
Scalable Visualizationof Parallel Systems�Jorge Garc��aRichard HugheyUCSC-CRL-94-2931 August 1994Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USAabstractAs parallel systems become larger and more complex, they become harder to un-derstand. The vast amount of information produced by these systems can quicklyoverwhelm a person. In many cases, researchers have turned to the use of visualiza-tion techniques as an aid to understanding the inner workings of parallel systems.By converting the information to images, a visualization system can take advantageof the human ability to recognize patterns that would not seem obvious otherwise.There are several existing systems for visualizing parallel programs. But most ofthem present �xed views of data, and will not scale to the thousands of processorsavailable on massively parallel computers. In this paper we present a proposalfor research in developing visualizations that scale with the number of processors.The methods used to create these views will make visualization systems useful inunderstanding computers with any number of processors.Keywords: Parallel Computers, Visualization, Parallel Debuggers, PerformanceEvaluation, Animation, Scalability�This work was supported in part by a NASA Graduate Student Research Program Fellowship.

CONTENTS 1Contents1 Introduction : 22 Overview : 22.1 Requirements for visualization of parallel systems : : : : : : : : : : : 33 Previous work : 53.1 Performance evaluation tools : 63.2 Debuggers : 93.3 Program visualization tools : 133.4 Towards scalable visualizations : 174 Need for scalable visualization : 184.1 Tool philosophy : 194.2 Better analysis methods : 204.3 Ties to program : 204.4 Other issues : 225 Comments and conclusion : 23References : 23

2 1. Introduction1 IntroductionParallel systems were created to shorten the time needed to solve some problems. Theidea was that if one processor could solve a problem in time t, then two processors shouldbe able to solve it in time t=2, and p processors should solve it in time t=p. But, in reality,getting the speedups was not that simple. Many problems have sequential restrictions, wherethe addition of more processors does not help. But even for problems where the workloadcan be shared, getting good speedup depends on using the available machine resourcese�ciently, keeping track of large amounts of data and having a good understanding of theparallel algorithm. Programmers have to master all of these areas in order to create goodparallel programs.In many cases, programmers have turned to visualization methods to help them under-stand the inner workings of parallel systems. Using program visualization and algorithmanimation tools, they can get a better understanding of algorithms suitable for parallelcomputers. They can use parallel debuggers to produce programs that work correctly, andthey can use performance evaluation tools to make the programs execute more e�ciently.Many of the problems associated with parallel programming are exacerbated by theincrease in the number of processors in modern massively parallel systems. While theoriginal parallel computers consisted of only 4 to 16 processors, newer computers can havethousands of processors. A programmer of massively parallel systems must orchestrate theexecution of all the processors and keep track of the even larger amounts of data whilemaking sure that all the available resources are used. Good visualizations are needed morethan ever!Unfortunately, most of the visualizations produced by the available systems are notscalable: as the systems increase in size, the visualizations become obsolete. There isthe problem of screen area, which is limited, and number of things to view, which keepsincreasing. Most systems have an upper limit on the number of processes they can view,and they are rapidly approaching this limit.To be able to use visualization systems with massively parallel computers, we mustdevelop views that scale with the number of processors. These views must present globalinformation about the system, but should also present more detailed local information whennecessary. To produce scalable visualizations, we need better ways of doing data collection,analysis, storage and display. In this paper we concentrate on techniques for data analysisand display.In the next section, we will give an overview of the issues involved in parallel systemvisualization as related to the goals of the visualization. In section 3, we will review manyavailable tools, indicating their goal and how they handled some of the issues discussed.In section 4, we will look towards the future and the areas where more research is needed.Section 5 will present some �nal comments and conclusions.2 OverviewThe amount of data produced by parallel systems can be overwhelming. Sifting throughthe data is tedious and likely to lead to erroneous conclusions. This makes parallel systemsa perfect candidate for the use of visualization. Visualization is a way of taking advantageof the advanced cognitive capabilities of the user to pin-point irregularities in the data.

2. Overview 3
(A) (B) (C)Figure 2.1: A typical setup for visualization of parallel systems. The parallelcomputer (A) will run the program we want to study and produce the data thatwe want to visualize. This data is transmitted to the workstation (B), where itis stored as a �le. When the visualization system is run on the workstation, itanalyzes the trace �le and displays the selected information on the screen (C).The purpose of the visualization is the most important criteria for deciding which datato gather from the parallel system. For example, �guring out if most processors are beingused e�ciently is signi�cantly di�erent than �guring out if the current program reallyimplements a correct sort algorithm. Each type of visualization requires di�erent kinds ofdata and displays the data in di�erent ways.In this section we will discuss some of the issues that need to be considered for thecreation of visualizations of parallel systems. We will present a description of the tasksrequired to produce a visualization, then we will create a list of issues that can be associatedwith each task. In the following section, we will relate the importance of each of these issuesto the goal of the visualization system, and see how some of the available systems have dealtwith these issues.2.1 Requirements for visualization of parallel systemsThe creation of views involves several tasks that can be implemented as separate modulesof a visualization system [KS92]. These tasks can be classi�ed as collection, storage, analysisand display of the data generated by the parallel system. Figure 2.1 shows the typical setupfor visualization of parallel systems.There are di�erent issues involved in each of these tasks:

4 2. OverviewData collection Data collection is done by recording information every time some \inter-esting" event happens during the execution of the parallel program. Some of the importantquestions that should be asked about data collection are:1. Which data should be collected?The data to be collected should be directly related to the purpose of the visualization.The user of the visualization should have some idea of how the data is supposed tolook and use the visualizations to contrast the actual data with the expected behavior.2. Is the data collection done by software or hardware?Collection by hardware has the advantage that it causes little perturbance in theprogram execution. Collection by software is slower and causes more perturbance,but it is more exible and portable.3. How much perturbation is created by the data collection?If the data is collected by software instrumentation, the program may be sloweddown considerably. It may cause the program to execute di�erently when it is beingmonitored.Data storage Data storage may become a problem because of the large amounts of datathat can be generated from a traced execution. The main questions are:1. Should the data be stored in a trace �le or piped to the visualization system?The amount of data generated by the system can be extremely large, so it may benecessary to have a lot of available disk space if it is going to be stored into a �le.2. Should the trace be analyzed before storing the data?Storing analyzed data can reduce our disk space requirements, but eliminates theability to examine the raw data that was generated by the system.3. What amount of data will need to be stored? Should the data be compressed?The size of the trace �les can grow very rapidly, and disk space can become a concernfor long traces.Data analysis Data analysis is any manipulation done to the raw data generated by theparallel system. Analysis can be done before storing the data or when reading the data intothe visualization system. Some of the issues are:1. What kind of information are we looking for in the data?We need to determine what we are interested in visualizing, and look for the datathat is related to this information.2. How do we separate useful information from the rest of the trace?When looking through the large amount of data, we must have some sort of �lteringmechanism to extract only the needed information without wasting time processinguseless information.3. How much analysis should be done by the program and how much by the user?The advantage of visualization is that it uses the cognitive abilities of the programmerto detect patterns. If the visualization system does too much data analysis, it mayobscure important details that the programmer would have noticed.

3. Previous work 5Data display Data display is the actual heart of the visualization. It involves presentingthe data in a form that makes it more intuitive to the user of the visualization system. Theimportant questions about displaying data are:1. What is the most intuitive way to display the data?Most scienti�c visualization systems have the advantage of modeling a physical struc-ture or occurrence, so the users already have a mental model of what the data shouldlook like. In visualizing parallel systems, there are no obvious physical models, so themost intuitive way to display the data depends on the data being displayed, and onwho is looking at the data. Di�erent people will have di�erent preferences on ways todisplay data, so we should o�er many alternatives.2. How do we highlight the important information?There is often so much happening at the same time that the visualization system musthighlight some information that it deems important.3. How much abstraction should we use to display the data?Sometimes abstractions help the user get a better understanding of what is goingon, but sometimes they just obscure the information. Abstractions are also highlydependent on the user and the context, and an abstraction that makes somethingvery clear for someone may just completely miss the point for someone else.4. How much will the user be able to interact with the display?Some visualization systems only display the data, or give the user very little abilityto decide on di�erent ways to look at the data. Allowing the user to interact with thedata can enhance the exibility of the system, but also increases its complexity.5. How does the display scale with the number of processors? Will a display give thesame information if the system is using 200 processors instead of 4?Some displays lose information or become useless if too many processors are beingvisualized. Because of the limited screen size, visualization systems need to decidehow to merge data for display without losing important details.6. How much work is involved in creating a view?Some views are created automatically by the visualization system, and some viewsare completely user generated, which means more work for the user.In the next section, we will look at some of the available tools for visualization of parallelsystems, and we will see how they handled the issues just presented.3 Previous workThere has been a lot of work done in the �eld of visualization of parallel programs.Most of the proposed tools can be classi�ed by the view they present of the system beingvisualized:� Debuggers present the information from the system's point of view. Visualization usein debuggers is mostly for looking at data movement, making sure events happen at theright time. To display the data movement, the views must match the hardware modelbeing used (ie. SIMD, MIMD, hypercube, mesh, etc.). The other use of visualizationsby debuggers is to present data that is distributed among the processors.� Program visualizations present the information from the programmer's point of viewwith the purpose of matching the actual execution to the programmer's mental modelof how the execution should proceed.

6 3. Previous work� Performance monitoring systems connect the hardware model to the programmer'simplementation, indicating how well they match. They display information related tospeed of program, use of available resources and e�ciency.These classi�cations are not mutually exclusive. In fact, many of the tools currentlyavailable cross over into more than one of these areas. But the goal of the visualization isalways distinguished from the extra features available with each tool.To help us look at the existing visualization tools, we try to classify each tool into oneof the three categories described above. We will present the distinguishing features of eachcategory, including how their goal a�ects the perceived importance of the issues. Then wewill list some of the important systems from each of the categories. At the end of thissection we will take a look at some early attempts to create scalable visualizations, and thesystems that presented them.3.1 Performance evaluation toolsParallel computers were designed to increase the speed of executing programs, so it isno surprise that performance evaluation tools are important. They can assist programmersin �nding bottlenecks or areas of the program where the performance can be improved. Foran in-depth discussion of the issues involved in the creation of performance evaluation toolsfor parallel systems, the reader is directed to the two conference proceedings on the subject[SKB89, SK90].Performance evaluation tools do not need to know the functionality of the program beingexecuted. They just give information about the usage of the architecture or the balancingof loads. This means that the same displays can be reused with the execution of di�erentprograms. Most performance views are based on standard graphical displays, such as charts,X-Y plots, gauges and diagrams.Tools in this category have also been used for performance debugging. This is usefulwhen a program is producing the right result but is not executing as quickly as expected.Data collection is one of the critical issues for a performance evaluation tool. Hardwaremonitors would be ideal for gathering performance information, since we know which datawe need and we want to get it without disturbing the execution. Unfortunately, hardwaremonitors are not generally available. Software monitors are more exible, but they areslow, and may cause performance degradation. In general, the more detailed informationwe want from a program, the less reliable the performance data will be because getting theinformation will a�ect the execution of the program.There are two alternatives to data storage: direct recording in trace �les or on-the-yanalysis and compression. The collected data is usually stored in trace �les immediatelybecause analyzing it on-the-y could lead to serious performance degradation. Since theamount of data generated is large, e�cient storage becomes an important issue. Storing allthe generated data allows the user to visualize di�erent aspects of the execution.The analysis consists of extracting the data needed for the desired visualization and�nding information such as averages and peaks. We also look at how long events take tocomplete, and the time processors spend doing useful work, doing overhead work or waitingfor something to happen. Note that the time needed for performance evaluation is thephysical time related to timestamps, so clock synchronization becomes very important.

3. Previous work 7

Figure 3.1: Some of the displays available from the ParaGraph system.Performance data is quantifyable, so graphs, charts and similar diagrams work well fordisplaying it. These displays are supplied with most systems, so generating a new view ofthe data is very simple.ParaGraphThe ParaGraph system [HE91] has a large number of prede�ned views for performancevisualization. The goal of the system is to provide several ways of easily visualizingperformance data. The system relies on the Portable Instrumented Communication Li-brary (PICL) for data collection [GHPW90]. PICL is available in several vendors' parallelmessage-passing architectures (Thinking Machines, nCUBE, Cogent, Intel, Meiko, Symult).This is one of the advantages of the ParaGraph system: it can handle data produced byseveral di�erent architectures.ParaGraph uses trace �les generated by PICL to show the performance of the architec-ture when executing that program. All the current visualizations are done \post-mortem".There is no way to control the execution of the parallel program from the ParaGraph system,so attempting visualizations on-the-y would only result in a fast blur.

8 3. Previous workThe emphasis of ParaGraph is on ease of understanding, ease of use and portability. Ituses a large number of prede�ned visual perspectives which allow the user to choose the onethat presents the best insights on the performance of the program. Some of these views areshown in �gure 3.1. ParaGraph is also very easy to use, with barely any instruction neededfor a novice user.The information needed for the visualizations is automatically created by the calls toPICL routines. The program is not dependent on PICL, and could be used to visualizetrace data generated by other programs, as long as the information is in the same formatas the data generated by PICL. ParaGraph itself is written using C, and all the displaysare created using X window calls, making ParaGraph portable to other Unix systems.By their own admission, ParaGraph was not meant for application-speci�c visualizations.But the system has extensions to allow users to add displays that are speci�c to theirapplications. The creation of these displays is not trivial, but once created, these displayscan be viewed along with the other generic displays.One of the drawbacks of the system is that it simply creates the visualizations as fastas it can, so the length and timing of events is not intuitively obvious.ParaGraph is a mature system, and a good one for what it was intended. It is easy touse, and the displays are informative, well designed and fast. We liked the fact that thelearning curve is low and the amount of expected user intervention is minimal.PabloThe Pablo performance analysis environment is a system for the collection, analysis andpresentation of performance data from parallel computer systems [ROA+91, RAM+92].The environment includes a collection mechanism that generates self-documenting trace�les where no data types or sizes are assumed. The analysis is done by connecting traceows graphically to statistical data transformation modules. The resulting data can bepresented using traditional visualization techniques as well as soni�cation techniques.The emphasis of the system is on portability, scalability and extensibility. Portabilitymeans that, although the mechanisms for collecting data are system dependent, once thedata is collected, the data transformations and visualizations should be system independent.Scalability refers to the increase in the number of processors in the parallel systems. Thetool should be able to scale with the number of processors, not only gathering the data fromlarger systems, but also being able to present the data in an intuitive manner. Extensibilityaddresses the fact that di�erent users have di�erent expectations from the system. Anovice programmer will not be willing to spend lots of time to get any usefulness from thesystem, whereas a more advanced programmer will take the time to learn and use di�erenttechniques if they will present better insights on the program.These goals have directed the development into the design of two primary componentsof the system: portable software instrumentation, which generates trace data, and portableperformance data analysis, which interprets and presents the trace data. The programinstrumentation can be done interactively and three kinds of events are supported: trace,count, and time interval.Trace events indicate the occurrence of an event, and can be accompanied by an arbitraryamount of associated data. Count events are associated with an event, but keep track ofonly the number of times the event occurs. Time interval events are associated with a pairof points in the program, and indicate the time elapsed while executing the enclosed section.

3. Previous work 9For analysis of the trace data, the user can create data analysis modules or use one ofseveral standard modules provided with the system.Pablo should integrate the performance data with the source code that produced it.This is a very important feature that is not currently implemented. Also, Pablo seemstailored to small MIMD systems, and not to data-parallel programs. Most of the displaysprovided by the system do not scale well with an increase in the number of processors, andthey comment on the need for new techniques to analyze and present data from massivelyparallel systems.Other systemsThe Automated Instrumentation and Monitoring System (AIMS) provides facilities forthe automatic insertion of instrumentation code [YHL+93]. The system has a monitoringfacility that will save performance data, and two tools that process and display the data.The execution can be animated using the View Kernel tool, or statistics about the executioncan be observed using the Tally tool.The RP3 (Research Parallel Processor Prototype) system from IBM is important becausethey added a performance monitoring chip (PMC) to each of the processors in the system[WCC90]. As part of the RP3 system, a prototype visualization system [Kim90] wasdeveloped to display some of the data collected by the monitoring system. The goal ofthe visualization system was to give programmers a set of tools that they could use to�nd problems in their programs. They could run the program until some interesting eventoccurred, then use the tool as an aid to pinpoint the cause of the event.This visualization system was created speci�cally for the RP3 system, and the instru-mentation to produce the data for the visualizations had to be inserted into the code by theuser. The graphics for each visualization were also created speci�cally for each application.Even the authors admit that this approach takes too much time and by the time the visu-alizations are in place, all the bugs have been �xed, making the visualizations useful onlyas instructional tools.The Parallel Programming Instrumentation Environment (PIE) was created to aid inperformance tuning of programs, which they call performance debugging. Their goal is notto make programs work, but to make working programs work faster.PIE is tailored for shared memory parallel computers, and is implemented on top ofMACH, an operating system developed at Carnegie Mellon University. It is meant to beportable to other similar systems. The displays available are limited, and they do not seemto scale well with an increase in the number of processors. One of the features of PIE is theability to correlate the monitored events with a view of the source code.3.2 DebuggersParallel program debuggers, like performance evaluation tools, can be used on a widevariety of applications with little customization. Debuggers can provide general informationabout the workings of a given parallel system, but the information is not very intuitive, andit is at a very low level of abstraction where what you see is the same data that the machinesees. The amount of data can be overwhelming for a person to comprehend. A good surveyon debuggers for parallel programs was presented by McDowell and Helmbold [MH89].Pancake and Utter give an in-depth look at visualization models for parallel debuggers[PU89].

10 3. Previous workThe data collection for debugging systems has to include interprocess communicationinformation as well as information about the behavior of each process. Some tools forcethe user to instrument the program manually (similar to adding print statements to in-teresting sections of code), and others just automatically add instrumentation to certainparts of the code. Perturbation created by instrumentation can cause di�erent execution inasynchronous programs, which may hide existing bugs.The speed of execution in debuggers is not critical. In fact, debugging usually proceedsslowly, with the user needing time to understand what is happening in the execution. Thismeans that the data could easily be analyzed and sent directly from the parallel system tothe visualization system. But, in most available systems, this is not the case, and data isstored in trace �les for later viewing and reviewing.One of the important issues in debugging is the timing of events. The problem is causedby the asynchronous execution on MIMD machines. Several systems reorder the trace datato present a clearer view of events, which are presented in a logical fashion instead of theway they actually occurred. In doing this sort of analysis, one must be sure not to produceerroneous sequencing of events.In debugging, most of the data is just presented and the burden of analysis falls on theuser. This means that most of the displays are not very abstract or complicated. Usually,there are some displays of the machine model being used, along with some trace eventanimation. Visualization use in debugging is mostly limited to displaying communicationpatterns between processors and to visualizing data that is distributed among the processors.It serves to locate some bugs, but not all.Instant ReplayOne di�erence between debugging parallel programs and debugging sequential programsis the possibility of non-determinism, making it possible for parallel programs to behavedi�erently in successive executions. Instant Replay is a way of gathering data from aprogram execution to ensure that future runs will produce the same behavior [LMC87].The main observation is that process communication and interaction is the cause ofnon-reproducible behavior, because a di�erent sequence of interactions may cause a di�erentresult. Instant Replay models all process interactions as operations on shared data. Thewrites to the object will give the proper sequence of state transitions in the program, andthe reads will indicate the sequence of events which should have occurred up to that point.Instead of keeping a trace for all the data used in the interactions, the system only keepstrack of the changes to the data by updating the version number of the data. By usingthe trace produced in the previous run as a guide, the system can ensure that the sameversion of the data is received at the same time in the next execution of the program. Oneadvantage of keeping version numbers for the data instead of the actual value of the datais that the resulting traces are smaller and can be produced faster.The key feature of Instant Replay is the ability to produce reasonably-sized traces thatguarantee reproducible execution of a parallel program. It works on both shared-memoryand message-passing machines, but relies on the fact that interaction between processes isa rare occurrence.To ensure that a trace will be available in case of a failure, the tracing mechanism hasto be enabled all the time. This means that the performance penalty for using the system

3. Previous work 11has to be minimized. They claim that the overhead for producing the trace will increasethe program execution time by less than 5 percent.Instant Replay does not use any visualization tools, but the techniques used to minimizethe recording of trace data and the emphasis on reproducible behavior of programs arecommendable goals for any parallel program visualization system.Belvedere and Perspective ViewsThe major idea in the Belvedere system is that parallel programs are best understoodby examining the patterns of interprocess communication [HC89]. Belvedere can be usedto visualize information from an execution trace �le and uses animation to display userde�ned communication events. The user can then detect bugs in the program by observingdeviations from the expected pattern of communication.One of the problems of animating communication events as they occur is that, becausecommunication does not happen synchronously, the patterns may not match the user's men-tal model of how the communication should take place. To help identify patterns, Belvedereallows the user to de�ne abstract events, or a series of events that should be grouped together.These abstract events are de�ned using a special event de�nition language.Once the patterns are described, it is easy to �nd bugs in parallel programs if theactual communication pattern does not match the expected behavior. After using Belvedereon several di�erent programs, the authors observed that animating the communicationpatterns is helpful, but that restricting the animation to di�erent perspectives can makethe information more meaningful.This led the authors to study a technique they call Perspective Views [HC90]. Theyfound that sometimes the information displayed by animated views can be enhanced byreordering events in ways that closely match the user's mental model of the program.The major drawback of these systems is that abstract events have to be de�ned using anevent de�nition language, which can be cumbersome. This also means that the user has tode�ne all possible events before they are displayed. A deviation from the expected patterncan be caused by a mistake in the event de�nition.Belvedere is a step in the right direction. It helps to visualize the execution of parallelprograms and reveals incorrect actions by comparing them to the model of expected be-havior. In the process, it gives the user a good, intuitive idea of the inner workings of theprogram. Visualizations in Belvedere are limited to small size programs. The views shownin the paper would not scale with an increase in the number of processes.To allow the creation of abstract behaviors for large programs, the authors have intro-duced a new system, called Ariadne [CFH+93]. This system was designed for \scalableapplication of event-based abstractions." This new system does not include graphical dis-plays, probably due to the di�culty of displaying scalable data.MPPE - MasPar Programming EnvironmentThe MPPE system is a tool for debugging and optimizing data-parallel programs forthe MasPar MP-1 computer [Mas91]. This system uses a graphical user interface to allowthe user to debug programs written for the MasPar. It also allows the user to animatethe updating of variable values during execution and create some visualizations of selecteddata using a data visualizer window (see �gure 3.2). This window will take a comparison

12 3. Previous work

Figure 3.2: Data visualizer window from MPPEexpression (such as B == 0) and display one pixel per processor, where the pixel will beon if the criteria is satis�ed in the corresponding processor. Further inspection can bedone by using the mouse to click on individual pixels, where the actual data value at thecorresponding processor will be displayed.This system presents many great visualization ideas. The user interface is also very easyto use. The main problem is that it is only available for the MasPar, so it is not portable.The ideas are tailored for SIMD machines, where synchronous execution simpli�es many ofthe animation issues.Other systemsBugnet is a system for debugging distributed programs running on a Unix network[Wit89]. It uses a monitoring facility to record interprocess communication and in-put/output for all the executing processes. All the information is traced and timestamped,allowing the user to back up the execution in case of an error and replay the events leadingto the error in \almost" the exact sequence as they occurred before.The system uses a checkpoint algorithm that saves a globally consistent system stateat periodic intervals during the execution of the program. During these checkpoints, allprocesses stop executing and the state of each process is captured. Replaying the programconsists of resetting the state to the last checkpoint and executing the trace entries sincethat point.The PF-View system is a graphical debugger created to take advantage of the massiveamounts of information produced by the IBM's Parallel Fortran Trace Facility (PF-Trace)[UHP91]. The PF-View system reads and processes program traces, using the resultingdata to present a multi-level view of the execution of the program, which can be used for

3. Previous work 13debugging or for performance tuning. But perhaps the most important contribution ofPF-View is the ability to correlate the behavior of the program with the source code thatcaused it.The system starts displaying the highest level of the program, displaying it as a seriesof icons where sections of code are classi�ed as serial, parallel loops or parallel cases. Ifmore detail is desired, the user can click on the corresponding icon to expand the hierarchyand get further information on the section of the program. The hierarchy hides irrelevantdetails from the programmer, allowing him or her to concentrate on the important sectionsof code Animation is used to simulate the execution of the program as it happened in thetrace. Changes in icon color will indicate the section of the code being executed.The visualization of parallel machines is so important that there was a system thatproposed the use of a parallel machine exclusively for monitoring and debugging a similarmachine [RRZ89]. The proposed machine, called Makbilan, was a MIMD shared-memorymachine. The goal of the Monitoring, Animating and Debugging (MAD) system was to dothe monitoring in a non-intrusive, interactive and user-friendly way. The MAD machinewould eliminate the need for large trace �les which are not needed for interactive debugging.3.3 Program visualization toolsMost program visualization tools available give intuitive displays of the parallel systemat the expense of exibility. These tools require programmers to create an abstract view ofthe program that is related to their mental model of the computation. The views createdare designed for a particular program or algorithm, and di�erent views are required fordi�erent algorithms. Stasko and Patterson present a discussion on some of the issues relatedto software visualization systems [SP92].Algorithm animation can be considered part of program visualization, since the purposeis to give very intuitive displays of data. The views created for algorithm animation areextremely speci�c and are usually used for teaching purposes. Some of the algorithmanimations that have been created are speci�c to certain kinds of algorithms (sorting,searching, etc.). One example of this is the Robust Animator of Fault Tolerant algorithms(RAFT) [Apg92]. This system allows the user to interact with the executing animation.The only drawback of the system is that you can only animate the selected algorithms, andcreating new animations involves lots of work.The data collection for program visualization is done by manually instrumenting thesections of code that supply the important information. There is no problem with instru-mentation perturbation, since the goal is to enhance the understanding of the program,and not to see how fast it is executing. The collection is done by software, since the datacollected varies from program to program.The data is normally stored in trace �les to allow multiple replays of the execution. Torun the visualization on-the-y, some way of slowing down the parallel program must beused. The trace data could be analyzed before being stored because we know which datawe will need to keep to produce our displays.Analysis of the data consists of determining the combination of trace events that con-stitute one of the interesting abstract events in the execution model. This forces the userto �gure out how high-level events will be reported in the trace. These events can then besent to the visualization system for display.

14 3. Previous workThe display of data for program visualization requires lots of thought before creatinga view. The view designer must �nd out the best way to convey events in an intuitivemanner that will enhance program understanding. Views are hard to create, and may be a\one-shot" deal (usable only with this program). Much of the research in this area involvesthe simpli�cation of creating the views, as well as the reusability of the building blocks usedto create the views.VoyeurThe Voyeur system was created to improve the trace facility of the Poker programmingenvironment [SBN89]. The emphasis of Voyeur was to facilitate the creation of application-speci�c views of parallel programs. It was used to create views that were close to theprogrammer's mental model of the problem. The main simpli�cation was to construct theviews hierarchically, which makes it possible to reuse some of the parts already created.The visualization system is capable of using trace data as input, as well as data generateddirectly from a parallel architecture or a simulator. The user starts the system by connectingthe input to a trace �le or to a pipe used for interactive viewing. After initialization (settingthe number of processors, etc.), the execution can proceed continuously or by single-steppingthrough the program, and it can be interrupted as needed.User input is required for the generation of each new view, and this is one of thedrawbacks of the system. Once a view for a program is built, it can be reused by similarprograms, since the visualization system is separate from the data generating architecture.They have even used the system to animate sequential programs.The views presented by the Voyeur system range from textual display of the contents ofvariables to complicated abstractions, where information is displayed as sharks and �sh. Thesystem is written in C and uses X windows, which makes it portable to other architectures.ZeusThe Zeus algorithm animation system [BH92] is the new system proposed by MarcBrown, the creator of Balsa-II [Bro88b] and one of the original proponents of algorithmanimation [Bro88a]. The system expands on the available algorithm animation techniquesby adding color and sound as new dimensions for conveying information.Some of the techniques for algorithm animation discussed in the Zeus paper include:� Multiple views | It is easier to understand an algorithm if you have di�erent ways oflooking at the execution. Also, emphasizing one feature in each view will ensure thatone view will not be too overloaded with data, making it incomprehensible.� State cues | Changes in the state of a data structure should be represented by changesin the graphical representation on the screen.� Static history | A trace of where the algorithm has been is sometimes very helpfulwhen one is trying to �gure out how it got to the current state. By looking at ahistory of major changes, the path to the present state can usually be deduced.� Continuous versus discrete transitions | For small data set, continuous \animated"transitions are better in depicting the changes in the algorithm (two items slowlyexchanging place look better than if they magically switch place). But with largeenough data sets, discrete transitions will look smooth, because the \in-between"details are lost.

3. Previous work 15� Contrasting algorithms | This is particularly helpful when there are two or morealgorithms that do the same job. By showing the algorithms side by side, the userwill gain an understanding of the advantages of each of the algorithms.� Input data selection | Small amounts of data are best to introduce an algorithm,whereas large amounts of data can be used to understand the algorithm's behaviorbetter. For pedagogical purposes, using a �xed data �le is preferable, since it willhighlight the important aspects of the algorithm. But it is also desirable to allow theusers to input their own data, so they can customize the animation.Color can be used to give cues about the state of data structures, to highlight speci�cactivities, to unite related information in di�erent views, to emphasize any obvious patterns,and to give a sense of history. Sound is more di�cult to use, but it can be e�ectivein reinforcing existing visualizations, conveying patterns of activity, replacing non-criticalvisual aid and signaling exceptional conditions.Zeus presents many e�ective ways of conveying information about algorithms to a user.The system is intended as an instructional tool | the programmer must �gure out the bestway to display the information in order produce e�ective and informative animations. Zeuscan be used to animate sequential as well as parallel algorithms.Even though the techniques discussed in the Zeus paper seem very valuable, theire�ectiveness has not been formally evaluated. It would be interesting to see how mucheach of these techniques helps in clarifying the behavior of algorithms.PolkaPolka [SK92] is the successor of Tango [Sta90], and it is a system for creating animationsfor speci�c algorithms. The system emphasizes the simpli�cation of creating views by givingseveral primitives that, though not extremely easy to learn, are much simpler than theequivalent X windows programming primitives.The Polka system separates the code to be animated from the actual animation \scenes".It is the job of the animator to determine the interesting events that give the information tobe animated, and to add the corresponding calls to the Polka animation. Then the animatorhas to implement the views that animate the program and correspond to the calls made bythe inserted functions.The one improvement of Polka over Tango and other similar systems is the ability toanimate parallel programs easily. The system allows the design of overlapping animationseasily because it programs each individual object's actions independently from other objects.Figure 3.3 shows two frames from an animation of a parallel matrix multiplicationalgorithm done using Polka. Creating the animation involved lots of thinking about how todesign the visualization. This visualization will probably only be useful for this particularalgorithm. One of the main drawbacks of Polka is the amount of intervention that is requiredfrom the animator in order to create the application-speci�c views.Other systemsThe Integrated Visualization Environment (IVE) system [FLK+91] is a system for vi-sualizing parallel programs executing in SIMD machines. The system allows for 3 kinds ofvisualizations: Program visualization (eg. calling diagrams and dependency graphs), pro-cess visualization (eg. description of the state of the program) and application visualization(eg. speci�c abstractions for applications).

16 3. Previous work
Figure 3.3: Two frames from a visualization of a parallel matrix multiplicationalgorithm for a SIMD machine. The left frame shows the values for the �rstmatrix in the upper left, the second matrix in the upper right and the currenttotal in the bottom of each processor. The right frame shows the columns ofthe second matrix rotating clockwise. This animation uses color and motion tohighlight important information.The main abstraction used by the IVE system is the grid. It uses a grid to representthe processors in the machine, since the program visualizes SIMD machines. Many of theviews generated by the system are based on this grid.One of the goals of the IVE system is to reduce the amount of e�ort required to createvisualizations, since visualizations that require too much e�ort to produce will not beconsidered worthwhile and will not be used. The idea is to use the computer as an aidin the design of the visualizations. While the relative automation of the views is a step inthe right direction, the user still has to be signi�cantly involved, so it is not automatic.The approach taken by the Parallel Animated Debugging and Simulation Environment(PARADISE) [KC91] is to create a tool for aiding the user to develop visualizations of thegiven trace data. They assume that the trace data will be collected using other methods,and it will be available in the form they require. In a sense, they only deal with thevisualization part of the system, using their tool to process a prede�ned stream of traceevents and display them in a user speci�ed manner.The goal of the system is to ease the creation of custom visualizations for analyzingparallel systems, but the construction of new visualizations seemed to require quite a bit ofe�ort. The visualizations created using PARADISE will not easily scale to larger systems.Since the system is used for visualizing whatever trace �le is given, there should be norequirement for the system to be parallel.The goal of the Pavane system [CR91] is to develop a methodology for selecting theproper visualization of a concurrent computation. The method they use focus on theabstract formal properties of the computation. A visualization in Pavane is a mappingfrom a computational state to an image on the screen. The system assumes that theunderlying computation can be characterized by a state that goes through atomic changesas the computation progresses.

3. Previous work 17The rules for creating a visualization are very complex and place a big burden on theprogrammers. The advantage is that the visualizations are tied to program veri�cation.The Parallel Architecture Research and Evaluation Tool (PARET) is a package thatallows the visual study of a simulated distributed memory MIMD computer. The goal isto study multicomputers as systems, not as separate components. PARET was intended asa laboratory tool and consists of an interactive graphical front end, a simulator back endand a library of input �les. It seems to be a good aid for gaining better comprehension ofparallel environments, using the models available from the input library. Aside from thesemodels, there is no obvious way of creating new models or for studying the behavior of aparticular program.The system presented by Williams and Lamont [WL91] integrates two systems developedat the Air Force Institute of Technology | AAARF and PRASE. The major emphasis ofthis system is the animation of parallel algorithms for improving the understanding ofthe algorithms. It also includes some limited capabilities for performance data display.Instrumenting the program to get performance data is done almost automatically by thePRASE preprocessor. A little more e�ort is required to get algorithm data.An area where the views are fairly easy to generate is in systolic algorithm visualization.The reasons systolic algorithms are easier to visualize are:1. They execute synchronously.2. A grid is a good abstraction for their execution.3. The interprocess communication is regular.4. All processors execute the same program.There are several systems that deal with the coding, execution and visualization ofsystolic algorithms. Both SDEF [EC88] and Hearts [Sny87] provide di�erent environmentsfor the de�nition of the algorithm, and for visualizing the execution of the implementation.NSL [Hug92] is a language for the implementation of systolic algorithms. As part ofthe compilation, hooks are created to a visualization system (implemented using Xtango[Sta90]) that will animate the execution of the algorithm while highlighting the line of codebeing executed. One drawback of NSL is its current limit to one-dimensional systolic arrays.3.4 Towards scalable visualizationsA common problem with most of the visualizations in the current systems is the lackof scalability with increases in the problem size. This problem is critical with the arrival ofsystems with thousands of processors. There are some systems that have presented ideasabout the creation of scalable views.A good description of the problem of scalability in visualization systems is presented byCouch [Cou93a, Cou93b]. He de�nes a scalable view as \one whose format, clarity, meaning,and size are independent of the number of processing elements involved in computation."The author presents some guidelines that are needed to ensure that the views created arescalable. These guidelines are incorporated into Couch's Seeplex system.The Seeplex system provides two kinds of views: scalable and scrollable. Scalable viewsshow global data and scrollable views show local data. The system allows selection of datafor display in the local views, as well as zooming in and out of the global views. Thevisualization is always done by showing a graph plotting the values of the given data. Themain visualization shows the distribution of the data values. In �gure 3.4 we can see howSeeplex handles some of the scalable visualizations.

18 4. Need for scalable visualization
Figure 3.4: Scalable visualizations from Seeplex. The left �gure shows all theavailable data sorted by value. The range of values is shown in the Y axis. Therectangle on the graph indicates a section of data selected for further inspection.This data is shown in the �gure on the right.Waheed and Rover [WR93] use techniques from the area of image processing to visu-alize performance data from massively parallel systems. These techniques are scalable tothousands of processors. They also use general purpose visualization tools like AVS andMatlab to analyze the data and create new visualizations.The main contribution of these papers is an early attempt to produce scalable visual-izations of data. More studies are needed to get better methodologies for the creation ofscalable visualizations.4 Need for scalable visualizationThe latest trend in parallel processing is toward scalable programs | programs that areable to divide the workload among the number of processors available at execution time.The advantage of scalable programs is that there is no need to modify them when moreresources become available, and they are able to e�ectively use many processors to reducethe time required to solve a problem.But increasing the number of processors does not guarantee a corresponding reductionin execution time. The problem is that along with the increase in processing powercomes an increase in complexity, with more inter-processor communication and more thingshappening in parallel.Visualization could be used to aid in understanding the inner workings of scalable parallelprograms. But most of the available visualization systems have limits to the number ofprocessors they can visualize, and some of the views become useless for large number ofprocessors. For instance, in �gure 4.1 we can see how a view from ParaGraph that is usefulfor 16 processors is not useful for 128 processors.

4. Need for scalable visualization 19
Figure 4.1: Here is one of the problems with non-scalable visualizations, takenfrom the ParaGraph system. The view on the left shows the messages passedbetween processors in solving a fast Fourier transform with 16 processors. On theright we see the same view when the program is executed on 128 processors.The role of the visualization system is to present large amounts of information in anintuitive way to the user. In our example, we are more interested in viewing patterns ofcommunication than in seeing every processor to processor communication. Therefore, cre-ating 16 groups of 8 adjacent processors and displaying the group to group communicationwould generate a view similar to the �rst view that would give us much more informationthan the view generated by ParaGraph.Future research should address the need for better ways of analyzing and visualizingthe information produced by a large number of processors. In the rest of this section, wewill detail some of the areas that need to be considered in developing tools for scalablevisualization of parallel systems.4.1 Tool philosophyExperience has shown that a visualization system will not be used if it is di�cult tocreate visualizations. To attract users, a visualization system should have ways of generatingintuitive default views automatically. The main attraction of the ParaGraph tool is that theviews are created with no extra e�ort from the programmer. But ParaGraph o�ers no helpin selecting an appropriate view for the program. The user must choose from a confusingmenu of available views to try to �nd a visualization suitable for the executing program.Future systems should include several default views that can be used immediately tovisualize programs. The system should select an appropriate view to use as the default fora given program, and give the user the ability to customize the views and to override thedefault selections.Ultimately, it is the users of the visualization systems who know exactly what they wantto investigate. Therefore, future systems should allow exibility in the selection criteriafor visualizations. The users should be able to select processors for detailed inspection, orselect global views to see general patterns in the execution. Systems should also providethe ability to zoom in for more details at any time, using the global views as a road mapto interesting areas.One important aspect that needs to be investigated is the usefulness of the generatedvisualizations. It seems that everyone claims that their system creates helpful visualizations,but nobody has done empirical studies to �nd which visualizations are more informative

20 4. Need for scalable visualizationor to see how much visualizations actually help. Of course, the ultimate indicator of theusefulness of a system is if people continue to use it, even when they are not asked to, andmost of the currently available systems fail this criteria.4.2 Better analysis methodsCurrent visualization systems present all the data generated by the program. Thisis completely unnecessary, since most of the data does not help in understanding thebehavior of the program. The idea is to develop ways of determining which sections aremore interesting, and have the capability of giving more details when these sections areencountered. The system could use statistical analysis to select areas for detailed inspectionand use scalable methods that give an intuitive global presentation of the program execution.Statistical analysisVisualization systems are used to understand complex events. It is wasteful to createvisualizations for things that are obvious. The system should determine the areas thatwill bene�t from the use of visualizations, and generate insightful views for those areas.The visualization system should use the information provided by the executing program todetermine where to put its emphasis.Statistics for important values should be kept during the execution. The visualizationsystem can examine these statistics and present more details about the execution when theymeet a pre-determined criteria. For instance, this can be used to examine the executionin more detail when the number of active messages reaches a given limit, or when somepercentage of processes are idle.The statistical information may also be used by the visualization system to decide whichprocessors should be viewed individually. The user may want to focus on the processorsthat are working harder, or focus on a group where processors have big di�erences in usagestatistics. Using this information, the system can steer the user into potential problemareas, where the visualization will be most useful.Scalable methodsOne way of creating scalable visualizations of parallel program execution is to groupprocessors into clusters. The system can then show the interactions between the groups ofprocessors as a high level view of the execution. To make such a view intuitive, the processorsmust be grouped in clusters that resemble the mental picture used by the programmer.The simplest way to join processors together in scalable views is to use physical prox-imity. It would be more desirable to have automatic ways to group together processorsaccording to what they are doing. Some work in this area has been done by Kunz [Kun93],but there is still much to be done.4.3 Ties to programFuture visualization systems should have strong ties to the actual program being visu-alized, not just to the execution trace generated by the program. With this goal in mind,future systems should correlate the visualizations to the source code that produced them

4. Need for scalable visualization 21and allow visualizations of arbitrary program data. Ultimately, the visualization systemsshould control the program execution, generating visualizations on-the-y.Ties to source codeOne of the biggest complaints of users of visualization systems is the lack of informationavailable to determine which sections of code produced the data being visualized [Fer93].Ties to source code could help the users trace some abnormality to the sections of codethat may have caused it. This can initially be done by adding a line to the trace indicatingthe �le and line of code being executed. This information can be created automatically byaliasing the communication routines to include the �le and line when the call is made.Ties to program dataA visualization system should help visualize any kind of data supplied to it. Theemphasis on parallel systems has been to visualize performance information, since it is theinformation that is most readily available. We should be able to visualize other informationrelated to the execution of the programs, such as data that is distributed among theprocessors, or data being passed between the processors.One way of getting more information about the messages being passed by the systemis by annotating the messages when sent and received. The extra information can containthe format of the data, the number of the iteration in a loop, or other information that canbe helpful when visualizing the data. Advanced compiler technology could automaticallygenerate the tags for the messages. One drawback of annotating messages is that it rapidlyincreases the amount of data generated by the execution.Ties to program executionCurrent practice for generating visualizations is to run the instrumented program togenerate a trace �le of the execution, and then use this trace �le to produce the visualiza-tions. This has the advantage of avoiding too much perturbance from the actual tracing,but it generates very large trace �les, which can become a problem for large number ofprocesses or for long executions.Generating the visualizations on-the-y eliminates the need for storing intermediatetrace �les. It also allows direct debugging of programs, where the user can look at the dataas it is produced, instead of looking at trace �les. This will greatly increase debuggingspeed, but could cause other problems. Visualization systems should be able to controlthe execution of the parallel program, to e�ectively slow it down while the informationis displayed graphically. Slowing down the program will also increase the \probe e�ect,"which may cause di�erent execution sequences by slowing down some processors and notothers. When generating visualizations on-the-y, systems must slow down all processorsequally in order to reduce the probe e�ect. Careful analysis of the perturbation caused bythe instrumentation may help to minimize the di�erences between a regular execution andan execution for visualization purposes.

22 4. Need for scalable visualization4.4 Other issuesThere are other techniques to improve the information conveyed by visualizations.Future systems should use color and sound to enhance the visualizations they produce,but the must avoid cluttering the data with excessive bells and whistles.Use of colorComputers have made it so easy to add colors to views that in many cases the colorshave been overused. The result is computer visualizations that look very attractive, withmany bright colors, but are not very informative. Usually, the visualizations end up lookinglike video games.In his book Envisioning Information, Tufte gives some guidelines on using color indisplays of information [Tuf90]. His �rst principle is: \Above all, do no harm." He proceedsto list some categories where color may be used, such as for:� Labels | to distinguish di�erent structures or data.� Measures | to give information about data values.� Representation | to imitate the real color of the data, ie. using blue if viewing waterdata.� Decoration | to make the data more attractive, without overwhelming the datacontents.Many computer visualization systems do not use color e�ectively to transmit informa-tion. For visualization of parallel systems, color can be used in several areas. Color canbe used to distinguish sources of data, as well as for highlighting important areas, withoutforcing the user to continuously refer to a chart that indicates what the colors mean. Dif-ferent intensities can be used to typify data values. And �nally, it can be used sparingly asdecoration for generated visualizations.Use of soundSound can be used as an alternative to visualizations to portray the behavior of parallelprograms. Francioni et al. present three experiments where execution behavior is mappedto sound [FJA91]. The �rst study tracks processor loads, and can be used to determine loadbalance. The second study is related to the ow-of-control of the program, and producessounds when selected sections of code are executed on each processor. The last experimentmaps communication events to sounds, and is used to portray the communication patternsbetween processors.Sounds are di�erent from visual aids because we can detect the occurrence of soundswithout having to listen for them. Also, we can detect some relationships better with ourears than with our eyes. Sounds are really good to indicate an exceptional occurrence, sinceit will not detract from the normal behavior of the program. In general, sounds should notbe used by themselves, but can be used to enhance the information displayed visually.

5. Comments and conclusion 235 Comments and conclusionIn the area of visualization of parallel systems, there is still a need for easily-generated,intuitive visualizations. What makes a good visualization for parallel systems? When weasked users of parallel systems, the unanimous response was \I don't know." There is noconsensus on which features are essential for parallel program visualization. The one thingeveryone agrees is that the insights gained by using the system have to justify the e�ortneeded to use the system. Current systems in general require too much e�ort to createvisualizations that end up not being too helpful, so users give up on them. The attitudeof most people we talked to was \I don't know what makes a good system for visualizingparallel programs, but if I see one I will know."One thing that has become obvious is that visualization systems will not magically makeeverything clear. The users of a visualization system must know what they are looking for,must have a clear idea of what the program does and where it may run into trouble.Showing a visualization of a program to someone without knowledge of the context will,at best, create a pretty picture. If a visualization is being used for instructional purposes,then the student should have a good idea of what is supposed to happen, which will becorroborated by the visualization. If instead, it is being used to track down some possibleproblem, then the user must have a clear picture of how the execution should proceed, anduse the visualizations to note deviations from the expected model.Visualization shows a lot of promise as a way to enhance the understanding of the innerworkings of parallel systems. It is the perfect vehicle for �ltering the vast amounts of datagenerated by the systems and presenting it in intuitive ways. Better models of visualizationfor parallel systems will only increase our insights and will lead to the design of better, moree�cient programs.References[Apg92] Scott W. Apgar. Interactive animation of fault tolerant parallel algorithms. InProceedings of the 1992 IEEEWorkshop on Visual Languages, pages 11{17, 1992.[BH92] Marc H. Brown and John Hershberger. Color and sound in algorithm animation.Computer, 25(12):52{63, December 1992.[Bro88a] Marc H. Brown. Algorithm Animation. The MIT Press, Cambridge, MA, 1988.[Bro88b] Marc H. Brown. Exploring algorithms using Balsa-II. Computer, 21(5):14{36,May 1988.[CFH+93] Janice Cuny, George Forman, Alfred Hough, Joydip Kundu, Calvin Lin,Lawrence Snyder, and David Stemple. The Ariadne debugger: scalable applica-tion of event-based abstraction. In Proceedings of the ACM/ONR Workshop onParallel and Distributed Debugging, pages 85{95, May 1993.[Cou93a] Alva L. Couch. Categories and context in scalable execution visualization.Journal of Parallel and Distributed Computing, 18(2):195{204, May 1993.[Cou93b] Alva L. Couch. Locating performance problems in massively parallel executions.Proceedings of the IEEE, 81(8):1116{1125, August 1993.[CR91] Kenneth C. Cox and Gruia-Catalin Roman. Visualizing concurrent computa-tions. In Proceedings of the 1991 IEEE Workshop on Visual Languages, pages18{24, 1991.

24 References[EC88] Bradley R. Engstrom and Peter R. Capello. The SDEF systolic programminglanguage. In Concurrent Computations, pages 263{301, 1988.[Fer93] Robert Ferraro. Personal Communication, 1993.[FJA91] JoanM. Francioni, Jay Alan Jackson, and Larry Albright. The sounds of parallelprograms. InProceedings of the SixthDistributedMemoryComputingConference,pages 570{577. IEEE Computer Society, 1991.[FLK+91] Mark Friedell, Mark LaPolla, Sandeep Kochhar, Steve Sistare, and Janusz Juda.Visualizing the behavior of massively parallel programs. In Supercomputing '91,pages 472{480, 1991.[GHPW90] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A user's guideto PICL: A portable instrumented communications library. Technical ReportORNL/TM-11616, Oak Ridge National Laboratory, 1990.[HC89] Alfred A. Hough and Janice E. Cuny. Initial experiences with a pattern-orientedparallel debugger. SIGPLAN Notices, 24(1):195{205, January 1989.[HC90] Alfred A. Hough and Janice E. Cuny. Perspective Views: A technique for en-hancing parallel program visualization. In Proceedings of the 1990 InternationalConference on Parallel Processing, volume II, pages 124{132, 1990.[HE91] Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance ofparallel programs. IEEE Software, 8(5):29{39, September 1991.[Hug92] Richard Hughey. Programming systolic arrays. In Edward Lee and TeresaMeng,editors,Proceedingsof the InternationalConferenceon ApplicationSpeci�cArrayProcessors, pages 604{618. IEEE Computer Society, August 1992.[KC91] James Arthur Kohl and Thomas L. Casavant. Use of PARADISE: A meta-toolfor visualizing parallel systems. In Proceedings of the 5th International ParallelProcessing Symposium, pages 561{567, 1991.[Kim90] Doug Kimelman. Environments for visualization of program execution. InSimmons and Koskela [SK90], pages 135{146.[KS92] Eileen Kraemer and John T. Stasko. The visualization of parallel systems: Anoverview. Technical report, Georgia Institute of Technology, 1992.[Kun93] Thomas Kunz. Process clustering for distributed debugging. In Proceedings ofthe ACM/ONR Workshop on Parallel and Distributed Debugging, pages 75{84,May 1993.[LMC87] Thomas J LeBlanc and John M. Mellor-Crummey. Debugging parallel programswith Instant Replay. IEEE Transactions on Computers, C-36(4):471{482, April1987.[Mas91] MasPar Computer Corporation. MasPar Programming Environment (MPPE)User Guide, 1991.[MH89] Charles E. McDowell and David P. Helmbold. Debugging concurrent programs.ACM Computing Surveys, 21(4):593{622, December 1989.[PU89] Cherri M. Pancake and Sue Utter. Models for visualization in parallel debuggers.In Supercomputing '89, pages 627{636, November 1989.[RAM+92] Daniel A. Reed, Ruth A. Aydt, Tara M. Madhyastha, Roger J. Noe, Keith A.Shields, and Bradley W. Schwartz. An Overview of the Pablo PerformanceAnalysis Environment. Department of Computer Science, University of Illinois,Urbana, Illinois 61801, November 7 1992.

References 25[ROA+91] Daniel A. Reed, Robert D. Olson, Ruth A. Aydt, Tara M. Madhyastha, ThomasBirkett, David W. Jensen, Bobby A. A. Nazief, and Brian K. Totty. Scalableperformance environments for parallel systems. In Proceedings of the SixthDistributed Memory Computing Conference, pages 562{569. IEEE ComputerSociety, 1991.[RRZ89] Robert V. Rubin, Larry Rudolph, and Dror Zernik. Debugging parallel programsin parallel. SIGPLAN Notices, 24(1):216{225, January 1989.[SBN89] David Socha, Mary L. Bailey, and David Notkin. Voyeur: Graphical views ofparallel programs. SIGPLAN Notices, 24(1):206{215, January 1989.[SK90] Margaret Simmons and Rebecca Koskela, editors. Performance Instrumentationand Visualization. ACM Press, 1990.[SK92] John T. Stasko and Eileen Kraemer. A methodology for building application-speci�c visualizations of parallel programs. Technical Report GIT-GVU-92-10,Georgia Institute of Technology, June 1992.[SKB89] Margaret Simmons, Rebecca Koskela, and Ingrid Bucher, editors. Instrumenta-tion for Future Parallel Computing Systems. ACM Press, 1989.[Sny87] Lawrence Snyder. Hearts: A dialect of the Poker programming environmentspecialised to systolic computation. In W.Moore, A. McCabe, and R. Urquhart,editors, Systolic Arrays, pages 71{80. Adam Hilger, Boston, MA, 1987.[SP92] John T. Stasko and Charles Patterson. Understanding and characterizing soft-ware visualization systems. In Proceedings of the IEEE 1992 Workshop on VisualLanguages, pages 3{10, 1992.[Sta90] John T. Stasko. TANGO: A framework and system for algorithm animation.Computer, 23(9):27{39, September 1990.[Tuf90] Edward R. Tufte. Envisioning Information. Graphics Press, Cheshire, CT, 1990.[UHP91] Sue Utter-Honig andCherriM. Pancake. Graphical animation of parallel Fortranprograms. In Supercomputing '91, pages 491{498, 1991.[WCC90] Brantley William C and Henry Y. Chang. Support environment for RP3 perfor-mance monitor. In Simmons and Koskela [SK90], pages 117{134.[Wit89] Larry D. Wittie. Debugging distributed C programs by real time replay. SIG-PLAN Notices, 24(1):57{67, January 1989.[WL91] Edward M. Williams and Gary B. Lamont. A real-time parallel algorithmanimation system. In Proceedings of the Sixth Distributed Memory ComputingConference, pages 551{561. IEEE Computer Society, 1991.[WR93] Abdul Waheed and Diane T. Rover. Performance visualization of parallel pro-grams. In Visualization '93, pages 174{181, 1993.[YHL+93] JerryYan, Philip Hontalas, Sherry Listgarten, Charles Fineman,Melisa Schmidt,Pankaj Mehra, Sekhar Sarukkai, and Cathy Schulbach. The automated instru-mentation and monitoring system (AIMS) reference manual. Technical ReportTM-108795, NASA, November 1993.

