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Abstract

A popular technique for rendition of isosurfaces in sampled data is to consider cells with sample
points as corners and approximate the isosurface in each cell by one or more polygons whose vertices
are obtained by interpolation of the sample data. That is, each polygon vertex is a point on a cell edge,
between two adjacent sample points, where the function is estimated to equal the desired threshold value.
The two sample points have values on opposite sides of the threshold, and the interpolated point is called
an intersection point.

When one cell face has an intersection point in each of its four edges, then the correct connection
among intersection points becomes ambiguous. An incorrect connection can lead to erroneous topology
in the rendered surface, and possible discontinuities. We show that disambiguation methods, to be at
all accurate, need to consider sample values in the neighborhood outside the cell. This paper studies the
problems of disambiguation, reports on some solutions, and presents some statistics on the occurrence
of such ambiguities.

A natural way to incorporate neighborhood information is through the use of calculated gradients
at cell corners. They provide insight into the behavior of a function in well-understood ways. We
introduce two gradient-consistency heuristics that use calculated gradients at the corners of ambiguous
faces, as well as the function values at those corners, to disambiguate at a reasonable computational cost.
These methods give the correct topology on several examples that caused problems for other methods

we examined.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/ITmage Generation — display
algorithms; 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling — boundary
representations; curve, surface, solid, and object representations; geometric algorithms

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Surface topology, ambiguity, surface fitting, scientific visualization,
isosurface extraction

This report will appear in ACM Transactions on Graphics. Some images have low resolution to facilitate
electronic distribution.



1 Introduction

The sampled volumetric data common to many scientific applications has been visualized using a variety of
approaches. One is to generate approximate tsosurfaces that correspond to specific threshold values within
the data [FKU77, CS78, AFH80, KDK86, WMW86, LC87, CDLT87, Blo88, CLL*88, Win88, GN89, KB89,
UA90, Kal91, KDHB92]. An isosurface clearly indicates where in space the volumetric data values at a given
threshold value lie.

Polygonized isosurfaces can be used with common graphics rendering algorithms available in hardware
and software, and provide the possibility of realtime interaction with the data. However, the clarity of the
isosurface may itself be misleading. For many applications, the underlying function that the sampled data
represents is not known, and the isosurface produced is at best a good guess. While the exact spatial location
of the isosurface may not be critical, its topological features, such as connected components and the presence
of holes (tunnels) or cavities, are normally important.

This paper explores the problems of generating topologically correct approximate isosurfaces from sample
data where the underlying function is not available for resampling. Sections 2 and 3 characterize situations
in which topological ambiguities can arise in cell-at-a-time processing (a cell normally consisting of eight data
values at the corners of a cube). Section 4 discusses several approaches to disambiguation. We demonstrate
that correct disambiguation on any reasonably broad class of volumes must consider sample data values
besides those at the eight cell corners, and propose several techniques. Sections b and 6 describe experimental
results on scientific data. Section 7 draws conclusions, and some technical matters are covered in appendices.

2 Design Objectives of Isosurface Algorithms

Many of the isosurface techniques in the literature were designed for specific applications. As a result, they
may have implicit assumptions about the nature of the data that would not hold in another application. As
applications proliferate it becomes important to have a general-purpose method that is free of application
dependencies. Toward this end we identified a number of desirable features of a general-purpose polygonal
isosurface algorithm:

1. The algorithm should yield a continuous surface: Each polygonal edge should be shared by exactly two
polygons, or lie in an external face of the entire volume [Sri81, USH82].

2. The isosurface should be a continuous function of the input data: A small change in the threshold
value or some data value should produce a small change in the isosurface.

3. The isosurface should be topologically correct when the underlying function is “smooth enough”.

4. The isosurface produced should be neutral with respect to positive and negative sample data values
(relative to the threshold): Multiplying the samples (and threshold) by —1 should not alter the surface.
In this criterion we depart from earlier studies [LV80, Sri81, USH82] in which the “object” (usually
represented by positive values) and its complement are assigned different degrees of connectivity.

5. The algorithm should not create artifacts not implied by the data, such as bumps and holes.

6. Preferably, the algorithm should be efficient enough for real-time interactive use.

Some of these criteria may not seem important when the resolution is fine enough that the eye does not notice
an occasional “glitch”. However, visualization systems will inevitably provide a zoom ability for close-up
examination of “interesting” features of a scene. Incorrect topology can easily become visible and lead to
misleading or at least confusing images under close-up examination, regardless of the original resolution.

Of the above criteria, only objective 4 is likely to be controversial. This issue is discussed further in
Section 5.1.



3 Isosurface Generation

Two approaches have been taken to represent regions of constant value within the volume data. The first, the
cuberille method, considers the subdivisions of space created by the sample points and represents constant
value regions as a set of polyhedra (generally cubes) that include the values of interest [HL79, AFHS8I,
HU83, CHRUS85, Udu89]. The second approach, explored in this paper, is to generate a two-dimensional
isosurface in three dimensions by interpolating the function values between data points. We shall call this
the beveled-surface method, following Kalvin’s terminology. Each “method” is actually a group of methods
described by various researchers.

Two advantages of the cuberille method are that it is fast, and it does not attempt to generate a surface
in more detail than the data unambiguously specifies. One disadvantage is that the image produced is
naturally blocky, because all surface patches are orthogonal to one of the coordinate axes. However, it can
be made to appear smoother by the deft use of surface shading and filtering [CHRUS85, Udu89]. A second
problem is that the surface changes if positive and negative are inverted; the changes may be topological as
well as spatial. These changes result from the difference between 1-connectivity and 3-connectivity [USH82]
(see Definition 3.2). See Section 5.1 for further discussion.

Beveled surfaces permit patches with any orientation, so have the potential of providing a closer
approximation to the underlying surface. However, this greater generality may carry with it greater costs
in both processing times and storage space. Many of the methods described in the literature have the same
problem that inversion of positive and negative can cause both spatial and topological changes to the surface.
Efficiency problems are addressed elsewhere [Kal91, WV(G92]. This paper addresses the topological problems
in beveled surface construction.

Early isosurface approaches first generated two-dimensional contour lines for parallel planes running
through the data, and then connected the contour lines into three-dimensional isosurfaces [FKU77, CS78,
WH79, CIBL83]. More recent approaches create the isosurface by examining the three dimensions at once.

Wyvill et al. [WMWS86] developed a method that represents the isosurface as a polygon mesh. They
compute samples in a three-dimensional rectangular lattice and analyze cells in this lattice individually.
Although they were primarily interested in an application for which they knew the underlying function,
their method of constructing the isosurface within each cell does not require such information, so can be
used in a more general setting. It is summarized in Section 3.2, and serves as a starting point for our work.
They recognize ambiguities, and disambiguate by estimating the function value at the center of an ambiguous
face; the corners that agree with the central estimate are considered connected. In the interest of efficiency,
they estimate the center value by averaging the four corner values (the facial average method, discussed
later).

Koide et al. reported a more complex method based on decomposition of the cell into tetrahedra, and
polygonizing the isosurface within each tetrahedron [KDKS86]. Ambiguities are implicitly resolved by the
decomposition.

Lorensen et al. reported a simpler approach [LC87, CLLT88], where the data samples were essentially the
only information available about the underlying function. Their method, called “marching cubes” | achieves
performance by polygonizing each cell based on a precomputed table of 15 topologically distinct plus-minus
patterns of cell corners. In the original implementation, “marching cubes” did not recognize ambiguities.
As pointed out by Diirst [Diir88], that method could yield a discontinuity between cells. Later researchers
[Bak89, Nat91, Kal91], as well as the original authors, described modifications that ensured continuity. Some
variants are discussed in Section 4.1.

Gallagher and Nagtegaal [GN89] generalized the above approaches to irregular lattices that frequently
occur in finite element analysis, and considered higher-degree surfaces instead of triangulation. They also
do not address ambiguities. Winget also briefly discusses isosurfaces resulting from finite element analysis



[Wing&8].

Subsequent to the presentation of a preliminary version of this work at a workshop [WVG90], other
researchers have developed additional methods to resolve ambiguities using an assumption of trilinearity in
each cell [Nat91], or bilinearity in each face [NH91].

3.1 Nature of the Data

Isosurfaces may be used to represent scalar data values that are distributed in a three-dimensional coordinate
system, such as density values generated by a CT-scan or temperature values from computational fluid
dynamics. For this paper, we assume scalar data distributed in a regular three-dimensional rectangular
lattice, though the issues raised are equally important to irregular and sparse data. The algorithms generalize
straightforwardly to “warped” lattices, in which each cell still has eight corners.

Definition 3.1: A data sample is referred to as a voxel. The cubical region bounded by eight neighboring
voxels is called a computational cell, and the cell’s corners called cell vertices. [

Strictly speaking, a cell is a rectangular parallelepiped, but by rescaling Az, Ay, and Az to 1 we can
simplify the nomenclature and presentation.

There are several notions of neighborhood (adjacency) in a rectangular lattice. Unfortunately, the
terminology is not uniform in the literature [LV80, Sri81, USH82]. The next definition gives the terminology
we shall use, and the alternates seen. (See also Section 4.1.)

Definition 3.2: Two cell vertices are said to be k-adjacent if they differ in at most k coordinates, and differ
by at most 1 in any coordinate. Thus, they are:

1-adjacent if they are connected by a cell edge; this type of adjacency has also been called O(6)-adjacency
because a cell vertex has 6 neighbors with this type of adjacency.

2-adjacent if they have a cell face in common (also called O(18)-adjacent).
3-adjacent if they have a cell in common (called O(26)-adjacent).

We abbreviate 7-adjacent to adjacent when no confusion is likely.
A set of cell vertices is k-connected if, by defining an edge between every k-adjacent pair in the set, the
result is a connected graph. []

3.2 Nature of the Isosurface

An isosurface i1s implicitly specified by an underlying scalar function of three variables and a threshold value.
Following Wyvill et al. [WMW86], who call the underlying function the “field function”, generation of an
isosurface involves determining, for each cell, whether the underlying function takes on the threshold value
within the cell, and if so, approximately where the isosurface lies.

We shall call a cell vertex positive if its value is greater than the threshold, and negative if not; thus our
terminology translates the threshold to the origin. (The case is which the sample value is exactly at the
threshold introduces technical problems. We elide these problems in practice by choosing the threshold to
be distinct from all sample values.) When some vertices of a given cell are positive and some are negative,
the isosurface must pass through the cell and the problem becomes finding where it does so.

Definition 3.3: An intersection point is the point at which the isosurface is estimated to cross the edge
connecting two adjacent cell vertices that have different signs with respect to the threshold, usually using
linear interpolation.



Such intersection points become vertices of one or more topological polygons, whose edges lie in the faces
of the cell. We call them such because they specify the topology of the isosurface within the cell. Polygons
joining more than three intersection points are normally nonplanar. []

Unless the underlying function that was sampled to produce the voxel values is known and can be
resampled, the data are inherently incomplete, and the isosurface produced is at best a good approximation
of the true one. Certain “smoothness” assumptions are implicit in all interpolation-based methods:

1. If two adjacent cell vertices both have values on the same side of the threshold, the isosurface is assumed
not to pass between them, although the surface may actually pass between them any even number of
times.

2. If two adjacent cell vertices have values on opposite sides of the threshold, the isosurface is assumed to
pass between them just once, although the surface may actually pass between them any odd number
of times.

The above two assumptions are made by linear interpolation. Of course, unsupported smoothness
assumptions may be incorrect. As pointed out by Winget, isosurfaces in fluid dynamics problems can
have discontinuities in the gradient, while the surface itself is continuous [Win88]. Furthermore, very small
connected components may be entirely missed, for example, in the case where the surface lies entirely within
one cell, and the voxel values of all cell vertices are positive. These problems are inherent to sampling, and
only finer sampling or further knowledge of the function will deal with them correctly.

To quantify smoothness relative to the sampling interval in another way, we use the following definitions.

Definition 3.4: We say that a function is locally linear in a cell (relative to a given threshold) if there is a
linear function (of three variables) whose values at the cell vertices are on the same side of the threshold as
the sample values. That is, the positive and negative cell vertices can be separated by a plane.

Similarly, we say that a function is locally quadratic in a cell (relative to a given threshold) if there is a
quadratic function that induces the same set of positive and negative vertices as do the sample values. []

When one considers the eight vertices defining a cell as being positive or negative, as defined above, there
are 2b6 possible combinations of “positive” and “negative” vertex values. Using symmetries of the cube,
these can be grouped into 22 cases [LV80, Sri81]. Eight of these cases are inverses of another case, in which
the positive and negative values are reversed. Treating inverses as the same case, there are 14 cases, as
shown in Figure 1, which we refer to as the major cases. Lorensen and Cline [LC87] give 15 cases because
they do not consider the reflection of case 11 to be the same case. Our case numbering follows theirs with
the exception of this omitted case.

It is easy to see that cases 1, 2, 5, 8 and 9 are locally linear; in these cases the black vertices are 1-
connected, and so are the white. Case 11 also has only one connected component of each color, but cannot
be locally linear, as a separating surface needs to slope one way as it cuts the top face, then slope a different
way as it cuts the bottom face.

All of the cases except 13 are locally quadratic; an hyperboloid i1s always able to separate the colors.
However, for case 13 1t turns out that any quadratic function satisfies the identity that the sum of the values
at the black vertices (of case 13) equals the sum of the values at the white vertices; but the former sum must
be positive and the latter negative to agree with the sample values on sign (relative to the threshold).

3.3 Topological Ambiguities

We now examine the topologies that occur among the cases of Figure 1, and identify those that are ambiguous.
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Figure 1: Fourteen topologically distinct major cases.

Definition 3.5: A positive cell edge is one that connects two positive cell vertices; a negative cell edge is
one that connects two negative cell vertices.

A cell is topologically ambiguous if either the positive vertices of that cell cannot be connected together
via that cell’s positive edges into a single connected component, or the negative vertices cannot be connected
by negative edges. In other words, either the set of positive cell vertices is not 1-connected, or the set of
negative cell vertices is not 1-connected (see Definition 3.2).

An ambiguous face is a cell face that contains a diagonally opposite pair of positive vertices and a
diagonally opposite pair of negative vertices (see Figure 2). []

Since the isosurface separates certain cell vertices, the connectedness of the vertices and the topology of
the isosurface go hand in hand.

The principal manifestation of topological ambiguity occurs when two positive and two negative corner
values of one cell face are diagonally opposite each other. The isosurface will then intersect all four edges.
By examination of the possible cases, which are 3, 6, 7, 10, 12, 13, and their inverses, we observe that there
is no configuration of the remaining four vertices of the cell that allows us both to connect the positive pair
using positive edges and to connect the negative pair using negative edges. It is unclear from the cell vertex
values alone whether to separate the positive vertices, separate the negative vertices, or even to have the
contour lines cross and create four separate components (see Figure 2).

Consider the construction of the topological polygons, which are nonplanar in general. Each cell face
has four edges, an even number of which will contain intersection points. If two edges of a face contain
intersection points, then the only choice is to connect them with an edge, which will eventually belong to
a topological polygon in each of the two cells that share that face. However, if a cell face has intersection
points in all four of its edges, there are choices of how to connect up pairs to produce polygonal edges, as
shown in Figure 2, which justifies the name ambiguous face.

Notice that case 4 in Figure 1 is also ambiguous as a cell, but has no ambiguous face. The ambiguity is
whether the isosurface within this cell consists of two triangles or one “tube”. Having no ambiguous face,
there is no possibility of producing discontinuities. Therefore the treatment of this case is an independent
issue, which we do not address in this paper. As seen in Table 1, this case rarely occurs. For simplicity, our
implementation produces two triangles, thus separating the black vertices of case 4. Natarajan studies case
4 (as well as more complicated versions of the “long diagonal”, which occur in cases 6, 10, and 12) under
the assumption that the underlying function is trilinear within the cell [Nat91].
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Figure 2: Possibilities for connecting four intersection points. Choice (a) puts the negative corners in the
same connected component; choice (b) puts the positive corners in the same connected component; and
choice (¢) is ambiguous.
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Figure 3: Center and Center-Lower Cell Values of F} and F5

3.4 The Problem of Disambiguation

A number of approaches can be taken to pick a particular topology in ambiguous cases. If the underlying
function is known, it may be possible to resample the data until the ambiguity is resolved [Blo88, KB8&9].
However, we are concerned with problems where resampling is impossible or impractical. This is frequently
the case when the data originate from physical measurements, as in medical applications, or from complex
computations, such as simulations and partial differential equations.

In cases of sampled data, it is often not possible to determine whether the choice of topology was correct:
though the underlying function may be continuous, its exact form is generally not known. However, the
polygonal representation of the isosurface can be checked for continuity. The surface is C° (positionally)



continuous if and only if each edge i1s shared by exactly two polygons, except for edges that lie in the boundary
of the entire volume, which must occur in exactly one polygon.

The topology is certainly incorrect if the polygonal isosurface 1s not continuous. However, even if the
polygonal isosurface is continuous, its topology i1s not necessarily in agreement with the corresponding
isosurface of the underlying function.

In any cell with an ambiguous face the underlying function cannot be locally linear (see Definition 3.4).
To see why, observe that the intersection of any linear isosurface with a cell face is one straight line, which
cannot induce an ambiguous configuration of positive and negative cell vertices. Thus we have focused on
treating locally quadratic functions correctly, as this is essentially the best smoothness that can be hoped
for. (Actually, case 13, in which every face is ambiguous, is not even locally quadratic.)

We have devised a number of functions that prove useful in testing the ability of isosurface algorithms to
determine correct topology. Two of these functions are of particular interest:

Fi(z,y,2) = 4y+4(x—2)?—5 (1)
Fo(z,y,2) = Hy—1D?+2@—2)? =2 +2-3)"+1 (2)

Their actual isosurfaces for real numbers ranging from 0 to 3 in the three dimensions are shown in Figure 4.a.
(In our examples, the threshold is zero unless otherwise specified.) We considered the lattices that result
from sampling these functions at the integers 0 through 3, that is, a 4x4x4 array. Figure 3 shows the values
of the center cell and the cell below the center for F; and Fy. Figure 5.a show the 1sosurfaces of each function
for the center cell in 1solation.

The salient point about these two functions is that the central cell of the 4x4x4 sample array looks exactly
the same for both functions. However, one function represents a single connected surface, while the other
represents two lobes of an hyperboloid. This pair of functions leads us to one of our principal findings:

Proposition 3.1: When the underlying function is not locally linear, it is impossible (in general) to
determine the correct surface topology in a cell solely by examination of the voxel values at the vertices
of that cell.

Proof: Functions F; and F> demonstrate the proposition. Sampled as discussed above, they cannot be
distinguished in the central cell, yet have different topologies there. ||

This proposition explains why anomalies are bound to occur in unfortunate cases in any approach which
works only with values of one cell at a time.

3.5 Assurance of Continuity

This section addresses the problem of ensuring that the representation of the isosurface is continuous. It is
known that a polygon mesh defines a continuous surface if and only if each edge occurs exactly twice, unless
it is on the boundary of the entire data grid [Sri81, USH82]. Whereas correct topology is not achievable
without knowledge of the underlying function, we shall see that continuity can be guaranteed by a variety
of methods.

Definition 3.6: An edge of a polygon mesh is called anomalous if it is interior to the volume and does not
occur exactly twice, or if it is on the volume boundary and does not occur exactly once. Such an edge is
either disconnected, meaning that it occurs only once (leaving a hole, or void), or it is multiple-branched,
meaning that it occurs too often. []

When cells are polygonized independently, some discipline is needed to assure that compatible decisions
are made in the two cells that share an ambiguous face. A simple and practical principle may be employed
to assure that this 1s always the case:



Proposition 3.2: (Facial Plane Principle) If the method of disambiguation for ambiguous faces employs
only values in the plane of the face, and is invariant under rotations and reflections, then the isosurface as
defined by topological polygons will be continuous.

Proof: Each nonboundary face is shared by two cells. If the face is ambiguous, by hypothesis the same
edges are defined in that face for each cell. Thus these edges occur exactly twice in the polygon mesh, once
in a topological polygon of each cell. Similarly an edge in an unambiguous face occurs once in a polygon of

each cell. ]

Aside from ambiguous faces, whenever an edge that lies in a cell face belongs to two polygons in one
cell, there is a danger that multiple-branched edges may occur: that edge will normally occur also in the
adjacent cell, and the edge is now in three or more polygons. This discontinuity may occur if many-sided
topological polygons are tessellated by edges (chords) within a cell face rather than through the interior of
the cell. A special case of in-face chords occurs when facial polygons are created, which has been done in
some tables in an attempt to avoid holes in the surface (see Section 4.1). If facial polygons from adjacent
cells coincide, a membrane-like appearance results, as can be seen in Figure 4, (b, right). See Section 4.8 for
further discussion.

4 Approaches to Disambiguation of Sampled Data

Methods for disambiguation can be broadly classified according to two properties.

1. Is the data treated as boolean or metric?

Boolean methods consider only whether the data is above or below the threshold. Metric methods also
take into account how far the data is above or below the threshold. (Here we are classifying only how
the connectivity is decided, not how the surface is represented.)

2. Is the region that affects the disambiguation decision simple or extended?

Simple methods consider only the sample values in the cell being processed, which contains the
ambiguous face. Ertended methods consider additional sample values, in the original data, but outside
the cell.

We have investigated numerous approaches to disambiguation that cover the combinations of these properties.
They are briefly summarized here and described in more detail in subsequent sections. Computational
experience is reported in Section 5.2.

Simple Boolean

This category includes the simplest policies, such as “always connect the positive diagonal,” which is implicit
in early boundary tracking methods [AFHS81].

The marching cubes algorithm [LC87, CLL*88, GN89], uses the signs of the eight cell vertices (relative
to the threshold) to index a table of 15 cases containing a polygonization of the isosurface. The table covers
cells with up to 4 positive vertices; a cell with 5 or more positive vertices is inverted before lookup. This
method may lead to discontinuities because an ambiguous face can be resolved differently, according to the
values in the opposite face of the cell.

A table of 22-23 cases may be constructed in such a way that the resolution of an ambiguous face depends
only on that face. This approach guarantees continuity. Several variants have appeared. Some were designed
to correct the problem of discontinuities in marching cubes.

Since triangular faces cannot be ambiguous, another method to disambiguate implicitly is to decompose
each cell into tetrahedra, and interpolate linearly on each tetrahedral edge [KDKS86, Blo88, DK91]. The



b. Various incorrect topologies. Marching cubes on F; (left);

Facial Average, Bilinear, and UA-R2 on F} (center); UA-R1 on F; (right).

v

c. Correct topologies. Gradient heuristic methods are correct on both.

Others are correct on only one: UA-R1 (F} only);
Marching Cubes, Facial Average, Bilinear, and UA-R2 (F; only).

Figure 4: Renditions of F(x,y, z) = 4y+4(z—2)? =5, and Fa(z,y,2) = 4(y—1)*+2(x—2)? =2(x+2-3)% +1,
over the range [0,3] in X,Y, 7 (a 4x4x4 sample volume).
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a. Isosurface 0 of quadratic functions Fy (left) and F3 (right).

b. Polygonized.

Figure 5: Center cell comparisons for F; and F,. Simple methods choose the same topology for both
functions. UA-R1 chooses (b, left); Marching cubes, UA-R2, Facial Average, and Bilinear choose (b, right).
Gradient heuristic methods correctly choose (b, left) for Fy and (b, right) for Fs.

decomposition is not isotropic, and requires an arbitrary choice. The resulting topology depends on this
choice.

Extended Boolean

We are not aware of any work in this category.

Simple Metric

Wiyvill et al. introduced the first isosurface method that constructed beveled surfaces [WMWS86]. They used
the Facial average value to choose which corners to connect in an ambiguous face. This is the average value
of the cell vertices at the corners of that face.

A newer proposal is the Bilinear model. A trilinear function is often used for interpolating sampled data.
The isosurface of the trilinear function that fits the cell corners may be used for disambiguation [Nat91]. In
a cell face the model simplifies to bilinear [NH91].

Another possibility that has never been implemented is Ambiguous representation: Ambiguities can be
rendered ambiguously as a compromise between topologies. The main idea is to partition an ambiguous face
into four regions that meet at a single point, and are alternately positive and negative.

11



Extended Metric

A new class of methods, Gradient consistency heuristics, is introduced here. In these methods, the choice
among ambiguous subcases is made using estimated gradient information. Since we estimate gradients using
the central difference method, they contain information about function values outside the cell. The heuristic
is to choose a topology that is “most consistent” with the gradient information, in some sense. We have
implemented two such heuristics, which we call the center-pointing gradient method, and the quadratic fit
method.

Tricubic interpolation is a more expensive interpolation method which also considers values outside the
cell in generating the isosurface.

4.1 Simple Boolean

The first approach examined was the use of a single table. We studied several variations of “marching cubes”
tables, which we call “major case” tables. These variants determine topology based only on the signs of the
eight corner values relative to the threshold, and pick one topology for each case. The table entry for each
case specifies the edge intersections that should be connected to create triangles representing the isosurface
within the cell [LC87, CLL*88]. The marching-cubes table lookup method is devised for speed, at the
occasional expense of correct topology.

Part (b, left) of Figure 4 shows how the original table [LC87, CLL*88] polygonizes function Fy. This
table polygonizes cells with b or more positive vertices by using the inverse major case; e.g., “+++++-+-" 1ig

treated the same as “

————— +-+”, Note that the method leaves a discontinuous hole in function F}, a problem
pointed out by Diirst [Diir88]. This occurs because, when two cell vertices diagonally opposite across a face
are of one sign and the other six cell vertices are of the other, the table always chooses to treat the two
as two disconnected components and separates them using two triangles. The center cell of F} contains
two diagonal negatives on the lower face and the rest positives, whereas the cell beneath has two diagonal
positives on the upper face and the rest negatives, hence a hole. This approach does correctly separate the
two lobes of the hyperboloid in function F5, where the center cell is as in F; and the lower cell is the same
case upside down. The picture is similar to Part (c, right) of Figure 4.

Udupa and Ajjanagadde have described three simple boolean connectivity policies (their terminology
differs) [UA90]. Positive values are considered to represent the “objects”. (In the cited paper “R, = Ry”
corresponds to our label “UA-R1”, etc.; the “UA” gives the authors’ initials.)

UA-R1 Always connect negative diagonals (often associated with corrected versions of marching cubes

[LCS7, Bak89, Kal91]).
UA-R2 Always connect positive diagonals (often associated with cuberilles [AFH81, HU83, CHRUS85]).

UA-R3 Connect negative diagonals if the face is parallel to the zy-plane; otherwise, connect positive
diagonals.!

Policy UA-R3 originates in the cited paper. Typically, CT volumes have a greater spacing between sample
values in the z direction. However, the paper does not discuss pros and cons of the various alternatives in
terms of representing the underlying physiology. Rather, they motivate UA-R3 in terms of computational
efficiency for boundary tracking.

A proposal to correct the discontinuity problems of marching cubes was made independently by several
researchers [Bak89, Kal91, Nat91, NH91]. It treats cells with 5 or more positive vertices independently of
their inverses, by always connecting the negative corners of any ambiguous face. Therefore, it corresponds

1Of course, one can choose any one of the coordinate planes to be treated differently, but in practice Udupa and Ajjanagadde
chose the zy-plane for their datasets.
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to the UA-R1 connectivity policy. This method also may be implemented by a single major case table, this
time with 23 cases. It chooses the correct topology for function Fi, as shown in Figure 4, part (¢, left).

A problem with the UA-R1 policy is illustrated by function F,. Both the center cell and the one below
it are the same case; the lower cell is an upside down boolean version of the center cell. The result 1s an
incorrect “tube” connecting the two lobes of the hyperboloid, as shown in Figure 4, part (b, right).

If the positive and negative regions of F; and F were reversed, the table based on UA-R1 would correctly
separate the lobes of the hyperboloid in Fy (Figure 4, part (c, right)). However, for Fy this method would
produce the incorrect result seen in Figure 4, part (b, center). This indicates the problem with using different
approaches for inverse cases, and motivates criterion 4 in Section 2.

Note that policy UA-R2 produces the same results on the original functions that policy UA-R1 produces
on the inverted functions. On this example with a single ambiguous face, policy UA-R3 will correspond
to either UA-R1 or UA-R2, depending on the choice of coordinate axes. In general, whether a decision by
UA-R3 agrees with UA-R1 or with UA-R2 is governed by the orientation of the ambiguous face.

4.2 Simple Metric

Methods in this category include the facial average method, bilinear models, and ambiguous representation.

Facial Average Values

The facial average value method is employed by Wyvill et al. [WMW86]. The facial average value is the
average of the four corner values of an ambiguous face. It is also equal to the center value of a bilinear
interpolation across the cell face.

The facial average method does differentiate between ambiguous topologies, but not in a particularly
satisfactory manner. Because the choice is based only on the face values, a continuous isosurface is guaranteed
by the facial plane principle, Proposition 3.2. However, the method will sometimes choose incorrectly on
underlying functions as simple as quadratics.

Part (b, center) of Figure 4 shows how the facial average method interprets the location of the isosurface
for Fy. Note that, although the surface is continuous overall, the topology of the center cell is incorrect.
In particular, the facial average value (the estimated center value) is positive, while the actual function
value there is negative. Facial averaging does correctly leave the two lobes of the hyperboloid in function F»
separate (Figure 4, Part (c, right)).

The treatment of the center cell is shown in isolation in Part (b, left) of Figure 5. Notice that the choices
of topology in the center and lower center cells of function Fy are incorrect, but consistent with each other.
The positive corner values of the shared face are further from the threshold than the negative corner values,
so the method interprets the negative voxels in the shared face as topologically separate, although they are
part of one component in the actual function.

In the lower center cell, these edges in the shared face are part of the same topological polygon. The
result is a surface with a jagged saw-tooth look.

All of the metric methods have been implemented using a supplementary “subcase table” when the major
case i1s ambiguous, as described in Section 4.7. With this implementation, the facial average method has
performance speed close to that of the simple boolean methods.

Bilinear Model

Trilinear interpolation among the eight cell vertices 1s a method often used to estimate the behavior of the
sampled data between sample points, when extracting isosurfaces [CLLT88], for direct volume rendering
[Lev88, UKS88], and for producing more sample points from those already provided [HB86]. It is attractive
because it is simple to calculate.
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The trilinear model of the cell may be used for connectivity decisions, as described by Natarajan [Nat91].
Nielson and Hamann considered bilinear models in each face [NH91]. In each cell face, the trilinear function
reduces to a bilinear function that depends only on the corners of that face. Thus, these methods obey the
facial plane principle of Proposition 3.2. It follows that C'° (positional) continuity is achieved in the shared
faces between neighboring cells, for regular grids.

The iso-contour lines of the bilinear function form an hyperbola. If the product of the positive values
(based on threshold 0) at the corners of the ambiguous face exceeds the product of the negatives, the positives
are joined by this hyperbola; if the opposite is true, the negatives are joined. The model is used only for
disambiguation decisions. Polygonization is based on linear interpolations, as with other methods.

Like the facial average method, this method will sometimes choose incorrectly on underlying functions
as simple as quadratics. Part (b, center) of Figure 4 shows the incorrect surface produced by the bilinear
model of Fy. The explanation is similar to that given for the facial average method. Part (c, right) shows
its treatment of Fy, which is correct.

The trilinear model can also be used to subdivide the cells, possibly producing a smoother isosurface
than that produced by simply approximating the surface with a table of polygons [CLLT88]. However, this
has no effect on the topology, and F; will still emerge with the saw-tooth image.

Ambiguous Representation

An approach that was briefly explored is to render ambiguities ambiguously. It is possible to produce a
single ambiguous representation (see part (c¢) of Figure 2) for each of the base cases and use a single major
case table (as in Section 4.1) without producing grossly incorrect topologies. This “noncommittal” method
deserves further exploration, and may be useful for degenerate cases.

4.3 Tricubic Interpolation

We now investigate extended metric methods. These methods use sample values external to the cell, to
attempt to find the topology more accurately.

A more expensive approach is to fit a tricubic polynomial to the cell, using the 4x4x4 region of voxels
surrounding the cell to specify the function. Tricubic interpolation has the advantage of taking into account
the behavior of the neighborhood beyond the cell of interest.

The tricubic function used is determined by the 64 voxel values surrounding the cell of interest. The
function is the 3-dimensional volumetric version of the Catmull-Rom spline [CR74, FDFH90]. Details are
given in Appendix A. This method produces a tricubic function within the cell that is C'' continuous with
tricubic functions in neighboring cells at faces.

Parts (a) of Figure 4 show the surfaces produced when the resolution is increased by a factor of 5, the
volume is filled in by tricubic interpolation, and regular isosurface software is used on the results, which
contain no ambiguous cells.

Tricubic interpolation is the first method that we have discussed that correctly picks the cell topology for
both functions Fy and Fs, as shown in Figure 5.a, where the center cell is isolated. Also, it can be proven to
yield a continuous isosurface, using Equation 18 and the facial plane principle, Proposition 3.2.

However, the expense of tricubic interpolation makes it impractical as merely a disambiguation method.
(It may still be of interest as a higher order method for the entire volume, but that is beyond the scope of this
paper.) One computation of F'(z,y, z) requires over a thousand arithmetic operations, and the method just
described requires over 100 such computations per celll The decisive difference from other methods is that
it must be applied to all cells, not just the ambiguous cells, because cubic interpolation is not necessarily
consistent with the smoothness assumptions stated in Section 3.2. That is, discontinuities will result from
performing linear interpolation in a nonambiguous cell and cubic interpolation in an adjacent ambiguous
cell.
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Figure 6: Change of coordinate system for gradient heuristic methods.

Later sections describe significantly more efficient methods that use neighborhood information in the
form of computed gradients to disambiguate.

4.4 Gradient Consistency Heuristics

Gradient consistency heuristics use the estimated gradients at the cell vertices to pick topologies in ambiguous
cases, in this way using information from beyond the cell. The gradient direction is normal to the isosurface,
and its magnitude indicates how rapidly the function is changing. Gradient consistency heuristics encompass
a class of methods that use gradient information to disambiguate; we shall describe two methods that we have
investigated and implemented, called the center-pointing gradient method, and the quadratic fit method. In
some cases no additional computational cost would be incurred to calculate gradients, because they might
also be needed for the shading model. In the interests of modularity, our implementation calculates gradient
components separately, as needed, for disambiguation.

The gradient gives an indication of the behavior of the function across the interior of the face. For our
heuristics, only the component of the gradient in the plane of the face is needed; e.g., if the face is parallel
to the z-y plane (z is constant) only the # and y components of the gradient are used. No direct gradient
information is given in the data, so wherever a computation using gradients is mentioned, it should be
understood that the gradients must be estimated from the data samples. Moreover, we nondimensionalize
by implicitly scaling Az = Ay = 1 before computing gradients. The computed gradients use the 8 points in
the plane of the face that are 1-connected neighbors of the corners of the face.

Recall that no linear function of two variables can fit an ambiguous face (Section 3.2); thus a quadratic
1s in a sense the simplest possibility. Both of our methods model the function in the cell face as a bivariate
quadratic that fits the corner values of the face exactly, and fits the (nondimensionalized, computed) gradients
at the corners with minimum squared error. (It is easy to see that this function is also the quadratic that
fits the corner values of the face exactly and fits the 1-connected neighbors with minimum squared error.)
Fitting the corner values of an ambiguous face exactly ensures that the same edges have intersection points
in the quadratic model as in the data.

15



Let the corners of the face in the local (#,y) coordinate system be (0,0), (Az,0), (0, Ay), and (Az, Ay);
let us label them as ll, Ir, ul, and ur, respectively. We use the nomenclature even to refer to points [l and
ur, and odd to refer to points {r and ul. We denote the z-component of the estimated gradient by v/ f, and
the y-component by v/ f.

Our gradient heuristics are most easily explained in a transformed coordinate system (¢, u), as shown in
Figure 6, where

r = (t—u—i—%)AJ; (3)
y = (t+u+3)Ay

With some abuse of notation, we use f(¢,u) to denote f(z(t,u), y(t,u)). Gradients in the (¢, u) system are

(91) = (0 5)(%) @

Let us use the notation v/ f; iy and v/ f, u for the estimated gradient components in the x and y directions

given by

at point {{, with corresponding notations for 7 f; 11, / fu,u, and for other corners. Notice also that \7f; and
 fu are independent of Az and Ay.

A quadratic function of two variables has 6 coefficients. We shall represent it in the (¢, u) system described
by Equations 4 and 4.4 (see Figure 6) as:

Q(t, U) = c+ blt + bzu + a11t2 + 2a12tu + a22u2 (5)

For notation, let b denote the column vector of (b1, ba), let b” denote the corresponding row vector, and let
A be the 2x2 symmetric matrix of elements a;;.

Since we have four sample values and 8 computed gradient components to fit, we cannot expect to satisfy
all constraints with 6 degrees of freedom. As mentioned, we shall choose the coefficients to fit the sample
values exactly; Thus we require Q(—%, 0) = fu, Q(0, —%) = fir, etc. We easily get the following equations
from the exact fit requirements:

fu+ fir + fu+ fur = 4c+ $(a11 + ass) (6)
fur - fll = bl
ful - flr = b2

fu=fo = fu+ for = a1 — az)

With these equations we can eliminate all unknown coefficients from the expression for Q(¢, u) except for
a12 and c. In particular,

air = Q(fll + fur) —4c (7)
Q(flr + ful) —4c

@22

Then we require the gradient components fit with least square error. That is, let

E@t,u) = (by+ 2a11t + 2a10u — V fu(t, u))2 (8)
+ (bs + 2az0u + 2ay9t — 7 fu (2, u))?

which defines the squared error at each corner (¢, ). To minimize the sum over four corners, we must satisfy
the constraints:
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The symmetries cause b; and bs to drop out, leading to a reasonably simple solution:

¢ = %(fll‘i‘flr‘i‘ful‘i‘fur) (10)
+ (T fou + Vupr = Vuul — VStur)

a1z = %(_ Vv fu,ll - v.ft,lr + v.ft,ul + Vfu,ur)

4.5 Center-Pointing Gradient Method

We observe that fo = Q(0,0), the estimate of the function at the center of the ambiguous face, is simply ¢
in Eq. 11. In this equation, we see that fc can be thought of as providing a “correction term” to the facial
average method. Based on this improved estimate, the center-pointing gradient method disambiguates by
using the subcase table described in Section 4.7 (which is also used by the facial average method). That
1s, if fo 1s above the threshold, this method decides to connect the positive pair of corners, otherwise the
negative pair.

This approach successfully finds the correct topology for both Fy and Fs, as shown in Parts (d) of Figure 4
and 5. However, it can fail for quadratic functions, motivating the quadratic fit refinement discussed next.

4.6 Quadratic Fit Method

The quadratic fit method is a more sophisticated — and more expensive — gradient consistency heuristic.
Assuming that we believe a quadratic function provides a satisfactory local representation of the underlying
function in an ambiguous face and its immediate neighborhood, then the curves along which that quadratic
function is zero describe a conic section in the plane of the face, and the conic section determines the
topology in the face. This conic section is usually an hyperbola, but might be an ellipse, parabola, or,
in a very degenerate case, a pair of straight lines. Based on the topology induced by the conic section in
each ambiguous cell face, the quadratic fit method disambiguates by using the subcase table described in
Section 4.7 (which is also used by the facial average and center-pointing gradient methods).

A bilinear function, considered earlier in Section 4.2, is really a special case of a bivariate quadratic.
Besides greater generality, considering a general quadratic has the advantage that it is insensitive to a
change of coordinates.

Consider the quadratic function @Q(#, u) of Eq. 5, where the coefficients given in Section 4.4. We assume
the threshold is 0 in this discussion. If the curve implicitly defined by Q(¢,u) = 0 describes a convezr conic
section (an ellipse, parabola, or pair of parallel lines), the facial center (fc, used by the center-pointing
gradient method) must have the same sign as the diagonal pair of corners that are connected within the
conic section. However, in the more common case of an hyperbola, it is possible that the sign of the facial
center 1s opposite that of the connected diagonal corners. Geometrically, one lobe of the hyperbola “cuts
off” the facial center, so that it does not lie between the two lobes.

In hyperbolic cases, the sign of the facial center value (as estimated by the quadratic fit or center-pointing
gradients) is not necessarily indicative of which diagonal pair of corners to connect. However, the sign of the
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saddle point does indicate which diagonal pair to connect, as the saddle point is always between the lobes
of the hyperbola. This follows from the fact that the major axis of the hyperbola, which runs between the
two lobes, goes through the cell face, and Q(¢, ) has the same sign everywhere on the major axis as it does
at the saddle point.

Even in an hyperbolic case, it may be unnecessary to compute the saddle point. For example, suppose

)(0,0) has the same sign as Q(—%, 0) and Q(%, 0). Then if Q(¢,0) has no roots in the interval (—%, %), the
quadratic fit connects the corners on the ¢ axis, {{ and ur. If Q(¢,0) does have roots in this interval, then
the saddle point must be consulted. Similarly, when @(0,0) has the same sign as Q(0, —%) and Q(0, %), then
Q(0, u) is tested for roots.

The root test just described fails only when A is nonsingular Q(¢, «) has a unique saddle point at

(tS) = —lah (11)

us

This point may be outside of the cell face. Nevertheless, the remarks above concerning the major axis show
why the quadratic connects the cell corners that agree in sign with the saddle point.
It is most instructive to consider the change in value between the facial center and the stationary point:

Qlts,us) —Q0,0) = —gbTA™"D (12)

where the values of b and A were given in Section 4.4. Just as the center-pointing gradient method could be
viewed as giving a correction term for the facial average value, so can the quadratic fit method be viewed as
providing a correction term for the center-pointing gradient.

The sign of Q(ts,us) determines which diagonal pair to connect. However, if this value is zero, then
the conic section must be a pair of intersecting lines, a degenerate hyperbola, and we do not know which
pair to connect. This occurrence is very unlikely, as ) must factor into the product of two linear forms;
nevertheless, it points up the fact that any small value of Q(¢s, us) computed from noisy data is unreliable
for determination of topology.

As would be expected, the quadratic fit method always chooses topology correctly when the underlying
function is indeed quadratic, as are Fy and F5 in our running example. The renditions are shown in parts
(d) of Figure 4, and 5. Of course, it can choose incorrectly if the underlying function is not quadratic.

4.7 Subcase Tables

Several of the methods described earlier provide a procedure to decide, in each ambiguous face of an
ambiguous cell, whether to connect the positive pair of corners, or the negative pair, in the sense of section 3.3.
This section describes how our implementation translates these decisions into an actual polygonization for
the cell. The idea is to supplement the major table, which is sufficient for the unambiguous cases, by a
subcase table to handle the ambiguous cases in greater detail.

The signs of the eight cell vertex values are used as an index into a major case table; these indices range
from 0 to 255. If the major case 1s unambiguous, the major table simply contains a list of edges for the
polygons representing the isosurface in the cell.

However, if the major case is ambiguous, the major table contains a list of the ambiguous faces, where
a decision is needed whether to connect the positive corners or the negative corners, and an index into a
second table that describes the subcases of this ambiguous case. Each subcase specifies the polygonization
desired for a different possible topology for the case.

Figure 7 shows the subcase polygonizations for ambiguous major case 12 of Figure 1. The major table
entry for this case contains a list specifying that the front and left faces of the cell are ambiguous. The four
possible decisions are encoded as follows:
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Figure 7: Subcase Representations for Ambiguous Case 12.

00 means connect the negatives in both faces (as shown in lower left picture);

10 means connect the positives in the front face and the negatives in the left face (upper left);
01 means connect the negatives in the front face and the positives in the left face (upper right);
11 means connect the positives in both faces (lower right).

This two-bit integer is treated as an offset from the index that is also in the major table, to specify a precise
subcase table entry. The subcase table entry specifies the polygonization.

The subcase table was created by manually designing the polygons that should represent the ambiguous
cases for the major cases. A program then automatically generated the table for all 128 ambiguous cases
that can occur, by considering the mapping from the major cases to these cases.

4.8 From Topological Polygons to Surface Patches

As shown in Section 4.7, a topological polygon can have as many as 12 vertices. It remains to define the
surface patch of which it is the boundary. The usual way to do so is to subdivide such polygons into simpler
figures, such as triangles, which define a planar patch, and quadrilaterals, which define an hyperboloid patch.
For lack of a better word, we call this process “tessellation”. Tessellation is a topic in its own right. This
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Figure 8: Topological and “Tessellated” Polygons

paper, which is primarily concerned with deciding upon the topological polygons, will not treat this topic in
depth.

Our implementation tessellates by introducing chords through the cell interior. Figure 8 shows a
topological polygon defining the isosurface for a cell with three positive vertices forming one connected
component, and five negative vertices forming another. The topological polygon is pentagonal, with five
edges in the faces of the cell; it can be further “tessellated” for rendering into a triangle and a quadrilateral,
as shown. The quadrilateral could also be divided into two triangles by another interior chord.

Kalvin points out that it is important that the final surfaces not intersect themselves or each other, so
that they describe physically realizable objects [Kal91]. We shall call this the non-intersection property. He
proves that the “cuberille method” of disambiguation (always connect positive diagonals in ambiguous faces)
has this property.

There are certain topological polygons, involving multiple ambiguous faces, that cannot be triangulated
without introducing an in-face chord. (Nielson and Hamann have spelled out these cases in detail [NH91].) As
mentioned earlier, in-face chords are undesirable because they create discontinuities. Qur implementation
uses a combination of triangles and quadrilaterals to ensure that all chords are interior to the cell. This
ensures continuity, but does not ensure the non-intersection property. As the quadrilaterals are generally
hyperboloidal, further analysis of the surface (such as segmentation, area and volume) is difficult. (We thank
one of the referees for pointing out these issues.)

For completeness, we briefly describe a modification to our implementation that is sufficient to achieve the
non-intersection property. When necessary, a topological polygon is supplemented with an interior vertez,
which is the centroid, or “center of gravity”, of the vertices of its topological polygon. In this event, the
tessellation consists of rays from the centroid to the vertices of the topological polygon.

1. Let us call an ambiguous face overworked if both of its topological edges belong to the same topological
polygon. Interior vertices are needed only if a cell has two or more overworked faces (by an easy case
analysis). In this event (which we believe to be quite pathological), each topological polygon involved
with an overworked face requires an interior vertex.
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Figure 9: Intersecting surfaces within a cell can result from triangulation of certain topological polygons
(left). Introducing centroids as additional vertices eliminates the problem (right).

2. There is one situation in which two topological polygons involve overworked faces, as shown in Figure 9.
This is a subcase of our “case 13”. As shown on the left of that figure, chordal tessellation can produce
intersecting surfaces. On the right, centroids serve as interior vertices, and the surfaces are disjoint.

To prove that the resulting surfaces must be disjoint, we observe that the centroid of the lower polygon
is at most 1/3 from the bottom face of the cell, while the upper centroid is at most 1/3 from the top
face (where cell sides are unit length). Also, each centroid is at least 1/3 from each side face. The
conclusion follows by analytical geometry.

3. In other cases, of which there are several, one topological polygon is incident upon two or more
overworked faces. The only question is whether the rays from its centroid produce a self-intersecting
surface. So, imagine a sphere outside the cell whose center is the centroid. Project the edges of the
topological polygon radially onto this sphere. Clearly, the surface is self-intersecting only if some of
the resulting spherical arc segments intersect. But this is impossible, because then the corresponding
topological edges would also intersect.

Nielson and Hamann described a different way to define interior vertices, which is sufficient for their purposes,
but which does not handle the case shown in Figure 9 [NH91]. Non-intersection is not mentioned, but an
argument similar to that of case 3 above shows it to hold.

5 Results on Scientific Data

5.1 Connectivity Comparison on Medical Data

An earlier section discussed behavior of disambiguation methods on artificial functions, because in those
cases we know the correct behavior. With data from an application such as medical imaging, a clear-cut
determination of the correct behavior in all cases is not possible. One can only look at examples and form
a judgement about whether the underlying physiology is correctly represented. This section presents some
examples that are typical of our own observations.
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As stated earlier, disambiguation is essentially the process of deciding which pair of diagonal nodes to
consider connected in an ambiguous face. Recall the definitions of the simple boolean policies UA-R1, UA-
R2, and UA-R3 from Section 4.1. From the earlier discussion, we know that none of these methods can be
correct on both Fy and F,. Now we consider their correctness on medical image volumes, particularly in
comparison to the gradient heuristics.

We would expect UA-R1 to err on the side of disconnecting thin objects that should be connected.
Rusinek et al. have reported difficulty in visualizing thin bones with Kalvin’s “Alligator” method, which
uses UA-R1 connectivity [RNMKO91]. Their experiment used a CT-scan of a dry skull. On similar data, we
have also noticed that small tunnels sometimes appear in thin bones using UA-R1 connectivity, but they
disappear using others. However, without access to the original specimen we cannot be sure whether these
are pseudo-foramena (reconstruction artifacts), or actual foramena (small holes in the bone through which
nerves and blood vessels often pass).

On the other hand, UA-R2 would tend to connect distinct objects that are close to each, and to connect
nearby parts of an object that have no actual connection. Connectivity UA-R3, being a mixture, would have
one tendency or the other, depending on the orientation of the ambiguous face.

Figure 10 shows isosurface images based on magnetic resonance imaging (MRI) of a brain. The dataset
was distributed by University of North Carolina, Chapel Hill. The threshold was 650.5. The top image was
based on connectivity UA-R2; UA-R3 was very similar. The bottom image was based on the Quadratic Fit
method; the Center-Pointing Gradient method was very similar.

In the top image, separate convolutions are connected by “bridges”. Arrows show sites of numerous
bridges in the central sulcus (A, B), pre-central sulcus (C, D), and elsewhere (E, F). The sites (A-D) are in
major sulci (deep fissures between convolutions). At these sites, UA-R2 and UA-R3 created 11-12 incorrect
bridges, the facial average method created 4, while UA-R1 and the gradient heuristic methods created none.

In the narrower fissures at (E, F) all methods that we studied created 5-7 incorrect bridges. These counts
are approximate, based on close-ups and cut-aways (see Figure 11); bridges may also be found at unlabeled
sites.

These data indicate that, when ambiguities do occur, the methods that use the most information tend
to be the most accurate. The simple boolean methods UA-R1-3, using only one bit, fare the worst. Notice
that simple boolean methods cannot be neutral with respect to sign inversion. The Facial Average method,
using information in the cell face only, is intermediate. The Gradient Heuristics, using information beyond
the cell face, fare the best. Of course, the large majority of cells are not ambiguous and all methods produce
the same surface elements in such cells.

5.2 Comparative Performance Measurements

The table-driven methods described above were evaluated on sampled data volumes derived from CT-scans, a
finite element analysis in computational fluid dynamics (CFD), and a molecular data set. Their performance
was compared with respect to number of discontinuities, number of polygons produced, and CPU time.

The CT-scan volumes and the molecular data set consisted of scalar data arranged in a three-dimensional
rectilinear lattice. The CFD study was on a geometrically warped grid, but each cell had eight corners.
Statistics here refer to three sample volumes:

1. A CT-scan of a dolphin head with density values ranging from -1024 to 2563, provided by Ted Cranford
of UCSC. Thresholds 120.2 and 1125.2 on the dolphin detect the skin and bone surfaces respectively.

2. CFD data of an aircraft fin with density ranging from 0.1926 to 4.9775, provided by NAS at NASA-
Ames Research Center. Threshold 1.0 on the aircraft fin finds an isopressure surface.
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Figure 10: MRI isosurfaces of brain convolutions, threshold 650.5. Top image used UA-R2 connectivity.
Arrows indicates sites of some of the incorrect “bridges”. In the bottom image, which used Quadratic Fit
connectivity, most, but not all, bridges are absent.
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Figure 11: (Left) Detail view at site C of the previous figure, showing two “bridges” across the pre-central
sulcus, present in UA-R2 and UA-R3 images. (Right) Cut-away side view shows that “bridges” have full
dimensionality; the surface is continuous.

3. A quantum mechanics calculation of a high potential iron protein (“hipip”) generated by L. Noodleman
and D. Case of Scripps Institute. Threshold 0.0 on the protein detects the “nodal surface”.

Table 1 provides some statistics on the nature of the volumes and the frequency of the 14 major cases,
which are numbered as in Figure 1; we follow Lorensen and Cline [LC87], except that their cases 11 and 14
have been combined into our case 11. Inverse cases are included in the count of the non-inverted case. The
number in square brackets after the ambiguous cases indicates how many topological subcases there are for
the major case shown.

Table 2 compares four table-based methods in terms of number of polygons, number of disconnected
edges, and running times. Only the marching cubes table produced disconnected edges.

Running times indicated are the user CPU time plus the system CPU time to process the volume after
it has been read in through the generation of polygons but before display; the code included statistics
gathering, so time is not indicative of “production” performance. Statistics were done on a Sun Sparcstation
1 workstation. Note that running times for disambiguation methods are only slightly greater than those using
the original single table method (1a) without disambiguation. As mentioned before, these times include the
time for gradient calculations for the gradient-consistency disambiguation methods.

We have drawn the following tentative conclusions from the timing results, and confirmed their
reasonableness by inspection of the program:

1. Processing a cell with isosurface takes about 13 times as long as processing an empty cell. Nevertheless,
the overall cost (CPU time) of processing empty cells was 30 to 70 percent of the total cost.

2. Processing an ambiguous cell with the quadratic fit method takes about three to four times as long as
processing an unambiguous cell.
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Data Set Dolphin Dolphin | Blunt Fin | Protein
Threshold 120.2 1125.2 1.0 0.0

Number of Cells 3.718.003 | 3.718.093 | 31117 | 226,981
Cells with Isosurface 106,612 64,908 4,036 28,828
Ambiguous 3.1% 3.3% 5.6% | 0.67%
Case 1 : 19.7% 29.1% 21.4% 25.6%
Case 2 : 33.5% 29.3% 32.7% 37.0%
Case 3 : [2] 1.6% 1.4% 1.9% 0.3%
Case 4 : 0.2% 0.4% 0.3% 0.03%
Case b : 13.9% 19.9% 15.9% 17.5%
Case 6 : [2] 0.8% 1.3% 1.4% 0.3%
Case 7: [8] 0.4% 0.1% 1.0% | 0.01%
Case 8 : 27.9% 14.2% 22.1% 14.9%
Case 9 : 1.3% 2.8% 1.6% 4.1%
Case 10 : [4] 0.1% 0.1% 0.6% | 0.04%
Case 11 : 0.5% 1.0% 0.5% 0.18%
Case 12 : [4] 0.4% 0.3% 0.6% 0.1%
Case 13 © [64] 0.02% 0.0% 0.06% | 0.0%

Table 1: Case Frequency in Scientific Data. Ambiguous cases are followed
by number of subcases in brackets. Percentages are based on cells

intersecting the isosurface.

3. The cost of disambiguation is about five to ten percent of the overall cost of processing cells with

isosurface, and an even smaller percentage of total time.

This study also showed that the facial average disagreed with the gradient heuristic methods on how to
disambiguate 26 to 42 percent of the ambiguous cells. The two gradient heuristic methods disagreed with
each other about ten percent of the time.

Examples of the type of discontinuities possible using the original marching cubes table are shown in
Figure 13. The image is of the protein described above. Figure 13 shows a volume rendered with the original
marching cubes table. Holes are obvious using this approach; discontinuities of this type are not uncommon
on volumes in our experience. They are made more obvious by zooming in on the volume so that the

contributions of individual cells show details.

6 Topological Accuracy of the Heuristics

Without knowing the underlying function that produced the samples, or at least some properties of that
function, no definite statements can be made about the topological accuracy of any disambiguation method.
Unfortunately, such information seems to be rarely available to researchers on volume visualization for widely
distributed volume data sets. Absent such information, we took two approaches toward evaluating accuracy.
One was to create test volumes with known underlying functions, so true resampling could be performed
on ambiguous cell faces. The other was to evaluate the smoothness of volumes with the aid of Fourier

transforms.
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a. Dolphin threshold 120.2 b. Dolphin threshold 1125.2

c. Hipip threshold 0.0 d. Aircraft fin threshold 1.0

Figure 12: Isosurfaces analyzed:
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Data Set and Threshold
Method Dolphin (120.2) | Dolphin (1125.2) | Blunt Fin (1.0) | Protein (0.0)
Marching Cubes
Polygons Generated 127,624 82,988 5069 35,327
Disconnected Edges 4300 2552 284 192
CPU Seconds 222 209 3.2 19.5
Facial Average
Polygons Generated 128,835 83,720 5154 35,429
Disconnected Edges 0 0 0 0
CPU Seconds 221 210 3.2 19.5
Center-Pointing Gradient
Polygons Generated 128,839 83,639 5196 35,405
Disconnected Edges 0 0 0 0
CPU Seconds 223 211 3.5 19.6
Quadratic-Fit Gradient
Polygons Generated 128,804 83,633 5196 35,403
Disconnected Edges 0 0 0 0
CPU Seconds 223 211 4.1 19.7

Table 2: Comparison of Methods on Scientific Data.

6.1 Tests on Known Underlying Functions

To evaluate the topological accuracy of metric disambiguation heuristics, we generated 40 distributions of
electric charges. For each distribution we produced one volume based on sampling the magnitude of the
electric field, and one volume based on sampling the electric potential.? These kinds of functions were
chosen because they do represent physical phenomena, and are similar to “influence functions” used in
implicit surface modeling. Experimental design details of 400 sample runs are described in Appendix B.

For each sample run, we ran four metric disambiguation heuristics on the ambiguous faces: facial average,
bilinear interpolation, center-pointing gradient, and quadratic fit. In addition, we ran a procedure that used
resampling to discover the “correct” disambiguation. “Correct” is placed in quotes because this 1s still a
numerical procedure that is not guaranteed analytically to produce the correct choice (see Appendix B). For
the experiment, an heuristic was considered correct in an ambiguous cell only if all ambiguous faces of that
cell were decided “correctly”. The overall probability of deciding a cell correctly at random is less than one
half because some cells have multiple ambiguous faces.

The correctness statistics for volumes representing electric field magnitude are shown in Table 3; here,
68 out of 200 sample runs contained some ambiguous cell. All differences between methods were highly
significant, statistically, as explained further in Appendix B. The worst performing method was still
significantly better than chance, by 4.5 standard deviations. but clearly there is room for much improvement.

Correctness statistics for volumes representing electric potential are shown in Table 4; in this case, 156
out of 200 sample runs contained some ambiguous cell. Only the largest difference between methods was
statistically significant. All methods were significantly better than chance, but clearly there is room for much

2Recall that the electric potential (a scalar) due to one charge ¢ at a distance r is ¢/r, and its gradient is the vector
(—z, -y, —Z)q/7°37 which is the electric field. The magnitude of the electric field is found by summing the gradients for all
charges, then taking the magnitude of the result. This is quite different from summing the magnitudes of individual gradients,
which would have no physical significance.
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Figure 13: Discontinuities due to original marching
cubes table appear as holes at lower right. Volume
is a detail of “hipip”.

Figure 14: Isosurfaces in the 3D Fourier transform
of the “hipip” volume show concentration of the
spectral energy at low frequencies; red is at plus 1%
of the maximum component and blue is at minus

1%.

Correct
Method Num. | Pct.
(random) 45.2
Fac.Avg. 771 | 48.1
Bilinear 820 | 51.2
C.P.Grad. 941 | b8.7
Quad.Fit 1018 | 63.5

Table 3:

electric field magnitude volumes, covering a total

Topological accuracy comparison on
of 1602 ambiguous cells. All differences were
significant at level .001. (Small numbers indicate
high significance.)

Correct
Method Num. | Pct.
(random) 47.3
Fac.Avg. 617 | 66.6
Bilinear 625 | 67.4
C.P.Grad. 599 | 64.6
Quad.Fit 630 | 68.0

Table 4: Topological accuracy comparison on
electric potential volumes, covering a total of 927
ambiguous cells. The difference between Quad.
Fit and C.P.Grad is significant at level .001; other
differences were insignificant even at .05.

improvement.

6.2 Fourier Analysis of Volumes

Fourier analysis can be used to determine the apparent smoothness of an unknown underlying function. We
shall illustrate this with a discussion of the so-called hipip (High Potential Tron Protein) volume studied in
Section 5.2. Assume this 64x64x64 volume is scaled as Az = Ay = Az = 1/64. Then the 3D discrete Fourier



transform will compute frequencies (positive and negative) through 32 cycles, in increments of 1. We can
ask the question: what radius must a sphere centered at the origin have in the 3D frequency domain in order
to enclose 99% of the spectral energy of the volume (excluding the zero-frequency DC component)?3

For the hipip volume, the answer is that 99% of the non-DC spectral energy is contained within a sphere
of radius 22.5 cycles, which is well below the maximum “observable” frequency of 32. Figure 14 shows this
concentration qualitatively; the rendered isosurfaces are at plus and minus 1% of the maximum non-DC
frequency component. For other percentages, we found that 98% of the non-DC spectral energy is within a
sphere of radius 19.2, and 99.5% is within 26.1 cycles.

When almost all of the spectral energy of a volume appears at frequencies well below the maximum
observable frequency, there is a reasonable presumption that the underlying function has been adequately
sampled—otherwise there would be a large gap in the underlying function’s spectrum. By “adequately
sampled” we mean that this frequency information is representative of the underlying function itself, and
not just of the sampled volume, that going to a higher resolution would produce little or no new spectral
information.

Less decisive behavior was found in the blunt fin’s spectrum, where frequencies up to 16 cycles were
observable. Here 98% of the non-DC spectral energy was found within a radius of 11.0 cycles, 99% within
13.1 cycles, and 99.5% within 15.0 cycles. These computations were done in “computational space”, i.e., as
though the grid were regular, and cells were 1/32 on each side.

Finally, analysis of the dolphin data set showed that a presumption of adequate sampling was very
doubtful. Scaling the cells to be 1/32 on each side permitted frequencies up to 16 cycles (plus and minus) in
each coordinate direction to be observed. However, a sphere of radius 16 contained only 95% of the non-DC
spectral energy; a radius of 19 was needed to capture 99%.

The point of this analysis is that, if the volume can be presumed to be adequately sampled, then a
Fourier-based interpolation should be very accurate. Such interpolation essentially evaluates the inverse
Fourier transform at non-grid points. If correct disambiguation is critical, the expense of Fourier-based
interpolation, combined with searching for a “conclusive path” | as described in Appendix B, may be justified.

Another implication of adequate sampling is that the possible error in a quadratic fit within a cell face can
be bounded—essentially this error arises from third and higher derivatives. This subject is well-studied in
signal processing. For example, if an error bound of .01 is known, and the quadratic fit @(¢, 0) of Section 4.6
has a minimum value greater than .01 on the diagonal from !l to ur, it is conclusive that these corners are
in the same connected component.

Fourier analysis holds much promise for volume visualization. These remarks indicate some directions to
be pursued further.

7 Discussion and Conclusions

Correct isosurface generation is important for scientists to correctly interpret their data. Our experiments
showed that methods that use information from neighboring cells are more likely on balance to pick correct
isosurfaces, at least on the functions we tested.

It 1s equally important for users of isosurface algorithms to be aware of the possibility of incorrect
topologies, so that they can adjust their interpretation of the data to take into account these possible errors.

In many graphics problems there is a trade-off of speed for accuracy. We attempted to get the best of
both worlds by using a major case table for speed on the unambiguous cases, similarly to Lorensen and
Cline [LC87], but with a careful disambiguation for accuracy when ambiguities did arise. The extra cost of
careful disambiguation does not seem to be a serious burden in practice, due to the relatively low statistical

3Recall that spectral energy is defined as Z |ai]k|27 where a;;3 are 3D frequency components, appropriately normalized.
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frequency of ambiguous cases. As Albert Einstein said, “Things should be made as simple as possible, but
no simpler.” We believe this treatment helps to correct the oversimplifications of previous methods.

In summary, we expanded the case table to allow a choice of possible topologies on ambiguous cells,
introduced two new methods for picking among these choices, and experimentally studied those and several
other methods.

All metric disambiguation methods (Section 4) guarantee continuity between cells. Of the three methods
studied on scientific data, the simplest 1s the “facial average” method which uses only the four corners values
for the ambiguous face to decide upon topology. While simplest to compute, we believe the true topology
is better estimated by extended metric methods, which can provide further insight into the underlying
function. The two “gradient consistency heuristic” methods consider an extended neighborhood. To
guarantee consistency across shared faces, the extra data points used all lie in the grid plane of the shared
face. While the two heuristic methods rarely differ and their differences are subtle, the more expensive
“quadratic fit” method has been shown to reflect more accurately the behavior of a quadratic underlying
function than does the “center-pointing gradient” method.
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Appendix A Tricubic Interpolation Equations

A tricubic polynomial may be fit to the cell data, using the 4x4x4 region of voxels surrounding the cell to
specify the function. The function is the 3-dimensional volumetric version of the Catmull-Rom spline [CR74,
FDFH90].

In a Catmull-Rom spline curve, the curve interpolates the interior two of the four points defining the
curve and uses the outer two points to calculate the gradient of the curve at the interior two. Thus, the curve
formula can be stated either in terms of four points, or in terms of two points and two gradients at those
points (the Hermite formulation). A Catmull-Rom spline surface would use 16 points in a 2-dimensional
4x4 grid and interpolate the interior four. A Catmull-Rom spline volume, which we use here, considers 64
points in a 3-dimensional 4x4x4 grid and interpolates the interior eight defining the middle cell of the grid.
This method produces a tricubic function within the cell that is C'' continuous with tricubic functions in
neighboring cells at faces.

The gradients for the interior points are found using standard central differences:

Vf($ayaz) = (fo($ayaZ)any($ayaz)av.fz(xayaz)) Where (13)
A — —A
Vhlayz) = LRSI EmA005) (1)
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where Az, Ay, and Az are the distances between two neighboring sample points in (#, y, z). This assumes a
regular sampling, though the interval may vary among the three directions. For the remainder of this section
we assume the coordinates have been rescaled and nondimensionalized to make Az, Ay, and Az unity; this
simplifies the presentation without any loss of generality.

To derive the tricubic fit, first consider four sample values f_1, fo, f1, and f; in one dimension, and a
univariate cubic curve F'(u) obeying the constraints F(0) = fo, F'(0) = fi, F(1) = fi, and F'(1) = f1,
where, by central differences, f/ = %(fi+1 — fi—1). We shall use F'(u) as the interpolated sample value in the
interval 0 < u < 1. The desired F'(u) can be expressed in terms of the four sample values as

Fla) = 4 Bilw) (15)

with the appropriate blending functions, B;(u). The B;(u) are found by routine algebra to be:
B_i(u) = %(—u?’ +2u? — u) (16)
Bo(u) $(3u® — 5u” + 2)
By (u) %(—3u3 +4u? + u)
By(u) = %(u?’ —u?)

Using a corresponding indexing scheme (from —1 to 2) for the cell in three dimensions, the tricubic
function is given by

2 22
Pz, y,z) = Z Z Z fij ke Bi(x)Bj(y)Br(2) (17)
k=—1j=—1¢=-1
We can easily verify that this function fits both the sample values and the computed gradients at the 8 cell
vertices by observing that the blending functions’ values and first derivatives are zero at 0 and 1, except for
the cases:

Bo(0) = Bi(1) =1,  Bi(0)=By(1) =35,  BL(0)=By(1) = —3 (18)
Appendix B Test Details on Known Underlying Functions

Experimental Design

To evaluate the topological accuracy of various disambiguation heuristics, as reported in Section 6.1, we
generated 40 distributions of electric charges. Each distribution consisted of 600 charges placed uniformly
at random in a sphere of radius 10, surrounding a cube of side 8. Charges were +1 with equal probability.
For each distribution we produced one volume based on sampling the magnitude of the electric field, and
one volume based on sampling the electric potential.

Thus a total of 80 volumes were tested, each volume being a cube of 10 cells on a side (11x11x11 samples).
On each volume 5 isosurfaces were extracted. An isosurface was extracted only in the interior 8% cells to
avoid edge effects with gradients. A sample run consists of one combination of volume and threshold.

For each sample run, we ran 4 disambiguation heuristics on the ambiguous faces: facial average, bilinear
interpolation, center-pointing gradient, and quadratic fit. In addition, we ran a procedure that used
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Plur- | Observ- | Num. of | Signif.
Methods ality ations | Std.Devs. | Level
Bilinear vs. Fac.Avg. +49 153 3.96 | .001
C.P.Grad. vs. Fac.Avg. || +170 372 8.81 | .001
C.P.Grad. vs. Bilinear +121 487 5.48 | .001
Quad.Fit vs. Fac.Avg. +247 555 10.48 | .001
Quad.Fit vs. Bilinear 4198 514 8.73 | .001
Quad.Fit vs. C.P.Grad. +77 131 6.73 | .001

Table 5: Topological accuracy comparison on electric field magnitude volumes, covering a total of 1602
ambiguous cells.

Plur- | Observ- | Num. of | Signif.
Methods ality ations | Std.Devs. | Level
Bilinear vs. Fac.Avg. +8 134 0.69
C.P.Grad. vs. Fac.Avg. -18 206 -1.25
C.P.Grad. vs. Bilinear -26 276 -1.57
Quad.Fit vs. Fac.Avg. +13 227 0.86
Quad.Fit vs. Bilinear +5 249 0.32
Quad.Fit vs. C.P.Grad. +31 55 4.18 | .001

Table 6: Topological accuracy comparison on electric potential volumes, covering a total of 927 ambiguous
cells.

resampling to discover the “correct” disambiguation. “Correct” is placed in quotes because this is still
a numerical procedure that is not guaranteed analytically to produce the correct choice. The procedure
searches for what is called a conclusive path, defined below, connecting corners of the same sign in an
ambiguous cell face. It begins with an 11x11 resampled grid covering the cell face, i.e., 100 subfaces. If no
conclusive path is found at this resolution, it tries a 21x21 resampled grid. If it fails again it goes to 41x41,
and finally, if necessary to 81x81. After this, it gives up and called the face “indecisive”.

A conclusive path is defined as a series of line segments joining two diagonally opposite corners of the
ambiguous cell face, such that:

1. Each segment proceeds from a resampled point to another resampled point that is closer to the opposite
corner and is adjacent in the resampled grid either horizontally, vertically, or diagonally. Except for
the two corners joined, all points must be interior to the cell face.

2. On each segment, except the first and last, a cubic spline function maintains the correct sign relative
to the threshold value, that is, the same sign as the corners. The cubic is fit to the end-points of the
segment and the resampled points “in front of” and “behind” the segment, and equi-distant.

3. No ambiguous subfaces (faces in the resampled grid) are touched or traversed by the path.

The last condition ensures that a conclusive path cannot exist (at the same resolution) to connect the other
pair of cell corners. In our tests conclusive paths were usually found at the coarsest resolution, and no
indecisive faces were found.

32



Statistical Significance

To obtain a sharp evaluation of statistical significance, a pairs test was used. Essentially, an “observation”
is the difference in performance between two methods (the pair) on the same sample. For the experiment,
an heuristic was considered correct in an ambiguous cell only if all ambiguous faces of that cell were decided
“correctly”, as described above. The performance value is 1 for each “correct” ambiguous cell, and 0 for
each “incorrect”. Cells in which the two methods had no difference in performance are not counted as
observations. A positive performance difference is called a “win” and a negative one is a “loss”.

Statistical significance computations attempt to reject the “null hypothesis” concerning the pair of
methods being compared. For our test the null hypothesis is that, given that the two methods have a
difference in performance on some sample, each has an equal probability of “winning”.

The statistical significance level of a particular plurality represents (an upper bound on) the probability
of getting a sample this biased under the null hypothesis. For example, line 1 of Table 5 can be read as, “If
the Bilinear and Facial Average methods had an equal probability of “winning” against each other, then the
probability is less than .001 that Bilinear would achieve a plurality of 49 or more in 153 trials; this is 3.96
standard deviations from the mean.” Thus small numbers indicate high significance.
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