
On-line Prediction and ConversionStrategiesN. Cesa-Bianchi�Y. FreundyD.P. HelmboldzM. WarmuthxUCSC-CRL-94-28August 9, 1994Board of Studies in Computer and Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064abstractWe study the problem of deterministically predicting boolean values by combining theboolean predictions of several experts. Previous on-line algorithms for this problem predictwith the weighted majority of the experts' predictions. These algorithms give each expertan exponential weight �m where � is a constant in [0; 1) and m is the number of mistakesmade by the expert in the past. We show that it is better to use sums of binomials asweights. In particular, we present a deterministic algorithm using binomial weights that hasa better worst case mistake bound than the best deterministic algorithm using exponentialweights. The binomial weights naturally arise from a version space argument. We alsoshow how both exponential and binomial weighting schemes can be used to make predictionalgorithms robust against noise.Keywords: Online learning, conversion strategies, noise robustness, binomial weights,exponential weights, weighted majority algorithm, expert advice, mistake bounds.�DSI, Universit�a di Milano, Via Comelico 39, 20135 Milano (Italy). Email cesabian@dsi.unimi.ityAT&T Bell Labs, Murray Hill, New Jersey. Email yoav@research.att.comzUniversity of California, Santa Cruz, CA 95064. Email dph@cse.ucsc.eduxUniversity of California, Santa Cruz, CA 95064. Email manfred@cse.ucsc.edu



1. Introduction 11 IntroductionThis paper studies a simple on-line model where predictions are made in a series oftrials. At each trial t the prediction algorithm receives the tth observation xt and producesa boolean prediction ŷt. It then receives the correct outcome yt as feedback. A mistakeoccurs if prediction ŷt and outcome yt disagree. Following Littlestone [14] we seek predictionalgorithms that minimize the number of mistakes over a worst case sequence of xt and yt.Of course in the unconstrained worst case a mistake can occur in every trial. In order tomake good predictions the predictor needs to have some prior knowledge, which enables it tomakes predictions about the future based on the past. In a Bayesian regression framework,one can encode this knowledge using prior distribution over the set of sequences or over aset of sequence models. In this work we are interested in performance bounds that makeno probabilistic assumptions, and so we de�ne the prior knowledge somewhat di�erently.We assume that there are N experts each of which is a prediction strategy. Our goalis to design an algorithm, which we shall call the \master algorithm", that combines thepredictions of the experts in the following way. At the beginning of trial t, the masteralgorithm feeds the given observation, xt, to all experts. The master then uses some functionof the N predictions produced by the experts to form its own prediction, ŷt. At the end ofthe trial the feedback, yt, is shared with all experts. We prove worst-case bounds on thenumber of mistakes made by the master when the number of mistakes made by the bestexpert is bounded.Generalizations of the above model where the predictions of the experts and/or of themaster algorithm may be in the continuous range [0; 1] have been studied by Vovk [20],Littlestone and Warmuth [17], Cesa-Bianchi et al. [9], and Kivinen and Warmuth [13].In this paper we return to the simplest setting where all predictions and outcomes areboolean. This is the problem solved by the basic Weighted Majority (WM) algorithm [17].Here we study the boolean case in more depth and devise a better algorithm, which we callthe \Binomial Weighting" algorithm or BW. The worst case number of mistakes that BWmakes is smaller than the number of mistakes made by previously known algorithms. In fact,if the number of experts is large enough and all predictions are deterministic and booleanthen we show that BW has the smallest possible worst case mistake bound among all masteralgorithms. In our analysis of BW we explore some elegant combinatorial structures thatmight be applicable elsewhere.The Weighted Majority algorithms cited above attempt to minimize the number ofmistakes made as a function of the number of mistakes made by the best expert. Theyassign to each expert E a weight of the form �m, where � is a constant in [0; 1) and m isthe total number of mistakes (or more generally the total loss) incurred by expert E so far1.The essential property is that the experts making many mistakes get their weights rapidlyslashed. The WM algorithm uses the weighted average of the experts' predictions to formits own prediction: It simply predicts 1 if the weighted average is greater than 1=2, and 0otherwise.The new master algorithm algorithm BW uses its weights in a similar way to WM forpredicting, however, these weights are not in exponential form. Instead, they are tails of abinomial sum. A further di�erence between WM and BW is the following. On each trial1A similar approach can be taken for learning the best combination of experts, although di�erent formsof the weights are used when the loss of the master is to be close to the loss of the best convex [16] or linear[10] combination of experts.



2 1. IntroductionWM predicts 1 if and only if the total current weight of the experts predicting 1 is biggerthan the total current weight of the experts predicting 0. BW, instead, predicts 1 if andonly if the total updated weight resulting from the outcome being 1 is bigger than the totalupdated weight resulting from the outcome being 0.This binomial weighting scheme is motivated by a version space argument. The mistakebound of the Weighted Majority algorithm approximates the mistake bound of the BWalgorithm in the same way that Cherno� bounds approximate sums of binomial tails. Weshow that the gap between the mistake bounds of the Weighted Majority algorithm andour new algorithm can be arbitrarily large.Finally, a perhaps subtler di�erence between exponential weights and our new improvedscheme is that each expert's weight in the latter scheme depends not only on the currentmistake count of the expert, but also on the current mistake count of the master.We show that our algorithm has the best possible worst case mistake bound when thenumber of experts is very large compared to the loss of the best expert. This lower boundanalysis is based on a relation between our prediction problem and Ulam's searching gamewith a �xed number of lies [19, 18]. We also present a second lower bound argument for ourprediction model. This second argument use a probabilistic construction to prove that boththe BW and the tuned Weighted Majority algorithm are asymptotically optimal. That isthe ratio between the mistake bound of either algorithm and the best possible worst casemistake bound goes to 1 as the number N of experts or the loss k of the best expert goto in�nity. An equivalent lower bound has been previously obtained by Vovk [20] usingarguments from coding theory.We use the ideas behind the BW master algorithm to devise a method (which we calla conversion strategy) to make prediction algorithms robust against noise. The conversionstrategy feeds di�erent feedbacks to several copies of the same prediction algorithm. If thenoise level is low then one copy will get noiseless data, enabling the conversion strategyto make good predictions. Our upper bound has slightly better constants than the oneindependently obtained by Auer and Long [6], and is close to the lower bound given byLittlestone and Warmuth [17].It remains open whether binomial weights also lead to improved master predictionalgorithms for the case when the prediction of the master is allowed to be in the continuousinterval [0; 1]. In this more general setting mistake bounds are replaced by bounds on thetotal absolute loss. There are master prediction algorithms for this problem [20, 9] usingexponential weights, whose mistake bounds are exactly half of the corresponding mistakebounds in the boolean case. However, our attempts to construct a continuous predictionalgorithm that achieves half (plus possibly a constant) the loss of the BW algorithm haveso far been unsuccessful.The paper is organized as follows. In Section 2 we present the new algorithm BW,compare it against WM, and prove general lower bounds. In Section 3 we introduce twoconversion strategies: one based on binomial weights and one based on exponential weights.Section 4 is devoted to conclusions.Notation.The set X represents the set of possible observations. We use (X � f0; 1g)+ for the setof all �nite sequences over (X � f0; 1g) of nonzero length and s for a sequence h(xt; yt)it(of unspeci�ed length) in (X � f0; 1g)+ of observations and outcomes. Let N denote thenatural numbers including zero. The notation sn, for any n 2 N , represents either a



2. Master Algorithms for Combining the Predictions of Experts 3sequence of length n or the length n pre�x of a longer sequence s. The correct interpretationwill be clear from the context.An expert is any function mapping (X � f0; 1g)��X to f0; 1g. In this paper we treat ex-perts in an on-line fashion. On the tth trial, each expert E makes the prediction E(st�1; xt)where xt 2 X is the current observation and st�1 is the sequence of observation/outcomepairs from the previous t� 1 trials. At the end of the trial the expert is given the feedbackyt 2 f0; 1g for the current trial (and st for the next trial is created by appending (xt; yt)to st�1). We say that expert E either is wrong, makes a mistake, or is incorrect when itsprediction at trial t, E(st�1; xt), is di�erent from yt.Also, we use dH(y; z) to denote the Hamming distance between any two booleansequences y and z of equal length. For the sum of binomials, we use the notation�m�k� := Pki=0 �mi � for all integers m and k, using the convention �m�k� = 0 when m or knegative. We conventionally set �mi � = 0 when i > m or when either m or i is negative. Wewill often make use of the well-known combinatorial identity q� i! =  q � 1� i !+  q � 1� i� 1! (1:1)that holds for all non-zero integers q and all integers i. We denote the binary logarithm by\log" and the natural logarithm by \ln".2 Master Algorithms for Combining the Predictions of ExpertsIn this section we introduce a master algorithm that sequentially predicts booleansequences by combining the predictions of a set of experts. Throughout the section, weassume that a bound k on the number of mistakes made on the sequence by the best expertin the set is available and known to the master algorithm.For any expert E and for any sequence s 2 (X � f0; 1g)+ of instances and outcomes wedenote the number of mistakes (i.e. total loss) of expert E on sequence s by LE(s). Also,if E is a set of experts, we use LE(s) for the minimum LE(s) over the experts E 2 E . Weusually make the assumption that LE(s) � k for some constant k known to the masteralgorithm. We point out that our master algorithms are domain independent, using theinformation provided by the sequence of instances hxtit only to obtain the predictions ofthe experts.Our goal is to solve the following problem:Problem 1: Suppose a set E of N experts is available and the task is to predict in an on-line fashion the bits y1; y2; : : : ; y` of some sequence s = (x1; y1); (x2; y2); : : : ; (x`; y`) in a setof sequences � � (X � f0; 1g)`. Suppose also that an upper bound k on the loss of the bestexpert in E is known, i.e. for each s 2 �, LE(s) � k. How can a master algorithm combinethe expert's predictions so that its worst case number of mistakes is minimized?If the master algorithm knew which expert E 2 E made only k mistakes, then it couldsimply predict the same way that expert E does. However, the \good" expert (or experts)is not known in advance.In the fortunate case where k = 0, the master algorithm knows that one of the expertspredicts perfectly on s. In this case the well-known Halving algorithm [3, 7] can be used.On each trial the Halving algorithm predicts the same way as majority of the those expertsthat have never made a mistake (the consistent experts). The number of consistent experts



4 2. Master Algorithms for Combining the Predictions of Expertsis reduced by at least a factor of two each time the Halving algorithm makes a mistake,so the master makes at most logN mistakes on any s where one of the N experts alwayspredicts correctly.We now present a simple master algorithm called the Version Space algorithm whichwill be used to motivate the Binomial Weighting (BW) algorithm. To do this we make thesimplifying assumption that the length of the sequence of instances, `, is known as well.This assumption will be removed shortly.Since the master algorithm knows that the best expert makes at most k > 0 mistake, itcan use the following trick. The master algorithm expands each expert into a set of variantsso that some variant of some expert predicts perfectly, and then uses the Halving algorithmon the variants. If expert E makes exactly j mistakes on some sequence s of length ` thenexpert E can be expanded into a collection of �j̀� variants containing a perfect variant. Eachvariant in the collection predicts as E on `� j of the trials and predicts with the oppositeof E's predictions on the other j trials. Thus expert E is expanded into a collection of�j̀� variants, including one which changes E's predictions on exactly those trials where Epredicts incorrectly.For Problem 1, the master algorithm knows that at least one of the N experts makesat most k incorrect predictions, but the master algorithm knows neither which expertis the best nor the exact number of mistakes made by the best expert. However, themaster algorithm can expand each expert into a collection of ��̀k� variants. The unionof these collections contains at most N��̀k� variants and is guaranteed to contain at leastone variant that predicts correctly on all ` trials. Our Version Space algorithm runs theHalving algorithm on the union of these collections, and has a worst case mistake boundof logN + log ��̀k� (when the bounds ` on the number of trials and k on the number ofmistakes made by the best expert are known in advance).Intuitively, the Version Space algorithm uses all the knowledge it has about the expertsand the sequences, which is that there is one expert which makes at most k mistakes onthe sequence. It does not know which expert will be best, in what trials the best expertwill make its mistakes, or even how many mistakes the best expert will make (other thanthe upper bound k). Since the goal of the algorithm is to minimize the number of mistakesthat it makes in the worst case, it has to treat all of the scenarios that are possible underthe assumptions equally.Observe that the version space at the beginning of trial t can be represented by oneweight per expert. The weight of an expert is simply the number of its ��̀k� variants thatare consistent with the sequence so far2. If expert E makes at most k mistakes on the `trials and has made j mistakes in trials 1 through t, then expert E can make at most k� jmore mistakes in the remaining `� t trials. Thus the weight of E on the t+1st trial shouldbe � `�t�k�j�, which is exactly the number of variants created from E that are consistent. (Theinitial weight of each expert is ��̀k�).Thus the Version Space algorithm can be implemented by manipulating binomials rep-resenting the weights (number of consistent variants) of the experts. If expert E has madej mistakes in the �rst t trials, then during trial t+1 expert E votes with weight � `�t�k�j� forits own prediction and with weight � `�t�k�(j+1)� for the opposite prediction. Note that thesevotes correspond to the number of E's variants that are consistent with all t previous trials2A weighting scheme based on the sum of binomial coe�cients was �rst introduced by Berlekamp [8].



2. Master Algorithms for Combining the Predictions of Experts 5and agree (or do not agree, respectively) with the prediction of E. Also, expert E's totalweight is split between the two choices since � `�t�k�j�+ � `�t�k�j�1� = �`�t+1�k�j �.This implementation of the Version Space algorithm totals the votes for outcome 0 andoutcome 1 and predicts with the majority. At the end of each trial t, the Version Spacealgorithm updates the weights of the experts to re
ect the outcome on that trial, yt. Inaddition, the value yt is given to all the experts since their future predictions might dependon the past sequence. The Version Space algorithm which runs the Halving algorithmdirectly on the N��̀k� variants and the implementation which manipulates binomial weightsfor each expert clearly make the same predictions.The Binomial Weighting (BW) algorithm is similar to the Version Space algorithm usingweights, but the BW algorithm uses another trick which removes the requirement that thealgorithm knows `, the length of the sequence. This trick also makes the upper bound on thenumber of mistakes made by the BW algorithm independent of `. There are two versionsof the Halving algorithm: one that discards all inconsistent experts in each trial and onethat does this only in trials when the Halving algorithm makes a mistake (such algorithmsare called \conservative" by Littlestone [15]). Both versions of the Halving algorithm havethe same worst case mistake bound (logN), so nothing is lost by making the Version Spacealgorithm conservative. The Binomial Weighting algorithm is the implementation of theconservative Version Space algorithm with binomial weights and is described in Figure 2.1.Because the BW algorithm is conservative, we do not need a variant which per-fectly predicts the outcome. It su�ces to have only those variants whose mistakes oc-cur when the BW master algorithm predicts incorrectly. Since the BW algorithm dis-cards variants only when the master makes a mistake, such a variant will never be dis-carded. Thus the BW algorithm considers only �m+1�k � variants3 of each expert, wherem = maxnq 2 N : q � logN + log � q�k�o as in Figure 2.1. It is easy to show that BWmakes at most m mistakes. Assume to the contrary that it makes m+1 mistakes. Since atleast one of the N experts makes at most k mistakes, at least one of the N�m+1�k � variantsis consistent with the m + 1 outcomes where BW made mistakes. On the other hand, thenumber of consistent variants drops by a factor of at least two each time BW makes an in-correct prediction. Thus the number of consistent variants after BW makesm+1 mistake isat least one and at most N�m+1�k �=2m+1. It follows that 1 � N�m+1�k �=2m+1 and equivalentlym+ 1 � logN + log �m+1�k �, contradicting the de�nition of m in Figure 2.1.This analysis gives us the following theorem:Theorem 1: For any k;N 2 N (N > 0), for any set E of N experts, and for any sequences 2 (X � f0; 1g)+, if LE(s) � k, then the total number of mistakes of BW(k) on s is atmost3 Expanding each expert into �m�k� variants instead of �m+1�k � variants (wherem is de�ned as in Figure 2.1)does not lead to the mistake bound of m stated in Theorem 1. For example consider the case where there isN = 1 expert guaranteed to make at most k = 1 mistake, so m = 1. Assume the expert is expanded into just�m�k� = 2 variants (one predicting as the expert and one predicting the other way), and the expert is correcton the �rst trial. The master algorithm would see a tie vote and could predict as the variant and make amistake. Now only the (unmodi�ed) expert is consistent, and the master will predict as the expert does.However, this expert still has a mistake to make, and thus the master might make a total of two mistakes.Although the number of consistent variants has been reduced to one (the original expert), the survivingvariant may still have mistakes to make. By considering �m+1�k � variants of each expert we guarantee thatif only one variant is consistent, then the expert producing that variant has already made k mistakes (andthus will be correct on all future trials).



6 2. Master Algorithms for Combining the Predictions of ExpertsMaster Algorithm BWInput: A set of N experts E and a nonnegative integer k.1. Let m := max(q 2 N : q � logN + log q� k!) :2. Set the initial weight of each expert to �m+1�k �, and set m0, the number ofmistakes made by the master, to zero.3. For each trial t = 1; 2; : : :(a) For each expert E 2 E :Let j be the number of previous trials where both E and the master madeincorrect predictions. Then expert E has current weight �m+1�m0�k�j � andvotes for its own prediction with weight �m�m0�k�j � and with weight � m�m0�k�j�1�for the opposite prediction.(b) Sum the votes for bit zero and for bit one and predict with the majority(arbitrary in case of a tie).(c) Get the correct prediction yt.(d) If a mistake occurred, then increment m0 and update the weight of eachexpert to the weight with which it voted for correct bit yt.Figure 2.1: The Binomial Weighting algorithm.max(q 2 N : q � logN + log q� k!) : (2:1)We now describe a variant of algorithm BW, called BW0 (see Figure 2.2), which has thesame worst-case mistake bound proven in Theorem 1 but for many sequences of examplesthe new algorithm BW0 makes fewer mistakes than the original algorithm. The currentweight of an expert E is now �m+1�k�j�, where j is the number of mistakes of E in all previoustrials and not just in the trials in which the master made mistakes as well. The value of mis recomputed at the beginning of each trial. This value will decrease by at least one afterall trials in which the master made a mistake, because the total weight after such a trial isat most half of what it was before the trial (decreasing m by at least one corresponds toincreasing m0 in BW). The value of m can never increase but it might also decrease aftertrials in which the master made no mistakes. Again it can be shown by induction thatthe number of mistakes from any trial onward is at most the value of m computed at thebeginning of that trial.2.1 Comparison with Weighted MajorityIn this section we compare the performances of the BW and Weighted Majority (WM)algorithms. The WM algorithm has a parameter � 2 [0; 1). An expert E votes for its ownprediction with weight �kE and for the opposite prediction with weight �kE+1.44In the original algorithm expert E simply votes with weight �kE for its own prediction. The morecomplicated voting scheme given in the text is more similar to the voting scheme of the BW algorithm.Both variants of the WM algorithm generate the same predictions.



2. Master Algorithms for Combining the Predictions of Experts 7Master Algorithm BW0Input: A set of N experts E and a nonnegative integer k.1. For each expert E 2 E set the mistake budget kE equal to k.2. For each trial t = 1; 2; : : :(a) Let m := max(q 2 N : q � log XE2E q� kE!!) :(b) For each expert E 2 E :Expert E has current weight �m+1�kE � and votes for its own prediction withweight � m�kE� and with weight � m�kE�1� for the opposite prediction.(c) Sum the votes for bit zero and for bit one and predict with the majority(arbitrary in case of a tie).(d) Get the correct prediction yt.(e) Decrease the mistake budget, kE, of all experts that predicted incorrectlyin this trial by 1.Figure 2.2: The Modi�ed Binomial Weighting algorithm.Both master algorithms predict one if and only if the experts predicting one outweigh5the experts predicting zero. The weights used by the BW algorithm are binomial tailswhereas the WM algorithm uses exponential weights of the form �j . We often refer to � asthe \update factor" of the WM algorithm because an expert's weight gets multiplied by �when the expert predicts incorrectly. As one would expect, the choice of � greatly e�ectshow the WM algorithm performs.In our setting the master algorithms are given two parameters: N , the number of expertsand a bound k on the number of mistakes made by the best expert. We are interested inworst case bounds on the algorithm's performance as functions of N and k.For any master algorithm A, de�ne the worst case number of mistakes WCA(N; k) as:WCA(N; k) def= maxE of N experts maxs:LE(s)�k [number of mistakes of A(E ; k) on s] :Furthermore, denote the performance of the best master algorithm by WC(N; k), soWC(N; k) def= minalgorithms AWCA(N; k):We will show in Subsection 2.3 that if the number of experts is large enough then the BWalgorithm is (essentially) optimal. That is, for any k � 0, there exists Nk such that for allN > Nk WCBW(N; k) �WC(N; k) + 1 :We can only prove the above for Nk = 
(22k). However we show in Subsection 2.2 thatBW is asymptotically optimal, i.e. the ratio WCBW(N; k)=WC(N; k) goes to 1 when N ork goes to in�nity (see Theorem 5).5The algorithms predict arbitrarily if the weights are tied.



8 2. Master Algorithms for Combining the Predictions of ExpertsComparing the BW and WM algorithms is complicated by the fact that WM's mistakebound depends on how the update factor � is chosen (as a function of N and k). For� 2 [0; 1), let WM� denote the WM algorithm which chooses the update factor �. FromLittlestone and Warmuth [17] we have the following mistake bound for the WM algorithm.WCWM� (N; k) � logN + k log 1�log 21+� def= up(N; k; �) : (2:2)Let �� be the value of � (as a function ofN and k) that minimizes up(N; k; �). Vovk [20]gives an implicit formula for ��. An explicit approximation to �� is given in Cesa-Bianchi etal. [9]. With � set to this approximation, they show that up(N; k; �)� 2k+2pk lnN+logN .We show that up(N; k; ��) �WC(N; k) whenever N or k goes to in�nity (see Theorem 5).Although both up(N; k; ��) and WCBW(N; k) have the same leading term when Nand/or k is large, there can be signi�cant di�erences between them. We show below thatour bound on the BW algorithm is always at least as good as the known bounds on the WMalgorithm, i.e. that WCBW(N; k) � up(N; k; ��) for all choices of N and k (see Theorem 4).However, as we shall discuss below, at least for small values of N , the upper bound on theWM algorithm, up(N; k; ��), is weak and misleading.Let WM� be the WM algorithm that uses update factor �� and WM+ be the WMalgorithm that chooses � as a function of N and k so that WM�(N; k) is minimized.Unfortunately, we don't know how to e�ciently compute the value of � used by WM+.The value of WCWM+(N; k) is much smaller than WCWM�(N; k) for some choices of N andk. It is even conceivable that WCWM+(N; k) is smaller than WCBW(N; k) for some N; kpairs, although this disagrees with our intuition.To make the weakness of the up(N; k; ��) bound concrete, consider the case when thereare three experts (N = 3). It is easy to see that BW(3; k) = 2k + 1 which is the bestpossible. Also WM�(N; k) = 2k + 1 whenever 0 < � < 1=2. However, the value of � whichminimizes up(3; k; �) approaches one when N = 3 and k becomes large. In fact, up(3; k; ��)grows as 2k + 
(pk). Thus the up(3; k; ��) bound overestimates the number of mistakesmade by WM+ by an (additive) 
(pk) term. Intuitively, a reason for this is that when �is large then two poorly performing experts can outweigh the good expert and cause themaster to make unnecessary mistakes.The main di�erence between the WM and BW algorithms is how the weights are up-dated. The WM algorithm uses one �xed update factor throughout the entire learningprocess. The update factor � can be written as e��, where � > 0 has the natural interpre-tation as a learning rate. When � is small, � is large, and the WM algorithm learns slowly.When � is large, � is small and the WM algorithm rapidly slashes the weights of poorlyperforming experts. The disadvantage of a high learning rate is that the algorithm mightdiscount experts too quickly, causing its predictions to be dominated by only a few experts.When the BW algorithm changes an expert's weight from �m�m0+1�k�j � to � m�m0�k�j�1� thenthis can be seen as multiplying the expert's weight by an update factor which depends onm0, the number of mistakes made so far by the master algorithm (as well as j, the numberof mistakes made by the expert, N , and k). These update factors used by BW become lessdrastic as the number of mistakes made by the master increases (and the upper index of thebinomial coe�cients decreases). This represents a kind of annealing schedule performed onthe learning rate (see e.g. [1] for examples of annealing): when the master knows nothingthe learning rate is relatively high and as the master learns the learning rate decreases



2. Master Algorithms for Combining the Predictions of Experts 9in order to preserve the previously acquired knowledge. Although one could use any of anumber of ad hoc heuristics for \cooling down" the learning rate, we have seen that thebinomial weights are theoretically justi�ed by the version space argument.Our belief is that the single update factor used by WM�(N; k) attempts to approximatethe sequence of update factors used by BW(N; k). In addition to the update relationshipsbetween the two algorithms, our proof techniques provide further evidence for this belief.Both the optimization of WM's update factor � as a function of N and k (Lemma 2) andthe proof that the bound for WM� is always worse than the BW bound (Theorem 4) usetechniques similar to those used to prove Cherno� bounds for binomial tails [11].We now proceed to compare the bounds on the WM and BW algorithms, beginningwith an examination of the �� minimizing up(N; k; �). Here we rederive the implicit formof �� given by Vovk [20]. Let H(�) be the binary entropy function, H(x) = �x log x� (1�x) log(1� x), de�ned for all 0 � x � 1 (where H(0) = H(1) = 0).Lemma 2 (See also [20]): Pick any N � 2, k � 0, and � 2 [0; 1). If m = k(1+�)=� (sothat m > 2k and � = km�k ), then the following are equivalent.a. @up(N; k; �)@� � 0b. � � kup(N; k; �)� k ,c. m � up(N; k; km� k ), andd. m � logN +mH( km).Also there is exactly one m� > 2k for which the last inequality is an equality and thecorresponding �� is the unique minimum of up(N; k; �).Proof: Since up(N; k; �) = (logN + klog 1� )= log 21+� we have@up(N; k; �)@� = � k� ln 21+� + up(N; k; �)(1 + �) ln 21+� :Note that ln 21+� > 0 since � 2 [0; 1). So the equivalence between (a.) and (b.) is easilyveri�ed by setting the above derivative to 0, multiplying by �(1 + �) ln 21+� , and solvingfor �. The equivalence between (b.) and (c.) is obtained by substituting � = km�k into(b.) and solving for m. To show equivalence between (c.) and (d.) we multiply (c.) by thedenominator of up(N; k; km�k ). Using log 21+ km�k = 1 + log(1� km ) we get the inequalitym � logN � k log km� k �m log(1� km) (2:3)whose RHS equals logN +mH( km).Note that 2k < logN + 2kH(12), so m � logN + mH( km) for m close to 2k. SinceH( km) < 1 for m > 2k, the LHS of (2.3) grows faster than the RHS (as a function of m).Thus there will be exactly one m� where m� = logN +m�H( km� ). From the equivalencesit follows that @up=@� evaluated at � = �� = km��k is zero, and this �� is the uniqueminimizer of up(N; k; �). 2



10 2. Master Algorithms for Combining the Predictions of ExpertsLemma 2 shows that, when N and k are �xed, the solution m� to m = logN +mH( km) isthe minimum value of up(N; k; �). Although m� (and �� = km��k ) is a function of N and k,we suppress this dependence to simplify our notation. Also if m � m� and � = km�k thenm is an upper bound on up(N; k; �) � WCWM� (N; k). Since we are computing integer-valued mistake bounds, it su�ces to �nd any m0 2 R such that bm0c = bm�c. Note thatm > logN +mH( km) when m > m� and m < logN +mH( km) when m < m�. Thereforewe can �nd an appropriate m0 by doing binary search. Since WC(N; k) � 2k + blogNc (asproven by Littlestone and Warmuth [17]) andm� � 2k+2pk lnN+logN as shown by Cesa-Bianchi et al. [9], the search can be limited to the range [2k+blogNc; 2k+2pk lnN+logN ].Thus the binary search takes at most O(logk + log logN) time.Our experience indicates that m� tends to be close to the right edge of this range. ForN = 3, m� is within one of 2k + 2pk lnN + logN . For arbitrary N the right boundaryseems to be at most logN greater than m�. However these considerations are based onnumerical plots and have not been veri�ed analytically.We now show that BW beats the bound obtained by minimizing the upper bound forWM� . We need a preliminary lemma that is easily derived from the Binomial Theorem.Lemma 3: For all m; k 2 N such that k � m and for all 0 � � � 1 m� k! � (1 + �)m�k : (2:4)Recall that m� = up(N; k; ��) for �� = km��k is the minimum of up(N; k; �) over all� 2 [0; 1). Similarly, let q� be the largest integer q such that q � logN + q log � q�k�. Whilem� is the upper bound on Weighted Majority derived from inequality (2.2), q� is the upperbound on the Binomial Weighting algorithm in Theorem 1 (q�, like m�, implicitly dependson N and k).Theorem 4: Pick any integer k � 0 and any positive integer N . If q� is the largest integerq such that q � logN + q log � q�k�, then WCBW(N; k) � q� and q� � up(N; k; �), for all� 2 [0; 1).Proof. The fact that WCBW(N; k) � q� follows from Theorem 1. Let � be any real in[0; 1). By Lemma 3 the solution to q = logN + log � q�k� is never larger than the solutionm� to m = logN +m log(1 + �)� k log �. Since solving for m� yieldsm� = logN + k log 1�log 21+� = up(N; k; �);proving the theorem. 2As mentioned above, when N = 3 the worst case performance of WM+ (which uses thebest choice of �, rather than the �� minimizing the bound) equals q�. Furthermore, the gapbetween these two and m� grows as 
(pk). If N is large compared to k, we believe thatthe upper bound m� is much closer to WCWM+(N; k). However, even when N is large, q�can be signi�cantly less than m�.Pick any k � 1. If N satis�es6 24k�4k�k� � N < 24k+1�4k+1�k �6These values are chosen to make the algebra tractable, rather than indicating a particular region ofinteresting behavior.



2. Master Algorithms for Combining the Predictions of Experts 11then q� = 4k. With a bit of algebra (and Stirling's approximation) it can be shown thatm� is at least 4k + log(3k)�12 . In other words, when N is about 24k=�4k�k�, the mistakebound on BW of Theorem 1 is at least log(3k)�12 better than the best known bound for theWeighted Majority algorithm. Although our bounds on the BW algorithm are better thanthe up(N; k; ��) bounds on the WM algorithm, asymptotically the two bounds have thesame leading term. This is shown in the following section.2.2 Asymptotic performance of the algorithmsThis subsection shows that both BW and WM� are asymptotically optimal in the worstcase. The proof uses a probabilistic argument to show the existence of \hard" sets of experts.Using these hard sets of experts, an adversary can force any prediction algorithm to makea mistake on each trial proving the desired lower bound. We use the notation fi � gi whenlimi!1 fi=gi = 1. We de�ne the following functions to serve as a lower boundslow(N; k) = max(q 2 N : q � logN + log q� k!� log 1 + ln q� k!!)Low(N; k) = max(low(N; k); 2k+ logN)We now state the two results of this section.Theorem 5: For any integers N � 2, and k � 0 there exists a set E of N experts suchthat for any deterministic master algorithm A there exists a sequence s of trials such thatLE(s) � k and A makes at least Low(N; k) mistakes on s.The above lower bound is then used to show that BW and WM� are both asymptoticallyoptimal.Theorem 6: For any sequence f(Ni; ki)gi2N of pairs of positive integers such that Ni � 2for all i, and limi!1Ni =1 or limi!1 ki =1,Low(Ni; ki) �WCBW(Ni; ki) �WCWM�(Ni; ki) � up(Ni; ki; ��i )for i!1, where ��i = kiup(Ni;ki;��i )�ki .Before proving Theorem 5, we need some de�nitions and lemmas. The �rst Lemma is fromLittlestone and Warmuth.Lemma 7 ([17]): For any integers N � 2, and k � 0 there exists a set E of N expertssuch that for any deterministic master algorithm A there exists a sequence s of trials suchthat LE(s) � k and A makes at least 2k + logN mistakes.The above lemma proves the �rst lower bound used in the de�nition of Low. Thesecond lower bound is proven using a covering argument. For any positive integer q andany nonnegative integer k � q, a k-covering of the q-dimensional boolean hypercube is asubset B of f0; 1gq such that for any v 2 f0; 1gq there is a p 2 B such that dH(p; v) � k.If in the on-line prediction setting the expert's predictions are solely a function of the trialnumber, then each expert can be viewed as a sequence of bits. Furthermore a set E of suchexperts is a k-covering for some subset ft1; t2; : : : ; tqg of trials if the set of the sequences oflength q representing the predictions of the experts in the trials t1; t2; : : : ; tq is a k-coveringof f0; 1gq.Now we give a technical lemma showing that some coverings are not too large. We adapta non-constructive argument of Alon and Spencer from [2, Theorem 2.2, p. 6].



12 2. Master Algorithms for Combining the Predictions of ExpertsLemma 8: Choose N � 1 and k � 0, and let m = low(N; k). Then there is a k-coveringof f0; 1gm of size at most N .Proof. We prove the lemma using a probabilistic argument. Let R � f0; 1gm be chosenrandomly so that the event v 2 R occurs with probability p > 0 (to be speci�ed later)independently for any v 2 f0; 1gm. Let R0 be the subset of f0; 1gm containing all points notk-covered by R. Clearly R [ R0 is a k-covering of f0; 1gm. Observe that any z belongs toR0 if and only if for any v 2 R, dH(z; v) > k. This implies Pr(z 2 R0) = (1� p)(m�k), sincethere are �m�k� corners of the m-dimensional boolean hypercube with Hamming distance atmost k from z (z itself included). From the above it is easy to compute the expectation ofthe random variable jRj+ jR0j.E[jRj+ jR0j] = 2mp+ 2m(1� p)(m�k) :Now set p = ln(m�k)(m�k) . ThenE[jRj+ jR0j] = 2m 24 ln �m�k��m�k� +  1� ln �m�k��m�k� !(m�k)35� 2m " ln �m�k��m�k� + exp � ln m� k!!# (2.5)= 2m 1 + ln �m�k��m�k�where inequality (2.5) holds since 1� x � e�x for all x > 0. Thus, if N � 2m 1+ln(m�k)(m�k) thenthe m-dimensional boolean cube is k-covered by a set of size N . Solving this inequalityfor m yields that m � lgN + lg �m�k�� lg(1 + ln �m�k�), or equivalently that m � low(N; k),ensures that the m-dimensional boolean cube has a k-covering of size N . 2Proof of Theorem 5. In view of the lower bound proven in Lemma 7 it su�ces to prove asecond lower bound of low(N; k) mistakes. We use Lemma 8 to do this. Choose a sequencefxigi2N of distinct observations. Choose integers N � 2 and k � 0. Let m = low(N; k).By Lemma 8, there exists a set E of N experts, whose predictions depend only on the trialnumber, such that E is a k-covering for the �rstm prediction trials. Now notice that, if E isa k-covering for the �rst m trials, an adversary can force m mistakes on any deterministicprediction algorithm. The adversary simply chooses the sequence y of outcomes, of lengthm, such that yt is the opposite of the algorithm's prediction on the tth trial. Since E is ak-covering of f0; 1gm, for any such sequence y of outcomes there is some expert in E whichmakes at most k mistakes on (x1; y1); : : : ; (xm; ym). 2Proof of Theorem 6. By Theorem 5 we know that Low(N; k) is a lower bound on thenumber of mistakes for any deterministic master algorithm.Let ! = f(Ni; ki)gi2N be a sequence as in the statement of the theorem. Since byLemma 2 and Theorem 4Low(Ni; ki) �WCBW(Ni; ki) � up(Ni; ki; ��i )and Low(Ni; ki) �WCWM�(Ni; ki) � up(Ni; ki; ��i )



2. Master Algorithms for Combining the Predictions of Experts 13it is su�cient to show that limi!1 Low(Ni; ki)up(Ni; ki; ��i ) = 1 :Suppose for contradiction that the limit does not hold. Since 0 � Low(Ni; ki)=up(Ni; ki; ��i ) �1, there is a subsequence !0 = f(N 0i; k0i)gi2N of ! such that limi!1 Low(N 0i ;k0i)up(N 0i ;k0i;��i 0) convergesto some constant less than 1.We now consider two cases based on the limiting behavior of k0i= logN 0i as i!1.The �rst case is when fk0i= logN 0igi2N has an accumulation point at zero or in�nity.This means that there is an in�nite subsequence !00 = f(N 00i ; k00i )gi2N of !0 such thatlimi!1 k00i = logN 00i = 0 or limi!1 k00i = logN 00i = 1. In either case we use the upper boundon the function \up" proven in [9],up(N; k; ��) � logN + 2k + 2pk lnN (2:6)to getlimi!1 Low(N 00i ; k00i )up(N 00i ; k00i ; ��i 00) � limi!1 logN 00i + 2k00ilogN 00i + 2k00i + 2qk00i lnN 00i = limi!1 1 + 2k00i = logN 00i1 + 2k00i = logN 00i + 2qk00i = logN 00i = 1:Since !00 is a subsequence of !0 this contradicts the assumption that fLow(N 0i ; k0i)=up(N 0i; k0i; ��i 0)gconverges to a constant strictly less than 1.For the other case we assume that there are positive constants a and b such thata � k0i= logN 0i � b (2:7)for all i. Thus both N 0i and k0i go to in�nity. For the remainder of the proof we only dealwith the sequence !0 = f(N 0i; k0i)gi2N and thus we can simplify our notation by droppingthe primes.Let m�i denote up(Ni; ki; ��i ): Recall from Lemma 2 that m�i > 2ki and that m�i is thelargest real solution to the equationx = logNi + xH(kix ) :Similarly, de�ne m̂i as the largest real solution of the equationx = logNi + log x� ki!� log 1 + ln x� ki!! :We will now show that m̂i > 2ki as well. Observe that when x is very large, x is larger thanlogNi+ log � x�ki�� log �1 + ln � x�ki��. Also, as logNi � ki=b, we have that for large enoughi, 2ki < logNi + log �2ki�ki�� log �1 + ln �2ki�ki��, proving thatm̂i > 2ki : (2:8)Finally, de�ne mi as the maximum of 2ki + logNi and m̂i. Note that mi is within 1 ofLow(Ni; ki). As we are interested in asymptotics, we use mi instead of Low(Ni; ki). Inaddition, m̂i � mi � m�i (2:9)



14 2. Master Algorithms for Combining the Predictions of Expertsand, by equations (2.6) and (2.7)m̂i � 2ki + logNi +pki logNi � ki 2 + 1a +r1a! (2:10)Since ki !1 for i!1, it follows from Inequality (2.8) that m̂i !1 as well. We nowexamine the asymptotic behavior of m̂i in more detail.m̂i = logNi + log m̂i� ki!� log 1 + ln m̂i� ki!!= logNi + log m̂i� ki!� log �1 + ln � m̂i�ki��logNi + log � m̂i�ki� "logNi + log m̂i� ki!#= logNi + log m̂i� ki!� o(1) "logNi + log m̂i� ki!# since m̂i !1= (1� o(1)) "logNi + log m̂i� ki!# (2.11)= (1� o(1)) �logNi + m̂iH � kim̂i�� : (2.12)The last step in the above uses the equality log(�m�k�) = mH(k=m)� 12 logm + O(1) (see[12], exercise 9.42) and the fact that H(ki=m̂i) is lower bounded by a constant when i islarge (equations (2.8) and (2.10)).Let fi(x) := logNi + xH(ki=x). From the de�nition of m�i we know that m�i = fi(m�i ).Equation (2.12) means that for any � > 0 there exists some i� such that for all i > i�,m̂i(1 + �) � fi(m̂i). Recall that m̂i � mi � m�i . We need to show that mi � m�i .To do this we �rst uniformly bound the derivatives of the functions fi(x) in some ranges.Notice that f 0i(x) = log(x=(x� ki)). Thus for all x � 2ki + logNi,f 0i(x) � log 2ki + logNiki + logNi � log(1 + 11 + ki= logNi ) :Since ki= logNi � a we get that f 0i(x) � 1� c, for some c > 0 independent of i.Using the mid-point theorem, we can lower bound fi(mi) in the following way: fi(mi) =fi(m�i )� f 0i(�)(m�i �mi) for some mi � � � m�i . Using the bound on the derivative we getthat fi(mi) � fi(m�i )� (1� c)(m�i �mi) = c(m�i �mi) +mi (2:13)On the other hand, m̂i(1 + �) � fi(m̂i), and f 0i(x) � 1 for all x � 2ki. As mi � m̂i � 2ki ,(Equation (2.8) ) we get that fi(mi) � (1 + �)mi (2:14)Combining Equations (2.13) and (2.14) we get that c(m�i � mi) +mi � (1 + �)mi whichimplies thatm�i =mi � (c+ �)=c. As we can choose � arbitrarily small, we get that mi � m�i .



2. Master Algorithms for Combining the Predictions of Experts 152.3 Lower bounds based on Ulam's gameIn this section we give lower bounds on the performance of prediction strategies. Weshow that for any �xed number of mistakes k of the best expert and for any predictionalgorithm, there exists a set E of experts and a sequence s s.t. k = LE(s) for which thenumber of mistakes made by the prediction algorithm is at least as large as the number ofmistakes made by BW.We start by introducing some notation that lets us give a precise statement of our lowerbound. We then describe Ulam's game with lies and its relation to our prediction problem.Finally, we show how Spencer's results [18] can be used to prove our lower bound.In all of the following discussion we shall think of k, the upper bound on the number ofmistakes made by the best expert, as being �xed. Let J(k; q) be the following sequence ofnumbers indexed by q: J(k; q) = 2q= q� k! :It is easy to check that J(k; q + 1) � (5=4)J(k; q), for any q � 3k + 2, thus the sequenceJ(k; q) increases (at least) exponentially.Theorem 9: For any integer k there exists an integer Nk such that for any N > Nk thefollowing holds.If q is the integer such that J(k; q) � N < J(k; q + 1) then1. WCBW(N; k) �WC(N; k) + 12. If J(k; q) + 2k � N , WCBW(N; k) = WC(N; k).Observe that the upper bound on algorithm BW is always guaranteed to be within onemistake of the optimal algorithm when N is large enough. Also, since the size of thesegment J(k; q) � N � J(k; q+1) increases exponentially with q, as q increases, the the setof values forN where the second case holds (i.e. the lower bound is o� by 1 from BW's upperbound) becomes an insigni�cantly small fraction of the possible values for N . This showsthat BW is very close to optimal for large values of N . The gap of 1 when N < J(k; q)+2karises from complicated GCD considerations. In the appendix we show how algorithm BWcan be modi�ed so that it is completely optimal for large N . The weakness of this lowerbound construction is that the threshold Nk above which the lower bound holds is ratherlarge, on the order of 22k . This double-exponential dependence on k arises from our use ofSpencer's results [18].Before we give the proof of Theorem 9, we brie
y describe Ulam's game with a �xednumber of lies and show how this game relates to chip games and to the problem ofcombining the predictions of experts.In the searching game introduced by Ulam (see [19]) there are two players: a chooser (alsocalled Carol) and a partitioner (also called Paul). A game is de�ned by three nonnegativeintegers N , k, and q that are known to both players. Carol is assumed to select a secretnumber x from the set f1; : : : ; Ng. Paul's goal is to �nd out what this number is by askingCarol questions of the form \Is x in S?", where S is any subset of f1; : : : ; Ng. Carolis required to answer either \yes" or \no". However, she is allowed to lie (i.e. give theincorrect answer to Paul's question) up to k times.7 We say that Paul wins the (N; k; q)7An important point is that Carol does not have to \commit" to a speci�c number x ahead of time. Therequirement is only that her choice of answers be such that at all times the exists x 2 f1; : : : ;Ng which isconsistent with all but at most k of her answers.



16 2. Master Algorithms for Combining the Predictions of Expertsgame if and only if he can always identify Carol's secret number after at most q questionsregardless of Carol's strategy.The interesting fact is that there is a common abstraction of Ulam's game with lies andof our problem. The abstraction can be seen as the following chip game (for more work onchip games, see [4]). We think of each number in the set f1; : : : ; Ng as a \chip" and considerk + 1 (disjoint) subsets of these chips, which we call \bins", and denote by B0; : : : ; Bk. Ateach point of the game, the bin Bj contains all the chips that correspond to a numberx 2 f1; : : : ; Ng with the property that if x is the number chosen by Carol, then j of theanswers that Carol gave so far have been lies. Thus the union of all the bins contain thosechoices of x which are consistent with the bound k on the number of lies that Carol is allowedto make. Essentially, it is su�cient to describe each con�guration reached during the gameby the number of chips in each bin. We denote by Ij = (Ij0; : : : ; Ijk) the con�guration of thechip game after at the jth trial, where Iji is a natural number which denotes the number ofchips in Bi. For example, the initial con�guration is always I0 = (N; 0; : : : ; 0).When Paul asks \Is x in S ?", his question partitions the chips into two sets, those inS versus those outside S. If Carol answers \no" her answer constitutes a lie with respectto the numbers in S. This translates to advancing each chip corresponding to a number inS from its current bin to the next bin (e.g. from bin Bj to Bj+1). If a chip correspondingto a number in S is already in the last bin Bk , it is discarded as there is no bin Bk+1. IfCarol answers \yes", then those chips corresponding to numbers not in S are advanced.Clearly Paul cannot know which number Carol has chosen as long as the union of thebins contains at least two chips. Thus Carol's goal is to keep two chips in the union ofthe bins for as long as possible. Paul wins the (N; k; q) i� there is a strategy for choosingpartitions which guarantees that after q steps there is at most one chip remaining in theunion of the bins.We can think of the prediction problem as a \prediction game" where the predictor isplaying against an adversary which picks both the predictions generated by the experts,and the outcomes.8 We restrict our attention to those adversary strategies which force theprediction algorithm to make a mistake on each and every trial for as long as possible. Thismeans until one expert has made k mistakes and every other expert has made more thank mistakes, the adversary chooses the feedback so that the prediction algorithm makes amistake on every trial. From this point on, the predictions of the single best expert areguaranteed to be without mistakes, and by copying the predictions of this expert the masteralgorithm will correctly predict the remainder of the sequence. This restriction is helpful tomap to the prediction game into a chip game, and restricting the adversary in this way doesnot reduce its power since we are able to obtain a lower bound that essentially matches theupper bound of the BW algorithm.We can easily relate this \prediction game" to a chip game. Each chip corresponds toan expert and the bin Bj , for 0 � j � k, contains those chips corresponding to expertswhich have made exactly j mistakes on previous trials. Each iteration of the game startswith the adversary partitioning the chips to two sets according to the predictions givenby the corresponding experts. The prediction algorithm then chooses its prediction, andthe adversary forces a mistake by generating an outcome opposite to the prediction. This8In this section we completely ignore the instances xt that are given as inputs to the experts. Because weare dealing with worst case lower bounds, we can assume that for any S � E, there is always an observationxS 2 X that causes the experts in S to predict 1, and the experts not in S to predict 0. Thus the adversarycan control the predictions of the experts by choosing the appropriate observation.



2. Master Algorithms for Combining the Predictions of Experts 17causes those chips corresponding to experts whose predictions were mistaken to advanceone bin. Thus the prediction algorithm (indirectly) chooses which subset of the chips getsadvanced, so the prediction algorithm corresponds to Carol and the adversary correspondsto Paul. The game ends when the con�guration (0; 0; : : : ; 1) is reached, we shall refer to thiscon�guration as the terminal con�guration. This is a slight di�erence from the chip gamethat corresponds to Ulam's game with k lies. Another, much more signi�cant di�erence isthat the goals of the opponents have been reversed. In the chip game corresponding to theprediction problem, Carol (the prediction algorithm) wants to shorten the game as much aspossible since the length of the game measures the number of mistakes that the predictionalgorithm is forced to make.As the goals of Carol and Paul have been reversed, it would seem that their strategiesfor playing the two games would be very di�erent. Surprisingly, it turns out that theoptimal strategy for Paul is the same in the two games when the di�erent ending conditionis ignored. If N � Nk then this optimal strategy Paul can force both games to have thesame length, regardless of the actions taken by Carol. In other words, if Paul uses thisstrategy then Carol is unable to make the game either longer or shorter.This strategy for Paul has been developed by Spencer [18], and is the basis of the proofof Theorem 9. We shall brie
y describe the strategy, give a result of Spencer [18] and thenuse it to prove Theorem 9.Spencer identi�es the same binomial weights that are used in the BW algorithm as thecentral quantities on which the strategies of both Carol and Paul are based. We shall denoteby Wq(I) the weight associated with the con�guration I and the integer q, i.e.Wq(I) = kXi=0 Ii q� k � i! :Spencer [18] gives a strategy for Carol. Under this strategy Carol advances those chips thatkeep the future con�gurations as heavy as possible. The exact opposite choice is made bythe BW algorithm, which advances the heavier chips, resulting in a lighter con�guration.This makes intuitive sense, because Carol has the opposite goal in the two games.The main result of Spencer's paper [18] is a proof that when N is large enough, Paulcan always partition the chips in such a way that both future con�gurations have equalweight. It thus completely neutralizes Carol. The construction of the strategy is based onthe observation that the weight associated with the chips in bin Bk is always one, because� q�0� = 1. These chips are appropriately referred to as \pennies". It is clear that if acon�guration has a su�cient amount of pennies, and the total weight is even, then bymoving pennies from one set of the partition to the other one can equalize the weight of thetwo successor con�gurations. Paul's strategy is to choose a partition whose two successorcon�gurations are almost balanced and then use pennies to balance them completely. Themain theorem in Spencer's paper shows that, given appropriate initial conditions, Paul canuse this technique repeatedly until a con�guration that has only a single chip in the unionof all the bins is reached. We now give the main result from Spencer's paper [18] in a formthat �ts our needs here.Theorem 10 ([18]): If k is the number of bins, then there exist �nite integers c(k) andq0(k) such that the following holds for any q > q0(k). If I0 = (I00 ; : : : ; I0k) is an initialcon�guration such that I0k > c(k)qk and Wq(I0) = 2q then there exists a strategy for Paulsuch that, independent of the choices made by Carol, a con�guration Im is reached suchthat Pki=0 Imi = 1 and Wq�m(Im) = 2q�m.



18 2. Master Algorithms for Combining the Predictions of ExpertsIn other words, Paul can guarantee that the total weight is exactly halved at each step,until only a single chip is left.Proof of Theorem 9.The proof is divided into two parts, we �rst show that if N is large enough then fromthe initial con�guration I0 = (N; 0; : : : ; 0) Paul can reach, in k steps, a con�guration whichmeets the conditions of Theorem 10. In the second part we show that the �nal con�gurationreached in Theorem 10 guarantees the bound given in the theorem.In the proof we make use of the idea that Paul \marks" chips as useless. If a chipis marked on some particular trial, then this chip is placed arbitrarily in the partitionsgenerated by Paul on subsequent trials. We shall prove that Paul can delay reaching aterminal con�guration even when only the unmarked chips are considered. It is clear thatif the marked chips were also considered, then reaching the terminal con�guration wouldbe delayed for at least as long, which proves the lower bound on the number of trials.Initially, all N chips are in bin B0. It takes at least k steps to get chips to bin Bkand thus make them into pennies. We shall devise a strategy for the �rst k trials thatis guaranteed to give rise to a su�cient number of pennies at the kth trial. First, Paulmarks some chips so as to make the number of unmarked chips divisible by 2k. Clearly, lessthan 2k chips need to be marked. Ignoring the marked chips Paul generates the followingpartitions. The (unmarked) chips in each bin are divided into two equal parts, one partfrom each bin is placed in the �rst set of the partition, and the other part is placed in thesecond. It is easy to check that, independently of Carol's actions, such partitioning of theunmarked chips is possible for k steps. It is also simple to see that after k trials exactly afraction of 2�k of the unmarked chips reach bin Bk and become pennies.Let q be the integer such that J(k; q) � N � J(k; q + 1). FromEquation (1.1) it is clearthat the weight that is associated with the unmarked chips is divided by two at each step.Thus, independently of Carol's choices, the weight of the con�guration after k steps satis�esWq�k(Ik) > 2�k(N � 2k)Wq(I0) > 2�k(N � 2k) q� k! : (2:15)To apply Theorem 10 we need that the remaining weight (after k steps) of the unmarkedchips is a power of two. We �rst �nd an appropriate ~q such that W~q(Ik) > 2~q.By the de�nition of q, J(k; q) � N � J(k; q + 1). If N is large enough then J(k; q) �J(k; q � 1) � 2k and thus N � J(k; q � 1) + 2k. This implies that (N � 2k)�q�1�k � � 2q�1and thus by inequality (2.15), Wq�k�1(Ik) > 2q�k�1. It follows that if N is large enoughthen we can always choose ~q = q � k � 1. However if N � J(k; q) + 2k, then by the samederivation we get Wq�k(Ik) > 2q�k and we can set ~q = q � k .We now wish to apply the results of Theorem 10 to the con�guration Ik, whose weightsatis�es W~q > 2~q. However, in order to obey the conditions of the theorem we have tomark some more chips in order to make the weight of the con�guration satisfy W~q(Ik) = 2~q.We do this marking carefully, so that afterwards we still have enough unmarked penniesto apply the theorem. We mark chips using the following simple procedure: we mark non-penny chips until we cannot mark a non-penny chip without reducing W~q(I) below 2~q. Wethen mark enough pennies to reduce the weight to 2~q. As the heaviest chips (those in B0)weigh � ~q�k� � (3~q)k, we need to mark at most (3~q)k pennies. Taking into account both theinitial marking of less than 2k chips and this additional marking phase, we get that thenumber of unmarked pennies is at least b2�k(N � 2k + 1)c � (3~q)k � 2�kN � (3~q)k � 2.



3. Conversion strategies 19On the other hand, in order to apply Theorem 10 we need at least c(k)~qk unmarkedpennies. This is satis�ed if 2�kN � (3~q)k � 2 � c(k)~qk. As for any �xed value of k, q andthus ~q is O(logN), this condition is satis�ed for every N > Nk for a large enough Nk.We can thus apply Theorem 10 with the initial con�guration being the unmarked chipsin the kth con�guration, which we denote by Ik. The weight of this con�guration isW~q(Ik) = 2~q. The theorem guarantees that Paul can �nd partitions so that after somem steps a con�guration Ik+m is reached such that Pki=0 Ik+mi = 1 and W~q�m(Im) = 2~q�m.Thus only a single chip will be left. It is easy to verify that as the weight of the chip is2~q�m it must be in bin Bk�(~q�m). After another ~q �m steps the single chip will be in thelast bin and the game is over.Finally, we sum up the number of trials, or mistakes, that Paul can force on Carol. Wehave k trials before getting the pennies, m trials using the Spencer's strategy, and ~q �mmistakes at the end. Summing these terms and using the de�nition of ~q we get that Paulcan always force at least q� 1 mistakes and if N � J(k; q)+ 2k then Paul can force at leastq mistakes. 23 Conversion strategiesIn this section we show how the ideas behind the BW algorithm can be used to modifyprediction algorithms so that they can tolerate malicious noise. Assume we are givena prediction algorithm A that makes at most k mistakes on any sequence in some set� � (X � f0; 1g)�. We assume that algorithm A makes at most k mistakes even ifit is presented with a subsequence of any sequence in �. Formally, we require that �is subsequence closed. Any deterministic prediction algorithm can be converted to analgorithm that changes its state only on when its prediction is incorrect. This is achievedby resetting the state of A after each trial in which A predicts correctly to the state of Abefore the trial. This conversion does not increase the worst case number of mistakes on thesubsequence closed set �. The converted algorithm is called conservative (see [15]). For therest of this section we shall always assume that the set of sequences is subsequence closedand that the prediction algorithm is conservative.Algorithm A is allowed to perform arbitrarily badly if given an instance/outcome se-quence that is not in �. For example, if � = (X � f0g)� [ (X � f1g)� (i.e. all sequenceswhere the outcome is held constant) then the algorithm A which always predicts with the�rst outcome seen makes at most one mistake when given a sequence in �. However, if the�rst label is corrupted by malicious noise then all subsequent predictions made by algorithmA will be incorrect.Here we show how to convert A into another algorithm which performs well on sequencesin � which are corrupted by noise. In particular, for any r we can build an algorithm whichperforms well on those sequences which can be created from a sequence in � by arbitrarilychanging up to r examples. We use �0 to denote this set of noisy sequences. As the aboveexample indicates, algorithm A may make arbitrarily many mistakes on sequences in �0.Furthermore, the sequences in �0 might have di�erent outcomes for the same instance andalgorithm A might not even be de�ned on this larger set of sequences. We use the methodsdeveloped in Section 2 to construct master algorithms, called conversion strategies, whosemistake bounds increase slowly as a function of r.As in Section 2, we use a version space argument and expand A into a set of variants sothat at least one variant will be correct on all trials where the conversion strategy makes



20 3. Conversion strategiesa mistake. However, here the elements of the version space are somewhat dynamic asthey represent computations of A on sequences in �. In addition to discarding irrelevantcomputations from the version space, the conversion strategy will also need to extend certaincomputations by simulating A on the current trial. Since the members of the version spacemanaged by the conversion strategy are somewhat dynamic, it may be a slight misnomerto call it a version space. However \version space" does convey the proper intuition.Since our conversion strategies are conservative we can concentrate on those trials wherethe conversion strategy itself makes mistakes. Here we use m for a bound on the numberof mistakes made by the conversion strategy, k to denote the mistake bound of algorithmA on sequences in �, and r as the number of examples corrupted by noise.We �rst outline the Cbin conversion strategy which is based on binomial weights, andlater describe a second conversion strategy, Cexp, based on exponential weights. Thesestrategies are described in more detail in in Sections 3.1 and 3.2 respectively.A major di�erence between the conversion problem discussed here and the one addressedin Section 2 is that with experts there were only two possibilities for each trial | the expertwas either correct or incorrect. Here we consider three di�erent cases. The �rst case iswhen algorithm A correctly predicts the outcome. In the other two cases the predictionis incorrect. In the second case the wrong prediction is due to the fact that the exampleis corrupted by noise and in the third case the example is unchanged but the algorithmmakes a mistake in predicting the label. Therefore, instead of associating a bit string toeach member of the version space, the Cbin strategy attaches a string of \trits" >from theset f0; noise;mstk g.Each member of the version space is a stored state of algorithm A together with a string� = (�1; : : : ; �m) 2 f0; noise;mstk gm. These strings have an interpretation like the bitstrings of Section 2. If a (state, � ) pair is in the version space when the conversion strategyCbin makes its ith mistake then the value of �i represent the following possibilities. Thevalue 0 represents the possibility that A predicted the label of the example correctly. Thevalues noise and mstk represent the possibility that A predicted incorrectly, where the causefor the incorrect prediction is attributed to noise or to a mistake by A respectively.Since algorithm Amakes at most k mistakes, each string � containsmstk at most k times.Similarly, since we assume that at most r of the trials are corrupted by noise, noise appearsat most r times in each string. Therefore only some of the 3m strings in f0; noise;mstk gmare legitimate. In particular, if there are j non-zero elements in a string, j will be between0 and r+ k. Furthermore, at most r and at least j � k of the elements in the string will benoise. This gives us size = r+kXj=0 mj !" j� r!�  j� j � k � 1!#strings that must be considered. An examination of the term in brackets shows that size issymmetric in r and k, as expected.The Cbin conversion strategy starts with a version space containing size elements, eachwith the initial state of algorithm A and a di�erent legitimate string � . The conversionstrategy manages the version space by predicting with the halving algorithm. However, itis no longer quite so clear what this means.Consider the situation after the conversion strategy Cbin has made i � 1 mistakes andsees instance x 2 X . In this case each element of the version space, (state; �) will be



3. Conversion strategies 21using its �i to see if its variant of A is correct, has a noisy trial, or makes a mistake. Eachvariant will see how A (in state state) predicts. If its �i is 0 then the variant predicts thesame way, otherwise the variant predicts with the opposite value. Conversion strategy Cbinmay update the version space after getting the outcome. If the conversion strategy Cbinpredicted correctly then all variants are kept unchanged. If Cbin predicted incorrectly thenthose variants also predicting incorrectly are discarded. In addition, when Cbin predictsincorrectly those variants predicting correctly may be updated based on their �i values.There are three cases, according to the value of �i.1. Case �i = 0: This means that the variant predicted the outcome correctly. Since Ais conservative, Cbin leaves the state of the algorithm A for this variant unchanged.2. Case �i = noise: This means that the prediction of A is incorrect but would havebeen correct if the example was not corrupted by noise. As in the previous case, Cbinleaves the state of the algorithm A unchanged.3. Case �i = mstk : This means that the prediction of A is incorrect because A has madeone of its k allowed mistakes and that the example is not corrupted by noise. In thiscase Cbin updates the state of A. This is done by simulating A, starting from the oldstate, on the example received in the current trial. The resulting state of A replacesthe old state in the variant.We show in Lemma 14 that:1. On each trial where Cbin makes a mistake, the size of the version space drops by afactor of at least 2.2. For any sequence in �0 at least one variant is never removed from the version spaceduring the run of the master algorithm.We need a few de�nitions before we can precisely state our bounds on the Cbin con-version strategy. For all n 2 N and for all pairs s = (x01; y1); : : : ; (x0n; yn) and u =(x1; z1); : : : ; (xn; zn) of sequences in (X � f0; 1g)n, we say that s is a r-corrupted versionof u if and only if (xi; yi) 6= (x0i; y0i) for at most r indices i, where 1 � i � n. We shallalso use the notation dC(s;u) = r to indicate that s is an r-corrupted version of u. Wede�ne dC(s;u) = 1 if the sequences di�er in length or if they have an in�nite number ofdisagreements.We will show in Section 3.1 that the conversion strategy Cbin achieves the followingbound.Theorem 11: Choose a subsequence-closed set � � (X � f0; 1g)� of sequences. Choose aconservative, deterministic prediction algorithm A such that for some k 2 N , LA(u) � kfor all u 2 �. Choose r 2 N and s 2 (X � f0; 1g)+ such that s is a r-corrupted version ofsome sequence u in �. Then the number of mistakes made by Cbin(r; k; A) on the sequences is at most max(q 2 N : q � log r+kXi=0  mi !" i� r!�  i� i� k � 1!#) : (3:1)Note that the Cbin strategy needs to know the upper bounds k and r.In Section 3.2 we describe a second conversion strategy, which we call the Cexp strategy.The Cexp strategy uses exponential weights (as used in the Weighted Majority algorithm)and does not require advance knowledge of r and k. However one cannot optimize themistake bounds of Cexp without knowing these parameters. The following theorem givesthe mistake bound we prove for the conversion strategy Cexp.



22 3. Conversion strategiesTheorem 12: Choose a subsequence-closed set � � (X � f0; 1g)� and a conservative,deterministic prediction algorithm A. Choose nonnegative �; � such that � + � < 1. Thenthe number of mistakes made by Cexp(�; �; A) on any sequence s 2 (X � f0; 1g)+ which isa corrupted version of some sequence in � is at most$minu2� maxu0�u dC(s;u) log 1� + LA(u0) log 1�log 21+�+� % (3:2)where u0 � u means that u0 is any subsequence of u.It is easy to verify numerically that by choosing � = � = 0:147, the upper bound for Cexpdisplayed in (3.2) is at mostminu2� maxu0�u 4:4035(dC(s;u) + LA(u0)) :Thus we get a reasonable bound that holds for all values of dC(s;u) and LA(u0)).However, if one wants to set � and � so that the mistake bound of Cexp is optimized thenone needs to know upper bounds k and r on dC(s;u) and LA(u0), respectively. The casewhen r or k is zero is degenerate. Thus we assume that min(r; k) � 1. The followinginequality was numerically checked using MAPLEtm, a software package for symboliccomputation.r log 1� + k log 1�log 21+�+� � 2(r + k) + 2qrk ln(e� 1 + max(r; k)=min(r; k)) + 2:807prk def= f(r; k) ;when � = rf(r; k)� r � k and � = kf(r; k)� r � k :If r � k, then by dividing the inequality by k, we are left with an inequality in r=k, wherer=k 2 [1;1). We plotted the di�erence between the LHS and RHS of the latter inequalityas a function of r=k and checked the values of the di�erence and its derivatives w.r.t. r=kat the end points one and 1.One can also show that there is no constant c independent of r and k such that themistake bound of Cexp (with � and � optimized) is at most 2(r+ k) + cprk.Notice however that Cexp has a worst-case mistake bound larger than Cbin: In muchthe same way we proved Theorem 4 in Section 2.1 we can also prove the following (seeSection 3.2).Theorem 13: 8k; r 2 N and 8�; � 2 [0; 1) such that (1 + � + �) < 2:max(q 2 N : q � log r+kXi=0  qi!" i� k!�  i� i� r + 1!#) � $r log 1� + k log 1�log 21+�+� % : (3:3)To show an immediate application of Theorems 11 and 12 consider the special case whenthe set � � (X � f0; 1g)� of uncorrupted sequences is the set of all sequences consistentwith some family F of f0; 1g-valued functions f on X . That is� = �F = �h(xt; f(xt))it : f 2 F ^ hxtit 2 X+	 :



3. Conversion strategies 23This more restricted setting was studied by Littlestone [15] and Littlestone and Warmuth[17] where they de�ne the quantities Opt(F ; 0), i.e. the optimal worst-case number of mis-takes over all sequences from �F , and Opt(F ; r), i.e. the optimal worst-case number ofmistakes over all r-corrupted sequences from �F . Littlestone and Warmuth [17] show thatOpt(F ; r) � 2r + Opt(F ; 0), but the problem of �nding an equivalent upper bound is leftopen. By applying Theorem 11 (or the weaker Theorem 12) when � = �F and the sub-algorithm A is optimal, we obtain the upper bound Opt(F ; r) = 4:4035(r + Opt(F ; 0)),therefore showing Opt(F ; r) = �(r + Opt(F ; 0)). Auer and Long [6] independently devel-oped an algorithm essentially equivalent to our Cexp strategy.9All of our conversion schemes use deterministic prediction algorithms This means thatthe algorithm's prediction depends only on its current state and the observation. Aftermaking its prediction, the algorithm enters a new state based on the observation and theoutcome. We denote the initial state of the prediction algorithm by Sinit and use AS todenote prediction algorithm A in state S. When the observation is �xed, the next stateentered by algorithm A depends only on the outcome. We use Sx;0 (and Sx;1) to denote the(possibly identical) next state entered by AS after AS receives observation x and outcome0 (or outcome 1 respectively). In the rest of this section we state and prove the mistakebounds for Cbin and Cexp.3.1 The conversion strategy CbinIn this section we formally describe the Cbin strategy and prove its mistake bound.The Cbin strategy uses a concise representation of the version space in much the sameway that the BW algorithm keeps a single binomial weight for each expert. In order to avoidconfusion with the states of the algorithm being converted, we call the states of the Cbinalgorithm con�gurations. Each con�guration encodes the appropriate version space as wellas a value (which we usually denote c0) indicating an upper bound on the number of mistakesyet to be made by the conversion strategy. The Cbin algorithm changes con�gurations onlywhen it makes a mistake.The version space is encoded in a con�guration as a (multi-)set of triples representingcomputations of algorithm A on corrupted versions of subsequences of the past trials. Moreprecisely, the version space is represented by a collection of (S; r0; k0) triples, where S isa possible state of algorithm A and the other two components are integers. Intuitively, r0represents the maximum number of future examples that can be corrupted by noise and k0represents the maximum number of mistakes made by algorithm A in the remaining trials.Thus if c0 the upper bound on the number of mistakes yet to be made by the conversionstrategy, the single triple (S; r0; k0) representsr0+k0Xi=0  c0i!" i� r0!�  i� i� k0 � 1!#di�erent elements in the version space (or (S; �) pairs for � 2 f0; noise;mstk gc0). It isimportant to understand that the r0, k0, and c0 values all start at the r, k, and m upperbounds and count down.9In a subsequent paper [5] a randomized variant of their conversion strategy is introduced. The worst-caseexpected number of mistake of their randomized strategy is signi�cantly lower than the worst-case mistakebound of (the deterministic strategy) Cbin.



24 3. Conversion strategiesThe initial con�guration of the Cbin conversion strategy contains the single triple,(Sinit; r; k) where Sinit is the initial state of algorithm A, r is the bound on the number ofnoisy trials, and k is the mistake bound of A on sequences in �. The initial con�gurationof Cbin also contains the mistake budget10 c0 = m+ 1, one greater than the mistake boundof Cbin.An important concept is the successors of a con�guration. For any possible state S ofalgorithm A and any x 2 X we use Sx;0 and Sx;1 to denote the states entered by A fromstate S after processing the single observation-outcome pair (x; 0) or (x; 1), respectively.Given a con�guration C with mistake budget c0, we de�ne the successors, Cx;0 and Cx;1, ofcon�guration Ct with respect to observation x in the following way.Both successor con�gurations have mistake budget c0 � 1. For each triple(S; r0; k0) in Ct, consider the prediction of AS on observation x. If AS predicts1, then� con�guration Cx;1 contains the single triple (S; r0; k0), and� con�guration Cx;0 contains the triples (Sx;0; r0; k0 � 1) and (S; r0 � 1; k0)representing the possibilities of a incorrect prediction by A and a noisytrial respectively.Similarly, if AS predicts 0 on observation x then� con�guration Cx;0 contains the triple (S; r0; k0), and� con�guration Cx;1 contains the triples (Sx;1; r0; k0 � 1) and (S; r0� 1; k0).We de�ne the weight of a con�guration to be the size of the version space representedby that con�guration. In particular the weight Wc0(S; r0; k0) of the triple (S; r0; k0) in acon�guration with mistake budget c0 isr0+k0Xi=0  c0i!" i� r0!�  i� i� k0 � 1!# ;and the weight of a con�guration C, Wc0(C), is the sum of the weights of the triples inC. Triples (S; r0; k0) where either r0 < 0 or k0 < 0 represent sequences disallowed by ourassumptions, and these disallowed triples are given weight zero. Deleting disallowed triplesfrom a con�guration has no e�ect on the strategy's predictions.On each trial the Cbin conversion strategy in con�guration C receives the new instancex and computes the weights of the two successor states, Cx;1 and Cx;0. The Cbin conversionstrategy predicts 1 if the weight of Cx;1 is greater than the weight of Cx;0 and zero otherwise.If the Cbin strategy predicted correctly, it keeps the con�guration C. If the Cbin strategypredicted incorrectly, then it changes its con�guration from C to Cx;b where b is the outcomeof the current trial.A sketch of the conversion strategy Cbin is given in Figure 3.1. The algorithm Cbin canbe further improved in the same way that BW0 improved BW (See Section 2). Howeverthese changes do not improve the worst-case mistake bounds, and thus we chose not toinclude them for the sake of the simplicity of the presentation.The next result shows some useful properties of sequences of con�gurations.Lemma 14: Choose a conservative, deterministic prediction algorithm A and let Sinit beA's initial state. Choose a subsequence closed set � � (X � f0; 1g)� such that LA(u) � k forsome k 2 N and all u 2 �. Choose r 2 N and a sequence s = h(xt; yt)i in (X � f0; 1g)+10Recall from footnote 3 that using c0 = m can lead to more than m mistakes.



3. Conversion strategies 25Strategy CbinInput: Two positive integers r; k, and a prediction algorithm A with initial stateSinit.1. Let g = m+ 1, wherem := max(q 2 N : q � log r+kXi=0  qi!" i� r!�  i� i� k � 1!#) : (3:4)2. Initialize con�guration C0 to have mistake budget c0 = g and contain the singletriple (Sinit; r; k).3. For each trial t = 1; 2 : : :(a) Get the tth observation xt.(b) Compute the successors Cxt;0t�1 and Cxt;1t�1 of the current con�guration Ct�1.(c) Predict with p 2 f0; 1g such thataWct�1(Cpt�1) := maxfWct�1(Cxt;0t�1 );Wct�1(Cxt;1t�1 )g:(d) Get the outcome yt.(e) If p 6= yt then decrease the mistake budget and update the currentcon�guration by setting Ct := Cxt;ytt�1 ; if p = yt, then keep the currentcon�guration by setting Ct := Ct�1.Figure 3.1: Pseudo-code for the conversion strategy CbinaIf Wct�1(Cxt ;0t�1 ) = Wct�1(Cxt;1t�1 ) then arbitrarily predict 0.which is an r-corrupted version of some u = h(xt; zt)i in �. Let C0 be the con�guration withmistake budget c0 = g containing the single triple (Sinit; 0; 0), and let C0; C1; : : : ; Cg be thesequence of distinct con�gurations generated by a run of Cbin applied to A on the sequencess. Then:1. for each t = 0; 1; : : : ; g� 1, Wct(Ct) = Wct�1(Cxt+1;0t ) +Wct�1(Cxt+1;1t ) � Wct�1(Ct+1);2. for each t = 0; 1; : : : ; g, Wg(Ct) � 1;where ct is the mistake budget of Ct.Proof. To prove part 1 we show, for each triple (S; r0; k0), that the sum of the weights ofthe successor triples equals the weight of the original. That is, if the example is xt; yt thenWct�1(S; r0; k0) +Wct�1(Sxt;yt ; r0 � 1; k0) +Wct�1(S; r0; k0 � 1)= r0+k0Xj=0  ct � 1j !" j� r0!�  j� j � k0 � 1!#+ r0+k0�1Xj=0  ct � 1j !" j� r0 � 1!�  j� j � k0 � 1!#+ r0+k0�1Xj=0  ct � 1j !" j� r0!�  j� j � k0!#= r0+k0Xj=0  ct � 1j !" j� r0!�  j� j � k0 � 1!#+ r0+k0�1Xj=0  ct � 1j !" j + 1� r0 !�  j + 1� j � k0!#



26 3. Conversion strategies= r0+k0Xj=0  ct � 1j !" j� r0!�  j� j � k0 � 1!# + r0+k0Xj=1  ct � 1j � 1!" j� r0!�  j� j � k0 � 1!#= r0+k0Xj=0  ctj!" j� r0!�  j� j � k0 � 1!#= Wct(S; r0; k0):To prove part 2 choose a sequence u in � and let s = h(xt; yt)i be a r-corrupted version of u.Let v be the subsequence of s containing all the pairs (xt; yt) where Cbin makes a mistake bypredicting 1�yt. Letw be the subsequence of v obtained by deleting the examples corruptedby noise. Finally, for each t � 1 let p(t) � t be the number of uncorrupted examples in vt(recall that vt is the length t pre�x of v), so t � p(t) is the number of corrupted examplesin vt and wp(t) is the sequence obtained from vt by deleting the corrupted examples.Let C(vt) be the set of (S; r0; k0) triples in Cbin's con�guration immediately after Cbin hasseen the sequence vt. Recall that C(v0) = f(Sinit; r; k)g, and a triple (S; r0; k0) is discardedfrom the con�guration if either r0 < 0 or k0 < 0.To prove the statement in part 2 of the lemma it su�ces to prove the following claim.Claim. For each 0 � t � jvj, there is a triple (S; r0; k0) 2 C(vt) such that:1. S is the state of A(wp(t)),2. 0 � k � k0 is the number of mistakes made by A on sequence wp(t), and3. 0 � r � r0 � t � p(t), the number of corrupted trials in vt.Proof of Claim. First note that w is a subsequence of u, so A makes at most k mistakeson w. Furthermore, v is a subsequence of s and s contains at most r noisy examples, so vcontains at most r noisy trials. Therefore both k � k0 and r � r0 are at least zero.We now prove by induction on t that an appropriate triple is in the con�guration C(vt).For the base case consider t = 0, and recall that p(0) = 0. There is only one triple,(Sinit; r; k) in C(v0). Since w0 is the empty sequence, A(w0) = Sinit, and A makes nomistakes on sequence w0. Thus all three conditions are satis�ed by this triple.For the inductive step assume some triple (S; r0; k0) 2 C(vt) satis�es the three conditionsof the claim. We now show that either (S; r0; k0) or one of its successors in C(vt+1) alsosatis�es the claimCase 1: the t + 1st trial is a corrupted trial, so wp(t+1) = wp(t). If AS agrees with thecorrupted outcome, then (S; r0; k0) is also in C(vt+1), and the three parts of the claimcontinue to hold. If AS disagrees with the corrupted outcome then (S; r0 � 1; k0) is inC(vt+1) and since vt+1 has one more corrupted trial than vt, the three parts of the claimalso holds for C(vt+1).Case 2: the t+1st trial is not a corrupted trial, so vt+1 = wp(t)+1 = wp(t+1). If AS predictscorrectly on wp(t)+1, then the triple (S; r0; k0) remains in the con�guration. Also, since A isconservative, S = A(wp(t)+1) = A(wp(t+1)) and the claim holds for C(vt+1). If AS predictsincorrectly then so does A(wp(t)). Thus A makes k � k0 + 1 mistakes on wp(t+1). Let ebe the example wp(t+1) and thus Se is the state A(wp(t+1)). In this situation, the triple(Se; r0; k0 + 1) is in C(vt+1), satisfying the claim. 2Proof of Theorem 11. Choose n; k 2 N and a sequence sn 2 (X � f0; 1g)n which isa r-corrupted version of some u 2 �. Let m be the integer de�ned by formula (3.1) and,assume to the contrary that Cbin(r; k; A) makes at least g = m+ 1 mistakes on s. Let ` be



3. Conversion strategies 27the trial on which Cbin(r; k; A) makes its gth mistake and c0 the mistake budget after the`th trial. We will show that Wc0(C`) � Wg(C0)2g (3.5)< 1: (3.6)Let t1; t2; : : : ; tg be the trials at which algorithm Cbin makes its �rst g mistakes and u0 bethe associated subsequence of u. Since � is closed under subsequences, u0 2 �. We applyLemma 14 to sequence u0 and the associated sequence C0; Ct1 ; : : : ; Ctg of con�gurationsgenerated by the algorithm. By construction, the algorithm predicts on each trial t (1 �t � n) according to the heaviest successor of the current con�guration Ct�1. The currentcon�guration is unchanged if Cbin predicts correctly. If the algorithm makes a mistake ontrial t, the successor Cxt;ytt�1 corresponding to the correct prediction yt becomes the newcurrent con�guration. Because algorithm Cbin predicts on each trial according to theheaviest successor, it follows from part 1 of Lemma 14 that Wg�1(Ct1) � Wg(C0)=2 andthat Wcj�1(Ctj�1) � Wcj (Ctj)=2, for 2 � j � g where cj (for 0 � j � g) is the mistakebudget of Ctj . This implies inequality (3.5). By de�nition of m in (3.1) and the fact thatg = m + 1 we derive inequality (3.6). Now part 2 of Lemma 14 shows that Wmt(Ct) � 1,contradicting inequality (3.6). Thus Cbin makes at mostm = g�1 mistakes on s, concludingthe proof. 2A good outcome of the fact that Cbin is conservative is that the number of triplets doesnot increase on trials where Cbin predicts correctly. However, it seems that the number oftriples kept by algorithm Cbin can potentially double each time Cbin makes an incorrectprediction. We now show that this apparent worst case behavior is not possible, andthat the maximum number of triples in any con�guration of Cbin(r; k; A) is bounded by� m�minfr;kg� = O(mminfr;kg), where m is the number of mistakes made by Cbin before thecon�guration is reached.Theorem 15: Choose a subsequence closed set � � (X � f0; 1g)�, and a conservative,deterministic prediction algorithm A with initial state Sinit, and k 2N such that LA(u) � kfor all u 2 �. Choose m; r 2 N and any sequence s = h(xt; yt)i in (X � f0; 1g)+ whichis a r-corrupted version of some u 2 �. Let C0 be con�guration with mistake budget mcontaining the single triple (Sinit; 0; 0), and let C0; C1; : : : ; Cm be the sequence of distinctcon�gurations generated by a run of Cbin applied to A on the sequences s. Then for all1 � t � m, con�guration Ct contains at most � t�minfr;kg� triples with non-zero weight.Proof. We prove the theorem when r = minfr; kg, the other case is similar. For allt = 0; 1 : : : ; m and 0 � i � r let Mt(i) be the number of triples (S; r0; k0) 2 Ct withr0 = r� i. Thus M0(0) = 1 (for the initial con�guration), and M0(i) = 0 for all i > 0. Notethat some triples counted in Mt(r � r0) might have zero weight if their k0 < 0.From the de�nition of successors,Mt+1(i) �Mt(i) +Mt(i� 1) :The unique function f = f(t; i) satisfyingf(0; 0) = 1;f(0; i) = 0; for 1 � i � r;f(t+ 1; i) = f(t; i) + f(t; i� 1); for t > 0 and 1 � i � r,



28 3. Conversion strategiesis the binomial coe�cient �ti�. Therefore Mt(i) � �ti� yielding that the number of triples(S; r0; k0) in Ct with 0 � r0 � r is at mostrXi=0Mt(i) � rXi=0 ti! =  t� r!;as desired. 23.2 The conversion strategy CexpWe now move on to the description of the conversion strategy Cexp. Where Cbinwas based on binomial weights, Cexp uses exponential weights. The advantage of usingexponential weights is that the conversion strategy does not need to know the bounds rand k which Cbin requires as inputs. However if one wants to optimize the mistake boundof Cexp so that it is in the form 2(r + k) plus a square root term then knowledge of k andr is required for Cexp as well. Analogously to Cbin, the bound of Cexp does not dependon the length of the sequence to predict. The weighting scheme used by Cexp has two realparameters, � and �, such that 0 � �; � < 1.Here we de�ne a con�guration by a set of triples for di�erent computations of algorithmA. Unlike the description of strategy Cbin given before, here a con�guration does not havea mistake count or mistake budget. However, as before each triple is of the form (S; i; j)where S is a possible state of algorithm A and i; j are both nonnegative integers. For any�xed 0 � �; � < 1, the weight W�;�(S) of the triple (S; i; j) is the product �i�j . As before,the weight of a con�guration, W�;�(C), is the total weight of the triples in C. The roleplayed here by the components i and j in each triple is analogous to the role respectivelyplayed by the components r0 and k0 in the triple (S; r0; k0) de�ning algorithm Cbin.We use essentially the same de�nition of successors as the one introduced in Section 3.1for the strategy Cbin with only two di�erences. Namely, the mistake count is absent and atriple is never removed since its weight never drops to zero.A sketch of the conversion strategy Cexp, using the above weighting scheme, is given inFigure 3.2. The next lemma establishes some properties of such weighting schema.Lemma 16: Fix a conservative and deterministic prediction algorithm A and let Sinit beits state after the initialization. Choose a subsequence closed set � � (X � f0; 1g)� anda corrupted version s = h(xt; yt)i of some u = h(xt; zt)i in �. Let C0; C1; : : : ; Cn be thesequence of distinct con�gurations generated by a run of Cexp applied to A on the sequences. Then:1. for each t = 1; : : : ; n and for each 0 � �; � < 1W�;�(Ct) � �1 + � + �2 �W�;�(Ct�1);2. W�;�(Cn) � �dH(y;z)�LA(u):Proof. Omitted. 2We now turn to the proof of the worst-case mistake bound for the conversion strategyCexp.



3. Conversion strategies 29Strategy CexpaInput: Two real numbers �; � such that 0 � �; � < 1 and a prediction algorithmA with initial state Sinit.1. Initialize con�guration C0 to contain the single triple (Sinit; r; k).2. On each step t = 1; 2; : : :(a) Get the tth observation xt.(b) Compute the successor con�gurations Cxt;;0t�1 and Cxt;1t�1 of the current con-�guration Ct�1.(c) Predict with p 2 f0; 1g such thatW�;�(Cxt;pt�1 ) := maxfW�;�(Cxt;0t�1 );W�;�(Cxt;1t�1 )g:(d) Get the outcome yt.(e) If p 6= yt, then update the current con�guration by letting Ct := Cxt;ytt�1 ;or, if p = yt, let Ct := Ct�1.Figure 3.2: Pseudo-code for the conversion strategy Cexp.aAn alternative way of arriving at the same prediction is the following. Given an instance xeach triple (S; r0; k0) votes with weight �r0�k0 for the prediction of AS on the instance x. Themaster algorithm then predicts with the vote that got the larger total weight. When this methodof prediction is used the successor con�guration has to be computed only when a mistake occurs.Proof of Theorem 12. Choose any sequence s = h(xt; yt)i and choose u 2 �. Byconstruction, Cexp predicts on each step t according to the heaviest successor of the currentcon�guration Ct. If a mistake occurs, then the successor Cxt;ytt�1 , corresponding to the correctprediction yt, becomes the new current con�guration. Moreover, again by constructionof Cexp, the current con�guration is unchanged if the algorithm predicts correctly. Wecan therefore apply Lemma 16 to the subsequence s0 � s determined by the sequencet1; t2; : : : ; tm of the indices of the prediction trials where Cexp makes a mistake. Since �is subsequence-closed, the subsequence u0 of u that corresponds to these trials lies in �.By applying part 1 of the same lemma, and given that � + � < 1, we conclude that thetotal weight of the current con�guration decreases by a factor of at least 1+�+�2 each timeCexp makes a mistake. Also, dC(s0;u0) � dC(s;u) and hence, if Cfin is the con�gurationfollowing the last prediction mistake made by Cexp on s, part 2 of Lemma 16 implies thatW�;�(Cfin) � �dC (s;u)�LA(u0):Hence, assuming Cexp(�; �) makes m mistakes on s and recalling that W�;�(C0) = 1,�1 + �+ �2 �m � W�;�(Ct)� �dC(s;u)�LA(u0):Solving for m, recalling that m is integer, yieldsm � $dC(s;u) log 1� + LA(u0) log 1�log 21+�+� % :Since s 2 (X � f0; 1g)+ and u 2 � were chosen arbitrarily, the proof is concluded. 2



30 3. Conversion strategiesWe conclude this section by proving the last of the three theorems stated in Section 3.Proof of Theorem 13. We shall upper bound the maximal value of a larger set.max(q 2 N : q � log r+kXi=0  qi! i� k!) � $r log 1� + k log 1�log 21+�+� % : (3:7)Inequality (3.7) is proven via the following lemma.Lemma 17: 8k; r;m 2 N such that m � r+k and 8�; � 2 [0; 1) such that (1+�+�) < 2:r+kXi=0  mi ! i� k! � (1 + �+ �)m�r�k :Proof of Lemma 17. By a double application of the Binomial Theorem we show(1 + �+ �)m = mXi=0 mi !(�+ �)i � �k�r r+kXi=0  mi ! kXj=0 ij!and this concludes the proof. 2It is easy to see that r + k is a lower bound on the number of mistakes of any masteralgorithm. The LHS of Equation (3.3) is an upper bound on the number of mistakes madeby Cbin, therefore it is larger than r + k. Thus we can apply Lemma 17 to (3.7) obtainingmax(q 2 N : q � log r+kXi=0  qi! i� k!) = max(q 2 N : 2q � r+kXi=0  qi! i� k!)� max�q 2 N : 2q � (1 + � + �)q�r�k �= max8<:q 2 N : q � r log 1� + k log 1�log 2(1+�+�) 9=;= 6664r log 1� + k log 1�log 2(1+�+�) 7775concluding the proof. 2If we give Cexp an additional input parameter k such that k � maxu2� LA(u0); thestrategy can exploit this information in order to minimize the number of states in eachcon�guration. In particular, Cexp can discard from the current con�guration each triple(S; i; j), such that j � k. By using this trick, we can show, analogously to what we didfor Cbin in Theorem 15, that the maximum number of triples in each con�guration ofCexp(�; �; A; k) is bounded by O(�mk �), where m is the number of mistakes made by Cexpup to the current con�guration.Furthermore, as we mentioned above, the knowledge of bounds r or k can be used tooptimize the parameters � and �.Note that both the conversion strategy Cbin and Cexp are conservative in the sensethat they only update their con�guration when they make a mistake. At least one copyof algorithm A receives only the subsequence of clean examples on which the conversionstrategies makes a mistake. Therefore we require that the mistake bound of algorithm A



4. Conclusions 31holds on all subsequences of sequences in �. This is the reason we assumed that the setof sequences � in theorems 11 and 12 is subsequence-closed. We would like conversionstrategies which do not require this assumption. It seems that this is possible only for amistake bound that increases with the length of the sequence. If we somehow could give Athe \correct" feedback in trials in which the conversion strategy makes no mistake then wecould drop the assumption and update the con�guration in all trials. The simple method ofusing the prediction of the conversion strategy as feedback does not work. This is illustratedby the following example. Assume the original algorithm A predicts 0 in the �rst trial andafterwards it simply predicts always with the label of the �rst example. Now let the sequenceof examples be labeled as h0; 1; 1; 1; � � �i. The conversion strategy will correctly predict 0 inthe �rst trial and feeding 0 to A will \spoil" A. If we want to update in each trial, thenwe need to simulate noise and mistakes on all trials and this will lead to increased mistakebounds.4 ConclusionsWe have investigated the problem of on-line boolean prediction from two di�erentviewpoints. We �rst improved known results about strategies that predict deterministicallyusing the advice from a set of experts. These improvements are obtained using a weightingscheme that uses Binomial coe�cients rather than exponential weights of the form �m.These binomial coe�cients can be interpreted as counting the members of an appropriateversion space. In the expert setting the mistake bound based on binomial weights is neverlarger than the mistake bound based on exponential weights. Furthermore, the advantageof the binomial weights can be made arbitrarily large. Nevertheless both bounds can beshown to have the optimum leading term using probabilistic techniques. We also provethat, for an in�nite subset of the possible problem parameters, the bound using binomialweights is best possible. The proof of this fact relies on a new translation of our predictionproblem to Ulam's game with lies.Secondly, we introduced a novel approach for making on-line algorithms robust to noise.We show how to convert an on-line prediction algorithm that is guaranteed to make at mostk mistakes when given an observation-outcome sequence from its domain into an algorithmthat works well when up to r of the outcomes are corrupted by noise. The convertedalgorithm has a conjectured mistake bound of2(r+ k) + 2qrk ln(e� 1 +max(r; k)=min(r; k))+ 2:807prkon any of the corrupted sequences (the conjecture is supported by numerical evidences.)The best lower bound we know of is 2r+k; tightening the gap between these bounds remainsan open problem.Based on our experience binomial weights seem to lead to better mistake bounds thanexponential weights. They have the advantage of being motivated by a version spaceargument that leads to a deeper understanding of the on-line learning problem. Theexponential weights seem to approximate the binomial weights and are sometimes easier touse, especially when the number of mistakes made by the best expert is unknown (althoughoptimizing their mistake bounds requires knowledge of this parameters as well). Alsoexponential weights can be used for designing randomized prediction algorithms [5]. In thecase of exponential weights the worst-case expected number of mistakes of the randomized



32 Referencesalgorithm is exactly half of the worst-case number of mistakes of the deterministic algorithm[17, 9]. We were unable to �nd a randomized binomial weighting algorithm that had anexpected mistake bound signi�cantly smaller than the deterministic BW algorithm.AcknowledgmentsDavid P. Helmbold was supported by NSF grant CCR-9102635. Manfred Warmuth andYoav Freund were supported by ONR grant N00014-91-j-1162. Part of this research wasdone while Nicol�o Cesa-Bianchi was visiting UC Santa Cruz (USA) partially supportedby the \Progetto �nalizzato sistemi informatici e calcolo parallelo" of CNR under grant91.00884.69.115.09672, and the Institute for Theoretical Computer Science at the GrazUniversity of Technology (Austria).References[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John Wiley andSons, 1989.[2] N. Alon, J.H. Spencer, and P. Erd}os. The Probabilistic Method. John Wiley and Sons,1992.[3] D. Angluin. Queries and concept learning. Machine Learning, 2:319{342, 1988.[4] J.A. Aslam and A. Dhagat. Searching in the presence of linearly bounded errors. InProceedings of the 23rd ACM Symposium on the Theory of Computation, pages 486{493.ACM Press, 1991.[5] P. Auer and P.M Long. Simulating access to hidden information while learning. InProceedings of the 26th ACM Symposium on the Theory of Computation, pages 263{272.ACM Press, 1994.[6] P. Auer andP.MLong. Structural results about on-line learningmodels with andwithoutqueries. Machine Learning, 1994. To appear.[7] J.M. Bardzin andR.V. Freivalds. On the prediction of general recursive functions. SovietMath. Dokl., 13:1224{1228, 1972.[8] E.R. Berlekamp. Error-Correcting Codes. John Wiley and Sons, 1968.[9] N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, D. Haussler, R. Schapire, and M.K.Warmuth. How to use expert advice. In Proceedings of the 25th ACM Symposiumon the Theory of Computation, pages 382{391. ACM Press, 1993.[10] N. Cesa-Bianchi, P.M. Long, and M.K. Warmuth. Worst-case quadratic loss boundsfor a generalization of the Widrow-Ho� rule. In Proceedings of the 6th Annual ACMWorkshop on Computational Learning Theory, pages 429{438. ACM Press, 1993.[11] H. Cherno�. A measure of asymptotic e�ciency for tests of a hypothesis based on thesum of observations. Annals of Mathematical Statistics, 23:493{507, 1952.[12] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley,1989.[13] J. Kivinen and M.K. Warmuth. Using experts for predicting continuous outcomes. InProceedings of the First Euro-COLT Workshop. The Institute of Mathematics and itsApplications, 1993.



A. A prediction algorithm that is strictly optimal for a large number of experts 33[14] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Machine Learning, 2(4):285{318, 1988.[15] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms.PhD thesis, University of California at Santa Cruz, 1989.[16] N. Littlestone, P.M. Long, and M.K. Warmuth. On-line learning of linear functions.Technical Report UCSC-CRL-91-29, University of California at Santa Cruz, 1991. Anextended abstract appeared in: Proceedings of the 23rd ACM Symposium on the Theoryof Computation.[17] N. Littlestone and M.K.Warmuth. The weighted majority algorithm. Technical ReportUCSC-CRL-91-28, University of California at Santa Cruz, 1991. An extended abstractappeared in: Proceedings of the 30th Annual Symposium on the Foundations of ComputerScience.[18] J. Spencer. Ulam's searching game with a �xed number of lies. Theoretical ComputerScience, 95:307{321, 1992.[19] S. Ulam. Adventures of a Mathematician. Scribners, 1977.[20] V.G. Vovk. Aggregating strategies. In Proceedings of the 3rd Annual Workshop onComputational Learning Theory, pages 372{383, 1990.A A prediction algorithm that is strictly optimal for a large number ofexpertsAs was shown in Section 2.3, the number of mistakes that the BW algorithm makesis within one from optimal when N , the number of experts, is large enough. In fact, wehave shown that, for most values of N , BW obtains strict optimality. In this section wedescribe a variant of BW, which we call EBW (Enhanced Binomial Weights), which achievesoptimality in the worst case for all su�ciently large values of N . This modi�cation and itsanalysis is a direct adaptation a result of Spencer's ([18], Section 3).As we have seen in the proof of Theorem 9, the only slack which allows for the gapbetween the upper and the lower bounds is in the way the game is played for the �rst ktrials. In these trials there are no pennies available to Paul and thus, in some cases, he isnot able to split the chips into two sets of equal weight. In these cases Carol can force areduction of the weight by more than a factor of two. If Carol plays using the BW strategy,then this possibility is ignored. When using EBW, Carol takes advantage of this conditionwhenever possible and in this way is able, in some cases, to reduce the number of mistakesit makes by one. This improvement is the best possible (for large enough N) as there alsoexists a more re�ned strategy for Paul that can force the exact same number of mistakesfor every N .We now describe the EBW algorithm. Recall step 1 in BW (Figure 2.1), in this step thebound on the number of mistakes, m, is calculated. Algorithm EBW has an additional step1�, between steps 1 and 2 of BW. In this step EBW checks if it can take advantage of thecase described above and guarantee that at most m� 1 mistakes will be made. Speci�cally,it computes a new variable, m� which is equal to either m or m � 1. The value of m� isan improved upper bound on the worst case number of mistakes. The rest of the algorithmstays almost the same, the only di�erence being that m� is used instead of m in steps 2 and3.



34 A. A prediction algorithm that is strictly optimal for a large number of expertsWe now describe the computation of m� in step 1�. First, the algorithm checks ifN � 2k � d2m=�m�k�e. If the inequality holds, then it is known from Theorem 9 that thebound cannot be improved and m� is set to be m. Otherwise, EBW computes the followingquantities:For 1 � i � k, it calculates the following greatest common divisors:Ai = gcd  m� 1� ik !; m� 1� ik � 1 !; : : : ; m� 1� ik � i+ 1!! :It then calculates the initial weight that corresponds to m� 1V0 = N m� 1� k ! ;and then calculates, inductively, for 1 � i � k, the following numbersVi = max�j 2 N j j � V0 mod Ai; and j � Vi�12 � :Now the algorithm checks if Vk � 2m�1�k . If this condition holds, then the algorithm canguarantee at most m� 1 mistakes, and m� is set to m� 1. If the condition does not hold,then m� is set to m.It remains to be shown that the number of mistakes made by EBW is at most m� andthat no other algorithm can make a smaller number of mistakes for large enough values ofN . The proof of both of these claims is a direct translation of the proof of the theorem insection 3 of Spencer's paper [18], and we omit it from here.


