
An Empirical Study of the BranchCoverage of Di�erent Fault Classes�Melissa S. ClineLinda. L. WernerUCSC-CRL-94-30September 5, 1994Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractThe question \Howmuch testing is enough?" has led many to structural testing methods.Much has been written about their fault detecting ability, but how does this vary by theclass of fault?This paper introduces the term A�ected Branch Coverage. An a�ected branch is abranch which had to be modi�ed in order to �x a fault. A�ected Branch Coverage describesthe percentage of a�ected branches that had been exercised in testing. The study was doneon a leading on-line transaction processing product, analyzing ninety eight �eld errors.The speci�c questions addressed are:� Which classes of faults are most commonly observed?� Which fault classes can be associated with covered code and which with uncovered code?� Is a�ected branch coverage related to the maturity of the software?Our results show that whether or not a fault would appear in covered code depends stronglyon the fault class. While this was true in both newer and older code, it was more vivid innewer code. Overall, we found that a�ected branch coverage was slightly less than 50%,suggesting that increasing branch coverage would o�er limited gains in fault detection.Keywords: branch testing, code coverage, fault classi�cation�This work was partially supported by the International Business Machines Corporation grant # STL93215.

CONTENTS 1Contents1. Introduction 22. Description of the Experiment 32.1 Description of the Software : 32.2 Measuring Branch Coverage with EXMAP : 32.3 Collection of the Faults and Fault Class Assignment : : : : : : : : : : : : : : : : : : 42.4 Relating Branch Coverage to Faults : 53. Results 73.1 Analysis of the Faults Observed : 73.2 A�ected Branch Coverage for All Classes of Faults : : : : : : : : : : : : : : : : : : : 73.3 Contrasts Between A�ected Branch Coverage on the Two Groups : : : : : : : : : : : 114. Conclusions 124.1 Areas for Further Study : 12References 14A. Raw Data 15

2 1. Introduction1. IntroductionIncreasing branch coverage is a widely accepted method of increasing the e�ectiveness of testing.While branch coverage is most often measured in unit testing, in recent years it has gained popularityas a measure of various forms of system-level testing.Prior work describes a strong, direct relationship between statement coverage and fault detectionin functional test [Piwowarski et al., 1993]. It seems reasonable to expect that the relationshipbetween branch coverage and fault detection is at least as strong.However, any form of structural testing has a limited e�ectiveness at fault detection. Even whentesting with a criterion of 100% coverage, structural testing is not likely to reveal more than half ofthe faults in a body of code [Basili and Selby, 1987] [Girgis and Woodward, 1986] [Selby, 1986].Additionally, high code coverage can be a very expensive goal. 100% code coverage may notbe feasible outside of unit test for a number of factors including code handling \impossible" errorconditions, dead code, hooks for new functionality, and code requiring special hardware. Highcoverage is also a goal that must be pursued deliberately | when coverage on a software product ismeasured for the �rst time, those involved with the testing are often surprised to learn how low thecoverage really is [Grady, 1993] [Piwowarski et al., 1993]. When attempting to increase coverage,testing teams will sometimes become overly focused on increasing coverage and will lose sight of theunderlying quality goals [Su and Ritter, 1991].So therefore, when we set out to increase branch coverage, it is important to know exactly whatgains can be expected. One factor in this equation is what classes of faults are detected e�ectively bybranch testing. Prior work suggests that the fault-detecting ability of branch testing is not uniformacross fault classes.One prior study showed that while structural testing revealed more faults than 2-version voting,code reading, assertions, or static analysis, there were classes of faults for which it was ine�ec-tive. These classes included missing checks, parameter reversal, substitution, and calculation faults[Shimeall and Leveson, 1991]. Another study showed that structural testing in general is more ef-fective in �nding domain faults than computation faults, and that branch testing in particular isnot e�ective in detecting the wrong arithmetic operator or a statement wrongly placed in a logicalexpression [Girgis and Woodward, 1986]. A third study showed statement coverage to be more e�ec-tive at detecting faults of commission than omission, and weakest at detecting cosmetic, interface,and data faults [Basili and Selby, 1987].Therefore, we decided to examine a large, industrial software product and the testing that isperformed on it. By looking at errors reported from the �eld, and whether or not their underlyingfaults had been covered in testing, we have acquired a snapshot of the faults that slip by branchtesting.For the classes of faults, we chose to use the same taxonomy used in previous studies of databaseand on-line transaction processing (OLTP) systems [Sullivan and Chillarege, 1992]. This breakdownfocuses on software implementation faults rather than faults earlier in the lifecycle. The fault classesused are listed in 2.3For each of these categories, we investigate the relationship between a�ected branch coverageand fault incidence. We have found that whether or not a fault will be in covered code dependsheavily on the fault class. For instance, the overall a�ected branch coverage of the data fault classis only 30.4% while the average a�ected branch coverage of interface faults is 70.2%.Finally, we will examine the comparative e�ects of the age of the software to the fault class anda�ected branch coverage. We have found that the a�ected branch coverage is higher than the branchcoverage in both older and newer software, though the di�erence is more vivid in the newer software.

32. Description of the Experiment2.1 Description of the SoftwareThe software studied is a large, mature, leading on-line transaction processing (OLTP) product.It contains over 5,000,000 lines of code and over 3000 modules. These modules vary widely in age,size, and even programming language. Because of the immensity of the full system, we chose tostudy a subset of its modules rather than the full system. There were two groups of modules usedin this study, referred to as the older group and the newer group.The older group is comprised of a sampling of modules from across the system. These modulesvary in size, programming language and age. They have one common trait | they have had a highfault rate relative to other modules in the system. They are all from a version of the system whichhad been released approximately one year before the start of this study.The newer group was chosen to contrast the older group. These modules are far newer modules,written less than three years ago, and are from a more recent release of the system. Rather thanbeing from a wide assortment of functional areas, they are from one single area. Finally, they areproduced by a software engineering team that has a strong reputation for excellence within theproduct development groups.Though the age of the software is a major di�erence between the older and newer group, it iscertainly not the only di�erence. Please bear this in mind while reading on.2.2 Measuring Branch Coverage with EXMAPThe coverage information shown in this paper was produced with the EXMAP code coveragetool. EXMAP is an IBM-internal tool which measures statement and branch coverage. It providesreports which summarize the coverage of the selected modules, as shown in �gure 2.1, or detailedinformation on the execution of each statement, as shown in �gure 2.2.The tests that were used in this study are contained in the \regression bucket", the set of testsused in routine regression testing. These tests are all functionally-generated system tests. Alongwith the software, the regression bucket matures and changes over time. In order to get an accuratepicture of how both groups had been tested prior to release, we used the version of the regressionbucket that was used to test the release.

PA LOAD MOD PROC LISTING NAME TOTAL EXEC % CPATH TAKEN %

1 LOADMOD1 TEST1 TEST1 LISTING * 45 43 90.9 34 19 55.8

2 LOADMOD1 TEST2 TEST2 LISTING * 21 21 100.0 15 13 86.7

3 LOADMOD1 TEST3 TEST3 LISTING * 10 2 20.0 4 1 25.0

4 LOADMOD1 TEST4 TEST4 LISTING * 103 77 86.7 42 34 80.1

Summary for all PAs: 179 143 79.9 95 67 70.5

 STATEMENTS: BRANCHES:

---Figure 2.1: Sample EXMAP Summary Report

4 2. Description of the Experiment2.3 Collection of the Faults and Fault Class AssignmentNinety-eight error reports were analyzed for this study. These errors had occurred in the �eld,and had all been analyzed and �xed at the time of the study. Each of these errors was reported inan internal error report called an APAR.The information on all APARs is recorded in the RETAIN database. Each APAR starts with anerror, typically reported by the customer, sometimes reported by IBM personnel performing alphasite testing. The error is diagnosed and a fault report is entered. This fault report is typicallywritten by the engineer responsible for �xing the error, and typically contains a detailed descriptionof the �x.Using the information in RETAIN, each fault was analyzed and assigned to a fault class. Thedescriptions in RETAIN did not include a fault classi�cation system: rather, they favored a textualdescription of the fault. We chose to use the following fault classi�cation that has been usedpreviously in studies of systems similar to the one discussed in this paper [Sullivan and Chillarege,1992].Allocation Management : One module deallocates a region of memory before it has completely�nished using the region. After the region is reallocated, the original module continues to useit in its original capacity.Copying Overrun : The program copies bytes past the end of a bu�er.Data Fault : An arithmetic miscalculation or other fault in the code makes it produce or read thewrong data.Interface Fault : A module's interface is de�ned incorrectly or used incorrectly by a client.Memory Leak : The program does not deallocate the memory it has allocated.Pointer Management : A variable containing the address of data was corrupted. For example, alinked list is terminated by setting the last chain pointer to NIL when it should have been setto the head element in the list.Statement Logic : Statements were executed in the wrong order or were omitted. For example,a routine returns too early under some circumstances. Forgetting to check a routine's returncode is also a statement logic fault.Synchronization : An error occurred in locking code or synchronization between threads of control.Unde�ned State : The system goes into a state that the designers had not anticipated. Forexample, the program may have no code to handle an end-of-session message which arrivesbefore the session is completely initialized.Uninitialized Variable : A variable containing either a pointer or data is used before it isinitialized.Unknown : The fault report described the e�ects of the fault, but not adequately enough for usto classify it.Wrong Algorithm : The program works, but uses the wrong algorithm to do the task at hand.Usually, these were performance-related problems.Other We understood what the fault was, but could not �t it into a large enough category.To classify the faults, the �rst source of information was the RETAIN database. RETAINusually contained enough detail to assign the faults to fault classes, although sometimes it wasnecessary to examine the source code. When neither RETAIN nor the source code provided su�cientinformation to classify a fault, it was placed in the \Unknown" fault class. Two faults were classi�edas "Unknown".Ultimately, no faults were assigned to \Copying Overrun", \Uninitialized Variable", or \Other".Therefore, we will not be discussing these fault classes later.

2.4. Relating Branch Coverage to Faults 5
4367 BNE LABEL2 8467000

4366 CLI FLAG1,SYMBOL1 8466000

4365 L R10, =A(SAMPLE4) 8465000

4364 L R9, =A(SAMPLE3) 8464000

4363 ST R9, SAMPLE2 8463000

4362> BZ LABEL1 8462000

4361: LTR R12, R12 8461500

4360: LR R15, =A(SAMPLE1) 8461000

4359: STM 14, 12, 12(13) 8460500

Figure 2.2: Excerpt from a Sample EXMAP Annotated Listing. The location indicesare the numbers in the rightmost column. The coverage information symbol is shownimmediately to the right of the line number.: indicates that the line was executed.: indicates that the line was not executed.> indicates a logical expression that branched but did not fall through.V indicates a logical expression that fell through but did not branch.& indicates a logical expression which both fell through and branched.These last two symbols are not shown in this �gure, but are mentioned for completeness.2.4 Relating Branch Coverage to FaultsWhen an APAR results in a software change, the modules a�ected are not modi�ed directly.Instead, a patch �le is created with the source code modi�cations to �x the fault. Lines added ormodi�ed are shown verbatim. When lines are deleted, it is actually replaced by a comment indicatingfor which APAR the line was deleted. When the patch �le is patched into the source module, theproper location for each modi�cation is determined using the location indices.Location indices are similar to line numbers. Each line in the source �le has a location index,and the location indices increase as you read down the �le. Unlike line numbers, they are generatedby hand. In other words, the programmer marks each line with a location index. The locationindex is treated as a comment by the compiler or assembler. In �gure 2.2, the location indices arethe numbers in the rightmost column. When the source �le is �rst created, the delta between thelocation indices of two adjacent lines is fairly large. Then, when a line is added later, it is given alocation index that is between the two adjacent location indices.The location indices proved to be invaluable guides to determining whether or not a fault hadbeen covered. Determining whether a portion of the �x had been covered was a simple matter oflooking at the location index of the �xed line and seeing if that line or adjacent lines had been coveredin testing. This coverage information came from the EXMAP annotated listings. In �gure 2.2, thecoverage information is shown in the column immediately to the right of the line number, and isdescribed in the caption.We assumed that the location of the �x was a good indicator of the location of the fault, andthat the coverage of the patched locations was a good indicator of the coverage of the fault.When determining whether or not the fault had been covered, we collected two numbers for eachfault: the number of branches in the original code that were a�ected by the �x, and the numberof these branches that were exercised during test. A branch is de�ned as being a�ected by a �x ifany sequential statement on the branch is modi�ed or if the conditional statement containing thebranchpoint itself is modi�ed. We refer to the branches a�ected in order to �x a fault as a�ectedbranches.

6 2. Description of the ExperimentA branch is considered exercised if the statements on the branch are exercised. EXMAP providescodes to indicate if during execution, a conditional statement has branched, fallen through, both,or neither. Using these codes, it was possible to tell if a branch had been exercised even when thebranch itself contained no statements. For each fault, we collected data from the EXMAP outputon how many of the a�ected branches had been exercised during testing. We refer to this quantityas a�ected branch coverage.The raw data used in this study is included in appendix A. This includes the following informationfor each fault:� the fault number,� the number of the module which was modi�ed because of the fault,� the category of the fault,� the number of branches in this module a�ected by the �x, and� the percentage of the a�ected branches that were covered in regression testing.For reasons of con�dentiality, a fault number and module number are shown in place of the actualAPAR number and module name.

73. Results3.1 Analysis of the Faults ObservedTable 3.1 lists the types of faults analyzed in this study. The faults were selected at randomfrom all faults on the modules mapped. The most prevalent fault class is interface faults, followedby unde�ned state and synchronization.Figure 3.1 relates the number of faults to the number of a�ected branches. Notice the peak atsize 1 and the exponential decay at sizes greater than 1. The average size of a fault in a�ectedbranches is 2.2.Table 3.2 shows the average number of a�ected branches for each fault class. The number ofa�ected branches relates to the complexity of �xing the fault by indicating the number of separatesections of code that must be touched by the �x. This is used as a measure of the cost of the �x [Wade,1994]. As shown in this table, allocation management faults are by far the most complicated to �x.The fault class with the next highest number of a�ected branches is also one of the more commonfault classes | synchronization. This data suggests that if software developers take extra care toprevent these faults, they will be rewarded with lower maintenance costs.3.2 A�ected Branch Coverage for All Classes of FaultsTo determine how many of the faults are in covered code, we turn our attention to �gure 3.2.The data shown in this table is the number of faults at various levels of a�ected branch coverage.This data is broken down between the older group and the newer group in table 3.3. A chi-squaredtest was used to determine if the data in table 3.3 represents di�erent distributions for the oldergroup and the newer group. The chi-squared probability that the data from the two groups is fromtwo populations is 0.001. This implies that even though we have two separately collected sets ofdata, we should consider all the data as coming from one single source. Therefore, when we discusshow the a�ected branch coverage varies by fault type, we will not focus on which group the datacame from.Looking at this data, we see that about half of the faults occurred in covered branches. Theoverall a�ected branch coverage is 49.5% in the older group, 42.9% in the newer group, and 49.0%for both groups combined. In contrast, the branch coverage was 57.3% for the older group and 34.3%for the newer group.Note the number of faults at the low end or the high end of the scale. A major factor behind thisis the number of modi�cations that a�ect one branch only. Almost half of the faults studied a�ectedonly one branch, as shown in �gure 3.1, and so have either 0% or 100% a�ected branch coverage.Fault Class Number of FaultsAllocation Management 8Data Fault 10Interface Fault 20Memory Leak 2Pointer Management 2Statement Logic Fault 6Synchronization 15Unde�ned State 17Unknown 4Wrong Algorithm 12Table 3.1: Fault Class vs. Number of Faults

8 3. Results
0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

Number of Affected Branches

Num
ber

 of F
ault

s

Figure 3.1: Number of Faults vs. Number of A�ected BranchesFault Class Average Number of A�ected BranchesAllocation Management 11.9Data Fault 2.3Interface Fault 4.2Memory Leak 1.0Pointer Management 3.0Statement Logic Fault 3.8Synchronization 6.6Unde�ned State 2.1Unknown 4.8Wrong Algorithm 2.8Table 3.2: Average Number of A�ected Branches by Fault Class
0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

Percent Affected Branch Coverage

Num
ber

 of
Fau

lts

Figure 3.2: Number of Faults vs. A�ected Branch Coverage

3.2. A�ected Branch Coverage for All Classes of Faults 90% - 25% 25% - 50% 50% - 75% 75% - 100%Older Group 31 12 8 37Newer Group 3 1 1 5Overall 34 13 9 42Table 3.3: Number of Faults vs. Overall A�ected Branch Coverage0% - 25% 25% - 50% 50% - 75% 75% - 100% iAllocation Management 1 3 1 3Data Fault 6 1 0 3Interface Fault 6 2 2 8Memory Leak 0 0 0 2Pointer Management 2 0 0 0Statement Logic Fault 1 0 1 3Synchronization 3 3 1 4Unde�ned State 4 1 1 11Unknown 0 2 1 1Wrong Algorithm 8 0 1 2Table 3.4: Fault Class by Overall A�ected Branch Coverage | Older Group0% - 25% 25% - 50% 50% - 75% 75% - 100%Interface Fault 1 0 0 1Statement Logic Fault 0 1 0 0Synchronization 2 0 1 3Wrong Algorithm 0 0 0 1Table 3.5: Fault Class by Overall A�ected Branch Coverage | Newer GroupTables 3.4, 3.5, and 3.6 compare the a�ected branch coverage to fault class for the older group,newer group, and both groups respectively. A chi-squared test was used to measure the probabilitythat the distribution of faults was di�erent, for the fault classes that had a nonzero population in thenewer group. The probability that the fault breakdowns are from di�erent distributions was 0.108.This implies that even though we have two separately collected sets of data, we should consider allthe data as coming from one single source. Therefore, when we discuss how the number of faultsdi�ers over various levels of a�ected branch coverage, we will ignore whether the data was originallyfrom the newer group or from the older group.0% - 25% 25% - 50% 50% - 75% 75% - 100Allocation Management 1 3 1 3Data Fault 6 1 0 3Interface Fault 7 2 2 9Memory Leak 0 0 0 2Pointer Management 2 0 0 0Statement Logic Fault 1 1 1 3Synchronization 5 3 2 7Unde�ned State 4 1 1 11Unknown 0 2 1 1Wrong Algorithm 8 0 1 3Table 3.6: Fault Class by Overall A�ected Branch Coverage | Both Groups

10 3. ResultsFault Class Overall A�ected Branch CoverageAllocation Management 33.7Data Fault 30.4Interface Fault 70.2Memory Leak 100Pointer Management 0Statement Logic Fault 65.2Synchronization 45.1Unde�ned State 65.7Unknown 52.6Wrong Algorithm 40.6Table 3.7: Overall Coverage of A�ected Branches by Fault ClassIn these tables, note that the coverage of a�ected branches seems strongly dependent on faultclass. For example, more than half of the data faults had an a�ected branch coverage of 25% orless, while almost two thirds of the unde�ned state faults had an a�ected branch coverage of 75%or more. This is con�rmed in table 3.7, which contains the overall a�ected branch coverage by faultclass for both groups of modules.Pointer management, allocation management, data faults and wrong algorithm all have lowa�ected branch coverage. For pointer management, there are not enough faults to demonstrate atrend. For wrong algorithm, the explanation is easy | many of these faults can be viewed as adocumentation change. A common instance of a wrong algorithm fault is an inconsistency betweenthe documented conditions under which an error message would appear and the actual conditionsunder which it did appear. This is the sort of fault which is often detected through usage. Thissoftware has been in the �eld for years. In a sense, this means that it has had years of testingdone by the customers. A study comparing structural coverage in operational usage and functionaltesting found a high correlation: the sections of code that functional testers execute are likely tobe the same sections of code that users execute [Ramsey and Basili, 1985]. It might be that wrongalgorithm faults have a low a�ected branch coverage because the faults are associated with code notexecuted by the users, and covered code is also code executed by the users. In other words, the faultsremain in the sections of code that do not get tested.To explain the low a�ected branch coverage of allocation management and data faults, we turnto the architecture of the software system itself. The software features a large amount of internalconsistency checks. These internal consistency checks are similar to assertions in the C language. Aviolation results in an Abnormal End, otherwise known as an \Abend". An abend is similar to anassertion in that it informs the users quite visibly that something has gone wrong and pinpoints thelocation at which the inconsistency was detected. Many abends are related to data inconsistencies.The explanation for the low a�ected branch coverage of data faults is that the abend system is soe�ective at detecting data faults that the remaining data faults are in the more obscure branches.In other words, the faults are detected by the tests.The classes of faults for which there is an unusually high a�ected branch coverage are interface,memory leak, statement logic, and unde�ned state faults. There are so few memory leak faults thatwe cannot make a strong statement about them here. For the others, we turn to the �xes themselves.The typical �x for an interface, statement logic, or unde�ned state fault is to add branches to supporta special case. Thus, the special case was not included in testing, while the average case executedthe a�ected branches.The major fault class not discussed yet is synchronization. The overall branch coverage of thesefaults is slightly under 50%. This data does not show a strong relationship between synchronizationfaults and a�ected branch coverage. This is not surprising given the faults themselves. These weretypically faults that involved a small window in which race conditions could occur, and code coveragecannot tell us whether or not these conditions occurred in testing.

3.3. Contrasts Between A�ected Branch Coverage on the Two Groups 113.3 Contrasts Between A�ected Branch Coverage on the Two GroupsThe older group has an overall a�ected branch coverage of 49.5% when tested at a 57.3% rateof coverage. So, the older group has a somewhat greater density of faults in uncovered code thanin covered code. The newer group has an overall a�ected branch coverage of 42.3% when tested ata 34.3% rate of coverage. So, the newer group has a somewhat greater density of faults in coveredcode than in uncovered code.This �nding may be a direct function of the greater maturity of the older group | in the oldergroup, a greater portion of the code has been in existence for a greater amount of time. As statedearlier, the code has had billions of hours of testing by the users. In particular, the main sections ofthe code have been thoroughly tested over the years, and during that time faults in the main sectionsof the code have been detected and removed. In contrast, the newer group is still experiencing thatmaturing process.Additionally, as the older software has aged, fewer of the original authors are still available. Thepeople maintaining the code may not be familiar with all of its intricacies, and may miss an obscurebranch in the course of a modi�cation.A pronounced di�erence can be seen in the class of faults, as shown in tables 3.4 and 3.5. Thenewer group shows a greater percentage of synchronization faults, though this is probably moreclosely related to the functionality of the newer group than to the fact that the software is newer.Yet the older group does show a greater incidence of unde�ned state, data, and interface faults. Thismay be because of the methodical engineering for which the newer group is known, involving a highlevel of teamwork and communication within the group.

12 4. Conclusions4. ConclusionsThis study characterized the relationship between fault classes and branch coverage, studyingninety eight di�erent faults on a leading industrial on-line transaction processing system. Thefaults were analyzed to determine their class, the number of a�ected branches, and a�ected branchcoverage.We found that the more common fault classes were interface faults, data faults, and synchroniza-tion faults. Synchronization faults also appear to be among the more complex faults to �x basedon the number of a�ected branches. Allocation management faults were by far the most complex.By taking extra pains to guard against these classes of faults, the software team can keep theirmaintenance e�ort in check. Fortunately, most faults a�ected only one or two branches.We discovered that the coverage of a�ected branches varied signi�cantly by the class of fault.For instance, data faults and wrong algorithm faults were far less likely to have been covered intesting. The a�ected branch coverage of wrong algorithm faults might be low because this type offault is commonly found by the user. Prior studies have shown that code executed under functionaltest is usually also executed by the user. The remaining wrong algorithm faults are in code notoften executed by the user, and not executed under functional test. In the case of data faults, thesoftware is e�ective at watching for them and causing an ABEND when they occur. If coverage wasincreased, more of the data faults would probably be detected.However, all of the fault classes with low a�ected branch coverage comprise only about one thirdof the total faults.Unde�ned state, statement logic, and interface faults were typically in covered branches. Their�xes often involve adding special case branches. The explanation for the high a�ected branchcoverage of these faults is that the a�ected branches have been executed by the average case, whileinternal testing has not included the special case. These fault classes represent about two-thirds ofthe total.We found that overall, the software had an a�ected branch coverage of approximately 50%,indicating that many of the faults were in code that was covered in testing. This suggests thatincreasing branch coverage would o�er limited gains in additional fault detection.Our data suggests a greater density of faults on covered code in the newer group than in theolder group. There are two explanations for this. First, the low a�ected branch coverage in the oldergroup is in part a direct result of its immaturity. Over the years, the software has been used actively,and the faults in the more common branches have been detected and removed. Second, there is agreater probability that the authors of the newer group are still available, while the older group maybe maintained by someone unfamiliar with the software. Of the two people, the maintainer of theolder group has a greater chance of missing a branch in the course of a large programming change.This data suggests that increasing branch coverage is an e�ective way to increase detection ofcertain class of faults. But to increase overall fault detection, it is more important to broaden themanner in which the code already covered is tested, and to try to introduce more special cases tothe testing. Instead of looking at what branches have not been executed, look at what functionalityrelated to these branches have not been executed. The gain of such analysis may be a small increasein branch coverage | but a larger increase in the variety of scenarios exercised in testing.4.1 Areas for Further StudyThere are many questions left to be answered on why various forms of structural testing are moree�ective at �nding certain classes of faults and less e�ective at �nding others. Until we answer thesequestions, we do not understand the bene�ts and limitations of structural testing.Perhaps a good fault taxonomy has not yet been de�ned, resulting in certain classes of faultsbeing grouped together erroneously. For instance, we found that many of our interface faults relatedto special cases which were not supported, yet there were a few interface faults that were clear-cutinconsistencies. A better taxonomy might divide these two types of interface faults into two groups.

4.1. Areas for Further Study 13Perhaps a good taxonomy would involve the cause of the fault rather than its description. Forinstance, suppose we looked at faults caused by the programmer working from design speci�cationsthat did not include enough detail. If we learned that most testing methods were not e�ective at�nding these faults, preventing these faults would assume a greater importance. In addition, themore we understand about the cause of a type of fault, the better we can become preventing it inthe best case and testing for it in the worst case.One possible explanation as to why such a study has not been performed is that determining thecause of a fault is di�cult. The best approach is usually to consult with the software developer andsee what was intended when the code was written. For instance, if a fault relates to an area in whichthe written speci�cation was not complete, it is di�cult whether or not the relevant requirementwas incomplete: there could be clearly-communicated assumptions that �ll in many gaps in writtenspeci�cations. It is usually not possible for an outsider to navigate through the myriad of documentsrelating to a software project without some assistance from someone intimate with the project. Thestudy proposed here might not be possible on anything but a recent project.On a di�erent note, it is very interesting that code executed under functional test is probably alsoexecuted by the users [Ramsey and Basili, 1985]. Sadly, that particular �nding came from studyinga small software product. It would be very useful to see if the �nding holds for a very large softwareproduct such as the one studied here.

14 ReferencesReferences[Basili and Selby, 1987] V. Basili and R. Selby. Comparing the e�ectiveness of software testingstrategies. IEEE Transactions of Software Engineering, SE-13(12):1278{1296, December 1987.[Girgis and Woodward, 1986] M. R. Girgis and M. R. Woodward. An experimental comparison ofthe error exposing ability of program testing criteria. InWorkshop on Software Testing, volume 36,pages 64{73, July 1986.[Grady, 1993] R. Grady. Practical results from measuring software quality. Communications of theACM, 36(11):62{68, November 1993.[Piwowarski et al., 1993] P. Piwowarski, M. Ohba, and J. Caruso. Coverage measurement experienceduring function test. In 15th International Conference on Software Engineering, pages 287{301.IEEE, April 1993.[Ramsey and Basili, 1985] J. Ramsey and V. Basili. Analyzing the test process using structuralcoverage. In 8th International Conference on Software Engineering, pages 306{312. IEEE, April1985.[Selby, 1986] R. Selby. Combining software testing strategies: an empirical evaluation. IEEE Work-shops on Software Testing, 36(11):82{90, July 1986.[Shimeall and Leveson, 1991] T. Shimeall and N. Leveson. An empirical comparison of software faulttolerance and fault elimination. IEEE Transactions of Software Engineering, SE-17(2):173{182,February 1991.[Su and Ritter, 1991] J. Su and P. Ritter. Experience in testing the motif interface. IEEE Software,8(2):26{33, March 1991.[Sullivan and Chillarege, 1992] M. Sullivan and R. Chillarege. A comparison of software defects indatabase management systems and operating systems. In 22nd International Symposium on FaultTolerant Computing, volume 36, pages 475{484. IEEE, July 1992.[Wade, 1994] B. Wade, 1994. Personal communications with Barbara Wade of IBM, Santa TeresaLabs.

15Appendix A. Raw DataTable A.1 contains the raw coverage data for the older group. This table contains the followinginformation:� the fault number� the module which was modi�ed because of the fault. There may be more than one module perfault.� the category of the fault� the number of branches in this module a�ected by the �x� the percentage of the a�ected branches that were covered in regression testingTable A.2 contains the raw coverage data for the newer group. The same �elds are contained intable A.2 as in table A.1.

16 Appendix A. Raw DataFault Type Module # Branches % Covered1 Allocation Management 16 3 332 Allocation Management 9 1 1003 Allocation Management 10 38 133 Allocation Management 10 38 134 Allocation Management 15 4 1004 Allocation Management 3 2 505 Allocation Management 5 2 1006 Allocation Management 10 3 677 Allocation Management 16 5 1008 Data Fault 12 7 149 Data Fault 11 1 10010 Data Fault 4 1 011 Data Fault 12 3 012 Data Fault 24 1 10013 Data Fault 28 4 5014 Data Fault 29 2 015 Data Fault 11 1 016 Data Fault 4 2 10017 Data Fault 11 1 018 Interface Fault 4 6 10019 Interface Fault 7 1 020 Interface Fault 14 6 8321 Interface Fault 16 1 10022 Interface Fault 11 5 4023 Interface Fault 23 1 10024 Interface Fault 18 1 10025 Interface Fault 25 1 025 Interface Fault 30 1 026 Interface Fault 3 7 7127 Interface Fault 3 3 6728 Interface Fault 5 4 2529 Interface Fault 6 32 8129 Interface Fault 7 1 10030 Interface Fault 27 4 5031 Interface Fault 31 1 032 Interface Fault 7 1 033 Interface Fault 14 5 8034 Interface Fault 12 1 10035 Interface Fault 4 1 036 Memory Leak 14 1 10037 Memory Leak 27 1 100Table A.1: Raw Coverage Results for the Older Group

17fault Type Module # Branches % Covered38 Pointer Management 8 1 039 Pointer Management 3 5 040 Statement Logic 13 1 10041 Statement Logic 4 2 042 Statement Logic 4 6 6743 Statement Logic 14 2 5043 Statement Logic 33 7 8644 Statement Logic 16 1 10045 Synchronization 4 47 5746 Synchronization 17 3 3347 Synchronization 14 9 048 Synchronization 20 2 10049 Synchronization 21 2 10050 Synchronization 11 1 051 Synchronization 18 9 2252 Synchronization 18 1 10053 Synchronization 20 3 3354 Synchronization 2 6 1755 Synchronization 8 1 056 Synchronization 13 2 10056 Synchronization 3 1 10057 Unde�ned State 3 1 10058 Unde�ned State 12 2 10059 Unde�ned State 18 1 10060 Unde�ned State 19 2 061 Unde�ned State 5 1 10062 Unde�ned State 5 3 6763 Unde�ned State 25 1 10064 Unde�ned State 26 1 10065 Unde�ned State 29 1 066 Unde�ned State 22 4 067 Unde�ned State 4 5 10068 Unde�ned State 4 2 10069 Unde�ned State 16 3 070 Unde�ned State 27 1 10071 Unde�ned State 7 4 10072 Unde�ned State 17 2 5073 Unde�ned State 27 1 100Table A.1: Raw Coverage Results for the Older Group | page 2 (cont)

18 Appendix A. Raw DataFault Type Module # Branches % Covered74 Unknown 1 1 10075 Unknown 22 6 6776 Unknown 17 9 3377 Unknown 5 2 5078 Unknown 7 2 10079 Wrong Algorithm 21 14 5780 Wrong Algorithm 3 2 081 Wrong Algorithm 16 1 082 Wrong Algorithm 32 2 083 Wrong Algorithm 3 2 10084 Wrong Algorithm 21 1 085 Wrong Algorithm 14 2 086 Wrong Algorithm 3 2 087 Wrong Algorithm 4 1 088 Wrong Algorithm 8 4 0Table A.1: Raw Coverage Results for the Older Group | page 3 (cont)
Fault Type Module # Branches % Covered89 Interface Fault 44 1 10090 Interface Fault 37 1 091 Statement Logic 40 5 4092 Synchronization 34 4 10093 Synchronization 35 5 093 Synchronization 36 12 2594 Synchronization 38 1 10095 Synchronization 39 1 10096 Synchronization 41 1 097 Synchronization 42 3 6798 Wrong Algorithm 43 1 100Table A.2: Raw Coverage Results for the Newer Group

