Tight worst-case loss bounds for
predicting with expert advice

David Haussler*
Jyrki Kivinen!
Manfred K. Warmuth?

UCSC-CRIL-94-36
November 3, 1994
(Revised December 8, 1994)

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

We consider on-line algorithms for predicting binary or continuous-valued outcomes, when
the algorithm has available the predictions made by N experts. For a sequence of trials, we
compute total losses for both the algorithm and the experts under a loss function. At the end
of the trial sequence, we compare the total loss of the algorithm to the total loss of the best
expert, i.e., the expert with the least loss on the particular trial sequence. Vovk has introduced
a simple algorithm for this prediction problem and proved that for a large class of loss functions,
with binary outcomes the total loss of the algorithm exceeds the total loss of the best expert at
most by the amount ¢In N, where ¢ is a constant determined by the loss function. This upper
bound does not depend on any assumptions on how the experts’ predictions or the outcomes are
generated, and the trial sequence can be arbitrarily long. We give a straightforward alternative
method for finding the correct value ¢ and show by a lower bound that for this value of ¢, the
upper bound is asymptotically tight. The lower bound is based on a probabilistic adversary
argument. The class of loss functions for which the ¢ln N upper bound holds includes the
square loss, the logarithmic loss, and the Hellinger loss. We also consider another class of loss
functions, including the absolute loss, for which we have an Q (\/Elog N) lower bound, where
£ is the number of trials. We show that for the square and logarithmic loss functions, Vovk’s
algorithm achieves the same worst-case upper bounds with continuous-valued outcomes as with
binary outcomes. For the absolute loss, we show how bounds earlier achieved for binary outcomes
can be achieved with continuous-valued outcomes using a slightly more complicated algorithm.

Keywords: worst-case loss bounds, on-line learning, learning theory

*Supported by NSF grant TR1-9123692; e-mail haussler@cse.ucsc.edu.
"Funded by the Academy of Finland; e-mail kivinen@cse.ucsc.edu
{Supported by NSF grant TRI-9123692; e-mail manfred@cse.ucsc.edu.

1 Introduction

Consider an on-line prediction problem in which the prediction algorithm is to predict a
sequence of outcomes y;, t = 1,...,£. In the usual learning approach, the algorithm is provided
with instances z;. At trial ¢, the algorithm sees the instance z;, must then give its prediction
7¢ of the outcome, and finally sees the actual outcome y;. The algorithm is charged a loss if
its prediction differs from the actual outcome, and its goal is to minimize its total loss over a
sequence of £ trials. To make the algorithm’s task feasible, some sort of relationship is assumed
to exist between the instance z; and the outcome y;.

The on-line prediction problem considered in this paper is somewhat different from the
one just described. Assume that there are N experts &, ¢ = 1,..., N, each trying to predict
the outcomes y; as best they can. Let z;; be the prediction of the ith expert & about the
tth outcome. We make no assumptions about how the experts’ predictions x¢; are generated.
Perhaps the experts are different on-line learning algorithms that use the instances z; to predict
y¢, or perhaps each expert is a human with access to some private information not available to
the other experts. We give as input to our algorithm at trial ¢ the prediction vector x; that
consists of the predictions of the experts at that trial. The algorithm does not see the data
used by the experts to generate their predictions, and is thus entirely dependent on the quality
of the expert advice contained in the prediction vector. Therefore, to predict nearly as well as
the best expert is a reasonable goal for the algorithm.

Formally, an on-line prediction algorithm is for us an algorithm that generates at trial ¢ its
prediction 7; based on the prediction vectors xq,...,X; and the earlier outcomes y1,...,9:_1.
We take the predictions of both the algorithm and the experts, as well as the outcomes, to be
real numbers in [0, 1]. The performance of a learning algorithm is measured using a loss function
L, which is a mapping from [0, 1] X [0, 1] to [0, o0); sometimes also the value oo is allowed. The
square loss, Lsq, defined by Ley(p,q) = (p— ¢)?, is a typical loss function. At trial ¢, a learning
algorithm A suffers a loss L(y;, ;). Over the whole trial sequence S = ((x1,91), ..., (Xs, y¢)),
the algorithm attempts to achieve a small total loss Lossp(A,S5) = S Ly, 9¢). Similarly,
the total loss of the ith expert over the trial sequence is given by Lossy(&;, 5) = Zle L(ye, x4).
Then miny<;<n Lossp(&;, 5) gives the loss of the best expert on the particular sequence 5. As
explained, we require the algorithm to predict almost as well as the best expert. Specifically, we
require that the additional loss Lossy,(A,S) — minj<;<y Lossy,(&;,.5) is small for all sequences
5. We do not make assumptions about how the experts’ predictions are generated, or how the
outcomes y; relate to the prediction vectors x;. The only allowance we make for the algorithm is
that it can make a large loss if none of the experts is good. Our framework for on-line prediction
is based on the work of Vovk [16, 17] and Cesa-Bianchi et al. [2]. Similar frameworks have also
been considered by Cover [6], Dawid [7], Feder et al. [9, 14, 19], and Mycielski [15]. See Chung
[5] for recent related results.

In this paper, we start by considering the case in which the outcomes are binary, i.e.,
yr € {0,1} for all £. The predictions g of the algorithm and z;; of the experts are still allowed
to range continuously from 0 to 1. Thus, the algorithm could predict with ¢; close to 1/2 to
avoid committing itself too strongly to either possible outcome y; = 0 or y; = 1. We later see
how the results can be generalized for continuous-valued outcomes y; € [0, 1]. Cesa-Bianchi et
al. [3] have considered the case in which both the outcomes and the predictions of the experts
and the algorithm are required to be binary.

It turns out that for a large class of loss functions, such as the square loss, logarithmic
loss, and absolute loss, the worst-case upper bounds for the additional loss are the same both

1

for binary and continuous-valued outcomes. Further, for the square and logarithmic loss, the
algorithm for binary outcomes works for continuous outcomes, as well.

We are interested in what bounds for the worst-case additional loss are possible for different
loss functions. Vovk [16] introduced a general on-line prediction algorithm that is applicable
for all loss functions when the outcomes are binary. Vovk’s analysis allows for a more general
setting than the one we consider; for instance, the predictions may be restricted to some discrete
set. For the case with continuous-valued predictions, which we consider here, Vovk proved for
a large class of loss functions bounds of the form

LossL(A,S)—lglanLossL(EZ,S) <erIn N, (1.1)
where ¢y, is a positive constant determined by the loss function L. For instance, for the square
loss Vovk’s algorithm achieves the bound with ¢z, = 1/2[16], and for logarithmic loss with ¢, = 1
[8, 16]. Note that the bound (1.1) for the additional loss is independent of the length ¢ of the
trial sequence S. On the other hand, for the absolute loss Laps given by Labs(ye, 9:) = |ye —
Cesa-Bianchi et al. [2] have shown that bounds of the form (1.1) are not obtainable, but the best
possible algorithm has a worst-case bound of the form Lossz(A,5) — min;<;<n Lossy (&, 9) =
O (y/llog N). Slightly weaker results for the absolute loss were obtained already by Littlestone
and Warmuth [13].

In this paper, we give a simplified version of Vovk’s analysis in the case that the predictions
can range continuously in [0, 1]. This gives a straightforward method for obtaining the value
cr, in (1.1). The value ¢y, itself is the same as implied by Vovk’s results. Further, we see that
our method gives optimal values for the constant ¢y. That is, we show that if ¢y is chosen
appropriately, we have not only the upper bound (1.1) for all trial sequences S, but also for
some trial sequence S the lower bound

Lossp(A,S) — 1£n'i<nN Lossr,(&,5) > (e, —o(1))In N, (1.2)

where o(1) is a quantity that approaches 0 as N and (approach co. Hence, for the class of loss
functions that satisfies our conditions, we have an asymptotically tight bound for the worst-case
additional loss.

The conditions the loss function must satisfy for the bounds (1.1) and (1.2) to hold are
natural and can easily be seen to be satisfied by most usual loss functions, except for the
absolute loss. We also define another class of loss functions, including the absolute loss, for
which we can prove the lower bound

Lossp,(A,5)— min Lossp(&,5) = Q (\/ﬁlog N)
1<i<N

Hence, for the loss functions in this class, an upper bound like (1.1), with no dependence on

the length ¢ of the trial sequence, cannot be achieved.

It is possible to construct loss functions that are in neither of our classes, and for which we
thus do not know any bounds. It is an open problem to provide upper and lower bounds that
would apply to all loss functions.

The asymptotically tight loss bounds are given in Subsection 3.1 together with a discussion
of the condition the loss function must satisfy for the bounds to be applicable. Subsection 3.2
restates Vovk’s algorithm and upper bound proof simplified for our purposes. The lower bound
proof, given in Subsection 3.3, is based on generating the trial sequence by a simple randomized
adversary and showing that already the expected loss of the algorithm tightly approaches the

2

upper bound implied in (1.1) for the worst-case loss. Thus, in a sense we see that in our
particular setting, the average case is almost as difficult as the worst case. The proof technique
with a randomized adversary was used by Cesa-Bianchi et al. [2] in the special case of the
absolute loss.

Finally, in Subsection 4.1 we show that for certain loss functions, such as the square and
logarithmic loss, Vovk’s algorithm achieves the same worst-case loss bound even if the outcomes
are allowed to be continuous-valued. For the absolute loss, the worst-case bounds proven for
binary outcomes [16, 2] can be achieved with continuous-valued outcomes by using a slightly
more complicated algorithm, as we show in Subsection 4.2.

2 On-line prediction and loss bounds

We consider the performance of an on-line learning algorithm A over a sequence 5 =
((X1,91), -, (x¢,9¢)) of € trials. The sequence S is an N-expert trial sequence if the tth
prediction vector x; is in [0,1]" for ¢t = 1,...,L. We consider both binary outcomes, with
the outcomes y; either 0 or 1, and continuous-valued outcomes, with y; any real number from
the interval [0, 1]. At trial ¢, the algorithm A produces its prediction g; € [0, 1] as a function of
the prediction vectors x1,...,%s and the outcomes g1, ..., y;—1. The main algorithms considered
in this paper make their predictions 3; independently of the length ¢ of the whole trial sequence,
but in some situations we also consider how the algorithms can be fine-tuned if ¢ is known in
advance.

The performance of the learner at trial ¢ is measured by L(y;, 3:), where L is a loss function
with the range [0,00), or sometimes [0,00]. For binary outcomes y, € {0,1} it suffices to
consider the functions Lo and Ly defined by Lo(y, 9) = L(0,) and L1(y) = L(1,9).

Example 2.1: The relative entropy l0ss Len is defined by Lene(y,9) = yln +(1-vy)
By the usual convention 0ln0 = 0, this gives Lo(§) = —In(1l — g) and Ll() = —lny for
L = Lep. In the binary case y € {0,1}, the relative entropy loss is better known as the
logarithmic loss.

The square loss Lsq is defined by Ly(y,9) = (y — §)*. Hence, for I = L, we have
Lo(§) = §% and L1(§) = (1 - §).
The Hellinger loss Ly is given by Lu(y,9) = ((\/1 —y—+1- y) (VI — \/@2) Hence,

2
for L = Ly we have Lo(§) =1 —+/1—¢ and L1(g§) = 1 — /3.

The absolute loss Laps is given by Laws(y,9) = |y — 9|, and we have Lo(g) = 7 and
Li(§) = 1 — g for L = Laps. O

It is worth noting some properties of the loss functions of Example 2.1, since these will be
important later. In each case, the function Lg is increasing and L decreasing in [0, 1], so the
loss L(y,y) increases as the prediction § moves away from the outcome y. The functions Ly and
Ly are differentiable, and by the previous remark, L{(z) > 0 and L)(z) < 0 for all z. Except
for the absolute loss, the second derivatives L{j(z) and L{(z) are positive for all z, which means
that errors become progressively more expensive as the difference between the prediction and
outcome increases.

Consider now a loss function L and an on-line prediction algorithm A. Let § =
((x1,%1),---,(xs,9¢)) be an N-expert trial sequence, and let the prediction of the algorithm
A at trial ¢ of the sequence S be g;. We then have Lossp(A,5) = Zle L(ys, 9¢) as the loss of

the algorithm and Lossy(&;,9) = L L(ys, x¢,) as the loss of the ¢th expert on the sequence
5. We define

V1.4(S5) = Lossp(A,5) — \iny Lossr (&, 9)

to be the additional loss of the algorithm, i.e., the amount by which the loss of the algorithm
exceeds the loss of the best expert. We let

VL,A(Nvﬁ) = sup { VL,A(((le 3/1)7 .. '7(X€7 yﬁ))) | Xt € [07 1]N7 Yyt € {07 1 }}

be the worst case amount of additional loss for A, when the outcomes in an N-expert trial
of length (are restricted to be binary. Finally, we let VL(N, () = inf4 Vi, 4(N,{) be the best
additional loss obtainable by an on-line prediction algorithm A. The goal of this paper is to
study for general loss functions L what are the lowest additional losses V7, 4(V, () that can be
obtained by an on-line prediction algorithm, and to generalize the results for continuous-valued
outcomes y; € [0,1]. We are particularly interested in whether Vi, 4(N, () can have an upper
bound that is independent on £. Such bounds have previously been proven for square loss and
logarithmic loss when the outcomes are binary. For these loss functions there are algorithms
that satisfy Vi, 4(N,() < %ln N and Vi 4(N,) <In N, respectively [16, 8]. On the other hand,
for the absolute loss it is known that no upper bound of this form exists, but the algorithm
A that minimizes Vi, 4(N, () has Vi, 4(N, () = Q (\/ﬁln N) [2]. One of our results provides a
formula from which the best possible upper bound for Vi 4(N,{) can be obtained for a wide
class of loss functions L. For example, we obtain Vi 4(N,() < 271210 N if L is the Hellinger
loss.

It is implicit in the definitions that any lower bounds for Vi,(N,{) hold even for algorithms
that know the length ¢ of the trial sequence beforehand. Most of our upper bounds for Vg, 4(N, ()
are achieved by an algorithm A that depends only on the loss function, not on £. The exception
is the upper bound for the absolute loss, as will be discussed in Example 3.14.

Our upper bounds for Vz, _4(N, () are not based on probabilistic assumptions, but we use
probabilistic techniques in the lower bound proofs. We use E[X] and Var[X] to denote the
expected value and variance of a random variable X. If we want to emphasize the underlying
probability measure P, we write E;ep[X (2)] and Varyep[X(2)]. The probability of an event ¢
according to a probability measure P is denoted by Pr.ep[e(2)].

We use N, to denote the set {1,2,3,...} of the positive integers and R to denote the set
of real numbers.

3 Binary outcomes

3.1 Main results

The proofs of our upper and lower bounds require that the loss function satisfies certain
constraints. We first state the main result with all the necessary restrictions and then discuss the
meaning of these restrictions. First, given loss functions Ly and Ly that are twice differentiable,
we define a function 5 by

5(2) = Lo(2)L1(2) = L1 (2) Lg(2) (3.1)

and a function R by
R(2) = Ly(2)Li(2)? — L (2) Lo(2)?
5(2)

(3.2)

We then define a constant ¢y, by

cr, = sup R(z) . (3.3)
0<2<1

4

Our main result concerns the case where ¢y, is finite. When ¢y, is finite and the loss function
satisfies certain other conditions, we can prove an upper bound Vg, 4(N,{) < ¢z, In N and show
that the bound is asymptotically tight.

Theorem 3.1: Let L be a loss function such that Lo(0) = Ly1(1) = 0, Ly and Ly are twice
differentiable in (0,1), and Ly(z) > 0 and Li(z) < 0 for 0 < z < 1. Assume that the constant
cr, defined in (3.3) is finite and S(z) defined in (3.1) is positive for 0 < z < 1. Then there is
an on-line prediction algorithm A for which

Vea(N,O) <epIn N . (3.4)

Further, we have

VL(N,) > (¢, —o(1))In N | (3.5)

where o(1) denotes a quantity that approaches 0 as { and N approach oc.

The algorithm A that obtains the bound (3.4), as well as the proof of the bound, are already
given by Vovk [16]. The algorithm makes its predictions independently of the length ¢ of the
trial sequence. We give the algorithm and a simplified proof in Subsection 3.2. The lower bound
(3.5) is based on a probabilistic proof that is given in Subsection 3.3. The lower bound holds
also for algorithms that get knowledge of ¢ beforehand.

Example 3.2: Consider the loss functions of Example 2.1. For the logarithmic loss, R(z) is
identically 1, and therefore ¢, = 1. For the square loss, we have R(z) = 2z — 222, and hence
cr, = 1/2. For the Hellinger loss, we have R(z) = /1 — 2+ (1 — 2)\/z, and it is straightforward
to show that R(z) is maximized for 2 = 1/2. Hence, ¢z, = 27'/2. For the absolute loss, the
denominator of R(z) is identically 0, so ¢f, = oo. O

If the function R defined in (3.2) is unbounded in (0,1), and hence the value ¢y, is infinite,
we do not have good general bounds for the achievable additional losses Vi, 4. The special case
of absolute loss was considered by Cesa-Bianchi et al. [2]. They show that for the optimal
algorithm A we have Vi 4(N,() = © (\/ﬁln N). For the absolute loss, the value ¢y, is infinite

because the denominator S(z) is 0 for all z. For the logarithmic loss, the square loss, and
the Hellinger loss, the value S(z) is positive for all z. As we shall soon explain, the sign of
S(z) is intimately connected with the uniqueness of the Bayes-optimal prediction in a certain
probabilistic prediction game.

Let () be a probability measure on {0, 1 }, with Pryegly = 1] = ¢. For a prediction z € [0, 1],
the expected loss for probability measure @, or for bias ¢, is Eyeq[L(y, 2)] = (1—¢)Lo(2)+¢L1(2).
Here we define 0 - 0o = 0. For example, for the logarithmic loss we have Ly(1) = oo, but the
expected loss for prediction 1 is defined to be 0 for bias 1. For other biases it would be infinite.
A prediction z is Bayes-optimal for bias ¢ if it minimizes the expected loss. Note that since
we assume Lg and Ly to be continuous in a closed interval, the expected loss always has a
minimum value at some z. This holds even if we allow infinite losses. If Lg is increasing and
Ly decreasing, then the prediction 0 is Bayes-optimal for bias 0 and the prediction 1 for bias 1.
If a value 0 < 2z < 1 is a local extremum point for the expected loss, then

(1= q)Lo(2) + ¢Li(2) =0 . (3.6)

If 1 — g # 0 and Lj(z) # 0, this implies

= — . (37)

More generally, if either L{(z) or Lj(z) is nonzero for a given value z € (0, 1), then there is a
unique value ¢ € (0, 1) for which (3.6) holds, and hence =z cannot be a Bayes-optimal prediction
for more than one bias. If

(1= Q) L4(=) + aL(2) > 0 (3.8)
holds in addition to (3.6), then z is a local minimum point. There may be one or more Bayes-
optimal predictions for a given bias.

Example 3.3: For the logarithmic and square losses, it is easy to show that z = ¢ is the unique
Bayes-optimal prediction for bias g.

For the Hellinger loss, solving (3.7) shows that the unique Bayes-optimal prediction z for a
bias 0 < ¢ < 1 is given by

1
r=— .
1-¢
1+ ()
For the absolute loss, 2 = 0 is the unique Bayes-optimal prediction for biases ¢ < 1/2 and
z = 1 for biases ¢ > 1/2. For the bias ¢ = 1/2, any prediction is Bayes-optimal. O

Lemma 3.4: If S(z) > 0 for all z, then for all biases 0 < q < 1 there is a unique Bayes-optimal
prediction z. If for all biases q the Bayes-optimal prediction is unique, then S(z) > 0 for all z,
and there is no interval [a,b] with a < b such that S(z) =0 for all z € [a,b].

The proof of Lemma 3.4 is given in Subsection 3.3. In Subsection 3.3 we also prove the
following lower bounds, which show that if the denominator 5 is not always strictly positive,
the gap Vi, 4(N, () cannot have an upper bound that is independent of (.

Theorem 3.5: Let L be a loss function such that Lo and Ly are twice differentiable in (0, 1),
and L{(z) > 0 and Li(z) < 0 for all z. Let S be as in (3.1).
1. If S(z) = 0 for some 0 < z < 1, we have

VL(N,0) = Q (¢/>=2/log N) (3.9)

for all a > 0.

2. If S(z) < 0 for some 0 < z < 1, or there are values a < b such that S(z) = 0 for all
a <z <b, we have

VL(N,0) = (v/TlogN) . (3.10)

This generalizes the results of Cesa-Bianchi et al. [2] for the absolute loss.

Finally, it is possible to construct loss functions L for which the value ¢y, is infinite, but the
denominator S(z) is positive for all z. For such loss functions the results of this paper have no
implications whatsoever.

Example 3.6: Define a loss function by Lo(z) = (1 — 2)7% — 1 and Li(z) = 2% — 1 for some
positive value a. We then have

o

R(z) = P

71 =2)+(1-2)"%2)

Therefore, R(z) approaches oo as z approaches 0 or 1, and ¢y, is infinite. Hence, our results
give no upper bound for Vi (N, (). However, the denominator S(z) is given by

S(2) = a*(a + 1)(=(1 -)™

and is hence strictly positive for 0 < z < 1. Therefore, we have no lower bound, either. For
this loss function it is an open problem to define the value Vi,(N, ().

6

Since S(z) is positive, we know that the Bayes-optimal prediction z for each bias ¢ is unique.

Specifically, we have
1

IR

as can be seen by a straightforward calculation. |

3.2 The algorithm and the upper bound

We consider an algorithm first introduced by Vovk. The algorithm has two positive real
valued parameters ¢ and 1. We first introduce the algorithm in a somewhat open form, leaving
the parameters ¢ and n unspecified and defining the prediction §; only by giving a condition
it must satisfy. For the moment we also leave open the possibility that there is no prediction
that satisfies the condition, in which case we say that the algorithm fails. The parameter ¢ is
can vaguely be characterized as a measure for the error allowed for the algorithm. The smaller
the value ¢, the tighter upper bound we get for the additional loss assuming that the algorithm
does not fail. Hence, for applying the algorithm we need to find the least value ¢ for which the
algorithm is guaranteed to never fail when the learning rate 7 is chosen suitably.

It turns out that for a loss function L that satisfies the assumptions of Theorem 3.1, the
suitable choice is ¢ = ¢, and 5 = 1/e. This gives a bound Vi 4(N,{) < ¢rIn N. The main
part of the proof is in showing that for any choice ¢ > ¢f the algorithm is guaranteed not to
fail for n = 1/c. We also give a more direct way of choosing a prediction g; that satisfies the
required conditions, provided that such a prediction exists. Examples show that the seemingly
complicated conditions for 3; are actually quite simple for the usual loss functions.

The algorithm uses an N-dimensional weight vector w; = (wyq,...,ws) as its internal
state. The weight w, ; is always nonnegative and summarizes the performance of the ith expert
in previous trials. At the end of the ¢th trial we have —Inw; = nLossp(&;, 5¢), where S
consists of the first ¢ trials of 5. Note that the weights w,; are invariant under permutations of
the trial sequence Sy. The predictions g; of the algorithm are independent of the total length ¢
of the trial sequence.

Algoritm 3.7 (The Generic Algorithm): Let L be a loss function and ¢ and 5 be any
positive constants.

Initialization: Set the weights to some initial values w;; > 0.

Prediction: Let v ; = wy /Wy, where W; = Zf\; wy ;. At the beginning of trial ¢, compute
for y = 0 and y = 1 the value

N
Ay) = —canvme_”L(y’”") . (3.11)
=1

On receiving the ¢th input x4, predict with any value g; that satisfies for y = 0 and y = 1
the condition

Ly, i) < Aly) - (3.12)
It no such value §; exists, the algorithm fails.

Update: After receiving the {th outcome y;, let
wt_|_172' = wt7i€_nL(yt7$t’i). (313)

7

To understand the algorithm, note that by (3.11) and (3.13) we can write A(y;) = Uy — Uy,
where U; = —cln W;. Hence, we can consider —¢ln W; as a potential function, and the condition
L(ys, 71) < A(y;) means that at each trial, the increase of the potential must be at least as large
as the loss of the algorithm. The basic idea of proving the upper bound for the loss of the
Generic Algorithm is based on relating the total potential increase Uyy; — Uy to the total loss
of the best expert. The following upper bound was already given by Vovk [16].

Theorem 3.8: Let L be any loss function. Let S = ((x1,y1),--.,(Xe,y¢)) be an N -expert trial
sequence in which the outcomes y; € { 0,1} are binary. Assume that during this trial sequence,
the Generic Algorithm 3.7 with parameters ¢ and 1 does not fail but produces at each trial t a
prediction §;. Then for all © the total loss satisfies

W£+1 w1y 4

Lossp(A,5) < —cln ST < —cln W + enLossp (&, 9) . (3.14)

Proof The condition (3.12) for y = y; together with (3.11) and (3.13) implies

. W,
L(y:, 9¢) < —cln W;—:l

and hence , o, .
;L(yt,yt) < —cln T < —cln 71’
for all ¢. Finally, by (3.13) we get
Wit1,i Wi, ﬁ eyt me)
W Wi i 7
and the theorem follows. |

For given values ¢ and 7, we say that the loss function L is (¢, n)-realizable if the condition
(3.12) for y = 0 and y = 1 can always be satisfied by a suitable choice of g;. To prove the
upper bound of Theorem 3.1, it now suffices to show that a loss function I that satisfies the
assumptions of Theorem 3.1 is (¢, 1/c)-realizable for ¢ = ¢f. The result then follows from
Theorem 3.8 by setting wq; = 1 for all 2. The rest of this subsection gives our formulation of
Vovk’s [16] proof for these results.

We first devolop an equivalent version of condition (3.12). Write Ag = A(0) and Ay = A(1),
so the condition (3.12) for y € {0,1} can be expressed as Lo(9:) < Ag and Lq1(9:) < Aq. To
obtain explicit bounds for #; from these conditions, we need to have some notion of an inverse
for Lo and Ly. Assume that Lg is continuous and strictly increasing and Lq is continuous and
strictly decreasing in [0, 1], which is implied by the assumptions of Theorem 3.1. Then Lg
has a continuous strictly increasing inverse Lg! that is defined in [Lo(0), Lo(1)], and L; has a
continuous strictly decreasing inverse L' that is defined in [L1(1), L1(0)].

Consider first the case with Ay € [Lo(0), Lo(1)] and Ay € [L1(1), L1(0)]. Then the values
L5 (Ag) and L7 (Ay) are defined, and (3.12) for y € {0,1} can be equivalently written as

LTMNAD) <9 < L3N Ao) - (3.15)
A prediction g, that satisfies (3.15) can be found if and only if
LTNA) < Lyt (Ay) - (3.16)
8

If (3.16) holds, the prediction g, can be chosen to be an arbitrary value between the bounds
L7Y(Ay) and L3'(Ap). For instance their mean (L7'(A1) + Ly'(Ag))/2 is a valid choice for
Ut

Consider now the possibility that the value Ag or Ay is outside of the range of Ly or Ly,
respectively. If, for instance, Ag is larger than Lo(1), then the condition Lo(g:) < Ag in (3.12)
holds for all g;. Thus, the equivalence between (3.12) and (3.15) will be maintained for all
nonnegative Ag if the inverse L' is extended in such a way that the condition §; < Ly*(Ag)
holds for all g, € [0,1] when Ag > Lg(1). Hence, we say that Lal is a generalized inverse of
Lo if Ly (Lo(9)) = ¢ for all § € [0,1] and Ly'(Ag) > 1 whenever Ag > Lo(1). Similarly, L7!
is a generalized inverse of Ly if L7 (L1(§)) = § for all § € [0,1] and L7'(A;) < 0 whenever
Al > Ll(O)

For instance, if L is the square loss Ly, we have the generalized inverses Ly'(2) = /7 and
LiY2)=1—/zfor 0 < 2 < 1, s0 (3.16) becomes

VAo + VA > 1.

For the relative entropy loss Lene we have Lg'(2) = 1 —e™% and L7'(2) = 7%, so we get
e~ Ao + e~ A1 <1.

For the absolute loss L,p,s we have Ly'(z) = z and L7'(2) = 1 — z, so we need to have

Ag+A1>1.

Our definitions of generalized inverses let us show the equivalence between (3.15) and (3.12)

for all values of Ag and Aj.

Lemma 3.9: Assume that L is a loss function such that Lo(0) = Ly1(1) =0, Lo is continuous
and strictly increasing in [0, 1], and Ly is continuous and strictly decreasing in [0,1]. For any
generalized inverses Ly' and LT", the condition (3.15) is equivalent to (3.12) for y € {0,1}.

Proof If Ag ¢ [0, Lo(1)], then both Lo(9:) < Ag and g < LEI(AO) hold for all g; € [0,1]. If
Ay ¢ [0, L1(0)], then both Li(9:) < Ay and Ll_l(Al) < g hold for all §; € [0,1]. Hence, we
may assume that Ag is in the range of Ly and Ay is in the range of Ly. In this case (3.12) and
(3.15) are equivalent because Ly is strictly increasing and L; strictly decreasing. O

We are now ready to show that if in Algorithm 3.7 we use a value ¢ such that ¢ > ¢, where
cr, is as defined in (3.3), and set n = 1/c, then the algorithm never fails.

Lemma 3.10: Let L be any loss function such that Lo and Ly are twice continuously differen-
tiable, Lo(0) = L1(1) =0, and Li(z) > 0 and Li(z) < 0 hold for 0 < z < 1. Assume that the
value ¢y, defined in (3.3) is finite, and S(z) defined in (3.1) is positive for all z. Then for all
w; and x¢ such that 0 < zy; < 1 and wy; > 0 for 1 <1 < N, condition (3.16) holds whenever
c>cp and n=1/c.

Proof For 0 < z < 1, define p(2) = exp(—Lo(z)/c) and ¢(z) = exp(—L1(2)/c), and for r in
the range of p define
f(r) = exp(=Li(Ly (=clnr))/e) . (3.17)

Note that f(p(z)) = ¢(2).

First, assume that f”(p(z)) < 0 holds for 0 < z < 1. We are later going to show that this
is in fact true if ¢ > ¢g. Let r; = p(a4;) and s; = q(24;) = f(ri) for i = 1,...,N. Then for
n = 1/¢ we have Ag = —cIn(3>"; ve75) and Ay = —eIn(Y"; ve;s;). The assumption f”(r) <0
implies Y=, vy 8 = > vei f(ri) < F(32; veims). We get

N
Ay = —chn (vasi)

=1

o))

= Li(L5'(Ao)) ,

v

from which condition (3.16) follows since L' is decreasing.

We now show that our assumptions on Lg and Ly imply that for ¢ > ¢p, the function f has
a nonpositive second derivative in the range of ¢. We have f(p(z)) = ¢(z) and thus f'(p(z)) =
q'(z)/p'(2). Differentiating further, we obtain f”(p(2))p'(2) = (¢"(2)p'(2) — ¢ (2)p"(2))/¥'(2)%
Since p'(z) = —Ly(2)p(z)/e < 0, we have f’(p(z)) < 0 if and only if ¢"(2)p'(2) — ¢'(2)p"(2) > 0.
By substituting p'(2) = —Ly(2)p(2)/c and p"(2) = (=L(z)/c + (L5(2))?/c?)p(2), and using
similar expressions for ¢'(z) and ¢"'(z), we see that f”(p(z)) < 0if and only if

(FLAIEL P + T4IN + e (L)L) - Lh()m(=))) EE

c3 -

Finally, since our assumptions imply L{(z)L{(z)— Li(z)Ly(z) > 0, we conclude that f”(p(z)) <
0 holds if and only if ¢ > R(z). Hence, ¢ > ¢y, is a necessary and sufficient condition for having
f"(p(2)) <0 for all . O

Note that above argument shows that the nonpositivity of f”(r) is also a necessary condition.
If f"(r) is positive on some interval, by placing all the values z;; in this interval but not making
them equal we get 3, v, f(r:) > f(3; vei7) and, hence, LTH(A1) > Ly (Ao).

In particular, we see that since the Generic Algorithm 3.7 does not fail with the paramaters
¢ =cr and n = 1/cp, we get the upper bound claimed in Theorem 3.1 by applying Theorem 3.8
with the initial weights w;; = 1 for all <.
Theorem 3.11: Let L be a loss function for which the constant cy, is finite. Let A be the
Generic Algorithm 3.7 with the parameters ¢ = ¢, n = 1/cr, and the initial weights wy; = 1
for allv. Then for all N and { the additional loss of the algorithm satisfies

Vea(N,O) <epIn N .

We are now ready to write the Generic Algorithm 3.7 in a more explicit form for particular
loss functions.

Example 3.12: If L is the logarithmic loss, we have ¢;, = 1 and can therefore take ¢ = np =1
in the Generic Algorithm 3.7. After simple manipulations we get Ag = —In(1 — p;) and
Ay = —In p¢, where p; = 57, vy 2, is the weighted average of the experts’ predictions. Hence,

Ly (Ag) = LiH A =pi

and §; = p¢ is the only prediction for which (3.12) holds for y € {0, 1 } with this choice of ¢ and
7. The loss bound we obtain was previously shown by De Santis et al. [8] and Vovk [16]. O

10

Example 3.13: Let L be the square loss. Vovk [16] has shown that the square loss is (1/2, 2)-
realizable. Here the result follows from Lemma 3.10 and Example 3.2. The note after the proof
of Lemma 3.10 further implies that the square loss is not (¢, 1/c)-realizable for any ¢ < 1/2.
Hence, we take ¢ = 1/2 and n = 2 in the Generic Algorithm 3.7 for the square loss. The
condition (3.12) for y € {0, 1 } now becomes

N ()2 1/2 N 222, 1/2
1- (—lnzm v“;) < g < (—hl Zizt g“e :) : (3.18)

By numerically substituting random values for v; and x; we see that the seemingly natural
choice §; = 3_; v¢ ;24 usually does not satisfy (3.18). More generally, there is no function f such
that choosing §; = f(3_; vti2¢;) would guarantee (3.18) to hold. To see this, consider N = 2
and set first x; = (0,7/10) and v, = (2/7,5/7). Then >~; v ;24 ; = 1/2, and evaluating the left-
hand side of (3.18) with these values of x; and v; yields a bound 0.52 < f(1/2). On the other
hand, we also have Y, v;;2¢; = 1/2 when x; = (3/10,1) and v; = (5/7,2/7), and evaluating
the right-hand side of (3.18) with these values gives the contradictory condition f(1/2) < 0.48.
Hence, the algorithm needs more information than is provided by merely the weighted average
of the experts’ predictions.

It can be proved that in the more restricted case that all the experts’ predictions z;; are
in {0,1}, we can guarantee (3.15) for the square loss with ¢ = 1/n ~ 0.41 instead of ¢ = 0.5.
This gives a slightly improved bound. However, restricting the experts to predict with binary
values while allowing the algorithm to predict with countinuous values does not seem a natural
setting. |
Example 3.14: Take L to be the absolute loss. As now ¢y, = oo, we know that the absolute
loss is not (¢, 1/¢)-realizable for any ¢. We therefore let n > 0 be arbitrary, and see for which
values ¢ the absolute loss is (¢, 77)-realizable.

By using the bound e <1 — (1 — e~ ")a that holds for all « € [0, 1], we obtain

Lyt (Ao) = L7 (Ay)

N N
= —canvme_mtv" - (1 + canvme_”(l_”"))

=1

> (hlzvtz 1_(1_6 77 xtz hlzvtl 1_ 1_6 77)(1—961572'))) -1

=1

= c(=In(1—p;+ pee™”) —In(p; + (1 — pt)e M) -1

where p; = 3", v ;24,;. By Jensen’s inequality, this is positive for ¢ > (21In TTe —2-)71, and the
prediction condition (3.12) for y € {0,1 } becomes
In o8 vy e =on0) In SN vy je= o0
1+ Zz 1% S@)té_ Zz 1Yt (319)
21n1_|_6,] 21n1_|_6,]

Cesa-Bianchi et al. [2] have noted that (3.19) always holds if we choose

i, = In(1 — pt + pre™")
! In(1 —p;+pee™) + In((1 — pre™7 + py)

b

but does not in general hold for §; = p;. Hence, the weighted average of the experts’ prediction
provides sufficient information for the prediction, but cannot be used directly.

11

The bound obtained by applying Theorem 3.8 for the absolute loss with the choice ¢ =

(2 In H-%) _1, namely

—1In 7"5‘1,1’ + nLossg(&;,9)

2
thm

Lossp,(A,5) < , (3.20)

was first proven by Vovk [16]. We would like to choose the learning rate n in such a way
that the loss bound on the right-hand side of (3.20) is minimized. This tuning of the learning
rate is discussed in detail by Cesa-Bianchi et al. [2, 3]. Here we just cite some of the basic

results. If all the initial weights wq; are 1 and n is chosen to be lnh(2(In N)/ﬁ) where
h(z)=142z+ 22/ In 2, the Generic Algorithm 3.7 for absolute loss satisfies

CIn(N + 1) n log,(N + 1)

N.0) <
Vi, a(N,0) < 5 5

Note that here it is necessary to know £ before the first trial in order to choose the learning rate
1 appropriately. Similar results can be obtained by basing the choise of on an upper bound
for the loss min; Loss,(&;, 9) of the best expert instead of on (.

Finally, we consider the variations of the Generic Algorithm given by Cesa-Bianchi et al.
[2] for the special case of the absolute loss. Instead of the update (3.13), we write more
generally wiyq1; = a¢wy; and A(y) = —cln Zf\; v 0y, and consider choices for the factors
ay; in addition to the choice ay; = e~ lve=zeil of the Generic Algorithm. First, note that if
—Inay; < nlys — 44|, the proof of Theorem 3.8 can easily be generalized to yield the same
loss bound. Second, note that the proof given for the inequality L7'(A;) < Lg'(Ap) is valid
assuming oy; < 1 — (1 — e ")zy;. Hence, the algorithm works and gives the same worst-case
loss bound for any choice

el <oy <1 — (1= e Mayy (3.21)
Interestingly enough, the weights obtained using a;; = 1 — (1 — e77)a¢; have a Bayesian
interpretation [2]. O

3.3 Lower bounds

This subsection contains proofs of the lower bounds for V(N, () stated in Theorems 3.1 and
3.5 in Subsection 3.1. The lower bounds hold even for algorithms that receive £ as input begore
the first trial. Theorem 3.16 shows how a probability measure for the experts and outcomes
leads to a lower bound for Vi,(N,() for large N and ¢. The proof of Theorem 3.16 is based
on Lemma 3.15, which shows that we can change the order of taking expectations and going
to the limit with certain random variable sequences. The lower bound in Theorem 3.16 is
in terms of certain characteristics of the probability measures, and is interesting only if the
probability measures are chosen carefully. Lemma 3.17 shows a particular way of choosing the
probability measures, when a prediction b is the unique Bayes-optimal prediction for a bias g.
Lemmas 3.18 show a way to choose the probability measures in Theorem 3.16 if the Bayes-
optimal prediction is not unique. Finally, we combine the results by showing that either each
prediction z can be made to be the unique Bayes-optimal prediction by choosing a suitable
bias, in which case Lemma 3.17 yields a lower bound for Vi(N,{) in terms of ¢y, or else there
is a bias for which two distinct Bayes-optimal prediction exist and Lemma 3.18 yields a lower
bound V(N, () = Q (y/Tlog N).

We begin with a technical lemma.

12

Lemma 3.15: Let P be a probability measure in X and () a probability measure in Y. For
(eN;y andy €Y, let U},,...,U%, be N independent identically distributed random variables
such that E,ep[US(x)] = 0 and Varyep[U(z)] = 1. Assume that there are independent
identically distributed random variables Fy, ..., Fx such that the sequence U}, UY, ... converges
in distribution to F; for all v and y. Further, let r1,79,... be functions on Y such that
limy—oo 7¢(y) = 1 holds with probability 1 for y drawn according to Q, and |ri(y)| < B holds for
all y for some constant B. Then
b oo g, 2] -,

Proof Write UY, = mini<;<y U}, and F, = minj<;<y F;. We first show that for all y, the
sequence UY,, U?. converges in distribution to F,. For all @ € R we have

10 Vier e
N
Pr[F.<a] = 1- H(l — Pr[F; < al)

=1
N

= 1= [0 - Jim Prv} < a))
=1

N
= Jm - TI0 - Py < o))

= [li{go Pr[Ui/[S a] ”

which proves the claim.

Next we see that
Egep [|Ui’z(w)|1+p] < 2N (3.22)

holds for all y when p = 0 or p = 1. To see this, first note that for all A C R, if U/, (z) € A
then U} (z) € A for at least one value 7. As the distribution of U}, does not depend on 7, this
implies Proep[UY(2) € A] < N Proep[U],(2) € A] if A is measurable. This implies

Evep [[U2()[*7] < NEoep [[U2(2)]*]

e

N 1+/ UY, P ap
|UTe|21

< N (14 Eeer [(U4(2)°])
= 2N .

IN

As the sequence UY;,UY,, ... converges in distribution to Fj, the bound (3.22) with p =
1 guarantees [1, Corollary, p. 292] limy_..o Eqep [U7,(2)] = E[F,] for all y and, therefore,
limy_.oo 7e(y)Ezep [UL,(2)] = E[FL] with probability 1 for y drawn from . The bound (3.22)
with p = 0 implies |ro(y)Ezep [UY(2)]| < 2BN, and the bounded convergence theorem [1,
Thm. 16.5, p. 180]
gliff}o Eyeq [W(y)El’EP [U3£($)H =EBE[r] ,

as claimed. O

Theorem 3.16 shows how a probability measure for the experts and outcomes leads to a

lower bound for V(N, () for large N and (.
13

Theorem 3.16: Let P be a probability measure on [0,1] and @ a probability measure on
{0,1}. Assume that for y = 0 and y = 1, the condition Pryep[L(y,z) > K] = 0 holds for
some constant K. Let b be a Bayes-optimal prediction for). Let 7 = Eyeq zep[L(y,)] and
0? = Eyeq [Varzep [L(y, 2)]]. Assume that for y =0 and y = 1 the variance Varyep [L(y, v)] is

strictly positive. Then for all ¢ > 0 there is an L. such that for all { > (. we have
VL(N,) > (EyeqlL(y,b)] — {1+ (ay —e)oV{In N | (3.23)
where limy_.. an = V2.

Proof Given x € [0,1]V** andy € {0,1 }g, we define an N-expert trial sequence of length ¢ by
(x,¥) = ((%1,9%1),-..,(X¢,y¢)). For an on-line prediction algorithm A, consider Vi, 4({x,y)) as
a random variable, with x and y drawn from the product measures PV*¢ and Q¥, respectively.
The expected value of a random variable is clearly a lower bound for the supremum. Combining
this with the linearity of expectation, we get

VL7A(N, ﬁ) > EXEPNX"EyEQZVL,A«Xv y>)

l
= > EyeqlLy, i)] - ExeprvxeEyeqe [I%LHN Lossr, (&, (x, y>)]
i=1 s

v

(EyeqlL(y,b)] — ExepnvxeEycqe LgiﬁnN Lossp(&, (x, y>)]

Since this holds for any A, we obtain (3.23) if we can prove that
ExeprvxeEyeqr LgiﬁnN Lossr,(&;, <x,y>)] <Ur —(ay —¢e)oV{In N . (3.24)
Let ¢ = Pryegly = 1]. Then

7= (1= q)Eep[Lo(2)] + ¢Erep[La ()]

and
o = (1 — q)Vargep[Lo(2)] + qVarzep[Li(z)] .

Given a sequence y € {0,1}° and ¢ € N, define

. 1<
Gi(y) = 7 >y
=1

We also let
7u(y) = (1 = 4u(y))Ezep[Lo(2)] + Gu(y)Evep[L1(x)]
and
Go(y)? = (1= Gu(y))Vareep[Lo(2)] + Ge(y) Varep[L1 (2)]
be the estimates obtained for 7 and o2 by using ,(y) instead of the true probability g.
For x € [0,1]V** and y € {0,1}, let Tg(x) = L(y;,x;;) be the loss of expert ¢ at trial 7,
if x is the sequence of experts’ predictions and y the sequence of outcomes. We consider T as

i
a random variable on the domain [0,1]V**. We now define for i = 1,...,N and £ = 1,2,...

the random variable S;; in the domain [0, 1]V** x {0,1}* by Si(x,y) = Ele L(y;, ;) to
denote the loss of expert ¢ in the first ¢ trials. We also define for a given sequence y € {0,1 }™

14

the random variable S% by S%(x) = Su(x,y) = Z] 1 T7.. The underlying probability measures
for these random variables are the product measures deﬁned by P and @, so for a fixed y the

random variables TB]’ and TB,,, are independent for (i,7) # (¢, j"). To study the distribution of

S%, we define a suitably normahzed random variable UZy Let now

gy = S T P (3.25)
Z Z?:l Var[Tg]

Then E[UY] = 0 and Var[UY] = 1. Further, since we have assumed that Pr[|T5] > K)=0,the
Lindeberg form of the central limit theorem implies that each sequence U%, UZ»};, ... converges
in distribution to a standard normal random variable.

We now apply Lemma 3.15 to the random variables U%. Then the random variables F; in
Lemma 3.15 have standard normal distribution. By a standard result [10], their minimum F,
has expectation E[F,] = —anVIn N, where limy_., ay = v/2. We take r(y) = 64(y)/o. Then
|re(y)| < K /o, and by the strong law of large numbers we have lim/_., r/(y) = 1 for almost all
y. Lemma 3.15 now implies

glim Eyege MEXEpNXOO [m1<nN Uw” = —anVIn N . (3.26)
—00 g

By partitioning the summations in (3.25) into two parts according to whether y; = 0 or y; = 1,
we can write

y _ 5% — U0 = dly)Eeep[Lo()] + @u(y)Eaep[La(2)]) _ S = (ruly)
© VI = Gly)Varsep[Lo()] + Ge(y)Varsep[La(2)]) &u(y)VE
By substituting this into (3.26), we obtain

. Byeg> [EXGPNXOO [minlsiSN S(x) - ﬁf(Y)H
lim
l—o00 O'\/Z

Therefore, for all ¢ > 0 there is a value £. such that for all £ > {. we have

= —ayVInN .

Eyero |:EX€PNX°° [lgian Si[(xv Y) - Kf—f(Y):H

= Eyege [ExepNxz [I%LHN Lossr,(&;, <X,y>)” — T
< —(ay —¢€)ovIiIn N .

This implies (3.24), as desired. O

We now see how Theorem 3.16 implies a lower bound for Vi(N,() when the probability
measure P for the experts is chosen suitably.

Lemma 3.17: Let L be a loss function such that Ly and Ly are twice differentiable, and
Ly(z) > 0 and Li(2) < 0 hold for 0 < z < 1. Assume that b € (0,1) is a Bayes-optimal
prediction for bias q € (0,1).

1 If (1 —q)Lg(b) 4+ qL{(b) > 0, then

Vi(N,0) > (R(b)— o(1))ln N ,

where R(b) is as in (3.2) and o(1) denotes a quantity that approaches 0 as { and N
approach oc.

15

2. If (1 — q)L5(b) + LY (b) = 0, then for all & > 0 we have Vi(N,{) = Q (ﬁl/z_a\/ln N).

Proof Let @ be the probability measure on {0,1} for which Pryegly = 1] = ¢. Let A be
an arbitrary on-line prediction algorithm. For any probability measure P on [0, 1] and for any
¢ > 0, we have by Theorem 3.16 for sufficiently large ¢ the bound

Vi a(N,) > U(Eyeq[L(y,b)] - 7) + (ay —e)ov{In N (3.27)

where limy_o ay = V2. For some positive parameter h, define P to give z = b — h with
probability 1/2 and « = b+ h with probability 1/2. We can expand

L//(b)

Lo(b+) = Lo(b) £ L(b)h + —=—=h* + o(h?) ,

where o(h?) denotes a quantity f(h) such that limh_@((h)/h?) = 0, and similarly for L.
We now substitute these expansions into the various quantities in (3.27). First, note that
EreplLo(2)] = Lo(b) + h2L3(b)/2 + o(h?), so
Varsep[Lo(@)] = Ever [(Lo(2) — EvepLo(@))?] = Ly(b)2h? + ofh?) .
Similarly, Varzep[L1(2)] = Li(b)*h* + o(h?), and
o = h*((1 = q)Li(b)* + gLy (b)*) + o(h?) .
We also have
7= (1= q)(Lo(b) + h* Lg(b)/2) + q(L1(b) + h*LY(8)/2) + o(h*)

S50
2

Byea[Ly.b)] — 7 = ~ (1 = @) L(B) + aL(6)) — o(?) .
Hence, Vi, 4(N,{) > ((rh — sh?) — o(h?), where

r=(aN—gwlnN\/l—qL’)2+ qLi(b)?

(1 —=q)Ly(b) + qLi(b)

5 .
We first consider the case s > 0, which gives the first part of the theorem. The main part
{(rh — sh?) is maximized by choosing h = r/(2s) = © ((In N)/K). For this value of &, we get

and

S =

VL7A(N,K) > ﬁg + 0((111]\7)/@

(an — €)* (1 =) Lo(b)* + g L1 (b)*
2 (1= q)Lg(b) + qLi(b)

Application of (3.7) now gives the claimed result, since limy_., a%/2 = 1.

InN —o((InN)/C) .

Consider now the case s = 0, which gives the second part of the theorem. We need a
sequence hq, ho,... with limy_. .. hy = 0. To obtain the actual bound claimed here, we choose

hy = (. Slightly different results can be obtained by choosing different values hy,. We now
have Vi 4(N,£) > al'/?=2/In N — o(£=2), where

a = (an — W/(1 = Q) Ly(b)? + qLi(b)? > 0 .

16

Lemma 3.18: Let L be a loss function such that Lg is strictly increasing and Ly strictly
decreasing. Assume that for bias q there are two distinct Bayes-optimal predictions by and
by. Then for all ¢ > 0 there is an L. such that for all £ > {. we have

VL(N,0) > (any —e)oVLIn N
where limy_o any = V2 and

o = L9 (1o (by) - Lo(by) +

1 (L1(b1) = L1(b2))* . (3.28)

e~

Proof Let by and by be two distinct Bayes-optimal predictions for some probability measure
Q on {0,1}. As Ly and L are strictly monotone, the bias of () cannot be 0 or 1. We define
a probability measure P by Pr.ep[z = by] = Pryep[e = bg] = 1/2, and apply Theorem 3.16.
Then 7 = EyeqlL(y, b1)] = Eyeq[L(y, by)]. Further, we get

Vargep[L(0,2)] = Faep [L(0,2)2] = Buep[L(0,2))
1 , 1 , /1 1 2
= §L0(51) + §L0(52) - <§L0(b1) + §L0(52))

1
= 1 (Lo(b1) = Lo(b2))*
and similarly Var,ep[L(0,2)] = 1 (L1(b1) — L1(b3))*. Hence, o is as given in (3.28). The results
now follows from Theorem 3.16 with either b = by or b = bs. |

Note that for the absolute loss, we can apply Lemma 3.18 with ¢ = 1/2, 5y = 0, and by = 1.
This gives ¢ = 1/2, and hence Vi,(N,{) > (1 — o(1))\/({In N)/2, which is the result obtained
by Cesa-Bianchi et al. [2].

Lemma 3.19: If a prediction z € (0,1) is not Bayes-optimal for any bias q € [0, 1], then there
are two predictions by and by with by < z < by such that for some bias q both by and by are
Bayes-optimal.

Proof Consider a prediction z € (0,1) that is not Bayes-optimal for any bias. Let Ry be the
set of biases ¢ for which there is a Bayes-optimal prediction b < z, and let Ry be the set of
biases ¢ for which there is a Bayes-optimal prediction b > 2. If we can show Ry N Ry # 0, we
are done. Since z is never Bayes-optimal, we have Ry U Ry = [0, 1]. Hence, if both Ry and R,
are closed, their intersection cannot be empty.

Suppose that Ry is not closed. Let py, po,... be a monotone sequence of points in Ry that
converges to a point p € Ry. Let b, < z be a Bayes-optimal prediction for bias p,, n =0,1,....
The sequence by, by, ... is also monotone and converges to some limit b < z. Let &’ be a Bayes-
optimal prediction for bias p. As p € Ry, we have b’ > z. Define F(q,2) = (1—q)Lo(2)+qLi(2).
Since b, is Bayes-optimal for bias p,, we have F(p,,b,) < F(p,,b') for all n. Since F' is
continuous, this implies F(p,b) < F(p,b'). As b’ is Bayes-optimal for bias p, so is b. Thus
p € Ry, contradiction. Similar argument works if we assume Ry to be not closed. O

Proof of Lemma 3.4 Since we assume Lg to be strictly increasing and I, to be strictly
decreasing, 0 is the unique Bayes-optimal prediction for the bias 0 and 1 is the unique Bayes-
optimal prediction for the bias 1.

17

Assume first that by and b, are two Bayes-optimal predictions for some bias 0 < ¢ < 1, with
by < by. Thus, the expected loss f(z) = (1 — ¢)Lo(2) + ¢L1(2) has local minima at z = by and
z = by, and therefore f(z) has a local maximum at some value ¢ with b < a < by. We then
have f'(a) = 0 and f"(a) < 0. The condition f'(a) = 0 implies ¢/(1 — ¢) = —L{(a)/Li(a),
which substituted into f”(a) < 0 gives S(a) < 0.

Assume now that for every bias ¢ there is a unique Bayes-optimal prediction. Then
Lemma 3.19 implies that for all z there is a bias ¢ for which z is Bayes-optimal, and we
know that this bias ¢ must be unique. Let B(z) denote the bias for which z is the Bayes-
optimal prediction. We know that B is strictly increasing. Let f(z) = —L{(z)/Li(z). We then
have f(z) = g(B(z)) where g(¢q) = q/(1 — q). Since ¢ and B are strictly increasing, so is f,
and therefore the derivative f/(z) cannot be negative, and cannot be zero on any continuous
interval. As

o D) - L)L) SG)
Fe = Lo G

the claim follows. O

The lower bounds in Theorem 3.1 and Theorem 3.5 follow directly from the following
theorem.
Theorem 3.20: Let L be a loss function such that Ly and Ly are twice differentiable, and
Li(z) >0 and L|(z) < 0 hold for all 0 < z < 1. Let S(z) be as in (3.1).

1. If S(z) >0 for 0 < z < 1, then VL(N,{) > (¢, — o(1))In N, where ¢y, is as in (3.3).

2. If S(z) =0 for some 0 < z < 1, then VL(N,{) = Q (ﬁlﬂ_avln N) for all & > 0.

3. If S(z) < 0 for some 0 < z < 1, or S(z) = 0 for all the values z in some continuous

interval, then VI,(N,() = Q (\/ﬁln N).

Proof If for some bias there are two distinct Bayes-optimal predictions, we have by Lemma 3.18
the bound Vi(N,{) = Q (\/ﬁln N), which is the strongest of the bounds claimed here. Thus,
we only need to consider the case in which for each bias there is at most one Bayes-optimal
prediction. By Lemma 3.19, we then have for all predictions z a bias such that z is Bayes-
optimal. By Lemma 3.4, the value S(z) is always nonnegative and cannot be zero on any
continuous interval.

Recall that when z is Bayes-optimal for ¢, the condition (3.6) implies (1—¢q)L{(2)+¢L{(2) =
S(z). If S(z) = 0, then applying Lemma 3.17 (2) with the bias ¢ that makes z Bayes-optimal
gives the bound Vi,(N, () = Q (ﬁl/z_a\/ln N) forall @ > 0. If 5(z) > 0 for all z, Lemma 3.17 (1)
gives VL(N, () > (R(z) —o(1))In N for all z, from which VL(N,{) > (¢, —o(1))In N follows. O

3.4 Alternative lower bound methods

First notice that for the logarithmic loss, there is a simple argument that shows the lower

bound Vi(N,¢) > In N for N = 2k and ¢ > k.

Example 3.21: For arbitrary positive integer k, let N = 2% and (= k. Let A be an ar-
bitrary on-line prediction algorithm. For the trials ¢ = 1,...,¢ we choose binary predic-
tion vectors x; € {0,1}N in such a way that the set of the experts’ prediction sequences
{(#1,,...,2¢;)| 1 <@ < N} contains all the 2¢ = N possible binary sequences of length £. The
outcomes y; are chosen by an adversary in such a way that y; = 0 if the prediction g; of the
algorithm A satisfies §; > 1/2, and y; = 1 otherwise. Then at each trial the algorithm incurs

18

loss at least In 2, and the total loss of the algorithm will £1n2 = In N. One expert will have total
loss 0, so we obtain Vi, 4(N,{) > In N. This matches exactly the upper bound for Vi 4(N, ()
given in Theorem 3.1 and Example 3.2 when A is the Generic Algorithm 3.7.

Another way of thinking of this lower bound argument is as follows. At the first trial, half
of the experts predict 0 and half of the experts predict 1. After the trial, those that made
a mistake are eliminated, and those that were correct remain. At subsequent trials, half of
the remaining experts predict 0 and half predict 1. Thus, at trial ¢ there are N/2!=! experts
remaining, each with cumulative loss 0, while the rest of the experts have cumulative loss oo
and have been eliminated. |

Note that by considering a single trial this easily gives for the logarithmic loss the bound
VL(2,1) > In 2. The general lower bound VL(N, () > In N for the logarithmic loss, when N = 2%
and ¢ > k, can also be obtained by applying the following Theorem 3.23 to this lower bound
for Vz,(2,1). Theorem 3.23 is proven using the following lemma.

Lemma 3.22: Assume that for all on-line prediction algorithms A’ there is an N -expert trial
sequence S' of length ' such that Vi, 4/(S") > a, and that for all on-line prediction algorithms
A" there is a two-expert trial sequence S” of length (" such that Vi, 4n(S5") > b. Then for all
on-line prediction algorithms A there is a 2N -expert trial sequence S of length (' + (" such that
VL7A(S) >a+b.

Proof A 2N-expert coupled trial sequence is a sequence in which each instance x; has the
property z;; = x¢ N4 for 1 <7 < N. A 2N-expert simple trial sequence is a sequence where
each instance x; has the property x¢1 = 242 = --- = ¥y n and Ty N41 = Ty, N42 = * - = Ty2N-
Note that 2V-expert coupled trial sequences are essentially V-expert trial sequences and 2./N-
expert simple trial sequences are essentially two-expert trial sequences.

Since we assumed that for all prediction algorithms A’ there is an N-expert trial sequence
5" of length ¢’ such that Vg 4/(S") > a, it follows that for all on-line prediction algorithms A
there is a 2N-expert coupled trial sequence S of length ¢’ such that Vi 4(51) > a. Similarly,
since we assumed that for all prediction algorithms A” there is a two-expert trial sequence S”
of length (" such that Vi, 4#(5”) > b, it follows that for all on-line prediction algorithms A there
is a 2N-expert simple trial sequence 53 of length " such that Vi, 4(52) > b.

Let now A be an arbitrary on-line prediction algorithm for trial sequences of length ¢/ 4 (.
Given a trial sequence 5’ of length ¢/, let A(S’) denote the algorithm for trial sequences of
length (" that simulates the algorithm A but processes the trial sequence S’ before the first
actual trial. Our assumptions imply that there is a 2/N-expert coupled trial sequence 57 of
length ¢’ for which Vi, 4(51) > @, and that there is a 2N-expert simple trial sequence S3 of
length (" for which Vj, 4(5,)(52) > b. Let S be the 2N-expert trial sequence of length (' 4 "
that is obtained by concatenating .57 and 955.

To complete the proof, we show that Lossp(A,S) — Lossy(&;,S5) > a + b holds for some
1 < ¢ < 2N. Note that Lossp(A,5) = Lossp(A,51) + Lossp(A(S51),52). We know that
Lossp(A,51) > Lossp(&;,51) + a holds for some 1 < ¢ < 2N. Since S7 is a coupled trial
sequence, this implies that for some 1 < k < N we have Lossy(A, S1) > Lossy(&;, 51) 4+ a both
for ¢ = k and for ¢ = N + k. We also know that Lossz(A(S1),52) > Lossp(&;,92) + b holds
for some 1 < j < 2N. Since 53 is a simple trial sequence, this implies that Lossz(A(S1),52) >
Lossr,(&,52) + b holds for all 1 < j < N or for all N +1 < j < 2N. Hence, we have
Lossr,(A,51) > Lossr(&;,51) + @ and Lossp(A(S1),52) > Lossp(&;,52) + b for j = k or for
7 = N + k, which proves the claim. O

19

Again, the proof of Lemma 3.22 remains valid if the algorithms are allowed to know the
length of the trial sequence beforehand. An obvious induction based on Lemma 3.22 gives the
following result.

Theorem 3.23: For any loss function L and positive integer k, we have V(2% k() > kVL(2,0).

In particular, if lim,_., V7(2,{) > cln2 for some constant ¢, then for N = 2*¥ Theo-
rem 3.23 implies limy_o VL(N,€) > clogy NIn2 = cIn N. Hence, if we were able to prove
limy—oo VL(2,€) > ¢, In 2 for the constant ¢y, defined in (3.3), we would again obtain the asymp-
totic lower bound Vi,(N,{) > (¢, —o(1))In N stated in Theorem 3.1. However, this new bound
would be stronger because the term o(1) approaches 0 as { approaches oo for all N of the form
N = 2%, whereas in the bound of Theorem 3.1 the term o(1) is stated to approach 0 only when
both N and £ approach oc.

To obtain the lower bound Vi(N,{) > (1/2 — o(1))In N given in Theorem 3.1 and Exam-
ple 3.2 for the square loss by applying Theorem 3.23, we would need to show

In 2
Jim Vi(2,0) = HT . (3.29)

We conjecture that (3.29) indeed is true. We have numerically obtained lower bounds such
as V7(2,500) > 0.3456, while (In2)/2 ~ 0.3466. (Obviously V7,(2,() is an increasing function
of £, and Vi(2,0) < (In2)/2 by the upper bound of Theorem 3.1 and Example 3.2.) These
numerical results are based on a recurrence we have not been able to solve in a closed form.
Note that for the square loss, the simple construction used for the logarithmic loss does not
yield an optimal lower bound. If we have { = 1 and N = 2, with x; = (0,1), we have
Vioa((x1,11)) < 1/4 = 0.25 for the algorithm A that predicts 1/2, and this bound falls short of
the required (In2)/2 ~ 0.3466.

The preceding remarks show that for the logarithmic loss we have limy_, VL(Qk,K) =
Elimy_o Vi(2,0). It is an interesting open question to see which loss functions L have this
property. Theorem 3.23 gives limy_ o, VL(2%,€) > klimy_ ., VL(2,() for all loss functions. To
show equality it is sufficient to show lims—. V7(2,0) > ¢z In 2, and our conjecture is that this
is true for the square loss.

4 Continuous-valued outcomes

4.1 Applying the Generic Algorithm

We now show that under certain assumptions, The Generic Algorithm 3.7 also works for
continuous-valued outcomes y; € [0,1]. These assumptions hold for the square and relative
entropy loss, but not for the absolute loss, which will be considered in Subsection 4.2. We also
consider the more general situation where the values z;; and y; are not in the range [0, 1].

Lemma 4.1: Assume that for all y,a,b € [0,1], the function g defined by g(y, a,b) = L(y,a)/c—
nL(y,b) satisfies

0%g(y,a,b) = (dg(y,a,b)\>
>0 . .
02 + (ay) >0 (4.1)

If (3.12) holds for binary values y € { 0,1}, then it holds for all values y € [0,1].
20

Proof We write (3.12) as (L(y, 9:) — A(y))/c < 0. By exponentiating both sides and applying
(3.11), this becomes

N
eL(yvl?t)/cvae—ﬁL(%l’t,i) <1. (4.2)
=1

Let us denote the left-hand side of (4.2) by f(y). Then

N
fly) = th7i€9(ﬁ‘/7@t71’t,i) :
=1
so for the second derivative of I’ we get

82f(2y) _ i\f: oy (azg(yv ?/tv xt,i) + (ag(yv ?/tv xt,i))Q) eg(%@ml’t,i)
dy o '

2
=1 83/ 83/
As our assumption implies this to be nonnegative, the maximum value of f for y in the interval
[0,1] occurs for y = 0 or y = 1. Since (3.12) is equivalent to f(y) < 1fory € {0, 1 }, this proves
our claim. |

Theorem 4.2: Let L be a loss function for which the constant cy, is finite and the condition
(4.1) holds for ¢ = ¢g, and n = 1/cy,. Let A be the Generic Algorithm 3.7 with the parameters
¢ =cp, n=1/cr, and the initial weights wy; = 1 for all i. Let S = ((x1,y1),...,(Xe,y¢)) be a
trial sequence for which x; € [0, 1] and y, € [0,1] hold for all t. Then the algorithm does not
fail during the trial sequence, and its additional loss satisfies

VL7A(S) <erIn N .

Proof First note that by Lemma 3.10, the algorithm A does not fail. By Lemma 4.1, the
predictions g, of the algorithm satisfy L(y:, %) < A(y:). We then proceed as in the proof of
Theorem 3.8, and obtain the claimed bound by choosing w;; = 1 for all 7. O

Example 4.3: Let L be the relative entropy loss Lene. We have

dL(y, z)

oy =lny-In(l-y)—Inz+1In(l-=2),

so the second derivative d%L(y, z)/dy* = 1/y + 1/(1 — y) does not depend on z. Hence, if
¢ = 1/n, the second derivative of the function ¢ of Lemma 4.1 is 0, and (4.1) holds. Recall that
cr, = 1 for the relative entropy loss. Hence, by Theorem 4.2, if A is the Generic Algorithm 3.7
with ¢ = =1, we have V,_4(9) <In N for any N-expert trial sequence § even if the outcomes
y; € [0,1] are continuous-valued. O

Example 4.4: Let L be the square loss Ley. As the second derivative 8? L(y, z)/dy? is constant,
the second derivative of the function ¢ of Lemma 4.1 is 0 whenever ¢ = 1/7, and hence (4.1)
trivially holds. Since ¢, = 1/2, we let A be the Generic Algorithm 3.7 with ¢ = 1/2 and
n = 2. Then by Theorem 4.2 we have Vi, 4(5) < %ln N even if the trial sequence S contains
continuous-valued outcomes.

Consider now the more general case that at trial ¢, the experts’ predictions z;; and the
outcome y; are in a known range [s;, s; + 7¢]. Let x;i = (24, — s¢)/re and y; = (ye — 8¢) /14, and
let g; be the prediction of the Generic Algorithm when it is given these scaled inputs 96272» and

21

outcomes y;. Then Theorem 3.8 applies to this scaled sequence of trials. For an algorithm that
predicts with §; = s; + r:; we then have the following loss bound, if we choose n = 2 and the
initial weights to be equal:

L A\ 2 £ 2
_ — ¥y In NV
g (L yt) < min (yt wt’) + n . (4.3)
1<i<N = 2

=1 Tt

We can consider (4.3) as giving a loss bound similar to (3.14), but with a loss function that
changes dynamically as the ranges of z;; and y; vary. Note that achieving this bound requires
that s; and r; are known before the prediction ; is to be made. This is the case, for instance,
if the outcome y; is assumed to be within the range defined by the smallest and largest expert
prediction at trial . Another special case is that before the first trial, we know that z; and
y; will always be in some range [9,5 4+ R]. We can then take r, = R for all ¢, and (4.3) is
equivalent with
Zf: £ , RN

~ N2 .
— < — :
(y¢ — Ut) _lglaniZI (ye —2e0)" + 5

=1

Note that if the range of y; is not bounded, loss bounds of the above form cannot be
attained. To see that, let N = 2, and consider a one-trial sequence in which the first prediction
vector is (—R/2, R/2). The outcome is chosen by an adversary to be either y; = R/2 + VK
ory, = —R/2— V'K, depending on whether the algorithm’s prediction was negative or not.

2
Then the loss of the best expert is K, and the loss of the algorithm is at least (R/Q + \/K) =

K + RVK + R?/4. Thus, if we let K grow, the additional loss of the algorithm grows as
Q0 (\/K)) 0
Since the absolute loss L, does not even have a first derivative everywhere, the technique

of Lemma 4.1 does not give any results for this loss function. In the next subsection we devise
a new algorithm particularly for this problem.

4.2 The Vee Algorithm

We now show how the loss bounds obtained for the absolute loss with binary outcomes can
also be achieved when the outcomes are continuous-valued. The results of this section were
obtained independently by Vovk [18].

We call our algorithm the Vee Algorithm. In choosing the prediction it is now necessary
to explicitly also consider other outcomes than just y = 0 and y = 1. We will show that the
prediction can still be computed in time O(N log V).

Algoritm 4.5 (The Vee Algorithm): As the Generic Algorithm 3.7, except that we have

-1
fixed the loss function to be the absolute loss, the parameter ¢ to be (2 In H-%) , and
predicting is done as follows:

Prediction: On receiving the ¢th input x¢, let Y = {0,1,241,...,2¢n } and vy = we;/We

Predict with any value ¢; that satisfies the condition

— A < 7 < mi A 4.4
max{y—A(y)} < §e < min{y+A(y)} . (4.4)
where N | |
In(>7;0 vy e TV %0s
D e

22

It is easy to see how the prediction §; can be obtained in time O(N) once the values

N
(y) = Y e
=1

have been obtained for all the N + 2 choices of y. Let x} be a vector that contains the
components of the prediction vector x; sorted into an ascending order. Thus, 2}, < a} ., for
1 <7< N — 1. The vector x} can be obtained in time O(N log N). We show how all the sums
s(y) for y € {0,2¢1,...,2¢n,1} can be obtained in time O(N) given the sorted prediction
vector x}. To unify notation, write 95;,0 = 0 and ¢ n4+1 = 1. Note that for 0 <7 < N 41 we
can write s(x} ;) = a; + b; where

J
_ EICHEE
a; = E :”m@ g
=1

and

N
b= 3 g
i=7+1
We have ag = 0, and by can be computed in time O(N). Further, given a; and b; we obtain
a;+1 and b;4q in time O(1) by

UCRTS)

Ajt1 =€ aj + Ut 41

and
' ' '
b]‘_|_1 = _”(g”w_l’t,ﬁl) (b] — j+16_77($t,]+1_1’w))
2,

Hence, the prediction g, if it exists, can be found in total time O(N log N).

We see in Lemma 4.6 that there always is a prediction g; that satisfies (4.4) and that (4.4)
implies |y— 9| < A(y) for all y € [0, 1] and not merely for y € {0,1 }, which was the requirement
in the Generic Algorithm. Hence, we now get for continuous-valued outcomes y; € [0, 1] the
bound (3.20) that was previously obtained for binary outcomes y; € { 0,1 }. Note that if (3.20)
holds for y; € [0, 1], it actually holds for all y;, provided we still have z¢; € [0, 1]. This is because
moving y; outside the range of the experts’ predictions increases every |y; — ;| as much as it
increases |y; — 9|, and the coefficient 1/(21In H-%) that appears in front of |y; — 2¢,| in (3.20)
is greater than 1. Again, the parameter 5 can be tuned as mentioned in Example 3.14, and the
scaling method of Example 4.4 can be used if the values z;; are not in the range [0, 1].

For the absolute loss, (3.12) has a simple geometric interpretation. Figure 4.1 gives an
example of the graphs of the left-hand side |y — 3| and the right-hand side A(y) as functions
of y, fixing § = 0.58 and x = (0.33,0.83,0.97,0.52). The left-hand side of the inequality is
represented by a vee-curve with its tip at (7,0). The graph of A has a nondifferentiable tip
at each value y = z;. The condition (3.12) states that the vee-curve must be below the graph
of A at y. For continuous-valued outcomes we wish (3.12) to hold for y € [0, 1] and hence the
vee-curve to be below the graph of A everywhere. If we were to move the tip of the vee to the
left of 0.51, the right arm of the vee would intersect the A-curve at the value y = 0.97. Hence,
the value of the maximum on the left-hand side of (4.4) is roughly 0.51. Similarly, the minimum
on the right-hand side is about 0.63, since moving the tip of the vee over this value would make
its left arm intersect the A-curve at y = 0.33. For binary outcomes we only required (3.12) to
hold for y = 0 and y = 1, which gives the weaker condition that the vee-curve must be below
the graph of A at the endpoints.

23

0.2 0.4 \0.6 0.8 1

Figure 4.1: Example graphs of the functions A (above) and Laps (below).

For binary outcomes, the loss bound (3.20) was previously shown for a whole family of
algorithms defined by a number of different prediction and update factors ay; [2], as was briefly
explained in Example 3.14. In the continuous case we have less freedom. Suppose we were to
use ap; =1— (1 —e May;, and let N =1, x=(0), and n = 1. We would then have A(0) =0
and 1—A(1) = —0.316, and hence the condition (4.4) would not hold for any g;. The Algorithm
WMC [13] does work for the continuous case, and is allowed to use any update that satisfies
(3.21). However, its worst case bound has 1 —e™" in the denominator instead of 21n
hence it is slightly worse than the bounds given here.

H-%’ and

As we noticed in Example 3.14, for binary outcomes it was possible to choose the prediction
7¢ as a function of the weighted average of the experts’ predictions. If the outcomes are allowed
to be continuous-valued, this is not possible any more. To see that there is no function f such
that g = f(3°; vsi2¢ ;) guarantees (4.4) to hold, we consider two cases. First, let v, = (0.3,0.7)
and @ = (0,1), so >, vs;2¢; = 0.7. For the value n = 1, the left-hand side of (4.4) is
approximately 0.72, and we obtain a constraint 0.72 < f(0.7) for f. On the other hand,
considering v; = (1,0) and x; = (0.7,0) on the right-hand side of (4.4) gives a contradictory
constraint f(0.7) < 0.70.

We now show that a prediction that satisfies (4.4) always exists and satisfies the conditions
of Theorem 3.8.

Lemma 4.6: Let v, € [0, 1] with >, v;; = L and x; € [0, 1], and let > 0. Then a prediction
Uy that satisfies (4.4) exists. Further, (4.4) implies |y — 9| < A(y) for all y € [0,1].

Proof We prove the existence of §; by showing that

y—Ay) <z+ A(2) (4.5)

holds for all ¥, 2z, v, and x;. Define

N N
g(v.x,y,2)= 3> vwjexp (=n(ly — xil + [z = 2;)) + (y = 2)2m(2/(1+ 7)) . (4.6)

=1 7=1

24

Then (4.5) is equivalent to g(vy,%¢,¥y,2) < 1. The second derivative d*g(v,x,y, 2)/0z? is
defined and positive if z; ¢ {0,y,z,1}. Thus it suffices to show g(v,x,y,z) <1 for N =4 and
x =%, = (0,9,2,1). In this restricted case the second derivative %g(v,x,,y, 2)/02* is positive
if z ¢ {0,y,1}. Furthermore, since A(z) > 0, (4.5) trivially holds if z > y. Thus it suffices
to show (4.5) for 2 = 0, y > 0 and x = x;, = (0,y,0,1). Finally, since the second derivative
%g(v,xp,y,0)/0y? is positive, we are left with the case 2 =0,y =1 and x € {0,1 }N. In this
case, the original inequality (4.5) can be rewritten as

In((1=pe”+p)+In(l—ptpe™”) | 14
2 - 2
where r = 3. v;2;. This holds for all 0 < p < 1 because the function In is concave.

A similar argument based on second derivatives shows that for y € [0, 1], the value y — A(y)
obtains its maximum and the value y + A(y) its minimum when y € {0,1,2¢4,...,2;n}. O

Lemma 4.6 immediately implies the following result.

Theorem 4.7: Let S = ((X1,91),--.,(Xe,y)) be a trial sequence with x; € [0,1]N and y; €
[0,1] for all t. Let L be the absolute loss and A be the Vee Algorithm 4.5. We then have

wi,i .
Lossp(A,5) < ~Inwy + rhossi(é:, 5)
o 21n H'%

for all v.

5 Further work

One of the most challenging open problems is to give tight bounds for the additional loss of
the prediction algorithm compared to the loss of the best expert for even more general classes
of loss functions than those considered in this paper. When the outcomes y; are binary, it might
be possible to produce such bounds for arbitrary loss functions. The next challenge is to extend
the results for continuous-valued outcomes to more general loss functions. Another direction
worth exploring is to let outcomes be discrete valued with more than two choices. The recent
results of Chung [5] address some of these problems.

In this paper we restricted the predictions of the experts to lie between zero and one,
except in specific examples where we have indicated how scaling tricks can be used. It would
be nice to do a thorough investigation of how scaling the range of the variables affects the
results. Bounding some norm of the prediction vector might also lead to interesting problems.
Restricting the range of the predictions of individual experts is related to bounding the infinity
norm of the prediction vectors.

It would be interesting to see whether the alternative update rules defined by (3.21) for the
absolute loss work for other loss functions. As we have seen, it is sometimes possible to obtain
the prediction as a function of the weighted average of the experts’ predictions. We would like
to know exactly when this simplification is possible without weakening our bounds, or with
weakening them only slightly.

In this paper we have given bounds of the additional loss of our algorithms over the loss of
the best expert. A more challenging problem is to bound the additional loss of the algorithms
over the best linear combination of experts [12, 4, 11]. The only worst-case loss bounds for the
latter case that have been obtained were for the square loss function. Hopefully, some of the

25

results of the present paper can be generalized to the linear combination case. An intermediate
case worth exploring is the case of bounding the additional loss of the algorithm compared with
the best “stretched” expert, i.e., an original expert multiplied by some positive constant.

Acknowledgments

We would like thank David P. Helmbold for his significant help in developing the Vee
Algorithm.

References

[1] Patrick Billingsley. Probability and Measure. Wiley, New York, NY, 1986. Second Edition.

[2] N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, D. Haussler, R. E. Schapire, and M. K.
Warmuth. How to use expert advice. Technical Report UCSC-CRL-94-33, Univ. of Calif.
Computer Research Lab, Santa Cruz, CA, 1994. An extended abstract appeared in STOC
'93.

[3] N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, and M. Warmuth. On-line prediction and
conversion strategies. In Computational Learning Theory: Furocolt “93, volume New Series
Number 53 of The Institute of Mathematics and its Applications Conference Series, pages
205-216, Oxford, 1994. Oxford University Press.

[4] N. Cesa-Bianchi, P. Long, and M. Warmuth. Worst-case quadratic loss bounds for on-line
prediction of linear functions by gradient descent. Technical Report UCSC-CRL-93-36,
Univ. of Calif. Computer Research Lab, Santa Cruz, CA, 1993. An extended abstract
appeared in COLT ’93.

[5] T. H. Chung. Approximate methods for sequential decision making using expert advice. In

Proc. 7th Annu. ACM Workshop on Comput. Learning Theory, pages 183-189. ACM Press,
New York, NY, 1994.

[6] T. Cover. Behavior of sequential predictors of binary sequences. In Proceedings of the
4th Prague Conference on Information Theory, Statistical Decision Functions and Random
Processes, pages 263-272. Publishing House of the Czechoslovak Academy of Sciences, 1965.

[7] A. P. Dawid. Prequential analysis, stochastic complexity and bayesian inference. Bayesian
Statistics. To appear.

[8] A.DeSantis, G. Markowsky,and M. N. Wegman. Learning probabilistic prediction functions.
In Proc. 29th Annu. IEEFE Sympos. Found. Comput. Sci., pages 110-119. IEEE, Computer
Society Press, Los Alamitos, CA, 1988.

[9] M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual sequences. IFFF
Transactions on Information Theory, 38:1258-1270, 1992.

[10] Janos Galambos. The Asymptotic Theory of Fxtreme Order Statistics. R. E. Krieger,
Malabar, FL, 1987. Second Edition.

[11] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Technical Report UCSC-CRL-94-16, University of California, Santa Cruz,
Computer Research Laboratory, June 1994.

[12] N. Littlestone, P. M. Long, and M. K. Warmuth. On-line learning of linear functions. In

Proc. of the 23rd Symposium on Theory of Computing, pages 465-475. ACM Press, New
York, NY, 1991.

26

[13] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212-261, 1994.

[14] N. Merhav and M. Feder. Universal sequential learning and decisions from individual data
sequences. In Proc. 5th Annu. Workshop on Comput. Learning Theory, pages 413-427. ACM
Press, New York, NY, 1992.

[15] J. Mycielski. A learning algorithm for linear operators. Proceedings of the American
Mathematical Society, 103(2):547-550, 1988.

[16] V. Vovk. Aggregating strategies. In Proc. 3rd Annu. Workshop on Comput. Learning Theory,
pages 371-383. Morgan Kaufmann, 1990.

[17] V. Vovk. Universal forecasting algorithms. Inform. Comput., 96(2):245-277, 1992.
[18] V. Vovk. Unpublished manuscript, October 1994.

[19] M. J. Weinberger, N. Merhav, and M. Feder. Optimal sequential probability assignment
for individual sequences. IEEFE Transactions on Information Theory, 40(2):384-396, March
1994.

27

