
Topological Considerations in Isosurface GenerationUCSC-CRL-94-31Allen Van Gelder and Jane WilhelmsBaskin Center for Computer Engineering and Information SciencesUniversity of California, Santa CruzJune 11, 1994AbstractA popular technique for rendition of isosurfaces in sampled data is to consider cells with samplepoints as corners and approximate the isosurface in each cell by one or more polygons whose verticesare obtained by interpolation of the sample data. That is, each polygon vertex is a point on a cell edge,between two adjacent sample points, where the function is estimated to equal the desired threshold value.The two sample points have values on opposite sides of the threshold, and the interpolated point is calledan intersection point .When one cell face has an intersection point in each of its four edges, then the correct connectionamong intersection points becomes ambiguous. An incorrect connection can lead to erroneous topologyin the rendered surface, and possible discontinuities. We show that disambiguation methods, to be atall accurate, need to consider sample values in the neighborhood outside the cell. This paper studies theproblems of disambiguation, reports on some solutions, and presents some statistics on the occurrenceof such ambiguities.A natural way to incorporate neighborhood information is through the use of calculated gradientsat cell corners. They provide insight into the behavior of a function in well-understood ways. Weintroduce two gradient-consistency heuristics that use calculated gradients at the corners of ambiguousfaces, as well as the function values at those corners, to disambiguate at a reasonable computational cost.These methods give the correct topology on several examples that caused problems for other methodswe examined.Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation | displayalgorithms; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling | boundaryrepresentations; curve, surface, solid, and object representations; geometric algorithmsGeneral Terms: Algorithms, ExperimentationAdditional Key Words and Phrases: Surface topology, ambiguity, surface �tting, scienti�c visualization,isosurface extractionThis report will appear in ACM Transactions on Graphics. Some images have low resolution to facilitateelectronic distribution. 1



1 IntroductionThe sampled volumetric data common to many scienti�c applications has been visualized using a variety ofapproaches. One is to generate approximate isosurfaces that correspond to speci�c threshold values withinthe data [FKU77, CS78, AFH80, KDK86, WMW86, LC87, CDL+87, Blo88, CLL+88, Win88, GN89, KB89,UA90, Kal91, KDHB92]. An isosurface clearly indicates where in space the volumetric data values at a giventhreshold value lie.Polygonized isosurfaces can be used with common graphics rendering algorithms available in hardwareand software, and provide the possibility of realtime interaction with the data. However, the clarity of theisosurface may itself be misleading. For many applications, the underlying function that the sampled datarepresents is not known, and the isosurface produced is at best a good guess. While the exact spatial locationof the isosurface may not be critical, its topological features, such as connected components and the presenceof holes (tunnels) or cavities, are normally important.This paper explores the problems of generating topologically correct approximate isosurfaces from sampledata where the underlying function is not available for resampling. Sections 2 and 3 characterize situationsin which topological ambiguities can arise in cell-at-a-time processing (a cell normally consisting of eight datavalues at the corners of a cube). Section 4 discusses several approaches to disambiguation. We demonstratethat correct disambiguation on any reasonably broad class of volumes must consider sample data valuesbesides those at the eight cell corners, and propose several techniques. Sections 5 and 6 describe experimentalresults on scienti�c data. Section 7 draws conclusions, and some technical matters are covered in appendices.2 Design Objectives of Isosurface AlgorithmsMany of the isosurface techniques in the literature were designed for speci�c applications. As a result, theymay have implicit assumptions about the nature of the data that would not hold in another application. Asapplications proliferate it becomes important to have a general-purpose method that is free of applicationdependencies. Toward this end we identi�ed a number of desirable features of a general-purpose polygonalisosurface algorithm:1. The algorithm should yield a continuous surface: Each polygonal edge should be shared by exactly twopolygons, or lie in an external face of the entire volume [Sri81, USH82].2. The isosurface should be a continuous function of the input data: A small change in the thresholdvalue or some data value should produce a small change in the isosurface.3. The isosurface should be topologically correct when the underlying function is \smooth enough".4. The isosurface produced should be neutral with respect to positive and negative sample data values(relative to the threshold): Multiplying the samples (and threshold) by �1 should not alter the surface.In this criterion we depart from earlier studies [LV80, Sri81, USH82] in which the \object" (usuallyrepresented by positive values) and its complement are assigned di�erent degrees of connectivity.5. The algorithm should not create artifacts not implied by the data, such as bumps and holes.6. Preferably, the algorithm should be e�cient enough for real-time interactive use.Some of these criteria may not seem important when the resolution is �ne enough that the eye does not noticean occasional \glitch". However, visualization systems will inevitably provide a zoom ability for close-upexamination of \interesting" features of a scene. Incorrect topology can easily become visible and lead tomisleading or at least confusing images under close-up examination, regardless of the original resolution.Of the above criteria, only objective 4 is likely to be controversial. This issue is discussed further inSection 5.1. 2



3 Isosurface GenerationTwo approaches have been taken to represent regions of constant value within the volume data. The �rst, thecuberille method, considers the subdivisions of space created by the sample points and represents constantvalue regions as a set of polyhedra (generally cubes) that include the values of interest [HL79, AFH81,HU83, CHRU85, Udu89]. The second approach, explored in this paper, is to generate a two-dimensionalisosurface in three dimensions by interpolating the function values between data points. We shall call thisthe beveled-surface method, following Kalvin's terminology. Each \method" is actually a group of methodsdescribed by various researchers.Two advantages of the cuberille method are that it is fast, and it does not attempt to generate a surfacein more detail than the data unambiguously speci�es. One disadvantage is that the image produced isnaturally blocky, because all surface patches are orthogonal to one of the coordinate axes. However, it canbe made to appear smoother by the deft use of surface shading and �ltering [CHRU85, Udu89]. A secondproblem is that the surface changes if positive and negative are inverted; the changes may be topological aswell as spatial. These changes result from the di�erence between 1-connectivity and 3-connectivity [USH82](see De�nition 3.2). See Section 5.1 for further discussion.Beveled surfaces permit patches with any orientation, so have the potential of providing a closerapproximation to the underlying surface. However, this greater generality may carry with it greater costsin both processing times and storage space. Many of the methods described in the literature have the sameproblem that inversion of positive and negative can cause both spatial and topological changes to the surface.E�ciency problems are addressed elsewhere [Kal91, WVG92]. This paper addresses the topological problemsin beveled surface construction.Early isosurface approaches �rst generated two-dimensional contour lines for parallel planes runningthrough the data, and then connected the contour lines into three-dimensional isosurfaces [FKU77, CS78,WH79, CIBL83]. More recent approaches create the isosurface by examining the three dimensions at once.Wyvill et al. [WMW86] developed a method that represents the isosurface as a polygon mesh. Theycompute samples in a three-dimensional rectangular lattice and analyze cells in this lattice individually.Although they were primarily interested in an application for which they knew the underlying function,their method of constructing the isosurface within each cell does not require such information, so can beused in a more general setting. It is summarized in Section 3.2, and serves as a starting point for our work.They recognize ambiguities, and disambiguate by estimating the function value at the center of an ambiguousface; the corners that agree with the central estimate are considered connected. In the interest of e�ciency,they estimate the center value by averaging the four corner values (the facial average method, discussedlater).Koide et al. reported a more complex method based on decomposition of the cell into tetrahedra, andpolygonizing the isosurface within each tetrahedron [KDK86]. Ambiguities are implicitly resolved by thedecomposition.Lorensen et al. reported a simpler approach [LC87, CLL+88], where the data samples were essentially theonly information available about the underlying function. Their method, called \marching cubes", achievesperformance by polygonizing each cell based on a precomputed table of 15 topologically distinct plus-minuspatterns of cell corners. In the original implementation, \marching cubes" did not recognize ambiguities.As pointed out by D�urst [D�ur88], that method could yield a discontinuity between cells. Later researchers[Bak89, Nat91, Kal91], as well as the original authors, described modi�cations that ensured continuity. Somevariants are discussed in Section 4.1.Gallagher and Nagtegaal [GN89] generalized the above approaches to irregular lattices that frequentlyoccur in �nite element analysis, and considered higher-degree surfaces instead of triangulation. They alsodo not address ambiguities. Winget also briey discusses isosurfaces resulting from �nite element analysis3



[Win88].Subsequent to the presentation of a preliminary version of this work at a workshop [WVG90], otherresearchers have developed additional methods to resolve ambiguities using an assumption of trilinearity ineach cell [Nat91], or bilinearity in each face [NH91].3.1 Nature of the DataIsosurfaces may be used to represent scalar data values that are distributed in a three-dimensional coordinatesystem, such as density values generated by a CT-scan or temperature values from computational uiddynamics. For this paper, we assume scalar data distributed in a regular three-dimensional rectangularlattice, though the issues raised are equally important to irregular and sparse data. The algorithms generalizestraightforwardly to \warped" lattices, in which each cell still has eight corners.De�nition 3.1: A data sample is referred to as a voxel . The cubical region bounded by eight neighboringvoxels is called a computational cell , and the cell's corners called cell vertices.Strictly speaking, a cell is a rectangular parallelepiped, but by rescaling �x, �y, and �z to 1 we cansimplify the nomenclature and presentation.There are several notions of neighborhood (adjacency) in a rectangular lattice. Unfortunately, theterminology is not uniform in the literature [LV80, Sri81, USH82]. The next de�nition gives the terminologywe shall use, and the alternates seen. (See also Section 4.1.)De�nition 3.2: Two cell vertices are said to be k-adjacent if they di�er in at most k coordinates, and di�erby at most 1 in any coordinate. Thus, they are:1-adjacent if they are connected by a cell edge; this type of adjacency has also been called O(6)-adjacencybecause a cell vertex has 6 neighbors with this type of adjacency.2-adjacent if they have a cell face in common (also called O(18)-adjacent).3-adjacent if they have a cell in common (called O(26)-adjacent).We abbreviate 1-adjacent to adjacent when no confusion is likely.A set of cell vertices is k-connected if, by de�ning an edge between every k-adjacent pair in the set, theresult is a connected graph.3.2 Nature of the IsosurfaceAn isosurface is implicitly speci�ed by an underlying scalar function of three variables and a threshold value.Following Wyvill et al. [WMW86], who call the underlying function the \�eld function", generation of anisosurface involves determining, for each cell, whether the underlying function takes on the threshold valuewithin the cell, and if so, approximately where the isosurface lies.We shall call a cell vertex positive if its value is greater than the threshold, and negative if not; thus ourterminology translates the threshold to the origin. (The case is which the sample value is exactly at thethreshold introduces technical problems. We elide these problems in practice by choosing the threshold tobe distinct from all sample values.) When some vertices of a given cell are positive and some are negative,the isosurface must pass through the cell and the problem becomes �nding where it does so.De�nition 3.3: An intersection point is the point at which the isosurface is estimated to cross the edgeconnecting two adjacent cell vertices that have di�erent signs with respect to the threshold, usually usinglinear interpolation. 4



Such intersection points become vertices of one or more topological polygons, whose edges lie in the facesof the cell. We call them such because they specify the topology of the isosurface within the cell. Polygonsjoining more than three intersection points are normally nonplanar.Unless the underlying function that was sampled to produce the voxel values is known and can beresampled, the data are inherently incomplete, and the isosurface produced is at best a good approximationof the true one. Certain \smoothness" assumptions are implicit in all interpolation-based methods:1. If two adjacent cell vertices both have values on the same side of the threshold, the isosurface is assumednot to pass between them, although the surface may actually pass between them any even number oftimes.2. If two adjacent cell vertices have values on opposite sides of the threshold, the isosurface is assumed topass between them just once, although the surface may actually pass between them any odd numberof times.The above two assumptions are made by linear interpolation. Of course, unsupported smoothnessassumptions may be incorrect. As pointed out by Winget, isosurfaces in uid dynamics problems canhave discontinuities in the gradient, while the surface itself is continuous [Win88]. Furthermore, very smallconnected components may be entirely missed, for example, in the case where the surface lies entirely withinone cell, and the voxel values of all cell vertices are positive. These problems are inherent to sampling, andonly �ner sampling or further knowledge of the function will deal with them correctly.To quantify smoothness relative to the sampling interval in another way, we use the following de�nitions.De�nition 3.4: We say that a function is locally linear in a cell (relative to a given threshold) if there is alinear function (of three variables) whose values at the cell vertices are on the same side of the threshold asthe sample values. That is, the positive and negative cell vertices can be separated by a plane.Similarly, we say that a function is locally quadratic in a cell (relative to a given threshold) if there is aquadratic function that induces the same set of positive and negative vertices as do the sample values.When one considers the eight vertices de�ning a cell as being positive or negative, as de�ned above, thereare 256 possible combinations of \positive" and \negative" vertex values. Using symmetries of the cube,these can be grouped into 22 cases [LV80, Sri81]. Eight of these cases are inverses of another case, in whichthe positive and negative values are reversed. Treating inverses as the same case, there are 14 cases, asshown in Figure 1, which we refer to as the major cases. Lorensen and Cline [LC87] give 15 cases becausethey do not consider the reection of case 11 to be the same case. Our case numbering follows theirs withthe exception of this omitted case.It is easy to see that cases 1, 2, 5, 8 and 9 are locally linear; in these cases the black vertices are 1-connected, and so are the white. Case 11 also has only one connected component of each color, but cannotbe locally linear, as a separating surface needs to slope one way as it cuts the top face, then slope a di�erentway as it cuts the bottom face.All of the cases except 13 are locally quadratic; an hyperboloid is always able to separate the colors.However, for case 13 it turns out that any quadratic function satis�es the identity that the sum of the valuesat the black vertices (of case 13) equals the sum of the values at the white vertices; but the former sum mustbe positive and the latter negative to agree with the sample values on sign (relative to the threshold).3.3 Topological AmbiguitiesWe now examine the topologies that occur among the cases of Figure 1, and identify those that are ambiguous.5



0g�� f g�fg� f g� f 1w�� f g�fg� f g� f 2w�� f w�fg� f g� f 3w�� f g�fg� f w� f 4w�� f g�fg� f g� v 5g�� v w�vg� f g� f 6w�� f w�fg� f g� v7g�� f w�fw� f g� v 8w�� v w�vg� f g� f 9w�� v g�vg� v g� f 10w�� f g�vw� f g� v 11w�� v g�vg� f g� v 12g�� v w�vw� f g� f 13w�� f g�vg� v w� fFigure 1: Fourteen topologically distinct major cases.De�nition 3.5: A positive cell edge is one that connects two positive cell vertices; a negative cell edge isone that connects two negative cell vertices.A cell is topologically ambiguous if either the positive vertices of that cell cannot be connected togethervia that cell's positive edges into a single connected component, or the negative vertices cannot be connectedby negative edges. In other words, either the set of positive cell vertices is not 1-connected, or the set ofnegative cell vertices is not 1-connected (see De�nition 3.2).An ambiguous face is a cell face that contains a diagonally opposite pair of positive vertices and adiagonally opposite pair of negative vertices (see Figure 2).Since the isosurface separates certain cell vertices, the connectedness of the vertices and the topology ofthe isosurface go hand in hand.The principal manifestation of topological ambiguity occurs when two positive and two negative cornervalues of one cell face are diagonally opposite each other. The isosurface will then intersect all four edges.By examination of the possible cases, which are 3, 6, 7, 10, 12, 13, and their inverses, we observe that thereis no con�guration of the remaining four vertices of the cell that allows us both to connect the positive pairusing positive edges and to connect the negative pair using negative edges. It is unclear from the cell vertexvalues alone whether to separate the positive vertices, separate the negative vertices, or even to have thecontour lines cross and create four separate components (see Figure 2).Consider the construction of the topological polygons, which are nonplanar in general. Each cell facehas four edges, an even number of which will contain intersection points. If two edges of a face containintersection points, then the only choice is to connect them with an edge, which will eventually belong toa topological polygon in each of the two cells that share that face. However, if a cell face has intersectionpoints in all four of its edges, there are choices of how to connect up pairs to produce polygonal edges, asshown in Figure 2, which justi�es the name ambiguous face.Notice that case 4 in Figure 1 is also ambiguous as a cell , but has no ambiguous face. The ambiguity iswhether the isosurface within this cell consists of two triangles or one \tube". Having no ambiguous face,there is no possibility of producing discontinuities. Therefore the treatment of this case is an independentissue, which we do not address in this paper. As seen in Table 1, this case rarely occurs. For simplicity, ourimplementation produces two triangles, thus separating the black vertices of case 4. Natarajan studies case4 (as well as more complicated versions of the \long diagonal", which occur in cases 6, 10, and 12) underthe assumption that the underlying function is trilinear within the cell [Nat91].6



i+ i�i� i+uu u u������ ������(a) i+ i�i� i+uu u u@@@@@@ @@@@@@(b) i+ i�i� i+uu u u(c)Figure 2: Possibilities for connecting four intersection points. Choice (a) puts the negative corners in thesame connected component; choice (b) puts the positive corners in the same connected component; andchoice (c) is ambiguous.
k�5 k�1k�1 k+3������ ������k�1 k�5k+3 k�1k+3 k+7k+7 k+3��� ���

k+3k�1 k+7k+3������ ������k+7k+3 k+3k�1
k+3 k+7k+7 k+3��� ���

Figure 3: Center and Center-Lower Cell Values of F1 and F23.4 The Problem of DisambiguationA number of approaches can be taken to pick a particular topology in ambiguous cases. If the underlyingfunction is known, it may be possible to resample the data until the ambiguity is resolved [Blo88, KB89].However, we are concerned with problems where resampling is impossible or impractical. This is frequentlythe case when the data originate from physical measurements, as in medical applications, or from complexcomputations, such as simulations and partial di�erential equations.In cases of sampled data, it is often not possible to determine whether the choice of topology was correct:though the underlying function may be continuous, its exact form is generally not known. However, thepolygonal representation of the isosurface can be checked for continuity. The surface is C0 (positionally)7



continuous if and only if each edge is shared by exactly two polygons, except for edges that lie in the boundaryof the entire volume, which must occur in exactly one polygon.The topology is certainly incorrect if the polygonal isosurface is not continuous. However, even if thepolygonal isosurface is continuous, its topology is not necessarily in agreement with the correspondingisosurface of the underlying function.In any cell with an ambiguous face the underlying function cannot be locally linear (see De�nition 3.4).To see why, observe that the intersection of any linear isosurface with a cell face is one straight line, whichcannot induce an ambiguous con�guration of positive and negative cell vertices. Thus we have focused ontreating locally quadratic functions correctly, as this is essentially the best smoothness that can be hopedfor. (Actually, case 13, in which every face is ambiguous, is not even locally quadratic.)We have devised a number of functions that prove useful in testing the ability of isosurface algorithms todetermine correct topology. Two of these functions are of particular interest:F1(x; y; z) = 4y + 4(x� z)2 � 5 (1)F2(x; y; z) = 4(y � 1)2 + 2(x� z)2 � 2(x+ z � 3)2 + 1 (2)Their actual isosurfaces for real numbers ranging from 0 to 3 in the three dimensions are shown in Figure 4.a.(In our examples, the threshold is zero unless otherwise speci�ed.) We considered the lattices that resultfrom sampling these functions at the integers 0 through 3, that is, a 4x4x4 array. Figure 3 shows the valuesof the center cell and the cell below the center for F1 and F2. Figure 5.a show the isosurfaces of each functionfor the center cell in isolation.The salient point about these two functions is that the central cell of the 4x4x4 sample array looks exactlythe same for both functions. However, one function represents a single connected surface, while the otherrepresents two lobes of an hyperboloid. This pair of functions leads us to one of our principal �ndings:Proposition 3.1: When the underlying function is not locally linear, it is impossible (in general) todetermine the correct surface topology in a cell solely by examination of the voxel values at the verticesof that cell.Proof: Functions F1 and F2 demonstrate the proposition. Sampled as discussed above, they cannot bedistinguished in the central cell, yet have di�erent topologies there.This proposition explains why anomalies are bound to occur in unfortunate cases in any approach whichworks only with values of one cell at a time.3.5 Assurance of ContinuityThis section addresses the problem of ensuring that the representation of the isosurface is continuous. It isknown that a polygon mesh de�nes a continuous surface if and only if each edge occurs exactly twice, unlessit is on the boundary of the entire data grid [Sri81, USH82]. Whereas correct topology is not achievablewithout knowledge of the underlying function, we shall see that continuity can be guaranteed by a varietyof methods.De�nition 3.6: An edge of a polygon mesh is called anomalous if it is interior to the volume and does notoccur exactly twice, or if it is on the volume boundary and does not occur exactly once. Such an edge iseither disconnected , meaning that it occurs only once (leaving a hole, or void), or it is multiple-branched ,meaning that it occurs too often.When cells are polygonized independently, some discipline is needed to assure that compatible decisionsare made in the two cells that share an ambiguous face. A simple and practical principle may be employedto assure that this is always the case: 8



Proposition 3.2: (Facial Plane Principle) If the method of disambiguation for ambiguous faces employsonly values in the plane of the face, and is invariant under rotations and reections, then the isosurface asde�ned by topological polygons will be continuous.Proof: Each nonboundary face is shared by two cells. If the face is ambiguous, by hypothesis the sameedges are de�ned in that face for each cell. Thus these edges occur exactly twice in the polygon mesh, oncein a topological polygon of each cell. Similarly an edge in an unambiguous face occurs once in a polygon ofeach cell.Aside from ambiguous faces, whenever an edge that lies in a cell face belongs to two polygons in onecell, there is a danger that multiple-branched edges may occur: that edge will normally occur also in theadjacent cell, and the edge is now in three or more polygons. This discontinuity may occur if many-sidedtopological polygons are tessellated by edges (chords) within a cell face rather than through the interior ofthe cell. A special case of in-face chords occurs when facial polygons are created, which has been done insome tables in an attempt to avoid holes in the surface (see Section 4.1). If facial polygons from adjacentcells coincide, a membrane-like appearance results, as can be seen in Figure 4, (b, right). See Section 4.8 forfurther discussion.4 Approaches to Disambiguation of Sampled DataMethods for disambiguation can be broadly classi�ed according to two properties.1. Is the data treated as boolean or metric?Boolean methods consider only whether the data is above or below the threshold. Metric methods alsotake into account how far the data is above or below the threshold. (Here we are classifying only howthe connectivity is decided, not how the surface is represented.)2. Is the region that a�ects the disambiguation decision simple or extended?Simple methods consider only the sample values in the cell being processed, which contains theambiguous face. Extended methods consider additional sample values, in the original data, but outsidethe cell.We have investigated numerous approaches to disambiguation that cover the combinations of these properties.They are briey summarized here and described in more detail in subsequent sections. Computationalexperience is reported in Section 5.2.Simple BooleanThis category includes the simplest policies, such as \always connect the positive diagonal," which is implicitin early boundary tracking methods [AFH81].The marching cubes algorithm [LC87, CLL+88, GN89], uses the signs of the eight cell vertices (relativeto the threshold) to index a table of 15 cases containing a polygonization of the isosurface. The table coverscells with up to 4 positive vertices; a cell with 5 or more positive vertices is inverted before lookup. Thismethod may lead to discontinuities because an ambiguous face can be resolved di�erently, according to thevalues in the opposite face of the cell.A table of 22-23 cases may be constructed in such a way that the resolution of an ambiguous face dependsonly on that face. This approach guarantees continuity. Several variants have appeared. Some were designedto correct the problem of discontinuities in marching cubes.Since triangular faces cannot be ambiguous, another method to disambiguate implicitly is to decomposeeach cell into tetrahedra, and interpolate linearly on each tetrahedral edge [KDK86, Blo88, DK91]. The9



a. Isosurface 0 of quadratic functions F1 (left) and F2 (right).
b. Various incorrect topologies. Marching cubes on F1 (left);Facial Average, Bilinear, and UA-R2 on F1 (center); UA-R1 on F2 (right).
c. Correct topologies. Gradient heuristic methods are correct on both.Others are correct on only one: UA-R1 (F1 only);Marching Cubes, Facial Average, Bilinear, and UA-R2 (F2 only).Figure 4: Renditions of F1(x; y; z) = 4y+4(x�z)2�5, and F2(x; y; z) = 4(y�1)2+2(x�z)2�2(x+z�3)2+1,over the range [0,3] in X;Y; Z (a 4x4x4 sample volume).10



a. Isosurface 0 of quadratic functions F1 (left) and F2 (right).
b. Polygonized.Figure 5: Center cell comparisons for F1 and F2. Simple methods choose the same topology for bothfunctions. UA-R1 chooses (b, left); Marching cubes, UA-R2, Facial Average, and Bilinear choose (b, right).Gradient heuristic methods correctly choose (b, left) for F1 and (b, right) for F2.decomposition is not isotropic, and requires an arbitrary choice. The resulting topology depends on thischoice.Extended BooleanWe are not aware of any work in this category.Simple MetricWyvill et al. introduced the �rst isosurface method that constructed beveled surfaces [WMW86]. They usedthe Facial average value to choose which corners to connect in an ambiguous face. This is the average valueof the cell vertices at the corners of that face.A newer proposal is the Bilinear model . A trilinear function is often used for interpolating sampled data.The isosurface of the trilinear function that �ts the cell corners may be used for disambiguation [Nat91]. Ina cell face the model simpli�es to bilinear [NH91].Another possibility that has never been implemented is Ambiguous representation: Ambiguities can berendered ambiguously as a compromise between topologies. The main idea is to partition an ambiguous faceinto four regions that meet at a single point, and are alternately positive and negative.11



Extended MetricA new class of methods, Gradient consistency heuristics, is introduced here. In these methods, the choiceamong ambiguous subcases is made using estimated gradient information. Since we estimate gradients usingthe central di�erence method, they contain information about function values outside the cell. The heuristicis to choose a topology that is \most consistent" with the gradient information, in some sense. We haveimplemented two such heuristics, which we call the center-pointing gradient method, and the quadratic �tmethod.Tricubic interpolation is a more expensive interpolation method which also considers values outside thecell in generating the isosurface.4.1 Simple BooleanThe �rst approach examined was the use of a single table. We studied several variations of \marching cubes"tables, which we call \major case" tables. These variants determine topology based only on the signs of theeight corner values relative to the threshold, and pick one topology for each case. The table entry for eachcase speci�es the edge intersections that should be connected to create triangles representing the isosurfacewithin the cell [LC87, CLL+88]. The marching-cubes table lookup method is devised for speed, at theoccasional expense of correct topology.Part (b, left) of Figure 4 shows how the original table [LC87, CLL+88] polygonizes function F1. Thistable polygonizes cells with 5 or more positive vertices by using the inverse major case; e.g., \+++++-+-" istreated the same as \-----+-+". Note that the method leaves a discontinuous hole in function F1, a problempointed out by D�urst [D�ur88]. This occurs because, when two cell vertices diagonally opposite across a faceare of one sign and the other six cell vertices are of the other, the table always chooses to treat the twoas two disconnected components and separates them using two triangles. The center cell of F1 containstwo diagonal negatives on the lower face and the rest positives, whereas the cell beneath has two diagonalpositives on the upper face and the rest negatives, hence a hole. This approach does correctly separate thetwo lobes of the hyperboloid in function F2, where the center cell is as in F1 and the lower cell is the samecase upside down. The picture is similar to Part (c, right) of Figure 4.Udupa and Ajjanagadde have described three simple boolean connectivity policies (their terminologydi�ers) [UA90]. Positive values are considered to represent the \objects". (In the cited paper \Ru = R1"corresponds to our label \UA-R1", etc.; the \UA" gives the authors' initials.)UA-R1 Always connect negative diagonals (often associated with corrected versions of marching cubes[LC87, Bak89, Kal91]).UA-R2 Always connect positive diagonals (often associated with cuberilles [AFH81, HU83, CHRU85]).UA-R3 Connect negative diagonals if the face is parallel to the xy-plane; otherwise, connect positivediagonals.1Policy UA-R3 originates in the cited paper. Typically, CT volumes have a greater spacing between samplevalues in the z direction. However, the paper does not discuss pros and cons of the various alternatives interms of representing the underlying physiology. Rather, they motivate UA-R3 in terms of computationale�ciency for boundary tracking.A proposal to correct the discontinuity problems of marching cubes was made independently by severalresearchers [Bak89, Kal91, Nat91, NH91]. It treats cells with 5 or more positive vertices independently oftheir inverses, by always connecting the negative corners of any ambiguous face. Therefore, it corresponds1Of course, one can choose any one of the coordinate planes to be treated di�erently, but in practice Udupa and Ajjanagaddechose the xy-plane for their datasets. 12



to the UA-R1 connectivity policy. This method also may be implemented by a single major case table, thistime with 23 cases. It chooses the correct topology for function F1, as shown in Figure 4, part (c, left).A problem with the UA-R1 policy is illustrated by function F2. Both the center cell and the one belowit are the same case; the lower cell is an upside down boolean version of the center cell. The result is anincorrect \tube" connecting the two lobes of the hyperboloid, as shown in Figure 4, part (b, right).If the positive and negative regions of F1 and F2 were reversed, the table based on UA-R1 would correctlyseparate the lobes of the hyperboloid in F2 (Figure 4, part (c, right)). However, for F1 this method wouldproduce the incorrect result seen in Figure 4, part (b, center). This indicates the problem with using di�erentapproaches for inverse cases, and motivates criterion 4 in Section 2.Note that policy UA-R2 produces the same results on the original functions that policy UA-R1 produceson the inverted functions. On this example with a single ambiguous face, policy UA-R3 will correspondto either UA-R1 or UA-R2, depending on the choice of coordinate axes. In general, whether a decision byUA-R3 agrees with UA-R1 or with UA-R2 is governed by the orientation of the ambiguous face.4.2 Simple MetricMethods in this category include the facial average method, bilinear models, and ambiguous representation.Facial Average ValuesThe facial average value method is employed by Wyvill et al. [WMW86]. The facial average value is theaverage of the four corner values of an ambiguous face. It is also equal to the center value of a bilinearinterpolation across the cell face.The facial average method does di�erentiate between ambiguous topologies, but not in a particularlysatisfactory manner. Because the choice is based only on the face values, a continuous isosurface is guaranteedby the facial plane principle, Proposition 3.2. However, the method will sometimes choose incorrectly onunderlying functions as simple as quadratics.Part (b, center) of Figure 4 shows how the facial average method interprets the location of the isosurfacefor F1. Note that, although the surface is continuous overall, the topology of the center cell is incorrect.In particular, the facial average value (the estimated center value) is positive, while the actual functionvalue there is negative. Facial averaging does correctly leave the two lobes of the hyperboloid in function F2separate (Figure 4, Part (c, right)).The treatment of the center cell is shown in isolation in Part (b, left) of Figure 5. Notice that the choicesof topology in the center and lower center cells of function F1 are incorrect, but consistent with each other.The positive corner values of the shared face are further from the threshold than the negative corner values,so the method interprets the negative voxels in the shared face as topologically separate, although they arepart of one component in the actual function.In the lower center cell, these edges in the shared face are part of the same topological polygon. Theresult is a surface with a jagged saw-tooth look.All of the metric methods have been implemented using a supplementary \subcase table" when the majorcase is ambiguous, as described in Section 4.7. With this implementation, the facial average method hasperformance speed close to that of the simple boolean methods.Bilinear ModelTrilinear interpolation among the eight cell vertices is a method often used to estimate the behavior of thesampled data between sample points, when extracting isosurfaces [CLL+88], for direct volume rendering[Lev88, UK88], and for producing more sample points from those already provided [HB86]. It is attractivebecause it is simple to calculate. 13



The trilinear model of the cell may be used for connectivity decisions, as described by Natarajan [Nat91].Nielson and Hamann considered bilinear models in each face [NH91]. In each cell face, the trilinear functionreduces to a bilinear function that depends only on the corners of that face. Thus, these methods obey thefacial plane principle of Proposition 3.2. It follows that C0 (positional) continuity is achieved in the sharedfaces between neighboring cells, for regular grids.The iso-contour lines of the bilinear function form an hyperbola. If the product of the positive values(based on threshold 0) at the corners of the ambiguous face exceeds the product of the negatives, the positivesare joined by this hyperbola; if the opposite is true, the negatives are joined. The model is used only fordisambiguation decisions. Polygonization is based on linear interpolations, as with other methods.Like the facial average method, this method will sometimes choose incorrectly on underlying functionsas simple as quadratics. Part (b, center) of Figure 4 shows the incorrect surface produced by the bilinearmodel of F1. The explanation is similar to that given for the facial average method. Part (c, right) showsits treatment of F2, which is correct.The trilinear model can also be used to subdivide the cells, possibly producing a smoother isosurfacethan that produced by simply approximating the surface with a table of polygons [CLL+88]. However, thishas no e�ect on the topology, and F1 will still emerge with the saw-tooth image.Ambiguous RepresentationAn approach that was briey explored is to render ambiguities ambiguously . It is possible to produce asingle ambiguous representation (see part (c) of Figure 2) for each of the base cases and use a single majorcase table (as in Section 4.1) without producing grossly incorrect topologies. This \noncommittal" methoddeserves further exploration, and may be useful for degenerate cases.4.3 Tricubic InterpolationWe now investigate extended metric methods. These methods use sample values external to the cell, toattempt to �nd the topology more accurately.A more expensive approach is to �t a tricubic polynomial to the cell, using the 4x4x4 region of voxelssurrounding the cell to specify the function. Tricubic interpolation has the advantage of taking into accountthe behavior of the neighborhood beyond the cell of interest.The tricubic function used is determined by the 64 voxel values surrounding the cell of interest. Thefunction is the 3-dimensional volumetric version of the Catmull-Rom spline [CR74, FDFH90]. Details aregiven in Appendix A. This method produces a tricubic function within the cell that is C1 continuous withtricubic functions in neighboring cells at faces.Parts (a) of Figure 4 show the surfaces produced when the resolution is increased by a factor of 5, thevolume is �lled in by tricubic interpolation, and regular isosurface software is used on the results, whichcontain no ambiguous cells.Tricubic interpolation is the �rst method that we have discussed that correctly picks the cell topology forboth functions F1 and F2, as shown in Figure 5.a, where the center cell is isolated. Also, it can be proven toyield a continuous isosurface, using Equation 18 and the facial plane principle, Proposition 3.2.However, the expense of tricubic interpolation makes it impractical as merely a disambiguation method.(It may still be of interest as a higher order method for the entire volume, but that is beyond the scope of thispaper.) One computation of F (x; y; z) requires over a thousand arithmetic operations, and the method justdescribed requires over 100 such computations per cell! The decisive di�erence from other methods is thatit must be applied to all cells, not just the ambiguous cells, because cubic interpolation is not necessarilyconsistent with the smoothness assumptions stated in Section 3.2. That is, discontinuities will result fromperforming linear interpolation in a nonambiguous cell and cubic interpolation in an adjacent ambiguouscell. 14
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Figure 6: Change of coordinate system for gradient heuristic methods.Later sections describe signi�cantly more e�cient methods that use neighborhood information in theform of computed gradients to disambiguate.4.4 Gradient Consistency HeuristicsGradient consistency heuristics use the estimated gradients at the cell vertices to pick topologies in ambiguouscases, in this way using information from beyond the cell. The gradient direction is normal to the isosurface,and its magnitude indicates how rapidly the function is changing. Gradient consistency heuristics encompassa class of methods that use gradient information to disambiguate; we shall describe two methods that we haveinvestigated and implemented, called the center-pointing gradient method, and the quadratic �t method. Insome cases no additional computational cost would be incurred to calculate gradients, because they mightalso be needed for the shading model. In the interests of modularity, our implementation calculates gradientcomponents separately, as needed, for disambiguation.The gradient gives an indication of the behavior of the function across the interior of the face. For ourheuristics, only the component of the gradient in the plane of the face is needed; e.g., if the face is parallelto the x-y plane (z is constant) only the x and y components of the gradient are used. No direct gradientinformation is given in the data, so wherever a computation using gradients is mentioned, it should beunderstood that the gradients must be estimated from the data samples. Moreover, we nondimensionalizeby implicitly scaling �x = �y = 1 before computing gradients. The computed gradients use the 8 points inthe plane of the face that are 1-connected neighbors of the corners of the face.Recall that no linear function of two variables can �t an ambiguous face (Section 3.2); thus a quadraticis in a sense the simplest possibility. Both of our methods model the function in the cell face as a bivariatequadratic that �ts the corner values of the face exactly, and �ts the (nondimensionalized, computed) gradientsat the corners with minimum squared error. (It is easy to see that this function is also the quadratic that�ts the corner values of the face exactly and �ts the 1-connected neighbors with minimum squared error.)Fitting the corner values of an ambiguous face exactly ensures that the same edges have intersection pointsin the quadratic model as in the data. 15



Let the corners of the face in the local (x; y) coordinate system be (0; 0), (�x; 0), (0;�y), and (�x;�y);let us label them as ll, lr, ul, and ur, respectively. We use the nomenclature even to refer to points ll andur, and odd to refer to points lr and ul. We denote the x-component of the estimated gradient by 5fx andthe y-component by 5fy.Our gradient heuristics are most easily explained in a transformed coordinate system (t; u), as shown inFigure 6, where x = (t� u+ 12 )�x (3)y = (t+ u+ 12 )�yWith some abuse of notation, we use f(t; u) to denote f(x(t; u); y(t; u)). Gradients in the (t; u) system aregiven by � 5ft5fu � = � �x �y��x �y �� 5fx5fy � (4)Let us use the notation 5fx;ll and 5fy;ll for the estimated gradient components in the x and y directionsat point ll, with corresponding notations for 5ft;ll, 5fu;ll , and for other corners. Notice also that 5ft and5fu are independent of �x and �y.A quadratic function of two variables has 6 coe�cients. We shall represent it in the (t; u) system describedby Equations 4 and 4.4 (see Figure 6) as:Q(t; u) = c+ b1t+ b2u+ a11t2 + 2a12tu+ a22u2 (5)For notation, let b denote the column vector of (b1; b2), let bT denote the corresponding row vector, and letA be the 2x2 symmetric matrix of elements aij .Since we have four sample values and 8 computed gradient components to �t, we cannot expect to satisfyall constraints with 6 degrees of freedom. As mentioned, we shall choose the coe�cients to �t the samplevalues exactly; Thus we require Q(�12 ; 0) = fll, Q(0;�12) = flr , etc. We easily get the following equationsfrom the exact �t requirements: fll + flr + ful + fur = 4c+ 12(a11 + a22) (6)fur � fll = b1ful � flr = b2fll � flr � ful + fur = 12 (a11 � a22)With these equations we can eliminate all unknown coe�cients from the expression for Q(t; u) except fora12 and c. In particular, a11 = 2(fll + fur) � 4c (7)a22 = 2(flr + ful) � 4cThen we require the gradient components �t with least square error. That is, letE(t; u) = (b1 + 2a11t+ 2a12u�5ft(t; u))2 (8)+ (b2 + 2a22u+ 2a12t�5fu(t; u))2which de�nes the squared error at each corner (t; u). To minimize the sum over four corners, we must satisfythe constraints: 16



�@E(�12 ; 0)@a11 + @E(0;�12 )@a11 + @E(0; 12)@a11 + @E(12 ; 0)@a11 � da11dc + (9)�@E(�12 ; 0)@a22 + @E(0;�12 )@a22 + @E(0; 12)@a22 + @E(12 ; 0)@a22 � da22dc = 0@E(�12 ; 0)@a12 + @E(0;�12)@a12 + @E(0; 12)@a12 + @E(12 ; 0)@a12 = 0The symmetries cause b1 and b2 to drop out, leading to a reasonably simple solution:c = 14(fll + flr + ful + fur) (10)+ 116(5ft;ll +5fu;lr �5fu;ul �5ft;ur)a12 = 14(�5 fu;ll �5ft;lr +5ft;ul +5fu;ur)4.5 Center-Pointing Gradient MethodWe observe that fC = Q(0; 0), the estimate of the function at the center of the ambiguous face, is simply cin Eq. 11. In this equation, we see that fC can be thought of as providing a \correction term" to the facialaverage method. Based on this improved estimate, the center-pointing gradient method disambiguates byusing the subcase table described in Section 4.7 (which is also used by the facial average method). Thatis, if fC is above the threshold, this method decides to connect the positive pair of corners, otherwise thenegative pair.This approach successfully �nds the correct topology for both F1 and F2, as shown in Parts (d) of Figure 4and 5. However, it can fail for quadratic functions, motivating the quadratic �t re�nement discussed next.4.6 Quadratic Fit MethodThe quadratic �t method is a more sophisticated { and more expensive { gradient consistency heuristic.Assuming that we believe a quadratic function provides a satisfactory local representation of the underlyingfunction in an ambiguous face and its immediate neighborhood, then the curves along which that quadraticfunction is zero describe a conic section in the plane of the face, and the conic section determines thetopology in the face. This conic section is usually an hyperbola, but might be an ellipse, parabola, or,in a very degenerate case, a pair of straight lines. Based on the topology induced by the conic section ineach ambiguous cell face, the quadratic �t method disambiguates by using the subcase table described inSection 4.7 (which is also used by the facial average and center-pointing gradient methods).A bilinear function, considered earlier in Section 4.2, is really a special case of a bivariate quadratic.Besides greater generality, considering a general quadratic has the advantage that it is insensitive to achange of coordinates.Consider the quadratic function Q(t; u) of Eq. 5, where the coe�cients given in Section 4.4. We assumethe threshold is 0 in this discussion. If the curve implicitly de�ned by Q(t; u) = 0 describes a convex conicsection (an ellipse, parabola, or pair of parallel lines), the facial center (fC , used by the center-pointinggradient method) must have the same sign as the diagonal pair of corners that are connected within theconic section. However, in the more common case of an hyperbola, it is possible that the sign of the facialcenter is opposite that of the connected diagonal corners. Geometrically, one lobe of the hyperbola \cutso�" the facial center, so that it does not lie between the two lobes.In hyperbolic cases, the sign of the facial center value (as estimated by the quadratic �t or center-pointinggradients) is not necessarily indicative of which diagonal pair of corners to connect. However, the sign of the17



saddle point does indicate which diagonal pair to connect, as the saddle point is always between the lobesof the hyperbola. This follows from the fact that the major axis of the hyperbola, which runs between thetwo lobes, goes through the cell face, and Q(t; u) has the same sign everywhere on the major axis as it doesat the saddle point.Even in an hyperbolic case, it may be unnecessary to compute the saddle point. For example, supposeQ(0; 0) has the same sign as Q(�12 ; 0) and Q(12 ; 0). Then if Q(t; 0) has no roots in the interval (�12 ; 12 ), thequadratic �t connects the corners on the t axis, ll and ur. If Q(t; 0) does have roots in this interval, thenthe saddle point must be consulted. Similarly, when Q(0; 0) has the same sign as Q(0;�12 ) and Q(0; 12), thenQ(0; u) is tested for roots.The root test just described fails only when A is nonsingular Q(t; u) has a unique saddle point at� tSuS� = �12A�1b (11)This point may be outside of the cell face. Nevertheless, the remarks above concerning the major axis showwhy the quadratic connects the cell corners that agree in sign with the saddle point.It is most instructive to consider the change in value between the facial center and the stationary point:Q(tS ; uS) �Q(0; 0) = �14bTA�1b (12)where the values of b and A were given in Section 4.4. Just as the center-pointing gradient method could beviewed as giving a correction term for the facial average value, so can the quadratic �t method be viewed asproviding a correction term for the center-pointing gradient.The sign of Q(tS ; uS) determines which diagonal pair to connect. However, if this value is zero, thenthe conic section must be a pair of intersecting lines, a degenerate hyperbola, and we do not know whichpair to connect. This occurrence is very unlikely, as Q must factor into the product of two linear forms;nevertheless, it points up the fact that any small value of Q(tS ; uS) computed from noisy data is unreliablefor determination of topology.As would be expected, the quadratic �t method always chooses topology correctly when the underlyingfunction is indeed quadratic, as are F1 and F2 in our running example. The renditions are shown in parts(d) of Figure 4, and 5. Of course, it can choose incorrectly if the underlying function is not quadratic.4.7 Subcase TablesSeveral of the methods described earlier provide a procedure to decide, in each ambiguous face of anambiguous cell, whether to connect the positive pair of corners, or the negative pair, in the sense of section 3.3.This section describes how our implementation translates these decisions into an actual polygonization forthe cell. The idea is to supplement the major table, which is su�cient for the unambiguous cases, by asubcase table to handle the ambiguous cases in greater detail.The signs of the eight cell vertex values are used as an index into a major case table; these indices rangefrom 0 to 255. If the major case is unambiguous, the major table simply contains a list of edges for thepolygons representing the isosurface in the cell.However, if the major case is ambiguous, the major table contains a list of the ambiguous faces, wherea decision is needed whether to connect the positive corners or the negative corners, and an index into asecond table that describes the subcases of this ambiguous case. Each subcase speci�es the polygonizationdesired for a di�erent possible topology for the case.Figure 7 shows the subcase polygonizations for ambiguous major case 12 of Figure 1. The major tableentry for this case contains a list specifying that the front and left faces of the cell are ambiguous. The fourpossible decisions are encoded as follows: 18



Figure 7: Subcase Representations for Ambiguous Case 12.00 means connect the negatives in both faces (as shown in lower left picture);10 means connect the positives in the front face and the negatives in the left face (upper left);01 means connect the negatives in the front face and the positives in the left face (upper right);11 means connect the positives in both faces (lower right).This two-bit integer is treated as an o�set from the index that is also in the major table, to specify a precisesubcase table entry. The subcase table entry speci�es the polygonization.The subcase table was created by manually designing the polygons that should represent the ambiguouscases for the major cases. A program then automatically generated the table for all 128 ambiguous casesthat can occur, by considering the mapping from the major cases to these cases.4.8 From Topological Polygons to Surface PatchesAs shown in Section 4.7, a topological polygon can have as many as 12 vertices. It remains to de�ne thesurface patch of which it is the boundary. The usual way to do so is to subdivide such polygons into simpler�gures, such as triangles, which de�ne a planar patch, and quadrilaterals, which de�ne an hyperboloid patch.For lack of a better word, we call this process \tessellation". Tessellation is a topic in its own right. This19
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������ ����A....................................Figure 8: Topological and \Tessellated" Polygonspaper, which is primarily concerned with deciding upon the topological polygons, will not treat this topic indepth.Our implementation tessellates by introducing chords through the cell interior. Figure 8 shows atopological polygon de�ning the isosurface for a cell with three positive vertices forming one connectedcomponent, and �ve negative vertices forming another. The topological polygon is pentagonal, with �veedges in the faces of the cell; it can be further \tessellated" for rendering into a triangle and a quadrilateral,as shown. The quadrilateral could also be divided into two triangles by another interior chord.Kalvin points out that it is important that the �nal surfaces not intersect themselves or each other, sothat they describe physically realizable objects [Kal91]. We shall call this the non-intersection property . Heproves that the \cuberille method" of disambiguation (always connect positive diagonals in ambiguous faces)has this property.There are certain topological polygons, involving multiple ambiguous faces, that cannot be triangulatedwithout introducing an in-face chord. (Nielson and Hamann have spelled out these cases in detail [NH91].) Asmentioned earlier, in-face chords are undesirable because they create discontinuities. Our implementationuses a combination of triangles and quadrilaterals to ensure that all chords are interior to the cell. Thisensures continuity, but does not ensure the non-intersection property. As the quadrilaterals are generallyhyperboloidal, further analysis of the surface (such as segmentation, area and volume) is di�cult. (We thankone of the referees for pointing out these issues.)For completeness, we briey describe a modi�cation to our implementation that is su�cient to achieve thenon-intersection property. When necessary, a topological polygon is supplemented with an interior vertex ,which is the centroid, or \center of gravity", of the vertices of its topological polygon. In this event, thetessellation consists of rays from the centroid to the vertices of the topological polygon.1. Let us call an ambiguous face overworked if both of its topological edges belong to the same topologicalpolygon. Interior vertices are needed only if a cell has two or more overworked faces (by an easy caseanalysis). In this event (which we believe to be quite pathological), each topological polygon involvedwith an overworked face requires an interior vertex.20



Figure 9: Intersecting surfaces within a cell can result from triangulation of certain topological polygons(left). Introducing centroids as additional vertices eliminates the problem (right).2. There is one situation in which two topological polygons involve overworked faces, as shown in Figure 9.This is a subcase of our \case 13". As shown on the left of that �gure, chordal tessellation can produceintersecting surfaces. On the right, centroids serve as interior vertices, and the surfaces are disjoint.To prove that the resulting surfaces must be disjoint, we observe that the centroid of the lower polygonis at most 1/3 from the bottom face of the cell, while the upper centroid is at most 1/3 from the topface (where cell sides are unit length). Also, each centroid is at least 1/3 from each side face. Theconclusion follows by analytical geometry.3. In other cases, of which there are several, one topological polygon is incident upon two or moreoverworked faces. The only question is whether the rays from its centroid produce a self-intersectingsurface. So, imagine a sphere outside the cell whose center is the centroid. Project the edges of thetopological polygon radially onto this sphere. Clearly, the surface is self-intersecting only if some ofthe resulting spherical arc segments intersect. But this is impossible, because then the correspondingtopological edges would also intersect.Nielson and Hamann described a di�erent way to de�ne interior vertices, which is su�cient for their purposes,but which does not handle the case shown in Figure 9 [NH91]. Non-intersection is not mentioned, but anargument similar to that of case 3 above shows it to hold.5 Results on Scienti�c Data5.1 Connectivity Comparison on Medical DataAn earlier section discussed behavior of disambiguation methods on arti�cial functions, because in thosecases we know the correct behavior. With data from an application such as medical imaging, a clear-cutdetermination of the correct behavior in all cases is not possible. One can only look at examples and forma judgement about whether the underlying physiology is correctly represented. This section presents someexamples that are typical of our own observations. 21



As stated earlier, disambiguation is essentially the process of deciding which pair of diagonal nodes toconsider connected in an ambiguous face. Recall the de�nitions of the simple boolean policies UA-R1, UA-R2, and UA-R3 from Section 4.1. From the earlier discussion, we know that none of these methods can becorrect on both F1 and F2. Now we consider their correctness on medical image volumes, particularly incomparison to the gradient heuristics.We would expect UA-R1 to err on the side of disconnecting thin objects that should be connected.Rusinek et al. have reported di�culty in visualizing thin bones with Kalvin's \Alligator" method, whichuses UA-R1 connectivity [RNMK91]. Their experiment used a CT-scan of a dry skull. On similar data, wehave also noticed that small tunnels sometimes appear in thin bones using UA-R1 connectivity, but theydisappear using others. However, without access to the original specimen we cannot be sure whether theseare pseudo-foramena (reconstruction artifacts), or actual foramena (small holes in the bone through whichnerves and blood vessels often pass).On the other hand, UA-R2 would tend to connect distinct objects that are close to each, and to connectnearby parts of an object that have no actual connection. Connectivity UA-R3, being a mixture, would haveone tendency or the other, depending on the orientation of the ambiguous face.Figure 10 shows isosurface images based on magnetic resonance imaging (MRI) of a brain. The datasetwas distributed by University of North Carolina, Chapel Hill. The threshold was 650.5. The top image wasbased on connectivity UA-R2; UA-R3 was very similar. The bottom image was based on the Quadratic Fitmethod; the Center-Pointing Gradient method was very similar.In the top image, separate convolutions are connected by \bridges". Arrows show sites of numerousbridges in the central sulcus (A, B), pre-central sulcus (C, D), and elsewhere (E, F). The sites (A{D) are inmajor sulci (deep �ssures between convolutions). At these sites, UA-R2 and UA-R3 created 11{12 incorrectbridges, the facial average method created 4, while UA-R1 and the gradient heuristic methods created none.In the narrower �ssures at (E, F) all methods that we studied created 5{7 incorrect bridges. These countsare approximate, based on close-ups and cut-aways (see Figure 11); bridges may also be found at unlabeledsites.These data indicate that, when ambiguities do occur, the methods that use the most information tendto be the most accurate. The simple boolean methods UA-R1{3, using only one bit, fare the worst. Noticethat simple boolean methods cannot be neutral with respect to sign inversion. The Facial Average method,using information in the cell face only, is intermediate. The Gradient Heuristics, using information beyondthe cell face, fare the best. Of course, the large majority of cells are not ambiguous and all methods producethe same surface elements in such cells.5.2 Comparative Performance MeasurementsThe table-driven methods described above were evaluated on sampled data volumes derived from CT-scans, a�nite element analysis in computational uid dynamics (CFD), and a molecular data set. Their performancewas compared with respect to number of discontinuities, number of polygons produced, and CPU time.The CT-scan volumes and the molecular data set consisted of scalar data arranged in a three-dimensionalrectilinear lattice. The CFD study was on a geometrically warped grid, but each cell had eight corners.Statistics here refer to three sample volumes:1. A CT-scan of a dolphin head with density values ranging from -1024 to 2563, provided by Ted Cranfordof UCSC. Thresholds 120.2 and 1125.2 on the dolphin detect the skin and bone surfaces respectively.2. CFD data of an aircraft �n with density ranging from 0.1926 to 4.9775, provided by NAS at NASA-Ames Research Center. Threshold 1:0 on the aircraft �n �nds an isopressure surface.22



Figure 10: MRI isosurfaces of brain convolutions, threshold 650.5. Top image used UA-R2 connectivity.Arrows indicates sites of some of the incorrect \bridges". In the bottom image, which used Quadratic Fitconnectivity, most, but not all, bridges are absent. 23



Figure 11: (Left) Detail view at site C of the previous �gure, showing two \bridges" across the pre-centralsulcus, present in UA-R2 and UA-R3 images. (Right) Cut-away side view shows that \bridges" have fulldimensionality; the surface is continuous.3. A quantummechanics calculation of a high potential iron protein (\hipip") generated by L. Noodlemanand D. Case of Scripps Institute. Threshold 0:0 on the protein detects the \nodal surface".Table 1 provides some statistics on the nature of the volumes and the frequency of the 14 major cases,which are numbered as in Figure 1; we follow Lorensen and Cline [LC87], except that their cases 11 and 14have been combined into our case 11. Inverse cases are included in the count of the non-inverted case. Thenumber in square brackets after the ambiguous cases indicates how many topological subcases there are forthe major case shown.Table 2 compares four table-based methods in terms of number of polygons, number of disconnectededges, and running times. Only the marching cubes table produced disconnected edges.Running times indicated are the user CPU time plus the system CPU time to process the volume afterit has been read in through the generation of polygons but before display; the code included statisticsgathering, so time is not indicative of \production" performance. Statistics were done on a Sun Sparcstation1 workstation. Note that running times for disambiguationmethods are only slightly greater than those usingthe original single table method (1a) without disambiguation. As mentioned before, these times include thetime for gradient calculations for the gradient-consistency disambiguation methods.We have drawn the following tentative conclusions from the timing results, and con�rmed theirreasonableness by inspection of the program:1. Processing a cell with isosurface takes about 13 times as long as processing an empty cell. Nevertheless,the overall cost (CPU time) of processing empty cells was 30 to 70 percent of the total cost.2. Processing an ambiguous cell with the quadratic �t method takes about three to four times as long asprocessing an unambiguous cell. 24



Data Set Dolphin Dolphin Blunt Fin ProteinThreshold 120.2 1125.2 1.0 0.0Number of Cells 3,718,093 3,718,093 31,117 226,981Cells with Isosurface 106,612 64,908 4,036 28,828Ambiguous 3.1% 3.3% 5.6% 0.67%Case 1 : 19.7% 29.1% 21.4% 25.6%Case 2 : 33.5% 29.3% 32.7% 37.0%Case 3 : [2] 1.6% 1.4% 1.9% 0.3%Case 4 : 0.2% 0.4% 0.3% 0.03%Case 5 : 13.9% 19.9% 15.9% 17.5%Case 6 : [2] 0.8% 1.3% 1.4% 0.3%Case 7 : [8] 0.4% 0.1% 1.0% 0.01%Case 8 : 27.9% 14.2% 22.1% 14.9%Case 9 : 1.3% 2.8% 1.6% 4.1%Case 10 : [4] 0.1% 0.1% 0.6% 0.04%Case 11 : 0.5% 1.0% 0.5% 0.18%Case 12 : [4] 0.4% 0.3% 0.6% 0.1%Case 13 : [64] 0.02% 0.0% 0.05% 0.0%Table 1: Case Frequency in Scienti�c Data. Ambiguous cases are followedby number of subcases in brackets. Percentages are based on cellsintersecting the isosurface.3. The cost of disambiguation is about �ve to ten percent of the overall cost of processing cells withisosurface, and an even smaller percentage of total time.This study also showed that the facial average disagreed with the gradient heuristic methods on how todisambiguate 26 to 42 percent of the ambiguous cells. The two gradient heuristic methods disagreed witheach other about ten percent of the time.Examples of the type of discontinuities possible using the original marching cubes table are shown inFigure 13. The image is of the protein described above. Figure 13 shows a volume rendered with the originalmarching cubes table. Holes are obvious using this approach; discontinuities of this type are not uncommonon volumes in our experience. They are made more obvious by zooming in on the volume so that thecontributions of individual cells show details.6 Topological Accuracy of the HeuristicsWithout knowing the underlying function that produced the samples, or at least some properties of thatfunction, no de�nite statements can be made about the topological accuracy of any disambiguation method.Unfortunately, such information seems to be rarely available to researchers on volume visualization for widelydistributed volume data sets. Absent such information, we took two approaches toward evaluating accuracy.One was to create test volumes with known underlying functions, so true resampling could be performedon ambiguous cell faces. The other was to evaluate the smoothness of volumes with the aid of Fouriertransforms. 25



a. Dolphin threshold 120.2 b. Dolphin threshold 1125.2

c. Hipip threshold 0.0 d. Aircraft �n threshold 1.0Figure 12: Isosurfaces analyzed:26



Data Set and ThresholdMethod Dolphin (120.2) Dolphin (1125.2) Blunt Fin (1.0) Protein (0.0)Marching CubesPolygons Generated 127,624 82,988 5069 35,327Disconnected Edges 4300 2552 284 192CPU Seconds 222 209 3.2 19.5Facial AveragePolygons Generated 128,835 83,720 5154 35,429Disconnected Edges 0 0 0 0CPU Seconds 221 210 3.2 19.5Center-Pointing GradientPolygons Generated 128,839 83,639 5196 35,405Disconnected Edges 0 0 0 0CPU Seconds 223 211 3.5 19.6Quadratic-Fit GradientPolygons Generated 128,804 83,633 5196 35,403Disconnected Edges 0 0 0 0CPU Seconds 223 211 4.1 19.7Table 2: Comparison of Methods on Scienti�c Data.6.1 Tests on Known Underlying FunctionsTo evaluate the topological accuracy of metric disambiguation heuristics, we generated 40 distributions ofelectric charges. For each distribution we produced one volume based on sampling the magnitude of theelectric �eld, and one volume based on sampling the electric potential.2 These kinds of functions werechosen because they do represent physical phenomena, and are similar to \inuence functions" used inimplicit surface modeling. Experimental design details of 400 sample runs are described in Appendix B.For each sample run, we ran four metric disambiguation heuristics on the ambiguous faces: facial average,bilinear interpolation, center-pointing gradient, and quadratic �t. In addition, we ran a procedure that usedresampling to discover the \correct" disambiguation. \Correct" is placed in quotes because this is still anumerical procedure that is not guaranteed analytically to produce the correct choice (see Appendix B). Forthe experiment, an heuristic was considered correct in an ambiguous cell only if all ambiguous faces of thatcell were decided \correctly". The overall probability of deciding a cell correctly at random is less than onehalf because some cells have multiple ambiguous faces.The correctness statistics for volumes representing electric �eld magnitude are shown in Table 3; here,68 out of 200 sample runs contained some ambiguous cell. All di�erences between methods were highlysigni�cant, statistically, as explained further in Appendix B. The worst performing method was stillsigni�cantly better than chance, by 4.5 standard deviations. but clearly there is room for much improvement.Correctness statistics for volumes representing electric potential are shown in Table 4; in this case, 156out of 200 sample runs contained some ambiguous cell. Only the largest di�erence between methods wasstatistically signi�cant. All methods were signi�cantly better than chance, but clearly there is room for much2Recall that the electric potential (a scalar) due to one charge q at a distance r is q=r, and its gradient is the vector(�x;�y;�z)q=r3, which is the electric �eld. The magnitude of the electric �eld is found by summing the gradients for allcharges, then taking the magnitude of the result. This is quite di�erent from summing the magnitudes of individual gradients,which would have no physical signi�cance. 27



Figure 13: Discontinuities due to original marchingcubes table appear as holes at lower right. Volumeis a detail of \hipip". Figure 14: Isosurfaces in the 3D Fourier transformof the \hipip" volume show concentration of thespectral energy at low frequencies; red is at plus 1%of the maximum component and blue is at minus1%.CorrectMethod Num. Pct.(random) 45.2Fac.Avg. 771 48.1Bilinear 820 51.2C.P.Grad. 941 58.7Quad.Fit 1018 63.5 CorrectMethod Num. Pct.(random) 47.3Fac.Avg. 617 66.6Bilinear 625 67.4C.P.Grad. 599 64.6Quad.Fit 630 68.0Table 3: Topological accuracy comparison onelectric �eld magnitude volumes, covering a totalof 1602 ambiguous cells. All di�erences weresigni�cant at level :001. (Small numbers indicatehigh signi�cance.) Table 4: Topological accuracy comparison onelectric potential volumes, covering a total of 927ambiguous cells. The di�erence between Quad.Fit and C.P.Grad is signi�cant at level :001; otherdi�erences were insigni�cant even at :05.improvement.6.2 Fourier Analysis of VolumesFourier analysis can be used to determine the apparent smoothness of an unknown underlying function. Weshall illustrate this with a discussion of the so-called hipip (High Potential Iron Protein) volume studied inSection 5.2. Assume this 64x64x64 volume is scaled as �x = �y = �z = 1=64. Then the 3D discrete Fourier28



transform will compute frequencies (positive and negative) through 32 cycles, in increments of 1. We canask the question: what radius must a sphere centered at the origin have in the 3D frequency domain in orderto enclose 99% of the spectral energy of the volume (excluding the zero-frequency DC component)?3For the hipip volume, the answer is that 99% of the non-DC spectral energy is contained within a sphereof radius 22.5 cycles, which is well below the maximum \observable" frequency of 32. Figure 14 shows thisconcentration qualitatively; the rendered isosurfaces are at plus and minus 1% of the maximum non-DCfrequency component. For other percentages, we found that 98% of the non-DC spectral energy is within asphere of radius 19.2, and 99.5% is within 26.1 cycles.When almost all of the spectral energy of a volume appears at frequencies well below the maximumobservable frequency, there is a reasonable presumption that the underlying function has been adequatelysampled|otherwise there would be a large gap in the underlying function's spectrum. By \adequatelysampled" we mean that this frequency information is representative of the underlying function itself, andnot just of the sampled volume, that going to a higher resolution would produce little or no new spectralinformation.Less decisive behavior was found in the blunt �n's spectrum, where frequencies up to 16 cycles wereobservable. Here 98% of the non-DC spectral energy was found within a radius of 11.0 cycles, 99% within13.1 cycles, and 99.5% within 15.0 cycles. These computations were done in \computational space", i.e., asthough the grid were regular, and cells were 1/32 on each side.Finally, analysis of the dolphin data set showed that a presumption of adequate sampling was verydoubtful. Scaling the cells to be 1/32 on each side permitted frequencies up to 16 cycles (plus and minus) ineach coordinate direction to be observed. However, a sphere of radius 16 contained only 95% of the non-DCspectral energy; a radius of 19 was needed to capture 99%.The point of this analysis is that, if the volume can be presumed to be adequately sampled, then aFourier-based interpolation should be very accurate. Such interpolation essentially evaluates the inverseFourier transform at non-grid points. If correct disambiguation is critical, the expense of Fourier-basedinterpolation, combined with searching for a \conclusive path", as described in Appendix B, may be justi�ed.Another implication of adequate sampling is that the possible error in a quadratic �t within a cell face canbe bounded|essentially this error arises from third and higher derivatives. This subject is well-studied insignal processing. For example, if an error bound of .01 is known, and the quadratic �t Q(t; 0) of Section 4.6has a minimum value greater than .01 on the diagonal from ll to ur, it is conclusive that these corners arein the same connected component.Fourier analysis holds much promise for volume visualization. These remarks indicate some directions tobe pursued further.7 Discussion and ConclusionsCorrect isosurface generation is important for scientists to correctly interpret their data. Our experimentsshowed that methods that use information from neighboring cells are more likely on balance to pick correctisosurfaces, at least on the functions we tested.It is equally important for users of isosurface algorithms to be aware of the possibility of incorrecttopologies, so that they can adjust their interpretation of the data to take into account these possible errors.In many graphics problems there is a trade-o� of speed for accuracy. We attempted to get the best ofboth worlds by using a major case table for speed on the unambiguous cases, similarly to Lorensen andCline [LC87], but with a careful disambiguation for accuracy when ambiguities did arise. The extra cost ofcareful disambiguation does not seem to be a serious burden in practice, due to the relatively low statistical3Recall that spectral energy is de�ned asP jaijkj2, where aijk are 3D frequency components, appropriately normalized.29



frequency of ambiguous cases. As Albert Einstein said, \Things should be made as simple as possible, butno simpler." We believe this treatment helps to correct the oversimpli�cations of previous methods.In summary, we expanded the case table to allow a choice of possible topologies on ambiguous cells,introduced two new methods for picking among these choices, and experimentally studied those and severalother methods.All metric disambiguation methods (Section 4) guarantee continuity between cells. Of the three methodsstudied on scienti�c data, the simplest is the \facial average" method which uses only the four corners valuesfor the ambiguous face to decide upon topology. While simplest to compute, we believe the true topologyis better estimated by extended metric methods, which can provide further insight into the underlyingfunction. The two \gradient consistency heuristic" methods consider an extended neighborhood. Toguarantee consistency across shared faces, the extra data points used all lie in the grid plane of the sharedface. While the two heuristic methods rarely di�er and their di�erences are subtle, the more expensive\quadratic �t" method has been shown to reect more accurately the behavior of a quadratic underlyingfunction than does the \center-pointing gradient" method.AcknowledgementsWe wish to thank Judy Challinger and Orion Wilson for their programming, Ted Cranford for his CT-scandata of dolphins, and NAS/NASA-Ames Research Center for the aircraft �n data. The \hipip" data setwas developed by Louis Noodleman and David Case of the Scripps Clinic, and Michael Pique of the ScrippsInstitute supplied us with additional background on it. TomMalzbender of Hewlett-Packard assisted us withFast Fourier Transform code. Nelson Max of UC Davis made some helpful suggestions on the presentation.David Dean of NYU helped us to understand CT-scan data. We also thank Silicon Graphics Incorporated,Sun Microsystems, and Digital Equipment Corporation for their generous gifts of equipment, without whichthis research would not have been possible. We wish to thank the reviewers for their many helpful suggestions.This research was supported in part by a State of California Micro-Electronics Grant, a UCSC Committee onResearch Grant, NSF grants CCR-8958590 and ASC-9102497, and NASA-Ames Research Center CooperativeAgreement Interchange No. NCA2-430.Appendix A Tricubic Interpolation EquationsA tricubic polynomial may be �t to the cell data, using the 4x4x4 region of voxels surrounding the cell tospecify the function. The function is the 3-dimensional volumetric version of the Catmull-Rom spline [CR74,FDFH90].In a Catmull-Rom spline curve, the curve interpolates the interior two of the four points de�ning thecurve and uses the outer two points to calculate the gradient of the curve at the interior two. Thus, the curveformula can be stated either in terms of four points, or in terms of two points and two gradients at thosepoints (the Hermite formulation). A Catmull-Rom spline surface would use 16 points in a 2-dimensional4x4 grid and interpolate the interior four. A Catmull-Rom spline volume, which we use here, considers 64points in a 3-dimensional 4x4x4 grid and interpolates the interior eight de�ning the middle cell of the grid.This method produces a tricubic function within the cell that is C1 continuous with tricubic functions inneighboring cells at faces.The gradients for the interior points are found using standard central di�erences:5f(x; y; z) = (5fx(x; y; z);5fy(x; y; z);5fz(x; y; z)) where (13)5fx(x; y; z) = f(x+�x; y; z)� f(x��x; y; z)2�x (14)30



5fy(x; y; z) = f(x; y+�y; z)� f(x; y��y; z)2�y5fz(x; y; z) = f(x; y; z+�z)� f(x; y; z��z)2�zwhere �x, �y, and �z are the distances between two neighboring sample points in (x; y; z). This assumes aregular sampling, though the interval may vary among the three directions. For the remainder of this sectionwe assume the coordinates have been rescaled and nondimensionalized to make �x, �y, and �z unity; thissimpli�es the presentation without any loss of generality.To derive the tricubic �t, �rst consider four sample values f�1, f0, f1, and f2 in one dimension, and aunivariate cubic curve F (u) obeying the constraints F (0) = f0, F 0(0) = f 00, F (1) = f1, and F 0(1) = f 01,where, by central di�erences, f 0i = 12 (fi+1� fi�1). We shall use F (u) as the interpolated sample value in theinterval 0 � u � 1. The desired F (u) can be expressed in terms of the four sample values asF (u) = 2X�1 fi Bi(u) (15)with the appropriate blending functions, Bi(u). The Bi(u) are found by routine algebra to be:B�1(u) = 12 (�u3 + 2u2 � u) (16)B0(u) = 12 (3u3 � 5u2 + 2)B1(u) = 12 (�3u3 + 4u2 + u)B2(u) = 12 (u3 � u2)Using a corresponding indexing scheme (from �1 to 2) for the cell in three dimensions, the tricubicfunction is given by F (x; y; z) = 2Xk=�1 2Xj=�1 2Xi=�1 fi;j;kBi(x)Bj(y)Bk(z) (17)We can easily verify that this function �ts both the sample values and the computed gradients at the 8 cellvertices by observing that the blending functions' values and �rst derivatives are zero at 0 and 1, except forthe cases: B0(0) = B1(1) = 1; B01(0) = B02(1) = 12 ; B0�1(0) = B00(1) = �12 (18)Appendix B Test Details on Known Underlying FunctionsExperimental DesignTo evaluate the topological accuracy of various disambiguation heuristics, as reported in Section 6.1, wegenerated 40 distributions of electric charges. Each distribution consisted of 600 charges placed uniformlyat random in a sphere of radius 10, surrounding a cube of side 8. Charges were �1 with equal probability.For each distribution we produced one volume based on sampling the magnitude of the electric �eld, andone volume based on sampling the electric potential.Thus a total of 80 volumes were tested, each volume being a cube of 10 cells on a side (11x11x11 samples).On each volume 5 isosurfaces were extracted. An isosurface was extracted only in the interior 83 cells toavoid edge e�ects with gradients. A sample run consists of one combination of volume and threshold.For each sample run, we ran 4 disambiguation heuristics on the ambiguous faces: facial average, bilinearinterpolation, center-pointing gradient, and quadratic �t. In addition, we ran a procedure that used31



Plur- Observ- Num. of Signif.Methods ality ations Std.Devs. LevelBilinear vs. Fac.Avg. +49 153 3.96 .001C.P.Grad. vs. Fac.Avg. +170 372 8.81 .001C.P.Grad. vs. Bilinear +121 487 5.48 .001Quad.Fit vs. Fac.Avg. +247 555 10.48 .001Quad.Fit vs. Bilinear +198 514 8.73 .001Quad.Fit vs. C.P.Grad. +77 131 6.73 .001Table 5: Topological accuracy comparison on electric �eld magnitude volumes, covering a total of 1602ambiguous cells. Plur- Observ- Num. of Signif.Methods ality ations Std.Devs. LevelBilinear vs. Fac.Avg. +8 134 0.69C.P.Grad. vs. Fac.Avg. -18 206 -1.25C.P.Grad. vs. Bilinear -26 276 -1.57Quad.Fit vs. Fac.Avg. +13 227 0.86Quad.Fit vs. Bilinear +5 249 0.32Quad.Fit vs. C.P.Grad. +31 55 4.18 .001Table 6: Topological accuracy comparison on electric potential volumes, covering a total of 927 ambiguouscells.resampling to discover the \correct" disambiguation. \Correct" is placed in quotes because this is stilla numerical procedure that is not guaranteed analytically to produce the correct choice. The proceduresearches for what is called a conclusive path, de�ned below, connecting corners of the same sign in anambiguous cell face. It begins with an 11x11 resampled grid covering the cell face, i.e., 100 subfaces. If noconclusive path is found at this resolution, it tries a 21x21 resampled grid. If it fails again it goes to 41x41,and �nally, if necessary to 81x81. After this, it gives up and called the face \indecisive".A conclusive path is de�ned as a series of line segments joining two diagonally opposite corners of theambiguous cell face, such that:1. Each segment proceeds from a resampled point to another resampled point that is closer to the oppositecorner and is adjacent in the resampled grid either horizontally, vertically, or diagonally. Except forthe two corners joined, all points must be interior to the cell face.2. On each segment, except the �rst and last, a cubic spline function maintains the correct sign relativeto the threshold value, that is, the same sign as the corners. The cubic is �t to the end-points of thesegment and the resampled points \in front of" and \behind" the segment, and equi-distant.3. No ambiguous subfaces (faces in the resampled grid) are touched or traversed by the path.The last condition ensures that a conclusive path cannot exist (at the same resolution) to connect the otherpair of cell corners. In our tests conclusive paths were usually found at the coarsest resolution, and noindecisive faces were found. 32



Statistical Signi�canceTo obtain a sharp evaluation of statistical signi�cance, a pairs test was used. Essentially, an \observation"is the di�erence in performance between two methods (the pair) on the same sample. For the experiment,an heuristic was considered correct in an ambiguous cell only if all ambiguous faces of that cell were decided\correctly", as described above. The performance value is 1 for each \correct" ambiguous cell, and 0 foreach \incorrect". Cells in which the two methods had no di�erence in performance are not counted asobservations. A positive performance di�erence is called a \win" and a negative one is a \loss".Statistical signi�cance computations attempt to reject the \null hypothesis" concerning the pair ofmethods being compared. For our test the null hypothesis is that, given that the two methods have adi�erence in performance on some sample, each has an equal probability of \winning".The statistical signi�cance level of a particular plurality represents (an upper bound on) the probabilityof getting a sample this biased under the null hypothesis. For example, line 1 of Table 5 can be read as, \Ifthe Bilinear and Facial Average methods had an equal probability of \winning" against each other, then theprobability is less than :001 that Bilinear would achieve a plurality of 49 or more in 153 trials; this is 3.96standard deviations from the mean." Thus small numbers indicate high signi�cance.References[AFH80] E. Artzy, G. Frieder, and G. Herman. The theory, design, implementation, and evaluation of athree-dimensional surface generation program. Computer Graphics (ACM Siggraph Proceedings),14(3):2{9, July 1980.[AFH81] E. Artzy, G. Frieder, and G. Herman. The theory, design, implementation, and evaluationof a three-dimensional surface detection algorithm. Computer Graphics and Image Processing,15(1):1{24, January 1981.[Bak89] H. H. Baker. Building surfaces of evolution: The weaving wall. International Journal ofComputer Vision, 3:51{71, 1989.[Blo88] Jules Bloomenthal. Polygonization of implicit surfaces. Computer-Aided Geometric Design,5:341{355, 1988.[CDL+87] H. E. Cline, C. L. Dumoulin, W. E. Lorensen, H. R. Hart, Jr., and S. Ludke. 3D reconstructionof the brain from magnetic resonance images. Magnetic Resonance Imaging, July 1987.[CHRU85] Lih-Shyang Chen, Gabor T. Herman, Anthony Reynolds, and Jayaram K. Udupa. Surfaceshading in a cuberille environment. IEEE Computer Graphics and Applications, 5(12):33{43,December 1985.[CIBL83] L. T. Cook, S. J. Dwyer III, S. Batnitzky, and K. R. Lee. A three-dimensional display system fordiagnostic imaging applications. IEEE Computer Graphics and Applications, 3(5):13{19, August1983.[CLL+88] Harvey E. Cline, William E. Lorensen, Sigwalt Ludke, Carl R. Crawford, and Bruce C. Teeter.Two algorithms for the reconstruction of surfaces from tomograms. Medical Physics, June 1988.[CR74] E. Catmull and R. Rom. A class of local interpolating splines. In R. Barnhill and R. Riesenfeld,editors, Computer Aided Geometric Design, pages 317{326.Academic Press, San Francisco, 1974.[CS78] H. N. Christiansen and T. W. Sederberg. Conversion of complex contour line de�nitions intopolygonal element mosaics. Computer Graphics (ACM Siggraph Proceedings), 12(3):187{192,August 1978. 33
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