
A taxonomy of raceconditions.D. P. Helmbold, C. E. McDowell�UCSC-CRL-94-34September 28, 1994Board of Studies in Computer and Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064abstractParallel programs are frequently non-deterministic, meaning they can give di�erentresults when provided the same input. These di�erent results arise because variations inthe timing of the multiple threads cause the threads to access shared resources in di�erentorders. The phenomena that cause the non-deterministic behavior have been (and continueto be) variously referred to as access anomalies, race conditions or just races. In a recentpaper, Netzer and Miller made an important contribution to formalizing and standardizingadjectives that can be applied to \races."In this paper we continue this e�ort by presenting a re�ned taxonomy for races in parallelprograms. The terminology we suggest is not always consistent with that used previouslyand we describe why we believe our terminology is more descriptive.Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Pro-gramming, D.2.5 [Software Engineering]: Testing and Debugging - Debugging Aids, TracingAdditional Keywords and Phrases: trace analysis, race detection, event ordering�This work was partially supported by the National Science Foundation grant # CCR-9102635.



1. Introduction 11 IntroductionParallel computers are an increasingly important part of high performance computing.A signi�cant number of these machines are programmed using a conventional language withextensions for creating threads1 and some form of explicit synchronization (e.g. doall or forkwith message passing). Many of these programs are intended to be deterministic, but due tosynchronization errors are nondeterministic. Although some programs may be intentionallynondeterministic, errors can result in additional unwanted nondeterminism. In both casesit may be desirable to identify the sources of nondeterminism when debugging a program.This is particularly useful for those programs that are intended to be deterministic and mightalso be useful for intentionally nondeterministic programs provided the information aboutsources of nondeterminism is presented in a suitable manner.Informally, a \race" exists between two program events if they conict (e.g. one readsand the other writes the same memory location) and their execution order depends on howthe threads are scheduled (this intuitive notion is formalized in Section 2).Before you can design and build a tool to detect races in parallel programs you must �rstdetermine:What ordering relationships should hold between statement instances in a pro-gram?Having done that, you then build a tool to determine when those ordering relationships donot hold.In this paper we examine all possible ordering relationships that can hold between twoprogram events and classify each possibility as either a non-race or belonging to one of fourclasses of races. We further re�ne our terminology for races by considering four additionalorthogonal attributes of races: the a�ect on control ow, the severity, and the feasibility.2 Events and RacesInformally, an execution of a program contains a race if the result of some computationalstep depends upon the scheduling of the individual threads of execution2. Netzer and Miller[NM92] developed a formal model of races that served as a starting point for our development.Their model includes two orthogonal attributes of races: with attributes general and dataon one axis and feasible, apparent, and actual on the other axis. They de�ne a data race asa pair of conicting accesses that can overlap (i.e. are not atomic or protected by some typeof critical section) and a general race as conicting accesses where the access order is notguaranteed. An actual race is one that actually occurred in a particular execution and only1For the purposes of this paper, thread, task and process are equivalent and we will use thread throughout.2Within this de�nition we assume that the values read from an external clock are part of the �xed inputrather than the result of a computational step. Without this assumption even sequential programs cangive di�erent results on di�erent executions. The focus of this paper is on nondeterminism introduced byinsu�cient synchronization.



2 2. Events and Racesapplies to general races. A feasible race, as the name suggests, is a race that did not occurbut does occur in another execution. An apparent race is one that appears possible basedonly the limited information in a trace, but cannot occur.In the remainder of this section we formalize our notion of a race and extend Netzerand Miller's categorization. We assume that any thread's execution can be represented by asequence of atomic operations.De�nition 1: An event is a contiguous sequence of one or more atomic operations executedby a single thread.Although events are not necessarily atomic, we can represent each event by an atomicbeginning and an atomic ending. For our purposes an execution of the program is anyordered list of event beginnings and endings that adheres to the program semantics. Notethat di�erent observers might see di�erent execution orders when examining the same run ofthe program (see [Lam78]). This is not a problem as we are primarily interested in the set ofall possible executions rather than identifying a single execution associated with a particularrun of the program.Our de�nition of \event" is rather broad and can result in events that are \too big." Inparticular, if a single event may include several synchronization operations, the events mayoverlap in time but the subparts of the event that might cause a race could be properlyordered by the synchronization operations that are part of the event. This could result inspurious or harmless races being reported. In practice the events for a programming systemshould be su�ciently small to distinguish accesses to shared resources that are separated bysynchronization. One example of how spurious races can be reported is when two properlysynchronized tasks that access shared memory are treated in their entireties as single events.The two events would be concurrent and any shared accesses would also appear concurrentat this level of granularity.Some kinds of races require the identi�cation of events across executions. We would likean equivalence relation allowing us to determine when two events from di�erent executionsare the same. Because events are associated with source statements, it is possible to drawconclusions about the program statements from which the events are derived. For ourequivalence between events we treat any conditional access to a shared resource as if itwere explicitly represented by the program's ow of control. For example, if array A[] isa set of shared variables then the assignment A[i] := expr is treated as a case statementthat branches on the value of i. The main e�ect of this assumption is that all instances ofa simple statement (De�nition 2) access the same shared memory locations. Note, however,that di�erent instances of a compound statement can access di�erent memory locations.Furthermore, we treat the evaluation of the branch condition in a compound statment likea simple assignment statement.De�nition 2: A simple statement is a syntactic portion of a program such that if any in-struction in the machine level translation of the statement is executed every instruction fromthe machine level translation of the statement will be executed. A compound statementis any group of syntactically contiguous simple statements.



2. Events and Races 3De�nition 3: Two events in di�erent executions of the same program are equal (i.e. canbe considered to be the same event) if� they occur in the same thread,� their constituent atomic operations are derived from the same simple source programstatements, and� both events are the nth occurrence of their constituent atomic operation sequences bythe thread.Thus an event is uniquely identi�ed by its source program statements, the thread exe-cuting it, and a count indicating the number of times its source program statements havebeen previously executed by its thread. Two events are not the same if they represent thesame compound statement but di�erent simple statements. For example, the statement if(x=0) then x:=1; else x:=2; can be executed two di�erent ways. The test can succeed,causing the execution of x:=1;, or the test can fail, causing the execution of x:=2. As thesehave di�erent sequences of atomic operations they cannot be called the same event.Note also that two events are the same if they are the nth execution of their entire actionsequences. Partial executions of their action sequences attributed to other events don't count.Consider the statement if (x=0) then x:=1; else x:=2; occurring in a loop which getsexecuted several times. Assume that the level of event granularity is such that each executionof this compound statement is represented by its own event (either a true; x:=1 event or afalse; x:=2 event). Now the third true; x:=1 event in one execution is equal to the thirdtrue; x:=1 event in another execution, even if they occur in di�erent iterations and/or afterdi�erent numbers of false; x:=2 events.De�nition 4: Let events e1 and e2 be two events occurring in an execution of a program.If e1 completes before e2 begins then we say e1 happened before3 e2, written e1!e2. If e1begins before e2 ends and e2 begins before e1 ends then the two events overlap. If either e1and e2 overlap or e1!e2, then we write e2 6!e1.Note that the happened before and overlap relationships are for a particular executionand that if e1!e2 (or e1 6!e2) then both e1 and e2 occur in the execution.De�nition 5: Fix an input to the program. Event e1 is ordered before event e2 if in everyexecution of the program on the input in which either event occurs, e1!e2.Two events, e1 and e2, are ordered if e1 is ordered before e2 or e2 is ordered before e1.De�nition 6: Fix an input to the program. Event e1 is semi-ordered before event e2 iffor that input� every execution where both e1 and e2 occur, e1!e2,� there exists an execution containing e1 but not e2 and� every execution that contains e2 also contains e1.Two events, e1 and e2, are semi-ordered if e1 is semi-ordered before e2 or e2 is semi-orderedbefore e1.3This is a strictly temporal relation and should not be confused with Lamport's causal \happened before"relation [Lam78].



4 3. Ordering properties of RacesDe�nition 7: Two events are unordered if they are neither ordered nor semi-ordered.De�nition 8: Two simple statements conict if they both access the same shared resourceand one (or both) of the accesses modi�es the resource. The accesses can be explicit as inaccess to a shared variable or implicit as in a communication port used for message passing.De�nition 9: Two di�erent events conict if they represent the execution of conictingsimple statements.De�nition 10: Fix an input to the program. If two conicting events are unordered (withrespect to the input) then there is a race between the two events on the input.It is sometimes desirable to discuss races and the ordering relationships of statements inprograms (in contrast to events in executions of programs).De�nition 11: A program contains a race between statements s1 and s2 if there is an inputI and events e1 and e2 such that:1. e1 represents the execution of an instance of s1,2. e2 represents the execution of an instance of s2,3. s1 and s2 contain (or are) conicting simple statements, and4. there is a race between e1 and e2 on input I.Note that a race between statements is a property of the program whereas a race betweenevents is a property of the program/input pair.3 Ordering properties of RacesEach execution provides certain ordering or concurrency relationships between the eventsin the execution. A race exists for a particular input if there are two conicting events, e1 ande2, and either an execution (on that input) where e1 and e2 overlap or a pair of executions(on that input) where e1!e2 in one execution and e2 happens before (or without) e1 in theother.When only a single input is considered, we can classify races based on the relationshipsbetween the two events in the various executions. Given two events e1 and e2, there may beexecutions where:1. e1!e2,2. e2!e1,3. e1 and e2 overlap,4. e1 occurs but e2 does not,5. e2 occurs but e1 does not, or6. neither e1 nor e2 occur.



3. Ordering properties of Races 5For any two events some set of the six possible orderings above will occur when all executionsare considered. Given six distinct elements there are 64 (= 26) distinct sets possible. Eachset potentially represents a di�erent kind of event pair (e.g. always ordered, sometimesordered, never ordered, never occur together...). Some of the 64 sets are not very interesting.The presence of Case 6 executions, where neither event occurs, does not a�ect the existenceof races. This reduces the number of potentially interesting possibilities to 32 (see Table 3.1below).Of these 32 combinations, two describe ordered events (1 only and 2 only), and two com-binations describe semi-ordered events (1 with 4 and 2 with 5). In three other combinationsat least one of the two events is never executed (4 only, 5 only, and none of 1{5). Theremaining 25 combinations describe races. We divide these into four di�erent kinds of races.Recall that races between events are with respect to a particular input. This provides the�rst of four orthogonal attributes we will assign to a race. We call this the ordering attribute.concurrent race: In every execution of the program on the �xed input where both e1 ande2 occur, they overlap.general race: There exist executions of the program on the �xed input in which e1 and e2overlap and executions where either e1!e2 or e2!e1.unordered race: There exist executions of the program on the �xed input in which e1!e2and executions in which e2!e1 but no execution in which e1 and e2 overlap.artifact race: There exist executions of the program on the �xed input where e2 occurs bute1 does not and there exist executions where either e1!e2 or e1 occurs but e2 does not,but there are no executions on the �xed input where either e1 and e2 are concurrentor e2!e1.Table 3.1 summarizes these de�nitions in the 29 cases where both e1 and e2 occur. Notethat the de�nition of artifact races should be read as symmetric (if the conditions are metwith e1 and e2 swapped, then it is still an artifact race).Our de�nition of a concurrent race may appear strange at �rst (it did to us). If twoevents can happen at the same time, it would appear that either could happen before theother, especially if they do not contain synchronization primitives. The following two-threadcode fragment gives one example of how events without synchronization must be executedconcurrently.begin beginx:=1; x:=0if (x=0) then y:=0; y:=1end endThe event \x:=1; test x; y:=0;" can only happen if variable x is set to zero concurrently.Thus if these are the only assignments to x, then the event \x:=1; test x; y:=0;" mustoccur concurrently with the event \x:=0; y:=1;" in the other thread.Netzer and Miller's [NM92] \data race" is equivalent to the union of both our concurrentraces and general races. Speci�cally they use data race to describe any race where the eventsdo overlap in some execution. Our classi�cation is more speci�c (i.e. it separates their data



6 4. Other attributes of racesThere exists executions wheree1!e2 e2!e1 overlap e1 only e2 onlyyes yes yes y/n y/n general raceyes yes no y/n y/n unordered raceyes no yes y/n y/n general raceyes no no y/n yes artifact raceyes no no y/n no not a raceno yes yes y/n y/n general raceno yes no yes y/n artifact raceno yes no no y/n not a raceno no yes y/n y/n concurrentno no no yes yes artifact raceTable 3.1: Summary of possible ordering relationships.races into two subgroups) and we believe the quali�er \data" is more descriptive when usedas we do below.We re�ne Netzer and Miller's term \general race" into our categories \concurrent",\general", and \unordered". We feel that this re�nement is useful, as the di�erent kindsof races typically result from di�erent kinds of errors. Unordered races are a particularlyimportant category as they typically result from the use of mutual exclusion when a strongerkind of synchronization is required, such as using critical sections to protect non-associativeor non-commutative modi�cations to a shared variable. Concurrent races occur when twoevents interact in an unforeseen way, and mutual exclusion is an appropriate �x. Our generalraces are similar to unordered races except that they indicate a total lack of synchronizationrather than the presence of mutual exclusion.We have borrowed the term \artifact race" from Netzer and Miller [NM91], these racesresult from other races in the program. In their later paper [NM92] they do not mentionartifact races and their de�nition of general and data races does not include what we nowde�ne as artifact races. Although not identical to their earlier de�nition of \artifact," ourde�nition is intuitively similar and hence our decision to use the same term.An artifact race can never be in the group of \�rst" races (as de�ned in [NM91]). Inparticular, an artifact race has the property that the result of some \earlier" race a�ectsthe ow of control, preventing an event from being executed. This observation suggested anorthogonal attribute of races which we describe next.4 Other attributes of racesRaces can have other important attributes in addition to their ordering properties. Herewe briey discuss three other attributes: whether the race a�ects the program's control ow,the severity of the race, and the feasibility of the race.



4. Other attributes of races 74.1 Control vs DataA control race causes a thread to take di�erent paths depending upon how the race isresolved. If the control ow is not a�ected by a race then it is a data race.By de�nition, every race involves conicting data accesses and could be intuitivelythought of as a data race but we reserve data race for those races that only a�ect dataand not control ow.4.2 SeverityA third potentially useful attribute of a race is its severity. We currently identify twoseverity levels, critical and benign. A benign race has no external e�ect on the resultsof the program (Padua and Emrath [EP88] call this internal non-determinism), while theoutcome of a critical race can a�ect the program's result. Protecting a critical section withlocks (mutual exclusion) does not prevent a race, but can make races benign. Consider thefollowing code fragments with x initialized to zero.lock; lock;x := x + 1; x := x + 2;unlock; unlock;The two updates to x can happen in either order and thus create a race. However, thevalue of x is always three after both critical sections have been executed. Whenever a setof commutative updates to a shared variable must be completed before a variable is usedand there are only unordered races between the updates, the races between updates arebenign. This might not be the case if the two assignment statements were able to executeconcurrently (so that both read the original value of x). Unordered races are often benignwhen they are caused by commutative4 updates to a shared variable. The goal of at leastone tool [Ste93] is to ignore the unordered races and report only concurrent and/or generalraces.4.3 FeasibilityFinally we note that previous work in race detection has distinguished between feasibleand infeasible races [NM92]. This is really a characteristic of the race detection system whichresults from the need for approximate solutions. Any race that is reported but could neveractually occur is infeasible.4Even when protected by locks, non-commutative updates (such as when the \x := x + 2;" statementis replaced by \x := x * 2;") are still likely to be sources of nondeterminism.



8 5. Conclusion5 ConclusionWe have presented a classi�cation of races that includes four orthogonal attributes, eventordering, control versus data, severity and feasibility. Whenever possible we have adoptedterminology that has been previously proposed. Our race taxonomy is complete in that itencompasses all possible races. It also separates races into di�erent categories based on thetype of error that typically causes that kind of race (e.g. unordered races indicate mutualexclusion was used when a stronger form of synchronization is necessary). Further re�nementis possible, but any type of race can be precisely categorized by our taxonomy (Table 3.1).



References 9AcknowledgementThe taxonomy of races was signi�cantly inuenced by an extended email dialogue withRob Netzer.References[EP88] P. A. Emrath and D. A. Padua. Automatic detection of nondeterminacy in parallelprograms. In Proc. Workshop on Parallel and Distributed Debugging, pages 89{99,May 1988.[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. CACM,21(7):558{565, July 1978.[NM91] R. H. B. Netzer and B. P. Miller. Improving the accuracy of data race detection.SIGPLAN Notices (Proc. PPOPP), 26(7):133{144, 1991.[NM92] Robert H.B. Netzer and Barton P. Miller. What are race conditions? Some issuesand formalizations. ACM Letters on Programming Languages and Systems, pages74{88, March 1992.[Ste93] N. Sterling. WARLOCK - a static data race analysis tool. In Proc. Winter Usenix,pages 97{106, 1993.End of paper. Total pages = 13.


