An Empirical Study of the Branch
Coverage of Different Fault Classes

*

Melissa S. Cline
Linda. L. Werner

UCSC-CRL-94-30
September 5, 1994

Baskin Center for
Computer Engineering & Information Sciences
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

ABSTRACT

The question “How much testing is enough?” has led many to structural testing methods.
Much has been written about their fault detecting ability, but how does this vary by the
class of fault?

This paper introduces the term Affected Branch Coverage. An affected branch is a
branch which had to be modified in order to fix a fault. Affected Branch Coverage describes
the percentage of affected branches that had been exercised in testing. The study was done
on a leading on-line transaction processing product, analyzing ninety eight field errors.

The specific questions addressed are:

e Which classes of faults are most commonly observed?

e Which fault classes can be associated with covered code and which with uncovered code?

o Is affected branch coverage related to the maturity of the software?
Our results show that whether or not a fault would appear in covered code depends strongly
on the fault class. While this was true in both newer and older code, it was more vivid in
newer code. Overall, we found that affected branch coverage was slightly less than 50%,
suggesting that increasing branch coverage would offer limited gains in fault detection.

Keywords: branch testing, code coverage, fault classification

*This work was partially supported by the International Business Machines Corporation grant # ST1.93215.

CONTENTS 1

Contents

1. Introduction 2

2. Description of the Experiment 3
2.1 Description of the Software 3
2.2 Measuring Branch Coverage with EXMAP 3
2.3 Collection of the Faults and Fault Class Assignment 4
2.4 Relating Branch Coverage to Faults 5

3. Results 7
3.1 Analysis of the Faults Observed 7
3.2 Affected Branch Coverage for All Classes of Faults 7
3.3 Contrasts Between Affected Branch Coverage on the Two Groups 11

4. Conclusions 12
4.1 Areas for Further Study 12

References 14

A. Raw Data 15

2 1. Introduction

1. Introduction

Increasing branch coverage is a widely accepted method of increasing the effectiveness of testing.
While branch coverage is most often measured in unit testing, in recent years it has gained popularity
as a measure of various forms of system-level testing.

Prior work describes a strong, direct relationship between statement coverage and fault detection
in functional test [Piwowarski et al., 1993]. It seems reasonable to expect that the relationship
between branch coverage and fault detection is at least as strong.

However, any form of structural testing has a limited effectiveness at fault detection. Even when
testing with a criterion of 100% coverage, structural testing is not likely to reveal more than half of
the faults in a body of code [Basili and Selby, 1987] [Girgis and Woodward, 1986] [Selby, 1986].

Additionally, high code coverage can be a very expensive goal. 100% code coverage may not
be feasible outside of unit test for a number of factors including code handling “impossible” error
conditions, dead code, hooks for new functionality, and code requiring special hardware. High
coverage 1s also a goal that must be pursued deliberately — when coverage on a software product is
measured for the first time, those involved with the testing are often surprised to learn how low the
coverage really is [Grady, 1993] [Piwowarski et al., 1993]. When attempting to increase coverage,
testing teams will sometimes become overly focused on increasing coverage and will lose sight of the
underlying quality goals [Su and Ritter, 1991].

So therefore, when we set out to increase branch coverage, it is important to know exactly what
gains can be expected. One factor in this equation is what classes of faults are detected effectively by
branch testing. Prior work suggests that the fault-detecting ability of branch testing is not uniform
across fault classes.

One prior study showed that while structural testing revealed more faults than 2-version voting,
code reading, assertions, or static analysis, there were classes of faults for which it was ineffec-
tive. These classes included missing checks, parameter reversal, substitution, and calculation faults
[Shimeall and Leveson, 1991]. Another study showed that structural testing in general is more ef-
fective in finding domain faults than computation faults, and that branch testing in particular is
not effective in detecting the wrong arithmetic operator or a statement wrongly placed in a logical
expression [Girgis and Woodward, 1986]. A third study showed statement coverage to be more effec-
tive at detecting faults of commission than omission, and weakest at detecting cosmetic, interface,
and data faults [Basili and Selby, 1987].

Therefore, we decided to examine a large, industrial software product and the testing that is
performed on it. By looking at errors reported from the field, and whether or not their underlying
faults had been covered in testing, we have acquired a snapshot of the faults that slip by branch
testing.

For the classes of faults, we chose to use the same taxonomy used in previous studies of database
and on-line transaction processing (OLTP) systems [Sullivan and Chillarege, 1992]. This breakdown
focuses on software implementation faults rather than faults earlier in the lifecycle. The fault classes
used are listed in 2.3

For each of these categories, we investigate the relationship between affected branch coverage
and fault incidence. We have found that whether or not a fault will be in covered code depends
heavily on the fault class. For instance, the overall affected branch coverage of the data fault class
is only 30.4% while the average affected branch coverage of interface faults is 70.2%.

Finally, we will examine the comparative effects of the age of the software to the fault class and
affected branch coverage. We have found that the affected branch coverage is higher than the branch
coverage in both older and newer software, though the difference is more vivid in the newer software.

2. Description of the Experiment

2.1 Description of the Software

The software studied is a large, mature, leading on-line transaction processing (OLTP) product.
It contains over 5,000,000 lines of code and over 3000 modules. These modules vary widely in age,
size, and even programming language. Because of the immensity of the full system, we chose to
study a subset of its modules rather than the full system. There were two groups of modules used
in this study, referred to as the older group and the newer group.

The older group is comprised of a sampling of modules from across the system. These modules
vary in size, programming language and age. They have one common trait — they have had a high
fault rate relative to other modules in the system. They are all from a version of the system which
had been released approximately one year before the start of this study.

The newer group was chosen to contrast the older group. These modules are far newer modules,
written less than three years ago, and are from a more recent release of the system. Rather than
being from a wide assortment of functional areas, they are from one single area. Finally, they are
produced by a software engineering team that has a strong reputation for excellence within the
product development groups.

Though the age of the software is a major difference between the older and newer group, it is
certainly not the only difference. Please bear this in mind while reading on.

2.2 Measuring Branch Coverage with EXMAP

The coverage information shown in this paper was produced with the EXMAP code coverage
tool. EXMAP is an IBM-internal tool which measures statement and branch coverage. It provides
reports which summarize the coverage of the selected modules, as shown in figure 2.1, or detailed
information on the execution of each statement, as shown in figure 2.2.

The tests that were used in this study are contained in the “regression bucket”, the set of tests
used in routine regression testing. These tests are all functionally-generated system tests. Along
with the software, the regression bucket matures and changes over time. In order to get an accurate
picture of how both groups had been tested prior to release, we used the version of the regression
bucket that was used to test the release.

STATEMENTS: BRANCHES:
PA LOAD MOD PROC LI STI NG NAME TOTAL EXEC % CPATH TAKEN %
1 LOADMOD1 TEST1 TEST1 LI STING * 45 43 90.9 34 19 55.8
2 LOADMODL TEST2 TEST2 LI STI NG * 21 21 100.0 15 13 86.7
3 LOADMOD1 TEST3 TEST3 LI STI NG * 10 2 20.0 4 1 25.0
4 LOADMCOD1 TEST4 TEST4 LI STI NG * 103 77 86.7 42 34 80.1

Sunmary for all PAs: 179 143 79.9 95 67 70.5

Figure 2.1: Sample EXMAP Summary Report

4 2. Description of the Experiment
2.3 Collection of the Faults and Fault Class Assignment

Ninety-eight error reports were analyzed for this study. These errors had occurred in the field,
and had all been analyzed and fixed at the time of the study. Each of these errors was reported in
an internal error report called an APAR.

The information on all APARs is recorded in the RETAIN database. Each APAR starts with an
error, typically reported by the customer, sometimes reported by IBM personnel performing alpha
site testing. The error is diagnosed and a fault report is entered. This fault report is typically
written by the engineer responsible for fixing the error, and typically contains a detailed description

of the fix.

Using the information in RETAIN, each fault was analyzed and assigned to a fault class. The
descriptions in RETAIN did not include a fault classification system: rather, they favored a textual
description of the fault. We chose to use the following fault classification that has been used
previously in studies of systems similar to the one discussed in this paper [Sullivan and Chillarege,

1992].

Allocation Management : One module deallocates a region of memory before it has completely
finished using the region. After the region is reallocated, the original module continues to use
it in its original capacity.

Copying Overrun : The program copies bytes past the end of a buffer.

Data Fault : An arithmetic miscalculation or other fault in the code makes it produce or read the
wrong data.

Interface Fault : A module’s interface is defined incorrectly or used incorrectly by a client.
Memory Leak : The program does not deallocate the memory it has allocated.

Pointer Management : A variable containing the address of data was corrupted. For example, a
linked list 1s terminated by setting the last chain pointer to NIL when it should have been set
to the head element in the list.

Statement Logic : Statements were executed in the wrong order or were omitted. For example,
a routine returns too early under some circumstances. Forgetting to check a routine’s return
code is also a statement logic fault.

Synchronization : An error occurred in locking code or synchronization between threads of control.

Undefined State : The system goes into a state that the designers had not anticipated. For
example, the program may have no code to handle an end-of-session message which arrives
before the session is completely initialized.

Uninitialized Variable : A variable containing either a pointer or data is used before it is
initialized.

Unknown : The fault report described the effects of the fault, but not adequately enough for us
to classify it.

Wrong Algorithm : The program works, but uses the wrong algorithm to do the task at hand.
Usually, these were performance-related problems.

Other We understood what the fault was, but could not fit it into a large enough category.

To classify the faults, the first source of information was the RETAIN database. RETAIN
usually contained enough detail to assign the faults to fault classes, although sometimes it was
necessary to examine the source code. When neither RETAIN nor the source code provided sufficient
information to classify a fault, it was placed in the “Unknown” fault class. Two faults were classified
as 7 Unknown”.

Ultimately, no faults were assigned to “Copying Overrun”, “Uninitialized Variable” or “Other”.
Therefore, we will not be discussing these fault classes later.

2.4. Relating Branch Coverage to Faults 5

4359: STM 14, 12, 12(13) 8460500
4360: LR R15, =A(SAMPLE1) 8461000
4361: LTR R12, R12 8461500
4362> BZ LABEL1 8462000
4363— ST RO, SAMPLE2 8463000
4364 L RO, =A(SAMPLE3) 8464000
4365— L R10, =A(SAMPLE4) 8465000
4366— CLI FLAGL, SYMBOL1 8466000
4367 BNE LABEL2 8467000

Figure 2.2: Excerpt from a Sample EXMAP Annotated Listing. The location indices
are the numbers in the rightmost column. The coverage information symbol is shown
immediately to the right of the line number.

. indicates that the line was executed.

— indicates that the line was not executed.

> indicates a logical expression that branched but did not fall through.

V indicates a logical expression that fell through but did not branch.

& indicates a logical expression which both fell through and branched.

These last two symbols are not shown in this figure, but are mentioned for completeness.

2.4 Relating Branch Coverage to Faults

When an APAR results in a software change, the modules affected are not modified directly.
Instead, a patch file 1s created with the source code modifications to fix the fault. Lines added or
modified are shown verbatim. When lines are deleted, it is actually replaced by a comment indicating
for which APAR the line was deleted. When the patch file is patched into the source module, the
proper location for each modification is determined using the location indices.

Location indices are similar to line numbers. Each line in the source file has a location index,
and the location indices increase as you read down the file. Unlike line numbers, they are generated
by hand. In other words, the programmer marks each line with a location index. The location
index is treated as a comment by the compiler or assembler. In figure 2.2, the location indices are
the numbers in the rightmost column. When the source file is first created, the delta between the
location indices of two adjacent lines is fairly large. Then, when a line is added later, it is given a
location index that is between the two adjacent location indices.

The location indices proved to be invaluable guides to determining whether or not a fault had
been covered. Determining whether a portion of the fix had been covered was a simple matter of
looking at the location index of the fixed line and seeing if that line or adjacent lines had been covered
in testing. This coverage information came from the EXMAP annotated listings. In figure 2.2, the
coverage information is shown in the column immediately to the right of the line number, and is
described in the caption.

We assumed that the location of the fix was a good indicator of the location of the fault, and
that the coverage of the patched locations was a good indicator of the coverage of the fault.

When determining whether or not the fault had been covered, we collected two numbers for each
fault: the number of branches in the original code that were affected by the fix, and the number
of these branches that were exercised during test. A branch is defined as being affected by a fix if
any sequential statement on the branch is modified or if the conditional statement containing the
branchpoint itself is modified. We refer to the branches affected in order to fix a fault as affected
branches.

6 2. Description of the Experiment

A branch is considered exercised if the statements on the branch are exercised. EXMAP provides
codes to indicate if during execution, a conditional statement has branched, fallen through, both,
or neither. Using these codes, it was possible to tell if a branch had been exercised even when the
branch itself contained no statements. For each fault, we collected data from the EXMAP output
on how many of the affected branches had been exercised during testing. We refer to this quantity
as affected branch coverage.

The raw data used in this study is included in appendix A. This includes the following information
for each fault:

e the fault number,

e the number of the module which was modified because of the fault,

e the category of the fault,

e the number of branches in this module affected by the fix, and

e the percentage of the affected branches that were covered in regression testing.

For reasons of confidentiality, a fault number and module number are shown in place of the actual
APAR number and module name.

3. Results

3.1 Analysis of the Faults Observed

Table 3.1 lists the types of faults analyzed in this study. The faults were selected at random
from all faults on the modules mapped. The most prevalent fault class 1s interface faults, followed
by undefined state and synchronization.

Figure 3.1 relates the number of faults to the number of affected branches. Notice the peak at
size 1 and the exponential decay at sizes greater than 1. The average size of a fault in affected
branches is 2.2.

Table 3.2 shows the average number of affected branches for each fault class. The number of
affected branches relates to the complexity of fixing the fault by indicating the number of separate
sections of code that must be touched by the fix. This is used as a measure of the cost of the fix [Wade,
1994]. As shown in this table, allocation management faults are by far the most complicated to fix.
The fault class with the next highest number of affected branches is also one of the more common
fault classes — synchronization. This data suggests that if software developers take extra care to
prevent these faults, they will be rewarded with lower maintenance costs.

3.2 Affected Branch Coverage for All Classes of Faults

To determine how many of the faults are in covered code, we turn our attention to figure 3.2.
The data shown in this table is the number of faults at various levels of affected branch coverage.
This data is broken down between the older group and the newer group in table 3.3. A chi-squared
test was used to determine if the data in table 3.3 represents different distributions for the older
group and the newer group. The chi-squared probability that the data from the two groups is from
two populations is 0.001. This implies that even though we have two separately collected sets of
data, we should consider all the data as coming from one single source. Therefore, when we discuss
how the affected branch coverage varies by fault type, we will not focus on which group the data
came from.

Looking at this data, we see that about half of the faults occurred in covered branches. The
overall affected branch coverage is 49.5% in the older group, 42.9% in the newer group, and 49.0%
for both groups combined. In contrast, the branch coverage was 57.3% for the older group and 34.3%
for the newer group.

Note the number of faults at the low end or the high end of the scale. A major factor behind this
is the number of modifications that affect one branch only. Almost half of the faults studied affected
only one branch, as shown in figure 3.1, and so have either 0% or 100% affected branch coverage.

Fault Class Number of Faults
Allocation Management 8
Data Fault 10
Interface Fault 20
Memory Leak 2
Pointer Management 2
Statement Logic Fault 6
Synchronization 15
Undefined State 17
Unknown 4
Wrong Algorithm 12

Table 3.1: Fault Class vs. Number of Faults

Number of Fauls

Number of Faults

as

a0

35

30

25

20

s

10

25

20

1s

10

3. Results

I

o il

© = e e Nurnggr of Af’fze?:ted Brsr;\cl)'\ches =s e e se
Figure 3.1: Number of Faults vs. Number of Affected Branches
Fault Class Average Number of Affected Branches
Allocation Management 11.9
Data Fault 2.3
Interface Fault 4.2
Memory Leak 1.0
Pointer Management 3.0
Statement Logic Fault 3.8
Synchronization 6.6
Undefined State 2.1
Unknown 4.8
Wrong Algorithm 2.8
Table 3.2: Average Number of Affected Branches by Fault Class
i — V_H_\’—‘ s ﬂ V_"—‘\ ﬂ\ ’—‘ s H 1 i [s

50 S
Percent Affected Branch Coverage

Figure 3.2: Number of Faults vs. Affected Branch Coverage

3.2. Affected Branch Coverage for All Classes of Faults 9

0% - 25% | 26% - 50% | 50% - 5% | 75% - 100%
Older Group 31 12 8 37
Newer Group 3 1 1 5
Overall 34 13 9 42

Table 3.3: Number of Faults vs. Overall Affected Branch Coverage

0% - 25% | 25% - 50% | 50% - 75% | 75% - 100% i
Allocation Management 1 3 1 3
Data Fault 6 1 0 3
Interface Fault 6 2 2 8
Memory Leak 0 0 0 2
Pointer Management 2 0 0 0
Statement Logic Fault 1 0 1 3
Synchronization 3 3 1 4
Undefined State 4 1 1 11
Unknown 0 2 1 1
Wrong Algorithm 8 0 1 2

Table 3.4: Fault Class by Overall Affected Branch Coverage — Older Group

0% - 25% | 25% - 50% | 50% - 75% | 75% - 100%
Interface Fault 1 0 0 1
Statement Logic Fault 0 1 0 0
Synchronization 2 0 1 3
Wrong Algorithm 0 0 0 1

Table 3.5: Fault Class by Overall Affected Branch Coverage — Newer Group

Tables 3.4, 3.5, and 3.6 compare the affected branch coverage to fault class for the older group,
newer group, and both groups respectively. A chi-squared test was used to measure the probability
that the distribution of faults was different, for the fault classes that had a nonzero population in the
newer group. The probability that the fault breakdowns are from different distributions was 0.108.
This implies that even though we have two separately collected sets of data, we should consider all
the data as coming from one single source. Therefore, when we discuss how the number of faults
differs over various levels of affected branch coverage, we will ignore whether the data was originally
from the newer group or from the older group.

0% - 25% | 256% - 50% | 50% - 75% | 75% - 100
Allocation Management 1 3 1 3
Data Fault 6 1 0 3
Interface Fault 7 2 2 9
Memory Leak 0 0 0 2
Pointer Management 2 0 0 0
Statement Logic Fault 1 1 1 3
Synchronization 5 3 2 7
Undefined State 4 1 1 11
Unknown 0 2 1 1
Wrong Algorithm 8 0 1 3

Table 3.6: Fault Class by Overall Affected Branch Coverage — Both Groups

10 3. Results

Fault Class Overall Affected Branch Coverage
Allocation Management 33.7
Data Fault 30.4
Interface Fault 70.2
Memory Leak 100
Pointer Management 0
Statement Logic Fault 65.2
Synchronization 45.1
Undefined State 65.7
Unknown 52.6
Wrong Algorithm 40.6

Table 3.7: Overall Coverage of Affected Branches by Fault Class

In these tables, note that the coverage of affected branches seems strongly dependent on fault
class. For example, more than half of the data faults had an affected branch coverage of 25% or
less, while almost two thirds of the undefined state faults had an affected branch coverage of 75%
or more. This i1s confirmed in table 3.7, which contains the overall affected branch coverage by fault
class for both groups of modules.

Pointer management, allocation management, data faults and wrong algorithm all have low
affected branch coverage. For pointer management, there are not enough faults to demonstrate a
trend. For wrong algorithm, the explanation is easy — many of these faults can be viewed as a
documentation change. A common instance of a wrong algorithm fault is an inconsistency between
the documented conditions under which an error message would appear and the actual conditions
under which it did appear. This is the sort of fault which is often detected through usage. This
software has been in the field for years. In a sense, this means that it has had years of testing
done by the customers. A study comparing structural coverage in operational usage and functional
testing found a high correlation: the sections of code that functional testers execute are likely to
be the same sections of code that users execute [Ramsey and Basili, 1985]. Tt might be that wrong
algorithm faults have a low affected branch coverage because the faults are associated with code not
erecuted by the users, and covered code is also code ezecuted by the users. In other words, the faults
remain in the sections of code that do not get tested.

To explain the low affected branch coverage of allocation management and data faults, we turn
to the architecture of the software system itself. The software features a large amount of internal
consistency checks. These internal consistency checks are similar to assertions in the C language. A
violation results in an Abnormal End, otherwise known as an “Abend”. An abend is similar to an
assertion in that it informs the users quite visibly that something has gone wrong and pinpoints the
location at which the inconsistency was detected. Many abends are related to data inconsistencies.
The explanation for the low affected branch coverage of data faults is that the abend system is so
effective at detecting data faults that the remaining data faults are in the more obscure branches.
In other words, the faults are detected by the tests.

The classes of faults for which there is an unusually high affected branch coverage are interface,
memory leak, statement logic, and undefined state faults. There are so few memory leak faults that
we cannot make a strong statement about them here. For the others, we turn to the fixes themselves.
The typical fix for an interface, statement logic, or undefined state fault is to add branches to support
a special case. Thus, the special case was not included in testing, while the average case executed
the affected branches.

The major fault class not discussed yet 1s synchronization. The overall branch coverage of these
faults is slightly under 50%. This data does not show a strong relationship between synchronization
faults and affected branch coverage. This is not surprising given the faults themselves. These were
typically faults that involved a small window in which race conditions could occur, and code coverage
cannot tell us whether or not these conditions occurred in testing.

3.3. Contrasts Between Affected Branch Coverage on the Two Groups 11

3.3 Contrasts Between Affected Branch Coverage on the Two Groups

The older group has an overall affected branch coverage of 49.5% when tested at a 57.3% rate
of coverage. So, the older group has a somewhat greater density of faults in uncovered code than
in covered code. The newer group has an overall affected branch coverage of 42.3% when tested at
a 34.3% rate of coverage. So, the newer group has a somewhat greater density of faults in covered
code than in uncovered code.

This finding may be a direct function of the greater maturity of the older group — in the older
group, a greater portion of the code has been in existence for a greater amount of time. As stated
earlier; the code has had billions of hours of testing by the users. In particular, the main sections of
the code have been thoroughly tested over the years, and during that time faults in the main sections
of the code have been detected and removed. In contrast, the newer group is still experiencing that
maturing process.

Additionally, as the older software has aged, fewer of the original authors are still available. The
people maintaining the code may not be familiar with all of its intricacies, and may miss an obscure
branch in the course of a modification.

A pronounced difference can be seen in the class of faults, as shown in tables 3.4 and 3.5. The
newer group shows a greater percentage of synchronization faults, though this is probably more
closely related to the functionality of the newer group than to the fact that the software is newer.
Yet the older group does show a greater incidence of undefined state, data, and interface faults. This
may be because of the methodical engineering for which the newer group i1s known, involving a high
level of teamwork and communication within the group.

12 4. Conclusions

4. Conclusions

This study characterized the relationship between fault classes and branch coverage, studying
ninety eight different faults on a leading industrial on-line transaction processing system. The
faults were analyzed to determine their class, the number of affected branches, and affected branch
coverage.

We found that the more common fault classes were interface faults, data faults, and synchroniza-
tion faults. Synchronization faults also appear to be among the more complex faults to fix based
on the number of affected branches. Allocation management faults were by far the most complex.
By taking extra pains to guard against these classes of faults, the software team can keep their
maintenance effort in check. Fortunately, most faults affected only one or two branches.

We discovered that the coverage of affected branches varied significantly by the class of fault.
For instance, data faults and wrong algorithm faults were far less likely to have been covered in
testing. The affected branch coverage of wrong algorithm faults might be low because this type of
fault is commonly found by the user. Prior studies have shown that code executed under functional
test is usually also executed by the user. The remaining wrong algorithm faults are in code not
often executed by the user, and not executed under functional test. In the case of data faults, the
software is effective at watching for them and causing an ABEND when they occur. If coverage was
increased, more of the data faults would probably be detected.

However, all of the fault classes with low affected branch coverage comprise only about one third
of the total faults.

Undefined state, statement logic, and interface faults were typically in covered branches. Their
fixes often involve adding special case branches. The explanation for the high affected branch
coverage of these faults is that the affected branches have been executed by the average case, while
internal testing has not included the special case. These fault classes represent about two-thirds of
the total.

We found that overall, the software had an affected branch coverage of approximately 50%,
indicating that many of the faults were in code that was covered in testing. This suggests that
increasing branch coverage would offer limited gains in additional fault detection.

Our data suggests a greater density of faults on covered code in the newer group than in the
older group. There are two explanations for this. First, the low affected branch coverage in the older
group is in part a direct result of its immaturity. Over the years, the software has been used actively,
and the faults in the more common branches have been detected and removed. Second, there is a
greater probability that the authors of the newer group are still available, while the older group may
be maintained by someone unfamiliar with the software. Of the two people, the maintainer of the
older group has a greater chance of missing a branch in the course of a large programming change.

This data suggests that increasing branch coverage i1s an effective way to increase detection of
certain class of faults. But to increase overall fault detection, it is more important to broaden the
manner in which the code already covered is tested, and to try to introduce more special cases to
the testing. Instead of looking at what branches have not been executed, look at what functionality
related to these branches have not been executed. The gain of such analysis may be a small increase
in branch coverage — but a larger increase in the variety of scenarios exercised in testing.

4.1 Areas for Further Study

There are many questions left to be answered on why various forms of structural testing are more
effective at finding certain classes of faults and less effective at finding others. Until we answer these
questions, we do not understand the benefits and limitations of structural testing.

Perhaps a good fault taxonomy has not yet been defined, resulting in certain classes of faults
being grouped together erroneously. For instance, we found that many of our interface faults related
to special cases which were not supported, yet there were a few interface faults that were clear-cut
inconsistencies. A better taxonomy might divide these two types of interface faults into two groups.

4.1. Areas for Further Study 13

Perhaps a good taxonomy would involve the cause of the fault rather than its description. For
instance, suppose we looked at faults caused by the programmer working from design specifications
that did not include enough detail. If we learned that most testing methods were not effective at
finding these faults, preventing these faults would assume a greater importance. In addition, the
more we understand about the cause of a type of fault, the better we can become preventing it in
the best case and testing for it in the worst case.

One possible explanation as to why such a study has not been performed is that determining the
cause of a fault 1s difficult. The best approach is usually to consult with the software developer and
see what was intended when the code was written. For instance, if a fault relates to an area in which
the written specification was not complete, 1t i1s difficult whether or not the relevant requirement
was incomplete: there could be clearly-communicated assumptions that fill in many gaps in written
specifications. It is usually not possible for an outsider to navigate through the myriad of documents
relating to a software project without some assistance from someone intimate with the project. The
study proposed here might not be possible on anything but a recent project.

On a different note, it is very interesting that code executed under functional test is probably also
executed by the users [Ramsey and Basili, 1985]. Sadly, that particular finding came from studying
a small software product. It would be very useful to see if the finding holds for a very large software
product such as the one studied here.

14 References

References

[Basili and Selby, 1987] V. Basili and R. Selby. Comparing the effectiveness of software testing
strategies. IEEFE Transactions of Software Engineering, SE-13(12):1278-1296, December 1987.

[Girgis and Woodward, 1986] M. R. Girgis and M. R. Woodward. An experimental comparison of
the error exposing ability of program testing criteria. In Workshop on Software Testing, volume 36,
pages 64-73, July 1986.

[Grady, 1993] R. Grady. Practical results from measuring software quality. Communications of the

ACM, 36(11):62-68, November 1993.

[Piwowarski et al., 1993] P. Piwowarski, M. Ohba, and J. Caruso. Coverage measurement experience
during function test. In 15th International Conference on Software Engineering, pages 287-301.
IEEE, April 1993.

[Ramsey and Basili, 1985] J. Ramsey and V. Basili. Analyzing the test process using structural
coverage. In 8th International Conference on Software Engineering, pages 306-312. IEEE, April
1985.

[Selby, 1986] R. Selby. Combining software testing strategies: an empirical evaluation. IEEE Work-
shops on Software Testing, 36(11):82-90, July 1986.

[Shimeall and Leveson, 1991] T. Shimeall and N. Leveson. An empirical comparison of software fault
tolerance and fault elimination. TEEE Transactions of Software Engineering, SE-17(2):173-182,
February 1991.

[Su and Ritter, 1991] J. Su and P. Ritter. Experience in testing the motif interface. IEEE Software,
8(2):26-33, March 1991.

[Sullivan and Chillarege, 1992] M. Sullivan and R. Chillarege. A comparison of software defects in
database management systems and operating systems. In 22nd International Symposium on Fault
Tolerant Computing, volume 36, pages 475-484. IEEE, July 1992.

[Wade, 1994] B. Wade, 1994. Personal communications with Barbara Wade of IBM, Santa Teresa
Labs.

15

Appendix A. Raw Data

Table A.1 contains the raw coverage data for the older group. This table contains the following
information:

e the fault number

e the module which was modified because of the fault. There may be more than one module per
fault.

e the category of the fault
e the number of branches in this module affected by the fix

e the percentage of the affected branches that were covered in regression testing
Table A.2 contains the raw coverage data for the newer group. The same fields are contained in

table A.2 as in table A.1.

16

Appendix A. Raw Data

Fault | Type Module | # Branches | % Covered
1 Allocation Management 16 3 33
2 Allocation Management 9 1 100
3 Allocation Management 10 38 13
3 Allocation Management 10 38 13
4 Allocation Management 15 4 100
4 Allocation Management 3 2 50
5 Allocation Management 5 2 100
6 Allocation Management 10 3 67
7 Allocation Management 16 5 100
8 Data Fault 12 7 14
9 Data Fault 11 1 100
10 Data Fault 4 1 0
11 Data Fault 12 3 0
12 Data Fault 24 1 100
13 Data Fault 28 4 50
14 Data Fault 29 2 0
15 Data Fault 11 1 0
16 Data Fault 4 2 100
17 Data Fault 11 1 0
18 Interface Fault 4 6 100
19 Interface Fault 7 1 0
20 Interface Fault 14 6 83
21 Interface Fault 16 1 100
22 Interface Fault 11 5 40
23 Interface Fault 23 1 100
24 Interface Fault 18 1 100
25 Interface Fault 25 1 0
25 Interface Fault 30 1 0
26 Interface Fault 3 7 71
27 Interface Fault 3 3 67
28 Interface Fault 5 4 25
29 Interface Fault 6 32 81
29 Interface Fault 7 1 100
30 Interface Fault 27 4 50
31 Interface Fault 31 1 0
32 Interface Fault 7 1 0
33 Interface Fault 14 5 80
34 Interface Fault 12 1 100
35 Interface Fault 4 1 0
36 Memory Leak 14 1 100
37 Memory Leak 27 1 100

Table A.1: Raw Coverage Results for the Older Group

fault | Type Module | # Branches | % Covered
38 Pointer Management 8 1 0
39 Pointer Management 3 5 0
40 Statement Logic 13 1 100
41 Statement Logic 4 2 0
42 Statement Logic 4 6 67
43 Statement Logic 14 2 50
43 Statement Logic 33 7 86
44 Statement Logic 16 1 100
45 Synchronization 4 47 57
46 Synchronization 17 3 33
47 Synchronization 14 9 0
48 Synchronization 20 2 100
49 Synchronization 21 2 100
50 Synchronization 11 1 0
51 Synchronization 18 9 22
52 Synchronization 18 1 100
53 Synchronization 20 3 33
54 Synchronization 2 6 17
55 Synchronization 8 1 0
56 Synchronization 13 2 100
56 Synchronization 3 1 100
57 Undefined State 3 1 100
58 Undefined State 12 2 100
59 Undefined State 18 1 100
60 Undefined State 19 2 0
61 Undefined State 5 1 100
62 Undefined State 5 3 67
63 Undefined State 25 1 100
64 Undefined State 26 1 100
65 Undefined State 29 1 0
66 Undefined State 22 4 0
67 Undefined State 4 5 100
68 Undefined State 4 2 100
69 Undefined State 16 3 0
70 Undefined State 27 1 100
71 Undefined State 7 4 100
72 Undefined State 17 2 50
73 Undefined State 27 1 100

Table A.1: Raw Coverage Results for the Older Group — page 2 (cont)

18

Appendix A. Raw Data

Fault | Type Module | # Branches | % Covered
74 Unknown 1 1 100
75 Unknown 22 6 67
76 Unknown 17 9 33
77 Unknown 5 2 50
78 Unknown 7 2 100
79 Wrong Algorithm 21 14 87
80 Wrong Algorithm 3 2 0
81 Wrong Algorithm 16 1 0
82 Wrong Algorithm 32 2 0
83 Wrong Algorithm 3 2 100
84 Wrong Algorithm 21 1 0
85 Wrong Algorithm 14 2 0
86 Wrong Algorithm 3 2 0
87 Wrong Algorithm 4 1 0
88 Wrong Algorithm 8 4 0

Table A.1: Raw Coverage Results for the Older Group — page 3 (cont)

Fault | Type Module | # Branches | % Covered
89 Interface Fault 44 1 100
90 Interface Fault 37 1 0
91 Statement Logic 40 5 40
92 Synchronization 34 4 100
93 Synchronization 35 5 0
93 Synchronization 36 12 25
94 Synchronization 38 1 100
95 Synchronization 39 1 100
96 Synchronization 41 1 0
97 Synchronization 42 3 67
98 Wrong Algorithm 43 1 100

Table A.2: Raw Coverage Results for the Newer Group

