expansions into the various quantities in (3.27). First, note thatEx2P [L0(x)] = L0(b) + h2L000(b)=2 + o(h2), soVarx2P [L0(x)] = Ex2P h(L0(x)� Ex2PL0(x))2i = L00(b)2h2 + o(h2) :Similarly, Varx2P [L1(x)] = L01(b)2h2 + o(h2), and�2 = h2((1� q)L00(b)2+ qL01(b)2) + o(h2) :We also have � = (1� q)(L0(b) + h2L000(b)=2)+ q(L1(b) + h2L001(b)=2)+ o(h2) ;so Ey2Q[L(y; b)]� � = �h22 ((1� q)L000(b) + qL001(b))� o(h2) :Hence, VL;A(N; `) � `(rh� sh2)� o(h2), wherer = (aN � ")s ln Ǹq(1� q)L00(b)2 + qL01(b)2and s = (1� q)L000(b) + qL001(b)2 :We �rst consider the case s > 0, which gives the �rst part of the theorem. The main part`(rh� sh2) is maximized by choosing h = r=(2s) = � �p(lnN)=`�. For this value of h, we getVL;A(N; `) � ` r24s + o((lnN)=`)= (aN � ")22 (1� q)L00(b)2+ qL01(b)2(1� q)L000(b) + qL001(b) lnN � o((lnN)=`) :Application of (3.7) now gives the claimed result, since limN!1 a2N=2 = 1.Consider now the case s = 0, which gives the second part of the theorem. We need asequence h1; h2; : : : with lim`!1 h` = 0. To obtain the actual bound claimed here, we chooseh` = `��. Slightly di�erent results can be obtained by choosing di�erent values h`. We nowhave VL;A(N; `) � a`1=2��plnN � o(`�2�), wherea = (aN � ")q(1� q)L00(b)2+ qL01(b)2 > 0 : 216



Lemma 3.18: Let L be a loss function such that L0 is strictly increasing and L1 strictlydecreasing. Assume that for bias q there are two distinct Bayes-optimal predictions b1 andb2. Then for all " > 0 there is an `" such that for all ` � `" we haveVL(N; `) � (aN � ")�p` lnN ;where limN!1 aN = p2 and�2 = 1� q4 (L0(b1)� L0(b2))2 + q4 (L1(b1)� L1(b2))2 : (3:28)Proof Let b1 and b2 be two distinct Bayes-optimal predictions for some probability measureQ on f 0; 1 g. As L0 and L1 are strictly monotone, the bias of Q cannot be 0 or 1. We de�nea probability measure P by Prx2P [x = b1] = Prx2P [x = b2] = 1=2, and apply Theorem 3.16.Then � = Ey2Q[L(y; b1)] = Ey2Q[L(y; b2)]. Further, we getVarx2P [L(0; x)] = Ex2P hL(0; x)2i� Ex2P [L(0; x)]2= 12L0(b1)2 + 12L0(b2)2 � �12L0(b1) + 12L0(b2)�2= 14 (L0(b1)� L0(b2))2 ;and similarly Varx2P [L(0; x)] = 14 (L1(b1)� L1(b2))2. Hence, � is as given in (3.28). The resultsnow follows from Theorem 3.16 with either b = b1 or b = b2. 2Note that for the absolute loss, we can apply Lemma 3.18 with q = 1=2, b1 = 0, and b1 = 1.This gives � = 1=2, and hence VL(N; `) � (1� o(1))p(` lnN)=2, which is the result obtainedby Cesa-Bianchi et al. [2].Lemma 3.19: If a prediction z 2 (0; 1) is not Bayes-optimal for any bias q 2 [0; 1], then thereare two predictions b1 and b2 with b1 < z < b2 such that for some bias q both b1 and b2 areBayes-optimal.Proof Consider a prediction z 2 (0; 1) that is not Bayes-optimal for any bias. Let R1 be theset of biases q for which there is a Bayes-optimal prediction b < z, and let R2 be the set ofbiases q for which there is a Bayes-optimal prediction b > z. If we can show R1 \ R2 6= ;, weare done. Since z is never Bayes-optimal, we have R1 [ R2 = [0; 1]. Hence, if both R1 and R2are closed, their intersection cannot be empty.Suppose that R1 is not closed. Let p1; p2; : : : be a monotone sequence of points in R1 thatconverges to a point p 62 R1. Let bn < z be a Bayes-optimal prediction for bias pn, n = 0; 1; : : :.The sequence b1; b2; : : : is also monotone and converges to some limit b � z. Let b0 be a Bayes-optimal prediction for bias p. As p 62 R1, we have b0 > z. De�ne F (q; x) = (1�q)L0(x)+qL1(x).Since bn is Bayes-optimal for bias pn, we have F (pn; bn) � F (pn; b0) for all n. Since F iscontinuous, this implies F (p; b) � F (p; b0). As b0 is Bayes-optimal for bias p, so is b. Thusp 2 R1, contradiction. Similar argument works if we assume R2 to be not closed. 2Proof of Lemma 3.4 Since we assume L0 to be strictly increasing and L1 to be strictlydecreasing, 0 is the unique Bayes-optimal prediction for the bias 0 and 1 is the unique Bayes-optimal prediction for the bias 1. 17



Assume �rst that b1 and b2 are two Bayes-optimal predictions for some bias 0 < q < 1, withb1 < b2. Thus, the expected loss f(z) = (1� q)L0(z) + qL1(z) has local minima at z = b1 andz = b2, and therefore f(z) has a local maximum at some value a with b1 < a < b2. We thenhave f 0(a) = 0 and f 00(a) � 0. The condition f 0(a) = 0 implies q=(1 � q) = �L00(a)=L01(a),which substituted into f 00(a) � 0 gives S(a) � 0.Assume now that for every bias q there is a unique Bayes-optimal prediction. ThenLemma 3.19 implies that for all z there is a bias q for which z is Bayes-optimal, and weknow that this bias q must be unique. Let B(z) denote the bias for which z is the Bayes-optimal prediction. We know that B is strictly increasing. Let f(z) = �L00(z)=L01(z). We thenhave f(z) = g(B(z)) where g(q) = q=(1 � q). Since g and B are strictly increasing, so is f ,and therefore the derivative f 0(z) cannot be negative, and cannot be zero on any continuousinterval. As f 0(z) = L00(z)L001(z)� L01(z)L000(z)L01(z)2 = S(z)L01(z)2 ;the claim follows. 2The lower bounds in Theorem 3.1 and Theorem 3.5 follow directly from the followingtheorem.Theorem 3.20: Let L be a loss function such that L0 and L1 are twice di�erentiable, andL01(z) > 0 and L01(z) < 0 hold for all 0 < z < 1. Let S(z) be as in (3.1).1. If S(z) > 0 for 0 < z < 1, then VL(N; `) � (cL � o(1)) lnN , where cL is as in (3.3).2. If S(z) = 0 for some 0 < z < 1, then VL(N; `) = 
 �`1=2��plnN� for all � > 0.3. If S(z) < 0 for some 0 < z < 1, or S(z) = 0 for all the values z in some continuousinterval, then VL(N; `) = 
 �p` lnN�.Proof If for some bias there are two distinct Bayes-optimal predictions, we have by Lemma 3.18the bound VL(N; `) = 
 �p` lnN�, which is the strongest of the bounds claimed here. Thus,we only need to consider the case in which for each bias there is at most one Bayes-optimalprediction. By Lemma 3.19, we then have for all predictions z a bias such that z is Bayes-optimal. By Lemma 3.4, the value S(z) is always nonnegative and cannot be zero on anycontinuous interval.Recall that when z is Bayes-optimal for q, the condition (3.6) implies (1�q)L000(z)+qL001(z) =S(z). If S(z) = 0, then applying Lemma 3.17 (2) with the bias q that makes z Bayes-optimalgives the bound VL(N; `) = 
 �`1=2��plnN� for all � > 0. If S(z) > 0 for all z, Lemma 3.17 (1)gives VL(N; `) � (R(z)� o(1)) lnN for all z, from which VL(N; `) � (cL� o(1)) lnN follows. 23.4 Alternative lower bound methodsFirst notice that for the logarithmic loss, there is a simple argument that shows the lowerbound VL(N; `) � lnN for N = 2k and ` � k.Example 3.21: For arbitrary positive integer k, let N = 2k and ` = k. Let A be an ar-bitrary on-line prediction algorithm. For the trials t = 1; : : : ; ` we choose binary predic-tion vectors xt 2 f 0; 1 gN in such a way that the set of the experts' prediction sequencesf (x1;i; : : : ; xt;i) j 1 � i � N g contains all the 2` = N possible binary sequences of length `. Theoutcomes yt are chosen by an adversary in such a way that yt = 0 if the prediction ŷt of thealgorithm A satis�es ŷt � 1=2, and yt = 1 otherwise. Then at each trial the algorithm incurs18



loss at least ln 2, and the total loss of the algorithm will ` ln 2 = lnN . One expert will have totalloss 0, so we obtain VL;A(N; `) � lnN . This matches exactly the upper bound for VL;A(N; `)given in Theorem 3.1 and Example 3.2 when A is the Generic Algorithm 3.7.Another way of thinking of this lower bound argument is as follows. At the �rst trial, halfof the experts predict 0 and half of the experts predict 1. After the trial, those that madea mistake are eliminated, and those that were correct remain. At subsequent trials, half ofthe remaining experts predict 0 and half predict 1. Thus, at trial t there are N=2t�1 expertsremaining, each with cumulative loss 0, while the rest of the experts have cumulative loss 1and have been eliminated. 2Note that by considering a single trial this easily gives for the logarithmic loss the boundVL(2; 1)� ln 2. The general lower bound VL(N; `) � lnN for the logarithmic loss, when N = 2kand ` � k, can also be obtained by applying the following Theorem 3.23 to this lower boundfor VL(2; 1). Theorem 3.23 is proven using the following lemma.Lemma 3.22: Assume that for all on-line prediction algorithms A0 there is an N -expert trialsequence S 0 of length `0 such that VL;A0(S0) � a, and that for all on-line prediction algorithmsA00 there is a two-expert trial sequence S 00 of length `00 such that VL;A00(S 00) � b. Then for allon-line prediction algorithms A there is a 2N -expert trial sequence S of length `0+ `00 such thatVL;A(S) � a+ b.Proof A 2N -expert coupled trial sequence is a sequence in which each instance xt has theproperty xt;i = xt;N+i for 1 � i � N . A 2N -expert simple trial sequence is a sequence whereeach instance xt has the property xt;1 = xt;2 = � � � = xt;N and xt;N+1 = xt;N+2 = � � � = xt;2N .Note that 2N -expert coupled trial sequences are essentially N -expert trial sequences and 2N -expert simple trial sequences are essentially two-expert trial sequences.Since we assumed that for all prediction algorithms A0 there is an N -expert trial sequenceS 0 of length `0 such that VL;A0(S0) � a, it follows that for all on-line prediction algorithms Athere is a 2N -expert coupled trial sequence S1 of length `0 such that VL;A(S1) � a. Similarly,since we assumed that for all prediction algorithms A00 there is a two-expert trial sequence S 00of length `00 such that VL;A00(S 00) � b, it follows that for all on-line prediction algorithms A thereis a 2N -expert simple trial sequence S2 of length `00 such that VL;A(S2) � b.Let now A be an arbitrary on-line prediction algorithm for trial sequences of length `0+ `00.Given a trial sequence S 0 of length `0, let A(S 0) denote the algorithm for trial sequences oflength `00 that simulates the algorithm A but processes the trial sequence S 0 before the �rstactual trial. Our assumptions imply that there is a 2N -expert coupled trial sequence S1 oflength `0 for which VL;A(S1) � a, and that there is a 2N -expert simple trial sequence S2 oflength `00 for which VL;A(S1)(S2) � b. Let S be the 2N -expert trial sequence of length `0 + `00that is obtained by concatenating S1 and S2.To complete the proof, we show that LossL(A; S) � LossL(Ei; S) � a + b holds for some1 � i � 2N . Note that LossL(A; S) = LossL(A; S1) + LossL(A(S1); S2). We know thatLossL(A; S1) � LossL(Ei; S1) + a holds for some 1 � i � 2N . Since S1 is a coupled trialsequence, this implies that for some 1 � k � N we have LossL(A; S1) � LossL(Ei; S1) + a bothfor i = k and for i = N + k. We also know that LossL(A(S1); S2) � LossL(Ej ; S2) + b holdsfor some 1 � j � 2N . Since S2 is a simple trial sequence, this implies that LossL(A(S1); S2) �LossL(Ej ; S2) + b holds for all 1 � j � N or for all N + 1 � j � 2N . Hence, we haveLossL(A; S1) � LossL(Ej ; S1) + a and LossL(A(S1); S2) � LossL(Ej ; S2) + b for j = k or forj = N + k, which proves the claim. 219



Again, the proof of Lemma 3.22 remains valid if the algorithms are allowed to know thelength of the trial sequence beforehand. An obvious induction based on Lemma 3.22 gives thefollowing result.Theorem 3.23: For any loss function L and positive integer k, we have VL(2k; k`) � kVL(2; `).In particular, if lim`!1 VL(2; `) � c ln 2 for some constant c, then for N = 2k, Theo-rem 3.23 implies lim`!1 VL(N; `) � c log2N ln 2 = c lnN . Hence, if we were able to provelim`!1 VL(2; `) � cL ln 2 for the constant cL de�ned in (3.3), we would again obtain the asymp-totic lower bound VL(N; `) � (cL� o(1)) lnN stated in Theorem 3.1. However, this new boundwould be stronger because the term o(1) approaches 0 as ` approaches 1 for all N of the formN = 2k, whereas in the bound of Theorem 3.1 the term o(1) is stated to approach 0 only whenboth N and ` approach 1.To obtain the lower bound VL(N; `) � (1=2� o(1)) lnN given in Theorem 3.1 and Exam-ple 3.2 for the square loss by applying Theorem 3.23, we would need to showlim`!1 VL(2; `) = ln 22 : (3:29)We conjecture that (3.29) indeed is true. We have numerically obtained lower bounds suchas VL(2; 500) � 0:3456, while (ln 2)=2 � 0:3466. (Obviously VL(2; `) is an increasing functionof `, and VL(2; `) � (ln 2)=2 by the upper bound of Theorem 3.1 and Example 3.2.) Thesenumerical results are based on a recurrence we have not been able to solve in a closed form.Note that for the square loss, the simple construction used for the logarithmic loss does notyield an optimal lower bound. If we have ` = 1 and N = 2, with x1 = (0; 1), we haveVL;A((x1; y1)) � 1=4 = 0:25 for the algorithm A that predicts 1=2, and this bound falls short ofthe required (ln 2)=2 � 0:3466.The preceding remarks show that for the logarithmic loss we have lim`!1 VL(2k; `) =k lim`!1 VL(2; `). It is an interesting open question to see which loss functions L have thisproperty. Theorem 3.23 gives lim`!1 VL(2k; `) � k lim`!1 VL(2; `) for all loss functions. Toshow equality it is su�cient to show lim`!1 VL(2; `) � cL ln 2, and our conjecture is that thisis true for the square loss.4 Continuous-valued outcomes4.1 Applying the Generic AlgorithmWe now show that under certain assumptions, The Generic Algorithm 3.7 also works forcontinuous-valued outcomes yt 2 [0; 1]. These assumptions hold for the square and relativeentropy loss, but not for the absolute loss, which will be considered in Subsection 4.2. We alsoconsider the more general situation where the values xt;i and yt are not in the range [0; 1].Lemma 4.1: Assume that for all y; a; b 2 [0; 1], the function g de�ned by g(y; a; b) = L(y; a)=c��L(y; b) satis�es @2g(y; a; b)@y2 + �@g(y; a; b)@y �2 � 0 : (4:1)If (3.12) holds for binary values y 2 f 0; 1 g, then it holds for all values y 2 [0; 1].20



Proof We write (3.12) as (L(y; ŷt)��(y))=c� 0. By exponentiating both sides and applying(3.11), this becomes eL(y;ŷt)=c NXi=1 vt;ie��L(y;xt;i) � 1 : (4:2)Let us denote the left-hand side of (4.2) by f(y). Thenf(y) = NXi=1 vt;ieg(y;ŷt;xt;i) ;so for the second derivative of F we get@2f(y)@y2 = NXi=1 vt;i @2g(y; ŷt; xt;i)@y2 + �@g(y; ŷt; xt;i)@y �2! eg(y;ŷt;xt;i) :As our assumption implies this to be nonnegative, the maximum value of f for y in the interval[0; 1] occurs for y = 0 or y = 1. Since (3.12) is equivalent to f(y) � 1 for y 2 f 0; 1 g, this provesour claim. 2Theorem 4.2: Let L be a loss function for which the constant cL is �nite and the condition(4.1) holds for c = cL and � = 1=cL. Let A be the Generic Algorithm 3.7 with the parametersc = cL, � = 1=cL, and the initial weights w1;i = 1 for all i. Let S = ((x1; y1); : : : ; (x`; y`)) be atrial sequence for which xt 2 [0; 1]N and yt 2 [0; 1] hold for all t. Then the algorithm does notfail during the trial sequence, and its additional loss satis�esVL;A(S) � cL lnN :Proof First note that by Lemma 3.10, the algorithm A does not fail. By Lemma 4.1, thepredictions ŷt of the algorithm satisfy L(yt; ŷt) � �(yt). We then proceed as in the proof ofTheorem 3.8, and obtain the claimed bound by choosing w1;i = 1 for all i. 2Example 4.3: Let L be the relative entropy loss Lent. We have@L(y; z)@y = ln y � ln(1� y)� ln z + ln(1� z) ;so the second derivative @2L(y; z)=@y2 = 1=y + 1=(1 � y) does not depend on z. Hence, ifc = 1=�, the second derivative of the function g of Lemma 4.1 is 0, and (4.1) holds. Recall thatcL = 1 for the relative entropy loss. Hence, by Theorem 4.2, if A is the Generic Algorithm 3.7with c = � = 1, we have VL;A(S) � lnN for any N -expert trial sequence S even if the outcomesyt 2 [0; 1] are continuous-valued. 2Example 4.4: Let L be the square loss Lsq. As the second derivative @2L(y; z)=@y2 is constant,the second derivative of the function g of Lemma 4.1 is 0 whenever c = 1=�, and hence (4.1)trivially holds. Since cL = 1=2, we let A be the Generic Algorithm 3.7 with c = 1=2 and� = 2. Then by Theorem 4.2 we have VL;A(S) � 12 lnN even if the trial sequence S containscontinuous-valued outcomes.Consider now the more general case that at trial t, the experts' predictions xt;i and theoutcome yt are in a known range [st; st+ rt]. Let x0t;i = (xt;i � st)=rt and y0t = (yt � st)=rt, andlet ŷ0t be the prediction of the Generic Algorithm when it is given these scaled inputs x0t;i and21



outcomes y0t. Then Theorem 3.8 applies to this scaled sequence of trials. For an algorithm thatpredicts with ŷt = st + rtŷ0t we then have the following loss bound, if we choose � = 2 and theinitial weights to be equal:X̀i=1�yt � ŷtrt �2 � min1�i�N X̀i=1�yt � xt;irt �2 + lnN2 : (4:3)We can consider (4.3) as giving a loss bound similar to (3.14), but with a loss function thatchanges dynamically as the ranges of xt;i and yt vary. Note that achieving this bound requiresthat st and rt are known before the prediction ŷt is to be made. This is the case, for instance,if the outcome yt is assumed to be within the range de�ned by the smallest and largest expertprediction at trial t. Another special case is that before the �rst trial, we know that xt;i andyt will always be in some range [S; S + R]. We can then take rt = R for all t, and (4.3) isequivalent with X̀i=1 (yt � ŷt)2 � min1�i�N X̀i=1 (yt � xt;i)2 + R2 lnN2 :Note that if the range of yt is not bounded, loss bounds of the above form cannot beattained. To see that, let N = 2, and consider a one-trial sequence in which the �rst predictionvector is (�R=2; R=2). The outcome is chosen by an adversary to be either y1 = R=2 + pKor y1 = �R=2 � pK, depending on whether the algorithm's prediction was negative or not.Then the loss of the best expert is K, and the loss of the algorithm is at least �R=2 +pK�2 =K + RpK + R2=4. Thus, if we let K grow, the additional loss of the algorithm grows as
 �pK�. 2Since the absolute loss Labs does not even have a �rst derivative everywhere, the techniqueof Lemma 4.1 does not give any results for this loss function. In the next subsection we devisea new algorithm particularly for this problem.4.2 The Vee AlgorithmWe now show how the loss bounds obtained for the absolute loss with binary outcomes canalso be achieved when the outcomes are continuous-valued. The results of this section wereobtained independently by Vovk [18].We call our algorithm the Vee Algorithm. In choosing the prediction it is now necessaryto explicitly also consider other outcomes than just y = 0 and y = 1. We will show that theprediction can still be computed in time O(N logN).Algoritm 4.5 (The Vee Algorithm): As the Generic Algorithm 3.7, except that we have�xed the loss function to be the absolute loss, the parameter c to be �2 ln 21+e�� ��1, andpredicting is done as follows:Prediction: On receiving the tth input xt, let Y = f 0; 1; xt;1; : : : ; xt;N g and vt;i = wt;i=Wt.Predict with any value ŷt that satis�es the conditionmaxy2Y f y ��(y) g � ŷt � miny2Y f y +�(y) g ; (4:4)where �(y) = � ln(PNi=1 vt;ie��jy�xt;i j)2 ln 21+e�� :22



It is easy to see how the prediction ŷt can be obtained in time O(N) once the valuess(y) = NXi=1 vt;ie��jy�xt;ijhave been obtained for all the N + 2 choices of y. Let x0t be a vector that contains thecomponents of the prediction vector xt sorted into an ascending order. Thus, x0t;i � x0t;i+1 for1 � i � N � 1. The vector x0t can be obtained in time O(N logN). We show how all the sumss(y) for y 2 f 0; xt;1; : : : ; xt;N ; 1 g can be obtained in time O(N) given the sorted predictionvector x0t. To unify notation, write x0t;0 = 0 and xt;N+1 = 1. Note that for 0 � j � N + 1 wecan write s(x0t;j) = aj + bj where aj = jXi=1 vt;je��(x0t;j�x0t;i)and bj = NXi=j+1 vt;je��(x0t;i�x0t;j) :We have a0 = 0, and b0 can be computed in time O(N). Further, given aj and bj we obtainaj+1 and bj+1 in time O(1) by aj+1 = e��(x0t;j+1�x0t;j)aj + vt;j+1and bj+1 = e��(x0t;j�x0t;j+1) �bj � vt;j+1e��(x0t;j+1�xt;j)� :Hence, the prediction ŷt, if it exists, can be found in total time O(N logN).We see in Lemma 4.6 that there always is a prediction ŷt that satis�es (4.4) and that (4.4)implies jy�ŷtj � �(y) for all y 2 [0; 1] and not merely for y 2 f 0; 1 g, which was the requirementin the Generic Algorithm. Hence, we now get for continuous-valued outcomes yt 2 [0; 1] thebound (3.20) that was previously obtained for binary outcomes yt 2 f 0; 1 g. Note that if (3.20)holds for yt 2 [0; 1], it actually holds for all yt, provided we still have xt;i 2 [0; 1]. This is becausemoving yt outside the range of the experts' predictions increases every jyt � xt;ij as much as itincreases jyt � ŷtj, and the coe�cient �=(2 ln 21+e�� ) that appears in front of jyt� xt;ij in (3.20)is greater than 1. Again, the parameter � can be tuned as mentioned in Example 3.14, and thescaling method of Example 4.4 can be used if the values xt;i are not in the range [0; 1].For the absolute loss, (3.12) has a simple geometric interpretation. Figure 4.1 gives anexample of the graphs of the left-hand side jy � ŷj and the right-hand side �(y) as functionsof y, �xing ŷ = 0:58 and x = (0:33; 0:83; 0:97; 0:52). The left-hand side of the inequality isrepresented by a vee-curve with its tip at (ŷ; 0). The graph of � has a nondi�erentiable tipat each value y = xi. The condition (3.12) states that the vee-curve must be below the graphof � at y. For continuous-valued outcomes we wish (3.12) to hold for y 2 [0; 1] and hence thevee-curve to be below the graph of � everywhere. If we were to move the tip of the vee to theleft of 0:51, the right arm of the vee would intersect the �-curve at the value y = 0:97. Hence,the value of the maximum on the left-hand side of (4.4) is roughly 0:51. Similarly, the minimumon the right-hand side is about 0:63, since moving the tip of the vee over this value would makeits left arm intersect the �-curve at y = 0:33. For binary outcomes we only required (3.12) tohold for y = 0 and y = 1, which gives the weaker condition that the vee-curve must be belowthe graph of � at the endpoints. 23
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0Figure 4.1: Example graphs of the functions � (above) and Labs (below).For binary outcomes, the loss bound (3.20) was previously shown for a whole family ofalgorithms de�ned by a number of di�erent prediction and update factors �t;i [2], as was brieyexplained in Example 3.14. In the continuous case we have less freedom. Suppose we were touse �t;i = 1� (1� e��)xt;i, and let N = 1, x = (0), and � = 1. We would then have �(0) = 0and 1��(1) � �0:316, and hence the condition (4.4) would not hold for any ŷt. The AlgorithmWMC [13] does work for the continuous case, and is allowed to use any update that satis�es(3.21). However, its worst case bound has 1�e�� in the denominator instead of 2 ln 21+e�� , andhence it is slightly worse than the bounds given here.As we noticed in Example 3.14, for binary outcomes it was possible to choose the predictionŷt as a function of the weighted average of the experts' predictions. If the outcomes are allowedto be continuous-valued, this is not possible any more. To see that there is no function f suchthat ŷt = f(Pi vt;ixt;i) guarantees (4.4) to hold, we consider two cases. First, let vt = (0:3; 0:7)and x = (0; 1), so Pi vt;ixt;i = 0:7. For the value � = 1, the left-hand side of (4.4) isapproximately 0:72, and we obtain a constraint 0:72 � f(0:7) for f . On the other hand,considering vt = (1; 0) and xt = (0:7; 0) on the right-hand side of (4.4) gives a contradictoryconstraint f(0:7) � 0:70.We now show that a prediction that satis�es (4.4) always exists and satis�es the conditionsof Theorem 3.8.Lemma 4.6: Let vt 2 [0; 1]N withPi vt;i = 1 and xt 2 [0; 1]N, and let � > 0. Then a predictionŷt that satis�es (4.4) exists. Further, (4.4) implies jy � ŷtj � �(y) for all y 2 [0; 1].Proof We prove the existence of ŷt by showing thaty ��(y) � z +�(z) (4:5)holds for all y, z, vt, and xt. De�neg(v;x; y; z) = NXi=1 NXj=1 vivj exp ���(jy � xij+ jz � xj j) + (y � z)2 ln(2=(1 + e��))� : (4:6)24



Then (4.5) is equivalent to g(vt;xt; y; z) � 1. The second derivative @2g(v;x; y; z)=@x2i isde�ned and positive if xi 62 f 0; y; z; 1 g. Thus it su�ces to show g(v;x; y; z)� 1 for N = 4 andx = xa = (0; y; z; 1). In this restricted case the second derivative @2g(v;xa; y; z)=@z2 is positiveif z 62 f 0; y; 1 g. Furthermore, since �(z) � 0, (4.5) trivially holds if z � y. Thus it su�cesto show (4.5) for z = 0, y > 0 and x = xb = (0; y; 0; 1). Finally, since the second derivative@2g(v;xb; y; 0)=@y2 is positive, we are left with the case z = 0, y = 1 and x 2 f 0; 1 gN . In thiscase, the original inequality (4.5) can be rewritten asln((1� p)e�� + p) + ln(1� p+ pe��)2 � ln 1 + e��2where r =Pi vixi. This holds for all 0 � p � 1 because the function ln is concave.A similar argument based on second derivatives shows that for y 2 [0; 1], the value y��(y)obtains its maximum and the value y +�(y) its minimum when y 2 f 0; 1; xt;1; : : : ; xt;N g. 2Lemma 4.6 immediately implies the following result.Theorem 4.7: Let S = ((x1; y1); : : : ; (x`; y`)) be a trial sequence with xt 2 [0; 1]N and yt 2[0; 1] for all t. Let L be the absolute loss and A be the Vee Algorithm 4.5. We then haveLossL(A; S) � � ln w1;iW1 + �LossL(Ei; S)2 ln 21+e��for all i.5 Further workOne of the most challenging open problems is to give tight bounds for the additional loss ofthe prediction algorithm compared to the loss of the best expert for even more general classesof loss functions than those considered in this paper. When the outcomes yt are binary, it mightbe possible to produce such bounds for arbitrary loss functions. The next challenge is to extendthe results for continuous-valued outcomes to more general loss functions. Another directionworth exploring is to let outcomes be discrete valued with more than two choices. The recentresults of Chung [5] address some of these problems.In this paper we restricted the predictions of the experts to lie between zero and one,except in speci�c examples where we have indicated how scaling tricks can be used. It wouldbe nice to do a thorough investigation of how scaling the range of the variables a�ects theresults. Bounding some norm of the prediction vector might also lead to interesting problems.Restricting the range of the predictions of individual experts is related to bounding the in�nitynorm of the prediction vectors.It would be interesting to see whether the alternative update rules de�ned by (3.21) for theabsolute loss work for other loss functions. As we have seen, it is sometimes possible to obtainthe prediction as a function of the weighted average of the experts' predictions. We would liketo know exactly when this simpli�cation is possible without weakening our bounds, or withweakening them only slightly.In this paper we have given bounds of the additional loss of our algorithms over the loss ofthe best expert. A more challenging problem is to bound the additional loss of the algorithmsover the best linear combination of experts [12, 4, 11]. The only worst-case loss bounds for thelatter case that have been obtained were for the square loss function. Hopefully, some of the25
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